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Abstract. We consider the problem of secure identification: user U proves to server S that he knows
an agreed (possibly low-entropy) password w, while giving away as little information on w as possible,
namely the adversary can exclude at most one possible password for each execution of the scheme.
We propose a solution in the bounded-quantum-storage model, where U and S may exchange qubits,
and a dishonest party is assumed to have limited quantum memory. No other restriction is posed
upon the adversary. An improved version of the proposed identification scheme is also secure against a
man-in-the-middle attack, but requires U and S to additionally share a high-entropy key k. However,
security is still guaranteed if one party loses k to the attacker but notices the loss. In both versions
of the scheme, the honest participants need no quantum memory, and noise and imperfect quantum
sources can be tolerated. The schemes compose sequentially, and w and k can securely be re-used. A
small modification to the identification scheme results in a quantum-key-distribution (QKD) scheme,
secure in the bounded-quantum-storage model, with the same re-usability properties of the keys, and
without assuming authenticated channels. This is in sharp contrast to known QKD schemes (with
unbounded adversary) without authenticated channels, where authentication keys must be updated,
and unsuccessful executions can cause the parties to run out of keys.

1 Introduction

Secure Identification. Consider two parties, a user U and a server S, which share a common
secret-key (or password or Personal Identification Number PIN) w. In order to obtain some service
from S, U needs to convince S that he is the legitimate user U by “proving” that he knows w. In
practice—think of how you prove to the ATM that you know your PIN—such a proof is often done
simply by announcing w to S. This indeed guarantees that a dishonest user U∗ who does not know
w cannot identify himself as U, but of course incurs the risk that U might reveal w to a malicious
server S∗ who may now impersonate U. Thus, from a secure identification scheme we also require
that a dishonest server S∗ obtains (essentially) no information on w.

There exist various approaches to obtain secure identification schemes, depending on the setting
and the exact security requirements. For instance zero-knowledge proofs (and some weaker versions),
as initiated by Feige, Fiat and Shamir[12, 11], allow for secure identification. In a more sophisticated
model, where we allow the common key w to be of low entropy and additionally consider a man-
in-the-middle attack, we can use techniques from password-based key-agreement (like [14, 13]) to
obtain secure identification schemes. Common to these approaches is that security relies on the
assumption that some computational problem (like factoring or computing discrete logs) is hard
and that the attacker has limited computing power.

? This is the full version of [5].



Our Contribution. In this work, we take a new approach: we consider quantum communication,
and we develop two identification schemes which are information-theoretically secure under the sole
assumption that the attacker can only reliably store quantum states of limited size. This model
was first considered in [4]. On the other hand, the honest participants only need to send qubits
and measure them immediately upon arrival, no quantum storage or quantum computation is
required. Furthermore, our identification schemes are robust to both noisy quantum channels and
imperfect quantum sources. Our schemes can therefore be implemented in practice using off-the-
shelf technology.

The first scheme is secure against dishonest users and servers but not against a man-in-the-
middle attack. It allows the common secret-key w to be non-uniform and of low entropy, like a
human-memorizable password. Only a user knowing w can succeed in convincing the server. In any
execution of this scheme, a dishonest user or server cannot learn more on w than excluding one
possibility, which is unavoidable. This is sometimes referred to as password-based identification. The
second scheme requires in addition to w a uniformly distributed high-entropy common secret-key
k, but is additionally secure against a man-in-the-middle attack. Furthermore, security against a
dishonest user or server holds as for the first scheme even if the dishonest party knows k (but
not w). This implies that k can for instance be stored on a smartcard, and security of the scheme
is still guaranteed even if the smartcard gets stolen, assuming that the affected party notices the
theft and thus does not engage in the scheme anymore. Both schemes compose sequentially, and w
(and k) may be safely re-used super-polynomially many times, even if the identification fails (due
to an attack, or due to a technical failure).

A small modification of the second identification scheme results in a quantum-key-distribution
(QKD) scheme secure against bounded-quantum-memory adversaries. The advantage of the pro-
posed new QKD scheme is that no authenticated channel is needed and the attacker can not force
the parties to run out of authentication keys. The honest parties merely need to share a password
w and a high-entropy secret-key k, which they can safely re-use (super-polynomially many times),
independent of whether QKD succeeds or fails. Furthermore, like for the identification scheme,
losing k does not compromise security as long as the loss is noticed by the corresponding party.
One may think of this as a quantum version of password-based authenticated key exchange. The
properties of our solution are in sharp contrast to all known QKD schemes without authenticated
channels (which do not pose any restrictions on the attacker). In these schemes, an attacker can
force parties to run out of authentication keys by making the QKD execution fail (e.g. by blocking
some messages). Worse, even if the QKD execution fails only due to technical problems, the parties
can still run out of authentication keys after a short while, since they cannot exclude that an eaves-
dropper was in fact present. This problem is an important drawback of QKD implementations,
especially of those susceptible to single (or few) point(s) of failure[9].

Other Approaches. We briefly discuss how our identification schemes compare with other
approaches. We have already given some indication on how to construct computationally secure
identification schemes. This approach typically allows for very practical schemes, but requires
some unproven complexity assumption. Another interesting difference between the two approaches:
whereas for (known) computationally-secure password-based identification schemes the underlying
computational hardness assumption needs to hold indefinitely, the restriction on the attacker’s
quantum memory in our approach only needs to hold during the execution of the identification
scheme, actually only at one single point during the execution. In other words, having a super-
quantum-storage-device at home in the basement only helps you cheat at the ATM if you can
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communicate with it on-line quantumly – in contrast to a computational solution, where an off-line
super-computer in the basement can make a crucial difference.

Furthermore, obtaining a satisfactory identification scheme requires some restriction on the
adversary, even in the quantum setting: considering only passive attacks, Lo[15] showed that for
an unrestricted adversary, no password-based quantum identification scheme exists. In fact, Lo’s
impossibility result only applies if the user U is guaranteed not to learn anything about the outcome
of the identification procedure. We can argue, however, that a different impossibility result holds
even without Lo’s restriction: We first show that secure computation of a classical and gate (in
which both players learn the output) can be reduced to a password-based identification scheme.
The reduction works as follows. Let w0, w′

0 and w1 be three distinct elements from W. If Alice has
private input xA = 0 then she sets wA = w0 and if xA = 1 then she sets wA = w1, and if Bob
has private input xB = 0 then he sets wB = w′

0 and if xB = 1 then he sets wB = w1. Then, Alice
and Bob run the identification scheme on inputs wA and wB, and if the identification is rejected,
the output is set to 0 while if it is accepted, the output is set to 1. Security of the identification
scheme is easily seen to imply security of the and computation. Now, the secure computation of an
and gate—with statistical security and using quantum communication—can be shown to require
a superpolynomial number of rounds if the adversary is unbounded[19]. Therefore, the same must
hold for a secure password-based identification scheme.1

Another alternative approach is the classical bounded-storage model[17, 2, 1]. In contrast to
our approach, only classical communication is used, and it is assumed that the attacker’s classical
memory is bounded. Unlike in the quantum case where we do not need to require the honest players
to have any quantum memory, the classical bounded-storage model requires honest parties to have
a certain amount of memory which is related to the allowed memory size of the adversary: if two
legitimate users need n bits of memory in an identification protocol meeting our security criterion,
then an adversary must be bounded in memory to O(n2) bits. The reason is that given a secure
password-based identification scheme, one can construct (in a black-box manner) a key-distribution
scheme that produces a one-bit key on which the adversary has an (average) entropy of 1

2 . On the
other hand it is known that in any key-distribution scheme which requires n bits of memory for
legitimate players, an adversary with memory Ω(n2) can obtain the key except for an arbitrarily
small amount of remaining entropy[8]. It follows that password-based identification schemes in
the classical bounded-storage model can only be secure against adversaries with memory at most
O(n2). This holds even for identification schemes with only passive security and without security
against man-in-the-middle attacks. Roughly, the reduction works as follows. Alice and Bob agree
on a public set of two keys {w0, w1}. Alice picks a ∈R {0, 1}, Bob picks b ∈R {0, 1}, and they run
the identification scheme with keys wa and wb respectively. The outcome of the identification is
then made public from which Bob determines a. We argue that if the identification fails, i.e. a 6= b,
then a is a secure bit. Thus, on average, a has entropy (close to) 1

2 from an eavesdropper’s point of
view. Consider w′ 6∈ {w0, w1}. By the security property of the identification scheme, Alice and thus
also a passive eavesdropper Eve cannot distinguish between Bob having used wb or w′. Similarly,
we can then switch Alice’s key wa to w1−a and Bob’s switched key w′ to w1−b without changing
Eve’s view. Thus, Eve cannot distinguish an execution with a = 0 from one with a = 1 if a 6= b.

1 In fact, we believe that the proof from [19] can be extended to cover secure computation of equality of strings,
which is equivalent to password-based identification. This would mean that we could prove the impossibility result
directly, without the detour via a secure AND computation.
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This limitation of the classical bounded-storage model is in sharp contrast with what we achieve
in this paper, the honest players need no quantum memory at all while our identification scheme
remains secure against adversaries with quantum memory linear in the total number of qubits sent.
The same separation between the two models was shown for OT and bit commitment[4, 3].

Finally, if one settles for the bounded-quantum-storage model, then in principle one could
take a generic construction for general two-party secure-function-evaluation (SFE) based on OT
together with the OT scheme from [4, 3] in order to implement a SFE for string equality and thus
password-based identification. However, this approach leads to a highly impractical solution, as the
generic construction requires many executions of OT, whereas our solution is comparable with one
execution of the OT scheme from [4, 3]. Furthermore, SFE does not automatically take care of a
man-in-the-middle attack, thus additional work would need to be done using this approach.

2 Preliminaries

2.1 Notation and Terminology

Quantum States. The state of a qubit can be described by a vector in the 2-dimensional Hilbert
space C2 in case of a pure state, and by a density matrix/operator on C2 in the general case of
a mixed state. Similarly, an n-qubit state is characterized by a vector in the n-fold tensor product
(C2)⊗n in case of a pure n-qubit state, and by a density matrix/operator on (C2)⊗n in case of a
mixed n-qubit state. The pair {|0〉, |1〉} denotes the standard basis, also known as computational or
rectilinear or “+”-basis, for C2. When the context requires, we also write |0〉+ and |1〉+ instead of
|0〉 respectively |1〉. The diagonal or “×”-basis is defined as {|0〉×, |1〉×} where |0〉× = (|0〉+ |1〉)/

√
2

and |1〉× = (|0〉 − |1〉)/
√

2. Measuring a qubit in the + -basis (resp. ×-basis) means applying the
measurement described by projectors |0〉〈0| and |1〉〈1| (resp. projectors |0〉×〈0|× and |1〉×〈1|×).
The notation generalizes to n-qubit states: For x = (x1, . . . , xn) ∈ {0, 1}n and θ = (θ1, . . . , θn) ∈
{+,×}n, we let |x〉θ be the n-qubit state |x〉θ = |x1〉θ1

· · · |xn〉θn
; and measuring a n-qubit state

in basis θ ∈ {+,×}n means applying the measurement described by projections |x〉θ〈x|θ with
x ∈ {0, 1}n.

The behavior of a (mixed) quantum state in a register E is fully described by its density ma-
trix ρE. In order to simplify language, we tend to be a bit sloppy and use E as well as ρE as
“naming” for the quantum state. We often consider cases where a quantum state E may depend on
some classical random variable X in that the state is described by the density matrix ρx

E if and only
if X = x. For an observer who has only access to the state E but not to X, the behavior of the state
is determined by the density matrix ρE :=

∑
x PX(x)ρx

E, whereas the joint state, consisting of the
classical X and the quantum state E, is described by the density matrix ρXE :=

∑
x PX(x)|x〉〈x|⊗ρx

E,
where we understand {|x〉}x∈X to be the standard (orthonormal) basis of C|X |. More general, for
any event E (defined by PE|X(x) = P [E|X =x] for all x), we write

ρXE|E :=
∑

x

PX|E(x)|x〉〈x| ⊗ ρx
E and ρE|E := trX(ρXE|E) =

∑
x

PX|E(x)ρx
E . (1)

We also write ρX :=
∑

x PX(x)|x〉〈x| for the quantum representation of the classical random variable
X (and similarly for ρX|E). This notation extends naturally to quantum states that depend on
several classical random variables, defining the density matrices ρXY E, ρXY E|E , ρY E|X=x etc. We
tend to slightly abuse notation and write ρx

Y E = ρXE|X=x and ρx
Y E|E = ρY E|X=x,E , as well as
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ρx
E = trY (ρx

Y E) and ρx
E|E = trY (ρx

Y E|E).
2 Note that writing ρXE = trY (ρXY E) and ρE = trX,Y (ρXY E)

is consistent with the above notation. We also write ρXE|E = trY (ρXY E|E) and ρE|E = trX,Y (ρXY E|E),
where one has to be aware that in contrast to (1), here the state E may depend on the event E
(namely via Y ), so that, e.g., ρE|E =

∑
x PX|E(x)ρx

E|E . Given a quantum state E that depends on
a classical random variable X, by saying that there exists a random variable Y such that ρXY E

satisfies some condition, we mean that ρXE can be understood as ρXE = trY (ρXY E) for some ρXY E

(with classical Y ) and that ρXY E satisfies the required condition.3

X is independent of E (in that ρx
E does not depend on x) if and only if ρXE = ρX ⊗ ρE, which

in particular implies that no information on X can be learned by observing only E. Similarly, X is
random and independent of E if and only if ρXE = 1

|X |I ⊗ ρE, where 1
|X |I is the density matrix of

the fully mixed state of suitable dimension. Finally, if two states like ρXE and ρX ⊗ ρE are ε-close
in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), which we write as ρXE ≈ε ρX ⊗ ρE, then
the real system ρXE “behaves” as the ideal system ρX ⊗ ρE except with probability ε in that for
any evolution of the system no observer can distinguish the real from the ideal one with advantage
greater than ε [21].

Conditional Independence. We also need to express that a random variable X is (close to)
independent of a quantum state E when given a random variable Y . This means that when given Y ,
the state E gives no (or little) additional information on X. Formally, this is expressed by requiring
that ρXY E equals (or is close to) ρX↔Y↔E, which is defined as4

ρX↔Y↔E :=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E .

In other words, ρXY E = ρX↔Y↔E precisely if ρx,y
E = ρy

E for all x and y. To further illustrate its
meaning, notice that if the Y -register is measured and value y is obtained, then the state ρX↔Y↔E

collapses to (
∑

x PX|Y (x|y)|x〉〈x|)⊗ ρy
E, so that indeed no further information on x can be obtained

from the E-register. This notation naturally extends to ρX↔Y↔E|E simply by considering ρXY E|E
instead of ρXY E. Explicitly, ρX↔Y↔E|E =

∑
x,y PXY |E(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy

E|E . We will make use
of the following lemma, its proof is given in Appendix A.1.

Lemma 2.1. For any event E, the density matrix ρX↔Y↔E can be decomposed into

ρX↔Y↔E = P [E ]2 · ρX↔Y↔E|E + (1− P [E ]2) · τ

for some density matrix τ . Furthermore, if E is independent of X and Y , then

ρX↔Y↔E = P [E ] · ρX↔Y↔E|E + P [Ē ] · ρX↔Y↔E|Ē .

(Conditional) Smooth Min-Entropy. We briefly recall the notion of (conditional) smooth
min-entropy[20, 22]. For more details, we refer to the aforementioned literature. Let X be a random
variable over alphabet X with distribution PX . The notion of min-entropy is given by H∞(X) =
2 The density matrix ρx

E|E describes the quantum state E in the case that the event E occurs and X takes on the
value x. The corresponding holds for the other density matrices considered here.

3 This is similar to the case of distributions of classical random variables where given X the existence of a certain
Y is understood that there exists a certain joint distribution PXY with

P
y PXY (·, y) = PX .

4 The notation is inspired by the classical setting where the corresponding independence of X and Z given Y can
be expressed by saying that X ↔ Y ↔ Z forms a Markov chain.
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− log
(
maxx PX(x)

)
. More general, for any event E , H∞(XE) may be defined similarly simply by

replacing PX by PXE . Note that the “distribution” PXE is not normalized; H∞(XE) is still well
defined, though. For an arbitrary ε ≥ 0, the smooth version Hε

∞(X) is defined as follows. Hε
∞(X) is

the maximum of the standard min-entropy H∞(XE), where the maximum is taken over all events
E with Pr(E) ≥ 1− ε. As ε can be interpreted as an error probability, we typically require ε to be
negligible in the security parameter n, denoted as ε = negl(n).

For a pair of random variables X and Y , the conditional smooth min-entropy Hε
∞(X|Y ) is

defined as Hε
∞(X|Y ) = maxE miny H∞(XE|Y =y), where the quantification over E is over all events

E (defined by PE|XY ) with Pr(E) ≥ 1 − ε. The following lemma shows that for a small ε, smooth
min-entropy is essentially as good as ordinary min-entropy; the proof is given in Appendix A.2.

Lemma 2.2. If Hε
∞(X|Y ) = r then there exists an event E ′ such that P [E ′] ≥ 1 − 2ε and

H∞(X|E ′, Y =y) ≥ r − 1 for every y with PY E ′(y) > 0.

2.2 Tools

A New Min-Entropy-Splitting Lemma. A technical tool, which will come in handy, is the
following new entropy-splitting lemma, which may be of independent interest. Informally, it says
that if for a list of random variables, every pair has high (smooth) min-entropy, then all of the
random variables except one must have high (smooth) min-entropy. The version given here follows
immediately from the version given and proven in Appendix A.3

Lemma 2.3 (Entropy-Splitting Lemma). Let ε > 0. Let X1, . . . , Xm be a sequence of random
variables over X1, . . . ,Xm such that Hε

∞(XiXj) ≥ α for all i 6= j. Then there exists a random
variable V over {1, . . . ,m} such that for any independent random variable W over {1, . . . ,m}

H2
√

ε
∞ (XW |V W, V 6=W ) ≥ α/2− log(m)− log(1/ε) .

Quantum Uncertainty Relation. At the very core of our security proofs lies (a special case
of) the quantum uncertainty relation from [3], that lower bounds the (smooth) min-entropy of the
outcome when measuring an arbitrary n-qubit state in a random basis θ ∈ {0, 1}n.

Theorem 2.4 (Uncertainty Relation[3]). Let E be an arbitrary fixed n-qubit state. Let Θ be
uniformly distributed over {+,×}n (independent of E), and let X ∈ {0, 1}n be the random variable
for the outcome of measuring E in basis Θ. Then, for any λ > 0, the conditional smooth min-entropy
is lower bounded by Hε

∞(X|Θ) ≥
(

1
2 − λ

)
n with ε = negl(n).

Thus, ignoring negligibly small “error probabilities” and linear fractions that can be chosen ar-
bitrarily small, the outcome of measuring any n-qubit state in a random basis has n/2 bits of
min-entropy, given the basis.

Privacy Amplification. Finally, we recall the quantum-privacy-amplification theorem of Renner
and König[21]. We give the simplified version as used in [4]. Recall that a class F of hash functions
from X to Y is called (strongly) universal-2 if for any x 6= x′ ∈ X , and for F uniformly distributed
over F , the collision probability P [F (x) = F (x′)] is upper bounded by 1/|Y|, respectively, for the
strong notion, the random variables F (x) and F (x′) are uniformly and independently distributed
over Y.
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Theorem 2.5 (Privacy Amplification[21, 4]). Let X be a random variable distributed over
{0, 1}n, and let E be a q-qubit state that may depend on X. Let F be the random and independent
choice of a member of a universal-2 class of hash functions F from {0, 1}n into {0, 1}`. Then

δ
(
ρF (X)FE, 1

2` I⊗ ρFE

)
≤ 1

2
2−

1
2

(
H∞(X)−q−`

)
.

3 The Identification Scheme

3.1 The Setting

We assume the honest user U and the honest server S to share some key w ∈ W. We do not require
W to be very large (i.e. |W| may not be lower bounded by the security parameter in any way),
and w does not necessarily have to be uniformly distributed in W. So, we may think of w as a
human-memorizable password or PIN code. The goal of this section is to construct an identification
scheme that allows U to “prove” to S that he knows w. The scheme should have the following security
properties: a dishonest server S∗ learns essentially no information on w beyond that he can come
up with a guess w′ for w and learns whether w′ = w or not, and similarly a dishonest user succeeds
in convincing the verifier essentially only if he guesses w correctly, and if his guess is incorrect then
the only thing he learns is that his guess is incorrect. This in particular implies that as long as
there is enough entropy in w, the identification scheme may be safely repeated.

3.2 The Intuition

The scheme we propose is related to the (randomized) 1-2 OT scheme of [3]. In that scheme, Alice
sends |x〉θ to Bob, for random x ∈ {0, 1}n and θ ∈ {+,×}n. Bob then measures everything in basis
+ or ×, depending on his choice bit c, so that he essentially knows half of x (where Alice used the
same basis as Bob) and has no information on the other half (where Alice used the other basis),
though, at this point, he does not know yet which bits he knows and which ones he does not. Then,
Alice sends θ and two hash functions to Bob, and outputs the hash values s0 and s1 of the two
parts of x, whereas Bob outputs the hash value sc that he is able to compute from the part of x he
knows. It is proven in [3] that no dishonest Alice can learn c, and for any quantum-memory-bounded
dishonest Bob, at least one of the two strings s0 and s1 is random for Bob.

This scheme can be extended by giving Bob more options for measuring the quantum state.
Instead of measuring all qubits in the + or the × basis, he may measure using m different strings
of bases, where any two possible basis-strings have large Hamming distance. Then Alice computes
and outputs m hash values, one for each possible basis-string that Bob might have used. She reveals
θ and the hash functions to Bob, so he can compute the hash value corresponding to the basis that
he has used, and no other hash value. Intuitively, such an extended scheme leads to a randomized
1-m OT.

The scheme can now be transformed into a secure identification scheme as follows, where we
assume (wlog) that W = {1, . . . ,m}. The user U, acting as Alice, and the server S, acting as Bob,
execute the randomized 1-m OT scheme where S “asks” for the string indexed by his key w, such
that U obtains random strings s1, . . . , sm and S obtains sw. Then, to do the actual identification,
U sends sw to S, who accepts if and only if it coincides with his string sw. Intuitively, such a
construction is secure against a dishonest server since unless he asks for the right string (by guessing
w correctly) the string U sends him is random and thus gives no information on w. On the other
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hand, a dishonest user does not know which of the m strings S asked for and wants to see from
him. We realize this intuitive idea in the next section. In the actual protocol, U does not have to
explicitly compute all the si’s, and also we only need a single hash function (to compute sw). We
also take care of some subtleties, for instance that the si are not necessarily random if Alice (i.e.
the user) is dishonest.

3.3 The Basic Scheme

Let c : W → {+,×}n be the encoding function of a binary code of length n with m = |W| codewords
and minimal distance d. c can be chosen such that n is linear in log(m) or larger, and d is linear in n.
Furthermore, let F and G be strongly universal-2 classes of hash functions5 from {0, 1}n to {0, 1}`

and from W to {0, 1}`, respectively, for some parameter `. For x ∈ {0, 1}n and I ⊆ {1, . . . , n}, we
define x|I ∈ {0, 1}n to be the restriction of x to the coordinates xi with i ∈ I. If |I| < n then
applying f ∈ F to x|I is to be understood as applying f to x|I padded with sufficiently many 0’s.

Q-ID:
1. U picks x ∈R {0, 1}n and θ ∈R {+,×}n, and sends state |x〉θ to S.
2. S measures |x〉θ in basis c = c(w). Let x′ be the outcome.
3. U picks f ∈R F and sends θ and f to S. Both compute Iw := {i : θi =c(w)i}.
4. S picks g ∈R G and sends g to U.
5. U computes and sends z := f(x|Iw )⊕ g(w) to S.
6. S accepts if and only if z = z′ where z′ := f(x′|Iw )⊕ g(w).

Proposition 3.1 (User security). Let the initial state of a dishonest server S∗, whose quantum
memory at step 3 is bounded by q qubits, be independent of the honest user’s key W . Then, the
joint state ρWES∗ after the execution of Q-ID is such that there exists a random variable W ′ that is
independent of W and such that

ρWW ′ES∗ |W ′ 6=W ≈ε ρW↔W ′↔ES∗ |W ′ 6=W ,

where ε = negl(d− 4 log(m)− 4q − 4`).

The proposition guarantees that whatever a dishonest S∗ does is essentially as good as trying to
guess W by some arbitrary (but independent) W ′ and learning whether the guess was correct or
not, but nothing beyond that. Such a property is obviously the best one can hope for, since S∗ may
always honestly execute the protocol with a guess for W and observe whether he accepts U.

We would like to point out that the security definition used in Proposition 3.1, and in fact any
security claim in this paper, guarantees sequential composability, as the output state is guaranteed
to have the same independency property as is required from the input state (except if the attacker
guesses w).

Proof. For readability, we do not keep track of negligibly small error probabilities and of linear
fractions that can be chosen arbitrarily small, but (sometimes) merely give some indication of a
small error by using the word “essentially”. It is straightforward but rather tedious to keep rigorous
track of these errors.
5 Actually, we only need G to be strongly universal-2.
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We consider and analyze a purified version of Q-ID where in step 1, instead of sending |x〉θ to
S∗ for a random x, U prepares a fully entangled state 2−n/2

∑
x |x〉|x〉 and sends the second register

to S∗ while keeping the first. Then, in step 3 when the memory bound has applied, he measures his
register in the random basis θ ∈R {+,×}n in order to obtain x. Standard arguments imply that this
purified version produces exactly the same common state, consisting of the classical information on
U’s side and S∗’s quantum state.

Recall that before step 3 is executed, the memory bound applies to S∗, meaning that S∗ has to
measure all but q of the qubits he holds, which consists of his initial state and his part of the EPR
pairs. Before doing the measurement, he may append an ancilla register and apply an arbitrary
unitary transform. As a result of S∗’s measurement, S∗ gets some outcome y, and the common state
collapses to a (n+ q)-qubit state (which depends on y), where the first n qubits are with U and the
remaining q with S∗. The following analysis is for a fixed y, and works no matter what y is.

We use upper case letters W , X, Θ, F , G and Z for the random variables that describe the
respective values w, x, θ etc. in an execution of the purified version of Q-ID. We write Xj = X|Ij

for any j, and we let E′S∗ be S∗’s q-qubit state at step 3, after the memory bound has applied. Note
that W is independent of X, Θ, F , G and E′S∗ .

For 1 ≤ i 6= j ≤ m, fix the value of X, and correspondingly of Xi and Xj , at the positions where
c(i) and c(j) coincide, and focus on the remaining (at least) d positions. The uncertainty relation
(Theorem 2.4) implies that the restriction of X to these positions has essentially d/2 bits of min-
entropy given Θ. Since every bit in the restricted X appears in one of Xi and Xj , the pair Xi, Xj also
has essentially d/2 bits of min-entropy given Θ. Lemma 2.3 implies that there exists W ′ (called V in
Lemma 2.3) such that if W 6= W ′ then XW has essentially d/4− log(m) bits of min-entropy, given
W and W ′ (and Θ). Privacy amplification then guarantees that F (XW ) is ε′-close to random and
independent of F,W,W ′, Θ and E′S∗ , conditioned on W 6= W ′, where ε′ = 1

2 · 2
− 1

2
(d/4−log(m)−q−`).

It follows that Z = F (XW ) ⊕ G(W ) is ε′-close to random and independent of F,G,W,W ′, Θ and
E′S∗ , conditioned on W 6= W ′.

Formally, we want to upper bound δ(ρWW ′ES∗ |W ′ 6=W , ρW↔W ′↔ES∗ |W ′ 6=W ). Since the output state
ES∗ is, without loss of generality, obtained by applying some unitary transform to the set of registers
(Z,F,G,W ′, Θ,E′S∗), the distance above is equal to the distance between ρWW ′(Z,F,G,Θ,E′S∗ )|W ′ 6=W

and ρW↔W ′↔(Z,F,G,Θ,E′S∗ )|W ′ 6=W . We then get:

ρWW ′(Z,F,G,Θ,E′S∗ )|W ′ 6=W ≈ε′
1
2` I⊗ ρWW ′(F,G,Θ,E′S∗ )|W ′ 6=W

= 1
2` I⊗ ρW↔W ′↔(F,G,Θ,E′S∗ )|W ′ 6=W ≈ε′ ρW↔W ′↔(Z,F,G,Θ,E′S∗ )|W ′ 6=W ,

where approximations follow from privacy amplification and the exact equality comes from the
independency of W , which, when conditioned on W ′ 6= W , translates to independency given W ′.
The claim follows with ε = 2ε′. ut

Proposition 3.2 (Server security). Let the initial state of an (unbounded) dishonest user U∗ be
independent of the honest server’s key W , and let H∞(W ) ≥ 1. Then, there exists W ′, independent
of W , such that if W 6= W ′ then S accepts with probability at most m2/2`, and the common state
ρWEU∗ after the execution of Q-ID (including S’s announcement to accept or reject) satisfies

ρWW ′EU∗ |W ′ 6=W ≈m2/2` ρW↔W ′↔EU∗ |W ′ 6=W .

The formal proof is given below. The idea is the following. We let U∗ execute Q-ID with a server
that is unbounded in quantum memory. Such a server can obviously obtain x and thus compute
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sj = f(x|Ij ) ⊕ g(j) for all j. Note that sw is the message z that U∗ is required to send in the
last step. Now, if the sj ’s are all distinct, then z uniquely defines w′ such that z = sw′ , and thus
S accepts if and only if w′ = w, and U∗ does not learn anything beyond. The strong universal-2
property of g guarantees that the sj ’s are all distinct except with probability m2/2`.

Proof. Again, we consider a slightly modified version. We let U∗ interact with a server that has
unbounded quantum memory and does the following. Instead of measuring |x〉θ in step 2 in basis
c, it stores the state and measures it after step 3 in basis θ (and obtains x). This modified version
produces the same common state ρWU∗ as the original scheme, since the only difference between
the two is when and in what basis the qubits at positions i 6∈ Iw are measured, which does not
effect the execution in any way.

We use the upper case letters W , X, Θ, F , G and Z for the random variables that describe
the respective values w, x, θ etc. in an execution of the modified version of Q-ID. Furthermore, we
define Sj := F (X|Ij ) ⊕ G(j) for j = 1, . . . ,m. Note that Z ′ = SW represents the value z′ used by
S in the last step. Let E be the event that all Sj ’s are distinct. By the strong universal-2 property,
and since G is independent of X and F , the Sj ’s are pairwise independent and thus it follows from
the union bound that E occurs except with probability at most m(m− 1)/2 · 1/2` ≤ m2/2`+1.

Let E′U∗ be U∗’s quantum state after the execution of Q-ID but before he learns S’s decision to
accept or reject. We may assume that the values of all random variables X, Θ, F , G, Z and the
Sj ’s are known/given to U∗, i.e., we consider them as part of E′U∗ . Furthermore, we may assume
that Z is one of the Sj ’s, i.e. that Z = SW ′ for a random variable W ′. Indeed, if Z 6= Sj for all
j then S’s decision is “reject”, no matter what W is, and U∗ obviously learns no information on
W at all. Note that E′U∗ is independent of W by assumption on U∗’s initial state and by definition
of the random variables X, Θ etc. Since E is determined by the Sj ’s (which are part of E′U∗), this
holds also when conditioning on E . This then translates to the independence of E′U∗ from W when
given W ′, conditioned on W ′ 6= W and E .

We now consider U∗’s state EU∗ after he has learned S’s decision. If W ′ 6= W and all Sj ’s are
distinct then S rejects with probability 1. Hence, conditioned on the events W ′ 6= W and E , U∗’s
state EU∗ remains independent of W given W ′. Define p := P [E|W ′ 6= W ] and p̄ := P [Ē |W ′ 6= W ]
= 1 − p, where Ē is the complementary event to E . Recall that P [Ē ] ≤ m2/2`+1, and therefore
p̄ ≤ P [Ē ]/(1 − P [W ′ = W ]) ≤ 2P [Ē ] ≤ m2/2`, where the second-last inequality follows from the
independence of W and W ′, and from the condition on H∞(W ). Note that p̄ upper bounds the
probability that S accepts in case W ′ 6= W , proving the first claim. From the above it follows that

ρWW ′EU∗ |W ′ 6=W = p · ρWW ′EU∗ |E,W ′ 6=W + p̄ · ρWW ′EU∗ |Ē,W ′ 6=W

= p · ρW↔W ′↔EU∗ |E,W ′ 6=W + p̄ · ρWW ′EU∗ |Ē,W ′ 6=W .

Furthermore, it is not too hard to see that E is independent of W and W ′, and thus also when
conditioned on W ′ 6= W . Lemma 2.1 hence implies that

ρW↔W ′↔EU∗ |W ′ 6=W = p · ρW↔W ′↔EU∗ |E,W ′ 6=W + p̄ · ρW↔W ′↔EU∗ |Ē,W ′ 6=W .

By definition of the metric δ(·, ·), and because it cannot be bigger than 1, the distance between the
two states is at most p̄ ≤ m2/2`. ut

We call an identification scheme ε-secure against impersonation attacks if user and sender se-
curity are satisfied as in Propositions 3.1 and 3.2. The following holds.
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Theorem 3.3. If H∞(W ) ≥ 1, then the identification scheme Q-ID (with suitable choice of pa-
rameters) is ε-secure against impersonation attacks for any unbounded user and for any server with
quantum memory bound q, where ε = negl

(
n− 33 log(m)− 11q

)
.

Proof. We choose ` = 1
8(d+4 log(m)−4q). Then user security holds except with an “error” negligible

in d − 4 log(m) − 4q − 4` = d/2 − 6 log(m) − 2q, and thus negligible in d − 12 log(m) − 4q. And
server security holds except with an “error” negligible in ` − 2 log(m) = 1

8(d − 12 log(m) − 4q),
and thus negligible in d− 12 log(m)− 4q. Using a code c which asymptotically meets the Gilbert-
Varshamov bound[23], d may be chosen arbitrarily close to n · h−1

(
1− log(m)/n

)
, where h−1 is the

inverse function of the binary entropy function h : p 7→ −
(
p · log(p) + (1− p) · log(1− p)

)
restricted

to 0 < p ≤ 1
2 . For this d to be larger than 12 log(m), clearly n needs to be larger than 24 log(m),

so that h−1
(
1− log(m)/n

)
> h−1

(
1− 1

24

)
which turns out to be larger than 4

11 . The claim follows
by normalizing 4

11n− 12 log(m)− 4q for n. ut

3.4 An Error-tolerant Scheme

We now consider an imperfect quantum channel with “error rate” φ. The scheme Q-ID is sensitive
to such errors in that they cause x|Iw and x′|Iw to be different and thus an honest server S is likely
to reject an honest user U. This problem can be overcome by means of error-correcting techniques:
U chooses a linear error-correcting code that allows to correct a φ-fraction of errors, and then in
step 2, in addition to θ and f , U sends a description of the code and the syndrome s of x|Iw to S; this
additional information allows S to recover x|Iw from its noisy version x′|Iw by standard techniques.
However, this technique introduces a new problem: the syndrome s of x|Iw may give information
on w to a dishonest server. Hence, to circumvent this problem, the code chosen by U must have the
additional property that for a dishonest user, who has high min-entropy on x|Iw , the syndrome s
is (close to) independent of w.

This problem has recently been addressed and solved in the classical setting by Dodis and
Smith[7]. They present a family of efficiently decodable linear codes allowing to correct a constant
fraction of errors, and where the syndrome of a string is close to uniform if the string has enough
min-entropy and the code is chosen at random from the family.6 It remains to verify that their
analysis can be translated to our setting where the adversary may have “quantum information”.

Lemma 5 of [7] guarantees that for every 0 < λ < 1 and for an infinite number of n′’s there exists
a δ-biased (as defined in [7]) family C = {Cj}j∈J of [n′, k′, d′]2-codes with δ < 2−λn′/2, and which
allows to efficiently correct a constant fraction of errors. Theorem 3.2 of [10] (which generalizes
Lemma 4 in [7] to the quantum setting) guarantees that if a string Y has t bits of min-entropy
then for a randomly chosen code Cj ∈ C, the syndrome of Y is close to random and independent
of j and any q-qubit state that may depend on Y , where the closeness is given by δ · 2(n′+q−t)/2.
In our application, Y = XW , n′ ≈ n/2 and t ≈ d/4 − log(m) − `, where the additional loss of `
bits of entropy comes from learning the `-bit string z. Choosing λ = 1 − t

2n′ gives an ensemble of
code families that allow to correct a linear number of errors and the syndrome is ε-close to uniform
given the quantum state, where ε ≤ 2−n′/2+t/4 · 2(n′+q−t)/2 = 2−(t−2q)/4, which is exponentially
small provided that there is a linear gap between t and 2q. Thus, the syndrome gives essentially
no additional information. The error rate φ that can be tolerated this way depends in a rather

6 As a matter of fact, the error correction in [7] is done by sending the string XOR’ed with a random code word,
rather than sending the syndrome, but obviously the latter is equivalent to the first.
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complicated way on λ, but choosing λ larger, for instance λ = 1− t+νq
2n′ for a constant ν > 0, allows

to tolerate a higher error rate but requires q to be a smaller (but still constant) fraction of t.
Another imperfection has to be taken into account in current implementations of the quantum

channel: imperfect sources. An imperfect source transmits more than one qubit in the same state
with probability η independently each time a new transmission takes place. To deal with imperfect
sources, we freely give away (xi, θi) to the adversary when a multi-qubit transmission occurs in
position i. It is not difficult to see that parameter ε in Proposition 3.1 then becomes essentially
ε = negl((1− η)d− 4 log(m)− 4q − 4`) in this case.

It follows that a quantum channel with error-rate φ and multi-pulse rate η, called the (φ, η)-weak
quantum model in [4], can be tolerated for some small enough (but constant) φ and η.

4 Defeating Man-in-the-Middle Attacks

4.1 The Approach

In the previous section, we “only” proved security against impersonation attacks, but we did not
consider a man-in-the-middle attack, where the attacker sits between an honest user and an hon-
est server and controls their (quantum and classical) communication. And indeed, Q-ID is highly
insecure against such an attack: the attacker may measure the first qubit in, say, basis +, and
then forward the collapsed qubit (together with the remaining untouched ones) and observe if S
accepts the session. If not, then the attacker knows that he introduced an error and hence that the
first qubit must have been encoded and measured using the ×-basis, which gives him one bit of
information on the key w. The error-tolerant scheme seems to prevent this particular attack, but
it is by no means clear that it is secure against any man-in-the-middle attack.

To defeat a man-in-the-middle attack that tampers with the quantum communication, we per-
form a check of correctness on a random subset. The check allows to detect if the attacker tampers
too much with the quantum communication, and the scheme can be aborted before sensitive in-
formation is leaked to the attacker. In order to protect the classical communication, one might
use a standard information-theoretic authentication code. However, the key for such a code can
only be securely used a limited number of times. A similar problem occurs in QKD: even though a
successful QKD execution produces fresh key material that can be used in the next execution, the
attacker can have the parties run out of authentication keys by repeatedly enforcing the executions
to fail. In order to overcome this problem, we will use some special authentication scheme allowing
to re-use the key under certain circumstances, as discussed in Sect. 4.3.

4.2 The Setting

Similar to before, we assume that the user U and the server S share a not necessarily uniform,
low-entropy key w. In order to handle the stronger security requirements of this section, we have to
assume that U and S in addition share a uniform high-entropy key k. We require that a man-in-the-
middle attacker needs to guess w correctly in order to break the scheme, and if his guess is incorrect
then he learns no more information on w besides that his guess is wrong, and he essentially learns
no information on k. Furthermore, we require security against impersonation attacks, as defined
in the previous section, even if the dishonest party knows k. It follows that k can for instance be
stored on a smartcard, and security is still guaranteed even if the smartcard gets stolen, assuming
that the theft is noticed and the corresponding party does/can not execute the scheme anymore.
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We would also like to stress that by our security notion, not only w but also k may be safely reused,
even if the scheme was under attack.

4.3 An Additional Tool: Extractor MACs

An important tool used in this section is an authentication scheme, i.e., a Message Authenti-
cation Code (MAC), that also acts as an extractor, meaning that if there is high min-entropy
in the message, then the key-tag pair cannot be distinguished from the key and a random tag.
Such a MAC, introduced in [6], is called an extractor MAC, EXTR-MAC for short. For instance
MAC∗

α,β(x) = [αx] + β, where α, x ∈ GF (2n), β ∈ GF (2`) and [ . ], denotes truncation to the ` first
bits, is an EXTR-MAC: impersonation and substitution probability are 1/2`, and, for an arbitrary
message X, a random key K = (A,B) and the corresponding tag T = [A ·X] + B, the tag-key pair
(T,K) is 2−(H2(X)−`)/2-close to (U,K), where U is the uniform distribution, respectively, ρTKE is
2(H2(X)−`−q)/2-close to 1

2` I⊗ρKE = 1
2` I⊗ρK⊗ρE if we allow a q-qubit state E that may depend only

on X. A useful feature of an EXTR-MAC is that if an adversary gets to see the tag of a message
on which he has high min-entropy, then the key for the MAC can be safely re-used (sequentially).
Indeed, closeness of the real state, ρTKE, to the ideal state, 1

2` I ⊗ ρKE = 1
2` I ⊗ ρK ⊗ ρE , means

that no matter how the state evolves, the real state behaves like the ideal one (except with small
probability), but of course in the ideal state, K is still “fresh” and can be reused.

4.4 The Scheme

As for Q-ID, let c : W → {+,×}n be the encoding function of a binary code of length n with m = |W|
codewords and minimal distance d. For some parameter `, let F , G and H be strongly universal-2
classes of hash functions from {0, 1}n to {0, 1}`, W to {0, 1}`, and {0, 1}n to {0, 1}2`, respectively.
Also, let MAC : {0, 1}2` × {0, 1}∗ → {0, 1}` be a standard MAC for a message of arbitrary length
L, with an 2`-bit key and an error probability at most dL/`e·2−`, and let MAC∗ : K×M→ {0, 1}`

be an EXTR-MAC with an arbitrary key space K, a (finite) message space M that will become
clear later, and an error probability 2−`. Furthermore, let {synj}j∈J be the family of syndrome
functions7 corresponding to a family C = {Cj}j∈J of linear error correcting codes of size n′ = n/2,
as discussed in Section 3.4: any Cj allows to efficiently correct a δ-fraction of errors for some
constant δ > 0, and for a random j ∈ J , the syndrome of a string with t = d/4− log(m)− 5` bits
of min-entropy is 2−(t−2q)/4-close to uniform (given j and any q-qubit state). Finally, we let `∗ ≤ `
be a parameter linear in n− `, whose exact value will be specified in the proof.

Recall, by the set-up assumption, the user U and the server S share a password w ∈ W as well
as a uniform high-entropy key, which we define to be a random authentication key k ∈ K. The
scheme is given in the box below.

Proposition 4.1 (Security against man-in-the-middle). Let the initial state of a man-in-the-
middle attacker with quantum memory q be independent of the keys W and K. Then, there exists
W ′, independent of W , such that the common state ρKWE after the execution of Q-ID+ satisfies

ρKWW ′E|W ′ 6=W ≈ε ρK ⊗ ρW↔W ′↔E|W ′ 6=W ,

where ε = negl(d− 4 log(m)− 8q − 20`).
7 We agree on the following convention: for a bit string y of arbitrary length, synj(y) is to be understood as

synj(y0 · · · 0) with enough padded zeros if its bit length is smaller than n′, and as
`
synj(y

′), y′′
´
, where y′ consist

of the first n′ and y′′ of the remaining bits of y, if its bit length is bigger than n′.
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Q-ID+:
1. U picks x ∈R {0, 1}n and θ ∈R {+,×}n, and sends the n-qubit state |x〉θ to S.

Write Iw := {i : θi =c(w)i}.
2. S picks a random subset T ⊂ {1, . . . , n} of size `∗, it computes c = c(w), replaces every ci with i ∈ T by

ci ∈R {+,×} and measures |x〉θ in basis c. Let x′ be the outcome, and let test′ := x′|T .
3. U sends θ, j ∈R J , s := synj(x|Iw ), f ∈R F , h ∈R H and tag∗ := MAC∗

k(θ, j, s, f, h, x|Iw ) to S.
4. S picks g ∈ G, and sends T and g to U.
5. U sends test := x|T , z := f(x|Iw )⊕ g(w) and tag := MACh(x|Iw )(g, T, test, z) to S.
6. S recovers x|Iw from x′|Iw with the help of test and s, and it accepts if and only if (1) both MAC’s verify

correctly, (2) test coincides with test′ wherever the bases coincide, and (3) z = f(x|Iw )⊕ g(w).

Proof. We use capital letters (W , Θ, etc.) for the values (w, θ, etc.) occurring in the scheme
whenever we view them as random variables, and we write XW and X ′

W for the random variables
taking values x|Iw and x′|Iw , respectively. To simplify the argument, we neglect error probabilities
that are of order ε, as well as linear fractions that can be chosen arbitrarily small. We merely give
indication of a small error by (sometimes) using the word “essentially”.

First note that due to the security of the MAC and its key, if the attacker substitutes θ, j, s, f
or h in step 3, or if S recovers an incorrect string as x|Iw , then S will reject at the end of the
protocol. We can define W ′ (independent of W ) as in the proof of Proposition 3.1 such that if
W 6= W ′ then XW has essentially d/4−log(m) bits of min-entropy, given W,W ′ and Θ. Furthermore,
given TAG∗, F (XW ),H(XW ), TEST (as well as K, F,H, T, W, W ′ and Θ), XW has still essentially
t = d/4 − log(m) − 5` bits of min-entropy, if W 6= W ′. By the property of the code family C, it
follows that if t > 2q with a linear gap then the syndrome S = synJ(XW ) is essentially random
and independent of J, TAG∗, F (XW ),H(XW ), TEST, K, F, H, T,W,W ′, Θ and E, conditioned on
W 6= W ′. Furthermore, it follows from the privacy-amplifying property of MAC∗ and of f and h
that if d/4− log(m)− 5` > q with a linear gap, then the set of values (TAG∗, F (XW ),H(XW )) is
essentially random and independent of K, F,H, TEST, T, W, W ′, Θ and E, conditioned on W 6= W ′.
Finally, K is independent of the rest, and E is independent of K, F,H, TEST, T, W, Θ. It follows
that ρKWW ′E|W ′ 6=W ≈ ρK ⊗ ρW↔W ′↔E|W ′ 6=W , before he learns S’s decision to accept or reject.

It remains to argue that S’s decision does not give any additional information on W . We will
make a case distinction, which does not depend on w, and we will show for both cases that S’s
decision to accept or reject is independent of w, which proves the claim. But first, we need the
following observation. Recall that outside of the test set T , S measured in the bases dictated by
w, but within T in random bases. Let I ′w be the subset of positions i ∈ Iw with ci = c(w)i (and
thus also = θi), and let T ′ = T ∩ I ′w. In other words, we remove the positions where S measured
in the “wrong” basis. The size of T ′ is essentially `∗/4, and given its size, it is a random subset
of I ′w of size |T ′|. It follows from the theory of random sampling, specifically from Lemma 4 of
[16], that ν

(
x|I′w , x′|I′w

)
essentially equals ν

(
x|T ′ , x′|T ′

)
(except with probability negligible in the

size of T ′), where ν(·, ·) denotes the fraction of errors between the two input strings. Due to some
technical reason, for the sampling technique to work it is required that |T ′| is upper bounded
by α · |I ′w|, where the constant α > 0 depends on the allowed tolerance in estimating the error
fraction, and as such on δ, the fraction of errors the code Cj is able to correct. We refer to [16] for
more details. Important for us is that `∗ can be chosen linear in n− `. Furthermore, since the set
V = {i ∈ T : θi = ci} of positions where U and S compare x and x′ is a superset of T ′ of essentially
twice the size, ν

(
x|V , x′|V

)
is essentially lower bounded by 1

2 ν
(
x|T ′ , x′|T ′

)
. Putting things together,

we get that ν
(
x|I′w , x′|I′w

)
is essentially upper bounded by 2 ν

(
x|V , x′|V

)
. Also note that ν

(
x|V , x′|V

)
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does not depend on w. We can now do the case distinction: Case 1: If ν
(
x|V , x′|V

)
≤ δ

2 (minus
an arbitrarily small value), then x|I′w and x′|I′w differ in at most a δ-fraction of their positions, and
thus S correctly recovers x|Iw (using test = x|T to get x|Iw\I′w and using s to correct the rest), no
matter what w is, and it follows that S’s decision only depends on the attacker’s behavior, but not
on w. Case 2: Otherwise, either S cannot correctly recover x|Iw and thus rejects, or it can correctly
recover x|Iw and hence can verify tag with the correct key h(x|Iw). S is therefore guaranteed to get
the correct test = x|T (or else rejects) and thus rejects as test and test′, restricted to V , differ in
more than a δ

2 -fraction of their positions. Hence, S always rejects in case 2. ut

For a dishonest user or server who knows k (but not w), breaking Q-ID+ is equivalent to breaking
Q-ID, up to a change in the parameters. Doing the maths on the parameters, it thus follows:

Theorem 4.2. If H∞(W ) ≥ 1, then the identification scheme Q-ID+ is ε-secure against a man-
in-the-middle attacker with quantum memory bound q, and, even with a leaked k, Q-ID+ is ε-secure
against impersonation attacks for any unbounded user and for any server with quantum memory
bound q, where ε = negl(n− 100 log(m)− 19q).

It is easy to see that Q-ID+ can tolerate a noisy quantum communication up to any error rate
φ < δ. Similar to the discussion in Section 3.4, tolerating a higher error rate requires the bound on
the adversary’s quantum memory to be smaller but still linear in the number of qubits transmitted.
Imperfect sources can also be addressed in a similar way as for Q-ID. It follows that Q-ID+ can also
be shown secure in the (φ, η)-weak quantum model provided φ and η are small enough constants.

5 Application to QKD

As already pointed out in Section 4.1, current QKD schemes have the shortcoming that if there is
no classical channel available that is authenticated by physical means, and thus messages need to be
authenticated by an information-theoretic authentication scheme, an attacker can force the parties
to run out of authentication keys simply by making an execution (or several executions if the parties
share more key material) fail. Even worse, even if there is no attacker, but some execution(s) of the
QKD scheme fails due to a technical problem, parties could run out of authentication keys. This
shortcoming could make the technology impractical in situations where denial of service attacks or
technical interruptions often occur.

The identification scheme Q-ID+ from the previous section immediately gives a QKD scheme in
the bounded-quantum-storage model that allows to re-use the authentications key(s). Actually, we
can inherit the key-setting from Q-ID+, where there are two keys, a human-memorizable password
and a uniform, high-entropy key, where security is still guaranteed even if the latter gets stolen
and the theft is noticed. In order to agree on a secret key sk, the two parties execute Q-ID+, and
extract sk from x|Iw by applying yet another strongly universal-2 function, for instance chosen by
U in step 3, where n needs to be increased accordingly to have the additional necessary amount
of entropy in x|Iw . The analysis of Q-ID+ immediately implies that if honest S accepts, then he is
convinced to share sk with the legitimate U which knows w. In order to convince U, S can then use
part of sk to one-time-pad encrypt w, and send it to U. The rest of sk is then a secure secret key,
shared between U and S. In order to have a better “key rate”, instead of using sk (minus the part
used for the one-time-pad encryption) as secret key, one can also run a standard QKD scheme on
top of Q-ID+ and use sk as a one-time authentication key.
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A Proofs

A.1 Proof of Lemma 2.1

Writing p = P [E ] and p̄ = P [Ē ] we indeed get

ρX↔Y↔E =
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E

=
∑
x,y

(
p · PXY |E(x, y) + p̄ · PXY |Ē(x, y)

)
|x〉〈x| ⊗ |y〉〈y| ⊗

(
p · ρy

E|E + p̄ · ρy
E|Ē

)
= p2 ·

∑
x,y

PXY |E(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E|E + (1− p2) · τ

= p2 · ρX↔Y↔E|E + (1− p2) · τ

for some density matrix τ . If E is independent of X and Y , so that PXY = PXY |E = PXY |Ē , then

ρX↔Y↔E =
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E

=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗
(
p · ρy

E|E + p̄ · ρy
E|Ē

)
= p ·

∑
x,y

PXY |E(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E|E + p̄ ·

∑
x,y

PXY |Ē(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E|Ē

= p · ρX↔Y↔E|E + p̄ · ρX↔Y↔E|E .

A.2 Proof of Lemma 2.2

By definition of smooth min-entropy, there exists an event E with Pr(E) ≥ 1 − ε and such that
H∞(XE|Y =y) ≥ r for all y, and thus PXE|Y (x|y) ≤ 2−r for all x and y. Define E ′ by setting for
all x and y

PXE ′|Y (x|y) :=
{

PXE|Y (x|y) if PE|Y (y) ≥ 1
2

0 else

Then obviously for any y with PY E ′(y) > 0 and thus PE ′|Y (y) = PE|Y (y) ≥ 1
2 ,

PX|E ′Y (x|y) =
PXE ′|Y (x|y)

PE ′|Y (y)
≤ 2−r

PE ′|Y (y)
≤ 2−r+1 .

Furthermore,

1− ε ≤ P
[
E
]

= P
[
E
∣∣PE|Y (Y )< 1

2

]
· P

[
PE|Y (Y )< 1

2

]
+ P

[
E
∣∣PE|Y (Y )≥ 1

2

]
· P

[
PE|Y (Y )≥ 1

2

]
(2)

≤ 1
2
P

[
PE|Y (Y )< 1

2

]
+ P

[
PE|Y (Y ) ≥ 1

2

]
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from which follows that P [PE|Y (Y )< 1
2 ] ≤ 2ε. Thus we can conclude that

P
[
E ′

]
≥ P

[
E ′

∣∣PE|Y (Y )≥ 1
2

]
· P

[
PE|Y (Y )≥ 1

2

]
≥ P

[
E|PE|Y (Y )≥ 1

2

]
· P

[
PE|Y (Y )≥ 1

2

]
≥ 1− ε− 1

2
P

[
PE|Y (Y )< 1

2

]
≥ 1− 2ε

where the second-last inequality follows from (2), and noting (again) that P [E|PE|Y (Y )< 1
2 ] < 1

2 .
ut

A.3 Proof of Lemma 2.3

Lemma 2.3 follows immediately from Lemma A.1.

Lemma A.1 (Entropy-Splitting Lemma). Let ε ≥ 0. Let X1, . . . , Xm be random variables over
X1, . . . ,Xm such that Hε

∞(XiXj) ≥ α for all i 6= j. Then there exists a random variable V over
{1, . . . ,m} such that for any v ∈ {1, . . . ,m} with P [V 6=v] > 0 and for any ε′ > 0

Hε/ε′+ε′
∞ (Xv|V, V 6=v) ≥ α/2− log(m)− 2 log(1/ε′) .

Proof. For any pair i 6= j let Eij be an event such that P [Eij ] ≥ 1 − ε and PXiXjEij (xi, xj) ≤ 2−α

for all xi ∈ Xi and xj ∈ Xj . By assumption, such events exist.8 For any j = 1, . . . ,m− 1 define

Lj = {(x1, . . . , xm) : PX1(x1), . . . , PXj−1(xj−1) < 2−α/2 ∧ PXj (xj) ≥ 2−α/2}

Informally, Lj consists of the tuples (x1, . . . , xm), where xj has “large” probability whereas all
previous entries have small probabilities. We define V as follows. We let V be the index j ∈
{1, . . . ,m − 1} such that (X1, . . . , Xm) ∈ Lj , and in case there is no such j we let V be m. Note
that if there does exist such an j then it is unique.

We need to show that this V satisfies the claim. Fix j ∈ {1, . . . ,m}. Clearly, for i < j and for
any xi ∈ Xi,

PXiV (xi, j) = PXi(xi) · PV |Xi
(j|xi) < 2−α/2 .

Indeed, either PXi(xi) < 2−α/2 or PV |Xi
(j|xi) = 0 by definition of V . Consider now i > j. Note

that for any xi and for any xj with PV |Xj
(j|xj) > 0

2−α ≥ PXiXjEij (xi, xj) ≥ PXiXjV Eij (xi, xj , j)

= PXj (xj) · PXiV Eij |Xj
(xi, j|xj) ≥ 2−α/2 · PXiV Eij |Xj

(xi, j|xj) .

Therefore, PXiV Eij |Xj
(xi, j|xj) ≤ 2−α/2 for every xi ∈ Xi and every xj ∈ Xj , and thus PXiV Eij (xi, j) ≤

2−α/2 for every xi ∈ Xi.
Let us first assume that P [V 6=v] ≥ ε′ for all v ∈ {1, . . . ,m}, and consider an arbitrary v. Define

E to be the event that PV (V ) > ε′2/m. Note that

P
[
Ē
]

=
∑

j

P
[
Ē |V =j

]
PV (j) ≤ m · ε′2/m = ε′2 .

8 In case ε = 0, i.e., α lower bounds the ordinary (rather then the smooth) min-entropy, the Eij are the events “that
always occur” and can be ignored from the rest of the analysis.
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Furthermore, for j 6= v and xv ∈ Xv, if PV (j) ≤ ε′2/m then PXvEvjE|V (xv|j) = 0 and thus also
PXvEvjE|V,V 6=v(xv|j) = 0, and else

PXvEvjE|V,V 6=v(xv|j) = PXvEvj |V,V 6=v(xv|j) = PXvEvj |V (xv|j) = PXvV Evj (xv, j)/PV (j) ≤ 2−α/2m/ε′2.

The union bound gives P [Ēvj ∪ Ē|V 6=v] ≤ P [Ēvj |V 6=v] + P [Ē |V 6=v] ≤ ε/ε′ + ε′.
Now we consider the case where P [V 6=v] < ε′ for some v. Let j◦ be such a v. In this case, we

define E to be the event that V = j◦ for the above V , and we define a new V to be equal to j◦ with
probability 1. We then obviously have P [Ē ] < ε′, and P [V 6= v] = 0 if v = j◦ and else 1. Also, for
the only j that we need to consider, namely j = j◦, we have PV (j) = 1. Thus, for any j and v that
we need to consider, PXvEkjE|V,V 6=v(xv|j) ≤ 2−α/2 and P [Ēkj ∪ Ē|V 6=v] ≤ ε + ε′. ut
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