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Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic
or chaotic states

Cornelis Stornt, Willem Spruijt! Ute Ebertt? and Wim van Saarlods
Lnstituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
2Centrum voor Wiskunde en Informatica, Postbus 94079, 1090 GB Amsterdam, The Netherlands
(Received 23 December 1999

We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and
generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate
periodic or even chaotic states. A surprising feature is that such fronts also exhibit a universal algebraic phase
relaxation. For fronts that generate a periodic state, like those in the Swift-Hohenberg equation or in a
Rayleigh-E@mard experiment, this implies an algebraically slow relaxation of the pattern wavelength just
behind the front, which should be experimentally testable.

PACS numbd(s): 05.45~a, 47.54+r, 47.20.Ky, 02.30.Jr

Many systems, when driven sufficiently far from equilib- ] . N 1 1
rium, spontaneously organize themselves in coherent or in- I'(t)y=—qg*X(t)— M =] +t0| 5.
coherent patterngl]. While the “selection” of a final state 2\t VD t

pattern can be determined by a variety of dynamical mecha-

nisms, or even the competition thereof, the final state selecAs explained below, the coefficients, k* =qg* +i\*, and
tion by a propagating “pulled” front turns out to be remark- D are all given explicitly in terms of the dispersion relation
ably simple and robust. So-called pulled fronts propagat®f the linearized equation. As we shall segit) has the
into a linearly unstable state and are almost literally beingneaning of a collective coordinate of the front in the frame
“pulled along” by the leading edge of the profile whose moving with the asymptotic velocity*. For a front that
dynamics is governed by the linearization about the unstablgenerates a coheref@lmos) periodic pattern, our results
state[2-5]: Their asymptotic speed is equal to the linearimply that the local wavelengti\ just behind the front,
spreading speed* of linear perturbations about the unstable where the envelope begins to saturate, also relaxest ds 1/

state. its asymptotic value: it is given by
Recently, it was discovered that non-pattern-generating
pulled fronts, which asymptotically are uniformly translat- 1
vol3)
t2
versal. However, the clearest and most relevant examples,
Taylor vortex frontg6], fronts in Rayleigh-Beard cellS[7] i he frequencyn* also given below. AK(t) andT'(t)
or, in the pearling instability8], are all pattern forming:
Communication has both conceptual and practical implica- Before summarizing our derivation, we explain what we
tions: We show that the resultspfor the veFI)ocity relaxgtionmean by velocity and phase for the various types of fronts.
derived in[5] not only extend to pattern forming and chaotic Uniformly translating pulled frontsThe simplest types of
laxation of the wavelength just behind a coherent pattern_ Lk )
forming front. This latter relaxation appears more easily ac-_ CDF*(S), g;x v L ast.h;ppe_n;é ej.Lg.,_ln ;Ehfe C}alebtrated
cessible experimentally than that of the front velocity. nonlinear diffusion equatiom¢=dy¢+ ¢~ ¢= for fronts
" . : N\ Fx particular value, we can define the veloditft) as the slope

cond_|t|ons(||.e., faII||ng offlfast?r thar;eth . forlx—.;oo)t, havg of a level curve. Foruniformly translating frontsg* =0
a universaipower law rejaxation of their veloc y(1) an =ImD; Eq. (2) then reduces to the expression derived for
phasel’(t) with timet,

pendent of which level curve one traces. Moreover, it was

shown in[5] that the nonlinear front region is slaved to the

leading edge of the front whose velocity relaxes according to

. : ] ) v* 4+ X(t)
ing, relax to their asymptotic velocity and shape very slowly A(t)y=27
these fronts leave @nearly periodic pattern behind. From are explicitly given by Egs(2) and (3), this immediately
fronts but that in addition there is a similar power law re- fronts are those for which the dynamical fighdx,t) asymp-
Our results can be summarized as follows: pattern formProPagating into the unstabtg=0 state. If we definéevel
uniformly translating fronts irf5]. The remarkable point is
Eq. (2). This results in

_— (4)
Q*+1'(1)

with a power law. This relaxation is in fact remarkably uni-
this perspective, the main result we derive in this RapidyieldSA(t) up to ordert™>2in time.
totically approaches a uniformly translating profile
ing or chaotic pulled fronts emerging from “steep’ initial CUrvesas the lines in arx,t diagram whereg(x,t) has a
that the expression far(t) is in this case completely inde-

v(t)=v*+X(1), (1)
Kit— 3 3w e(l

1
+ Re —|+0| =], (2
2%t 2432\ D (t ) @
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PX, D) =D, 1) (£)+O(172),  Ex<ilt, (5)
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FIG. 1. (a) Space-time plot of a pulled front in the SH Ed) with ¢ =5 and Gaussian initial conditions. Time steps between successive
lines are 0.1(b) A pulled front in the QCGL Eq(9) with £=0.25,C;=1, C3=Cs=—3, and Gaussian initial conditions. Plotted4gx,t)|.
Time steps between lines are(t) Scaling plot of the velocity relaxatiopy (t) —v*]- T, /|c4| vs 1/ with 7=t/T, and characteristic time
T,=(cap/cy)?. Plotted are, from left to right, the data for the SH equation for heights/e, 0.01/e, and 0.0003s (¢=5) as dashed
lines, and for the QCGL Eq9) for heights|A|=0.002, 0.0002, and 0.000 02 as dotted lines. The solid line is the universal asymptote
—Ur+ 172,

Ex=x—v*t—X(1), (6) culation of the long time relaxation @f(t) andI'(t) is given
in Egs.(1)—(3). In principle, the relaxation of the local wave-
where ®,(£), é=x—vt solves the ordinary differential |ength behind the front depends both Bift) and on the
equation(ODE) for a front propagating uniformly with ve-  yhase gifference dfl),, before and behind the front implied
locity v. v(t) in Eq. (5) is the instantaneous velocity of the y he (1) dependence. However, this phase relaxation is
front, and the framefy is shifted by the time dependent .n6rtional tou(t)—v* and hence is of lower order than
guantity X(t). Since thg collective coordl_nabe(t) diverges  the two leading terms oF (t). To ordert™ 32 Eq. (4) then
as Int for larget according to Eq(2), the difference between immediately follows from Eq(8). This can be viewed as a

¢x and a uniformly translating frame is crucial; only in the generalization of an earlier argumdgt4] using the conser-
former can we follow the relaxation. Uniformly translating yation of nodes.

fronts have no phase, hence all terms in &j.vanish iden- Incoherent or chaotic frontsThe third class we consider
tically. i consists of fronts which leave behind chaotic states. They
Coherent pattern generating fronts an example of co-  occyr in some regions of parameter space in the cubic com-
her_ent pattern generating fronts, we consider the so-calle&ex Ginzburg-Landau equatida0] or in the quintic exten-
Swift-Hohenberg SH) equation sion (QCGL) [11] that we consider here,
du=eu—(1+d>2u—ud, &>0. (7) o . )
dA=eA+(1+iCy)d;A+(1+iC3)|Al°A
The space-time plot of Fig.(d) illustrates how SH fronts
with steep initial conditions generate a periodic pattern. It is

known that they are pullef2,4,9. In this case, new level o
curves in anx,t plot are constantly being generated. If we Fi9ure 1b) shows an example of a pulled front in this equa-

define in this case the velocity as the slope of the uppermodton- Level curves in a space-time diagram can now also both
level curve, one gets an oscillatory function. Its average iSta't and end. If we calculate the velocity from the slope of

v(t) given in Eq.(1), butv(t) is difficult to extract this way. the uppermost level line, then_ its_ average valug is again
Numerically, it is better to determine the velocity from an 9iVen by E.(2) [12], but the oscillations can be quite large.
empirical envelope obtained by interpolating the positions of 12WeVer, our analysis confirms what is already visible in

the maxima. Since these pattern forming front solutions fof 19- 1(b), namely, that even a chaotic pulled front becomes
long times have a temporal periodicity¢,t) = u(&,t+T) in more coherent the further one looks into the leading edge of

the frame&é=x—wvt moving with the velocityv of the front, the profile. Inde_ed_we _Wi" see that in the I(_aading e_d_ge where
the asymptotic profiles can be written in the form |A|<1 the profile is given by an expression reminiscent of

S,-,e72MUTYN (&) +c.c. In terms of these complex modes Eq. (8).
U, our result for the relaxation of the interior region of the

—(1-iCs)|Al*A. 9

pulled front becomes in analogy to E@) A(x,H)~e 1 XITOK b ey 1<g, <t (10)
u(x,t)= e~ NQ*t-niC(R)yn YccH---. (8 The fluctuations about this expression become smaller the
(x)=2, 2 (€0) ®  argere,.

In Figs. Xc) and Zc) we show as an example results of
with the frequency)* given below. Equatiori8) shows that  our simulations of the SH equatiai@) and the QCGL(9).
I'(t) is theglobal phaseof the relaxing profile, as the func- They fully confirm our predictions(2) and (3) for the
tions U} only have aZx dependence. The result of our cal- asymptotic average velocity and phase relaxation.



RAPID COMMUNICATIONS

PRE 61 UNIVERSAL ALGEBRAIC RELAXATION OF VELOCITY ... R6065

ll\ 5|
- .
o) =
£ [
= ©
-0.05
0.00

FIG. 2. (a) and(b) Simulation of the QCGL equation as in Figlb] for timest=35 to 144.(a) shows|N| (16) as a function ofy . (b)
shows| |, which in region | builds up a linear slopéx aéy, and in region Il decays like a Gaussian widening in time. The lines in region
Il show the maxima ofy(éx,t) for fixed t and their projectionéy~ Jt into the (x,t) plane.(c) shows the scaling plot for the phase
relaxation. From left to right: SHdashed linesfor u= /s, 0.01/e, and 0.0001/e (¢=5), and QCGL(dotted line$ for |A|=0.002,
0.0002, and 0.000 02. Plottedii{t) Ty-/c, vs 1/r. Herer=t/Ty, andTr=T,[1+\* ImD~Y%(q* ReD Y3 ]. The solid line again is the

universal asymptote- 1/7+ 1/7°2,

We now summarize how these results arise for the case ofs a=glk* ¢ 19"ty ¢ty for the QCGL (9) or u
a single (scalaj equation. The extension to the case of iK* £—i0*t . .
coupled equations can be done along the linespf =e (&, 1) +c.c. for the real fields in Eq. (7), we
Calculation of the asymptotic parametewe first briefly ~ €XPect that the dynamical equation fai(¢,t) obeys a
summarize how the linear spreading veloaity and the as-  diffusion-type equation. Second, as we have arguefbjn
sociated parametets* etc. arise[13,5. After linearization for the relaxation anaIyS|§ one wants to WOI’k.In a frame
about the unstable state, the equations we consider can all ¥'ere the crossover functioh becomes asymptotically time
written in the form d,¢=£(3 92 ...)é. For a Fourier independent. This is obviously not true in thérame, due to
modee—i“t+Kx this yitelds thexd,isxp'ersion relatian(k). The  the factor 14/t in Eq. (11). However, this term can be ab-
linear spreading velocity* of steep initial conditions is then S?fb_‘ifj' 7_'(?*1 th_f* j?gfg”el”}'a' prefactor, - by writing
obtained by a saddle point analysis of the Green’s fungfion t~ '€/ ¢~ =g e71@7 =¥l Hence, we introduce the

of these equations. In the asymptotic frariex—v*t, logarithmically shifted framefx=¢&—X(t) [5], as already
G(&,t) becomes used in Eq.6). Third, we find a feature specific for pattern
forming fronts: the complex parameters, dndn particular,
— (214Dt i '
oy t)=f %e—iﬂ(k)tﬂk‘g _ kst e ( ) I_ead_us to introduce the global phaSé&). We expand’(t)
' 27 J47Dt like X(t) [5],
(11)
X(t)= 24 532, ft—$+di’2+ (13)
for large times. Herd) (k) = w(k) —v*k, and )= t o e (V= t o 32
dQ(k)| o B id%Q (k) and analyze the long time dynamics by performing a “lead-
dk k*_O’ ImQ(k*)=0, D= 2dk2 ' ing edge transformation” to the fielg,
k*
(12 QCGL: A=elk* &0 =iTM y e )
The first equation in Eq(12) is the saddle point condition, e 10T (14
while the second one expresses the self-consistency condi- SH: u=e" = P(éx,t)+c.c.

tion that there is no growth in the comoving frame. These o . .

equations straightforwardly determin&, k* =q* +ix*, D Steep initial conditions imply thai(£x,t) —0 as &x— .

and the real frequencg* = Q(k*) [14]. The_ deter_mlnatlon of the coefficients in the expansid®
Choosing the proper frame and transformatidtquation ~ of X and T’ is the main goal of the subsequent analysis, as

(11) confirms that a localized initial condition will grow out this then directly yields Eqg¢2) and(3).

and Spread asymptotica”y with the Ve|ocﬁ§7 given by Eq Understanding the intermediate asymptotiﬁﬂbstituting

(12). Our aim now is to understand the convergence of ghe leading edge transformati¢f4) into the nonlinear dy-

pulled front due to the interplay of the linear spreading andamical equations, we get

the nonlinearities. The Green's function expressidri)

gives three i_mportant hints in ;h*isI_eg*arq: First of &l &,t) o= Dﬁg o+ E Dn&E y

is asymptotically of the forne'*” 12"t timesa crossover X n=3 X

function whose diffusive behavior is betrayed by the Gauss- - e

ian form in Eq.(11). Hence, if we write our dynamical fields FIX(O (g, K HITO]Y=N(), (19
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with D,=(—i/n!)d"Q/(dik)"|+« the generalization ob in w w

Eq. (12) [of course, for the QCGLAQ (k) is quadratic irk, so lim Dgz f déx N(¢)=aD. (18
t—o X —x

D,=0]. In this equationN accounts for the nonlinear terms;
e.g., for the QCGL, we simply have
o 5 ] ) Copk ) Here, the overbar denotes a time averéggecessary fort_he

N=e Sy Pg1-iCs+(1-iCs)e gl 16 case of a chaotic frontThus, for large times in region I
(16 ~aéyx+ B in dominant order. Moreover, from the diffusive
The expression for the SH equation is similar. nature of the equation, our assertion that the fluctuations of

The structure of Eq(15) is that of a diffusion-type equa- rapidly decrease to the right of the region whbirss nonzero
tion with 14 and higher order corrections from theandl” ~ €OMes out naturally. In other words, provided that the time-
terms, and with a nonlinearit{. The crucial point to recog- averaged sink strengh is ncmzero,a#O, one will find a
nize now is that for frontsN is nonzeroonly in a region of ~ buildup of a linear gradient ify| in region |,independent of
finite width For £&x—, N decays exponentially due to the the precise form of the nonlinearities or of whether or not the
explicit exponential factors in Eq16). Foréy— —, Nalso  front dynamics is coherenthis behavior is clearly visible in
decays exponentially, sinaeand A remain finite, so thays ~ Fig. 2b). We can understand the dynamics in regions Il and
decays ag M éx according to Eq(14). Intuitively, there- Il along similar lines. In region Il the dom_lnant terms in
fore, we can think of Eq(15) as a diffusion equation in the Eqg. (15) are the one on the left a_nd the f!rst one on the
presence of a sinkl localized at some finite value G . s_econd line, and the crossover region II_Whlch separate_s re-
The ensuing dynamics af to the right of the sink can be gions | and Il moves to the right according to the diffusive
understood with the aid of Figs.(& and 2Zb), which are law §X~D\/f,' . ) )
obtained directly from the time-dependent numerical simula- SyStématic expansiofihese considerations are fully cor-
tions of the QCGL (9). To extract the intermediate roborated by our extension of the analysig®}. Anticipat-
asymptotic behavior illustrated by these plots, we integratdd thaty falls off for £x>1, we split off a Gaussian factor
Eq. (15) once to get by _wrltmg P(éx,t)=G(z,t)e ? in terms of the similarity

variablez= £52/(4Dt), and expand

P FX dél y=Da; g+ 2, Dn Ny
EEEE ST T n-17 G(z1)=tY2g_ 1x(2) +Qo(2) +1 gy (2 + - .
; (19
. . X .
+i[k*X(t)+1“(t)]J déy g+ X(t)
o This, together with the expansi@h3) for X(t) andI'(t), the
left “boundary condition” thaty(éy,t—»)=aéx+ B and

éx
- J d&xN(y). (17)  the condition that the functiorg(z) do not diverge exponen-

N tially, then results in the expressiof® for X(t) and(3) for
Now, in the region labeled | in Fig.(B), we have for fixed T [9]. For the QCGL, the analysis immediately implies the
& andt—oo that the terms proportional t§ andI' can be  result(10) for the front profile in the leading edge. In addi-
neglected upon averaging over the fast fluctuations; the sanit®n for the SH equation, one arrives at E&8) for the shape
holds for the term on the left. Since the integral convergegelaxation in the front interior along the lines [&]: Starting
quickly to the right due to the exponential factorsNpwe  from the ODEs for theJ, one finds upon transforming to
then get immediately, irrespective of the presence of highethe frameé that toO(t~2), the time dependence only enters
order spatial derivatives parametrically throughy (t). This then yields Eq(8).
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