## On weak regularity $\Longleftrightarrow$ strong regularity

Notes for our seminar - Lex Schrijver

Let $X$ be an inner product space and let $R$ be a bounded subset of $X$ spanning $X$. (So each element of $X$ is a linear combination of finitely many elements of $R$.) Let $G$ be the group of orthogonal transformations $\pi$ of $X$ with $\pi(R)=R$. Let $B(X)$ denote the unit ball in $X$. For any $k$, let $R_{k}:=\left\{ \pm r_{1} \pm \cdots \pm r_{k} \mid r_{1}, \ldots, r_{k} \in R\right\}$.

Call $R$ weakly regular if for each $k$ there exists a finite set $Z \subseteq X$ such that for each $x \in R_{k}$ there exist $z \in Z$ and $\pi \in G$ satisfying $\left\langle r, x-z^{\pi}\right\rangle^{2} \leq 1$ for each $r \in R$.

Call $R$ strongly regular if for each $\varepsilon>0$ and $f: X \rightarrow\{1,2, \ldots\}$ there exists a finite set $Z \subseteq X$ such that for each $x \in B(X)$ there exist $z \in Z$ and $\pi \in G$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{f(z)}\left\langle r_{j}, x-z^{\pi}\right\rangle^{2}<\varepsilon \tag{1}
\end{equation*}
$$

for all orthogonal $r_{1}, \ldots, r_{f(z)} \in R$.
Theorem 1. $R$ is weakly regular $\Longleftrightarrow R$ is strongly regular.
Proof. $\Longleftarrow$ being easy, we prove $\Longrightarrow$. As $R$ is bounded, by scaling we can assume that $\|r\| \leq 1$ for each $r \in R$. Let $H$ be the completion of $X$. For $x, y \in H$ define:

$$
\begin{equation*}
d_{R}(x, y):=\sup _{r \in R}|\langle r, x-y\rangle| . \tag{2}
\end{equation*}
$$

Then weak regularity of $R$ implies that for each $k$, the set $\left\{\lambda_{1} r_{1}+\cdots+\lambda_{k} r_{k} \mid r_{1}, \ldots, r_{k} \in\right.$ $\left.R, \lambda_{1}, \ldots, \lambda_{k} \in[-1,+1]\right\} / G$ is totally bounded. Hence, by [2], the space $\left(B(H), d_{R}\right) / G$ is compact.

Choose $\varepsilon>0$ and $f: X \rightarrow\{1,2, \ldots\}$. For each $z \in X$ define

$$
\begin{equation*}
U_{z}:=\left\{x \in H \mid \sup _{\substack{\text { orthogonal } \\ r_{1}, \ldots, r_{f(z)} \in R}} \sum_{i=1}^{f(z)}\left\langle r_{i}, x-z\right\rangle^{2}<\varepsilon\right\} . \tag{3}
\end{equation*}
$$

Then $U_{z}$ is open in $\left(B(H), d_{R}\right)$, for choose $x \in U_{z}$. Let $s$ be the supremum in (3). Let $\delta:=(\sqrt{\varepsilon}-\sqrt{s}) / f(z)$. Then if $d_{R}(y, x)<\delta, y \in U_{z}$.

Moreover, the $U_{z}$ for $z \in B(X)$ cover $B(H)$. Indeed, for any $x \in B(H)$ we have $\|x-z\|<\varepsilon$ for some $z \in B(X)$, implying $x \in U_{z}$.

So finitely many $U_{z}$ cover $B(H) / G$, which gives the strong regularity of $R$.
Applications. Since $R$ spans $X, X$ is fully determined by the positive semidefinite $R \times$ $R$ matrix giving the inner products of pairs from $R$. Then $G$ is given by the group of permutations of $R$ that leave the matrix invariant. It is convenient to realize that $R$ is weakly regular if (but not only if) the orbit space $R^{k} / G$ is compact for each $k$.

1. Szemerédi's regularity lemma. Let $R$ be the collection of sets $I \times J$, with $I$ and $J$ each being a union of finitely many subintervals of $[0,1]$, with inner product equal to
the measure of the intersection. Then Theorem 1 gives strong regularity for step functions $[0,1]^{2} \rightarrow[0,1]$, with all steps being intervals, hence (with rounding) for graphs.
2. "Interval regularity". Let $R$ be the collection of sets $I \times J$, with $I$ and $J$ subintervals of $[0,1]$, with inner product given by the measure of the intersection. Then Theorem 1 gives an "interval regularity theorem" for graphs (it can also be proved with Szemerédi's classical combinatorial method):

Corollary 1a. For each $\varepsilon>0$ and $p \in \mathbb{N}$ there exists $k_{p, \varepsilon} \in \mathbb{N}$ such that for each $n$, each graph $G=([n], E)$ and each partition $P$ of $[n]$ into intervals with $|P| \leq p$, $P$ has a refinement to a partition $Q$ into at most $k_{p, \varepsilon}$ intervals such that all intervals in $Q$ have the same size except for some of them covering $\leq \varepsilon n$ vertices and such that

$$
\begin{equation*}
\sum_{A, B \in Q} \max _{\substack{I \subseteq A, J \subseteq B B \\ I, J \text { intervals }}}|I||J||d(I, J)-d(A, B)|<\varepsilon n^{2} . \tag{4}
\end{equation*}
$$

Here $d(I, J)$ and $d(A, B)$ are the densities of the corresponding subgraphs of $G$.
3. Polynomial approximation. Let $k \leq n$. Each polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ can be uniquely written as $p=\sum_{\mu} \mu p_{\mu}$, where $\mu$ ranges over the set $M$ of all monomials in $\mathbb{R}\left[x_{1}, \ldots, x_{k}\right]$ and where $p_{\mu} \in \mathbb{R}\left[x_{k+1}, \ldots, x_{n}\right]$. If $p$ is homogeneous of degree $d$, we say that $p$ is $\varepsilon$-concentrated on the first $k$ variables if

$$
\begin{equation*}
\sum_{\substack{\mu \in M \\ \operatorname{deg}(\mu)<d}} \max _{\substack{x \in \mathbb{R}^{n-k} \\\|x\|=1}} p_{\mu}(x)^{2} \leq \varepsilon\|p\|^{2}, \tag{5}
\end{equation*}
$$

where $\|p\|$ is the square root of the sum of the squares of the coefficients of $p$.
Corollary 1b. For each $\varepsilon>0$ and $d \in \mathbb{N}$ there exists $k_{d, \varepsilon}$ such that for each $n$, each homogeneous polynomial of degree $d$ in $n$ variables is $\varepsilon$-concentrated on the first $k$ variables after some orthogonal transformation of $\mathbb{R}^{n}$, for some $k \leq k_{d, \varepsilon}$.

This can be derived by setting $R$ to be the set of all polynomials ( $\left.a^{\top} x\right)^{d}$, with $a \in \mathbb{R}^{n}$ and $\|a\|=1$ for some $n$ (setting $x=\left(x_{1}, x_{2}, \ldots\right)$ ), taking the inner product of $\left(a^{\top} x\right)^{d}$ and $\left(b^{\top} x\right)^{d}$ equal to $\left(a^{\top} b\right)^{d}$. (This corollary strengthens a 'weak regularity' result of Fernandez de la Vega, Kannan, Karpinski, and Vempala [1].)

## References

[1] W. Fernandez de la Vega, R. Kannan, M. Karpinski, S. Vempala, Tensor decomposition and approximation schemes for constraint satisfaction problems, in: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC'05), pp. 747-754, ACM, New York, 2005.
[2] G. Regts, A. Schrijver, Compact orbit spaces in Hilbert spaces and limits of edge-colouring models, preprint, 2012. ArXiv http://arxiv.org/abs/1210.2204

