V. Szemerédi's regularity lemma

1. Szemerédi's regularity lemma

The 'regularity lemma' of Endre Szemerédi [5] roughly asserts that, for each $\varepsilon>0$, there exists a number k such that the vertex set V of any graph $G=(V, E)$ can be partitioned into at most k almost equal-sized classes so that between almost any two classes, the edges are distributed almost homogeneously. Here almost depends on ε. The important issue is that k only depends on ε, and not on the size of the graph.

Let $G=(V, E)$ be a directed graph. For nonempty $I, J \subseteq V$, let $e(I, J):=|E \cap(I \times J)|$ and $d(I, J):=e(I, J) /|I||J|$. Call the pair $(I, J) \varepsilon$-regular if for all $X \subseteq I, Y \subseteq J$:

$$
\begin{equation*}
\text { if }|X|>\varepsilon|I| \text { and }|Y|>\varepsilon|J| \text { then }|d(X, Y)-d(I, J)| \leq \varepsilon . \tag{1}
\end{equation*}
$$

A partition P of V is called ε-regular if

$$
\begin{equation*}
\sum_{\substack{I, \delta \in P \\(I, J) \\ \varepsilon \text {-irregular }}}|I||J| \leq \varepsilon|V|^{2} . \tag{2}
\end{equation*}
$$

Moreover, P is called ε-balanced if P contains a subcollection C such that all sets in C have the same size and such that $|V \backslash \bigcup C| \leq \varepsilon|V|$.

For $I, J \subseteq V$, let $L_{I, J}$ be the linear subspace of $\mathbb{R}^{V \times V}$ consisting of all scalar multiples of the incidence matrix of $I \times J$ in $\mathbb{R}^{V \times V}$. For any $M \in \mathbb{R}^{V \times V}$, let $M_{I, J}$ be the orthogonal projection of M onto $L_{I, J}$ (with respect to the inner product $\operatorname{Tr}\left(M N^{\boldsymbol{\top}}\right.$) for matrices $M, N \in$ $\left.\mathbb{R}^{V \times V}\right)$. So the entries of $M_{I, J}$ on $I \times J$ are all equal to the average value of M on $I \times J$.

If P is a partition of V, let L_{P} be the sum of the spaces $L_{I, J}$ with $I, J \in P$, and let M_{P} be the orthogonal projection of M onto L_{P}. So $M_{P}=\sum_{I, J \in P} M_{I, J}$.

Define $f_{\varepsilon}(x):=\left(1+\varepsilon^{-1}\right) x 4^{x}$ for $x \in \mathbb{R}$.
Lemma 1. Let $\varepsilon>0$ and $G=(V, E)$ be a directed graph, with adjacency matrix A. Then each ε-irregular partition P has an ε-balanced refinement Q with $|Q| \leq f_{\varepsilon}(|P|)$ and $\left\|A_{Q}\right\|^{2}>\left\|A_{P}\right\|^{2}+\varepsilon^{5}|V|^{2}$.

Proof. Let $\left(I_{1}, J_{1}\right), \ldots,\left(I_{n}, J_{n}\right)$ be the ε-irregular pairs in P^{2}. For each $i=1, \ldots, n$, we can choose (by definition (11)) subsets $X_{i} \subseteq I_{i}$ and $Y_{i} \subseteq J_{i}$ with $\left|X_{i}\right|>\varepsilon\left|I_{i}\right|,\left|Y_{i}\right|>\varepsilon\left|J_{i}\right|$ and $\left|d\left(X_{i}, Y_{i}\right)-d\left(I_{i}, J_{i}\right)\right|>\varepsilon$. For any fixed $K \in P$, there exists a partition R_{K} of K such that each X_{i} with $I_{i}=K$ and each Y_{i} with $J_{i}=K$ is a union of classes of R_{K} and such that $\left|R_{K}\right| \leq 2^{2|P|}=4^{|P|}$. Let $R:=\bigcup_{K \in P} R_{K}$. Then R is a refinement of P such that each X_{i} and each Y_{i} is a union of classes of R. Moreover, $|R| \leq|P| 4^{|P|}$.

Now note that for each i, since $\left(A_{R}\right)_{X_{i}, Y_{i}}=A_{X_{i}, Y_{i}}\left(\right.$ as $\left.L_{X_{i}, Y_{i}} \subseteq L_{R}\right)$ and since $A_{X_{i}, Y_{i}}$ and A_{P} are constant on $X_{i} \times Y_{i}$, with values $d\left(X_{i}, Y_{i}\right)$ and $d\left(I_{i}, J_{i}\right)$, respectively:

$$
\begin{equation*}
\left\|\left(A_{R}-A_{P}\right)_{X_{i}, Y_{i}}\right\|^{2}=\left\|A_{X_{i}, Y_{i}}-\left(A_{P}\right)_{X_{i}, Y_{i}}\right\|^{2}=\left|X_{i}\right|\left|Y_{i}\right|\left(d\left(X_{i}, Y_{i}\right)-d\left(I_{i}, J_{i}\right)\right)^{2}>\varepsilon^{4}\left|I_{i}\right|\left|J_{i}\right| . \tag{3}
\end{equation*}
$$

Then negating (2) gives with Pythagoras, as A_{P} is orthogonal to $A_{R}-A_{P}$ (as $L_{P} \subseteq L_{R}$),
and as the spaces $L_{X_{i}, Y_{i}}$ are pairwise orthogonal,

$$
\begin{equation*}
\left\|A_{R}\right\|^{2}-\left\|A_{P}\right\|^{2}=\left\|A_{R}-A_{P}\right\|^{2} \geq \sum_{i=1}^{n}\left\|\left(A_{R}-A_{P}\right)_{X_{i}, Y_{i}}\right\|^{2} \geq \sum_{i=1}^{n} \varepsilon^{4}\left|I_{i}\right|\left|J_{i}\right|>\varepsilon^{5}|V|^{2} \tag{4}
\end{equation*}
$$

To obtain an ε-balanced partition Q, define $t:=\varepsilon|V| /|R|$. Split each class of R into classes, each of size $\lceil t\rceil$, except for at most one of size less than t. This gives partition Q. Then $|Q| \leq|R|+|V| / t=\left(1+\varepsilon^{-1}\right)|R| \leq f_{\varepsilon}(|P|)$. Moreover, the union of the classes of Q of size less than t has size at most $|R| t=\varepsilon|V|$. So Q is ε-balanced. As $L_{R} \subseteq L_{Q}$, we have, using (4), $\left\|A_{Q}\right\|^{2} \geq\left\|A_{R}\right\|^{2}>\left\|A_{P}\right\|^{2}+\varepsilon^{5}|V|^{2}$.

For $n \in \mathbb{N}, f_{\varepsilon}^{n}$ denotes the n-th iterate of f_{ε}.
Theorem 1 (Szemerédi's regularity lemma). For each $\varepsilon>0$ and directed graph $G=(V, E)$, each partition P of V has an ε-balanced ε-regular refinement of size $\leq f_{\varepsilon}^{\left[\varepsilon^{-5}\right]}(|P|)$.

Proof. Let A be the adjacency matrix of G. Set $P_{0}=P$. For $i \geq 0$, if P_{i} has been set, let P_{i+1} be an ε-balanced refinement of P_{i} with $\left|P_{i+1}\right| \leq f_{\varepsilon}\left(\left|P_{i}\right|\right)$ and with $\left\|A_{P_{i+1}}\right\|$ maximal. As $\left\|A_{P_{i}}\right\|^{2} \leq\|A\|^{2} \leq|V|^{2}$ for all $i,\left\|A_{P_{i+1}}\right\|^{2} \leq\left\|A_{P_{i}}\right\|^{2}+\varepsilon^{5}|V|^{2}$ for some i with $1 \leq i \leq\left\lceil\varepsilon^{-5}\right\rceil$. Then, by Lemma 1 , P_{i} is ε-regular. Moreover $\left|P_{i}\right| \leq f_{\varepsilon}^{i}(|P|) \leq f_{\varepsilon}^{\left\lceil\varepsilon^{-5}\right.}(|P|)$.

It is important to observe that the bound on $|Q|$, though generally huge, only depends on ε and $|P|$, and not on the size of the graph. Gowers [1] showed that the bound necessarily is huge (at least a tower of powers of 2 's of height proportional to $\varepsilon^{-1 / 16}$).

Exercise

1.1. Let P be an ε-balanced ε-regular partition of V, and let $C \subseteq P$ be such that all sets in C have the same size and such that $|V \backslash \bigcup C| \leq \varepsilon|V|$. Prove that at most $\left(\varepsilon /(1-\varepsilon)^{2}\right)|C|^{2}$ pairs in C^{2} are ε-irregular.

2. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers a_{1}, \ldots, a_{k} with $a_{i}-a_{i-1}=$ $a_{2}-a_{1} \neq 0$ for $i=2, \ldots, k$. For any k and n, let $\alpha_{k}(n)$ be the maximum size of a subset of $[n]$ containing no arithmetic progression of length k. (Here $[n]:=\{1, \ldots, n\}$.)

We can now derive the theorem of Roth [3], which implies that any set X of natural numbers with $\lim \sup _{n \rightarrow \infty}|X \cap[n]| / n>0$ contains an arithmetic progression of length 3 . $\left(f(n)=o(g(n))\right.$ means $\left.\lim _{n \rightarrow \infty} f(n) / g(n)=0.\right)$

Corollary 1a. $\alpha_{3}(n)=o(n)$.
Proof. Choose $\varepsilon>0$, define $K:=f_{\varepsilon}^{\left\lceil\varepsilon^{-5}\right\rceil}(1)$, and let $n>\varepsilon^{-3} K$. It suffices to show that $\alpha_{3}(n) \leq 30 \varepsilon n$, so suppose $\alpha_{3}(n)>30 \varepsilon n$. Let S be a subset of $[n]$ of size $\alpha_{3}(n)$ containing no arithmetic progressions of length 3. Define the directed graph $G=(V, E)$ by $V:=[2 n]$ and $E:=\{(u, v) \mid u, v \in V, v-u \in S\}$. So $|E| \geq|S| n>30 \varepsilon n^{2}$.

By Theorem 1, there exists an ε-regular partition P of V of size at most K. Let \mathcal{Q} be the set of ε-regular pairs $(I, J) \in P^{2}$ with $d(I, J)>2 \varepsilon$ and $|I|>\varepsilon^{-2}$. Then

$$
\begin{equation*}
\sum_{(I, J) \in \mathcal{Q}} e(I, J)>16 \varepsilon n^{2} . \tag{5}
\end{equation*}
$$

Indeed, as P is ε-regular and as $e(I, J) \leq|I||J|$, (22) implies that the sum of $e(I, J)$ over all ε-irregular pairs (I, J) is at most $\varepsilon|V|^{2}=4 \varepsilon n^{2}$. Moreover, the sum of $e(I, J)$ over all pairs $(I, J) \in P^{2}$ with $d(I, J) \leq 2 \varepsilon$ is at most $2 \varepsilon|V|^{2}=8 \varepsilon n^{2}$. Finally, the sum of $e(I, J)$ over all $(I, J) \in P^{2}$ with $|I| \leq \varepsilon^{-2}$ is at most $|P| \varepsilon^{-2}|V| \leq K \varepsilon^{-2}|V|=2 K \varepsilon^{-2} n \leq 2 \varepsilon n^{2}$. As $\sum_{I, J \in P} e(I, J)=|E|>30 \varepsilon n^{2}$, we obtain (5).

Now let $A:=[4 n]$. For each $a \in A$, define $E_{a}:=\{(u, v) \in E \mid u+v=a\}$, and let T_{a} and H_{a} be the sets of tails and of heads, respectively, of the edges in E_{a}. Then

$$
\begin{equation*}
\text { there exist } a \in A \text { and }(I, J) \in \mathcal{Q} \text { such that }\left|T_{a} \cap I\right|>\varepsilon|I| \text { and }\left|H_{a} \cap J\right|>\varepsilon|J| \text {. } \tag{6}
\end{equation*}
$$

Suppose such a, I, J do not exist. For $a \in A, I, J \in P$, let $e_{a}(I, J)$ be the number of pairs in $I \times J$ that are adjacent in $\left(V, E_{a}\right)$. So $e(I, J)=\sum_{a \in A} e_{a}(I, J)$ for all $I, J \in P$. Now the sum of $e_{a}(I, J)$ over all a, I, J with $\left|T_{a} \cap I\right| \leq \varepsilon|I|$ is equal to the sum of $\left|T_{a} \cap I\right|$ over all a, I with $\left|T_{a} \cap I\right| \leq \varepsilon|I|$, which is at most $\sum_{a, I} \varepsilon|I|=\varepsilon|A||V|=8 \varepsilon n^{2}$. Similarly, the sum of $e_{a}(I, J)$ over all a, I, J with $\left|H_{a} \cap J\right|<\varepsilon|J|$ is at most $8 \varepsilon n^{2}$. Hence, with (5) we obtain (6).

Set $X:=T_{a} \cap I$ and $Y:=H_{a} \cap J$. So $|X|>\varepsilon|I|$ and $|Y|>\varepsilon|J|$. As (I, J) is ε-regular, $d(I, J)>2 \varepsilon$, and $|I|>\varepsilon^{-2}$, we have $d(X, Y) \geq d(I, J)-\varepsilon>\varepsilon>\varepsilon^{-1}|I|^{-1}>|X|^{-1}$. So $e(X, Y)=d(X, Y)|X||Y|>|Y|$. Hence there is an edge (u, v) in $X \times Y$ with $u+v=b \neq a$ (as E_{a} is a matching). By definition of T_{a} and H_{a}, there exist $v^{\prime}, u^{\prime} \in V$ with $\left(u, v^{\prime}\right),\left(u^{\prime}, v\right) \in E_{a}$. Then $v^{\prime}-u, v-u, v-u^{\prime}$ is an arithmetic progression in S of length 3 , since $v^{\prime} \neq v$ and $v-v^{\prime}=u-u^{\prime}$, as $u+v^{\prime}=a=u^{\prime}+v$.
(Note that ε-balancedness of partition P of V is not used in this proof.) This was extended to $\alpha_{k}(n)=o(n)$ for any k by Szemerédi [4]. Recently, Green and Tao [2] proved that there exist arbitrarily long arithmetic progressions of primes.

References

[1] W.T. Gowers, Lower bounds of tower type for Szemerédi's uniformity lemma, Geometric and Functional Analysis 7 (1997) 322-337.
[2] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics (2) 167 (2008) 481-547.
[3] K. Roth, Sur quelques ensembles d'entiers, Comptes Rendus des Séances de l'Académie des Sciences Paris 234 (1952) 388-390.
[4] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975) 199-245.
[5] E. Szemerédi, Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes (Proceedings Colloque International C.N.R.S., Paris-Orsay, 1976) [Colloques Internationaux du C.N.R.S. N ${ }^{o}$ 260], Éditions du C.N.R.S., Paris, 1978, pp. 399-401.

