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Abstract

We analyze the dynamics of pattern forming fronts which propagate into an unstable state, and whose dynamics is of the pulled
type, so that their asymptotic speed is equal to the linear spreading spé&&d discuss a method that allows to derive bounds
on the front velocity, and which, hence, can be used to prove for, among others, the Swift-Hohenberg equation, the extended
Fisher—Kolmogorov equation and the cubic complex Ginzburg—Landau equation, that the dynamically relevant fronts are of the
pulled type. In addition, we generalize the derivation of the universal power law convergence of the dynamics of uniformly
translating pulled fronts to both coherent and incoherent pattern forming fronts. The analysis is based on a matching analysis of
the dynamics in the leading edge of the front, to the behavior imposed by the nonlinear region behind it. Numerical simulations
of fronts in the Swift-Hohenberg equation are in full accord with our analytical predictions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the last few years, it has become clear that when considering a problem of a front which propagates into
an unstable state, it is crucial to distinguish two different classes, according to whether their asymptotic speed is
equal to or larger than the linear spreading speedhe linear spreading speed is a simple concept that dates back
to developments in plasma physics and fluid dynamics that took place almost half a centiity-#gdtt is the
asymptotic speed with which an initially localized perturbation about the unstable state spreads into this unstable
state according to thinear dynamics, the dynamics obtained by linearizing the dynamical equations about the
unstable state. For any deterministic dynamical equation this linear spreading$paade determined explicitly
from a long-time asymptotic saddle-point type analysis of the Green’s function of the relevant dynamical equation.

* Corresponding author. Tel.: +31 20 592 4206; fax: +31 20 592 4199.
E-mail addressebert@cwi.nl (U. Ebert).

0167-2780/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2004.08.001



14 U. Ebert et al. / Physica D 199 (2004) 13-32

In practice, thereforey* is given explicitly by the dispersion relation of Fourier modes obeying the linearized
dynamical equatiofil—7].

Given the existence of a finite linear spreading spéddr a given problem, only two different types of asymptotic
front solutions can emerge starting from “steep” or “sufficiently localized” initial conditions: either the asymptotic
velocity of the nonlinear front isqual tov* or it is larger thanv*. In the first case we speak of “pulled fronts”, as
such fronts are essentially being pulled along by the growth and spreading of the linear dynamcs in the leading edge
where the linearized dynamical equations can be used. In the second case of fronts whose asymptotic speed is larg
thanv*, we speak of pushed fronfts-9]. Because the essential dynamics of pulled fronts is actually taking place in
the regiorahead ofthe nonlinear front region, their properties are very different from pushed fronts or other fronts,
domain walls or kink solutions whose properties are determined by a nonlinear eigenvalue problem: the singular
perturbation theory which is normally used to map weakly curved fronts onto a moving boundary problem, breaks
down for pulled frontd10], and their velocity and shape converge with universal power laws to their asymptotic
value and shape. For nonlinear diffusion equations of the type studied by Hi$4hand Kolmogorov et a[12] the
first term expressing this power law convergence was already derived in 1983 by Bifd8isbnt we have recently
found that this slow power law convergence can be summarized in one single exact equation that governs any pullec
front which converges to a uniformly translating solut[6r6,14] For a review of many of these results, $§ég

Asitturns out, the matching analysis on which the derivation of the power law convergence is based [$Bp also
requires only minimal input on the form of the nonlinear uniformly translating pulled front solution to which the
front solution converges—the explicit expressions for the velocity convergence are all obtained from a proper Ansatz
for the asymptotic expansion of the front solutions in the leading edge, the region where the dynamical equation
can be linearized. It is the purpose of this paper to show that this part of the analysis can be easily generalized tc
dynamical equations whose dynamics is pattern forming, i.e., whose asymptotic front solutionswaréormly
translating. An example of such a front in the Swift-Hohenberg equation is shokig.it. This conclusion was
already announced without derivation[ir6]. In fact, the asymptotic relaxation formula which we derive here also
applies to incoherent pattern forming fronts—the reason is that the linear spreading dynamics is always coherent
irrespective of whether the dynamics in the nonlinear region behind the front is coherent or incph&rtvhile
the asymptotic expansion in the leading edge which we will discuss here, thus pertains to both types of fronts, we
shall focus our discussion of the application of the formula on coherent pattern forming fronts.

One of the simplest examples of a dynamical equation whose pattern forming fronts are coherent is the Swift—
Hohenberg equation, and we will therefore use this equation to illustrate and test our analytical results. In fact, the
Swift—-Hohenberg equation has often played a role in studies of front propaffbfie??}—it is essentially the only
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Fig. 1. Snapshot of a front in the Swift-Hohenbétg. (11 for ¢ = 0.5. The front propagates to the right into the region wheig in the
unstable state = 0.
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equation with pattern forming fronts for which a number of exact results (including the convergence to a pulled
front solution) are knowiil 9-22]

Because there are so few rigorous results for pattern forming fronts in general, we will, before turning to the
analysis of the front convergence, discuss a method which allows us to derive a bound on the velocity for pattern
forming fonts, like the Swift-Hohenberg equation, the extended Fisher—Kolmogorov equation, or the cubic complex
Ginzburg-Landau equation. Although our argument is in essence a simplified version of the line of analysis Collet
and Eckmanri22] use to prove that fronts in the Swift-Hohenberg equation are pulled, we do want to show the
reader how in just a few lines one can prove that fronts in pattern forming equations are pulled: we think that the
method holds the promise for many new rigorous results on front propagation.

The layout of this paper is as follows. In the next section, we first discuss our method to derive a bound on the front
velocity. Then, in Section 3, we perform the asymptotic expansion of the dynamics of the leading edge of a pattern
forming front, which gives the expressions for the convergence of the front velocity and shape to their asymptotic
behavior. In Section 4, we illustrate these results with numerical solutions of the Swift-Hohenberg equation, and
we close the paper with a brief summary.

2. The linear spreading velocity as a rigorous upper bound
2.1. The linear spreading velocity

We consider a generic dynamical equation for some generic dynamical vagiafdh®se stationary stage= 0
is linearly unstable, and whose dispersion relation is givem(&y. This means that a Fourier perturbatigh of
the unstable state evolves under the linear dynamies‘a&)+x_ Associated with the linear dynamical problem
is alinear spreading velocity*, the velocity with which an initially localized perturbation spreads asymptotically
into the unstable state according to the linearized dynamics. The asymptotic spreading is simply determined by
a long-time saddle point analysis of the Green'’s function of the linear equation. The analysis is particularly easy
for equations that are first order differential in time. The pulled velogitis then given explicitly in terms of the
dispersion relatiom(k) as[1-7]

do(k)|  Imo(k*) « _ Ima(k*)
T PP e T

K = g* +ink. (1)

The first equation determines the saddle point vailia the complex plane, and the second one then gives the linear
spreading velocity*. The third equation fixes our notation for the splittingkéfinto real partg* and imaginary
partA* for the remainder of the paper. The complex parameter

_ i dPo(k)
T2 dk?

()

k*

plays the role of a complex diffusion coefficiénSince the growth rate Im-(iw(k) + iv*k) in the comoving frame
is maximal at* for a relevant saddle point, the sign of Ras fixed:

ReD > 0. 3)

If there are several solutions of the saddle p&igs. (1)—(3, the one with the largest is the relevant onfg]. If the
equation of motion contains higher temporal derivatives, historically first a pinch point analysis has been applied

1 Dis the complex generalization of the diffusion constBras in[7] and should not be confused with the operator defined in Eq. (5.27) of

[6].
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[2], as also recently discussed#8]. The equivalence of this approach with a saddle point analysis is discussed in
Sections 5.4 and 5.5 and Appendix M[6f. The saddle point analysis also applies to equations that are discrete in
time or to sets of coupled equations.

Our analysis applies to sufficiently steep initial conditidis

lim ¢(x,0)e* =0  for somexr > A*; 4
X—> 00

initial conditions with bounded support fall into this class. An important result is that in a ffame — v*t moving
with velocity v* to the right, the asymptotic evolution of the field under the linear equation is given by

b(x, 1) ~ e~ M E+iqTE — i) e_j\/% | ]
where

Q(k) = w(k) - v'k, )
and where the co-moving coordinate
oo ()

is held fixed whiler — oo. This follows from the saddle point analysis of the Green’s function in the limit of large
t, cf. Sections 5.3 and 5.5.1 j]. The saddle poinEgs. () can be expressed in terms®@fk) as 4.22|,+ = 0 and
Im £2(k*) = 0. For the remaining real part ¢¥(k*), we use the notation

Q2* = Q(k*) = Re2(k*). (8)

Eqg. (5 illustrates that an initially sufficiently localized linear perturbation reaches the velgtiyd the spatial
decay rate.* for t — oo under the dynamics of the linearized equation.

2.2. Upper bounds on the velocity: proof of pulling

When a front evolves under the full nonlinear equation into an unstable state, its asymptotic speed can never be
smaller than the linear spreading veloaity If the initial condition is sufficiently steep, the front can be either pulled
or pushed. If the asymptotic speed equélghe front is called pullefb—8], otherwise it is called pushed. As a rule
of thumb, dynamical equations whose nonlinear terms are all suppressing the growth lead to pulled fronts, but there
is at present no general theory that allows one to predict when fronts are pulled and when they are pushed. For ¢
nonlinear diffusion equation, a sufficient criterion for pulling was given by Aronson and Weinlj2djeBenguria
and Depassier have derived rigorous velocity bounds for more general equations that generate monotonic fron
solutions[25—-27] Collet and Eckmann, who have been studying pattern forming front solutions from a rigorous
point of view already since lond 9—-21] recently gave a proof for the Swift-Hohenberg equation and remarked that
the analysis could be extended to the complex Ginzburg-Landa2#qln Appendix A of[6], we independently
gave a line of argument for how to compactify and generalize the proof of Aronson and Weinberger; it is based on
the same ingredients as the one of Collet and Eckmann. In the present section, we further generalize and simplify
the criterion that fronts in some pattern forming equations are pulled.

2.2.1. Areal equation and fielglwith nonlinearityAV{¢)¢
Consider first an equation of motion with real operators for a real field

N
09 = Z an 8’;¢ - Mo)p, MNO)=0, a, Nreal ©)

n=0
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with explicit linear terms and a nonlinearity\(¢)¢. All parametersz, and the nonlinear functioN{¢) in this
subsection are supposed to be real. For a leading edge to/éxisg is required. In order that the solutions stay
smooth for growing time (i.e., that the equation has no short wave length instability), the coefficient of the largest
even derivative has to obey

ay iM <0. (20)

This means that = N if N is even, andV is the largest even integer with; # 0 if N is odd. For a second order
operator (V = 2), this requirement means that the operator is ellipticx 0).
Examples of such equations are the nonlinear diffusion equatioa: a§u + f(u), the Swift-Hohenberg equa-

tion

Ou = su — (85 +12%u —u®=(e—Lu— 28)2Cu — Bﬁu —u®, (¢>0), (11)
or the extended Fisher—Kolmogorov (EFK) equatfioy28,29]

ou = 8)2(14 - 7/8;114 +u—ud. (12)

The linear operator determines the dispersion relati@) and the parametets’, £2*, ¢g*, A* andD as discussed
above.
The relevant dynamics of a pulled front that leaves a homogeneous state behiadd = ¢*), was identified
in [6] by the leading edge transformatigifx, 1) = e *" 4y (&, 1), £ = x — v*+. For pattern forming fronts with
£2* £ 0 # g*, different generalizations of this transformation are possible. While in the next section dealing with
the asymptotic dynamics, the complete complex phase 4 652" il be factored out o, for deriving bounds,
it will be more convenient here to factor out the envelep& . In a frame moving with velocity*, the fieldy (&, 7)
is then defined through

plx, 1) = e M EYE 1),  E=x—v'r (13)

The effect of the transformation is demonstrated by compdfigg1 with Fig. 2 below which show the original

dynamical field: of the Swift-Hohenberg equation and the associated i}elﬂhe fieldfp in Fig. 2magnifies the

relevant dynamics in the leading edge which we will analyze in Section 3, while this dynamics is hiddgnlin
With this transformation, the equation of motion fbbecomes

N
0 — vt (0 — W) =D an(de — 1YY — N e 5) 9. (14)

n=0
With the two auxiliary functions of the Fourier variakie

N
o(k) = an(ik — 3*)" + v*(ik — 1*) = —iw(k + ir*) + iv*(k +in¥),
n=0

Pk, 1) = [ ds D(E. 1) e *,

(15)
the linear operators i&g. (14 can be written in a more compact form
- © dk — - w£\ A
it = [ 5ol ukn - N (1) 0, (16)
—o00 2T

2 Note that in[6], the complete nonlinear expressidfip)$ was denoted a¥ (¢), but the present notation turns out to be more convenient for
the generalizations.
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Fig. 2. Three snapshots of the functid¥?y obtained from our simulations of the Swift-Hohenberg equatiom fer0.5. The results confirm
the asymptotic behavior (55). Note in particular the diffusive broadening of the pattern: the one atig®® is twice as wide as the one at
timer = 50.

The identity
/_ dk o(k) (k. 1) Y=k 1) = /_ dk M Ve 1) V(=k. 1)
= [T 20 G gk =

7

is true for anyo (k) with reala,. (Here, the upper indekx denotes complex conjugation.) Now multidg. (19
with (&, 1), integrate over space and use the identity (17); then the final result is

3 V2(E 1) dk — 2 . IR
5 [ P50 = [ 5 Reat) it — [ de (0 ) e (18

If ¢ initially is sufficiently steep (4) fox — oo, and if|¢| stays bounded behind the frontat> —oo, then the
integrals exist initially. If furthermore the right hand side of (18) can be shown to be negative and ofdgdénz,
then [ d& V2(€, 1) | O for growings. This means that in a frame moving with velocity, y2 vanishes; and this
implies that the front cannot move faster tharfor r — oo®.

Forther.h.s. of (18) to be negative, we need both integrals to be negative. Sinflg Relm w(k + iA*) — v*A*
the saddle point construction entails thatdRg*) = 0, do,+ = 0 anddZo|,+ = —2D with ReD > 0. Therefore,

Reo(k) <0 for all realk. (29)

If the Egs. (1)—(3) have several solutions, this condition holds for the one corresponding to the largest spreading
speedv* [6]; the saddle point corresponding to this solution then determines the long time asymptotics. Therefore,
the present formulation in terms atk) yields an alternative and rigorous route to derive that the saddle point with
the largesb* is the dynamically relevant one.

3 Unlike what was remarked i{23] where the front steepness was considered a purely intuitive idea, the present argument shows that it plays
a central role in a rigorous mathematical proof, see @sbt]. However, Chomaz and Couair{#28] have correctly pointed out that the leading
edge of a pushed front should also obey a causality requirement.
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The sign of the integral over the nonlinearity is fixed if the sigiVGE fixed. Therefore, a sufficient criterion for
the front to be pulled is

N) > 0 for all relevantyp. (20)
This criterion is equivalent to
sup, 2 < /0) with 1(9) = a0t — AT 1)

The last expression is known to be a sufficient criterion for solutions of the nonlinear diffusion equation to be pulled
[24]. ThereforeEgs. (20) and (2lare the generalization of this result to equations of type (9), (10).

The range of values @f over which the supremum in (21) has to be taken, depends on the solution: In a pattern
forming front, the sign o$ can change. This increases the relevant valugsofl therefore decreases the admissible
functions\. E.g., forM(¢) = ¢”, a monotonic front with non-negativewill be certainly pulled for all- > 0, while
for a pattern forming fronty needs to be an even integer. Both in the Swift-Hohenberg and EFK equéfion,
is quadratic in the dynamical variable, hence the above argument immediately shows that sufficiently steep initial
conditions lead to pulled fronts in these equations. With a few slight modifications, the analysis can also be extended
to the difference equationd/dr = C; — Cl{l, for which fronts were empirically found to be pull§t4,30]

2.2.2. A complex field: the complex Ginzburg—Landau equation

Itwas already remarked by Collet and Eckmann in a footnd@dthat the above line of analysis can be extended
to the case of the cubic complex Ginzburg—Landau equation. We present the argument here in our language, and
then generalize it to an even more general class of equations in the next subsection.

We analyze the complex Ginzburg—Landau equation for complexAiéldr)

A =eA+(1+c1)d?°A —(L—ic3)|AI?’A  withe, c1, careal (22)

or more generally an equation of the form

N
GA = aydlA—NA) A, M0O)=0.  with A(x. 1), a, complex (23)
n=0

with
N >2, ReayiM <0, (24)

whereM is the largest even integer with, # 0.
The saddle point parameters, g*, v*, £2* andD are again used for the transformation

AE D) =e 8 Y(x,1), whereg =x — vt (25)

The calculation now follows essentially the lines of the previous calculation—except that one has to take into
account that the fielﬁ/ and the coefficients are now complex. Therefore, the equations of motidrf im’rfp* have

to be considered, too. They are, of course, derived by simply taking the complex conjugate of the equations for
andy. One then easily derives an equation {673,y + v9,%* = 9|42 that after spatial integration and a few
steps of calculation can be reduced to

9 2
g/ds (02 _ [k

5 Rea(k) 17k 02— [ dé ReATA) 1917 (26)

Here,@(k, t) andao (k) are defined precisely as in (15).
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This means that the complex equation has been reduced to expressions that contain absolute values and real pa
only. Therefore the conclusion from the previous subsection is easily extended: an equation of form (22) or (23)
creates pulled fronts if

ReANA) > 0 forallrelevantA. 27

This is a nontrivial result, since in contrast to the real equation (9), the complex equation does not have an energy
minimizing structure; still the bound can be derived in the same way as before. Specialized to the cubic complex
Ginzburg-Landau equation, the above analysis simply proves that fronts in this equation are pulled, a fact known
already empirically since over 20 yedis31].

2.2.3. Generalization of admissible linearities and nonlinearities
In the last step, the admissible linear and nonlinear operators are reconsidered and generalized. For comple
functionsA, the general form is

LA+ MA, 3.A, A, ..., 0"A) A=0, (28)

whereA again can be compleX. is an arbitrary complex linear operator that can take the differential form above,
but also a difference or integral or mixed form as discussed in Sectioifigy.&s before, compar&gs. (10) and
(24), the operatoiC should be such that the dynamics is stable at sufficiently short wave lengths. The oferator
determines the saddle point parametérsi*, ¢g* andD. Independent of the original functional form of the linear
operator, the expansion about the (largkrgex)-saddle point will lead to the differential form

00 = ... — N(A, 0, A, %A, ..., 0" A) V. (29)

The analysis now proceeds as before with the final result
9 V(g )2 MA, A, ... 0" A) -
a—/dgM:..—/dsRe ( HAES (30)
t 2 ‘[O

A sulfficient criterion for the front to be pulled is

ReMA. DA, .. 84)
0

>0 forallrelevana. (31)

In essence, the method discussed here confirms mathematically what one would expect intuitively for equations
where only the linear terms lead to growth away from the unstable ¢tat®, while all the nonlinear terms are
clearly stabilizing. In such cases, fronts are shown to be of the pulled type. There are several cases where fronts ar
empirically known to be pulled, but where the methodin its present formulation fails. E.g., while adding a nonlinearity
like —(d,u)?u to the Swift—-Hohenbergq. (11 or EFK Eq. (12 leaves the fronts in these equations of the pulled
type, sinceN = (3,u)? > 0, the nonlinearity of the Kuramoto-Sivashinsky equatipn= —8§u — 3% + (B u)u
does not fall into the class (31). In fact, extending the method to the Kuramoto-Sivashinsky equation must clearly
be quite a challenge, since adding a linear teﬂfu gives a transition to pushed fronts for~ 0.15 [7]. An
easier challenge to start with appears to be the Cahn-Hilliard equitica —? (afu +u— u3). Again, in its
present form our method does not apply straightforwardly to the Cahn—Hilliard equation. Nevertheless, for a front
penetrating the state= 0 under the Cahn—Hilliard dynamics, we derive after a few partial integrations that

5 / de g2 = .. — 3/d§ 72 ((axu)2 - (A*u)z) . (32)

Itis very likely that the sign of this integral over the nonlinearity is negative, sifieg (u is the local slope of the
full oscillating front, while ¢*u)/u is the slope of only the envelope in the leading edge. However, we have not yet
been able to prove this.
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In summary, we have derived sufficient criteria for a large class of equations to form pulled fronts, i.e., fronts
that propagate with the linear spreading spegedVe now proceed to determining their actual rate of convergence
to the asymptotic behavior.

3. Power law convergence to the asymptotic speed and shape of a pulled front

In [6], we have analyzed pulled fronts that for long times approach uniformly translating fronts, and we have
derived their rate of convergence to the asymptotic velocity and front profile. We will now extend this analysis to
pattern forming fronts.

Our analysis in6] was based on a complete matching of the transient dynamics in the leading edge (where
the nonlinearities in the dynamical equation can be neglected) to the behavior in the nonlinear front region itself.
This detailed analysis explicitly demonstrates that the matching procedure can be carried out order by order. It is
remarkable and in line with the picture that has emerged for the pulled front mechanism, that the coefficients in the
asymptotic expressions are actually obtained from the asymptotic analysis in the leading edge only; more precisely
they are given by the saddle point parameters (1), (2) of the linearized equation. This is because for the analysis
in the leading edge only input on the dominant analytic behavior of the asymptotic front profile is He€ded
brevity, we will therefore present here only the generalization of the asymptotic expansion in the leading edge,
following the lines of our earlier paper.

3.1. The dynamical equation for the leading edge variabla the frametyx

The first ingredient of the asymptotic analysis for the front convergence is to note that in the leading edge, the
saddle point analysis from Section 2.1 implies that the figlg r) defined through

Plx, 1) = e ¥ E LSTETIT g ) £ =x — v (33)

becomes a function which varies slowly in space and time for la@ysds, and this slow dynamics is governed by
a generalized diffusion equation of the form
2 3 2 2
L O N . VTR @0

In the functionyr, the full complex prefactor is factorized out ¢f in contrast to the partial factorization in Eq.
(14). The paramete is the generalized diffusion coefficient defined alreadidn (2 above. Likewise, the other
expansion coefficient®s, w, 12 et cetera can all be expressed in terms of the expansion of the dispersion relation
near the saddle point—see Eq. (5.64]@if E.g., we simply havé®s = (1/3!)d3w/dk3|.+. Note that we calEq.
(34) a generalized diffusion equation since the dominant terms for faige: are in fact diffusive and can generate
the Gaussian froriqg. (5.

For equations which lead to uniformly translating fronts = 0 andD is real, but for pattern forming fron®
is generally complex angi # 0.

As discussed ifb—7], if we follow a level line wherég| is constant, the I,/7 term in Eq. (5) implies a logarithmic
and thereforeinboundedhift in the position of the level line, and hence of the transient fronts in the nonlinear equa-
tion. The crux of the convergence analysis is therefore to introduce a collective coorxifrjdte the front position,

c3/2 2c3/2

. c1 c2
X(t):7+t3ﬁ+[72+ <:>X(I)=C1|n[—tlﬁ+"', (35)

4 Inthe language of a matching analysis, the outer (leading edge) expansion of the inner (nonlinear front) solution is expressed by the condition
(45) below.
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and to perform an expansion in tlagarithmically shifted frame
Ex =&— X(1) = x — v*t — X(2). (36)

For pattern forming fronts, we likewise introduce a global time-dependent gh@ase

. di  d3p  do 2d3/2
F(t)z7+t3ﬁ+t72+"'<:>F(t)=dllnt_tlﬁ+“.’ (37)
and we define the fielg'yx in the shifted framé&y and with a global slow phase factbrby writing ¢ as
¢(x’ l‘) — e—k*gxeiq*gx—i(.(z*[-i-l"(t)) IﬂX(é:Xa l). (38)
Comparison of (33) and (38) shows that
Y& 1) = ¢ XOTXOTO yry gy, ), (39)
With this transformation, we obtain from (34) the relevant dynamical equationy x (£x, 1)
wx . 0 .-
—= X k* 4+ — —ill
V) (4 g ) v = i
Yx B3y [ . ( B ) . } Wrx
=D +D +.oootw|——X@) (k" + — | —il()| — + - — Nyx. 40
w7 T w5 = XO (K + 5 ) =i 5 Vx (40)

3.2. The asymptotic expansion figk in terms of similarity variables of the diffusion equation

As we already pointed out above, in dominant order, the dynariiga(34 for ¥ (&, 1) is a diffusion equation,
and this was reflected by the fact that in the fully linear spreading prohfén;) is just the fundamental Gaussian
similarity solutione—fz/(4p’)/ﬁ—cf. Eqg. (5. As explained ir{6,16], the nonlinearity in (34) can be interpreted as
a sink for the diffusive fieldyx to the left of the leading edge. This imposes that in contrast to the linear problem,
¥ has to increase linearly infor small&. The relevant fundamental solution of the diffusion equation which has
this behavior is

WD) ~ e S, (41)

and as explained in detail ii6,7] one can already obtain the dominant term of the power law relaxation of the
velocity and front shape from this argument.

The expansion is systematized by working in theframe, as explained above, and by recognizing that the
similarity variable of the diffusion equation is

_ B

= . 42
= ap (42)

In short, since far ahead of the front in the leading edge will fall off like a Gaussiane™* = eE2/U4D) for g
sufficiently steep front as defined in Eq. (4) (see 8 we write

V(Ex, 1) =Gz, 1) e~ (43)

5 The term proportional ta is not present for equations like the Swift—-Hohenberg equation or for the complex Ginzburg—Landau equation,
but can be present in more general cases. As was already found for uniformly translatin{gfrchis term does not affect the relevant terms
for the power law relaxation.
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To ensure the Gaussian decay for lafgeand finitez, we require

lim G(z,1) e * =0<«= lim vyx(éx,1)=0. (44)
z—>00 Ex—o00

Note that as we already stated in (3), Re- 0, so the limitz — oo should be taken along a line in the right
complexz plane. This is the first boundary condition 16r The second boundary or matching condition arises from
the behavior for smaly, actually in the transition towards the nonlinear regime. In agreement with the intuitive
argument about the nonlinearity as a sink for the diffusion process, one derives

Sx/ﬁﬁo

vx(Ex, 1) o+ B << G(z,1) = 20Dzt + - - -, (45)

wherea andg are in general complex constants with4 0 due to the nonlinearify
Upon substitution of (43) int&q. (49 for ¢x, and using the expansion (35) f&() and (37) forl"(¢), we obtain
the equation of motion fo&

' d
18,G — (cl + ‘3/2> [ik* + L;(aZ - 1)] G—i (dl + 3/2> G
t

Vi VD1 Vi
1 1 D 3
= [Z8§+ (2—z> 82—2] G+D3?/’;/j; [2(81—1)2+z(8z—1)3] G
+wj% (19, —2(0, — 1) — 1—ik*c1 —id1] (0;—1)G +---. (46)

The relevant long-time asymptoticsj then directly follows from solving this equation with boundary conditions
(44) and (45)6]. As in [6], the coefficients; andd; in X(¢) andI"(¢) can be obtained by expandigz, r) as an
asymptotic series in terms of functions of the similarity variahle

81/2(2) | 81(z)

Gz, 1) = 12 1/2(z) + g0(z) + 7 e t>1), (47)

where the matching condition (45) implies that the leading order indegdt iwith the coefficientg_1/2(z) =
JzZ+ ... for smallz.

From here on, the analysis is just the technical implication of the expansion introduced above. Since the structure
of the analysis follows essentially the one given in our earlier work on uniformly translating fronts, we relegate the
details toAppendix A The final outcome of the analysis is that the velocity relaxas taccording to the general
formula

. 3 37 1 1
= 0"+ X(1) = v — Re—— = 4
() =v'+ X()=v Tkt + 262372 e@ +0 <t2>’ (48)

while the phase relaxation is governed by a similar expression,

r@) =—q¢"xX@) — ;7*@2 Im «/J'-Z_) +0 (:2) . (49)

6 For the nonlinear diffusion equation, we derivBd = f_oo d& N in Section 2.5.2 of6]. The relation between non-vanishiagand
can be generalized to pattern forming frofi]. In general./\/o?hen becomes time dependent and some temporal averaging is required. For the
cubic CGLEqg. (29, however, we obtaiDa = f_o; dt (1+ ic3)| A%y (&) without temporal averaging. The phasecothanges in the same
way as the phase af while the complete problem is phase invariant.
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3.3. Convergence of a coherent front profile to its asymptotic shape

The above expressions are valid for any pulled front, irrespective of whether it is asymptotically uniformly
translating or a coherent or incoherent pattern forming frdtére ‘coherent’ means that the approximately periodic
pattern laid down by the leading edge of the front stays periodic in the nonlinear region, while incoherent means that
the pattern undergoes some further dynamics behind the front. Such incoherent fronts arise, e.g., in some parameti
regimes of the cubic and quintic complex Ginzburg—Landau equfid®,31,32]or the Kuramoto-Sivashinsky
equation[7]. Even when a pulled pattern forming front is incoherent the linear dynamics in the leading edge is
described by the above equations. The dynamics in the leading edge is therefore still coherent: the incoheren
behavior only sets in in the region where the dynamics become truly nonlinear. Since, the matching condition which
the nonlinear dynamics imposes on the linear leading edge dynamics is still the same in tfislédstne above
results even apply to incoherent fronts. However, the phase relaxation applies in that case only to the coheren
dynamics in the leading edge.

If the pattern forming front is coherent, the results apply throughout the whole front region. More precisely, we
call a front coherent if the asymptotic front solution is time periodic in the co-moving féamer — v*t, i.e. if
there is some period such that

Z—LOO

The dynamics of the leading edge actually determines this period to be
T = 2n/$2%, (51)

wheref2* is the frequency determined by the saddle point (1). This can be easily rea& ) or fromEq. (38
and the knowledge thatx(§x, f) becomes stationary for— oo.

Because of the temporal periodicity, we can generally write a cohérgnthe whole spatial domain as a Fourier
series

oEN= Y ). (52)

n=04+1,...

In our analysig6] of fronts which converge to a uniformly translating front solution, we explicitly showed that to
orderO(1/1?), the front shape relaxation follows the velocity relaxation adiabatically. An extension of the analysis
to coherent pattern forming fronts shows that a similar result holds for these. The reason is that when the front is
converging to its asymptotic shape gs,lthe temporal derivative terms in the dynamical equations only generate
terms of order 172 in the asymptotic expansion, while the terms coming from the adiabatic variatio)@nd

I'(r) generate terms of ordeydand 1/7%/2. In other words, to order/*? the only temporal dependence comes

in parametrically vias() and I'(¢). Thus, for long timesgoherent pattern forminfonts relax to their asymptotic

shape according to

$(x, 1) 2 By (Ex, 1)+ O With Biey 1) ~ Doy (Ex, 1+ T(1)), (53)

wherev(r) andI"(r) are given byEgs. (48) and (4fabove, and wherE(;) is the instantaneous periog A2* + I'(7)).
In terms of the temporal Fourier series, this result can be written as

(. [)’21 Z e_i”(g*’+F(’))@ﬁ(,)($x)+O(t_2) (54)
n=0,%+1,---

7 Of course, for uniformly translating fronts there is no phase, hghee 0 = 2* and ImD = 0 in (49).
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where thed’ are the Fourier transform functions of the coherent pattern forming solBitieitis velocity v and
frequencys2* + I". Thus the above result expresses that the coherent front profiles follow this family of solutions
adiabatically, and that their velocity and frequency shifis set completely by the dynamics in the leading edge.

4. Numerical study of the relaxation behavior of fronts in the Swift-Hohenberg equation

We now illustrate the above analysis with numerical results obtained for the Swift—Hohefdpeftl). This
equation has often been ug@d@—22]as one of the simplest equations to illustrate the behavior of coherent pattern
forming fronts. Collet and Eckmann were the first to prove that fronts propagating into the linearly unstable state
¢ = 0 are pulled; the analysis of Section 2 applies too and establishes this fact as well. In the simulations of this
equation presented here, we study the approach of the fronts to these asymptotic pulled front solutions, starting
from a Gaussian initial condition. Note in this regard that while the Swift—-Hohenberg equation is often studied for
smalle where the dynamics maps onto an amplitude expansion, our front convergence analysis applies generally.
We will illustrate this by taking finite values af Fig. 1 shows ap-profile fore = 0.5.

We first illustrate an important ingredient of our convergence analysis. As we argued above, in the co-moving
frame& = x — v*t the leading edge variablg defined in (33) should asymptotically behavesag3/2)e—5°/(4D1)

[cf. Eq. (4]]. To illustrate this for the Swift-Hohenberg equation, we show in Fig. 2 three snapshots of the leading
edge variable¥2y(x, 1) = ¢*" ") ¢(x, 1) in a simulation forz = 0.5; according to our analysis, the envelope of
this function should asymptotically behave as
L) o 02/@D)  yith L = Re L
(x—v')e , WlthD = ReD. (55)
Our numerical results ifig. 2 fully confirm this behavior.

To test our convergence results, we have to extract the velge)tsnd frequency2* + I"(r) from our numerical
data. Because of the oscillating character of the fronts, this is nontrivial in principle. We will do it in a pragmatic
way, replacing differentials by finite difference approximants: In our simulation, we keep track of the local maxima
of ¢(x, t) and from these determine the positiakis and timesr,, at which the foremost maximum reaches a
predetermined fixed “levell. From this we calculate the finite difference approximants

X, — Xn1 2

vl(ty) = ——, Q2¢(tn) =

_ 56
In —Ih—1 I —Ih-1 ( )

and then analyze whether indeed the convergence of these quantities to their asymptotic values is consistent with
the universal-independent behavior derived above. The error of the finite difference approximant9($/of)
only. For testing the convergence up to term&Xt/r3/2), the discretization error is therefore irrelevant.
In Fig. 3, we show two plots of the velocity relaxation data for two different values, olamelye = 0.5 and
¢ = 5. The various lines indicate the velocity extracted for different le¢elEo probe the predicted behavior in
detail, we have plotted,(r) — v* — c1/ versus:—%/2. According to our prediction (48) this velocity difference
should asymptotically approach 0 along the dashed lines. Similar plots for the frequency relaxation, obtained from
the same runs, are showrHig. 4. Clearly, all our numerical results are in full agreement with the predicted behavior.
We finally study the convergence of the shape of the profile to its asymptotic form. In principle, the information
is contained in the expression (54) above, but to make it explicit one would have to know all furfioBce
our goal here is simply to check that the shape relaxation follows the velocity and phase relaxation adiabatically, we

8 Clearly, this result implies the existence of a two-parameter family of coherent front solutions, parametrized by their velocity and frequency.
Itis argued if7] that this is the generic case, and that if such a two-parameter family of solutions does not exist, there generically does not exist
a coherent pulled front solution either; the fronts will then be incoherent.
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Fig. 3. Velocity differencey(r) — v* — c1/1 as a function of ~3/2 for ¢ = 0.5 (panel a) and = 5 (panel b). The various lines denote, from top

to bottom, the levelg = 0.0001,/¢, 0.001,/¢, 0.01,/¢, 0.05,/¢, 0.2,/¢, 0.3/¢ and 05./¢. The dashed line is the asymptotic slope according
to the exact expression (48).
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Fig. 4. AsFig. 3 but now for the frequency relaxatia(r) = £2* + (7).

circumvent this problem as follows. We construct an effective (real) envelépg, r) of the front profilé€ in the
co-moving frame by tracking the positions of the maximap6f, r) during one effective periods2 (2* + I'(r)).

In doing so£y is determined by requiring thati(§x = O, r) = const where the constant is chosen so that the level

of the effective envelope at this point is about half of its asymptotic value. The implication of (54) now is that the

convergence of the effective envelopét, r) determined this way should, up to terms®@€1/r2), adiabatically
follow the velocity and shape relaxation:

AEx, 1) = Ay, iy (Ex) + O/ 1), (57)
so that
SA, ;
Alx. 1) = Aléx. 1) = % [o(r) — v(e)] + 2er ) F@X) [7() — ()] + O/ ). (58)

As in the discretization (56), the averaging over one period only affects the ter®@ o) in this expression.
Fig. 5shows the effective envelopd&y, ¢) for the front fromFig. 1 The figure confirms that even for this value,

where the pattern behind the front is rapidly oscillating, the effective envelope can be obtained accurately and is
smooth.

9 Note that this real envelop differs from the complex amplitude of the previous sections.
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Fig.5. The frontenvelopa(&y, 7) for e = 0.5 obtained as described in the text. In this case 160, and the front shape is obtained by averaging
over one period that lasts abott = 2.
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Fig. 6. (a) The convergence of the effective envelope differet(¢g, r) — A(£x, 180), as obtained from the numerical solutions illustrated
in Fig. 5. (b) The ratio (59) as obtained from the data shown in panel (a). The figure confirms that this ratio converges to a time-independent
function, in agreement with our predictions.

In Fig. 6, we present our analysis of the large-time shape relaxation of this profile. Panel (a) shows the difference
A(&x, 1) — A(gx, 180), while in panel (b) we plot the ratio

A(Ex, 1) — A(éx, 180)
1/t — 1/180

which according to our prediction (58hould for large times become a function&gf only. It is clear that our
numerical results fully corroborate this.

(59)

s

5. Conclusion

In this paper, we have presented two types of results. First, we have introduced a simple line of analysis which
allows us to prove for certain classes of equations which include the Swift-Hohenberg equation, the extended
Fisher—Kolmogorov equation and the cubic complex Ginzburg—Landau equation that fronts are pulled. The line of
argument is similar to the one used by Collet and Ecknjd@h The method works for real or complex equations
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and fields and is not restricted to nonlinearities Igd) A = |A|2* A with integem, but also can treat nonlinearities
that depend, e.g., ah. A. Important is that the over-all sign of Récan be determined.

Second, we have derived the universal slow convergence of the velocity and phase of coherent pattern forming
pulled fronts to their asymptotic value. Numerical simulations of the Swift—-Hohenberg equation are in fullagreement
with these predictions. In another pajiE8], we have shown that the results for the velocity convergence also apply
to incoherent pattern forming fronts.

As a concluding remark, we may note that there have been many attempts at formulating general scenarios fol
the velocity selection of fronts propagating into unstable states. Many are able to derive essential features of this
problem, but the matching analysis on which the long time convergence results are based, appears to be the onl
one which leads to exact results that have not been derived before.
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Appendix A. Derivation of Egs. (48) and (49)

The derivation follows essentially the lines[61, except that is now a complex rather than a real variable, and
that there are additional terms duegtband I". The task is to solve (46) with the ansatz (47) and with boundary
conditions (44) and (45). Actually, the analysis of the nonlinear region for firdtentributes additional terms to
(45) which will play a role in the calculation of the subleading terms. The boundary conditiotig foecome

Ux(Ex. 1) = abx + B+ fl(fX) +0 <f31§,f§")> : (A1)

£2 /(4Dr)>1
Yx(Ex. 1) — 0. (A.2)

Insertion into the ansatz (47) implies for the functiGfx, 7) that

G(z.1) = V1 |20/ Dz + 0(z¥?)| +[B+ 0(z)] + O(}f) +0 <j> : (A.3)

lim e~ G(z,t) = 0. (A.4)
7—> 00
These boundary conditions determine a unique solution for the fungtigs(s) andgo(z) and the constants, ds,

c3/2 andds > in X and I, as we will derive below.
Inserting (47) into (46), we see that the dominant terms are of etfetUpon collecting these, we get

d? 1 d . .
zd—Z2~|— 5% d—Z—l—A c1+i(di+qg*c1)| g-12=0. (A.5)
This homogeneous equation is an example of Kummer's equi@ain
Tla, blg = OI—2+(b—)3— =0 (A.6)
a,blg = S, g alg=0, .

whose general solution is a superposition of the two confluent hypergeometric functions

M(a,b,z) andzX " M1 +a—b,2 — b, 7). (A.7)
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These functions are defined through the series

o (@)n2"
M(a, b, z) = =, A8
@b =3 G (A8)
n=0
where
r
@ =ala+1).. (@tn—1)=@rm 1 (A.9)
I'(a)
The asymptotic large-behavior of the functions/ for positiveb is
o) P fora#£0 -1,-2 -3,---,
z—00 F(Cl)
M(a, b, Z) ~ (a)l |Z|a‘ (AlO)
2 fora=0,-1,-2,-3,---,
(0)ai(lal)!
Let us return tdEq. (A.5 for g_1/2(z). The boundary condition (A.3) implies
¢-1/2(z) = 2a/Dz + 0(z%/?). (A.11)

SinceM(a, b, z = 0) = 1, a contribution of the solutioM(a, b, z) is excluded through (A.11), and 1,>(z) has to
be proportional ta*?M(1 + a — b, 2 — b, z). With boundary condition (A.3), we therefore get

3 3
g-12(2) = 2avDz M (2 +A%c1 —i(d1 + g ca), > z) . (A.12)

Furthermore, (A.10) shows that the Kummer functiong:, b, z) diverge ag* when the coefficient is not zero or

a negative integer, while they are simple polynomials wheszero or a negative integer since then the coefficients
(a), vanishfom > 1 — a. An exponential divergence gfis not allowed according to the second boundary condition
(A.4); this fixes

3
l—l—a—bz§+k*cl—i(d1+q*01):0, -1,-2,.... (A.13)

For a detailed discussion of the solutions withk — b = —1, —2, .. ., we refer td6]: essentially, these solutions
are dynamically not relevant since they will always be overrun by the solution witla - b = 0. As bothc¢; and
di are real, (A.13) with B a — b = 0 implies

3
1= =5 d1=—q*c1, (A.14)
with the corresponding solution
g-1/2(2) = 20/ Dz. (A.15)

The terms of ordet® obtained by subsituting (47) into (46) are

.1 1
T [2 + A*er —i(dy + gFe), 2] go(2)

N D3z {3 (3, — 1)? +z (0, — 1)3 g-1/2(2)

= [—ik*63/2 s (0. -1 — ids/z} g-1/2(2) — 7 |2

—w ://;Z_) {; —z(0; —1)—1—ik*c1 — idl} (9; — 1) g—1/2(2). (A.16)
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The functiong_1/2(z) on the right hand side of (A.16) is known from (A.15); likewiseandd; are known from
(A.14). Substitution of these results gives the following inhomogeneous equatigg(fdr

T1-1. 41 g0(z) = 2 [c3/20* — i(d3/2 + g¥c3/2)] VDz + o (1 2z)
200 — -3 - 2 -3 -1 . A.17
+Ol,D{Z z+4}+aw{z z+4} ( )

The general solution of this inhomogeneous equation is a particular solution plus the sum of two independent
solutions of the homogeneous equatin-1, 1/2]go(z) = 0. The latter can again be written in terms of Kummer
functions. It is easy to find particular solutions which reproduce most of the terms on the right by noting that

T[-13Vz=3v2 T[-L31=1 T[-1L3=3 T[-13]®=-?+3% (A.18)

With these terms, we can generate all the terms on the right hand side of (A.16), except for the term tindér in
can generate this term by noting that the function

(1)n Z
Fy(2) = Z}V a /2): . (A.19)

is proportional to a truncated Kummer serig¢l, 1/2, z) (see below) and solves
N-1
(/2n-1 (N = 1)

Using all the results (A.7), (A.18) and (A.20), we can write the general solution of (A.17) as

T[-1, 3]1Fn(z) = henceT[—1, 31Fa(z) = 2z. (A.20)

go(z) = ko(1 — 22) +lo/z M (—% 3 z) + 4o [c3/20" — i(d3j2 + q*c32)] V' Dz

D3 2 3
where we used the fact thaf(— 1,1 5,2) = 1 —2z. The parameterky, lo, c3/2 andds/, are again determined by
the boundary conditions. First, the boundary condition (A.3) implieggdahatgo(z) = B8 + O(z). This gives with
(A.21)

3a1D3
2 D

B+ 0O() = {ko +-5 |5+ =+ )] + [405 (C3/2)\* —i(daj2 + 6]*(33/2)) VD + lo} JZi+. (A22)

The first term on the right determines the coefficiefnin terms ofe, 8 and the other parameters, but this term is
not needed in the sequel. The condition that the prefactor of/gherm on the right vanishes gives

l
(C3/2)L* —i(daj2 + q*C3/2)) VD + i =0. (A.23)

Second, the boundary condition (A.4) imposes alsqgffr), that the function does not diverge exponentially for
largez. There are two terms in (A.21) which diverge exponentially: the Kummer funddomhose asymptotic
behavior is given in (A.10), and the functidfa(z). It is easy to see that for largewe have

2d F>(2)
d 2

~ M(L 3. 2) = Fa(z) = Jmz %2 (A.24)
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Therefore the requirement that the two exponentially divergent termgih cancel each other, translates into

lo 3w
— =0. A.25
4 + 2)* ( )
Upon eliminatingo/a from Egs. (A.23) and (A.2h we simply get
3/ 1

= 7R e

2= 202 U
3/

d3jp = ———Im — — g* . A.26
32 2 M 5 9 e (A.26)

The second contribution i, is just the contribution to the phase relaxation which is induced by the relaxation
of v(z). Upon substitution of these results in the expansions (35X{orand (37) forI"(t) we get the results (48)
and (49).
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