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Streamer Propagation as a Pattern Formation Problem: Planar Fronts
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Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a non
ionization wave transforms a nonionized medium into a weakly ionized nonequilibrium plasma.
understanding of this old phenomenon can be gained through modern concepts of (interfacial)
formation. As a first step towards an effective interface description, we determine the front width,
the selection problem for planar fronts, and calculate their properties. Our results are in good agr
with many features of recent three-dimensional numerical simulations. [S0031-9007(96)01612-2

PACS numbers: 47.54.+r, 51.50.+v, 52.80.Mg
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Transient discharges occur in various forms [1], e.
as leaders in spark formation or as streamers in ac si
discharges [2]. A common feature is the creation
a nonequilibrium plasma through the propagation of
nonlinear ionization wave into a previously nonionize
region. Although it is well known that, depending on th
polarity of the field, discharge patterns on a larger sc
may either be fractal [3] or form more regular nonfract
patterns [4], ionization fronts do not seem to have be
analyzed before as a pattern forming system on sc
resolving their internal structure. While the idea of a sho
front or a thin ionization sheet has been formulated
the literature on streamers in the 1970s [5], the analyt
treatment then frequently was based onad hocassumptions
and on equilibrium concepts, e.g., on the assumption
the high electric field would raise the electron temperat
and that subsequent ionization would be thermal. In
last 10 years, models incorporating nonequilibrium imp
ionization of neutral molecules by free electrons ha
been investigated both numerically [6,7] and analytica
[8]. Figure 1(a) shows a snapshot from a numerical stu
by Vitello et al. [7] of the streamer equations, Eqs. (1)
(4), below. Here, the evolution of the electron and i
densities between two planar electrodes with dista
0.5 cm and voltage difference 25 kV is integrated forwa
in time for parameter values describingN2 under normal
conditions. At timet ­ 0, the electron density was take
nonzero only in a small localized region near the upp
negative electrode. The figure shows the electron den
5.5 ns later. Each contour line indicates the increase
the electron density by a decade. The lines enclos
fingerlike region (the body of the streamer), consisti
of a nonequilibrium plasma; this region rapidly expan
downwards towards the anode. In the region outside,
gas is essentially nonionized. The fact that the cont
lines in the figure are very closely and about equidistan
spaced illustrates that the electron density within a zo
of the order of a fewmm grows about exponentially by
a factor of about1010. Since the total charge densit
is negligible before as well as behind the front, stream
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dynamics can be viewed as the propagation of a t
charged ionization sheet separating a nonionized high fi
region from an ionized electrically screened region.

Obvious, and up to now unanswered, questions a
What determines the scale of the pattern (e.g., the lat
width of the fingerlike region), its velocity, the field
enhancement near the tip, and what effects do the bound
and initial conditions have? Triggered by the observati
of interfacelike profiles in the simulations [6,7] and b
the fact that these are precisely the questions that

FIG. 1. (a) Electron density profile in a negative stream
from the 3D cylinder-symmetric numerical simulations [7] o
Eqs. (1)–(4). Courtesy of P. A. Vitello. (b) Our prediction
for planar fronts. Upper panel:yyyD (solid) andypyD (dashed
lines) as a function ofD for positive fronts and forE1 ­ 0.4,
0.6, 0.8, 1.0, 1.2, and 1.4, from bottom to top. Lower pan
Electron densitys2 ­ neeyq0 behind a negative front as a
function of the field E1 before the front forD ­ 0 (solid
line), 1 (dashes), 3 (dots). Crosses: values ofs2sE1d on the
symmetry axis in the 3D simulations [7] at times 4.75 ns a
5.5 ns, withE1 the value of the outer field extrapolated toward
the tip, in accord with the asymptotic matching prescription.
© 1996 The American Physical Society
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studied in the field of interfacial pattern formation for, e.
dendrites and viscous fingers [9], we show here that pa
formation concepts provide a systematic route to unra
precisely these aspects.

(i) For planar fronts, we trace the “great defec
“the inability of the theory to determine a value f
the wave speed” [5(c)], to the fact that streamers
an example offront propagation into unstable statesin
virtually all models analyzed [5,8]. For such problem
it is well known that the velocity cannot be obtained ju
by analyzing uniformly translating fronts using standa
methods. In the field of pattern formation, the mechan
of dynamical front selectionhas been understood in th
last decade [10,11]. In this paper, we show that
allows us to derive all essential properties of planar fro
for the model of the recent simulations [6,7].

(ii) Clearly, an analysis of planar streamer fronts d
not suffice to explain theglobal questions of pattern
formation posed above, such as the field enhanceme
front of the streamer head or the radius of curvature of
tip. However, both the simulations [6,7] and our analy
show that the propagating charge sheet is only a fewmm
thick, while the tip radius and the electrode spacing
of order mm or more. This separation of scales t
makes simulations so demanding can be made into
analytical tool. Much of our present knowledge ab
similar problems like combustion fronts [12], therm
plumes [13], and chemical waves [14], etc., is ba
on aneffective interface description. Such a physically
appealing formulation can be systematically derived i
matched asymptotic expansion to lowest order in the r
,iny,out, where the inner length scale,in is the thickness
of the front (here the thickness of the charge sheet),
,out the scale of the pattern, e.g., the tip radius. In
effective interface approach that we propose for stream
the charge sheet can be viewed as aweakly curvedlocally
almost planar front, since the thickness of the cha
sheet is much smaller than its radius of curvature.
in the other problems, the importance of our planar fr
analysis therefore lies in the fact that, apart from curva
corrections, it provides a complete solution of the
called inner problem.

(iii) In the nonionized region outside the streamer,
electrical potentialF obeys the Laplace equation,=2F ­
0. Moreover, our analysis shows that the normal velo
of a negatively charged planar streamer front (yp below)
is a weakly nonlinear function of the fieldE1 ­ 2=F

just ahead of it. Both features are reminiscent of
equations for other interfacial pattern forming proble
like dendrites—e.g., the enhanced diffusion in front
a dendrite tip is analogous to the field enhancemen
front of a streamer. Streamers will therefore be amen
to the same type of analysis [9,12,13]. Physically,
expect that the interface equations will take the fo
of a conservation equation for a charge sheet (involv
transport terms along the sheet, a stretch term du
,
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interface curvature and a term associated with cha
transport from the plasma behind), supplemented w
an equation for the front speed that includes curvat
corrections, and an equation for the degree of ioniza
created by the front which is not determined by a
conservation law. The derivation of the appropria
equations is left to the future, as the analysis is far fr
trivial due to the coupling to the dynamics of the plasm
the fact that the electric field is typically not normal
the front, and the fact that in this fully nonequilibrium
situation, the curvature corrections do not follow fro
simple thermodynamic considerations.

We now sketch our analysis [15] of planar fronts
the streamer model equations [6–8] that also unde
Fig. 1(a). The electron and ion densitiesne, n1, and the
electric fieldE obey the balance equations

≠tne 1 ===R ? je ­ jnemeEja0e2E0yjE j, (1)

≠tn1 1 ===R ? j1 ­ jnemeE ja0e2E0yjE j, (2)

and the Poisson equation

===R ? E ­
e
´0

sn1 2 ned . (3)

The electron and ion current densitiesje andj1 are

je ­ 2nemeE 2 De===Rne, j1 ­ 0 , (4)

so that je is the sum of a drift and a diffusion term
while the ion currentj1 is neglected, since the ion
are much less mobile than the electrons. The right-h
sides of Eqs. (1) and (2) are source terms due to
ionization reaction: In high fields free electrons c
generate free electrons and ions by impact on neu
molecules. The source term is given by the magnitu
of the electron drift current times the target density tim
the effective ionization cross section; the rate constanta0

has the dimension of an inverse length. The exponen
function expresses that only in high fields electrons hav
non-negligible probability to collect the ionization energ
between collisions.

To identify the proper parameters for the behavior
the inner front scale, we note that in the simulatio
the fields just ahead of the front are of order of t
threshold fieldE0 ­ 2 3 105 Vycm in Eqs. (1) and (2).
The larger the rate parametera0, the more rapid the
impact ionization will be, and the thinner the fron
region. The natural length scale for the width of t
front will indeed turn out to bea

21
0 , which is about

2.3 mm in the simulations [6,7]. As the drift velocity o
electrons in a field of orderE0 is meE0, the natural time
scale for the motion of fronts is thent0 ­ sa0meE0d21

(ø 3 3 10212 s in [6,7]) and the natural scale for th
charge density isq0 ­ ´0a0E0 (ø4.7 3 1014 eycm 3 in
[6,7]).

For analyzing planar fronts, we now introduce d
mensionless variables,x ­ Xa0, t ­ tyt0, E ­ E yE0,
4179
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the electron densitys ­ eneyq0, and the total charge
density q ­ sn1 2 nedeyq0. In these units, theonly
remaining dimensionless parameter is the dimension
diffusion coefficientD ­ Dea0ymeE0. In the simula-
tions forN2 [6,7], this value is about 0.1; for typical gase
D ranges from 0.1 to 0.3 [15]. In these variables,
charge conservation equation becomes from (1), (2),
(4), ≠tq 1 ≠xssE 1 D≠xsd ­ 0. Upon combining this
with the Poisson equation≠xE ­ q and integrating, we
obtain

≠tE ­ 2sE 2 D≠xs . (5)

Here the integration constant is zero because on
inner time and spatial scale the charge and electron
sities vanish forx ! `, while Esx ! `d ­ E1 time in-
dependent. Equation (5) and the equation for the elec
density,

≠ts ­ ≠xssEd 1 D≠2
xs 1 sjEje21yjEj, (6)

together constitute the one-dimensional streamer e
tions. These equations have two important classes
steady state solutions: the ones withs ­ 0, E1 arbi-
trary, correspond to the nonionized state of the gas
which the front propagates. The ones withs constant
(denoteds2) andE ­ 0 correspond to the screened io
ized state behind the front. It is straightforward to analy
the linear stability of these states with Fourier modes
the formevt1ikx. Physically, one expects the nonioniz
s1d state to beunstable: Any small electron density drifts
in the fieldE1 and gets amplified due to impact ionizatio
while the stabilization due to diffusion dominates on
at short wavelengths. The corresponding dispersion
lation v1 ­ ikE1 1 jE1je21yjE1j 2 Dk2 confirms the
long wavelength instability. It is easily checked th
screening stabilizes the ionizeds2d states at all wave
lengths, and thatv2 ­ 2 s2 2 Dk2.

Propagating streamer fronts are therefore an examp
front propagation into an unstable state.We thus follow
the common path for such problems [10,11].

(a) As usual, one can demonstrate the existence
continuous family of uniformly translating front solution
of the form ssjd and Esjd with j ­ x 2 yt, param-
etrized by the velocityy. This is done by formulating
the equations forssjd and Esjd as a flow in the phas
spacess, E, s0d with j playing the role of a timelike
variable. A front profile then corresponds to a traje
tory connecting ones2d ­ ss2, 0, 0d fixed point with one
s1d ­ s0, E1, 0d fixed point, and the existence and mu
tiplicity of these can be studied with counting argume
[11]. The family of solutions can be obtained explicit
for D ­ 0 by writing Eq. (5) asy≠j ln jEj ­ s, by in-
serting this form into Eq. (6) and integrating: we th
getsfEg ­ yysy 1 Ed

RjE1j
jEj dx exps21yxd. This deter-

mines the flow in phase space forD ­ 0.
(b) Physically acceptable front solutions must sati

the additional constraint that the number densitiesne
4180
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of electrons andn1 of ions be positive, i.e.,ssjd $ 0
for all j.

(c) We can show that the condition (b) entails a low
bound on the range of velocities. More precisely, one
show [15] that the velocity of physically admissible fro
solutions obey

y $ yf ­ maxfyp, yyg . 0 , (7)

where yy is the fastestnonlinear front [11] if it exists.
Nonlinear fronts correspond to strongly heteroclinic orb
in phase space: they reach thes1d fixed point along the
eigendirection with the fastest contraction. The veloc
yp ­ 2E1 1 2

p
DjE1j exps21yjE1jd is the value of

the velocityy below which the eigenvalues describing t
flow close to thes1d fixed point become complex, so th
the ssjd profiles violate (b) as they oscillate around ze
far ahead of the front.

(d) Existing knowledge of front propagation [10,1
leads us to conjecture the following mechanism of fr
selection: Fronts emerging from sufficiently localize
initial conditions [16] converge asymptotically to th
slowest physically acceptable front solutionyf defined in
(7) [17].

We have investigated the existence of nonlinear (yy)
fronts analytically and numerically and checked the ab
conjecture about dynamical selection by direct numer
integration of Eqs. (5) and (6). Both qualitatively a
quantitatively, our predictions reflect the strong asymm
try between fronts moving parallel and antiparallel to
field.

Fronts propagating parallel to the electron drift, i.
into a fieldE1 , 0, arenegatively charged.Numerically
we find no yy front solutions so that we predict th
selected front velocity to be always the valueyp given
under (c). Here diffusion and ionization help to raise
front velocity to a value somewhat larger than the elec
drift velocity 2E1. The degree of ionizations2 behind
the front only weakly depends onD. The analytic resul
s2 ­ sfE ­ 0g for D ­ 0 [see formula under (a)] [8
is independent ofy and a good approximation for a
physical values ofD, as the lower panel of Fig. 1(b
illustrates. Moreover, the values ofs2sE1d extracted
from the full 3D simulations of Vitelloet al. [7] (crosses)
are close to the values we calculate for planar strea
fronts.

Fronts screening a fieldE1 . 0 arepositively charged
They can propagate only if diffusion overcomes the d
As a result, for smallD propagating fronts are extreme
steep and slow. The front velocity vanishes likeD, while
both the spatial decay rate and the degree of ioniza
behind the front scale like1yD. In the limit D ! 0
this singular behavior can be derived analytically [1
For generalD, we have predicted the front velocitie
yfsE1, Dd numerically. They are shown in Fig. 1(b).

The numerical integration of the initial value proble
fully supports all our predictions on the asymptotica
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FIG. 2. Numerical integration of Eqs. (5) and (6) forD ­ 0.1
in a constant background fieldE ­ 21. Initial state att ­ 0:
lowest line. Each new line corresponds to a time stepDt ­ 5
and the upper line tot ­ 100. (a) Electron density, (b) electri
field.

approached front for sufficiently localized initial cond
tions. As an example, Fig. 2 shows the spatiotemp
development of electron density (a) and field (b) of an
tial state withE ­ 21 and a small charge-neutral Gaus
ian ionization seed. The diffusion constant isD ­ 0.1,
and the field far from the ionized region is held consta
The ionized region initially grows exponentially and t
electrons drift with the field, until field screening in th
middle sets in. Then a negative front emerges to the r
and asymptotically (afterDt ø 20) approaches theyp

(­ 1.38) front with s2 ­ 0.144. The positive front on
the left initially recedes and then gets stuck by the co
bined action of drift and screening. This structure ke
slowly evolving in time, however, until after a time of o
der 4000, the predicted positive front withyy ­ 0.0146
ands2 ­ 6.23 emerges (not shown).

In summary, we have solved the planar streamer f
problem. Based on these results, we advocate that
should understand streamer dynamics as a two-s
problem: on the inner scale, we have a moving ioniza
sheet, whose thicknessø10 mm is set by the ionization
length 1ya0. This interface plays the role of a fre
boundary for the outer dynamics, whose scale is se
the global geometry.It is on this scale that the patter
formation problem should be studied.The similarity with
other well-known interfacial pattern forming problems
Laplace equation for the potentialF in the nonionized
region with, apart from curvature corrections, a norm
front velocity a function of=F) gives us confidence tha
properties of streamer patterns like field enhancemen
the tip, velocity, and tip radius can be obtained in
analogous way [9] by including the curvature correctio
in the resulting effective interface equations.
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