Deriving Szemerédi's regularity lemma for graphs from the compactness of the graphon space

Notes for our seminar - Lex Schrijver

Abstract

We give a derivation of Szemerédi's regularity lemma for graphs from the compactness of the graphon space (Lovász and Szegedy [2] - see Lovász [1]).

Let W be the space of symmetric measurable functions $[0,1]^{2} \rightarrow[0,1]$. Let Π be the collection of partitions of $[0,1]$ into finitely many measurable sets, each of positive measure. For any $P \in \Pi$, let L_{P} be subspace of W spanned by the functions $\chi^{C \times D}$ with $C, D \in P$. For any $w \in W$, let w_{P} be the orthogonal projection of w onto L_{P}. A partition P is balanced if all classes have the same measure. All norms are L_{2}-norms.

Lemma 1. Let $P, Q \in \Pi$, with P balanced. Then for each $\varepsilon>0$ there exists an $R \in \Pi$ with $Q \leq R$ and $|R| \leq\left(1+2|P|^{2} / \varepsilon\right)^{|P|}$, such that $\left\|x_{Q}-x_{R}\right\| \leq \varepsilon\|x\|$ for each $x \in L_{P}$.
Proof. Let $p:=|P|$ an $\delta:=\varepsilon / 2 p^{2}$. For $C \in P$ and $A \in Q$ set $\alpha_{C, A}:=\mu(C \cap A) / \mu(A)$, and let $\alpha_{C, A}^{\prime}$ be obtained by rounding $\alpha_{C, A}$ down to an integer multiple of δ.

Let R be the partition with $Q \leq R$ given as follows. Sets $A, B \in Q$ are in the same class of R if and only if $\alpha_{C, A}^{\prime}=\alpha_{C, B}^{\prime}$ for each $C \in P$. As $[0,1]$ contains at most $1+1 / \delta$ integer multiples of $\delta,|R| \leq(1+1 / \delta)^{p}$.

Consider any $x \in L_{P}$. So x can be written as $x=\sum_{C, D \in P} \lambda_{C, D} \chi^{C \times D}$. Hence

$$
\begin{equation*}
x_{Q}=\sum_{C, D \in P} \lambda_{C, D}\left(\chi^{C \times D}\right)_{Q}=\sum_{C, D \in P} \lambda_{C, D} \sum_{A, B \in Q} \alpha_{C, A} \alpha_{D, B} \chi^{A \times B} . \tag{1}
\end{equation*}
$$

Define

$$
\begin{equation*}
w:=\sum_{C, D \in P} \lambda_{C, D} \sum_{A, B \in Q} \alpha_{C, A}^{\prime} \alpha_{D, B}^{\prime} \chi^{A \times B} . \tag{2}
\end{equation*}
$$

As w has the same value on $A \times B$ as on $A^{\prime} \times B^{\prime}$ whenever $\alpha_{C, A}^{\prime}=\alpha_{C, A^{\prime}}^{\prime}$ and $\alpha_{C, B}^{\prime}=\alpha_{C, B^{\prime}}^{\prime}$ for all $C \in P$, we know that w belongs to L_{R}. Moreover, using Cauchy-Schwarz and $\left|\alpha_{C, A} \alpha_{D, B}-\alpha_{C, A}^{\prime} \alpha_{D, B}^{\prime}\right| \leq\left|\left(\alpha_{C, A}-\alpha_{C, A}^{\prime}\right) \alpha_{D, B}\right|+\left|\alpha_{C, A}^{\prime}\left(\alpha_{D, B}-\alpha_{D, B}^{\prime}\right)\right| \leq 2 \delta$,

$$
\begin{align*}
& \left\|x_{Q}-w\right\|^{2}=\sum_{A, B \in Q}\left(\sum_{C, D \in P} \lambda_{C, D}\left(\alpha_{C, A} \alpha_{D, B}-\alpha_{C, A}^{\prime} \alpha_{D, B}^{\prime}\right)\right)^{2} \mu(A) \mu(B) \leq \tag{3}\\
& \sum_{A, B \in Q} p^{2} \sum_{C, D \in P} \lambda_{C, D}^{2}(2 \delta)^{2} \mu(A) \mu(B)=4 p^{2} \delta^{2} \sum_{C, D \in P} \lambda_{C, D}^{2}= \\
& 4 p^{4} \delta^{2} \sum_{C, D \in P} \lambda_{C, D}^{2} \mu(C) \mu(D)=4 p^{4} \delta^{2}\|x\|^{2}=\varepsilon^{2}\|x\|^{2} .
\end{align*}
$$

Call a partition P of a finite set $V \varepsilon$-balanced if $P \backslash P^{\prime}$ is balanced for some $P^{\prime} \subseteq P$ with
$\left|\bigcup P^{\prime}\right| \leq \varepsilon|V|$.
Lemma 2. Let $\varepsilon>0$. Then each partition P of a finite set V has an ε-balanced refinement Q with $|Q| \leq(1+1 / \varepsilon)|P|$.

Proof. Define $t:=\varepsilon|V| /|P|$. Split each class of P into classes, each of size $\lceil t\rceil$, except for at most one of size less than t. This gives Q. Then $|Q| \leq|P|+|V| / t=(1+1 / \varepsilon)|P|$. Moreover, the union of the classes of Q of size less than t has size at most $|P| t=\varepsilon|V|$. So Q is ε-balanced.

Given a graph $G=(V, E)$, a rectangle is a set $R=X \times Y$ with $X, Y \subseteq V$. If $R \neq \emptyset$, let $d(R):=e(R) /|R|$, where $e(R)$ is the number of adjacent pairs of vertices in R.

Theorem 1 (Szemerédi's regularity lemma). For each $\varepsilon>0$ and $p \in \mathbb{N}$ there exists $k_{p, \varepsilon} \in \mathbb{N}$ such that for each graph $G=(V, E)$ and each partition P of V with $|P|=p$ there is an ε-balanced refinement Q of P with $|Q| \leq k_{p, \varepsilon}$ and

$$
\begin{equation*}
\sum_{A, B \in Q} \max _{\substack{0 \neq R \subseteq A \times B \\ R \text { rectangle }}}|R| \cdot|d(R)-d(A \times B)|<\varepsilon|V|^{2} . \tag{4}
\end{equation*}
$$

Proof. Fix $\varepsilon>0$ and $p \in \mathbb{N}$. Define $g(t):=p(1+1 / \varepsilon)\left(1+8 t^{2} / \varepsilon\right)^{t}$ for each $t \in \mathbb{N}$. For each $w \in W$, let t_{w} be the minimum size of a balanced partition $T \in \Pi$ such that $\left\|w-w_{T}\right\|<\varepsilon / 4$. By the compactness of the graphon space there exists a finite $F \subseteq W$ such that for each $w \in W$ there is an $f \in F$ and a measure-preserving measurable permutation ϕ of $[0,1]$ such that for all measurable $X, Y \subseteq[0,1]$:

$$
\begin{equation*}
\left|\left(w-f^{\phi}\right)(X \times Y)\right|<\varepsilon / 4 g\left(t_{w}\right)^{2} . \tag{5}
\end{equation*}
$$

Let $k_{p, \varepsilon}:=\max \left\{g\left(t_{f}\right) \mid f \in F\right\}$. We show that $k_{p, \varepsilon}$ is as required.
Let $G=([n], E)$ be a graph and let w be the element of W corresponding to G. Let N be the partition of $[0,1]$ into n equal intervals.

By the above there exists an $f \in F$ and a measure-preserving measurable permutation ϕ of $[0,1]$ such that (5) holds. Set $u:=f^{\phi}$. So $t:=t_{u}=t_{f}$. Hence there is a balanced partition $T \in \Pi$ with $|T|=t$ and $\left\|u-u_{T}\right\|<\varepsilon / 4$. Define $x:=u_{T}$.

By Lemma 1, there is a partition $U \in \Pi$ with $U \geq N$ such that $|U| \leq\left(1+8 t^{2} / \varepsilon\right)^{t}$ and $\left\|x_{N}-x_{U}\right\| \leq \varepsilon / 4$. Let $S:=P \wedge U$. So $|S| \leq|P||U| \leq p\left(1+8 t^{2} / \varepsilon\right)^{t}$. By Lemma 2, there is an ε-balanced refinement Q of S with $N \leq Q \leq S$ and $|Q| \leq(1+1 / \varepsilon)|S| \leq g(t) \leq k_{p, \varepsilon}$. We show that this Q gives the partition of the theorem.

For each $A, B \in Q$, choose $R=X \times Y \subseteq A \times B$, where X and Y are unions of classes of N such that $\left|\left(w-w_{Q}\right)(R)\right|$ is maximized. Let \mathcal{R} be the collection of these chosen R. By (5), $|(w-u)(R)|<\varepsilon / 4 g(t)^{2}$ for all $R \in \mathcal{R}$, and hence

$$
\begin{equation*}
\sum_{R \in \mathcal{R}}|(w-u)(R)|<|\mathcal{R}| \varepsilon / 4 g(t)^{2} \leq \varepsilon / 4 \tag{6}
\end{equation*}
$$

Since $w_{Q}-u_{Q}$ is constant on $A \times B$, we also have for any $R \in \mathcal{R}$ with $R \subseteq A \times B$:

$$
\begin{equation*}
\left|\left(w_{Q}-u_{Q}\right)(R)\right| \leq\left|\left(w_{Q}-u_{Q}\right)(A \times B)\right|=|(w-u)(A \times B)| \leq \varepsilon / 4 g(t)^{2} . \tag{7}
\end{equation*}
$$

Hence we obtain, similarly to (6), $\sum_{R \in \mathcal{R}}\left|\left(w_{Q}-u_{Q}\right)(R)\right|<\varepsilon / 4$.
Finally, as $u(R)=u_{N}(R)$ for all $R \in \mathcal{R}$ and as $u_{Q}=\left(u_{N}\right)_{Q}$ is the nearest point on L_{Q} nearest to u_{N}, while $x_{U} \in L_{U} \subseteq L_{Q}$, with Cauchy-Schwarz we get (as $\left\|\sum_{R \in \mathcal{R}} \pm \chi^{R}\right\| \leq 1$)

$$
\begin{align*}
& \sum_{R \in \mathcal{R}}\left|\left(u-u_{Q}\right)(R)\right|=\sum_{R \in \mathcal{R}}\left|\left(u_{N}-u_{Q}\right)(R)\right| \leq\left\|u_{N}-u_{Q}\right\| \leq\left\|u_{N}-x_{U}\right\| \leq \tag{8}\\
& \left\|(u-x)_{N}\right\|+\left\|x_{N}-x_{U}\right\| \leq\|u-x\|+\left\|x_{N}-x_{U}\right\|<\varepsilon / 2 .
\end{align*}
$$

Hence $\sum_{R \in \mathcal{R}}\left|\left(w-w_{Q}\right)(R)\right|<\varepsilon$. For the graph G it means (4).
To interpret (4), for $A, B \in Q$, let $m_{A, B}$ denote the maximum described in (4). Let Q^{\prime} be such that $Q \backslash Q^{\prime}$ is balanced and $\left|\bigcup Q^{\prime}\right| \leq \varepsilon|V|$. Set $Q^{\prime \prime}:=Q \backslash Q^{\prime}$, and let Z be the collection of pairs $(A, B) \in Q^{\prime \prime} \times Q^{\prime \prime}$ with $m_{A, B} \geq \sqrt{\varepsilon}|A||B|$. Then (4) implies

$$
\begin{equation*}
\sum_{(A, B) \in Z}|A||B| \leq \sum_{(A, B) \in Z} \varepsilon^{-1 / 2} m_{A, B} \leq \sqrt{\varepsilon}|V|^{2} \tag{9}
\end{equation*}
$$

Moreover, as $\left|\bigcup Q^{\prime}\right|<\varepsilon|V|$,

$$
\begin{equation*}
\sum_{A, B \in Q^{\prime \prime}}|A||B| \geq \sum_{A, B \in Q}|A||B|-2 \varepsilon|V|^{2}=(1-2 \varepsilon)|V|^{2} \tag{10}
\end{equation*}
$$

Hence, assuming $\varepsilon<1 / 4,|Z| \leq \sqrt{\varepsilon}(1-2 \varepsilon)^{-1}\left|Q^{\prime \prime}\right|^{2}<2 \sqrt{\varepsilon}\left|Q^{\prime \prime}\right|^{2}$. For each $(A, B) \in$ $\left(Q^{\prime \prime} \times Q^{\prime \prime}\right) \backslash Z$ one has $m_{A, B}<\sqrt{\varepsilon}|A||B|$, implying that for each rectangle $R \subseteq A \times B$ with $|R| /|A \times B| \geq \sqrt[4]{\varepsilon}$ one has $|d(R)-d(A \times B)|<\sqrt[4]{\varepsilon}$. In other words, $A \times B$ is $\sqrt[4]{\varepsilon}$-regular.

References

[1] L. Lovász, Large Graphs, Graph Homomorphisms and Graph Limits, American Mathematical Society, Providence, R.I., to appear.
[2] L. Lovász, B. Szegedy, Limits of dense graph sequences, Journal of Combinatorial Theory, Series B 96 (2006) 933-957.

