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Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic
or chaotic states
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We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and
generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate
periodic or even chaotic states. A surprising feature is that such fronts also exhibit a universal algebraic phase
relaxation. For fronts that generate a periodic state, like those in the Swift-Hohenberg equation or in a
Rayleigh-Bénard experiment, this implies an algebraically slow relaxation of the pattern wavelength just
behind the front, which should be experimentally testable.

PACS number~s!: 05.45.2a, 47.54.1r, 47.20.Ky, 02.30.Jr
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Many systems, when driven sufficiently far from equili
rium, spontaneously organize themselves in coherent or
coherent patterns@1#. While the ‘‘selection’’ of a final state
pattern can be determined by a variety of dynamical mec
nisms, or even the competition thereof, the final state se
tion by a propagating ‘‘pulled’’ front turns out to be remar
ably simple and robust. So-called pulled fronts propag
into a linearly unstable state and are almost literally be
‘‘pulled along’’ by the leading edge of the profile whos
dynamics is governed by the linearization about the unsta
state @2–5#: Their asymptotic speed is equal to the line
spreading speedv* of linear perturbations about the unstab
state.

Recently, it was discovered that non-pattern-genera
pulled fronts, which asymptotically are uniformly transla
ing, relax to their asymptotic velocity and shape very slow
with a power law. This relaxation is in fact remarkably un
versal. However, the clearest and most relevant examp
Taylor vortex fronts@6#, fronts in Rayleigh-Be´nard cells@7#
or, in the pearling instability@8#, are all pattern forming:
these fronts leave a~nearly! periodic pattern behind. From
this perspective, the main result we derive in this Ra
Communication has both conceptual and practical impli
tions: We show that the results for the velocity relaxati
derived in@5# not onlyextend to pattern forming and chaot
fronts, but that in addition there is a similar power law r
laxation of the wavelength just behind a coherent patt
forming front. This latter relaxation appears more easily
cessible experimentally than that of the front velocity.

Our results can be summarized as follows: pattern fo
ing or chaotic pulled fronts emerging from ‘‘steep’’ initia
conditions~i.e., falling off faster thane2l* x for x→`), have
a universalpower law relaxation of their velocityv(t) and
phaseG(t) with time t,

v~ t ![v* 1Ẋ~ t !, ~1!

Ẋ~ t !52
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2l* t
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3Ap

2l* 2t3/2
ReS 1
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D 1OS 1

t2D , ~2!
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Ġ~ t !52q* Ẋ~ t !2
3Ap

2l* t3/2
ImS 1

AD
D 1OS 1

t2D . ~3!

As explained below, the coefficientsv* , k* 5q* 1 il* , and
D are all given explicitly in terms of the dispersion relatio
of the linearized equation. As we shall see,X(t) has the
meaning of a collective coordinate of the front in the fram
moving with the asymptotic velocityv* . For a front that
generates a coherent~almost! periodic pattern, our results
imply that the local wavelengthL just behind the front,
where the envelope begins to saturate, also relaxes as 1t to
its asymptotic value: it is given by

L~ t !52pU v* 1Ẋ~ t !

V* 1Ġ~ t !
U1OS 1

t2D , ~4!

with the frequencyV* also given below. AsẊ(t) and Ġ(t)
are explicitly given by Eqs.~2! and ~3!, this immediately
yields L(t) up to ordert23/2 in time.

Before summarizing our derivation, we explain what w
mean by velocity and phase for the various types of fron

Uniformly translating pulled fronts. The simplest types of
fronts are those for which the dynamical fieldf(x,t) asymp-
totically approaches a uniformly translating profilef
[Fv* (j), j5x2v* t, as happens, e.g., in the celebrat
nonlinear diffusion equation] tf5]x

2f1f2f3 for fronts
propagating into the unstablef50 state. If we definelevel
curvesas the lines in anx,t diagram wheref(x,t) has a
particular value, we can define the velocityv(t) as the slope
of a level curve. Foruniformly translating fronts, q* 50
5Im D; Eq. ~2! then reduces to the expression derived
uniformly translating fronts in@5#. The remarkable point is
that the expression forv(t) is in this case completely inde
pendent of which level curve one traces. Moreover, it w
shown in@5# that the nonlinear front region is slaved to th
leading edge of the front whose velocity relaxes according
Eq. ~2!. This results in

f~x,t !5Fv(t)~jX!1O~ t22!, jX!At, ~5!
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FIG. 1. ~a! Space-time plot of a pulled front in the SH Eq.~7! with «55 and Gaussian initial conditions. Time steps between succes
lines are 0.1.~b! A pulled front in the QCGL Eq.~9! with «50.25,C151, C35C5523, and Gaussian initial conditions. Plotted isuA(x,t)u.
Time steps between lines are 1.~c! Scaling plot of the velocity relaxation@v(t)2v* #•Tv /uc1u vs 1/t with t5t/Tv and characteristic time
Tv5(c3/2/c1)2. Plotted are, from left to right, the data for the SH equation for heightsu5A«, 0.01A«, and 0.0001A« («55) as dashed
lines, and for the QCGL Eq.~9! for heightsuAu50.002, 0.0002, and 0.000 02 as dotted lines. The solid line is the universal asym
21/t11/t3/2.
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jX5x2v* t2X~ t !, ~6!

where Fv(j), j5x2vt solves the ordinary differentia
equation~ODE! for a front propagating uniformly with ve
locity v. v(t) in Eq. ~5! is the instantaneous velocity of th
front, and the framejX is shifted by the time dependen
quantityX(t). Since the collective coordinateX(t) diverges
as lnt for larget according to Eq.~2!, the difference between
jX and a uniformly translating frame is crucial; only in th
former can we follow the relaxation. Uniformly translatin
fronts have no phase, hence all terms in Eq.~3! vanish iden-
tically.

Coherent pattern generating fronts.As an example of co-
herent pattern generating fronts, we consider the so-ca
Swift-Hohenberg~SH! equation

] tu5«u2~11]x
2!2u2u3, «.0. ~7!

The space-time plot of Fig. 1~a! illustrates how SH fronts
with steep initial conditions generate a periodic pattern. I
known that they are pulled@2,4,9#. In this case, new leve
curves in anx,t plot are constantly being generated. If w
define in this case the velocity as the slope of the upperm
level curve, one gets an oscillatory function. Its average
v(t) given in Eq.~1!, butv(t) is difficult to extract this way.
Numerically, it is better to determine the velocity from a
empirical envelope obtained by interpolating the positions
the maxima. Since these pattern forming front solutions
long times have a temporal periodicityu(j,t)5u(j,t1T) in
the framej5x2vt moving with the velocityv of the front,
the asymptotic profiles can be written in the for
(n51e22p int/TUv

n(j)1c.c. In terms of these complex mode
U, our result for the relaxation of the interior region of th
pulled front becomes in analogy to Eq.~5!

u~x,t !. (
n51

e2niV* t2niG(t)Uv(t)
n ~jX!1c.c.1•••, ~8!

with the frequencyV* given below. Equation~8! shows that
G(t) is theglobal phaseof the relaxing profile, as the func
tions Uv

n only have ajX dependence. The result of our ca
ed

s

st
is

f
r

culation of the long time relaxation ofv(t) andG(t) is given
in Eqs.~1!–~3!. In principle, the relaxation of the local wave
length behind the front depends both onĠ(t) and on the
phase difference ofUv(t)

n before and behind the front implie
by the v(t) dependence. However, this phase relaxation
proportional tov(t)2v* and hence is of lower order tha
the two leading terms ofG(t). To ordert23/2, Eq. ~4! then
immediately follows from Eq.~8!. This can be viewed as a
generalization of an earlier argument@2,4# using the conser-
vation of nodes.

Incoherent or chaotic fronts.The third class we conside
consists of fronts which leave behind chaotic states. T
occur in some regions of parameter space in the cubic c
plex Ginzburg-Landau equation@10# or in the quintic exten-
sion ~QCGL! @11# that we consider here,

] tA5«A1~11 iC1!]x
2A1~11 iC3!uAu2A

2~12 iC5!uAu4A. ~9!

Figure 1~b! shows an example of a pulled front in this equ
tion. Level curves in a space-time diagram can now also b
start and end. If we calculate the velocity from the slope
the uppermost level line, then its average value is ag
given by Eq.~2! @12#, but the oscillations can be quite larg
However, our analysis confirms what is already visible
Fig. 1~b!, namely, that even a chaotic pulled front becom
more coherent the further one looks into the leading edge
the profile. Indeed we will see that in the leading edge wh
uAu!1 the profile is given by an expression reminiscent
Eq. ~8!,

A~x,t !'e2 iV* t2 iG(t)eik* jXc~jX!, 1!jX!At. ~10!

The fluctuations about this expression become smaller
largerjX .

In Figs. 1~c! and 2~c! we show as an example results
our simulations of the SH equation~7! and the QCGL~9!.
They fully confirm our predictions~2! and ~3! for the
asymptotic average velocity and phase relaxation.
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FIG. 2. ~a! and~b! Simulation of the QCGL equation as in Fig. 1~b! for timest535 to 144.~a! showsuNu ~16! as a function ofjX . ~b!
showsucu, which in region I builds up a linear slopec}ajX , and in region III decays like a Gaussian widening in time. The lines in reg
II show the maxima ofc(jX ,t) for fixed t and their projectionjX;At into the (jX ,t) plane.~c! shows the scaling plot for the phas
relaxation. From left to right: SH~dashed lines! for u5A«, 0.01A«, and 0.0001A« («55), and QCGL~dotted lines! for uAu50.002,

0.0002, and 0.000 02. Plotted isĠ(t)TG /c1 vs 1/t. Heret5t/TG , andTG5Tv@11l* Im D21/2/(q* ReD21/2)#. The solid line again is the
universal asymptote21/t11/t3/2.
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We now summarize how these results arise for the cas
a single ~scalar! equation. The extension to the case
coupled equations can be done along the lines of@5#.

Calculation of the asymptotic parameters.We first briefly
summarize how the linear spreading velocityv* and the as-
sociated parametersl* etc. arise@13,5#. After linearization
about the unstable state, the equations we consider can a
written in the form ] tf5L(]x ,]x

2 ,•••)f. For a Fourier
modee2 ivt1 ikx, this yields the dispersion relationv(k). The
linear spreading velocityv* of steep initial conditions is then
obtained by a saddle point analysis of the Green’s functioG
of these equations. In the asymptotic framej5x2v* t,
G(j,t) becomes

G~j,t !5E dk

2p
e2 iV(k)t1 ikj ' eik* j2 iV* t

e2(j2/4Dt)

A4pDt
~11!

for large times. HereV(k)5v(k)2v* k, and

dV~k!

dk U
k*

50, ImV~k* !50, D5
id2V~k!

2dk2 U
k*

.

~12!

The first equation in Eq.~12! is the saddle point condition
while the second one expresses the self-consistency co
tion that there is no growth in the comoving frame. The
equations straightforwardly determinev* , k* 5q* 1 il* , D
and the real frequencyV* 5V(k* ) @14#.

Choosing the proper frame and transformation.Equation
~11! confirms that a localized initial condition will grow ou
and spread asymptotically with the velocityv* given by Eq.
~12!. Our aim now is to understand the convergence o
pulled front due to the interplay of the linear spreading a
the nonlinearities. The Green’s function expression~11!
gives three important hints in this regard: First of all,G(j,t)
is asymptotically of the formeik* j2 iV* t times a crossover
function whose diffusive behavior is betrayed by the Gau
ian form in Eq.~11!. Hence, if we write our dynamical field
of
f

be

di-
e

a
d

-

as A5eik* j2 iV* tc(j,t) for the QCGL ~9! or u

5eik* j2 iV* tc(j,t)1c.c. for the real fieldu in Eq. ~7!, we
expect that the dynamical equation forc(j,t) obeys a
diffusion-type equation. Second, as we have argued in@5#,
for the relaxation analysis one wants to work in a fram
where the crossover functionc becomes asymptotically time
independent. This is obviously not true in thej frame, due to
the factor 1/At in Eq. ~11!. However, this term can be ab
sorbed in the exponential prefactor, by writin
t2neik* j2 iV* t5eik* j2 iV* t2n ln t. Hence, we introduce the
logarithmically shifted framejX5j2X(t) @5#, as already
used in Eq.~6!. Third, we find a feature specific for patter
forming fronts: the complex parameters, andD in particular,
lead us to introduce the global phaseG(t). We expandĠ(t)
like Ẋ(t) @5#,

Ẋ~ t !5
c1

t
1

c3/2

t3/2
1•••, Ġ~ t !5

d1

t
1

d3/2

t3/2
1••• ~13!

and analyze the long time dynamics by performing a ‘‘lea
ing edge transformation’’ to the fieldc,

QCGL: A5eik* jX2 iV* t2 iG(t)c~jX ,t !,
~14!

SH: u5eik* jX2 iV* t2 iG(t)c~jX ,t !1c.c.

Steep initial conditions imply thatc(jX ,t)→0 as jX→`.
The determination of the coefficients in the expansions~13!

of Ẋ and Ġ is the main goal of the subsequent analysis,
this then directly yields Eqs.~2! and ~3!.

Understanding the intermediate asymptotics.Substituting
the leading edge transformation~14! into the nonlinear dy-
namical equations, we get

] tc5D]jX

2 c1 (
n53

Dn]jX

n c

1@Ẋ~ t !~]jX
1 ik* !1 i Ġ~ t !#c2N~c!, ~15!
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with Dn5(2 i /n!)dnV/(dik)nuk* the generalization ofD in
Eq. ~12! @of course, for the QCGL,V(k) is quadratic ink, so
Dn50]. In this equation,N accounts for the nonlinear term
e.g., for the QCGL, we simply have

N5e22l* jXuc u2c@12 iC31~12 iC5!e22l* jXucu2#.
~16!

The expression for the SH equation is similar.
The structure of Eq.~15! is that of a diffusion-type equa

tion with 1/t and higher order corrections from theẊ and Ġ
terms, and with a nonlinearityN. The crucial point to recog-
nize now is that for fronts,N is nonzeroonly in a region of
finite width: For jX→`, N decays exponentially due to th
explicit exponential factors in Eq.~16!. ForjX→2`, N also
decays exponentially, sinceu andA remain finite, so thatc
decays ase2l* ujXu according to Eq.~14!. Intuitively, there-
fore, we can think of Eq.~15! as a diffusion equation in the
presence of a sinkN localized at some finite value ofjX .
The ensuing dynamics ofc to the right of the sink can be
understood with the aid of Figs. 2~a! and 2~b!, which are
obtained directly from the time-dependent numerical simu
tions of the QCGL ~9!. To extract the intermediate
asymptotic behavior illustrated by these plots, we integr
Eq. ~15! once to get

] tE
2`

jX
djX8 c5D]jX

c1 (
n53

Dn

n21
]jX

n21c

1 i @k* Ẋ~ t !1Ġ~ t !#E
2`

jX
djX8 c1Ẋ~ t !c

2E
2`

jX
djX8 N~c!. ~17!

Now, in the region labeled I in Fig. 2~b!, we have for fixed
jX and t→` that the terms proportional toẊ and Ġ can be
neglected upon averaging over the fast fluctuations; the s
holds for the term on the left. Since the integral converg
quickly to the right due to the exponential factors inN, we
then get immediately, irrespective of the presence of hig
order spatial derivatives
.S
-

te

e
s

er

lim
t→`

D
]c

]jX
5E

2`

`

djX N~c![aD. ~18!

Here, the overbar denotes a time average~necessary for the
case of a chaotic front!. Thus, for large times in region I,c̄
'ajX1b in dominant order. Moreover, from the diffusiv
nature of the equation, our assertion that the fluctuations oc
rapidly decrease to the right of the region whereN is nonzero
comes out naturally. In other words, provided that the tim
averaged sink strengtha is nonzero,aÞ0, one will find a
buildup of a linear gradient inuc̄u in region I, independent of
the precise form of the nonlinearities or of whether or not t
front dynamics is coherent. This behavior is clearly visible in
Fig. 2~b!. We can understand the dynamics in regions II a
III along similar lines. In region III the dominant terms i
Eq. ~15! are the one on the left and the first one on t
second line, and the crossover region II which separates
gions I and III moves to the right according to the diffusiv
law jX;DAt.

Systematic expansion.These considerations are fully co
roborated by our extension of the analysis of@5#. Anticipat-
ing thatc falls off for jX@1, we split off a Gaussian facto
by writing c(jX ,t)5G(z,t)e2z in terms of the similarity
variablez5jX*

2/(4Dt), and expand

G~z,t !5t1/2g2 1/2~z!1g0~z!1t21/2g1/2~z!1•••.
~19!

This, together with the expansion~13! for X(t) andG(t), the
left ‘‘boundary condition’’ thatc(jX ,t→`)5ajX1b and
the condition that the functionsg(z) do not diverge exponen
tially, then results in the expressions~2! for Ẋ(t) and~3! for
Ġ @9#. For the QCGL, the analysis immediately implies t
result ~10! for the front profile in the leading edge. In add
tion for the SH equation, one arrives at Eq.~8! for the shape
relaxation in the front interior along the lines of@5#: Starting
from the ODEs for theUv

n , one finds upon transforming to
the framejX that toO(t22), the time dependence only ente
parametrically throughv(t). This then yields Eq.~8!.
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