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Abstract

It is known that cryptographic feasibility results can change by moving from the classical to
the quantum world. With this in mind, we study the feasibility of realizing functionalities in
the framework of universal composability, with respect to both computational and information-
theoretic security. With respect to computational security, we show that existing feasibility results
carry over unchanged from the classical to the quantum world; a functionality is “trivial” (i.e.,
can be realized without setup) in the quantum world if and only if it is trivial in the classical
world. The same holds with regard to functionalities that are complete (i.e., can be used to realize
arbitrary other functionalities).

In the information-theoretic setting, the quantum and classical worlds differ. In the quantum
world, functionalities in the class we consider are either complete, trivial, or belong to a family
of simultaneous-exchange functionalities (e.g., XOR). However, other results in the information-
theoretic setting remain roughly unchanged.
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1 Introduction

In a classical setting of cryptography, participants in a protocol (both the honest parties and the
adversary), are modeled as being able to perform classical computation only. In the quantum setting,
however, parties are able to send and receive quantum states and process quantum information.
It is well known that cryptographic feasibility results in these two settings differ; for example, key
exchange with information-theoretic security is possible in the quantum world, but not in the classical
world. In this paper we focus on protocols for universally composable two-party computation, and
study the relationships between feasibility/impossibility results in the classical and quantum settings.

1.1 Universally Composable Computation in the Classical World

Our focus in on secure computation within the framework of universal composability [Can01], which
provides strong composition guarantees when arbitrary protocols are executed concurrently. Soon
after the introduction of this framework, Canetti and Fischlin [CF01] showed that, without honest
majority, UC commitment is impossible to achieve. This was later extended to rule out protocols
for securely achieving most other “interesting” tasks [CKL06, PR08].

On the positive side, it is known that (under suitable cryptographic assumptions) any function-
ality can be securely computed, without honest majority, if we are willing to assume some form of
trusted setup such as a common reference string [CF01, CLOS02]. Subsequent work has identified
other complete setup assumptions [BCNP04, Kat07, IPS08, CPS07]. Completeness results in the
information-theoretic (or statistical) setting, where the adversary is computationally unbounded,
have also been shown [Kil88, IPS08].

Maji et al. [MPR10] proved a zero/one law: every two-party deterministic function with polynomial-
size input domain is either trivial1 (i.e, can be realized in the UC framework with no setup as-
sumptions), or complete (i.e., sufficient for computing arbitrary other functions, under appropri-
ate complexity assumptions). This characterization was extended by Katz et al. [KKK+11], who
showed completeness for deterministic functions with exponential-size input domains, and by Ro-
sulek [Ros12], who showed completeness for randomized, reactive functions as well. In the setting of
information-theoretic security, Kraschewski et al. [KMQ11] give a characterization of completeness
for two-party deterministic functionalities, and show that a zero/one laws does not hold. In fact,
Maji et al. [MPR09] show there is an infinite hierarchy of function complexity in the statistical
setting.

1.2 The Shift to a Quantum World

How do the results described in the previous section change when we move to the quantum world?
The answer, a priori, is unclear. Feasibility results in the classical setting may not hold in the
quantum setting since quantum adversaries are more powerful than classical ones. This is true even
if “quantum-resistant” cryptographic assumptions are used, since techniques such as rewinding that
are used to prove security against classical adversaries may not apply in the quantum setting. Even
in the case of statistical security, feasibility results may not translate from the classical world to the
quantum world [CSST11].

In the other direction, impossibility results in the classical setting might potentially be circum-
vented in the quantum setting since honest parties can rely on quantum mechanics, too. As a
notable example of this, statistically secure key exchange is possible in the quantum world [BB84]
but not in the classical one. While several impossibility results for statistically secure two-party
computation in the quantum setting are known [May97, LC97, Lo97, SSS09, BCS12], these re-
sults say nothing about the computational setting. They also say nothing about what might be
possible given trusted setup. An example here, that also demonstrates the power of quantum pro-
tocols, arises in the context of building oblivious transfer (OT) from commitment. Classically, this

1We use trivial and feasible exchangeably hereafter.
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is impossible [MPR09]. However, there is a construction of OT from commitment in the quan-
tum world [BBCS92, DFL+09, Unr10, BF10]; as a consequence, commitment is complete for UC
computation in that setting [Unr10].

Given the above, the situation regarding triviality and completeness of functionalities within the
quantum UC framework (see Section 2) is unclear, though partial answers are known. In the statisti-
cal setting, Unruh [Unr10] gives a generic “lifting” theorem asserting that classically secure protocols
remain (statistically) secure in the quantum world. So any functionalities that are classically trivial
(in a statistical sense) are also trivial in a quantum setting. Moreover, any functionality that is
classically complete in a statistical sense (and so in particular OT [Unr10]) is complete with respect
to the quantum UC framework as well. The situation is less clear with regard to computational
security. A recent work by Hallgren et al. [HSS11] “salvages” a few classically complete functionali-
ties, showing that, for example, coin-flipping and zero-knowledge are still complete in the quantum
world. But this does not rule out the possibility that some classically complete functionalities are
no longer complete in the quantum setting.

1.3 Our Results

We study feasibility and completeness of an interesting class of two-party, deterministic functionali-
ties on polynomial-size domains. We prove generic, quantum-lifting theorems and use them to show
that feasibility in the quantum world is equivalent to classical feasibility, in both the computational
and statistical settings. An important ingredient here is a quantum analogue of the Canetti-Fischlin
result [CF01], showing that there is no quantum protocol realizing UC commitment against com-
putationally bounded quantum adversaries in the plain model.2 This result extends the known
impossibility results mentioned earlier for statistically secure protocols in the quantum setting.

At the core of our quantum-lifting theorems is a quantum construction of statistically secure OT
from the “2-bit cut-and-choose” functionality F2CC. (Note that F2CC is not complete in the classical
setting.) Our construction is a modification of the BBCS protocol [BBCS92], but existing techniques
do not seem to apply for arguing its security. Instead, we introduce and analyze an adaptive version
of the sampling technique from [BF10], and use this to prove the security of our OT protocol. The
adaptive-sampling analysis may be of independent interest.

Our lifting theorems for the case of computational security, together with Unruh’s lifting theorem
for the statistical case [Unr10], imply that any classically complete functionality remains complete
in the quantum setting. On the other hand, we identify tasks that are statistically complete using
quantum protocols but are incomplete classically. Our results show, roughly, that every functionality
in our class is either trivial or complete in the quantum computational setting; thus, the situation here
is analogous to the classical case [MPR10]. In the quantum statistical setting, however, functionalities
fall into one of three different classes; this is in contrast with the (more complicated) classical
picture [MPR09, KMQ11].

1.4 Additional Related Work

Proving security of quantum protocols has been challenging and nontrivial. Indeed, it was only
several years after the invention of quantum key-exchange protocols that rigorous proofs of security
were given [May01, LC99, SP00]. With regard to secure computation, the first broad feasibility
results were in the setting of multi-party protocols with information-theoretic security, assuming
honest majority [CGS02, BOCG+06]. Positive results for computational security in the quantum
world, without honest majority, have only recently been shown [Wat09, LN11, HSS11, DNS12].

1.5 Outline of the Paper

In Section 2, we describe the classical and the quantum UC models as well as our terminology. We
prove our lifting theorems for completeness in Section 3, and for feasibility in Section 4. In Section 5,

2A similar result was stated in [MQR09] with no proof.
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we apply our lifting theorems to classify the cryptographic complexity of functionalities in the class
we consider.

2 The Model

In this section we describe the model and our terminology. We consider two types of security state-
ments, namely classical and quantum. The classical statements are done in Canetti’s (classical) UC
framework [Can01]. For quantum statements we use the recently developed quantum-UC frame-
work [Unr10]. A high-level description of the models can be found in Appendix B. In this work,
we assume static, i.e., non-adaptive corruption. Namely an adversary chooses the set of parties to
corrupt before execution of the protocol.

The UC framework. The security of protocols is argued via the simulation paradigm. Intu-
itively, a protocol securely realizes a given ideal functionality F, if the adversary cannot gain more
in the protocol (real-world) than what she could in an ideal-evaluation of F where a trusted party
computes the function values and hand them to designated players (ideal-world). More formally,
a protocol π securely realizes a functionality F if for every real-world adversary A there exists an
ideal-world adversary S, called the simulator, such that no environment can distinguish whether it is
witnessing the real-world execution with adversary A or the ideal-world execution with simulator S.
The parties, the adversary, the simulator, the functionalities, and the environment, are modeled as
interactive Turing-machines (ITMs). Depending on the assumed computing power of the adversaries
and the environment we distinguish between computational security, where they are all considered to
be polynomially bounded ITMs, and information-theoretic (i.t.), also known as statistical security,
where they are assumed to be computationally unbounded.

Universal composability and the hybrid model. The most important feature of the simulation-
based security definition is that it allows to argue about security of protocols in a composable way.
In particular, let π be a protocol which securely realizes a functionality F. If we can prove that a
protocol π′ securely realizes a functionality F′ using invocations of F as in the ideal world, then it
follows automatically that if we replace in π′ the invocations of F by invocations of π, the resulting
protocol also securely realizes F′. Therefore we only need to prove the security of π′ in the so-called
F-hybrid model, where the players run π′ and are allowed to make invocations to F.

Reductions and cryptographic complexity. For two ideal functionalities F and F′, we say that
F computationally (classical) UC reduces to F′, denoted as F vccomp F′, if there exists a F′-hybrid
protocol πF

′
which computationally securely realizes F. If the protocol πF

′
statistically securely

realizes F, then we say that F statistically (classical) UC reduces to F′, denoted as F vcstat F′.
As syntactic sugar, we say that F and F′ are computationally (resp. statistically) UC equivalent,

denoted as F
ccomp
≡ F′ (resp. F cstat≡ F′), if F vccomp F′ and F′ vccomp F (resp. F vcstat F′ and

F′ vcstat F).
The reduction-relation v is “transitive” in the sense that if F′ v F, then any task which is

implementable in the F′-hybrid world is also implementable in the F-hybrid world. This implies a
notion of cryptographic complexity for functions, where F′ v F implies that F is at least as high in
the hierarchy as F′.
Feasibility and completeness. Let FSEC denote the secure channels functionality.We say that a
functionality F is computationally (resp. statistically) UC feasible if F vccomp FSEC (resp. F vcstat

FSEC). Furthermore, we say that F is computationally (resp. statistically) UC complete if for any
well-formed functionality F′ : F′ vccomp F (resp. F′ vcstat F).

The Quantum UC framework [Unr10]. The quantum-UC framework generalizes the classi-
cal UC model, in which the players (including the adversaries and the environment) are quantum
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machines. A quantum universal composition theorem was proved in [Unr10]. We point out that
in this work we only consider ideal functionalities with classical inputs and outputs. For two ideal
functionalities F and F′, we say that F computationally quantum-UC reduces to F′, denoted as
F vqcomp F′, if there exists a F′-hybrid protocol πF

′
which computationally securely realizes F.

If the protocol πF
′

statistically securely realizes F, then we say that F statistically quantum-UC
reduces to F′, denoted as F vqstat F′. We say that a functionality F is computationally (resp.
statistically) quantum-UC feasible if F can be computationally (resp. statistically) quantum-UC
realized in the plain quantum-UC model, i.e., without assuming any hybrids.3 Furthermore, we say
that F is computationally (resp. statistically) quantum-UC complete if for any well-formed (classical)
functionality F′ : F′ vqcomp F (resp. F′ vqstat F). The definitions of computation and statistical
quantum-UC equivalence is also analogous to the classical setting.

In [Unr10] the so-called (statistical) quantum lifting theorem was proved which, roughly speaking
shows that if a classical protocol is statistically UC secure then it is also statistically quantum-UC
secure.

Fact 1 ([Unr10, Theorem 15] – The Quantum Lifting Theorem). If a protocol π statistically UC
realizes a functionality F, then π statistically quantum-UC realizes the functionality F.

Remark 1 (Polynomial Simulation). In all the security definitions considered in this work we explic-
itly require that the simulator’s running time is polynomial to the running time of the adversary.
We call this property polynomial simulation. The property ensures that when a protocol statistically
realizes a functionality, then it also computationally realizes it [Can00, Can01]. We point out that
the definition of statistical quantum-UC security in [Unr10] explicitly requires polynomial simulation.

Ideal functionalities and the class U−. Ideally, we would like our statements to cover the whole
class U of finite, deterministic, two-party functionalities(we refer to Appendix B.4 for a formal defi-
nition), which is the central class studied in [MPR09, MPR10]. However, we were unable to prove or
disprove (quantum-UC) neither completeness nor feasibility of the 1-bit cut-and-choose functionality
F1CC ∈ U (also denoted as FCC). We were able to prove statistical quantum-UC completeness of its
“closest sibling;” namely, the 2-bit cut-and-choose functionality F2CC.4 Therefore, our results are
for the slightly smaller class U− which is U excluding the small fraction of functionalities that are
sufficient for (statistically classically) realizing F1CC but not for realizing F2CC. Formally:

U− = {F | (F ∈ U) ∧ ((F2CC vcstat F) ∨ (F1CC 6vcstat F))}.
Note that, as demonstrated in [MPR10], the missing fraction, i.e., U \ U−, is indeed very small
as, roughly, it corresponds to the lowest primitive of an infinite strict hierarchy of (statistically
classically) incomplete “cut-and-choose” primitives.5 Nevertheless, it remains an open problem to
prove quantum-UC feasibility or completeness of F1CC (which would complete the characterization
of U) as it does not follow from any known classical or quantum results.

For completeness, we list a few two-party ideal functionalities that are used as setups in this
work; a formal description can be found in Appendix B.5.Consistently with existing literature we
use the names Alice and Bob for the parties:

• Secure Function Evaluation FSFE: An SFE functionality FSFE is specified by a pair of functions
(fA, fB) over a finite input domain X × Y . Alice inputs value x ∈ X and Bob inputs y ∈ Y . Then
Alice receives fA(x, y) while Bob obtains fB(x, y).

3We point out that quantum secure channel is implied by authentication channel due to QKD protocols, which is
by default provided in the quantum-UC framework, hence there is no need to assume quantum secure channels.

4Our conjecture is that F1CC is also statistically quantum-UC complete. Recall that classically neither FCC not F2CC

is statistically UC complete [MPR10].
5These are variations of F2CC parameterized by the size of Bob’s input, i.e., FmCC behaves as FCC where Bob’s input

is a string of length m. (F1CC is the lowest and F2CC is the second lowest primitive in this hierarchy.) [MPR10].
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• 1-out-of-2 Oblivious Transfer FOT: Alice (the sender) inputs 2 bits (s0, s1) and Bob (the receiver)
inputs a selection bit c ∈ {0, 1}. Bob receives sc from FOT. We also consider the more general string
OT, where (s0, s1) are `-bit strings. Our OT protocol in Sect. 3.1 realizes string OT.

• Commitment FCOM: Alice (the committer) inputs a bit b and Bob (the receiver) receives from FCOM
a notification that a bit was received. At a later point, Alice can input the command open to FCOM
in which case Bob receives b.

• XOR FXOR: Alice and Bob input bits bA and bB, respectively. They both receive the output
y = bA ⊕ bB.

• Fair (Simultaneous) Exchange FEXCH: Alice and Bob input strings bA and bB, respectively, and
receive outputs yA = bB and yB = bA, respectively.

• 2-bit Cut-and-Choose F2CC: Bob inputs a 2-bit string b = (b0, b1), an Alice inputs a selection bit
sA; informally, sA indicates whether or not Alice wishes to learn b. Bob receives output sA and Alice
receives output b if sA = 1, and receives ⊥ if sA = 0.
• Coin Tossing FCOIN: Alice and Bob input a request to FCOIN, and FCOIN randomly chooses a fair
coin r ∈ {0, 1} and it then sends delayed output r to both Alice and Bob.

Note that the functionalities FOT, FXOR, F2CC, and FCOM are in the set U−.

Notational conventions. Throughout the paper we use small π to denote a classical protocol in
classical UC model, while we use capital Π to denote a classical or quantum protocol in quantum
UC model.

3 Quantum Lifting for Completeness

In this section we prove that statements about completeness of functionalities in the classical setting
are preserved in the quantum setting. More precisely, we prove the following theorem:

Theorem 2 (Quantum Lifting of Completeness). For any F ∈ U− the following statements hold:

1. (Statistical Setting) If F is statistically classical-UC complete then F is statistically quantum-
UC complete.

2. (Computational Setting) If F is computationally classical-UC complete under the semi-honest
OT assumption shOT then F is computationally quantum-UC complete under the assumptions
of existence of a quantum-secure pseudorandom generator and a dense encryption that is quan-
tum IND-CPA.6

The statistical statement follows easily from Unruh’s quantum lifting theorem (Fact 1) and the
definition of completeness. In the remaining of this section we prove the computational statement.
To this direction we follow a structure similar to that of [MPR10]: First, in Section 3.1 we show
that for any F ∈ U−, either F is computationally quantum-UC feasible or for a functionality F′ ∈
{FXOR,FOT,F2CC,FCOM}, there exists a statistically quantum-UC secure protocol which reduces F′ to
F. Second, in Section 3.2, we show that FXOR, FOT, F2CC, and FCOM are computationally quantum-UC
complete. Statement 2 of the theorem follows then immediately by combining the above steps and
using the fact that any statistically quantum-UC secure protocol is also computationally quantum-
UC secure.

6For a concrete description of the assumptions we refer to Appendix C.
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3.1 Non-Feasibility Implies FXOR, FOT, F2CC, or FCOM

To show that every infeasible F ∈ U−, there is some F′ ∈ {FXOR,FOT,F2CC,FCOM} such that F′ vqcomp

F, we use the following result that is proved in [MPR10, Theorems 1,4]: if F ∈ U is not UC feasible,
then for F′ vcstat F. Using this result on U− we obtain the following:

Fact 2 ([MPR10]). Let F ∈ U−. If F is not compuationally (UC) feasible, then for some F′ ∈
{FXOR,FOT,F2CC,FCOM} the following holds: F′ vcstat F.

Because the reductions in Fact 2 are information-theoretic (with polynomial-simulation), the
statement can be translated to the quantum-UC setting by Fact 1. This proves the following lemma:

Lemma 3. Let F ∈ U−. If F is not statistically quantum-UC feasible , then for some F′ ∈
{FXOR,FOT,F2CC,FCOM} the following holds: F′ vqstat F.

Proof. First observe that F is not statistically classical-UC feasible, because otherwise the lifting
lemma (Fact 1) will impy that F is also statistically quantum-UC feasible, contradicting the assump-
tion. Then by our lifting theorem for feasibility in later section (Sect. 4, Theorem 8), statistically
UC infeasibility of F implies that F is not computationally UC feasible. Then Fact 2 tells us that
for some F′ ∈ {FXOR,FOT,F2CC,FCOM} : F′ vcstat F , which, in turns implies that F′ vqstat F by
Fact 1.

3.2 Quantum-UC Completeness of FXOR, FOT, F2CC, and FCOM

We next prove that each of the functionalities FXOR,FOT, F2CC and FCOM is computationally quantum-
UC complete7. The quantum-UC completeness of FOT and FCOM was proved in [Unr10]:

Lemma 4. The OT functionality FOT and the commitment functionality FCOM are statistically quantum-
UC complete.

This immediately gives us the desired computational quantum-UC completeness of FOT and FCOM.
Next, we show completeness for the XOR functionality. To this direction we use the following idea:
first we use the straight-forward classical FXOR-hybrid coin-tossing protocol (each party chooses a
random bit and sends it to FXOR; the output of every party is the value they receive from FXOR) to
construct FCOIN; subsequently, we apply the results of [HSS11] who proved computationally quantum-
UC completeness of FCOIN under proper assumptions. The more detailed proof can be found in
Appendix C.

Lemma 5. Assuming existence of a quantum-secure pseudorandom generator and a dense encryption
that is quantum IND-CPA, then FXOR is computationally quantum-UC complete.

The most involved completeness proof is the one concerning the cut-and-choose functionality
F2CC. In [MPR10], they constructed a classical protocol realizing FCOM from F1CC. However, their
security proof involves rewinding, and it is unclear how to make it go through against quantum
adversaries.8

Instead, we demonstrate completeness of F2CC by constructing a quantum protocol that statis-
tically quantum-UC realizes FOT in F2CC-hybrid world (and then applying Lemma 4). The idea is
motivated by the quantum OT construction in the FCOM hybrid world by Bennett et al [BBCS92].
In this protocol, roughly speaking, FCOM is used in a checking subroutine to ensure that malicious

7Actually, as will be shown, FCOM, FOT, F2CC are statistically quantum-UC complete.
8It is in general hard to clearly define what it means for a security proof to “not use rewinding”. It is not enough for

the protocol to have a straight-line simulator, which [MPR10] actually satisfies. The subtlety is that the correctness
of the simulator might still involve rewinding argument (e.g., in defining hybrid experiments).
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Bob measures his qubits upon arrival (and does not store them until Alice informs him about the
bases used). More specifically, Alice sends several qubits encoded in random bases, and Bob mea-
sures all of them and commits, for each qubit, to the pair (x̃Bi , θ̃

B
i ), where x̃Bi is the outcome of the

measurement of the ith qubit and θ̃Bi is the corresponding basis Bob used. Alice then asks Bob to
open a randomly chosen subset of the committed pairs, and she checks consistency with how she
had prepared the qubits. Intuitively, this indeed ensures that Bob has measures most of the qubits,
as otherwise he would not know what to commit to. Formally proving this intuition turned out to
be non-trivial, with the first rigorous proofs given in [DFL+09, Unr10, BF10].

Our protocol uses, instead of commitments, invocations to F2CC to implement the checking step
(see the protocol ΠQOT below). Intuitively, this should enforce Bob to measure all the qubits as in
the original protocol based on commitments. Unfortunately, the formal proof does not carry over.
The problem arises from the fact that in the original protocol, Bob has to commit to all the θ̃Bi and
x̃Bi before he gets to see the random subset that Alice chooses for testing consistency, whereas in
our protocol based on F2CC, Bob can make his input (θ̃Bi , x̃

B
i ) to F2CC adaptively, and dependent on

which prior positions Alice has tested. Current proofs, like [DFL+09, BF10], cannot deal with that.
In order to deal with this issue, we introduce an adaptive version of the sampling framework

of [BF10]. We then show, analogous to the static setting as in [BF10], that the security of the OT
scheme reduces to the analysis of a quantum sampling problem in our adaptive sampling framework.
Analyzing the quantum sampling problem can further be reduced to a classical probabilistic analysis,
which can be handled by standard techniques (e.g., Azuma’s inequality).

In the following, we describe the F2CC-hybrid OT protocol ΠQOT and state its security in Lemma 6.
The formal proof can be found in Appendix D.

Lemma 6. There exists an F2CC-hybrid protocol which statistically quantum-UC realizes FOT.

The following corollary follows from Lemma 6 and the completeness of FOT (Lemma 4), by
applying the quantum-UC composition theorem.

Corollary 7. F2CC is statistically quantum-UC complete.

The proof of Theorem 3 follows easily from Lemmas 3, 4, 5, and Corollary 7, by applying the
quantum-UC composition theorem.

4 Quantum Lifting for Feasibility

In this section we show a bi-directional lifting theorem for feasibility statements. Informally, we
show that if a functionality F ∈ U− is feasible in the classical UC setting, then F is also feasible
in the quantum-UC setting and vise versa. In fact, we can even show a stronger statement, namely
that the set of feasible functionalities in U− is the same set irrespective of whether we are considering
the classical or the quantum setting and independent of the level of security (i.e, computational or
statistical). We point out that the computational statements in the following theorem are under
that semi-honest OT assumption for the classical setting, and under the assumptions of existence of
a quantum-secure pseudorandom generator and a dense encryption that is quantum IND-CPA, for
the quantum setting.

Theorem 8 (Quantum Bi-Lifting of Feasibility). Let F ∈ U−. The following statements are equiv-
alent

1. F is computationally (classical) UC feasible.

2. F is statistically (classical) UC feasible.

3. F is statistically quantum-UC feasible.
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Protocol ΠQOT

Parameters: A family F =
{
f : {0, 1}n → {0, 1}`

}
of universal hash functions.

Parties: The sender Alice and the recipient Bob.
Inputs: Alice gets two `-bit strings s0 and s1, Bob gets a bit c.

1. (Initialization)

1.1 Alice chooses x̃A = (x̃A1 , . . . , x̃
A
n ) ∈R {0, 1}n and θ̃A = (θ̃A1 , . . . , θ̃

A
n ) ∈R {+,×}n uni-

formly at random and sends |x̃A〉θ̃A to Bob who denotes the received state by |ψ〉.

2.2 Bob chooses θ̃B = (θ̃B1 , . . . , θ̃
B
n ) ∈R {+,×}n uniformly at random and measures the

qubits of |ψ〉 in the bases θ̃B; denote the result by x̃B := (x̃B1 , . . . , x̃
B
n ).

2. (Checking)

2.1 For i = 1, . . . n the following steps are executed sequentially:

(a) Alice chooses a bit bi ∈R {0, 1} uniformly at random.

(b) Alice and Bob invoke F2CC with inputs bi and (x̃Bi , θ̃
B
i ), respectively.

2.2 If in some iteration i of Step 2.1 Alice receives θ̃Bi = θ̃Ai but x̃Bi 6= x̃Ai , then Alice aborts.
If in Step 2.1 Bob receives (as output of F2CC) the bit bi = 1 more than 3n/5 times then
Bob aborts.

2.3 Let x̂A be the string resulting from removing in x̃A the bits at positions i with bi = 1.
Define θ̂A, x̂B, θ̂B analogously.

3. (Partition Index Set) Alice sends θ̂A to Bob. Bob sets Ic := {i : θ̂Ai = θ̂Bi } and I1−c :=
{i : θ̂Ai 6= θ̂Bi }. Then Bob sends (I0, I1) to Alice.

4. (Secret Transferring)

4.1 Alice picks a function f ∈R F; for i = 0, 1 : Alice computes mi := si⊕f(x′i), where x′i is
the n-bit string that consists of x̂A|Ii padded with zeros, and sends (f,m0,m1) to Bob.

4.2 Bob outputs s := mc⊕f(x′B), where x′B is the n-bit string that consists of x̂B|Ic padded
with zeros.

4. F is computationally quantum-UC feasible.

In the remaining of this section we prove the above theorem, by showing that for each i ∈ {1, 2, 3}
Statement i implies Statement i+ 1, and, finally, that Statement 4 implies Statement 1.

For the first implication (i.e., that Statement 1 implies Statement 2) we use the following result
about classical functionalities implied by [MPR10, Theorems 1,4]:

Fact 3 ([MPR10, Theorems 1,4]). The functionalities FOT, F2CC, FCOM, and FXOR are computationally
(classical) UC complete.9

Claim 1. If F ∈ U− is computationally (classical) UC feasible then F is statistically (classical) UC
feasible.

Proof (sketch). Assume, for contradiction, that F is not statistically (classical) UC feasible. Then,
Fact 2 implies that for some F′ ∈ {FOT,F2CC,FXOR,FCOM} : F′ vccomp F, which, by the claim’s

9Observe that [MPR10] proved completeness of FCC instead of F2CC; however, this directly implies completeness of
F2CC as FCC vcomp F2CC.
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assumption, that F is computationally UC feasible, implies that F′ is feasible contradicting the
results from [MPR10, Theorem 4].

The second implication (i.e., the proof that Statement 2 implies Statement 3) follows directly
by using Unruh’s quantum lifting theorem, whereas the third implication (i.e., the proof that State-
ment 3 implies Statement 4) follows from the fact that statistical feasibility implies computational
feasibility. In the remaining of this section we prove the last implication (i.e., the proof that State-
ment 4 implies Statement 1). In order to prove this implication we first prove that there exist
functionalities in U− which are not computationally quantum-UC feasible. Specifically, we prove
an extension of the (classical) impossibility of UC commitments [CF01] to the quantum-UC setting.
Notice that this claim was briefly stated previously in [MQR09] but with no proof. For completeness,
we give a proof in Appendix E which follows the structure of the classical impossibility proof.

Lemma 9. There exists no protocol in the plain model which computationally quantum-UC realizes
the commitment functionality FCOM.

We now prove the last implication which completes the proof of Theorem 8.

Claim 2. If F ∈ U− is computationally quantum-UC feasible then F is computationally (classical)
UC feasible.

Proof. Assume, towards contradiction, that F is not computationally (classical) UC feasible. Then,
Fact 2 implies that for some F′ ∈ {FOT,F2CC,FCOM,FXOR} : F′ vcstat F, which by Theorem 2, implies
that F is computationally quantum-UC complete. This, combined with the claim’s assumption
that F is computationally quantum-UC feasible, implies that every F ∈ U− is computationally
quantum-UC feasible contradicting the impossibility of FCOM.

5 Putting it Together

In this section we bring the pieces together and describe the cryptographic-complexity landscape
for U− in the quantum world. In the case of computational quantum-UC security, we can derive a
zero/one law in the flavor of [MPR10]. For statistical quantum-UC security we show that, roughly
speaking, every F ∈ U− is either statistically quantum-UC feasible, or F is statistically quantum-UC
complete, or FXOR statistically quantum-UC reduces to F.

5.1 Computational Security: A Zero/One Law

Our quantum lifting theorems for feasibility and completeness imply that all computational UC
complete (resp. UC feasible) functionalities in U− are also computational quantum-UC complete
(resp. quantum-UC feasible). Using this fact along with the classical zero/one law, one can derive a
zero-one law for the computational quantum-UC setting in a straight-forward manner. This proves
the following theorem :

Theorem 10 (A Computational Zero/One Law). Every functionality F ∈ U− is either computa-
tionally quantum-UC feasible or computationally quantum-UC complete.

As a straightforward corollary of the above theorem we can conclude that the quantum lifting
theorem for completeness can be made bi-directional in the computational setting. Theorem 2
already states that computational completeness of some F ∈ U− in the classical setting implies
computational completeness of F in the quantum setting. In the other direction, if F is quantumly-
UC complete, then Theorem 10 implies that it is not quantum-UC feasible, which implies (by
Theorem 8) that it is not (classically) UC feasible; hence, the computational (classical) zero/one law
implies that F is computationally (classically) UC complete. This proves the following:
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Corollary 11 (Quantum Bi-lifting of Computational Completeness). Let F ∈ U− be a functionality.
F is computationally UC complete under the semi-honest OT assumption shOT if and only if F
is computationally quantum-UC complete under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA.

5.2 Statistical Security: Three Classes

We next turn to the setting of statistical security. In the classical setting, the cryptographic-
complexity landscape is complicated, as, apart from the complete/feasible functionalities, there is a
partition of the set U− in clusters for which the exact relation is not known. In contrast we can show
a “[zero/xor/one]-law” in the statistical quantum-UC setting. In other words we can divide the class
U− into functionalities that are either complete, or feasible, or we can reduce FXOR to them. This
considerably simplifies the landscape of the classical statistical setting, as the hierarchy of function-
alities that we can reduce F2CC to collapses at the second level (i.e, to F2CC) which as it follows from
Lemma 6 is in fact complete in the quantum setting. This illustrates, as [Unr10] mentioned also,
that the inverse of the Unruh’s quantum lifting lemma is in general not true, which is formalized in
the following lemma:

Lemma 12. There exist classical well-formed infeasible functionalities F and F′ such that there
exist an F-hybrid quantum protocol which statistically quantum-UC securely realizes F′, but there
exists no F-hybrid (classical) protocol which statistically (classic) UC realizes F′.

Proof (sketch). For the cut-and-choose functionality F2CC, it is shown in [MPR09] that F2CC is not
statistically UC complete, which implies that there exists no F2CC-hybrid protocol which statistically
UC securely realizes the oblivious transfer functionality FOT. Indeed, the existence of such a protocol
together with the statistical UC completeness of FOT would imply statistical UC completeness of F2CC.
However, as shown in Lemma 6 there exists a quantum F2CC-hybrid protocol which statistically
quantum-UC securely realizes FOT.

The following theorem states the aforementioned zero/xor/one-law:

Theorem 13 (A [zero/xor/one]-law for the information-theoretic setting). Let F ∈ U−. Then
exactly one of the following statements holds: (1) F is quantum-UC feasible, (2) F is quantum-UC
complete, and (3) F is neither quantum-UC complete nor quantum-UC feasible and FXOR vqstat F.
Furthermore, for each of the three statements, there exists at least one F ∈ U− which satisfies it.

Proof (sketch). The proof proceeds in two steps: First (Claim 3) we show that either F is quantum-
UC feasible, or at least one of the following two statements holds: (1) F is quantum-UC complete
and (2) FXOR vqstat F. In a second step, (Claim 4) we show that FXOR is not UC complete. Be-
cause (1) FXOR is also not statistically quantum-UC feasible (otherwise, this would imply that it is
also computationally (classical) UC feasible contradicting the results of [MPR10].) and (2) statisti-
cally quantum-UC feasible functionalities are not statistically quantum-UC complete (as implied by
Lemma 9), we can deduce that there is at least one functionality that satisfies each case.

Claim 3. Either F is quantum-UC feasible, or at least one of the following two statements holds:
(1) F is quantum-UC complete and (2) FXOR vqstat F.

Proof. Fact 2 combined with Lemma 6 and the completeness of FCOM from [Unr10] imply that when
F is not feasible then FOT vqstat F or FXOR vqstat F. The statistical UC completeness of FOT
implies (Theorem 2) statistical quantum-UC completeness of FOT, hence, FOT vqstat F implies
that F is statistically quantum-UC complete. Furthermore, the feasibility quantum lifting theorem
(Theorem 8) implies that FOT and FXOR are not statistically quantum-UC feasible (as this would imply
that they are computationally (classical) UC feasible contradicting the results of [MPR10].)
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Claim 4. The functionality FXOR is not statistically quantum-UC complete.

Proof. The proof proceeds in two steps: In a first step we show that FXOR is statistically quantum-UC
equivalent10 to the simultaneous exchange functionality FEXCH which allows two parties each having
input one bit to fairly and securely exchange their inputs (for a detailed description we refer to
Appendix B.4). In a second step, we show that FEXCH is not quantum-UC complete, which, as FEXCH

is equivalent to FXOR, implies the FXOR is also not quantum-UC complete.

Step 1: One can classically implement FEXCH from FXOR as follows: Alice and Bob input their bits bA
and bB, respectively, into the FXOR functionality and obtain the output y. Alice outputs yA = y⊕ bA
and Bob outputs yB = y ⊕ bB. Similarly, one can classically implement FXOR from FEXCH as follows:
Alice and Bob input their bits bA and bB, respectively, into the FEXCH functionality and obtain their
respective outputs yA and yB; they both output y = yA ⊕ yB. Both implementations are trivially
statistically (in fact, even perfectly) UC secure in the classical stetting; hence, the quantum lifting
Theorem [Unr10] implies that there are also statistically quantum-UC secure reductions between
FEXCH and FXOR.
Step 2: For proving that FEXCH (hence also FXOR) is not statistically quantum-UC complete, it suffices
to prove that one cannot construct a quantumly secure commitment scheme assuming FEXCH (on top of
regular communication). This is an easy extension of the impossibility proof of quantum commitment
by Lo and Chau [LC97]: the key idea in [LC97] is that a dishonest committer (Alice) could purify her
operations and make sure at the end of the committing phase, the joint state with the receiver (Bob)
will be a pure state |Ψb

AB〉, where b is the bit Alice is supposed to commit. But the hiding property,
which we assume is perfect for simplicity, requires that trA(|Ψ0

AB〉〈Ψ0
AB|) = trA(|Ψ1

AB〉〈Ψ1
AB|) =: ρB.

This immediately implies that |Ψ0
AB〉 and |Ψ1

AB〉 are just two possible purifications of the same
ρB and by Uhlmann’s theorem, there exists a unitary UA operating on Alice’s system alone that
transforms |Ψb

AB〉 into |Ψ1−b
AB 〉. Thus Alice breaks binding completely. Here we use a generalization

by Winkler et al. [WTHR11], claiming that if the joint state is pure conditioned on the symmetric
classical information available to both Alice and Bob, then analogous transformation also exists.
Now observe that, given any quantum protocol with a classical fair-exchange channel FEXCH, the
classical information will always be symmetric to two parties, and a dishonest Alice can as well
purify her operations and apply the transformation, guaranteed by [WTHR11], to break the binding
property.

This completes the proof of the theorem.

To complete the picture in Figure 1 we need to show that not only FXOR is not complete, but the
whole “exchange-like hierarchy” from [MPR09] consists of incomplete primitives. This hierarchy is
a family of primitives, denoted by E , that correspond to simultaneously exchange channels (of the
type of FEXCH) for different input lengths. In other words, E consists of two-party functionalities
FEXCH

(`1,`2), where (`1, `2) ∈ N2, defined as follows: FEXCH
(`1,`2) takes from Alice a message xA ∈

{0, 1}`1 and from Bob a message xB ∈ {0, 1}`2 ; it returns to Alice xB and to Bob xA. Note that
all the primitives in this hierarchy are sufficient for implementing FXOR and, therefore, are not UC-
feasible. Additionally, it is straight-forward to verify that the proof of Claim 4 goes through even if
we replace FXOR by any of the primitives in E .

This proves the following:

Lemma 14. For any FEXCH
(`1,`2) ∈ E: FEXCH

(`1,`2) is neither statistically quantum-UC complete nor
statistically quantum-UC feasible.

10By this we mean that there exists a protocol statistically quantum-UC realize FXOR from FEXCH and vise versa.
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A Figures
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Figure 1: The feasibility/completeness landscape for the class of deterministic finite two-party func-
tionalities in the statistical quantum-UC setting. The set U− corresponds to the white area. The
solid lines represent separations between non-equivalent primitives which exist both in the quantum-
UC and in the classical-UC setting. The dotted lines represent separations that exist only in the
classical-UC setting. The three dots over 1XOR (resp. 2CC) represent the infinite hierarchy of XOR
(resp. CC) primitives which was proved by [MPR09, KMQ11]. Note that in the classical setting both
hierarchies are strict, i.e., lower primitives are separated from higher, but in the quantum setting
the CC hierarchy collapses at the second level, as 2CC is quantum-UC complete (Corollary 7).
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Figure 2: The feasibility/completeness landscape for the class of deterministic finite two-party func-
tionalities in the computational quantum-UC setting. The set U− corresponds to the white area.
The solid lines represent separations between non-equivalent primitives. The picture is the same in
the quantum-UC and in the classical-UC setting.
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B Universal Composition (UC) Framework

We give a very brief introduction to the UC model in classical setting and in quantum setting, and
refer readers to [Can05] and [Unr10] respectively for more details.

B.1 Classical UC Model

Machines. The basic entities involved in the UC model are players P1, . . . , Pn where n is in
polynomial of security parameter κ, an adversary A, and an environment Z. Each entity is modeled
as a interactive Turing machine (ITM), where Z could have an additional non-uniform string as
advice. Each Pi has identity i assigned to it, while A and Z have special identities idA := adv and
idZ := env.

Protocol Execution. A protocol specifies the programs for each Pi, which we denote as π =
(π1, . . . , πn). The execution of a protocol is coordinated by the environment Z. It starts by preparing
inputs to all players, who then run their respective programs on the inputs and exchange messages of
the form (idsender, idreceiver, msg). A can corrupt an arbitrary set of players and control them later
on. In particular, A can instruct a corrupted player sending messages to another player and also read
messages that are sent to the corrupted players. During the course of execution, the environment Z
also interacts with A in an arbitrary way. In the end, Z receives outputs from all the other players
and generates one bit output. We use EXEC[Z,A, π] denote the distribution of the environment Z’s
(single-bit) output when executing protocol π with A and the Pi’s.

Ideal Functionality and Dummy Protocol. Ideal functionality F is a trusted party, modeled by
an ITM again, that perfectly implements the desired multi-party computational task. We consider
an “dummy protocol”, denoted PF , where each party has direct communication with F, who accom-
plishes the desired task according to the messages received from the players. The execution of PF

with environment Z and an adversary, usually called the simulator S, is defined analogous as above,
in particular, S monitors the communication between corrupted parties and the ideal functionality
F. Similarly, we denote Z’s output distribution as EXEC[Z,S, PF ].

Definition 15. (Classical UC-secure Emulation) We say π (classically) UC-emulates π′ if for any
adversary A, there exists a simulator S such that for all environments Z,

EXEC[Z,A, π] ≈ EXEC[Z,S, π′]11

If A and Z are computationally bounded, we call it computational UC-security; if A and Z are
computationally unbounded, we call it statistical UC-security. In both cases, we require the running
time S is polynomial in that of A. We call this property Polynomial Simulation.

As a typical case, Let F be a well-formed two party functionality. We say π (classically) UC-
emulates realizes F if for all adversary A, there exists a simulator S such that for all environments
Z, EXEC[Z,A, π] ≈ EXEC[Z,S, PF ].

UC-secure protocols admit a general composition property, demonstrated in the following uni-
versal composition theorem.

Theorem 16 (UC Composition Theorem [Can05]). Let π, π′ and σ be n-party protocols. Assume
that π UC-emulates π′. Then σπ UC-emulates σπ

′
.

11We say two binary distributions X and Y are indistinguishable, denoted X ≈ Y, if |Pr(Xn = 1)− Pr(Yn = 1)| ≤
negl(n).
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B.2 Quantum UC Model

Next we proceed to a high-level description of Unruh’s quantum Universal-Composable model.

Quantum Machine. In the quantum UC model, all players are modeled as quantum machines.
A quantum machine is a sequence of quantum circuits {Mκ}κ∈N, for each security parameter κ.
Mκ is a completely positive trace preserving operator on space Hstate ⊗ Hclass ⊗ Hquant, where
Hstate represents the internal workspace of Mκ and Hclass and Hquant represent the spaces for
communication, where for convenience we divide the messages into classical and quantum parts.
We allow a non-uniform quantum advice12 to the machine of the environment Z, while all other
machines are uniformly generated.

Protocol Execution. In contrast to the communication policy in classical UC model, we consider
a network N which contains the space HN := Hclass ⊗ Hquant ⊗i Hstate

i . Namely, each machine
maintains individual internal state space, but the communication space is shared among all . We
assume Hclass contains the message (idsender, idreceiver, msg) which specifies the sender and receiver
of the current message, and the receiver then process the quantum state on Hquant. Note that this
communication model implicitly ensures authentication. In a protocol execution, Z is activated first,
and each round one player applies the operation defined by its machine Mκ on Hclass ⊗ Hquant ⊗
Hstate. In the end Z generates one-bit output. Denote EXEC[Z,A,Π] the output distribution of Z.

Remark 17 (Secure Communication). In [Unr10] secure channels are implicitly assumed. However,
whenever we want to make the assumption of such channels explicit we shall denote them as QSEC.
Note that as in the quantum setting secure (i.e., authenticated and private) channels can be ob-
tained from (only) authenticated channels [BB84, BCG+02]. Hence, one can use QAUTH and QSEC,
interchangeably.

Ideal Functionality. All functionality we consider in this work is classical, i.e., the inputs and
outputs are classical, and its program can be implemented by a classical Turing machine. Here in
quantum UC model, ideal functionality F is still modeled as a quantum machine for consistency, but
it only applies classical operations. Namely, it measures any input message in the computational basis
to get an classical bit-string, and implements the operations specified by the classical computational
task.

Definition 18. (Quantum UC-secure Emulation) We say Π quantum-UC-emulates Π′ if for any
quantum adversary A, there exists a (quantum) simulator S such that for all quantum environments
Z,

EXEC[Z,A,Π] ≈ EXEC[Z,S,Π′]
If A and Z are computationally bounded, we call it (quantum) computational UC-security; if A and
Z are computationally unbounded, we call it (quantum) statistical UC-security. In both cases, we
require the running time S is polynomial in that of A. We call this property Polynomial Simulation.

As a typical case, Let F be a well-formed two party functionality. We say Π quantum-UC-
emulates F if for all quantum adversary A, there exists a (quantum) simulator S such that for all
quantum environments Z, EXEC[Z,A,Π] ≈ EXEC[Z,S, PF ].

Quantum UC-secure protocols also admit general composition:

Theorem 19 (Quantum UC Composition Theorem [Unr10, Theorem 11]). Let Π,Π′ and Σ be
quantum-polynomial-time protocols. Assume that Π quantum UC-emulates Π′. Then ΣΠ quantum
UC-emulates ΣΠ′.

12Unruh’s model only allows classical advice, but we tend to take the most general model. It is easy to justify that
almost all results remain unchanged, including the composition theorem. See [HSS11, Section 5] for more discussion.

17



B.3 Feasible Functionalities

Definition 20 (Classical Feasibility [PR08]). We say a functionality F is classically feasible if there
exists a classic protocol π that UC-realizes F in the plain UC model where basic communication such
as secure and authenticated channels are available.

Definition 21 (Quantum Feasibility). We say a functionality F is quantumly feasible if there exists
a classical or quantum protocol Π that quantum-UC-securely realizes F in the quantum plain model
where basic communication such as secure and authenticated quantum channels are available.

B.4 Deterministic Finite Functionalities

For completeness, we give a formal description for the class of functionalities we consider in this
work.

Definition 22. (Deterministic Finite SFE.) Let F := {fκ}κ∈N be a two-party SFE functionality:
fκ : Dκ × D′κ → Rκ × R′κ, κ ∈ N, where Dκ, D

′
κ, Rκ and R′κ are all subsets in {0, 1}κ. We call F

finite deterministic if for all except finite number of κ ∈ N, there exist polynomials p(·) and q(·) such
that

1. |Dκ|+ |D′κ| ≤ p(κ);

2. fκ is computable on a deterministic Turing machine in time at most q(κ).

A reactive functionality F can be described as a sequence of SFEs F1 ◦F2 ◦ · · · ◦Fm which might
share a joint state.We call F deterministic finite reactive, if each of these Fi’s is deterministic and
finite.

Finally, we denote U := {F : F is a deterministic finite SFE or reactive functionality} be the
collection of finite deterministic two-party functionalities. Then define U− = {F|F ∈ U∧(F2CC vcstat

F ∨ FCC 6vcstat F)}.

B.5 Ideal Functionalities

We introduce several classical two-party functionalities used in the paper.

Secure Function Evaluation, FSFE. A secure function evaluation (SFE) functionality FSFE is
specified by a pair of functions (fA, fB) over a finite input domain X × Y ; Please see a formal
definition of the functionality below:

Functionality FSFE
The functionality interacts with players Alice and Bob, and is parameterized with functions (fA, fB)
over a finite input domain X × Y .

• Upon receiving input x ∈ X from Alice and input y ∈ Y from Bob, return delayed output
fA(x, y) to Alice and delayed output fB(x, y) to Bob.

We say that the functionality is symmetric SFE (SSFE) if fA = fB.

Oblivious transfer FOT. There are many equivalent variants of oblivious transfer13. In this paper
we use the standard 1-out-of-2 oblivious bit transfer, defined as follows:

13There is an interesting story about the invention of OT. Arguably, Wiesner was the first to propose (in disguised
form) 1-out-of-2 OT in his notion of “quantum multiplexing” channel, which would allow one party to send two mes-
sages to messages to another in a way that the receiver can choose which message to process and the other one will be
destroyed automatically. Michael Rabin independently introduced his original concept about ten years later [Rab81],
which is more widely recognized by the theoretical computer science community and found great significance is cryp-
tography. See [Bra06] for a vivid story.
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Functionality FOT
The functionality is parameterized by players Alice and Bob.

• Upon receiving input (x0, x1) ∈ {0, 1}2 from Alice, and input b ∈ {0, 1} from Bob, return
delayed output xb to Bob, and delayed output (receipt) to Alice.

Commitment FCOM. FCOM is a reactive functionality including two stages, the committing stage and
then an opening stage. Below we give a formal definition. FCOM was shown impossible to achieve in
classic UC plain model by Canetti and Fischlin [CF01]. In this paper, we extend their impossibility
result into quantum setting, and show FCOM cannot be securely realized in quantum UC plain model.

Functionality FCOM
The functionality is parameterized by committer Alice and receiver Bob.

• Upon receiving input (commit, b) from Alice, where b ∈ {0, 1}, internally record such b and
send delayed output (receipt) to Bob.

• Upon receiving input (open) from Alice, if a bit b has been internally recorded, send delayed
output (open, b) to Bob.

XOR FXOR. Alice and Bob input bits bA and bB, respectively. They both receive the output
y = bA ⊕ bB.

Functionality FXOR
The functionality is parameterized by players Alice and Bob.

• Upon receiving input bA ∈ {0, 1} from Alice, and input bB ∈ {0, 1} from Bob, y = bA ⊕ bB
and return delayed output y to both Alice and Bob.

Cut-and-Choose. First define 1-bit Cut-and-Choose functionality F1CC. Bob inputs a bit b, an
Alice inputs a selection bit sA; informally, sA indicates whether or not Alice wishes to learn b. Bob
receives output sA and Alice receives output b · sA.

Functionality F1CC
The functionality is parameterized by players Alice and Bob.

• Upon receiving input sA ∈ {0, 1} from Alice, and input b ∈ {0, 1} from Bob; return delayed
output sA to Bob; return delayed output b to Alice if sA = 1; otherwise return delayed output
⊥ to Alice if sA = 0.

Similarly, we can define 2-bit Cut-and-Choose functionality F2CC as follows:
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Functionality F2CC
The functionality is parameterized by players Alice and Bob.

• Upon receiving input sA ∈ {0, 1} from Alice, and input a 2-bit string b ∈ {0, 1}2 from Bob;
return delayed output sA to Bob; return delayed output b to Alice if sA = 1; otherwise return
delayed output ⊥ to Alice if sA = 0.

Coin Tossing FCOIN. Blum [Blu82] first showed how to flip a coin over phone line. A formal
definition of coin tossing functionality can be found as follows:

Functionality FCOIN
The functionality is parameterized by players Alice and Bob.

• Upon receiving input (request) from both Alice and Bob, randomly choose a fair coin r ∈ {0, 1}
and send delayed output r to both Alice and Bob.

Secure channel and authenticated channel. In [Can05], generic communication channel, secure
message transmission functionality FSMT is presented. Here we present secure channel FSEC and
authenticated channel FAUTH, which can be viewed as special instantiations of FSMT.

Functionality FSEC
The functionality is parameterized by players Alice and Bob, and a length function l : {0, 1}∗ →
{0, 1}∗.

• Upon receiving an input (send, x) from party Alice, send (sent, l(x)) to the adversary, and
issue a private delayed output (sent, x) for Bob.

Functionality FAUTH
The functionality is parameterized by Alice and Bob.

• Upon receiving an input (send, x) from Alice, issue a public delayed output (sent, x) to Bob.

Simultaneous exchange channel. This is a secure and fair bidirectional (bit-)channel, i.e., Alice
and Bob can send each other bits which are delivered in a fair-manner, i.e., any of the parties receives
the the other party’s bit only after inputting his own bit into the channel.

Functionality FEXCH

The functionality is parameterized by Alice and Bob.

• Upon receiving input bA ∈ {0, 1} from Alice, and input bB ∈ {0, 1} from Bob, return delayed
outputs yA = bB to Alice and yB = bA to Bob.
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C Complementary Material For Section 3

C.1 Computational Completeness of FCOIN [HSS11]

Here we state the result, which is implicit but immediate from [HSS11], that under proper compu-
tational assumptions, FCOIN suffices to realize all well-formed functionalities. We first specify the
computational assumptions needed in [HSS11].

Assumption 23. There exists a classical pseudorandom generator secure against quantum distin-
guishers.

Assumption 24. There exists a dense classical public-key cryptosystem that is IND-CPA (chosen-
plaintext attack) secure against quantum distinguishers. A public-key cryptosystem is dense if a
valid public key is indistinguishable in quantum poly-time from a uniformly random string of the
same length.

Theorem 25 ([HSS11, Theorem 4]). Let F be a well-formed two-party functionality. Under As-
sumptions 23 and 24, there exists a nontrivial classical protocol that UC-emulates F in the FZK-hybrid
model in the presence of polynomial-time malicious, static quantum adversaries.

Theorem 26 ([HSS11, Prop.8, Part 1]). Under Assumption 23, there is a constant-round protocol
πFZK that quantum UC-emulates FCOIN in the FZK-hybrid model.

Then by Unruh’s quantum universal composition theorem, Theorem 19, we get

Theorem 27. Let F be a well-formed two-party functionality. Under Assumptions 23 and 24, there
exists a nontrivial classical protocol that UC-emulates F in the FCOIN-hybrid model in the presence
of polynomial-time malicious, static quantum adversaries.

C.2 Proof of Lemma 5

Proof (sketch). In [HSS11] it was shown that under the assumptions of the lemma there exists a
quantum protocol which statically computationally quantum-UC realizes any well-formed function-
ality in the FCOIN-hybrid model. Hence to prove the lemma it suffices the to provide an FXOR-hybrid
protocol which computationally quantum-UC realizes FCOIN (the statement of the lemma follows
then by the quantum universal composition theorem [Unr10]. To this direction we observe that
the following trivial (classical) FXOR-hybrid protocol πFXOR statistically (classic) UC realizes FCOIN:
Each party chooses a random bit and sends it to FXOR; the output of every party is the value they
receive from XOR. It is straight-forward to verify that πFXOR statistically UC realizes the coin-flip
functionality FCOIN. By using the quantum lifting theorem, we deduce that πFXOR also statistically
quantum-UC realizes FCOIN, which in terms implies that πFXOR computationally quantum-UC realizes
FCOIN.

21



D Security Proof of Protocol ΠQOT

Notation

• Alphabet Σ = {0, 1}

• Hamming weight wt(·): wt(x) := number of 1s in x ∈ {0, 1}∗

• Relative Hamming weight w(·): w(x) := wt(x)
|x| , where |x| is the length of x.

• Index set I ⊆ [n], where [n] := {1, . . . , n}

• Complement of a string t ∈ {0, 1}n: t̄ = t̄1 . . . t̄n, i.e., bit-wise flip.

• Restriction of x ∈ {0, 1}n to a substring w.r.t. an index set I ⊆ [n]: x|I := xi1 . . . xik , with
ij ∈ I

• Restriction of x ∈ {0, 1}n to a substring w.r.t. a string t ∈ {0, 1}n: xt := xi1 . . . xik , with
tij = 1.

• Computational basis +: identified with 0.

• Hadamard basis ×: identified with 1.

• Trace distance D(·, ·): D(ρ, σ) := 1
2tr
√

(ρ− σ)†(ρ− σ)

We show how to construct an ideal-world simulator S for an adversary corrupting Alice or Bob
respectively in the quantum UC model.

D.1 Corrupted Alice

Intuitively, security against corrupted Alice requires that Alice should not be able to figure out Bob’s
chosen bit c. This is conceivable, noting that Alice does not learn anything about the bases Bob used
for the unchecked qubits. This is because at these positions, Alice inputs bi = 0 to F2CC and hence
always gets output ⊥ from F2CC. Therefore, from Alice’s view, the index sets I0 and I1 received
from Bob will be a random partition. Formally, we need to construct a simulator S in the ideal
world who produces a transcript indistinguishable from that in the real protocol, without knowing
the chosen bit of (honest) Bob. One main task S needs to accomplish is extracting two secret strings
(s0, s1) from corrupted Alice, so that S could feed them to the external FOT functionality. The idea
is that S can “cheat” in the checking phase by only measuring the qubits that the adversary asks to.
S can do so without being caught , and thus not disturbing the transcript (also adversary’s view),
because in the ideal world, F2CC is simulated internally by S and he thus sees the checking bit bi
that corrupted Alice sends to F2CC and can decide afterwards whether it is necessary to respond to
Alice honestly. As a result, once S receives the bases θ̂A after the checking phase, he can measure
the remaining qubits in θ̂A and thus know all of x̂A. This allows him to recover both s0 and s1 from
mi = si ⊕ f(x̂A|Ii).

Simulating corrupted Alice. Given adversary A that corrupts Alice, we construct a simulator S
as follows.

Proposition 28. For any unbounded Z, EXEC[Z,A,ΠQOT] = EXEC[Z,S,FOT], and S runs in poly-
nomial of the running time of A.

The proof is straightforward and follows the very same lines as in the standard protocol for
quantum OT from commitment. We omit the formal proof.
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Simulator S (when Alice is corrupted)
Inputs: Environment Z generates inputs: chosen bit c is given to honest (dummy) Bob; and input
to A is passed through S.

1. (Initialization) S behaves as an honest Bob does in the real protocol ΠQOT.

2. (Checking)

2.1 For i = 1, . . . n the following steps are executed sequentially:

(a) S internally simulates F2CC, so when A inputs bi to F2CC, S records it.

(b) If bi = 0, S sends ⊥ to A.

(c) If bi = 1, S measures the ith qubit in a randomly chosen basis θ̃Bi ∈R {+,×} and
send both θ̃Bi and the outcome x̃Bi to A.

2.2 S aborts if any time A aborts or S sees more that 3n/5 i with bi = 1.

3. (Partition Index Set) Let θ̂A be the basis received from A. S measures the remaining qubits
under θA, and obtains x̂B. S then randomly partitions the indices into I0 and I1 and sends
them to A.

4. (Secret Transferring) Once receiving (f,m0,m1), S computes s′0 := m0 ⊕ f(x̂B|I0) and
s′1 := m1⊕ f(x̂B|I1). S gives FOT the pair (s′0, s

′
1). Outputs whatever A outputs in the end.

Figure 3: Simulating corrupted Alice.

D.2 Corrupted Bob

The case that Bob is corrupted is much more challenging. Basically, we want to prevent a malicious
Bob from learning s1−c in addition to his chosen secret sc. We know that s1−c is masked by
f(x̂A|I1−c), to ensure that Bob learns nothing about s1−c, it thus suffices to show that f(x̂A|I1−c)
is close to uniformly random, or equivalently, due to privacy amplification (cf. [Ren05, RK05]) that
x̂A|I1−c has sufficient min-entropy even conditioned on Bob’s view in the protocol.

In order to derive such a claim, we first describe an variant14 ΠEPR
QOT of ΠQOT, which is based on

EPR-pairs and is equivalent to ΠQOT from Bob’s perspective. It then allows us to adapt a sampling
framework proposed by Bouman and Fehr [BF10] to argue about a lower bound on the min-entropy
we are interested in. The high-level approach is:

• Interpret the checking phase in ΠEPR
QOT as a sampling game (to be defined shortly) over qubits.

• Analysis of the sampling game will imply that if Bob passes the checking phase, then the real
joint state of Alice and Bob after the checking phase in the protocol will be negligibly close to
an ideal state.

• Finally we argue that if one measured Alice’s system in the ideal state and gets a string x, then
no matter how Bob partitions the index sets (I0, I1), there exists a c such that high amount of
min-entropy is preserved in x|I1−c .

Thus we see that if Bob indeed passes the checking phase in the real protocol, f(x̂A|I1−c) will be
statistically close to uniform, except with negligible probability.

14This is a standard proof trick in the literature used in proving BB84-type quantum cryptographic protocols, dating
back to [SP00].
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However, the sampling framework in [BF10] is not immediately applicable in our setting because
it seems to be specific to a static sampling scenario, where the classical string or quantum state
is fixed before the sampling starts. Our checking phase, using F2CC in sequential, resembles an
adaptive-type sampling, where data are coming in an on-line fashion, and in particular could be
generated adaptively based on the information about which previous data have been chosen as
samples. To cope with this, we generalize their framework to capture an adaptive sampling setting,
and subsumes most of their results as a special case. This extension may be useful independently
in other applications. is an upper bound on the classical error probability of the sampling strategy
buried in our checking phase of the protocol ΠQOT

15.
We now describe the EPR-based protocol ΠEPR

QOT in Fig. 4; note that Bob’s actions are as in ΠQOT

and thus omitted in the description of ΠEPR
QOT. Also recall that θ̂A denotes the restriction of θ̃A to

those positions with bi = 0.

Protocol ΠEPR
QOT

Inputs: Alice gets input two `-bit strings s0 and s1, Bob gets a bit c.

1. (Initialization) Alice generates n pairs of EPR |Ψ〉⊗n = [ 1√
2
(|00〉+ |11〉)]⊗n, and sends Bob

n halves of these EPR pairs. Alice chooses θ̃A ∈ {+,×}n at random, but doesn’t measure
her shares of the EPR pairs.

2. (Checking)

2.1 For i = 1, . . . n the following steps are executed sequentially:

(a) Alice chooses a bit bi ∈R {0, 1} uniformly at random.

(b) Alice and Bob call F2CC with inputs bi and (x̃Bi , θ̃
B
i ), respectively.

2.2 For every i ∈ {1, . . . , n} with bi = 1, Alice measures her qubit of the i-th EPR pair in
basis θ̃Bi (not θ̃Ai ) to obtain bit x̃Ai . If x̃Ai 6= x̃Bi for some i with bi = 1 and θ̃Ai = θ̃Bi , then
Alice aborts. If not, then Alice continues and measures her remaining qubits under θ̂A

to obtain x̂A.

3. (Partition Index Set) Same as ΠQOT.

4. (Secret Transferring) Same as ΠQOT.

Figure 4: Protocol ΠEPR
QOT for OT

Claim 5. ΠEPR
QOT and ΠQOT are equivalent from Bob’s view, i.e., ΠQOT is quantum-UC secure against

malicious Bob if and only if ΠEPR
QOT is.

Proof. Note that if Alice were to measure her EPR halves in random bases θ̃A right after step 1,
it’s equivalent to encoding a random n-bit string into n qubits under random bases, and that is
what happens in ΠQOT. But Alice’s measuring operations commute with Bob’s operations up to step
2.2, since they operate on different spaces. Therefore, from Bob’s perspective there is no effect of
postponing Alice’s measurements to step 2.2. Then the only difference left is that Alice measures
all those where bi = 1 and θ̃Ai 6= θ̃Bi under θ̃Bi , whereas in ΠQOT she measures them in θ̃Ai . However,

15Actually, the analysis will be applied on an equivalent (From Bob’s perspective) protocol ΠEPR
QOT. See the proof

below.
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these qubits are not used anyway, and they are discarded thereafter. Hence Bob will not notice any
difference.

As a result, it suffices that we show how to simulate an arbitrary adversary A that corrupts Bob
in ΠEPR

QOT, which comes next.

Simulating corrupted Bob. Given adversary A in ΠEPR
QOT that corrupts Bob, we construct a simu-

lator S as follows.

Simulator S (when Bob is corrupted)
Inputs: Environment Z generates inputs: s0 and s1 are given to honest (dummy) Alice; and input
to A is passed through S.

1. (Initialization) S initializes an execution with corrupted Bob, just as in ΠEPR
QOT.

2. (Checking) S does the checking procedure as in ΠEPR
QOT. Note that in the present situation,

S simulates each F2CC internally, and thus he sees all (x̃Bi , θ̃
B
i ) that corrupted Bob sent to

F2CC.

3. (Partition Index Set) S expects to receive (I0, I1) from A.

4. (Secret Transferring) Alice sends (s0, s1) to the ideal functionality FOT. S sets c ∈ {0, 1}
to be such that wt(θ̂A|Ic ⊕ θ̂B|Ic) ≤ wt(θ̂A|I1−c ⊕ θ̂B|I1−c). (That is, the Hamming distance

between θ̂A and θ̂B, restricted to I1−c, is larger.) Send c to the (external) FOT and obtain
sc. S then sends f ∈R F, mc := sc ⊕ f(xA|Ic) and m1−c ∈R {0, 1}` to A. Output whatever
A outputs in the end.

Figure 5: Simulating corrupted Bob in ΠEPR
QOT

Proposition 29. For any unbounded Z and A corrupting Bob, EXEC[Z,A,ΠEPR
QOT] ≈ EXEC[Z,S,FOT],

and S runs in polynomial of the running time of A.

Proof. Observe that the simulation of S differs from the real-world execution only in the last secret
transferring phase: in both cases mc = sc ⊕ f(x̂A|Ic), but m1−c = s1−c ⊕ f(x̂A|I1−c) in ΠEPR

QOT, while
during simulation S sets m1−c ∈R {0, 1}`. However, as we will argue formally in Theorem 30, after
checking phase, Alice’s system A restricted to I1−c has high min-entropy even conditioned on the
adversary’s view. Hence f will effectively extract ` uniformly random bits.

Theorem 30. If ` = λn, where λ is a constant strictly smaller than 1
8 , then the following holds.

Let M0 and M1 be the two message systems generated by Alice in ΠEPR
QOT. Then, there exists c ∈ {0, 1}

such that M1−c is close to uniformly random and independent of Bob’s view:

D(ρM1−cMcB,
1

2`
I⊗ σMcB) ≤ negl(n) .

Proving Theorem 30 is the most technically challenging part of our paper. In the following
sections, we will develop the technical tools and give a proof.
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D.2.1 An Adaptive Sampling Framework

In this section, we introduce an adaptive version of the (classical and quantum) sampling framework
of [BF10]. This will give us the right tool to prove security of our OT protocol based on the F2CC

functionality.
In the (non-adaptive) sampling framework from [BF10], the goal is to estimate the Hamming

distance of a fixed but unknown string x (over the binary or some other finite alphabet) to a fixed
and known reference string x̂ by sampling and “looking” at a few randomly chosen positions of x.16

Actually, for technical reasons, the goal is to estimate the Hamming distance of the remainders of
the strings x and x̂, when the sampled positions are removed. For later convenience, it is useful to
think of x and x̂ being chosen by a party Bob in an arbitrary way, and the sampling being performed
by some other party Alice. In the quantum version, the string x is replaced by an n-qubit (or qudit)
state A, and the sampling is done by sampling and measuring a few randomly chosen positions of
A, using a fixed reference basis θ̂. As shown in [BF10], if the observed sample is close to x̂ (in
the sampled positions), then the state of the remaining qubits is close to a superposition of strings
(encoded into quantum states) with small Hamming distance to x̂ (on the unsampled positions).
Furthermore, the error is related to the error probability of the corresponding classical sampling
procedure.

We extend these results to an adaptive setting, where x and x̂ are chosen in an adaptive way:
position by position, Bob fixes xi and x̂i and Alice announces whether she chooses the position i as
part of the sample or not. Hence, Bob can choose xi and x̂i depending on which previous positions
Alice chose. For the quantum version, Bob still has to fix the state in advance, but he can choose θ̂
and x̂ adaptively, position by position.

We now make this formal, and we show that the results of [BF10] still hold in this adaptive
setting. Let n ∈ N be a positive integer and Σ be a finite alphabet. A sampling strategy is specified
by the distribution according to which Alice chooses the sample, and the (possibly randomized)
function that she uses to process the sample.

Definition 31. (Sampling Strategy). A sampling strategy Ψ consists of a triple (PT , PS , f), where
PT is a distribution over {0, 1}n, PS is a distribution over an arbitrary finite set S, and f is a
function f : Σ∗ × {0, 1}n × S → R.

This definition coincides with the definition in [BF10]; the adaptivity comes into the picture
when defining the error probability, which captures how well a sampling strategy performs when
applied to an adaptive or a non-adaptive setting. Although our results hold more generally, in the
remainder we restrict to the binary setting where Σ = {0, 1}.

Informally, a sampling strategy Ψ = (PT , PS , f) is to be interpreted in that Alice chooses t ∈
{0, 1}n according to PT , “looks” at the positions xi of x with ti = 1, and computes f(xt ⊕ x̂t, t, s)
as estimate for the relative Hamming weight w(xt̄ ⊕ x̂t̄), where s is chosen according to PS , and xt
stands for the restriction of x to those positions with ti = 1 (and correspondingly for x̂t, xt̄ etc.). A
canonical example sampling strategy is as follows.

Example 1. PT is the uniform distribution over {0, 1}n, S is empty, and f(xt⊕ x̂t, t) = w(xt⊕ x̂t),
i.e., Alice samples a random subset and computes the relative Hamming distance within the sample.

A less canonical example, but one that is important for us, is as follows.

Example 2. As above, Alice samples a random subset, but then she computes her estimate for
w(xt̄ ⊕ x̂t̄) as f(xt ⊕ x̂t, t, s) = w(xs ⊕ x̂s) for a random s ∈ {0, 1}n subject to ti = 0 ⇒ si = 0. In
other words, she only uses a random subset of the random sample to compute the estimate.

16Without loss of generality, x̂ is set to the all-0 string in [BF10].
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In order to define the error probability of a given sampling strategy Ψ = (PT , PS , f) in the
adaptive setting, we consider the following adaptive sampling game, given in Figure 7, that is
associated to Ψ. The game should be understood in that Bob may choose each pair (xi, x̂i) in an
arbitrary and adaptive way, depending on what he has seen so far, and Alice only “looks” at those
positions where ti = 1, and computes her estimate based on those positions.

Adaptive Sampling Game G

1. Alice chooses t ∈ {0, 1}n according to PT , and s ∈ S according to PS .

2. For i = 1, . . . n the following steps are executed sequentially:

(a) Bob generates and sends to Alice xi, x̂i ∈ Σn.

(b) Alice sends ti to Bob.

3. Alice outputs µt,s := f(xt ⊕ x̂t, t, s).

Figure 6: Adaptive sampling game.

We point out once more that the difference to the non-adaptive sampling game considered in
[BF10] is that in the non-adaptive case, Bob has to provide all xi and x̂i’s in advance, before (or
without) learning t. Additionally, [BF10] assumes without loss of generality that x̂i = 0; this, we
could do here as well, but here we do not.

Intuitively, a sampling strategy Ψ is “good” if in the above adaptive sampling game, µt,s =
f(xt⊕ x̂t, t, s) provides a good estimate of w(xt̄⊕ x̂t̄), the relative Hamming distance between xt̄ and
x̂t̄. We now make this precise. For a given sampling strategy Ψ, and for any x̂ ∈ Σn, t ∈ {0, 1}n,
s ∈ S and δ > 0, we define the set

Bδ
t,s,x̂(Ψ) := {x ∈ Σn : |w(xt̄ ⊕ x̂t̄)− f(xt ⊕ x̂t, t, s)| < δ} .

Bδ
t,s,x̂(Ψ) consists of all the strings x for which Alice’s estimate is δ-close to being accurate in case

she samples t and s and Bob provides the reference string x̂. If Ψ is clear from the context, we may
simply write Bδ

t,s,x̂.
Note that for any fixed strategy B for Bob in the adaptive sampling game, the random variables

T, S,X and X̂ that describe the choices of t, s, x and x̂ in the adaptive sampling game are well
defined, and so is the random variable Bδ

T,S,X̂
(Ψ), which takes on sets as values. The adaptive error

probability of a sampling strategy Ψ is defined as the maximal probability that X lies outside the
set Bδ

T,S,X̂
, i.e., that Alice’s estimate is far off, maximized over the possible strategies of Bob.

Definition 32 (Classical adaptive error probability). The classical adaptive probability of a sam-
pling strategy Ψ = (PT , PS , f) is defined as

ε̄δc(Ψ) := max
B

Pr[X /∈ Bδ
T,S,X̂

(Ψ)]

parameterized by 0 < δ < 1, where the max is over all strategies B for Bob.

Note that the randomness is over the choices of T and S, and the (adaptive) choices of X and X̂,
specified by the strategy B.

We now extend our study to sampling of quantum states. We define a quantum sampling game
as follows.

Following [BF10], we want to understand what can be concluded on the state of the unmeasured

qubits from the estimate µt,s. For this, for a given strategy B for Bob, let |φt,s,x̂,θ̂AE 〉 be the state of
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Quantum Adaptive Sampling Game Gq

1. Bob prepares an arbitrary state |φAE〉 ∈ HA ⊗ HE , where A consists of n qubits and E
is arbitrary, and sends A to Alice. Alice chooses t ∈ {0, 1}n according to PT , and s ∈ S
according to PS .

2. For i = 1, . . . n the following steps are executed sequentially:

(a) Bob generates (possibly by processing E) θ̂i, x̂i ∈ Σ, and sends them to Alice.

(b) Alice sends ti to Bob.

3. For every i with ti = 1, Alice measures the i-th qubit of A in basis θ̂i to obtain xi, and she
outputs µt,s := f(xt ⊕ x̂t, t, s).

Figure 7: Quantum adaptive sampling game.

the joint system AE right before step 3. Also taking into account the randomized classical data
t, s, x̂, θ̂, we can describe the joint state before step 3 by means of the density matrix

ρTSX̂Θ̂AE =
∑
t,s

PTSX̂Θ̂AE(t, s, x̂, θ̂)|t, s, x̂, θ̂〉〈t, s, x̂, θ̂| ⊗ |φt,s,x̂,θ̂AE 〉〈φt,s,x̂,θ̂AE |

Note that in the non-adaptive setting [BF10], X̂ and Θ̂ are fixed (without loss of generality to
all 0’s, both), and systems TS and AE are independent. Here, due to the adaptive sampling game,
X̂ and Θ̂ may be randomized as well, and there may be some dependency between TS and AE.

We compare the above real state ρTSX̂Θ̂AE with an ideal state, which is a state of the form

ρ̃TSX̂Θ̂AE =
∑
t,s

PTSX̂Θ̂AE(t, s, x̂, θ̂)|t, s, x̂, θ̂〉〈t, s, x̂, θ̂| ⊗ |φ̃t,s,x̂,θ̂AE 〉〈φ̃t,s,x̂,θ̂AE |

with
|φ̃t,s,x̂,θ̂AE 〉 ∈ spanθ̂(B

δ
t,s,x̂)⊗HE

for all t, s, x̂ and θ̂, where

spanθ̂(B
δ
t,s,x̂) := span{|x〉θ̂ : x ∈ Bδ

t,s,x̂} = span{|x〉θ̂ : |w(xt̄ ⊕ x̂t̄)− f(xt ⊕ x̂t, t, s)| < δ} ,
and where |x〉θ means each bit xi in x is encoded in basis θi.

Essentially by definition of the ideal state, if step 3 of the quantum adaptive sampling game is
done on the ideal rather than the real state, then the resulting state ρ̃TSX̂Θ̂XTATE

after Alice has

measured the qubits with ti = 1 satisfies

ρ̃ATE|T=t,S=s,X̂=x̂,Θ̂=θ̂,XT =xt
= |φ̃t,s,x̂,θ̂,xtAt̄E

〉〈φ̃t,s,x̂,θ̂,xtAt̄E
|

with |φ̃At̄E〉 (where we leave the dependency of the state on t, s etc. implicit) of the form

|φ̃At̄E〉 =
∑
y

αy|y〉θ̂|φ̃
y
E〉

where the sum is over all y ∈ {0, 1}wt(t̄) with relative Hamming distance to x̂t̄ at most δ-away from
µs,t = f(xt ⊕ x̂t, t, s). In other words, it is a superposition over a “small” number of sets if µs,t is
close or equal to 0 (as will be the case in the analysis of ΠQOT)
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Definition 33 (Quantum adaptive error probability). The quantum adaptive error probability of
a sampling strategy Ψ = (PT , PS , f) is defined as

ε̄δq(Ψ) = max
Bq

min
ρ̃TSX̂Θ̂AE

D(ρTSX̂Θ̂AE , ρ̃TSX̂Θ̂AE)

parameterized by 0 < δ < 1. The max is over all possible strategies Bq for Bob, and the minimum is
over all ideal states of the form as ρ̃TSX̂Θ̂AE.

By definition, if the quantum error probability is small then the resulting quantum state of Gq
will behave, except with probability at most ε̄δq, as an ideal state in which the unmeasured part of
system A is in a superposition over a small set of orthogonal states.

Similar to the non-adaptive case of [BF10], we show the following relation between ε̄δq and ε̄δc, for
any sampling strategy.

Proposition 34. For any sampling strategy Ψ and for any 0 < δ < 1, ε̄δq(Ψ) ≤
√
ε̄δc(Ψ).

The proof makes use of the following simple fact. For any strategy Bq for Bob in the quantum
sampling game Gq, there exists an associated strategy B for Bob in the classical sampling game G,

where Bob chooses |φAE〉 and the θ̂i and x̂i’s as in Bq, but he keeps the qubits A, and instead of

sending θ̂i in step i, he measures the i-th qubit of A in basis θ̂i and sends the measurement outcome
xi to Alice (along with x̂i).

Proof. We show that for any strategy for Bob resulting in the (real) state ρTSX̂Θ̂AE , there exists a

suitable ideal state ρ̃TSX̂Θ̂AE with D(ρTSX̂Θ̂AE , ρ̃TSX̂Θ̂AE) ≤
√
ε̄δc. We construct ρ̃TSX̂Θ̂AE as re-

quired, where the |φ̃t,s,x̂,θ̂AE 〉’s are defined by the following decomposition into orthogonal components:

|φt,s,x̂,θ̂AE 〉 = Πt,s,x̂,θ̂|φ
t,s,x̂,θ̂
AE 〉+ Π⊥

t,s,x̂,θ̂
|φt,s,x̂,θ̂⊥AE 〉 = 〈φ̃t,s,x̂,θ̂AE |φt,s,x̂,θ̂AE 〉|φ̃t,s,x̂,θ̂AE 〉+ 〈φ̃t,s,x̂,θ̂⊥AE |φt,s,x̂,θ̂AE 〉|φ̃t,s,x̂,θ̂⊥AE 〉,

where
Πt,s,x̂,θ̂ =

∑
x∈Bε

t,s,x̂

|x〉〈x|θ̂ ⊗ I and Π⊥
t,s,x̂,θ̂

=
∑

x 6∈Bε
t,s,x̂

|x〉〈x|θ̂ ⊗ I

are the orthogonal projections into spanθ̂(B
ε
t,s,x̂)⊗HE and the orthogonal complement spanθ̂(B

ε
t,s,x̂)⊥⊗

HE , and |φ̃t,s,x̂,θ̂AE 〉 and |φ̃t,s,x̂,θ̂⊥AE 〉 are the renormalized projections of |φt,s,x̂,θ̂AE 〉.
Consider the random variable X that describes the measurement outcome if Alice was to measure

all qubits of A in step 2. We stress that she only measures the ones pointed to by t, but we may
still consider what happens if she measures all of them. Formally, we set

Pr[X = x|T = t, S = s, X̂ = x̂, Θ̂ = θ̂] = 〈φt,s,x̂,θ̂AE |(|x〉〈x|θ̂ ⊗ I)|φt,s,x̂,θ̂AE 〉 .
It holds that Pr[X /∈ Bδ

T,S,X̂
] ≤ ε̄δc. This follows from the fact that it has no impact on the joint

distribution of these random variables who computes the qubits A, and if we let Bob measure the
qubits then this results in the associated strategy B for the classical sampling game, for which the
above holds by definition of the error probability ε̄δc. By this observation, it is sufficient to relate
D(ρTSX̂Θ̂AE , ρ̃TSX̂Θ̂AE) to Pr[X /∈ Bδ

T,S,X̂
], which we do below. First, using elementary properties
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of the trace distance, we obtain that

D
(
ρTSX̂Θ̂AE , ρ̃TSX̂Θ̂AE

)
=
∑
t,s,x̂,θ̂

PTSX̂Θ̂AE(t, s, x̂, θ̂)D
(
|φt,s,x̂,θ̂AE 〉〈φt,s,x̂,θ̂AE |, |φ̃t,s,x̂,θ̂AE 〉〈φ̃t,s,x̂,θ̂AE |

)
=
∑
t,s,x̂,θ̂

PTSX̂Θ̂AE(t, s, x̂, θ̂)

√
1− |〈φ̃t,s,x̂,θ̂AE |ϕt,s,x̂,θ̂AE 〉|2

=
∑
t,s,x̂,θ̂

PTSX̂Θ̂AE(t, s, x̂, θ̂)|〈φ̃t,s,x̂,θ̂⊥AE |φt,s,x̂,θ̂AE 〉|

≤
√√√√∑

t,s,x̂,θ̂

PTSX̂Θ̂AE(t, s, x̂, θ̂)|〈φ̃t,s,x̂,θ̂⊥AE |φt,s,x̂,θ̂AE 〉|2 ,

where the last inequality follows from Jensen’s inequality. But since

|〈φ̃t,s,x̂,θ̂⊥AE |φt,s,x̂,θ̂AE 〉|2 = 〈φt,s,x̂,θ̂AE |Π⊥
t,s,x̂,θ̂

|φt,s,x̂,θ̂AE 〉 =
∑

x 6∈Bε
t,s,x̂

〈φt,s,x̂,θ̂AE |(|x〉〈x|θ̂ ⊗ I)|φt,s,x̂,θ̂AE 〉

= Pr[X /∈ Bδ
t,s,x̂|T = t, S = s, X̂ = x̂, Θ̂ = θ̂] ,

it follows that the term in the square root equals Pr[X /∈ Bδ
T,S,X̂

]. This proves the claim.

D.2.2 Completing the Security Proof of ΠQOT

Proof of Theorem 30. Consider the joint state |φAE〉 right before the checking phase of ΠEPR
QOT, con-

sisting of the n EPR pairs plus potentially some additional quantum system on Bob’s side. The
crucial observation now is that the checking phase of ΠEPR

QOT follows exactly the lines of the adaptive

quantum sampling game Gq in that Bob specifies θ̂i = θ̃Bi and x̂i = x̃Bi sequentially and adaptively,
depending on the previous selection bits ti = bi’s, which determine whether Alice uses position i for
checking or not.

It follows that for any constant δ > 0, the real state, after Alice has measured the selected qubits,
is ε-close to an ideal state that is a superposition over a small number of basis vectors with respect
to the basis θ̂B, in the sense as discussed in the previous section, with ε ≤ ε̄q(Ψ) ≤

√
ε̄δc(Ψ), where

Ψ is the sampling strategy from Example 2.
The remainder of the proof now goes along the lines of the commitment-based proof of QOT

in [BF10]. We give it here for completeness. The resulting (ideal) state being a superposition over
a small number of basis vectors with respect to the basis θ̂B still holds after Bob announces the
sets I0 and I1, and it also still holds if we view the qubits AIc as part of the adversarial system E,
where c ∈ {0, 1} is such that wt(θ̂A|Ic ⊕ θ̂B|Ic) ≤ wt(θ̂A|I1−c ⊕ θ̂B|I1−c). Note that (by Hoeffding’s

inequality) except with probability negl(n), the number of positions i ∈ I1−c with θ̂Ai 6= θ̂Bi is at
least 1

2(1
4 − δ)n.

It follows from Fact 4 below that (for the ideal state)

Hmin(X̂1−c|AIcE) ≥ 1

2
(
1

4
− δ)n− h(δ)n ,

except with negligible probability, where X̂1−c = X̂A|I1−c and the left hand side should be under-

stood as conditioned on all the common classical information, θ̂A, θ̂B etc. By basic properties of
the min-entropy, the same bound also applies to Hmin(X̂1−c|X̂cE). It then follows from privacy
amplification [Ren05, RK05] that if ` ≤ 1

2(1
4 − 2δ)n − h(δ)n (and concretely in our protocol, we

set ` = λn with λ < 1
8), then the extracted string S1−c is negl(n)-close to uniform given Xc (and

hence also given Sc), the quantum system E, and all common classical information. Collecting all
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the “errors” encountered on the way, the distance to uniform becomes negl(n) +
√
ε̄δc(Ψ). Below we

analyze ε̄δc(Ψ) and show that it is negl(n) as well; this then proves the claim.

Fact 4 ([BF10, Corollary 1]). Let |φAE〉 be a superposition on states of the form |x〉θ′ |φE〉 with
|w(x)| ≤ δ and δ < 1/2, and let the random variable X be the outcome of measuring A in basis
θ ∈ {+,×}n. Then

Hmin(X|E) ≥ wt(θ ⊕ θ′)− h(δ)n.
where h(p) := −p log p− (1− p) log(1− p) is the Shannon binary entropy.

D.2.3 Analyzing the classical adaptive error probability

We now derive an upper bound on the classical error probability ε̄δc of the sampling strategy from
Example 2.

Proposition 35. For Ψ = (PT , PS , f) from Example 2, and for any δ > 0, it holds that ε̄δc(Ψ) ≤
6 exp(−δ2n/144).

Proof. WLOG, we assume x̂i = 0 in the sampling game G and speak of (relative) Hamming weight
instead of (relative) Hamming distance. We use capital letters Ti, Si and Xi to represent these
random variables in the game, where the randomness comes from Alice playing according to (PT , PS)
and arbitrary (possibly randomized) strategy B of Bob. Let Di := (1 − Ti)Xi − 2TiSiXi for i =
1, . . . , n. Define M0 := 0 and Mk :=

∑k
i=1Di, k = 1 . . . n. Notice that

E[Mk|M0, . . . ,Mk−1]−Mk−1 = E[Mk−1 +Dk|M0, . . . ,Mk−1]−Mk−1

= E[Dk|M0, . . . ,Mk−1] = (E[1− Tk]− 2E[TkSk]) · E[Xk|M0, . . . ,Mk−1] = 0

using the fact that Tk and Sk are independent of M0, . . . ,Mk−1 and Xk, and E[TkSk] = 1
4 ,E[Tk] = 1

2 .
Hence {Mk}nk=0 forms a Martingale sequence. Also, by construction, Mn = wt(XT )−2wt(XS). Next
observe that |Mk −Mk−1| = |Dk| ≤ |(1− Tk)Xk|+ 2|TkSkXk| ≤ 2, therefore we can apply Azuma’s
inequality and obtain that, for any constant β > 0,

Pr[|Mn| ≥ βn] ≤ 2 exp(
−β2n2

2
∑n

k=1 22
) = 2 exp(−β2n/8)

Now we analyze Pr[|w(XT ) − w(XS)| ≥ δ], which will give us an upper bound for ε̄δc(Ψ). For
some constant ε > 0, define the event E := [wt(T ) ∈ (1

2 ± ε)n ∧ wt(S) ∈ (1
4 ± ε)n], i.e., the event

that wt(T ) and wt(S) are concentrated around their respective expectations. Applying Hoeffding’s
inequality immediately tells us Pr[E] ≥ 1−4 exp(−2ε2n). Conditioned on this event E, it holds that

|2wt(XT )− n · w(XT )| = |2wt(T )w(XT )− n · w(XT )| ≤ |2wt(T )− n| · |w(XT )| ≤ 2εn

and, similarly, that |4wt(XS)− n ·w(XS)| ≤ 4εn. Hence, conditioned on E and |Mn| < βn, it holds
that

|w(XT )− w(XS)| ≤ 1

n
|2wt(XT )− 4wt(XS)|+ 6ε ≤ 2β + 6ε .

It follows that

Pr[|w(XT )− w(XS)| ≥ 2β + 6ε] ≤ Pr[¬E ∨ |Mn| ≥ βn] ≤ 4 exp(−2ε2n) + 2 exp(−β2n/8) .

Finally, picking17 ε = δ/12 and β = δ/4, we conclude that

ε̄δc(Ψ) ≤ Pr[|w(XT )− w(XS)| ≥ δ] ≤ 6 exp(−δ2n/144)

For completeness, we include some of the technical facts we used in this section.

17Our purpose here is simplifying the expression, and it is not necessarily tight though.
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Fact 5 (Hoeffding’s inequality). Let x ∈ {0, 1}n be a bit string with relative Hamming weight µ :=
w(x). Let X1, . . . , Xk be sampling k bits from x independently without replacement. Then for any
δ > 0, X := 1

k

∑
iXi satisfies

Pr[|X − µ| > δ] ≤ 2 exp(−2δ2k)

Fact 6 (Azuma’s inequality). Let Xj : j = 0, . . . , n be a martingale and |Xj −Xj−1| < cj, then

Pr[|Xn −X0| ≥ t] ≤ 2 exp(
−t2

2
∑n

j=1 c
2
j

)

Fact 7 (Privacy Amplification [RK05, Theorem 1]). Let ρXE be a hybrid state with classical X with
the form ρXE =

∑
x∈X PX |x〉〈x| ⊗ ρxE. Let F be a family of universal hash functions with range

{0, 1}`, and F be chosen randomly from F. Then K = F (X) satisfies

D(ρKFE ,
1

2`
IK ⊗ ρFE) ≤ 1

2
· 2−

1
2

(Hmin(X|E)−`)
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E Impossibility of Quantum UC Commitment

Canetti and Fischlin [CF01] show the impossibility of realizing FCOM in the plain model achieving
computationally classical UC security18. Roughly speaking, if a protocol π UC-realizes FCOM, then
an ideal world simulator S should be able to be constructed and satisfy the following properties:

• When the committer is corrupted (i.e., controlled by the adversary), S must be able to “extract”
the committed value once the commitment phase is done. That is, S has to come up with
a value x such that the committer will almost never be able to successfully decommit to any
x′ 6= x. This is so since in the ideal process S has to explicitly provide FCOM with a committed
value.

• When the receiver is uncorrupted, S has to be able to generate a simulated commitment c that
looks like a real commitment and yet can be opened to any value, to be determined at the
time of opening. This is so since S has to provide adversary A and environment Z with the
simulated commitment c before the value committed to is known. All this needs to be done
without rewinding the environment Z.

Intuitively, these requirements look impossible to meet: A simulator that has the above abilities can
be used by a dishonest receiver to “extract” the committed value from an honest committer. This
intuition can indeed be formalized to show that in the plain model it is impossible to UC-realize
FCOM by any two-party protocol. This idea extends to the quantum UC setting naturally, and we
can show the following theorem.

Lemma 36 (restate Lemma 9). There exists no protocol in the plain model which computationally
quantum-UC realizes the commitment functionality FCOM.

Proof. Suppose, for contradiction, that there exists (possibly quantum) protocol Π that quantum-
UC-emulates FCOM. Assume at the end of the commitment phase, receiver acknowledges the commit-
ter by a receipt message. Consider an execution of π by an adversarial committer AC and an honest
receiver R, and WLOG we assume that the adversary merely forwards the communication messages
between the environment ZC and the honest receiver R (Note that this adversarial behavior is im-
plementable by a quantum adversary as the adversary does not need to apply any transformation on
the state and merely forwards it). Here ZC privately chooses a random bit b at the beginning and
then runs the protocol of the honest committer based on input bit b and R’s answers, and then in
the name of the committer sends the generated messages to R. Once ZC received a receipt message
from R at the end of committing stage, it starts running the honest opening protocol in the name
of the committer, and receives bit b′ from R at the end of opening stage. Finally, ZC outputs 1
iff b′ = b. We know that if both committer and receiver are honest in an execution of π, then in
the opening phase the receiver always outputs the bit committed to by the committer, i.e., b′ = b
always holds. By assumption that π quantum-UC-emulates FCOM, there should exist an ideal world
simulator S that interacts with FCOM and generates a view for ZC that is indistinguishable from a
real execution with π. We note that the view could consist of quantum messages and/or classic
messages. In particular, S must make sure b = b′ almost always, where b′ is the bit that S sends to
FCOM. This means that the simulator S must be able to generate the correct bit b before the opening
phase.

Next based on this S, we are able to construct another environment, ZR, and a corrupted receiver
AR, such that ZR successfully distinguishes between an execution of π and an interaction with FCOM

18Note that, statistically, commitment is impossible from scratch even in the stand-alone model [May97, LC97,
May01].
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for any simulator SR. ZR and AR proceed as follows: ZR chooses a random bit b and hands b
as input to the honest committer C; AR simply runs S and forwards all interaction between the
committer and S (again this strategy is implementable by a quantum adversary as the adversary
does not need to apply any transformation on the state); once AR receives a bit b′, it is passed to
ZR who then outputs 1 iff. b = b′.

Note that S can extract the committed bit b almost always, without rewinding or any additional
information. In contrast, when ZR interacts with FCOM, the SR’s view is independent of b, and thus
b = b′ with probability exactly one half. Therefore, ZR can tell the difference between its interaction
with the real world or with FCOM and ideal world for any SR.
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Protocol ΠCOM
QOT

Parameters: Integers n,m > n, `, a family F of universal hash functions.

Parties: The sender Alice and the recipient Bob.

Inputs: Alice gets input two `-bit strings s0 and s1, Bob gets a bit c.

1. Alice chooses x̃A ∈ {0, 1}m and θ̃A ∈ {+,×}m and sends |x̃A〉θ̃A to Bob.

2. Bob receives the state |Ψ〉 sent by the sender. Then Bob chooses θ̃B ∈ {+,×}m and
measures the qubits of |Ψ〉 in the bases θ̃B. Call the result x̃B.

3. For each i, Bob commits to θ̃Bi and x̃Bi using one instance of FCOM each.

4. Alice chooses a set T ⊆ {1, . . . ,m} of size m− n and sends T to Bob.

5. Bob opens the commitments of θ̃Bi and x̃Bi for all i ∈ T .

6. Alice checks x̃Ai = x̃Bi and θ̃Ai = θ̃Bi for all i with i ∈ T . If this test fails, Alice aborts.

7. Let x̂A be the n-bit string resulting from removing the bits at positions i ∈ T from x̃A.
Define θ̂A, x̂B, θ̂B analogously.

8. Alice sends θA to Bob.

9. Bob sets Ic := {i : θ̂Ai = θ̂Bi } and I1−c := {i : θ̂Ai 6= θ̂Bi }. Then Bob sends (I0, I1) to Alice.

10. Alice picks a function f ∈R F; for i = 0, 1: Alice computes mi := si ⊕ f(x′i) , where x′i is
the n-bit string that consists of x̂A|Ii padded with zeros, and sends (f,m0,m1) to Bob.

11. Bob outputs s := mc ⊕ f(x′B), where x′B is the n-bit string that consists of x̂B|Ic padded
with zeros.

Figure 8: Protocol ΠCOM
QOT for 1-out-of-2 OT in the {FCOM}-hybrid world.
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