
V. Szemerédi’s regularity lemma

1. Szemerédi’s regularity lemma

The ‘regularity lemma’ of Endre Szemerédi [5] roughly asserts that, for each ε > 0, there
exists a number k such that the vertex set V of any graph G = (V,E) can be partitioned
into at most k almost equal-sized classes so that between almost any two classes, the edges
are distributed almost homogeneously. Here almost depends on ε. The important issue is
that k only depends on ε, and not on the size of the graph.

Let G = (V,E) be a directed graph. For nonempty I, J ⊆ V , let e(I, J) := |E ∩ (I × J)|
and d(I, J) := e(I, J)/|I||J |. Call the pair (I, J) ε-regular if for all X ⊆ I, Y ⊆ J :

(1) if |X| > ε|I| and |Y | > ε|J | then |d(X,Y )− d(I, J)| ≤ ε.

A partition P of V is called ε-regular if

(2)
∑

I,J∈P

(I,J) ε-irregular

|I||J | ≤ ε|V |2.

Moreover, P is called ε-balanced if P contains a subcollection C such that all sets in C have
the same size and such that |V \

⋃
C| ≤ ε|V |.

For I, J ⊆ V , let LI,J be the linear subspace of RV×V consisting of all scalar multiples
of the incidence matrix of I × J in R

V×V . For any M ∈ R
V×V , let MI,J be the orthogonal

projection of M onto LI,J (with respect to the inner product Tr(MNT) for matrices M,N ∈
R
V×V ). So the entries of MI,J on I × J are all equal to the average value of M on I × J .
If P is a partition of V , let LP be the sum of the spaces LI,J with I, J ∈ P , and let MP

be the orthogonal projection of M onto LP . So MP =
∑

I,J∈P MI,J .

Define fε(x) := (1 + ε−1)x4x for x ∈ R.

Lemma 1. Let ε > 0 and G = (V,E) be a directed graph, with adjacency matrix A.
Then each ε-irregular partition P has an ε-balanced refinement Q with |Q| ≤ fε(|P |) and

‖AQ‖
2 > ‖AP ‖

2 + ε5|V |2.

Proof. Let (I1, J1), . . . , (In, Jn) be the ε-irregular pairs in P 2. For each i = 1, . . . , n, we
can choose (by definition (1)) subsets Xi ⊆ Ii and Yi ⊆ Ji with |Xi| > ε|Ii|, |Yi| > ε|Ji| and
|d(Xi, Yi)− d(Ii, Ji)| > ε. For any fixed K ∈ P , there exists a partition RK of K such that
each Xi with Ii = K and each Yi with Ji = K is a union of classes of RK and such that
|RK | ≤ 22|P | = 4|P |. Let R :=

⋃
K∈P RK . Then R is a refinement of P such that each Xi

and each Yi is a union of classes of R. Moreover, |R| ≤ |P |4|P |.
Now note that for each i, since (AR)Xi,Yi

= AXi,Yi
(as LXi,Yi

⊆ LR) and since AXi,Yi

and AP are constant on Xi × Yi, with values d(Xi, Yi) and d(Ii, Ji), respectively:

(3) ‖(AR−AP )Xi,Yi
‖2 = ‖AXi,Yi

−(AP )Xi,Yi
‖2 = |Xi||Yi|(d(Xi, Yi)−d(Ii, Ji))

2 > ε4|Ii||Ji|.

Then negating (2) gives with Pythagoras, as AP is orthogonal to AR − AP (as LP ⊆ LR),
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and as the spaces LXi,Yi
are pairwise orthogonal,

(4) ‖AR‖
2−‖AP ‖

2 = ‖AR−AP ‖
2 ≥

n∑

i=1

‖(AR−AP )Xi,Yi
‖2 ≥

n∑

i=1

ε4|Ii||Ji| > ε5|V |2.

To obtain an ε-balanced partition Q, define t := ε|V |/|R|. Split each class of R into
classes, each of size ⌈t⌉, except for at most one of size less than t. This gives partition Q.
Then |Q| ≤ |R| + |V |/t = (1 + ε−1)|R| ≤ fε(|P |). Moreover, the union of the classes of Q
of size less than t has size at most |R|t = ε|V |. So Q is ε-balanced. As LR ⊆ LQ, we have,
using (4), ‖AQ‖

2 ≥ ‖AR‖
2 > ‖AP ‖

2 + ε5|V |2.

For n ∈ N, fn
ε denotes the n-th iterate of fε.

Theorem 1 (Szemerédi’s regularity lemma). For each ε > 0 and directed graph G = (V,E),

each partition P of V has an ε-balanced ε-regular refinement of size ≤ f
⌈ε−5⌉
ε (|P |).

Proof. Let A be the adjacency matrix of G. Set P0 = P . For i ≥ 0, if Pi has been set, let
Pi+1 be an ε-balanced refinement of Pi with |Pi+1| ≤ fε(|Pi|) and with ‖APi+1‖ maximal. As
‖APi

‖2 ≤ ‖A‖2 ≤ |V |2 for all i, ‖APi+1‖
2 ≤ ‖APi

‖2 + ε5|V |2 for some i with 1 ≤ i ≤ ⌈ε−5⌉.

Then, by Lemma 1, Pi is ε-regular. Moreover |Pi| ≤ f i
ε(|P |) ≤ f

⌈ε−5⌉
ε (|P |).

It is important to observe that the bound on |Q|, though generally huge, only depends
on ε and |P |, and not on the size of the graph. Gowers [1] showed that the bound necessarily
is huge (at least a tower of powers of 2’s of height proportional to ε−1/16).

Exercise

1.1. Let P be an ε-balanced ε-regular partition of V , and let C ⊆ P be such that all sets in C
have the same size and such that |V \

⋃
C| ≤ ε|V |. Prove that at most (ε/(1− ε)2)|C|2 pairs

in C2 are ε-irregular.

2. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers a1, . . . , ak with ai − ai−1 =
a2 − a1 6= 0 for i = 2, . . . , k. For any k and n, let αk(n) be the maximum size of a subset
of [n] containing no arithmetic progression of length k. (Here [n] := {1, . . . , n}.)

We can now derive the theorem of Roth [3], which implies that any set X of natural
numbers with lim supn→∞ |X ∩ [n]|/n > 0 contains an arithmetic progression of length 3.
(f(n) = o(g(n)) means limn→∞ f(n)/g(n) = 0.)

Corollary 1a. α3(n) = o(n).

Proof. Choose ε > 0, define K := f
⌈ε−5⌉
ε (1), and let n > ε−3K. It suffices to show that

α3(n) ≤ 30εn, so suppose α3(n) > 30εn. Let S be a subset of [n] of size α3(n) containing
no arithmetic progressions of length 3. Define the directed graph G = (V,E) by V := [2n]
and E := {(u, v) | u, v ∈ V, v − u ∈ S}. So |E| ≥ |S|n > 30εn2.
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By Theorem 1, there exists an ε-regular partition P of V of size at most K. Let Q be
the set of ε-regular pairs (I, J) ∈ P 2 with d(I, J) > 2ε and |I| > ε−2. Then

(5)
∑

(I,J)∈Q

e(I, J) > 16εn2.

Indeed, as P is ε-regular and as e(I, J) ≤ |I||J |, (2) implies that the sum of e(I, J) over
all ε-irregular pairs (I, J) is at most ε|V |2 = 4εn2. Moreover, the sum of e(I, J) over all
pairs (I, J) ∈ P 2 with d(I, J) ≤ 2ε is at most 2ε|V |2 = 8εn2. Finally, the sum of e(I, J)
over all (I, J) ∈ P 2 with |I| ≤ ε−2 is at most |P |ε−2|V | ≤ Kε−2|V | = 2Kε−2n ≤ 2εn2. As∑

I,J∈P e(I, J) = |E| > 30εn2, we obtain (5).
Now let A := [4n]. For each a ∈ A, define Ea := {(u, v) ∈ E | u + v = a}, and let Ta

and Ha be the sets of tails and of heads, respectively, of the edges in Ea. Then

(6) there exist a ∈ A and (I, J) ∈ Q such that |Ta ∩ I| > ε|I| and |Ha ∩ J | > ε|J |.

Suppose such a, I, J do not exist. For a ∈ A, I, J ∈ P , let ea(I, J) be the number of pairs
in I × J that are adjacent in (V,Ea). So e(I, J) =

∑
a∈A ea(I, J) for all I, J ∈ P . Now the

sum of ea(I, J) over all a, I, J with |Ta ∩ I| ≤ ε|I| is equal to the sum of |Ta ∩ I| over all
a, I with |Ta ∩ I| ≤ ε|I|, which is at most

∑
a,I ε|I| = ε|A||V | = 8εn2. Similarly, the sum of

ea(I, J) over all a, I, J with |Ha ∩ J | < ε|J | is at most 8εn2. Hence, with (5) we obtain (6).
Set X := Ta ∩ I and Y := Ha ∩ J . So |X| > ε|I| and |Y | > ε|J |. As (I, J) is ε-regular,

d(I, J) > 2ε, and |I| > ε−2, we have d(X,Y ) ≥ d(I, J) − ε > ε > ε−1|I|−1 > |X|−1. So
e(X,Y ) = d(X,Y )|X||Y | > |Y |. Hence there is an edge (u, v) inX×Y with u+v = b 6= a (as
Ea is a matching). By definition of Ta andHa, there exist v

′, u′ ∈ V with (u, v′), (u′, v) ∈ Ea.
Then v′ − u, v − u, v − u′ is an arithmetic progression in S of length 3, since v′ 6= v and
v − v′ = u− u′, as u+ v′ = a = u′ + v.

(Note that ε-balancedness of partition P of V is not used in this proof.) This was
extended to αk(n) = o(n) for any k by Szemerédi [4]. Recently, Green and Tao [2] proved
that there exist arbitrarily long arithmetic progressions of primes.
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