Deriving Szemerédi's regularity lemma for graphs from the compactness of the graphon space

Notes for our seminar — Lex Schrijver

Abstract. We give a derivation of Szemerédi's regularity lemma for graphs from the compactness of the graphon space (Lovász and Szegedy [2] — see Lovász [1]).

Let W be the space of symmetric measurable functions $[0,1]^2 \to [0,1]$. Let Π be the collection of partitions of [0,1] into finitely many measurable sets, each of positive measure. For any $P \in \Pi$, let L_P be subspace of W spanned by the functions $\chi^{C \times D}$ with $C, D \in P$. For any $w \in W$, let w_P be the orthogonal projection of w onto L_P . A partition P is balanced if all classes have the same measure. All norms are L_2 -norms.

Lemma 1. Let $P, Q \in \Pi$, with P balanced. Then for each $\varepsilon > 0$ there exists an $R \in \Pi$ with $Q \leq R$ and $|R| \leq (1+2|P|^2/\varepsilon)^{|P|}$, such that $||x_Q - x_R|| \leq \varepsilon ||x||$ for each $x \in L_P$.

Proof. Let p := |P| an $\delta := \varepsilon/2p^2$. For $C \in P$ and $A \in Q$ set $\alpha_{C,A} := \mu(C \cap A)/\mu(A)$, and let $\alpha'_{C,A}$ be obtained by rounding $\alpha_{C,A}$ down to an integer multiple of δ .

Let R be the partition with $Q \leq R$ given as follows. Sets $A, B \in Q$ are in the same class of R if and only if $\alpha'_{C,A} = \alpha'_{C,B}$ for each $C \in P$. As [0,1] contains at most $1 + 1/\delta$ integer multiples of δ , $|R| \leq (1 + 1/\delta)^p$.

Consider any $x \in L_P$. So x can be written as $x = \sum_{C,D \in P} \lambda_{C,D} \chi^{C \times D}$. Hence

(1)
$$x_Q = \sum_{C,D\in P} \lambda_{C,D}(\chi^{C\times D})_Q = \sum_{C,D\in P} \lambda_{C,D} \sum_{A,B\in Q} \alpha_{C,A} \alpha_{D,B} \chi^{A\times B}$$

Define

(2)
$$w := \sum_{C,D \in P} \lambda_{C,D} \sum_{A,B \in Q} \alpha'_{C,A} \alpha'_{D,B} \chi^{A \times B}.$$

As w has the same value on $A \times B$ as on $A' \times B'$ whenever $\alpha'_{C,A} = \alpha'_{C,A'}$ and $\alpha'_{C,B} = \alpha'_{C,B'}$ for all $C \in P$, we know that w belongs to L_R . Moreover, using Cauchy-Schwarz and $|\alpha_{C,A}\alpha_{D,B} - \alpha'_{C,A}\alpha'_{D,B}| \leq |(\alpha_{C,A} - \alpha'_{C,A})\alpha_{D,B}| + |\alpha'_{C,A}(\alpha_{D,B} - \alpha'_{D,B})| \leq 2\delta$,

(3)
$$\|x_Q - w\|^2 = \sum_{A,B \in Q} (\sum_{C,D \in P} \lambda_{C,D} (\alpha_{C,A} \alpha_{D,B} - \alpha'_{C,A} \alpha'_{D,B}))^2 \mu(A) \mu(B) \le \sum_{A,B \in Q} p^2 \sum_{C,D \in P} \lambda_{C,D}^2 (2\delta)^2 \mu(A) \mu(B) = 4p^2 \delta^2 \sum_{C,D \in P} \lambda_{C,D}^2 = 4p^4 \delta^2 \sum_{C,D \in P} \lambda_{C,D}^2 \mu(C) \mu(D) = 4p^4 \delta^2 \|x\|^2 = \varepsilon^2 \|x\|^2.$$

Call a partition P of a finite set V ε -balanced if $P \setminus P'$ is balanced for some $P' \subseteq P$ with

 $|\bigcup P'| \le \varepsilon |V|.$

Lemma 2. Let $\varepsilon > 0$. Then each partition P of a finite set V has an ε -balanced refinement Q with $|Q| \leq (1 + 1/\varepsilon)|P|$.

Proof. Define $t := \varepsilon |V|/|P|$. Split each class of P into classes, each of size $\lceil t \rceil$, except for at most one of size less than t. This gives Q. Then $|Q| \le |P| + |V|/t = (1 + 1/\varepsilon)|P|$. Moreover, the union of the classes of Q of size less than t has size at most $|P|t = \varepsilon |V|$. So Q is ε -balanced.

Given a graph G = (V, E), a *rectangle* is a set $R = X \times Y$ with $X, Y \subseteq V$. If $R \neq \emptyset$, let d(R) := e(R)/|R|, where e(R) is the number of adjacent pairs of vertices in R.

Theorem 1 (Szemerédi's regularity lemma). For each $\varepsilon > 0$ and $p \in \mathbb{N}$ there exists $k_{p,\varepsilon} \in \mathbb{N}$ such that for each graph G = (V, E) and each partition P of V with |P| = p there is an ε -balanced refinement Q of P with $|Q| \leq k_{p,\varepsilon}$ and

(4)
$$\sum_{\substack{A,B\in Q}} \max_{\substack{\emptyset\neq R\subseteq A\times B\\ R \text{ rectangle}}} |R| \cdot |d(R) - d(A\times B)| < \varepsilon |V|^2.$$

Proof. Fix $\varepsilon > 0$ and $p \in \mathbb{N}$. Define $g(t) := p(1 + 1/\varepsilon)(1 + 8t^2/\varepsilon)^t$ for each $t \in \mathbb{N}$. For each $w \in W$, let t_w be the minimum size of a balanced partition $T \in \Pi$ such that $||w - w_T|| < \varepsilon/4$. By the compactness of the graphon space there exists a finite $F \subseteq W$ such that for each $w \in W$ there is an $f \in F$ and a measure-preserving measurable permutation ϕ of [0, 1] such that for all measurable $X, Y \subseteq [0, 1]$:

(5)
$$|(w - f^{\phi})(X \times Y)| < \varepsilon/4g(t_w)^2.$$

Let $k_{p,\varepsilon} := \max\{g(t_f) \mid f \in F\}$. We show that $k_{p,\varepsilon}$ is as required.

Let G = ([n], E) be a graph and let w be the element of W corresponding to G. Let N be the partition of [0, 1] into n equal intervals.

By the above there exists an $f \in F$ and a measure-preserving measurable permutation ϕ of [0,1] such that (5) holds. Set $u := f^{\phi}$. So $t := t_u = t_f$. Hence there is a balanced partition $T \in \Pi$ with |T| = t and $||u - u_T|| < \varepsilon/4$. Define $x := u_T$.

By Lemma 1, there is a partition $U \in \Pi$ with $U \ge N$ such that $|U| \le (1 + 8t^2/\varepsilon)^t$ and $||x_N - x_U|| \le \varepsilon/4$. Let $S := P \land U$. So $|S| \le |P||U| \le p(1 + 8t^2/\varepsilon)^t$. By Lemma 2, there is an ε -balanced refinement Q of S with $N \le Q \le S$ and $|Q| \le (1 + 1/\varepsilon)|S| \le g(t) \le k_{p,\varepsilon}$. We show that this Q gives the partition of the theorem.

For each $A, B \in Q$, choose $R = X \times Y \subseteq A \times B$, where X and Y are unions of classes of N such that $|(w - w_Q)(R)|$ is maximized. Let \mathcal{R} be the collection of these chosen R. By (5), $|(w - u)(R)| < \varepsilon/4g(t)^2$ for all $R \in \mathcal{R}$, and hence

(6)
$$\sum_{R \in \mathcal{R}} |(w-u)(R)| < |\mathcal{R}|\varepsilon/4g(t)^2 \le \varepsilon/4.$$

Since $w_Q - u_Q$ is constant on $A \times B$, we also have for any $R \in \mathcal{R}$ with $R \subseteq A \times B$:

(7)
$$|(w_Q - u_Q)(R)| \le |(w_Q - u_Q)(A \times B)| = |(w - u)(A \times B)| \le \varepsilon/4g(t)^2.$$

Hence we obtain, similarly to (6), $\sum_{R \in \mathcal{R}} |(w_Q - u_Q)(R)| < \varepsilon/4.$

Finally, as $u(R) = u_N(R)$ for all $R \in \mathcal{R}$ and as $u_Q = (u_N)_Q$ is the nearest point on L_Q nearest to u_N , while $x_U \in L_U \subseteq L_Q$, with Cauchy-Schwarz we get (as $\|\sum_{R \in \mathcal{R}} \pm \chi^R\| \leq 1$)

(8)
$$\sum_{R \in \mathcal{R}} |(u - u_Q)(R)| = \sum_{R \in \mathcal{R}} |(u_N - u_Q)(R)| \le ||u_N - u_Q|| \le ||u_N - x_U|| \le ||u_N - x_U|| \le ||u - x|| + ||x_N - x_U|| < \varepsilon/2.$$

Hence $\sum_{R \in \mathcal{R}} |(w - w_Q)(R)| < \varepsilon$. For the graph G it means (4).

To interpret (4), for $A, B \in Q$, let $m_{A,B}$ denote the maximum described in (4). Let Q' be such that $Q \setminus Q'$ is balanced and $|\bigcup Q'| \leq \varepsilon |V|$. Set $Q'' := Q \setminus Q'$, and let Z be the collection of pairs $(A, B) \in Q'' \times Q''$ with $m_{A,B} \geq \sqrt{\varepsilon} |A| |B|$. Then (4) implies

(9)
$$\sum_{(A,B)\in Z} |A||B| \le \sum_{(A,B)\in Z} \varepsilon^{-1/2} m_{A,B} \le \sqrt{\varepsilon} |V|^2.$$

Moreover, as $|\bigcup Q'| < \varepsilon |V|$,

(10)
$$\sum_{A,B\in Q''} |A||B| \ge \sum_{A,B\in Q} |A||B| - 2\varepsilon |V|^2 = (1-2\varepsilon)|V|^2.$$

Hence, assuming $\varepsilon < 1/4$, $|Z| \leq \sqrt{\varepsilon}(1-2\varepsilon)^{-1}|Q''|^2 < 2\sqrt{\varepsilon}|Q''|^2$. For each $(A,B) \in (Q'' \times Q'') \setminus Z$ one has $m_{A,B} < \sqrt{\varepsilon}|A||B|$, implying that for each rectangle $R \subseteq A \times B$ with $|R|/|A \times B| \geq \sqrt[4]{\varepsilon}$ one has $|d(R) - d(A \times B)| < \sqrt[4]{\varepsilon}$. In other words, $A \times B$ is $\sqrt[4]{\varepsilon}$ -regular.

References

- L. Lovász, Large Graphs, Graph Homomorphisms and Graph Limits, American Mathematical Society, Providence, R.I., to appear.
- [2] L. Lovász, B. Szegedy, Limits of dense graph sequences, Journal of Combinatorial Theory, Series B 96 (2006) 933–957.