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Discharge streamers in experiments branch frequently. Arrayás et al. �Phys. Rev. Lett. 88, 174502 �2002��
presented simulations of branching streamers and interpreted them as physical branching events. The numerical
results were criticized by Kulikovsky �Phys. Rev. Lett. 89, 229401 �2002��. Using an adaptive grid algorithm,
we here present numerical experiments on the effect of grid resolution on streamer branching. The convergence
of branching time with stepwise finer grid sizes provides a quantitative correction on the earlier, low-resolution
results in overvolted gaps. Furthermore, streamers can branch even in undervolted, but sufficiently long gaps,
but fewer branching modes are accessible than in higher fields.
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PROBLEM SETTING AND REVIEW

Streamers are transient weakly ionized plasma channels
that rapidly grow into a non- or weakly ionized medium
under influence of the self-enhanced electric field at their tip.
They are widely used in technology �1,2� and ubiquitous in
nature, where they play a role in creating the path of sparks,
lightning �3�, and blue jets above thunderclouds. Streamers
are also directly observed as so-called sprites �4,5�, which
are very large discharge structures in the higher parts of the
atmosphere that are composed of tens of thousands of
streamers. Despite their high velocity, streamer evolution is
now directly observable in experiments; a further review can
be found in �2�.

Streamers commonly branch in experiments if the gap and
applied voltage are large enough. Recently a debate has risen
about the proper physical concept for this branching. In
1939, Raether �6� proposed a mechanism for streamer propa-
gation and Loeb and Meek �7� developed it into a branching
concept that nowadays is found in many textbooks. The con-
cept is based on a uniformly charged streamer head; ahead of
it stochastic processes create secondary avalanches that sub-
sequently develop into different branches. However, the dis-
tribution of rare electrons due to photoionization or back-
ground ionization ahead of the streamer has never been
shown to agree with the conceptual pictures, and the concept
has never been demonstrated to work. Furthermore, simula-
tions in the past two decades �8–11� have shown that the
fully developed streamer head is not homogeneously
charged, but rather neutral and surrounded by a thin space
charge layer which enhances the field ahead of it and screens
it in the interior; this field enhancement allows the streamer
to penetrate regions with a rather low background field. Re-
cent simulations also show branching streamers in a fully
deterministic model for charged particle densities, in a non-
uniform background field �12–14� as well as in a uniform
field �15–18�.

Some of the present authors have proposed �15,16� a
physical explanation of these numerical observations that is
directly related to the formation of the thin space charge
layer: the layer creates an almost equipotential streamer head
that can undergo a Laplacian instability and branch in a man-

ner similar to branching instabilities of fluid interfaces in
viscous fingering. For a further discussion of the conceptual
questions of streamer branching, we refer to �2�. However,
the numerical codes used in �12–18� were not able to test the
branching conditions on fine numerical grids. This led some
researchers to question the physical nature of the instabilities
�13,14,19,20� despite the arguments given in �15,16,21� and
later in �22,23�.

To resolve the debate from the numerical side, we have
developed a code with comoving adaptive grids �24�. The
algorithm enables us to run the simulations with a high spa-
tial accuracy on large system sizes. The results presented
below show that branching occurs within the deterministic
model not only in overvolted gaps as in �15,16,18�, but also
in undervolted gaps, provided the discharge has sufficient
space to develop. The branching time saturates on suffi-
ciently fine numerical grids, giving quantitative predictions
on streamer branching in a wide range of background fields.
We also discuss the different branching modes as a function
of the applied electric field.

MODEL AND MULTISCALE STRUCTURE OF
NEGATIVE STREAMERS

We investigate a minimal continuum model for streamers,
which contains the essential physics for negative streamers
in a nonattaching pure gas like N2 or Ar �8,9,15,16�. Stream-
ers were analyzed previously with this model in �15,16�,
while �17,18� include photoionization and/or deal with posi-
tive streamers. The model is a two-fluid approximation for
the charged particles, with a local-field-dependent impact
ionization reaction coupled to the Poisson equation for elec-
trostatic particle interactions. In dimensionless units �2�, the
model reads

��� = � · ��E + D��� + ��E����E�� , �1�

��� = ��E����E��, ���E�� = e−1/�E�, �2�

− �2� = � − �, E = − �� , �3�

where � and � are the electron and positive ion densities,
respectively. E and � are, respectively, the electric field and
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potential, D is the electron diffusion coefficient, and � is the
dimensionless time. The characteristic scales in this model
depend on the neutral gas density; therefore the simulation
results can be applied to high-altitude sprite discharges at
low pressures as well as to high-pressure laboratory experi-
ments.

We study the model in cylindrical symmetry in effectively
two dimensions, namely, in the coordinate z between the
electrodes and in the radial coordinate r. This suppresses
nonsymmetric instability modes. In a strict mathematical
sense, the time of branching in this cylindrical geometry is
an upper bound for the branching time in a genuine three-
dimensional �3D� system �21�. On the other hand, the par-
ticular instability modes will affect only the streamer con-
figuration after branching, but not the time at which the
single streamer reaches its unstable state. Therefore, we ex-
pect our predictions for the streamer branching time to be a
very good approximation despite the symmetry constraint.
Of course, for the evolution after branching, genuine 3D
simulations should be used.

A planar cathode is placed at z=0 and a planar anode at
z=Lz. The potential at the electrodes is fixed, ��r ,z=0,��
=0, ��r ,z=Lz ,��=�0�0, generating a background electric
field with strength �Eb � =�0 /Lz along the negative z direc-
tion. The streamer is initiated by an electrically neutral
Gaussian ionization seed on the axis of symmetry at the cath-
ode �r=z=0�. There is no background ionization far from the
initial seed.

We impose homogeneous Neumann conditions for the
electron density at all boundaries. This results in a net inflow
of electrons from the cathode if the streamer is attached to it
�15,24�. In practice, the computational volume is restricted in
the radial direction by a boundary Lr sufficiently far away
not to disturb the solution near and in the streamer. More-
over, we choose the interelectrode distance Lz so large that
the streamer is not affected by the anode proximity for the
results shown.

Streamers contain a wide range of spatial scales, from the
very extended nonionized medium on which the Poisson
equation has to be solved through the length of the conduct-
ing channel and its width up to the inner structure of the thin
space charge layer around the streamer head.

Moreover, the region just ahead of the streamer, where the
field is substantially enhanced and the electron density is
low, is highly unstable, in the sense that a small ionized
perturbation will grow much more rapidly than in the mere
background field. This unstable region ahead of the streamer
tip is commonly referred to as the leading edge �25,26�. It
requires special care when considering numerical methods
�24,26�. Accurate simulations of streamers therefore pose a
great computational challenge.

NUMERICAL ALGORITHM

In order to deal efficiently with the numerical challenges
posed by this model, it has been implemented in a numerical
code using adaptive grid refinements. We recall the essential
features of this algorithm and refer to �24� for further details.
The spatial discretizations are based on finite volumes, using

a flux-limiting scheme to prevent spurious oscillations in the
results near steep gradients. The time stepping is performed
with a two-stage explicit Runge-Kutta method.

Using an explicit time-stepping method allows us to de-
couple the computational grids for the continuity equations
�1� and �2� on the one hand from those for the Poisson equa-
tion �3� on the other hand. The particle densities are first
updated on a series of nested, stepwise refined grids. The
resulting electric field on that same series of grids is then
computed through the Poisson equation for the electric po-
tential, which in turn is solved on a different series of nested
grids �27�.

Adequate refinement criteria for the continuity and for the
Poisson equation lead to a grid distribution which is espe-
cially designed to cope adequately and efficiently with the
difficulties inherent to both type of equations. More specifi-
cally, the refinement criterion for the grids for the Poisson
equation is based on an error estimate for the solution. The
refinement criterion for grids for the continuity equations
uses a curvature monitor of the solution. Moreover, it takes
explicitly into account the leading edge.

The refinement criterion is computed at each time step, in
such a way that the series of nested, consecutively refined
grids move with the solution. Special care has been taken
that the discretizations as well as the mapping of the solution
from one grid to the other are charge conserving.

RESULTS

The adaptive grid refinement procedure enables us to re-
solve the streamer with very high accuracy, and thus to in-
vestigate the dependence of the branching process on the
numerical grid. The results are obtained on increasingly finer
grid sizes hf, always taking the same coarsest mesh width hc
for both the continuity and the Poisson equations. If the
branching were of numerical nature, we would expect that
branching times on increasingly finer grids would not con-
verge.

We first consider a negative streamer in a dimensionless
overvolted background field of �Eb � =0.5 corresponding to
100 kV/cm in N2 at atmospheric pressure in a gap of
Lz=2048 �4.6 mm� as previously in �15,16�. The initial seed
is as in �16�, namely, a Gaussian ionization distribution with
amplitude 10−4 �5�1010 cm−3� and characteristic radius of
10 �23 	m�.

While �15� used a uniform grid of h=2 and �16� one of
h=1, we now perform computations on a finest grid as small
as hf =1/8, i.e., more than a decade finer. More precisely, the
coarsest mesh width is set to hc=2, and the finest one to
hf =2,1 , . . . ,1 /8. Furthermore, a better numerical scheme is
used: flux limiting �24� rather than third-order upwind
�15,16�.

Before branching, at �=275, Fig. 1 shows that there is a
quantitative difference between the results on a mesh with
hf =1 and the finer ones. On a coarse mesh, numerical diffu-
sion smears the space charge layer out. Numerical diffusion
is aggrevated when the flux limiter switches to the diffusive
first order scheme in regions with large gradients �relative to
the coarse mesh�. This makes the field enhancement at the
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streamer tip and the field screening in the streamer body less
efficient. Consequently, the ionization reaction in the
streamer body stays significant in an overvolted gap, and the
electron density in the streamer body can become higher on
a coarser mesh. Figure 1 shows that on meshes finer than
1/2, the results are the same during streamer propagation. It
is only after branching that different states are observed on
those very fine grids. However, the time of branching
converges within this range of mesh widths hf as shown in
Fig. 2.

We now present results on negative streamers evolving in
an undervolted field of �Eb � =0.15, corresponding to
30 kV/cm for N2 at atmospheric pressure. Here “undervolt-
age” means that an avalanche would not evolve into a
streamer �28�, but we show that an already existing streamer
not only propagates, but can even branch. We use an electri-
cally neutral, dense, and relatively wide Gaussian ionization
seed at the cathode, with a maximum of 1/4.8 �1014 cm−3�,
and a characteristic radius of 100 �230 	m�. The gap length
and width are set to Lz=2Lr=215=32 768 �7.5 cm�.

The coarsest mesh width is set to hc=64, and the finest
one to hf =8, 4, and 2. When a finest mesh of 8 is used, the

FIG. 1. �Color online� Electron density distribution computed on
different finest grids, from left to right hf =1, 1 /2, 1 /4, and 1/8; �a�
before branching, at �=275; �b� just after the respective branching
time. In all cases the same restricted part of the total computational
domain is shown.

FIG. 2. Branching time in a background field �Eb � =0.5 as func-
tion of the finest mesh size hf =2, 1, 1 /2, 1 /4, 1 /8.

FIG. 3. �Color online� Electron density distribution before and
just after streamer branching in a background field �Eb � =0.15, com-
puted on different finest mesh sizes hf =8, 4, and 2 as indicated over
the plots. The upper snapshots at �=10 000 are taken before branch-
ing and the lower ones after branching, at time �=11 250. The
contours correspond to the same density levels.

FIG. 4. �Color online� Zoom into the streamer head during
branching. �a� �Eb �=0.5 as in Fig. 2, hf =1/8, for consecutive steps
�=325,350,375. �b� �Eb � =0.15 as in Fig. 3, hf =2, for �=10 250,
10 750, 11 250. Contour lines �thick� of net charge density and
equipotential lines �thin� are shown as a function of radius r and
appropriate z. The spacing of the charge contour levels is 0.16 in the
overvolted and 0.004 in the undervolted case. The spacing of equi-
potential lines is 5 in both cases.

NUMERICAL CONVERGENCE OF THE BRANCHING TIME¼ PHYSICAL REVIEW E 73, 065401�R� �2006�

RAPID COMMUNICATIONS

065401-3



electron density in the streamer is lower than on finer
meshes, as can be seen in the upper row in Fig. 3—on the
contrary, in the overvolted case, it was higher. As in the
overvolted case, numerical diffusion decreases field enhance-
ment and ionization rates at the streamer tip. However, the
mesh-induced lower ionization rate at the tip here is not bal-
anced by a higher one in the streamer body as the gap is
undervolted.

The lower row of Fig. 3 shows that the influence of the
numerical grid on the branching state decreases. Moreover,
the branching time is the same in all cases. These results
show that even in undervolted gaps, streamers can branch, if
the gap is long enough. Branching in a marginally under-
volted gap ��Eb � =0.18� was observed once previously in
�17�, without checking the numerical accuracy.

DISCUSSION, CONCLUSION, AND OUTLOOK

We emphasize that the branching times converge on de-
creasing numerical grids in both cases. Therefore we here
present quantitative numerical predictions on streamer
branching. However, in contrast to the undervolted case, the
lower plots in Fig. 1 show that in the overvolted case differ-
ent branched modes are reached after approximately the
same evolution time: in two cases, the maximal electron den-
sity and field are on the axis of symmetry, and in two other
cases, they are off axis. Apparently, there are different
branched states reachable at bifurcation and tiny differences

determine which one will be reached. Such extreme sensitiv-
ity is well known from deterministic chaos; it is generic for
nonlinear dynamics near bifurcation points. On the other
hand, the unstable state is reached in a deterministic manner,
and therefore the branching times converge.

But why is there once a unique branched state and once
several? The answer can be found in Fig. 4 showing the two
relevant spatial scales, namely, the thickness of the space
charge layer and the radius of the channel. In the overvolted
gap, the ratio of layer thickness to the radius is much smaller
than in the undervolted gap. Moreover, the field screening
and enhancement are much stronger and the equipotential
lines follow the space charge layer much better. Therefore
the overvolted streamer is much closer to interfacial models
as discussed in �2,15,22,23,25� and can access more branch-
ing modes. This critical state in future work will be charac-
terized by the electric charge content and electric field and
potential at the streamer tip, which would then allow us to
relate branching to the external electric circuit. For sketches
of such ideas as well as for a discussion of photoionization
effects and of continuum versus particle models, we refer to
�2�.
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