V. Szemerédi's regularity lemma

1. Szemerédi's regularity lemma

The 'regularity lemma' of Endre Szemerédi [5] roughly asserts that, for each $\varepsilon > 0$, there exists a number k such that the vertex set V of any graph G = (V, E) can be partitioned into at most k almost equal-sized classes so that between almost any two classes, the edges are distributed almost homogeneously. Here almost depends on ε . The important issue is that k only depends on ε , and not on the size of the graph.

Let G = (V, E) be a directed graph. For nonempty $I, J \subseteq V$, let $e(I, J) := |E \cap (I \times J)|$ and d(I, J) := e(I, J)/|I||J|. Call the pair $(I, J) \varepsilon$ -regular if for all $X \subseteq I, Y \subseteq J$:

(1) if
$$|X| > \varepsilon |I|$$
 and $|Y| > \varepsilon |J|$ then $|d(X,Y) - d(I,J)| \le \varepsilon$.

A partition P of V is called ε -regular if

(2)
$$\sum_{\substack{I,J \in P\\(I,J) \ \varepsilon \text{-irregular}}} |I||J| \le \varepsilon |V|^2$$

Moreover, P is called ε -balanced if P contains a subcollection C such that all sets in C have the same size and such that $|V \setminus \bigcup C| \le \varepsilon |V|$.

For $I, J \subseteq V$, let $L_{I,J}$ be the linear subspace of $\mathbb{R}^{V \times V}$ consisting of all scalar multiples of the incidence matrix of $I \times J$ in $\mathbb{R}^{V \times V}$. For any $M \in \mathbb{R}^{V \times V}$, let $M_{I,J}$ be the orthogonal projection of M onto $L_{I,J}$ (with respect to the inner product $\operatorname{Tr}(MN^{\mathsf{T}})$ for matrices $M, N \in \mathbb{R}^{V \times V}$). So the entries of $M_{I,J}$ on $I \times J$ are all equal to the average value of M on $I \times J$.

If P is a partition of V, let L_P be the sum of the spaces $L_{I,J}$ with $I, J \in P$, and let M_P be the orthogonal projection of M onto L_P . So $M_P = \sum_{I,J \in P} M_{I,J}$.

Define $f_{\varepsilon}(x) := (1 + \varepsilon^{-1})x4^x$ for $x \in \mathbb{R}$.

Lemma 1. Let $\varepsilon > 0$ and G = (V, E) be a directed graph, with adjacency matrix A. Then each ε -irregular partition P has an ε -balanced refinement Q with $|Q| \leq f_{\varepsilon}(|P|)$ and $||A_Q||^2 > ||A_P||^2 + \varepsilon^5 |V|^2$.

Proof. Let $(I_1, J_1), \ldots, (I_n, J_n)$ be the ε -irregular pairs in P^2 . For each $i = 1, \ldots, n$, we can choose (by definition (1)) subsets $X_i \subseteq I_i$ and $Y_i \subseteq J_i$ with $|X_i| > \varepsilon |I_i|, |Y_i| > \varepsilon |J_i|$ and $|d(X_i, Y_i) - d(I_i, J_i)| > \varepsilon$. For any fixed $K \in P$, there exists a partition R_K of K such that each X_i with $I_i = K$ and each Y_i with $J_i = K$ is a union of classes of R_K and such that $|R_K| \leq 2^{2|P|} = 4^{|P|}$. Let $R := \bigcup_{K \in P} R_K$. Then R is a refinement of P such that each X_i and each Y_i is a union of classes of R. Moreover, $|R| \leq |P|4^{|P|}$.

Now note that for each *i*, since $(A_R)_{X_i,Y_i} = A_{X_i,Y_i}$ (as $L_{X_i,Y_i} \subseteq L_R$) and since A_{X_i,Y_i} and A_P are constant on $X_i \times Y_i$, with values $d(X_i, Y_i)$ and $d(I_i, J_i)$, respectively:

(3)
$$\|(A_R - A_P)_{X_i, Y_i}\|^2 = \|A_{X_i, Y_i} - (A_P)_{X_i, Y_i}\|^2 = |X_i| |Y_i| (d(X_i, Y_i) - d(I_i, J_i))^2 > \varepsilon^4 |I_i| |J_i|.$$

Then negating (2) gives with Pythagoras, as A_P is orthogonal to $A_R - A_P$ (as $L_P \subseteq L_R$),

and as the spaces L_{X_i,Y_i} are pairwise orthogonal,

(4)
$$||A_R||^2 - ||A_P||^2 = ||A_R - A_P||^2 \ge \sum_{i=1}^n ||(A_R - A_P)_{X_i, Y_i}||^2 \ge \sum_{i=1}^n \varepsilon^4 |I_i||J_i| > \varepsilon^5 |V|^2.$$

To obtain an ε -balanced partition Q, define $t := \varepsilon |V|/|R|$. Split each class of R into classes, each of size $\lceil t \rceil$, except for at most one of size less than t. This gives partition Q. Then $|Q| \leq |R| + |V|/t = (1 + \varepsilon^{-1})|R| \leq f_{\varepsilon}(|P|)$. Moreover, the union of the classes of Q of size less than t has size at most $|R|t = \varepsilon |V|$. So Q is ε -balanced. As $L_R \subseteq L_Q$, we have, using (4), $||A_Q||^2 \geq ||A_R||^2 > ||A_P||^2 + \varepsilon^5 |V|^2$.

For $n \in \mathbb{N}$, f_{ε}^n denotes the *n*-th iterate of f_{ε} .

Theorem 1 (Szemerédi's regularity lemma). For each $\varepsilon > 0$ and directed graph G = (V, E), each partition P of V has an ε -balanced ε -regular refinement of size $\leq f_{\varepsilon}^{\lceil \varepsilon^{-5} \rceil}(|P|)$.

Proof. Let A be the adjacency matrix of G. Set $P_0 = P$. For $i \ge 0$, if P_i has been set, let P_{i+1} be an ε -balanced refinement of P_i with $|P_{i+1}| \le f_{\varepsilon}(|P_i|)$ and with $||A_{P_{i+1}}||$ maximal. As $||A_{P_i}||^2 \le ||A||^2 \le ||V||^2$ for all i, $||A_{P_{i+1}}||^2 \le ||A_{P_i}||^2 + \varepsilon^5 |V|^2$ for some i with $1 \le i \le \lceil \varepsilon^{-5} \rceil$. Then, by Lemma 1, P_i is ε -regular. Moreover $|P_i| \le f_{\varepsilon}^i(|P|) \le f_{\varepsilon}^{\lceil \varepsilon^{-5} \rceil}(|P|)$.

It is important to observe that the bound on |Q|, though generally huge, only depends on ε and |P|, and not on the size of the graph. Gowers [1] showed that the bound necessarily is huge (at least a tower of powers of 2's of height proportional to $\varepsilon^{-1/16}$).

Exercise

1.1. Let P be an ε -balanced ε -regular partition of V, and let $C \subseteq P$ be such that all sets in C have the same size and such that $|V \setminus \bigcup C| \leq \varepsilon |V|$. Prove that at most $(\varepsilon/(1-\varepsilon)^2)|C|^2$ pairs in C^2 are ε -irregular.

2. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers a_1, \ldots, a_k with $a_i - a_{i-1} = a_2 - a_1 \neq 0$ for $i = 2, \ldots, k$. For any k and n, let $\alpha_k(n)$ be the maximum size of a subset of [n] containing no arithmetic progression of length k. (Here $[n] := \{1, \ldots, n\}$.)

We can now derive the theorem of Roth [3], which implies that any set X of natural numbers with $\limsup_{n\to\infty} |X \cap [n]|/n > 0$ contains an arithmetic progression of length 3. $(f(n) = o(g(n)) \text{ means } \lim_{n\to\infty} f(n)/g(n) = 0.)$

Corollary 1a. $\alpha_3(n) = o(n)$.

Proof. Choose $\varepsilon > 0$, define $K := f_{\varepsilon}^{\lceil \varepsilon^{-5} \rceil}(1)$, and let $n > \varepsilon^{-3}K$. It suffices to show that $\alpha_3(n) \leq 30\varepsilon n$, so suppose $\alpha_3(n) > 30\varepsilon n$. Let S be a subset of [n] of size $\alpha_3(n)$ containing no arithmetic progressions of length 3. Define the directed graph G = (V, E) by V := [2n] and $E := \{(u, v) \mid u, v \in V, v - u \in S\}$. So $|E| \geq |S|n > 30\varepsilon n^2$.

By Theorem 1, there exists an ε -regular partition P of V of size at most K. Let \mathcal{Q} be the set of ε -regular pairs $(I, J) \in P^2$ with $d(I, J) > 2\varepsilon$ and $|I| > \varepsilon^{-2}$. Then

(5)
$$\sum_{(I,J)\in\mathcal{Q}} e(I,J) > 16\varepsilon n^2.$$

Indeed, as P is ε -regular and as $e(I, J) \leq |I||J|$, (2) implies that the sum of e(I, J) over all ε -irregular pairs (I, J) is at most $\varepsilon |V|^2 = 4\varepsilon n^2$. Moreover, the sum of e(I, J) over all pairs $(I, J) \in P^2$ with $d(I, J) \leq 2\varepsilon$ is at most $2\varepsilon |V|^2 = 8\varepsilon n^2$. Finally, the sum of e(I, J) over all $(I, J) \in P^2$ with $|I| \leq \varepsilon^{-2}$ is at most $|P|\varepsilon^{-2}|V| \leq K\varepsilon^{-2}|V| = 2K\varepsilon^{-2}n \leq 2\varepsilon n^2$. As $\sum_{I,J\in P} e(I,J) = |E| > 30\varepsilon n^2$, we obtain (5).

Now let A := [4n]. For each $a \in A$, define $E_a := \{(u, v) \in E \mid u + v = a\}$, and let T_a and H_a be the sets of tails and of heads, respectively, of the edges in E_a . Then

(6) there exist
$$a \in A$$
 and $(I, J) \in \mathcal{Q}$ such that $|T_a \cap I| > \varepsilon |I|$ and $|H_a \cap J| > \varepsilon |J|$.

Suppose such a, I, J do not exist. For $a \in A$, $I, J \in P$, let $e_a(I, J)$ be the number of pairs in $I \times J$ that are adjacent in (V, E_a) . So $e(I, J) = \sum_{a \in A} e_a(I, J)$ for all $I, J \in P$. Now the sum of $e_a(I, J)$ over all a, I, J with $|T_a \cap I| \leq \varepsilon |I|$ is equal to the sum of $|T_a \cap I|$ over all a, I with $|T_a \cap I| \leq \varepsilon |I|$, which is at most $\sum_{a,I} \varepsilon |I| = \varepsilon |A| |V| = 8\varepsilon n^2$. Similarly, the sum of $e_a(I, J)$ over all a, I, J with $|H_a \cap J| < \varepsilon |J|$ is at most $8\varepsilon n^2$. Hence, with (5) we obtain (6). Set $X := T_a \cap I$ and $Y := H_a \cap J$. So $|X| > \varepsilon |I|$ and $|Y| > \varepsilon |J|$. As (I, J) is ε -regular, $d(I, J) > 2\varepsilon$, and $|I| > \varepsilon^{-2}$, we have $d(X, Y) \geq d(I, J) - \varepsilon > \varepsilon > \varepsilon^{-1} |I|^{-1} > |X|^{-1}$. So e(X, Y) = d(X, Y)|X||Y| > |Y|. Hence there is an edge (u, v) in $X \times Y$ with $u+v = b \neq a$ (as E_a is a matching). By definition of T_a and H_a , there exist $v', u' \in V$ with $(u, v'), (u', v) \in E_a$. Then v' - u, v - u, v - u' is an arithmetic progression in S of length 3, since $v' \neq v$ and

(Note that ε -balancedness of partition P of V is not used in this proof.) This was extended to $\alpha_k(n) = o(n)$ for any k by Szemerédi [4]. Recently, Green and Tao [2] proved that there exist arbitrarily long arithmetic progressions of primes.

References

v - v' = u - u', as u + v' = a = u' + v.

- W.T. Gowers, Lower bounds of tower type for Szemerédi's uniformity lemma, Geometric and Functional Analysis 7 (1997) 322–337.
- [2] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics (2) 167 (2008) 481–547.
- [3] K. Roth, Sur quelques ensembles d'entiers, Comptes Rendus des Séances de l'Académie des Sciences Paris 234 (1952) 388–390.
- [4] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975) 199–245.
- [5] E. Szemerédi, Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes (Proceedings Colloque International C.N.R.S., Paris-Orsay, 1976) [Colloques Internationaux du C.N.R.S. N^o 260], Éditions du C.N.R.S., Paris, 1978, pp. 399–401.