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Abstract

A moving boundary approximation or similar perturbative schemes for the response of a coherent
structure like a front, vortex or pulse to external forces and noise can generally be derived if two conditions
are obeyed: (i) there must be a separation of the time scales of the dynamics on the inner and outer scale, and
(ii) solvability-type integrals must converge. We point out that both of these conditions are not satis"ed for
pulled fronts propagating into an unstable state: their relaxation on the inner scale is algebraic rather than
exponential, and in conjunction with this, solvability integrals diverge. This behavior can be explained by the
fact that the important dynamics of pulled fronts occurs in the leading edge of the front rather than in the
nonlinear internal front region itself. As a consequence, the dynamical behavior of pulled fronts is often
qualitatively di!erent from the standard case in which fronts between two (meta)stable states are considered,
as has recently been established for the relaxation, the stochastic behavior and the response to multiplicative
noise. We here show that this is also true for the coupling of pulled fronts to other "elds. ( 2000 Elsevier
Science B.V. All rights reserved.

PACS: 05.45.!a

1. Introduction

For a pattern in two or more dimensions that naturally can be divided into domains and
`domain wallsa separating them, a much used analytical approach is a moving boundary or
e!ective interface approximation [1}8]. This seems appropriate, when the width of the domain
wall, front, interface, or transition zone is much smaller than the typical length scale of the pattern
and when the dynamics of the pattern on long space and time scales occurs through the motion
of these interfaces. The moving-boundary approximation amounts to treating these fronts or
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transition zones as a mathematically sharp interface or boundary. In other words, their width is
taken to be zero and their internal degrees of freedom are eliminated. We shall henceforth use the
word boundary or interface to denote this zero width limit and use the word front when we look at
a scale where its internal structure can be resolved.

Moving-boundary approximations (MBAs) are ubiquitous in the theory of pattern formation:
they arise in most analytical approaches to late stage coarsening [9,10], in the analysis of interface
dynamics in dendritic growth and viscous "ngering [11}17], step dynamics at surfaces [18}20],
thermal plumes [21,22], in chemical wave dynamics [23], combustion fronts [3], etc.

The main physical idea underlying the derivation of a MBA is that the front itself can on large
length and time scales be viewed as a well-de"ned coherent structure which can be characterized by
its coordinates and a few e!ective parameters, such as its velocity or a mobility coe$cient. This idea
plays a role for many coherent structures, like vortices, or pulse-type solutions like sources, sinks,
solitons, etcetera [24}28]. The response of a coherent structure to an external driving force or noise
[29,30] or the interaction between them can frequently be derived by a perturbative expansion
about the isolated coherent structure solution. Often the e!ective parameters (a di!usion coe$c-
ient, a mobility or an e!ective interaction force) can be derived from a solvability condition.
A solvability condition expresses that a linear equation of the form ¸/

1
"g

1
, where the linear

operator ¸ results from linearizing about the isolated coherent structure solution, is solvable
provided g

1
is orthogonal to the kernel (null space) of ¸. In other words, such an equation is

solvable if g
1

is orthogonal to the left zero mode s of ¸.
Although this is hardly ever mentioned explicitly, there are two important implicit assumptions

underlying such approximations, namely (a) that there is a separation of time scales between
the motion of the front as a whole and its internal dynamics, and (b) that the internal dynamics of
the front is determined by the nonlinear front region itself, so that the solvability-type integrals are
dominated by the contributions from this "nite region, and hence do not diverge.

The issue that we address in this paper is that while the above conditions are satis"ed for the
familiar MBA for bistable fronts and also for the so-called pushed fronts, they are not for
the so-called pulled fronts. These are fronts propagating into a linearly unstable state, which (as we
shall explain in Section 2) are essentially being `pulleda along by the growth and spreading of linear
perturbations about the unstable state. Thus the dynamically important region of pulled fronts is
the area ahead of the front, not the nonlinear internal front region itself. We will indeed discuss
several related properties of pulled fronts which bear on this: (i) the divergence of the solvability
integrals, with the concommittant breakdown of a MBA or of the derivation of the response
functions of the front, like a di!usion or mobility coe$cient; (ii) the shift of the dynamically
dominant zone from the interior to the leading edge of the front, that causes the solvability integrals
to diverge; (iii) the fact that the stability spectrum of planar pulled front solutions is gapless; (iv) the
recently discovered universal slow power-law relaxation of planar pulled fronts [31]. We will
initially focus our discussion on the derivation of a MBA, but as we shall see our observations and
conclusions apply equally well to essentially any perturbative analysis of a pulled front.

The crucial feature of the standard moving-boundary problem is that the boundary conditions
are local in space and time } e.g., the velocity of an interface is a function of the instantaneous local
temperature and curvature of the interface. Hence besides a separation of spatial scales, a MBA
also requires a separation of time scales between the internal dynamics of the front and the
dynamics of the outer bulk "elds. E.g., if the internal front modes relax on a time scale q, and one
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considers a front of width=, propagation velocity v and typical curvature i, then a MBA becomes
appropriate in the regime i=;1, viq;1. Such a well-de"ned relaxation time q of a front on the
inner scale actually exists only if the relaxation is exponential in time. In this case, q is the inverse of
the gap in the spectrum of the stability modes of the planar front. Just like multiple-scale and
amplitude expansions [32}34] are based on projecting all rapidly decaying gapped modes onto the
slow one (the center manifold), the MBA or e!ective interface approximation can be thought of as
projecting a problem with fronts onto the slow interfacial dynamics.

However, if the stability spectrum of the planar front is gapless, the internal modes of the front
relax algebraically in time. Thus there is no characteristic time q for the internal modes, no
separation of time scales and no standard MBA, no matter how thin the front is. The internal
dynamics of such a pulled front is actually slaved to the evolution of its leading edge on the outer
scale, which motivates the term `pullinga. Note that despite its di!erent temporal behavior, it is not
at all visible from an instantaneous picture of a front, whether it is bistable, pushed or pulled.

In a problem as considered here, where the starting equations are partial di!erential equations,
the derivation of the MBA can often be done analytically using by now standard methods. One
should keep in mind, however, that MBAs can be equally powerful in situations where the
approximation cannot be derived cleanly by starting from a partial di!erential equation and
applying standard methods. E.g., in crystal growth the interfacial boundary conditions are
determined on a molecular scale, where for a rough interface the molecular processes are so fast
that after some coarse graining, we can describe the interface for many purposes as a sharp
interface, whose response to changes in temperature and concentration are instantaneous. For
a further discussion of this point of view, we refer to [35]. Similar considerations apply to
coarsening interfaces or combustion fronts.

In the next section, we will "rst summarize the necessary essentials of the stability and relaxation
properties of pulled fronts. Then, in Section 3 we illustrate the issue by following the standard
derivation of a MBA for the type of coupled equations that have in recent years been used in
a phase-"eld-type formulation of solidi"cation problems. In Section 4 we then discuss the conditions
under which such a type of analysis applies in more detail, to identify the di$culties that arise when the
front dynamics on the inner scale is changed from the usual bistable or pushed case to pulled. We
then in Section 5 generalize our "ndings to equations with higher derivatives and to coupled
equations, that create uniformly translating fronts. We show that the usual route of deriving
solvability conditions does work in general for bistable and pushed fronts, but not for pulled fronts.

2. Pulled fronts: properties and statement of the problem

When one considers a linearly unstable state, even a small perturbation about this unstable state
grows out and spreads. We will con"ne our analysis to fronts emerging from a localized initial
perturbation of the unstable state. One can calculate the asymptotic linear spreading velocity vH of
such a perturbation simply from the linear dispersion relation u(k) of the unstable modes according
to [36,37]

du(k)
dk K

k
H
"vH,

Im u(kH)
Im kH

"vH . (1)
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We furthermore will con"ne ourselves in this paper to fronts which asymptotically are uniformly
translating. For these, uH and kH are purely imaginary, and we use the notation kH"ijH. In an
equation with higher derivatives or for coupled equations, the above equation might admit more
than one solution. The relevant saddle point is then the one that dominates a contour of
k-integration that is a continuous deformation of the k-integration along the real axis occurring in
the calculation of the Green's function of the linearized equation. This is discussed in more detail in
our recent paper [31], which we will refer to more frequently below.

Pulled fronts are those for which the asymptotic spreading velocity v
!4

of the nonlinear front
equals this linear spreading velocity vH: v

!4
"vH [38}41,31]. A number of model equations for

which fronts are pulled are discussed in our paper [31], but they also arise in the analysis of more
complicated situations like pearling [42], the Couette}Taylor instability [43], Rayleigh}BeH nard
convection [44], the instabilities of wakes of blu! bodies, leading, e.g. to von Karman instabilities
[45], the emergence of global modes [46], liquid crystals [47], streamer discharge patterns [48],
the competion of domains in the Kupers}Lortz instabilility [49], the emergence of domains near
structural phase transitions [50], polymer patterns [51], superconducting fronts [52], error
propagation [53], deposition models [54], step propagation [18], chaotic fronts in the complex
Ginzburg}Landau equation [55}57], renormalization group analysis of disorder models [58], and
the analysis of the Lyapunov exponents in kinetic models [59].

Fronts which propagate into an unstable state always are pulled if all the nonlinearities suppress
the growth. If not all of them do, the asymptotic front speed v

!4
may become larger than

vH: v
!4
"vs'vH. The relaxation of such `pushed a fronts [38,41,31] is exponential with a charac-

teristic relaxation time q, that is "nite [40,31]. As we will discuss, for these the same perturbative
schemes apply as for the familiar bistable fronts, and likewise for these a standard-type MBA can
be derived.

In our paper [31], we have shown that when a pulled front grows out of su$ciently steep initial
conditions (decaying into the unstable state at least as e~jx for xPR with some j'jH), then the
velocity of a front obeys a universal power-law relaxation given by

v(t),vH#XQ (t) , (2)

XQ (t)"!

3
2jHt

#

3Jp

2jH2JD t3@2
#OA

1
t2B , (3)

where

D"

id2u(k)
2dk2 K

k
H

(4)

is real and positive for uniformly translating front solutions. For the front pro"le, a similar
power-law relaxation holds, and the extension of these results to one-dimensional pattern forming
fronts is given in [57]. The analysis reveals, that the power-law relaxation emerges from the
dynamics of the foremost part of the front where the dynamics is governed by the equations
linearized about the unstable state. The dynamics in the nonlinear region is essentially slaved to
this so-called leading edge. The very slow 1/t power-law relaxation of pulled fronts without
characteristic time scale obviously implies that there is no separation of time scales. Hence a MBA
cannot be applied.
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While from this perspective it is already intuively obvious that a standard perturbation theory or
MBA does not apply to pulled fronts, the arguments underlying the separation of time scales are
hardly ever discussed explicitly in the literature on the derivation of a MBA. The purpose of this
article therefore is to point out where the standard derivation breaks down and how this emerges
at a more formal level. In such an approach, one generally encounters solvability type integrals
of the form

P
=

~=

dm evmA
RU

0
Rm B

2
(5)

or generalizations thereof. E.g., we will rederive below the well-known expression for motion by
mean curvature which involves solvability integrals of this type. Here m"x!vt is a frame moving
with the front with speed v, and U

0
(m) is the associated planar front solution. The translation

mode RmU0
is a right zero mode of the linear operator ¸ emerging from linearization about the

asymptotic front U
0
, and evmRmU0

is a left zero mode of this operator. As we shall see, such
solvability integrals are well de"ned and "nite for bistable and pushed fronts, but generally diverge
for pulled fronts, since the integrand does not converge for mPR. In a way, the solvability
integral still correctly distributes its weight over the dynamically important region, but for a pulled
front, this region becomes semi-in"nite, and therefore the integral diverges. Our discussion also
shows why introduction of an ad-hoc cuto! in these integrals } an approach that has sometimes
been considered in the literature } does not in general cure the problem.

3. The derivation of a MBA from a phase 5eld model

In this section, we "rst follow the standard derivation of a moving-boundary approximation
(MBA) from a phase "eld model to highlight the assumptions and approximations along the way.
We then analyze why and how the approximation breaks down for pulled fronts.

As an example, we study the `phase "eld modela

Ru/Rt"D
u
+2u#R//Rt , (6)

eR//Rt"e2+2/#f (/, u) , (7)

where

f (/, u)"/(1!/)(k!ju#/) , j'0. (8)

In the limit of zero front width eP0, this model for appropriate parameters D
u
, k and j reduces to

a moving-boundary approximation for a solidi"cation front, where we can think of / as the order
parameter "eld, while u plays the role of the temperature. / then varies from the stationary
`liquid-likea solution /+0 in one domain to another `solid-likea solution /+1 in the other
domain. Note that in contrast to [1], R//Rt in (7) has a coe$cient e, not e2. This allows the front to
have a velocity of order unity, so the velocity is nonvanishing already in the lowest order
perturbation theory O(e0). The R//Rt on the r.h.s. in (6) models the generation of latent heat in the
interfacial zone where / changes rapidly.
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1Kupferman et al. [61] use the same e scaling in (7), but even allow for i"O(e~1). However, this is not consistent with
the standard choice of the coordinate system on the inner scale [1] as also used by them and by us below.

Other choices for f (/, u) can be found in the literature [2,4,61,8] but form (8) is most convenient
for our present purpose. f can be considered as the derivative of a `free energya F,

f (/, u)"!

RF(/, u)
R/ ,

F(/, u)"!

(k!ju) /2

2
!

(1!k#ju)/3

3
#

/4

4
. (9)

Since u varies on spatial and temporal scales of order unity, one can treat it as a constant in "rst
approximation on the small length scale e on which / varies, and de"ne k6 "k!ju. The
connection with the phase "eld models for solidi"cation is closest in the range !1(k6 (0, when
the function F (which is like a Ginzburg}Landau free energy density), has two minima at /"0
and at /"1. When k6 "!1

2
, then F(0, u)"F(1,u)"0 and the two `phasesa /"0 and 1 are in

equilibrium. So if we choose the bare parameter k"!1
2
, then u"0 corresponds to the melting

temperature, where (7) admits stationary front solutions with velocity v"0. For k"!1
2

but
u nonzero, the minima of f shift relative to each other, and the order parameter front (7) moves.
When u is positive, the liquid-like minimum at /"0 is the absolute minimum of F, and for
u negative the solid-like minimum at /"1 is the absolute one. The front then will move such that
the state with the lowest free energy extends. For k6 '0 the state /"0 is linearly unstable; so we
then deal with fronts propagating into unstable states which are pushed for 0(k6 (1

2
and pulled

for k6 '1
2
[39,40,31]. Though the interpretation of the model as a solidi"cation model might be lost,

we will illustrate the derivation of a MBA as a function of k6 for this example, and we will "nd that
the method breaks down at the transition from pushed to pulled fronts at k6 "1

2
.

Let us now trace the steps of the approximation in more detail. The "eld u (6) varies on a spatial
scale of order unity, and the "eld / (7) on a spatial scale of order e;1. A moving boundary
approximation consists of "rst matching an inner expansion of the problem on scale e to an outer
problem on scale 1, and then letting eP0 such that an e!ective moving boundary problem on the
outer scale results. In the limit of eP0, the interface might have a nonvanishing velocity and
curvature on the outer length scale, so we allow for v"O(e0) and i"O(e0).1

For simplicity, we consider the problem in two spatial dimensions (x, y). On the outer scale, the
"elds are expanded in powers of e as

u(x, y, t)"u
0
(x, y, t)#e u

1
(x, y, t)#2 , (10)

/(x, y, t)"/
0
(x, y, t)#e /

1
(x, y, t)#2 . (11)

For a further analysis of these equations on the outer scale and their matching to the inner scale, we
refer to the literature [1}3]. Here we focus on those elements of the analysis of the /-front (7) on the
inner scale that allow us to identify the essential di!erences between approximating bistable,
pushed or pulled fronts.

First a coordinate system moving with the front is introduced, where s measures the arc length of
the interface in the tangential direction, and m the direction in which / varies and propagates.
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We put, e.g., m"0 at the place where /"1
2
. The coordinate m in the direction normal to the front is

scaled with a factor e, since the front width will be of order e in the limit eP0. However, the
coordinate s is not scaled: along the front, the variation is assumed to be on length scales of the
order of unity. For the inner expansion of the "elds, one then writes

u(x, y, t)";
0
(m, s, t)#e;

1
(m, s, t)#2 , (12)

/(x, y, t)"UM
0
(m, s, t)#eUM

1
(m, s, t)#2 . (13)

The choice of coordinates can be illustrated when we consider a weakly curved front which locally
propagates with a velocity v(s, t) in the x direction, so that

s"y, m"
x!X(s, t)

e
, X(s, t)"x

0
#P

t
dt@v(s, t@) . (14)

In general, the front is curved and has a velocity v and curvature i which varies locally but on the
outer time scale t and spatial scale s. They are therefore expanded as

v(s, t)"v
0
(s, t)#e v

1
(s, t)#2 , (15)

i(s, t)"i
0
(s, t)#e i

1
(s, t)#2 . (16)

The di!erential operators in (7) then have in the interior coordinates (m, s) the e expansion

e
R
Rt K

(x,y)

"e
R
Rt K

(m,s)
![v

0
#ev

1
#2]

R
Rm#O(e2) , (17)

e2+2"
R2
Rm2

#ei
0

R
Rm#O(e2) . (18)

Inserting the expanded operators into (7) and ordering in powers of e yields in order e0 the equation
of motion of a planar front

R
RqUM

0
"

R2
Rm2

UM
0
#v

0

R
RmUM

0
#f (UM

0
,;

0
), q"

t
e

. (19)

Here we have introduced the internal time q"t/e on which UM
0

varies, so eR
t
"Rq is actually of

order e0. On this inner time and length scale q and m, ;
0

is essentially constant. Now UM
0

has to be
related to the solution U

0
which is stationary in the frame m and therefore obeys the o.d.e.

R2
Rm2

U
0
#v

0

R
RmU

0
#f (U

0
,;

0
)"0 . (20)

Here the velocity v
0

has to be chosen in such a way that (20) can be solved with appropriate boundary
conditions } in technical terms, this de"nes the nonlinear eigenvalue problem for v

0
. Hence v

0
is

a functional of u
0

and hence varies on the same outer time scale t as ;
0
. If the stability spectrum of

U
0

is gapped with smallest relaxation time q
0
, then even if UM

0
OU

0
initially, UM

0
will relax on the inner

time scale q as e~q@q0 to U
0
. For times q<q

0
, and in particular on the outer time scale t, the inner

dynamics of the front is adiabatically eliminated and we can then proceed by expanding about U
0
.

In order e1 one "nds

A¸!

R
RqBUM 1"!(i

0
#v

1
)
R
RmU

0
!

Rf (U
0
,;)

R; K
U0

;
1
#

dU
0

d;
0

R;
0
Rt (21)
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with the linear operator

¸,A
R2
Rm2

#v
0

R
Rm#

Rf (U,;
0
)

RU KU
0
B . (22)

If the right-hand side of Eq. (21) is time independent on the internal time scale q, it is of the general
form

(¸!Rq )/"g with Rqg"0 . (23)

If one has a left zero mode s(m) of ¸ such that s¸"0"¸ss, where ¸s is the adjoint operator
de"ned through partial integrations, then an equation like (23) has a time independent solution
U only if s is orthogonal to g. The solvability condition

P dm sg"0 (24)

hence "xes the velocity correction v
1

of the comoving coordinate system. For Eq. (21) this implies
the solvability condition

(i
0
#v

1
)P

=

~=

dm s
RU

0
Rm #P

=

~=

dm s
Rf (U

0
,;)

R; K
U0

;
1
!

dU
0

d;
0

R;
0
Rt "0 , (25)

which here has been derived from the full dynamical p.d.e. problem.
There are clearly two important conditions for the identi"cation of (25) with the common

solvability condition: If the scalar products with s exist, and if the inner and outer dynamics can be
adiabatically decoupled as above, then (25) expresses the "rst-order velocity correction v

1
as

a function of the local curvature i
0
, of the outer temperature "eld R

U
f;

1
and of the zero-order

solution U
0

(20). It is exactly at these two points that the analysis breaks down for pulled fronts.
The violation of these conditions always happens concomitantly, as they are physically related.

Existence and properties of a left zero mode for more general di!erential equations are discussed
in Section 5. In the present case, it is possible to construct the left zero mode s explicitly: It is well
known, that the right zero mode of ¸ is the mode of in"nitesimal translation RmU0

: ¸ RmU0
"0.

Since ¸ is nonhermitian, the left zero mode of ¸ is a right zero mode of the adjoint ¸s of ¸,

¸ss(m)"0, ¸s,A
R2
Rm2

!v
0

R
Rm#

Rf (U,;
0
)

RU KU
0
B (26)

and sORmU0
(m). However, the left zero mode s here simply can be obtained by noting that the

transformation

/"e~vm@2/I , ¸/" I̧ /I (27)

with

I̧ "evm@2¸e~vm@2"A
R2
Rm2

#

Rf (U,;
0
)

RU KU
0

!

v2
4 B (28)

turns the problem into a Hermitian eigenvalue problem. As a result the left zero eigenmode s8 of I̧ is
equal to the right zero eigenmode evm@2RmU0

of I̧ . Transforming back to ¸, this yields for the left
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zero mode

s"evmRmU0
, (29)

as can also be veri"ed by substitution. If we may ignore the term associated with the time derivative
R
t
U

0
and insert the expression for s into (25) we "nd

v
1
"!i

0
#

P
=

~=

dm evm
RU

0
Rm C

dU
0

d;
0

R;
0
Rt !

Rf (U
0
,;)

R; K
U0

;
1D

P
=

~=

dm evm A
RU

0
Rm B

2
. (30)

If we furthermore ignore the term due to the coupling to the u "eld, the expression v
1
"!i

0
is the

familiar result of motion by mean curvature "rst derived within the context of continuum models
by Allen and Cahn [60,10].

The structure of the solvability analysis is generic for the perturbative expansion about
a uniformly translating front. Although we have only considered the simplest type of model,
for which re"nements are possible [2], Eq. (30) captures the basic structure of the expression
that one obtains in lowest order in a MBA: the relations between the velocity, curvature
and temperature "eld u of the front, which play the role of boundary conditions for the outer
"elds at the boundary in the zero width limit eP0, contain solvability integrals of the
form :dm evm(RmU0

)2 or :dm evm (RmU0
)U

0
(since R

U
f in (30) contains the factor U

0
and otherwise only

"elds varying on the outer spatial scale). Solvability integrals of this type essentially arise in any
type of perturbative calculation, since they just express the solvability condition of the linear
perturbation problem ¸U

1
(m)"g

1
(m) or (¸!Rq)UM 1(m, q)"g

1
(m): the inhomogeneous term g

1
(m)

has to be orthogonal to the left zero mode s of the linear operator ¸.

4. Violation of the two conditions underlying the MBA for pulled fronts

We now discuss in more detail the conditions under which the above MBA can be derived.
Consider "rst the condition concerning the separation of time scales. For fronts between two

linearly stable states (with !1(k6 (0 in f ), there is such a separation between the inner dynamics
of the front and its displacement: In this case, the stability spectrum of planar front
modes does indeed have a gap [31,35], and all internal eigenmodes decay as e~un t@e with eigen-
values u

n
5u

0
"1/q

0
"O(1). Thus, in the limit eP0, there is a clear separation of inner and

outer time scales, and the adiabatic approximation (30) is justi"ed on the outer time scale of order
unity. Moreover, as discussed in our paper [31], for pushed fronts propagating into an
unstable state the stability spectrum is also gapped, and therefore the separation of time
scales necessary for the MBA to apply, does hold. However, the stability spectrum of pulled fronts
is gapless, and as Eq. (2) illustrates, pulled fronts show indeed a power-law convergence to
their asymptotic speed vH. Clearly, then, the standard derivation of a MBA does not apply to
pulled fronts.

The same conclusion also emerges from the properties of the solvability integrals themselves. For
increasing v, the exponential factor evm enhances the value of the integrand for large positive m, while
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suppressing the integrand for large negative m. We therefore now turn to fronts propagating into an
unstable state for k'0 (for simplicity of notation, we use u"0), and investigate the behavior of
the integrand for mPR. The large m asymptotics of U

0
(m) follows directly from the o.d.e. (20) by

noting that f @(U
0
(R))"f @(0)"k, so that [31]

U
0
(m) m

<1
K G

A
1
(v)e~j~m#A

2
(v)e~j`m, v'vH"2Jk ,

(am#b)e~jHm, v"vH"2Jk ,
(31)

where

j
B

(v)"
v
2
$

1
2
Jv2!4k"

v
2
$

1
2
Jv2!(vH)2 for k'0 , (32)

jH(vH)"j
B

(vH)"
vH
2

. (33)

The behavior of U
0

for v"vH results from the fact that precisely at the so-called pulled velocity vH,
the two roots j

B
coincide.

While for an arbitrary velocity v'vH the term A
1
(v) in (31) will be nonzero, so that the

asymptotic behavior of U
0

is as e~j~m, the pushed front solution } if it exists } is precisely the
solution with a well-de"ned value v"vs at which A

1
(vs)"0. Note that for k(0, we have j

~
(0,

so that the relevant front solution in the range k(0 has A
1
(v)"0; thus the pushed front solution

for k'0 is precisely the analytic continuation of this front solution to the regime k'0. If such
a solution with A

1
(vs)"0 exists, it is the dynamically selected one from steep initial conditions

[31]. Moreover, these solutions decay for m<1 as e~j`m, i.e., faster than e~v
sm@2. As a result,

integrands in (30) like evsm(RmU0
)2 or evsm(RmU0

)g(U
0
, m)Jevsm(RmU0

)U
0

for mPR are integrable, as

evsmA
RU

0
Rm B

2 m<1
K evsme~2j`m"e~J(vs)2~(vH)2m m?=

P 0 . (34)

Thus, for a pushed front both criteria for a solvability analysis of a perturbation theory are
satis"ed: the spectrum of the stability operator is gapped and the solvability integrals converge
properly.

In passing, we note that the adjoint mode s itself does not decay to zero for large m in the
supercritical range k'0, since

s m<1
K evsm

RU
0
Rm &e(vs~J(vs)2~(vH)2)m@2 m?=P R . (35)

For our perturbation theory this is no problem as long as the inner product that de"nes the adjoint
operator converges for mP$R. Eq. (34) shows that this is indeed the case.

While the solvability integrals converge properly for pushed fronts, they do not for pulled fronts,
as according to (33)

evHmA
RU

0
Rm B

2 m<1
K m2evHme~2jHm"m2 m?=P R . (36)

As we already anticipated from the power-law relaxation of pulled fronts, standard perturbation
theory used to derive a MBA does not apply to pulled fronts.
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One could, of course, regularize the solvability integrals by "rst introducing a cuto! m
#
, and

taking the cuto! to in"nity as the end of the calculation [62]. Whether such an approach yields
sensible results, depends on the situation under consideration. If, e.g., this procedure is applied
blindly to a solvability expression of the type (30), one "nds that the changes in the nonlinear terms
of the equation give no essential contribution } in fact, since the divergent terms dominate, this
procedure amounts to calculating the changes in vH in perturbation theory for changes in the
parameters in the linearized equation. Since vH can more easily be calculated explicitly from Eq. (1)
such a calculation has no particular value.

In fact, the divergence of the solvability integrals and the absence of a characteristic time scale for
the internal front dynamics are deeply related. From (28) it is easily seen that the continuous
spectrum de"ned by ¸/p"!p/p , is bounded from below by p

0
"(v2!vH2)/4. For p(k)"

p
0
#k2, the eigenfunctions take the form of Fourier modes /p(k)JeB*km in the leading edge region

m<1. Hence for v"vH, the gap p
0

of the spectrum vanishes, and all the eigenfunctions of ¸ are
essentially plane waves in the semi-in"nite leading edge. One "nds furthermore [31], that generic
perturbations of pulled planar fronts U

0
are even outside the Hilbert space spanned by the

eigenfunctions /p . In this case, the long-time dynamics cannot easily be understood in terms of the
eigenfunctions of ¸. One rather should directly study the linearized equation

eR
t
/"Ce2+2#

Rf (/, u)
R/ K

(/0
D/#O(/2) (37)

valid in the leading edge. In this formulation, the nonlinear region of the front interior plays the
role of a boundary condition for the leading edge [31,57]. As a result one "nds predictions like
(1)}(4). Note "nally that the leading edge extends on the same outer length scale on which u also
varies. This demonstrates why it is not possible to eliminate the dynamics of a pulled front in
a moving boundary approximation } independent of how thin the front is.

5. Generalization of the solvability analysis and of its break down

In the previous sections, we have traced the main steps in the derivation of a MBA for two
coupled equations that have been studied as phase "eld models for solidi"cation. In this case, the
inner equation for the order parameter reduces to the well-known nonlinear di!usion equation
studied "rst by Fisher and Kolmogorov et al. [63}65], and the nonhermitian linear operator
¸ could be transformed to a hermitian operator I̧ . This allowed us to obtain the left zero mode s of
¸ explicitly. When one considers higher-order dynamical equations or sets of coupled equations for
the inner front region, it is usually not possible to "nd the adjoint mode explicitly. Nevertheless, we
show in this section that the same conclusions hold more generally.

We consider a case where one has a vector /(x, t) of dynamical "elds, that in the long-time limit
can approach a planar uniformly translating front pro"le U

0
(m) between the homogeneous

stationary states /B"U
0
($R). The front solution U

0
(m) with m"x!vt obeys a set of o.d.e.'s,

and because of translation invariance dU
0
(m)/dm is again a zero mode of the linear matrix operator

L, obtained by linearizing the o.d.e.'s about the front solution U
0
(m):

L A
d
dm

,
d2

dm2
,
d3

dm3
,2; U

0
(m)B

dU
0
(m)

dm
"0 . (38)
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If a front U
0
(m) is perturbed by external forces, other coherent structures or curvature e!ects, one

generally encounters equations like

L )/
1
"u

1
, (39)

in a perturbation expansion about U
0
. In our example above, u

1
decayed essentially like U

0
or

dU
0
/dm as mPR, and we only study such cases here. As is well known, such linear equations are

solvable provided the right-hand side is orthogonal to the kernel (null space) of the adjoint
operator ¸s. The existence of a left zero mode v of L therefore generally leads to the solvability
condition

P
=

~=

dm v ) u
1
"0, where u

1
m?=
& Q )U

0
, (40)

(where the matrix Q contains some slowly varying "elds), which relates parameters of the
expansion as in (30). So we now address the question of the existence of the left zero mode v of L,
which is de"ned through Ls ) v"0. In other words: v is the zero mode of the adjoint operator
Ls obtained by partial integration,

P
=

~=

dm b ) (L ) a)"P
=

~=

dm (Ls ) b) ) a . (41)

For this de"nition to hold, the integrals have to converge and the boundary terms that arise from
performing the partial integrations all have to vanish. This imposes conditions on the allowed
behavior of b, given the asymptotic behavior of a: the product of these terms has to decay
su$ciently rapidly for mP$R.

In general, there is no particular simplifying relation between L and Ls; e.g., a term f (U
0
)d/dm in

L gives rise to a term !(df (U
0
)/dm)!f (U

0
)d/dm in Ls. As a result, there is, in general, no simple

relation between the left and right eigenmodes. However, since U
0
(m) approaches the constant

vectors /B for mP$R, the operators L and Ls asymptotically are linear operators with constant
coe$cients, so that

lim
m?B=

¸s
ij A

d
dm

,
d2

dm2
,
d3

dm3
,2; /

0
(m)B"¸s

ijA
d
dm

,
d2

dm2
,
d3

dm3
,2; /BB

"¸
jiA!

d
dm

,
d2

dm2
,!

d3

dm3
,2; /BB . (42)

Moreover, in this limit, the operator L is exactly the same as the one that one obtains from
linearizing the set of o.d.e.'s for U

0
around the homogeneous stationary states /B. Therefore, both

U
0

and the right zero mode dU
0
/dm of L are asymptotically for mP$R just sums of simple

exponentials of the form

dU
0
/dm m?B=

K

N
+
n/1

aB
n
e~jB

n m , (43)

where the eigenvalues jB
n

are determined by the characteristic polynomial of degree N

detL(!jB
n

, jB2
n

,!jB3
n

,2; /B)"0 . (44)
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The asymptotic behavior of an adjoint zero mode v follows immediately from the symmetry
relation (42). If we write the asymptotics for mP$R of v as

vm?B=
K

N
+
n/1

bB
n

e~jM Bn m , (45)

then the eigenvalues jM B
n

are determined by the eigenvalue equation

detLs(!jM B
n
, jM B2

n
,!jM B3

n
,2; /B)"0 , (46)

which in view of (42) and the fact that detL"detLs immediately yields

jM B
n
"!jB

n
. (47)

Let us now investigate the asymptotic behavior of products b ) a of left modes b and right modes a,
which is required for the existence and de"nition of the adjoint operator and modes. Assume that
the eigenvalues are ordered as Re jB

n`1
5Re jB

n
. A pushed or bistable front Us

0
is a discrete

solution with asymptotic behavior

Us
0
KG

N
+

n/M`1

A
n
e~j`

n m KA
M`1

e~j`
M`1m for mPR ,

M
+
n/1

B
n
e~j~

n m KB
M

e~j~
Mm for mP!R,

(48)

that can be constructed from (43) for a particular value of v"vs. The right zero mode dUs
0
/dm

obviously has the same asymptotic decay. In this expression, the eigenvalues j~
1

,2, j~
M

for mPR

are all the eigenvalues with negative real part so that the exponentials converge, while on the right
for mPR all j`

M`1
,2, j`

N
have positive real parts. The existence of M modes on the left and

N!M#1 modes on the right is a re#ection of the fact that the bistable or pushed front solution is
an isolated (discrete) solution [31].

At this point, there is only one di!erence between bistable fronts and pushed fronts propagating
into an unstable state: for the former, Re j`

M
(0 so that this mode is not present because it

corresponds to a diverging behavior, while for a pushed front propagating into an unstable state,
Re j`

M
'0, but A`

M
"0 by de"nition [31].

A product of this right mode with a left mode converges to zero at $R, if the left zero mode
behaves asymptotically like

vKG
M
+
n/1

C
n
ej`

n m KC
M

ej`
Mm for mPR ,

N
+

n/M`1

D
n
ej~

n m KD
M`1

ej~
M`1m for mP!R.

(49)

Here we used relation (47) between left and right eigenvalues and the fact that the convergence of
inner products is determined by the integrands at mP$R. These are according to (48) and (49)
given by

v )Us
0
&e~(jB

M`1~jB
M )mP0 as mP$R, if Re j$

n`1
'Re j$

n
. (50)
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Obviously the dimensions of stable and unstable manifolds in the two asymptotic regions in (49)
are the same as in (48), only with the role of the "xed points mP$R exchanged. Hence also
s belongs to a discrete spectrum, independent of the value of M, and in general the divergent term
&ej`

Mm is needed for this mode to exist. Moreover, the textbook argument

L )/
m
"p

m
/

m
, Ls ) v

l
"ps

l
v
l

, (51)

ps
lPvl )/m

"P(Ls ) v
l
) )/

m
"Pvl ) (L )/

m
)"p

mPvl )/m
, (52)

shows that the eigenvalues ps
l
and p

m
are equal, if the product of the eigenfunctions :v

l
)/

m
is "nite

and that eigenfunctions with di!erent eigenvalues are orthogonal. Hence for pushed or bistable
fronts, there is in general an isolated (discrete) left zero mode of Ls.

This reasoning does not work for a pulled front, where the zero mode of L is part of a continuous
spectrum with the same asymptotic decay properties at mP$R. The same counting argument as
above now yields, that in general no left zero mode of Ls exists.

This formal argument is illustrated by the observation, that a solvability integral for a pushed
front diverges as the pushed velocity vs approaches the pulled velocity vH (1): Generally, the velocity
v will appear as a parameter in the characteristic polynomial (44). If we consider the j

n
"j`

n
as

functions of v, then according to the general scenario of front propagation into unstable states [31]
the pulled velocity is associated with a minimum of the curve v(j

M
) where j

M
is the root of (44) with

the smallest positive real part. Hence for vZvH and uniformly translating fronts with j
M

and
j
M`1

real, we have

j
M

(v)"jH!
2
vA

Jv!vH#2 , (53)

j
M`1

(v)"jH#
2
vA

Jv!vH#2 , (54)

where

vA"
d2v(j

M
)

dj2
M
KjH (55)

is the curvature of v(j
M

) in the minimum that determines vH and jH (see [31, Section 5.3.2]). Hence,
it is a positive constant.

In complete analogy with our earlier discussion in Section 3, the general scenario for front
propagation into unstable states is that while the asymptotic decay for m<1 is as e~jMm for an
arbitrary velocity v, a pushed front solution exists if for some velocity vs'vH, there is a front
solution whose asymptotic large m behavior is as e~jM`1m in agreement with (48). If there is no such
pushed front solution, then starting from `steepa initial conditions the selected front velocity is vH;
the asymptotic front pro"le with this velocity is then

U
0
(m)m

<1
K (am#b)e~jMm, j

M
"j

M`1
, (56)

in analogy with (31).
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2This prediction was realized independently and tested numerically by B. Derrida (private communication).

As we discussed above, for a pushed front, there is, in general, a discrete left zero mode (49) with
asymptotic behavior s&ejMm for large m. In spite of this divergence, the product of left and right
modes converges as

v )Q )U
0

m<1
K e(jM~jM`1 )mC

M
)Q )A

M`1
,

&e~(4@vA)Jv
s~v

Hm m?=
P 0 (vZvH) , (57)

and solvability conditions generally can be derived.
Just as we saw in the previous sections, the present analysis also shows that as vs approaches

vH from above, the solvability integrals converge less and less fast until, at vH, we have according
to (56)

v )Q )U
0

m<1
& m2 m?=

P R (58)

in complete analogy with our earlier result (36) for the example discussed in Section 3.

6. Conclusions and outlook

In contrast to `bistablea or pushed fronts, the dynamics of pulled fronts is determined essentially
in the leading edge. This was recently shown to imply a general power-law relaxation of pulled
fronts. In this paper, we have shown that this in turn entails that pulled fronts lack the separation of
time scales necessary for the applicability of the usual MBA, and that solvability integrals diverge
when a front is pulled.

It is important to stress that one should not simply view this negative result as a formal problem
} rather, one should take this conclusion as a signal that the pattern dynamics involving the motion
of pulled fronts poses interesting new physical questions with possibly surprising non-standard
answers.

As a "rst simple illustration, consider the uncoupled F-KPP equation (7) in two dimensions with
e"1 and f"/!/3. If one starts with a radially symmetric steep initial condition, e.g.,
/(r, t"0)"exp(!r2), then this front will spread out in a circularly symmetric way. According to
(30) the curvature correction will then give a contribution !1/r"!1/(vHt)"!1/(2t) to the
velocity at large times. However, in addition to that, there is a contribution !3/(2t) of the same
order of magnitude from the power-law relaxation (3), with jH"1 in this case. Thus, due to
the combination of the power-law relaxation and the curvature correction, the front velocity vH will
be approached asymptotically as v(t)"vH!2/t!2

In the example above of a circularly symmetric pattern without any coupling to other "elds, the
relaxation and curvature e!ects can be simply added up, but for a less trivial patterns whose shape
is changing in time, the proper description is far from obvious. Nontrivial patterns where pulled
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front propagation plays a dominant role occur, e.g. in streamer discharges [48]. Hence new
analytical tools have to be developed for a moving-boundary-like description of these "nger-like
patterns. Work in progress [66] suggests that the limit of zero electron di!usion creating shock-like
electron fronts is a valuable approximation for negatively charged streamers.

A recent illustration of the fact that the nonexistence of solvability integrals signals a transition
to qualitatively di!erent dynamical behavior is given by the behavior of fronts in the presence of
multiplicative noise [29,30]. Pushed fronts in the presence of multiplicative noise show regular
di!usive behavior due to the noise being summed over the "nite interior front region, and their
di!usion coe$cient can be expressed in terms of solvability-type integrals [29]. In contrast, fully
relaxed pulled fronts in an in"nite system do not di!use at all, and if a front with pulled dynamics
starts from a local (or `su$ciently steepa [31]) initial condition, it is subdi!usive [30]:
the root-mean-square displacement of pulled fronts increases with time as t1@4, not as t1@2. This
prediction was "rst suggested by using a time-dependent cuto! m

c
(t)&Jt in the solvability

expression for the di!usion coe$cient that is valid for pushed fronts. The motivation for this
time-dependent cuto! comes from the relaxation analysis of pulled fronts given in [31]. Hence, this
example illustrates both that using a cuto! in the solvability integrals sometimes can yield sensible
results, and that the behavior of pulled fronts can be qualitatively di!erent from those of pushed
fronts.

We "nally note that these considerations also have implications for numerical codes. In cases
where a MBA applies in the limit in which the front width is taken to zero, numerical codes with
adaptive gridsize re"nement in the interior front region, where gradients are large, are quite
e$cient. For pulled fronts, however, solutions with a too coarse basic grid give inaccurate front
velocities. For these, the re"nement has to be done ahead of the front, in the leading edge [67]!

Acknowledgements

The work of UE was supported by the Dutch research foundation NWO and by the EU-TMR
network `Patterns, Noise and Chaosa.

References

[1] P.C. Fife, Dynamics of Internal Layers and Di!usive Interfaces, SIAM, Philadelphia, 1988.
[2] A. Karma, W.-J. Rappel, Phys. Rev. E 53 (1996) R3017; Phys. Rev. E 57 (1998) 4323.
[3] J.D. Buckmaster, G.S.S. Lundford, Theory of Laminar Flames, Cambridge University Press, Cambridge, 1982.
[4] R. Kobayashi, Physica D 63 (1993) 410.
[5] J. MuK ller, M. Grant, Phys. Rev. Lett. 82 (1999) 1736.
[6] K. Kassner, C. Misbah, Europhys. Lett. 46 (1999) 217.
[7] R. GonzaH lez-Cinca, L. RaH mirez-Piscina, J. Casademunt, A. HernaH ndez-Machado, L. Kramer, T. ToH th-Katona,

T. BoK rzsoK nyi, AD . Buka, Physica D 99 (1996) 359.
[8] P.W. Bates, P.C. Fife, C.K.R.T. Jones, Physica D 104 (1997) 1.
[9] J.D. Gunton, M. San Miguel, P.S. Sahni, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical

Phenomena, Vol. 8, Academic Press, New York, 1983.
[10] A.J. Bray, Adv. Phys. 43 (1994) 357.
[11] J.S. Langer, in: J. Souletie (Eds.), Chance and Matter, North-Holland, Amsterdam, 1987; J.S. Langer, in:

C. Godreche (Ed.), Solids Far from Equilibrium, Cambridge University Press, Cambridge, 1992.
[12] P. PelceH , Dynamics of Curved Fronts, Academic Press, Boston, 1988.

154 U. Ebert, W. van Saarloos / Physics Reports 337 (2000) 139}156



[13] D.A. Kessler, J. Koplik, H. Levine, Adv. Phys. 37 (1988) 255.
[14] Y. Pomeau, M. Ben Amar, Dendritic growth and related topics, in: C. Godreche (Ed.), Solids Far from Equilibrium,

Cambridge University Press, Cambridge, 1992.
[15] E.A. Brener, V.I. Mel'nikov, Adv. Phys. 40 (1991) 53.
[16] B. Caroli, C. Caroli, B. Roulet, Instabilities of planar solidi"cation fronts, in: G. Godrèche (Ed.), Solids Far from
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