
Contents

4 Data Warehousing and Online Analytical Processing 3
4.1 Data Warehouse: Basic Concepts 4

4.1.1 What is a Data Warehouse? 4
4.1.2 Differences between Operational Database Systems

and Data Warehouses . 6
4.1.3 But, Why Have a Separate Data Warehouse? 7
4.1.4 Data Warehousing: A Multi-Tiered Architecture 9
4.1.5 Data Warehouse Models: Enterprise Warehouse, Data

Mart, and Virtual Warehouse 10
4.1.6 Extraction, Transformation, Loading 12
4.1.7 Metadata Repository . 13

4.2 Data Warehouse Modeling: Data Cube and OLAP 14
4.2.1 Data Cube: A Multidimensional Data Model 14
4.2.2 Stars, Snowflakes, and Fact Constellations:

Schemas for Multidimensional Data Models 16
4.2.3 Dimensions: The Role of Concept Hierarchies 20
4.2.4 Measures: Their Categorization and Computation 22
4.2.5 Typical OLAP Operations 24
4.2.6 A Starnet Query Model for Querying

Multidimensional Databases 27
4.3 Data Warehouse Design and Usage 27

4.3.1 A Business Analysis Framework for Data Warehouse Design 28
4.3.2 The Data Warehouse Design Process 30
4.3.3 Data Warehouse Usage for Information Processing 31
4.3.4 From Online Analytical Processing to

Multidimensional Data Mining 33
4.4 Data Warehouse Implementation 35

4.4.1 Efficient Data Cube Computation: An Overview 35
4.4.2 Indexing OLAP Data: Bitmap Index and Join Index . . . 38
4.4.3 Efficient Processing of OLAP Queries 40
4.4.4 OLAP Server Architectures: ROLAP vs. MOLAP

vs. HOLAP . 42
4.5 Data Generalization by Attribute-Oriented Induction 44

4.5.1 Attribute-Oriented Induction for Data Characterization . 46

1

2 CONTENTS

4.5.2 Efficient Implementation of Attribute-Oriented Induction 51
4.5.3 Attribute-Oriented Induction for Class Comparisons . . . 53

4.6 Summary . 57
4.7 Exercises . 59
4.8 Bibliographic Notes . 64

Chapter 4

Data Warehousing and

Online Analytical

Processing

Data warehouses generalize and consolidate data in multidimensional space. The construc-
tion of data warehouses involves data cleaning, data integration, and data trans-
formation and can be viewed as an important preprocessing step for data mining.
Moreover, data warehouses provide online analytical processing (OLAP) tools for
the interactive analysis of multidimensional data of varied granularities, which fa-
cilitates effective data generalization and data mining. Many other data mining
functions, such as association, classification, prediction, and clustering, can be in-
tegratedwithOLAPoperations to enhance interactiveminingofknowledgeatmul-
tiple levels of abstraction. Hence, the data warehouse has become an increasingly
important platform for data analysis and online analytical processing and will pro-
videaneffectiveplatformfordatamining. Therefore, datawarehousingandOLAP
forman essential step in the knowledge discovery process. This chapter presents an
overview of data warehouse and OLAP technology. Such an overview is essential
for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse
and see why more and more organizations are building data warehouses for the
analysis of their data (Section 4.1). In particular, we study the data cube, a
multidimensional data model for data warehouses and OLAP, as well as OLAP
operations such as roll-up, drill-down, slicing, and dicing (Section 4.2). We also
look at data warehouse design and usage (Section 4.3). In addition, we dis-
cuss multidimensional data mining, a powerful paradigm that integrates data
warehouse and OLAP technology with that of data mining. An overview of
data warehouse implementation examines general strategies for efficient data
cube computation, OLAP data indexing, and OLAP query processing (Sec-
tion 4.4). Finally, we study data generalization by attribute-oriented induction
(Section 4.5). This method uses concept hierarchies to generalize data to mul-

3

4CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

tiple levels of abstraction.

4.1 Data Warehouse: Basic Concepts

This section gives an introduction to data warehouses. We begin with a defini-
tion of the data warehouse (Section 4.1.1). We outline the differences between
operational database systems and data warehouses (Section 4.1.2), and explain
the need for using data warehouses for data analysis, rather than performing
the analysis directly on traditional databases (Section 4.1.3). This is followed
by a presentation of data warehouse architecture (Section 4.1.4). Next, we
study three data warehouse models—an enterprise model, a data mart, and
a virtual warehouse (Section 4.1.5). Section 4.1.6 describes back-end utilities
for data warehousing, such as extraction, transformation, and loading. Finally,
Section 4.1.7 presents the metadata repository, where we store data about our
data.

4.1.1 What is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to sys-
tematically organize, understand, and use their data to make strategic decisions.
Data warehouse systems are valuable tools in today’s competitive, fast-evolving
world. In the last several years, many firms have spent millions of dollars in
building enterprise-wide data warehouses. Many people feel that with com-
petition mounting in every industry, data warehousing is the latest must-have
marketing weapon—a way to retain customers by learning more about their
needs.

“Then, what exactly is a data warehouse?” Data warehouses have been
defined in many ways, making it difficult to formulate a rigorous definition.
Loosely speaking, a data warehouse refers to a data repository that is maintained
separately from an organization’s operational databases. Data warehouse sys-
tems allow for the integration of a variety of application systems. They support
information processing by providing a solid platform of consolidated historical
data for analysis.

According to William H. Inmon, a leading architect in the construction of
data warehouse systems, “A data warehouse is a subject-oriented, integrated,
time-variant, and nonvolatile collection of data in support of management’s
decision making process” [Inm96]. This short, but comprehensive definition
presents the major features of a data warehouse. The four keywords, subject-
oriented, integrated, time-variant, and nonvolatile, distinguish data warehouses
from other data repository systems, such as relational database systems, trans-
action processing systems, and file systems. Let’s take a closer look at each of
these key features.

• Subject-oriented: A data warehouse is organized around major sub-
jects, such as customer, supplier, product, and sales. Rather than con-
centrating on the day-to-day operations and transaction processing of an

4.1. DATA WAREHOUSE: BASIC CONCEPTS 5

organization, a data warehouse focuses on the modeling and analysis of
data for decision makers. Hence, data warehouses typically provide a sim-
ple and concise view around particular subject issues by excluding data
that are not useful in the decision support process.

• Integrated: A data warehouse is usually constructed by integrating mul-
tiple heterogeneous sources, such as relational databases, flat files, and
online transaction records. Data cleaning and data integration techniques
are applied to ensure consistency in naming conventions, encoding struc-
tures, attribute measures, and so on.

• Time-variant: Data are stored to provide information from a historical
perspective (e.g., the past 5–10 years). Every key structure in the data
warehouse contains, either implicitly or explicitly, an element of time.

• Nonvolatile: A data warehouse is always a physically separate store
of data transformed from the application data found in the operational
environment. Due to this separation, a data warehouse does not require
transaction processing, recovery, and concurrency control mechanisms. It
usually requires only two operations in data accessing: initial loading of
data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves
as a physical implementation of a decision support data model and stores the
information on which an enterprise needs to make strategic decisions. A data
warehouse is also often viewed as an architecture, constructed by integrating
data from multiple heterogeneous sources to support structured and/or ad hoc
queries, analytical reporting, and decision making.

Based on this information, we view data warehousing as the process of con-
structing and using data warehouses. The construction of a data warehouse re-
quires data cleaning, data integration, and data consolidation. The utilization of
a data warehouse often necessitates a collection of decision support technologies.
This allows “knowledge workers” (e.g., managers, analysts, and executives) to
use the warehouse to quickly and conveniently obtain an overview of the data,
and to make sound decisions based on information in the warehouse. Some
authors use the term “data warehousing” to refer only to the process of data
warehouse construction, while the term “warehouse DBMS” is used to refer to
the management and utilization of data warehouses. We will not make this
distinction here.

“How are organizations using the information from data warehouses?” Many
organizations use this information to support business decision-making activi-
ties, including (1) increasing customer focus, which includes the analysis of cus-
tomer buying patterns (such as buying preference, buying time, budget cycles,
and appetites for spending); (2) repositioning products and managing product
portfolios by comparing the performance of sales by quarter, by year, and by
geographic regions in order to fine-tune production strategies; (3) analyzing op-
erations and looking for sources of profit; and (4) managing customer relation-

6CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

ships, making environmental corrections, and managing the cost of corporate
assets.

Data warehousing is also very useful from the point of view of heterogeneous
database integration. Organizations typically collect diverse kinds of data and
maintain large databases from multiple, heterogeneous, autonomous, and dis-
tributed information sources. To integrate such data, and provide easy and
efficient access to it, is highly desirable, yet challenging. Much effort has been
spent in the database industry and research community toward achieving this
goal.

The traditional database approach to heterogeneous database integration
is to build wrappers and integrators (or mediators), on top of multiple,
heterogeneous databases. When a query is posed to a client site, a metadata
dictionary is used to translate the query into queries appropriate for the indi-
vidual heterogeneous sites involved. These queries are then mapped and sent
to local query processors. The results returned from the different sites are
integrated into a global answer set. This query-driven approach requires
complex information filtering and integration processes, and competes with lo-
cal sites for processing resources. It is inefficient and potentially expensive for
frequent queries, especially for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional ap-
proach of heterogeneous database integration described above. Rather than
using a query-driven approach, data warehousing employs an update-driven
approach in which information from multiple, heterogeneous sources is inte-
grated in advance and stored in a warehouse for direct querying and analysis.
Unlike online transaction processing databases, data warehouses do not con-
tain the most current information. However, a data warehouse brings high
performance to the integrated heterogeneous database system because data are
copied, preprocessed, integrated, annotated, summarized, and restructured into
one semantic data store. Furthermore, query processing in data warehouses does
not interfere with the processing at local sources. Moreover, data warehouses
can store and integrate historical information and support complex multidimen-
sional queries. As a result, data warehousing has become popular in industry.

4.1.2 Differences between Operational Database Systems

and Data Warehouses

Because most people are familiar with commercial relational database systems,
it is easy to understand what a data warehouse is by comparing these two kinds
of systems.

The major task of online operational database systems is to perform online
transaction and query processing. These systems are called online transaction
processing (OLTP) systems. They cover most of the day-to-day operations of
an organization, such as purchasing, inventory, manufacturing, banking, payroll,
registration, and accounting. Data warehouse systems, on the other hand, serve
users or knowledge workers in the role of data analysis and decision making.

4.1. DATA WAREHOUSE: BASIC CONCEPTS 7

Such systems can organize and present data in various formats in order to
accommodate the diverse needs of the different users. These systems are known
as online analytical processing (OLAP) systems.

The major distinguishing features between OLTP and OLAP are summa-
rized as follows:

• Users and system orientation: An OLTP system is customer-oriented
and is used for transaction and query processing by clerks, clients, and
information technology professionals. An OLAP system is market-oriented
and is used for data analysis by knowledge workers, including managers,
executives, and analysts.

• Data contents: An OLTP system manages current data that, typically,
are too detailed to be easily used for decision making. An OLAP system
manages large amounts of historical data, provides facilities for summa-
rization and aggregation, and stores and manages information at different
levels of granularity. These features make the data easier to use in in-
formed decision making.

• Database design: An OLTP system usually adopts an entity-relationship
(ER) data model and an application-oriented database design. An OLAP
system typically adopts either a star or snowflake model (to be discussed
in Section 4.2.2) and a subject-oriented database design.

• View: An OLTP system focuses mainly on the current data within an
enterprise or department, without referring to historical data or data in
different organizations. In contrast, an OLAP system often spans mul-
tiple versions of a database schema, due to the evolutionary process of
an organization. OLAP systems also deal with information that orig-
inates from different organizations, integrating information from many
data stores. Because of their huge volume, OLAP data are stored on
multiple storage media.

• Access patterns: The access patterns of an OLTP system consist mainly
of short, atomic transactions. Such a system requires concurrency control
and recovery mechanisms. However, accesses to OLAP systems are mostly
read-only operations (because most data warehouses store historical rather
than up-to-date information), although many could be complex queries.

Other features that distinguish between OLTP and OLAP systems include
database size, frequency of operations, and performance metrics. These are sum-
marized in Table 4.1.

4.1.3 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder,
“why not perform online analytical processing directly on such databases instead

8CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Table 4.1: Comparison between OLTP and OLAP systems.
Feature OLTP OLAP

Characteristic operational processing informational processing
Orientation transaction analysis
User clerk, DBA, database professional knowledge worker (e.g., manager,

executive, analyst)
Function day-to-day operations long-term informational require-

ments, decision support
DB design ER based, application-oriented star/snowflake, subject-oriented
Data current; guaranteed up-to-date historical; accuracy maintained

over time
Summarization primitive, highly detailed summarized, consolidated
View detailed, flat relational summarized, multidimensional
Unit of work short, simple transaction complex query
Access read/write mostly read
Focus data in information out
Operations index/hash on primary key lots of scans
Number of records
accessed tens millions
Number of users thousands hundreds
DB size GB to high-order GB ≥ TB
Priority high performance, high availability high flexibility, end-user autonomy
Metric transaction throughput query throughput, response time

NOTE: Table is partially based on [CD97].

of spending additional time and resources to construct a separate data ware-
house?” A major reason for such a separation is to help promote the high
performance of both systems. An operational database is designed and tuned
from known tasks and workloads, such as indexing and hashing using primary
keys, searching for particular records, and optimizing “canned” queries. On the
other hand, data warehouse queries are often complex. They involve the com-
putation of large groups of data at summarized levels, and may require the use
of special data organization, access, and implementation methods based on mul-
tidimensional views. Processing OLAP queries in operational databases would
substantially degrade the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of
multiple transactions. Concurrency control and recovery mechanisms, such as
locking and logging, are required to ensure the consistency and robustness of
transactions. An OLAP query often needs read-only access of data records for
summarization and aggregation. Concurrency control and recovery mechanisms,
if applied for such OLAP operations, may jeopardize the execution of concurrent
transactions and thus substantially reduce the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is
based on the different structures, contents, and uses of the data in these two sys-
tems. Decision support requires historical data, whereas operational databases
do not typically maintain historical data. In this context, the data in oper-

4.1. DATA WAREHOUSE: BASIC CONCEPTS 9

ational databases, though abundant, is usually far from complete for decision
making. Decision support requires consolidation (such as aggregation and sum-
marization) of data from heterogeneous sources, resulting in high-quality, clean,
and integrated data. In contrast, operational databases contain only detailed
raw data, such as transactions, which need to be consolidated before analysis.
Because the two systems provide quite different functionalities and require dif-
ferent kinds of data, it is presently necessary to maintain separate databases.
However, many vendors of operational relational database management systems
are beginning to optimize such systems to support OLAP queries. As this trend
continues, the separation between OLTP and OLAP systems is expected to
decrease.

4.1.4 Data Warehousing: A Multi-Tiered Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 4.1.

1. The bottom tier is a warehouse database server that is almost always
a relational database system. Back-end tools and utilities are used to
feed data into the bottom tier from operational databases or other ex-
ternal sources (such as customer profile information provided by external
consultants). These tools and utilities perform data extraction, clean-
ing, and transformation (e.g., to merge similar data from different sources
into a unified format), as well as load and refresh functions to update
the data warehouse (Section 4.1.6). The data are extracted using appli-
cation program interfaces known as gateways. A gateway is supported
by the underlying DBMS and allows client programs to generate SQL
code to be executed at a server. Examples of gateways include ODBC
(Open Database Connection) and OLEDB (Object Linking and Embed-
ding, Database) by Microsoft and JDBC (Java Database Connection).
This tier also contains a metadata repository, which stores information
about the data warehouse and its contents. The metadata repository is
further described in Section 4.1.7.

2. The middle tier is an OLAP server that is typically implemented using
either (1) a relational OLAP (ROLAP) model, that is, an extended
relational DBMS that maps operations on multidimensional data to stan-
dard relational operations; or (2) a multidimensional OLAP (MO-
LAP) model, that is, a special-purpose server that directly implements
multidimensional data and operations. OLAP servers are discussed in
Section 4.4.4.

3. The top tier is a front-end client layer, which contains query and re-
porting tools, analysis tools, and/or data mining tools (e.g., trend analysis,
prediction, and so on).

10CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Query/report Analysis Data mining

OLAP server OLAP server

Top tier:

front-end tools

Middle tier:

OLAP server

Bottom tier:

data warehouse

server

Data

Output

Extract

Clean

Transform

Load

Refresh

Data warehouse Data martsMonitoring

Metadata repository

Operational databases External sources

Administration

Figure 4.1: A three-tier data warehousing architecture.

4.1.5 Data Warehouse Models: Enterprise Warehouse, Data

Mart, and Virtual Warehouse

From the architecture point of view, there are three data warehouse models: the
enterprise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the infor-
mation about subjects spanning the entire organization. It provides
corporate-wide data integration, usually from one or more operational
systems or external information providers, and is cross-functional in scope.
It typically contains detailed data as well as summarized data, and can
range in size from a few gigabytes to hundreds of gigabytes, terabytes,
or beyond. An enterprise data warehouse may be implemented on tradi-
tional mainframes, computer superservers, or parallel architecture plat-

4.1. DATA WAREHOUSE: BASIC CONCEPTS 11

forms. It requires extensive business modeling and may take years to
design and build.

Data mart: A data mart contains a subset of corporate-wide data that is of
value to a specific group of users. The scope is confined to specific selected
subjects. For example, a marketing data mart may confine its subjects to
customer, item, and sales. The data contained in data marts tend to be
summarized.

Data marts are usually implemented on low-cost departmental servers
that are Unix/Linux- or Windows-based. The implementation cycle of a
data mart is more likely to be measured in weeks rather than months or
years. However, it may involve complex integration in the long run if its
design and planning were not enterprise-wide.

Depending on the source of data, data marts can be categorized as in-
dependent or dependent. Independent data marts are sourced from data
captured from one or more operational systems or external information
providers, or from data generated locally within a particular department
or geographic area. Dependent data marts are sourced directly from en-
terprise data warehouses.

Virtual warehouse: A virtual warehouse is a set of views over operational
databases. For efficient query processing, only some of the possible sum-
mary views may be materialized. A virtual warehouse is easy to build but
requires excess capacity on operational database servers.

“What are the pros and cons of the top-down and bottom-up approaches to
data warehouse development?” The top-down development of an enterprise
warehouse serves as a systematic solution and minimizes integration problems.
However, it is expensive, takes a long time to develop, and lacks flexibility
due to the difficulty in achieving consistency and consensus for a common data
model for the entire organization. The bottom-up approach to the design,
development, and deployment of independent data marts provides flexibility,
low cost, and rapid return of investment. It, however, can lead to problems
when integrating various disparate data marts into a consistent enterprise data
warehouse.

A recommended method for the development of data warehouse systems
is to implement the warehouse in an incremental and evolutionary manner, as
shown in Figure 4.2. First, a high-level corporate data model is defined within a
reasonably short period (such as one or two months) that provides a corporate-
wide, consistent, integrated view of data among different subjects and potential
usages. This high-level model, although it will need to be refined in the further
development of enterprise data warehouses and departmental data marts, will
greatly reduce future integration problems. Second, independent data marts
can be implemented in parallel with the enterprise warehouse based on the
same corporate data model set as above. Third, distributed data marts can
be constructed to integrate different data marts via hub servers. Finally, a

12CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

multitier data warehouse is constructed where the enterprise warehouse
is the sole custodian of all warehouse data, which is then distributed to the
various dependent data marts.

4.1.6 Extraction, Transformation, Loading

Data warehouse systems use back-end tools and utilities to populate and refresh
their data (Figure 4.1). These tools and utilities include the following functions:

• Data extraction, which typically gathers data from multiple, heteroge-
neous, and external sources

• Data cleaning, which detects errors in the data and rectifies them when
possible

• Data transformation, which converts data from legacy or host format
to warehouse format

• Load, which sorts, summarizes, consolidates, computes views, checks in-
tegrity, and builds indices and partitions

• Refresh, which propagates the updates from the data sources to the ware-
house

Besides cleaning, loading, refreshing, and metadata definition tools, data ware-
house systems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving
the quality of the data and, subsequently, of the data mining results. They are
described in Chapter 3 on Data Preprocessing. Because we are mostly interested
in the aspects of data warehousing technology related to data mining, we will
not get into the details of the remaining tools and recommend interested readers
to consult books dedicated to data warehousing technology.

Enterprise

data

warehouse

Multitier

data

warehouse

Distributed

data marts

Data

mart

Define a high-level corporate data model

Data

mart

Model refinement Model refinement

Figure 4.2: A recommended approach for data warehouse development.

4.1. DATA WAREHOUSE: BASIC CONCEPTS 13

4.1.7 Metadata Repository

Metadata are data about data. When used in a data warehouse, metadata are
the data that define warehouse objects. Figure 4.1 showed a metadata repository
within the bottom tier of the data warehousing architecture. Metadata are
created for the data names and definitions of the given warehouse. Additional
metadata are created and captured for timestamping any extracted data, the
source of the extracted data, and missing fields that have been added by data
cleaning or integration processes.

A metadata repository should contain the following:

• A description of the structure of the data warehouse, which includes the
warehouse schema, view, dimensions, hierarchies, and derived data defini-
tions, as well as data mart locations and contents

• Operational metadata, which include data lineage (history of migrated
data and the sequence of transformations applied to it), currency of data
(active, archived, or purged), and monitoring information (warehouse us-
age statistics, error reports, and audit trails)

• The algorithms used for summarization, which include measure and di-
mension definition algorithms, data on granularity, partitions, subject ar-
eas, aggregation, summarization, and predefined queries and reports

• The mapping from the operational environment to the data warehouse,
which includes source databases and their contents, gateway descriptions,
data partitions, data extraction, cleaning, transformation rules and de-
faults, data refresh and purging rules, and security (user authorization
and access control)

• Data related to system performance, which include indices and profiles
that improve data access and retrieval performance, in addition to rules
for the timing and scheduling of refresh, update, and replication cycles

• Business metadata, which include business terms and definitions, data
ownership information, and charging policies

A data warehouse contains different levels of summarization, of which meta-
data is one type. Other types include current detailed data (which are almost
always on disk), older detailed data (which are usually on tertiary storage),
lightly summarized data and highly summarized data (which may or may not
be physically housed).

Metadata play a very different role than other data warehouse data and are
important for many reasons. For example, metadata are used as a directory
to help the decision support system analyst locate the contents of the data
warehouse, as a guide to the mapping of data when the data are transformed
from the operational environment to the data warehouse environment, and as
a guide to the algorithms used for summarization between the current detailed
data and the lightly summarized data, and between the lightly summarized

14CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

data and the highly summarized data. Metadata should be stored and managed
persistently (i.e., on disk).

4.2 Data Warehouse Modeling: Data Cube and

OLAP

Data warehouses and OLAP tools are based on a multidimensional data
model. This model views data in the form of a data cube. In this section, you
will learn how data cubes model n-dimensional data (Section 4.2.1). In Sec-
tion 4.2.2, various multidimensional models are shown (such as the star schema,
snowflake schema, and fact constellation). You will also learn about concept
hierarchies (Section 4.2.3) and measures (Section 4.2.4) and how they can be
used in basic OLAP operations to allow interactive mining at multiple levels of
abstraction. Typical OLAP operations such as drill-down and roll-up are illus-
trated (Section 4.2.5). Finally, the starnet model for querying multidimensional
databases is presented (Section 4.2.6).

4.2.1 Data Cube: A Multidimensional Data Model

“What is a data cube?” A data cube allows data to be modeled and viewed
in multiple dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect
to which an organization wants to keep records. For example, AllElectronics
may create a sales data warehouse in order to keep records of the store’s
sales with respect to the dimensions time, item, branch, and location. These
dimensions allow the store to keep track of things like monthly sales of items
and the branches and locations at which the items were sold. Each dimension
may have a table associated with it, called a dimension table, which further
describes the dimension. For example, a dimension table for item may contain
the attributes item name, brand, and type. Dimension tables can be specified
by users or experts, or automatically generated and adjusted based on data
distributions.

A multidimensional data model is typically organized around a central theme,
like sales, for instance. This theme is represented by a fact table. Facts are nu-
merical measures. Think of them as the quantities by which we want to analyze
relationships between dimensions. Examples of facts for a sales data warehouse
include dollars sold (sales amount in dollars), units sold (number of units sold),
and amount budgeted. The fact table contains the names of the facts, or mea-
sures, as well as keys to each of the related dimension tables. You will soon get
a clearer picture of how this works when we look at multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data
warehousing the data cube is n-dimensional. To gain a better understanding
of data cubes and the multidimensional data model, let’s start by looking at
a simple 2-D data cube that is, in fact, a table or spreadsheet for sales data
from AllElectronics. In particular, we will look at the AllElectronics sales data

4.2. DATA WAREHOUSE MODELING: DATA CUBE AND OLAP 15

Table 4.2: A 2-D view of sales data for AllElectronics according to the dimen-
sions time and item, where the sales are from branches located in the city of
Vancouver. The measure displayed is dollars sold (in thousands).

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security

Q1 605 825 14 400
Q2 680 952 31 512
Q3 812 1023 30 501
Q4 927 1038 38 580

Table 4.3: A 3-D view of sales data for AllElectronics, according to the dimensions time, item,
and location . The measure displayed is dollars sold (in thousands).

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

item item item item

home home home home

time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400
Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512
Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501
Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

for items sold per quarter in the city of Vancouver. These data are shown in
Table 4.2. In this 2-D representation, the sales for Vancouver are shown with
respect to the time dimension (organized in quarters) and the item dimension
(organized according to the types of items sold). The fact or measure displayed
is dollars sold (in thousands).

Now, suppose that we would like to view the sales data with a third dimen-
sion. For instance, suppose we would like to view the data according to time
and item, as well as location for the cities Chicago, New York, Toronto, and
Vancouver. These 3-D data are shown in Table 4.3. The 3-D data of Table 4.3
are represented as a series of 2-D tables. Conceptually, we may also represent
the same data in the form of a 3-D data cube, as in Figure 4.3.

Suppose that we would now like to view our sales data with an additional
fourth dimension, such as supplier. Viewing things in 4-D becomes tricky. How-
ever, we can think of a 4-D cube as being a series of 3-D cubes, as shown in
Figure 4.4. If we continue in this way, we may display any n-D data as a se-
ries of (n − 1)-D “cubes.” The data cube is a metaphor for multidimensional
data storage. The actual physical storage of such data may differ from its log-
ical representation. The important thing to remember is that data cubes are

16CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

818
1087

854

746
968

882

43
38

89

591
872

623

698

925

789
682

8701002

728

984

784

Q1

Q2

Q3

Q4

Chicago
New York

Toronto
Vancouver

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

iti
es)

home

entertainment

computer

item (types)

phone

security

605 825 14 400

51231952680

812 1023 30 501

580381038927

Figure 4.3: A 3-D data cube representation of the data in Table 4.3, according to
the dimensions time, item, and location. The measure displayed is dollars sold
(in thousands).

n-dimensional and do not confine data to 3-D.
The above tables show the data at different degrees of summarization. In

the data warehousing research literature, a data cube such as each of the above
is often referred to as a cuboid. Given a set of dimensions, we can generate
a cuboid for each of the possible subsets of the given dimensions. The result
would form a lattice of cuboids, each showing the data at a different level of
summarization, or group by. The lattice of cuboids is then referred to as a
data cube. Figure 4.5 shows a lattice of cuboids forming a data cube for the
dimensions time, item, location, and supplier.

The cuboid that holds the lowest level of summarization is called the base
cuboid. For example, the 4-D cuboid in Figure 4.4 is the base cuboid for
the given time, item, location, and supplier dimensions. Figure 4.3 is a 3-D
(nonbase) cuboid for time, item, and location, summarized for all suppliers. The
0-D cuboid, which holds the highest level of summarization, is called the apex
cuboid. In our example, this is the total sales, or dollars sold, summarized over
all four dimensions. The apex cuboid is typically denoted by all.

4.2.2 Stars, Snowflakes, and Fact Constellations:

Schemas for Multidimensional Data Models

The entity-relationship data model is commonly used in the design of rela-
tional databases, where a database schema consists of a set of entities and
the relationships between them. Such a data model is appropriate for on-
line transaction processing. A data warehouse, however, requires a concise,
subject-oriented schema that facilitates online data analysis.

The most popular data model for a data warehouse is a multidimensional

4.2. DATA WAREHOUSE MODELING: DATA CUBE AND OLAP 17

605 825 14 400Q1

Q2

Q3

Q4

Chicago
New York
Toronto

Vancouver

tim
e

(q
ua

rt
er

s)loc
ati

on
 (c

iti
es)

home

entertainment

computer

item (types)

phone
security

home

entertainment

computer

item (types)

phone
security

home

entertainment

computer

item (types)

phone
security

supplier = “SUP1”
 supplier = “SUP2”
 supplier = “SUP3”

Figure 4.4: A 4-D data cube representation of sales data, according to the dimen-
sions time, item, location, and supplier. The measure displayed is dollars sold
(in thousands). For improved readability, only some of the cube values are
shown.

model. Such a model can exist in the form of a star schema, a snowflake
schema, or a fact constellation schema. Let’s look at each of these schema
types.
Star schema: The most common modeling paradigm is the star schema, in

which the data warehouse contains (1) a large central table (fact table)
containing the bulk of the data, with no redundancy, and (2) a set of
smaller attendant tables (dimension tables), one for each dimension.
The schema graph resembles a starburst, with the dimension tables dis-
played in a radial pattern around the central fact table.

Example 4.1 Star schema. A star schema for AllElectronics sales is shown in Figure 4.6.
Sales are considered along four dimensions, namely, time, item, branch, and loca-
tion. The schema contains a central fact table for sales that contains keys to each
of the four dimensions, along with two measures: dollars sold and units sold.
To minimize the size of the fact table, dimension identifiers (such as time key
and item key) are system-generated identifiers.

Notice that in the star schema, each dimension is represented by only one ta-
ble, and each table contains a set of attributes. For example, the location dimen-
sion table contains the attribute set {location key, street, city, province or state,
country}. This constraint may introduce some redundancy. For example, “Ur-
bana” and “Chicago” are both cities in the state of Illinois, USA. Entries for
such cities in the location dimension table will create redundancy among the
attributes province or state and country, that is, (..., Urbana, IL, USA) and
(..., Chicago, IL, USA). Moreover, the attributes within a dimension table may
form either a hierarchy (total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema
model, where some dimension tables are normalized, thereby further split-
ting the data into additional tables. The resulting schema graph forms a
shape similar to a snowflake.

18CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

supplier

time, item, location, supplier

item, locationtime, location

item, suppliertime, supplier

time, location, supplier

item, location,

supplier

location,

supplier

time, item, supplier

time
item location

time, item

time, item, location

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

Figure 4.5: Lattice of cuboids, making up a 4-D data cube for the dimensions
time, item, location, and supplier. Each cuboid represents a different degree of
summarization.

The major difference between the snowflake and star schema models is that
the dimension tables of the snowflake model may be kept in normalized form
to reduce redundancies. Such a table is easy to maintain and saves storage
space. However, this saving of space is negligible in comparison to the typical
magnitude of the fact table. Furthermore, the snowflake structure can reduce
the effectiveness of browsing, since more joins will be needed to execute a query.
Consequently, the system performance may be adversely impacted. Hence, al-
though the snowflake schema reduces redundancy, it is not as popular as the
star schema in data warehouse design.

Example 4.2 Snowflake schema. A snowflake schema for AllElectronics sales is given in
Figure 4.7. Here, the sales fact table is identical to that of the star schema in
Figure 4.6. The main difference between the two schemas is in the definition
of dimension tables. The single dimension table for item in the star schema is
normalized in the snowflake schema, resulting in new item and supplier tables.
For example, the item dimension table now contains the attributes item key,
item name, brand, type, and supplier key, where supplier key is linked to the
supplier dimension table, containing supplier key and supplier type information.
Similarly, the single dimension table for location in the star schema can be
normalized into two new tables: location and city. The city key in the new
location table links to the city dimension. Notice that further normalization
can be performed on province or state and country in the snowflake schema

4.2. DATA WAREHOUSE MODELING: DATA CUBE AND OLAP 19

time

dimension table

time_ key

day

day_of_the_week

month

quarter

year

sales

fact table

time_key

item_key

branch_key

location_key

dollars_sold

units_sold

item

dimension table

item_key

item_name

brand

type

supplier_type

branch

dimension table

branch_key

branch_name

branch_type

location

dimension table

location_key

street

city

province_or_state

country

Figure 4.6: Star schema of a data warehouse for sales.

shown in Figure 4.7, when desirable.

Fact constellation: Sophisticated applications may require multiple fact ta-
bles to share dimension tables. This kind of schema can be viewed as a
collection of stars, and hence is called a galaxy schema or a fact con-
stellation.

Example 4.3 Fact constellation. A fact constellation schema is shown in Figure 4.8. This
schema specifies two fact tables, sales and shipping. The sales table definition
is identical to that of the star schema (Figure 4.6). The shipping table has
five dimensions, or keys: item key, time key, shipper key, from location, and
to location, and two measures: dollars cost and units shipped. A fact constel-
lation schema allows dimension tables to be shared between fact tables. For
example, the dimensions tables for time, item, and location are shared between
both the sales and shipping fact tables.

In data warehousing, there is a distinction between a data warehouse and a
data mart. A data warehouse collects information about subjects that span the
entire organization, such as customers, items, sales, assets, and personnel, and
thus its scope is enterprise-wide. For data warehouses, the fact constellation
schema is commonly used, since it can model multiple, interrelated subjects. A
data mart, on the other hand, is a department subset of the data warehouse
that focuses on selected subjects, and thus its scope is department-wide. For data
marts, the star or snowflake schema are commonly used, since both are geared
toward modeling single subjects, although the star schema is more popular and
efficient.

20CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

time

dimension table

time_key

day

day_of_week

month

quarter

year

sales

fact table

time_key

item_key

branch_key

location_key

dollars_sold

units_sold

item

dimension table

item_key

item_name

brand

type

supplier_key

branch

dimension table

branch_key

branch_name

branch_type

location

dimension table

location_key

street

city_key

supplier

dimension table

supplier_key

supplier_type

city

dimension table

city_key

city

province_or_state

country

Figure 4.7: Snowflake schema of a data warehouse for sales.

4.2.3 Dimensions: The Role of Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level con-
cepts to higher-level, more general concepts. Consider a concept hierarchy for the
dimension location. Cityvalues for location includeVancouver,Toronto,NewYork,
andChicago. Eachcity, however, canbemapped to theprovince or state towhich it
belongs. For example,Vancouver canbemappedtoBritishColumbia, andChicago
to Illinois. The provinces and states can in turn be mapped to the country to which
they belong, such as Canada or the USA. These mappings form a concept hier-
archy for the dimension location, mapping a set of low-level concepts (i.e., cities)
to higher-level, more general concepts (i.e., countries). The concept hierarchy de-
scribed above is illustrated in Figure 4.9.

Many concept hierarchies are implicit within the database schema. For exam-
ple, suppose that the dimension location is described by the attributes number,
street, city, province or state, zipcode, and country. These attributes are relatedby
atotalorder, forming a concept hierarchy such as “street < city < province or state
< country”. This hierarchy is shown in Figure 4.10(a). Alternatively, the at-
tributes of a dimension may be organized in a partial order, forming a lattice. An
example of a partial order for the time dimension based on the attributes day,
week, month, quarter, and year is “day < {month <quarter; week} < year”.1

This lattice structure is shown in Figure 4.10(b). A concept hierarchy that is a
total or partial order among attributes in a database schema is called a schema

1Since a week often crosses the boundary of two consecutive months, it is usually not
treated as a lower abstraction of month. Instead, it is often treated as a lower abstraction of
year, since a year contains approximately 52 weeks.

4.2. DATA WAREHOUSE MODELING: DATA CUBE AND OLAP 21

time

dimension table
time_key

day

day_of_week

month

quarter

year

sales

fact table

time_key

item_key

branch_key

location_key

dollars_sold

units_sold

item

dimension table

item_key

item_name

brand

type

supplier_type

branch

dimension table

branch_key

branch_name

branch_type

location

dimension table

location_key

street

city

province_or_state

country

shipping

fact table

item_key

time_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper

dimension table
shipper_key

shipper_name

location_key

shipper_type

Figure 4.8: Fact constellation schema of a data warehouse for sales and shipping.

hierarchy. Concept hierarchies that are common to many applications may be
predefined in the data mining system, such as the concept hierarchy for time.
Data mining systems should provide users with the flexibility to tailor prede-
fined hierarchies according to their particular needs. For example, users may
like to define a fiscal year starting on April 1 or an academic year starting on
September 1.

Concept hierarchies may also be defined by discretizing or grouping values
for a given dimension or attribute, resulting in a set-grouping hierarchy. A
total or partial order can be defined among groups of values. An example of a
set-grouping hierarchy is shown in Figure 4.11 for the dimension price, where
an interval ($X . . . $Y] denotes the range from $X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or
dimension, based on different user viewpoints. For instance, a user may pre-
fer to organize price by defining ranges for inexpensive, moderately priced, and
expensive.

Concept hierarchies may be provided manually by system users, domain
experts, or knowledge engineers, or may be automatically generated based on
statistical analysis of the data distribution. The automatic generation of concept
hierarchies is discussed in Chapter 3 as a preprocessing step in preparation for
data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction,
as we shall see in the following subsection.

22CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Canada

British Columbia Ontario

Vancouver Victoria OttawaToronto Chicago UrbanaBuffalo

New York

New York

Illinois

USA

location

country

city

province_or_state

Figure 4.9: A concept hierarchy for the dimension location. Due to space limi-
tations, not all of the nodes of the hierarchy are shown (as indicated by the use
of “ellipsis” between nodes).

4.2.4 Measures: Their Categorization and Computation

“How are measures computed?” To answer this question, we first study how
measures can be categorized. Note that a multidimensional point in the data
cube space can be defined by a set of dimension-value pairs, for example, 〈time
= “Q1”, location = “Vancouver”, item = “computer”〉. A data cube measure
is a numerical function that can be evaluated at each point in the data cube
space. A measure value is computed for a given point by aggregating the data
corresponding to the respective dimension-value pairs defining the given point.
We will look at concrete examples of this shortly.

Measures can be organized into three categories (i.e., distributive, algebraic,
holistic), based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in
a distributed manner as follows. Suppose the data are partitioned into
n sets. We apply the function to each partition, resulting in n aggregate
values. If the result derived by applying the function to the n aggregate
values is the same as that derived by applying the function to the entire
data set (without partitioning), the function can be computed in a dis-
tributed manner. For example, sum() can be computed for a data cube
by first partitioning the cube into a set of subcubes, computing sum() for
each subcube, and then summing up the counts obtained for each sub-
cube. Hence, sum() is a distributive aggregate function. For the same
reason, count(), min(), and max() are distributive aggregate functions.
By treating the count value of each nonempty base cell as 1 by default,
count() of any cell in a cube can be viewed as the sum of the count val-
ues of all of its corresponding child cells in its subcube. Thus, count()

4.2. DATA WAREHOUSE MODELING: DATA CUBE AND OLAP 23

country

city

province_or_state

month week

year

day

quarter

street

(a) (b)

Figure 4.10: Hierarchical and lattice structures of attributes in warehouse di-
mensions: (a) a hierarchy for location; (b) a lattice for time.

($0 $1000]

($800 $1000]

($0 … �
$100]

($100…

$200]

($800…

$900]

($900…

$1000]

($600…

$700]

($700…

$800]

($200…

$300]

($300…

$400]

($400…

$500]

($500…

$600]

($600 $800]($400 $600]($200 $400]($0 $200]

Figure 4.11: A concept hierarchy for the attribute price.

is distributive. A measure is distributive if it is obtained by applying a
distributive aggregate function. Distributive measures can be computed
efficiently because of the way the computation can be partitioned.

Algebraic: An aggregate function is algebraic if it can be computed by an alge-
braic function with M arguments (where M is a bounded positive integer),
each of which is obtained by applying a distributive aggregate function.
For example, avg() (average) can be computed by sum()/count(), where
both sum() and count() are distributive aggregate functions. Similarly, it
can be shown that min N() and max N() (which find the N minimum and
N maximum values, respectively, in a given set) and standard deviation()
are algebraic aggregate functions. A measure is algebraic if it is obtained
by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on

24CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

the storage size needed to describe a subaggregate. That is, there does not
exist an algebraic function with M arguments (where M is a constant) that
characterizes the computation. Common examples of holistic functions
include median(), mode(), and rank(). A measure is holistic if it is obtained
by applying a holistic aggregate function.

Most large data cube applications require efficient computation of distribu-
tive and algebraic measures. Many efficient techniques for this exist. In contrast,
it is difficult to compute holistic measures efficiently. Efficient techniques to ap-
proximate the computation of some holistic measures, however, do exist. For
example, rather than computing the exact median(), Equation (2.3) of Chap-
ter 2 can be used to estimate the approximate median value for a large data
set. In many cases, such techniques are sufficient to overcome the difficulties of
efficient computation of holistic measures.

Various methods for computing different measures in the construction of
data cubes are discussed in-depth in Chapter 5. Notice that most of the cur-
rent data cube technology confines the measures of multidimensional databases
to numerical data. However, measures can also be applied to other kinds of
data, such as spatial, multimedia, or text data. Modeling and computing such
measures will be discussed in Volume 2.

4.2.5 Typical OLAP Operations

“How are concept hierarchies useful in OLAP?” In the multidimensional model,
data are organized into multiple dimensions, and each dimension contains mul-
tiple levels of abstraction defined by concept hierarchies. This organization
provides users with the flexibility to view data from different perspectives. A
number of OLAP data cube operations exist to materialize these different views,
allowing interactive querying and analysis of the data at hand. Hence, OLAP
provides a user-friendly environment for interactive data analysis.

Example 4.4 OLAP operations. Let’s look at some typical OLAP operations for mul-
tidimensional data. Each of the operations described below is illustrated in
Figure 4.12. At the center of the figure is a data cube for AllElectronics sales.
The cube contains the dimensions location, time, and item, where location is ag-
gregated with respect to city values, time is aggregated with respect to quarters,
and item is aggregated with respect to item types. To aid in our explanation,
we refer to this cube as the central cube. The measure displayed is dollars sold
(in thousands). (For improved readability, only some of the cubes’ cell values
are shown.) The data examined are for the cities Chicago, New York, Toronto,
and Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some
vendors) performs aggregation on a data cube, either by climbing up a
concept hierarchy for a dimension or by dimension reduction. Figure 4.12
shows the result of a roll-up operation performed on the central cube by

4.2. DATA WAREHOUSE MODELING: DATA CUBE AND OLAP 25

Q1

Q2

Q3

Q4

1000

Canada

USA
 2000

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

ou
ntri

es)

home

entertainment

computer

item (types)

phone

security

Toronto
 395

Q1

Q2

605

Vancouver

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

iti
es)

home

entertainment

computer

item (types)

January

February

March

April

May

June

July

August

September

October

November

December

Chicago

New York

Toronto

Vancouver

tim
e

(m
on

th
s)

loc
ati

on
 (c

iti
es)

home

entertainment

computer

item (types)

phone

security

150

100

150

605
 825
 14
 400
Q1

Q2

Q3

Q4

Chicago

New York

Toronto

Vancouver

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

iti
es)

home

entertainment

computer

item (types)

phone

security

440

395

1560

dice for

(location = “Toronto” or “Vancouver”)

and (time = “Q1” or “Q2”) and

(item = “home entertainment” or “computer”)

roll-up

on location

(from cities

to countries)

slice

for time = “Q1”

Chicago

New York

Toronto

Vancouver

home

entertainment

computer

item (types)

phone

security

lo
ca

tio
n

(c
it

ie
s)

605
 825
 14
 400

home

entertainment

computer

phone

security

605

825

14

400

Chicago

New York

location (cities)

ite
m

 (
ty

pe
s)

Toronto

Vancouver

pivot

drill-down

on time

(from quarters

to months)

Figure 4.12: Examples of typical OLAP operations on multidimensional data.

climbing up the concept hierarchy for location given in Figure 4.9. This
hierarchy was defined as the total order “street < city < province or state
< country.” The roll-up operation shown aggregates the data by ascend-
ing the location hierarchy from the level of city to the level of country.
In other words, rather than grouping the data by city, the resulting cube
groups the data by country.

When roll-up is performed by dimension reduction, one or more di-
mensions are removed from the given cube. For example, consider a sales
data cube containing only the two dimensions location and time. Roll-up
may be performed by removing, say, the time dimension, resulting in an
aggregation of the total sales by location, rather than by location and by
time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed
data to more detailed data. Drill-down can be realized by either stepping
down a concept hierarchy for a dimension or introducing additional dimen-

26CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

sions. Figure 4.12 shows the result of a drill-down operation performed
on the central cube by stepping down a concept hierarchy for time defined
as “day < month < quarter < year.” Drill-down occurs by descending
the time hierarchy from the level of quarter to the more detailed level of
month. The resulting data cube details the total sales per month rather
than summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be
performed by adding new dimensions to a cube. For example, a drill-down
on the central cube of Figure 4.12 can occur by introducing an additional
dimension, such as customer group.

Slice and dice: The slice operation performs a selection on one dimension of
the given cube, resulting in a subcube. Figure 4.12 shows a slice operation
where the sales data are selected from the central cube for the dimension
time using the criterion time = “Q1”. The dice operation defines a sub-
cube by performing a selection on two or more dimensions. Figure 4.12
shows a dice operation on the central cube based on the following selection
criteria that involve three dimensions: (location = “Toronto” or “Vancou-
ver”) and (time = “Q1” or “Q2”) and (item = “home entertainment” or
“computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that ro-
tates the data axes in view in order to provide an alternative presentation
of the data. Figure 4.12 shows a pivot operation where the item and loca-
tion axes in a 2-D slice are rotated. Other examples include rotating the
axes in a 3-D cube, or transforming a 3-D cube into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling op-
erations. For example, drill-across executes queries involving (i.e., across)
more than one fact table. The drill-through operation uses relational
SQL facilities to drill through the bottom level of a data cube down to its
back-end relational tables.

Other OLAP operations may include ranking the top N or bottom
N items in lists, as well as computing moving averages, growth rates,
interests, internal rates of return, depreciation, currency conversions, and
statistical functions.

OLAP offers analytical modeling capabilities, including a calculation engine
for deriving ratios, variance, and so on, and for computing measures across mul-
tiple dimensions. It can generate summarizations, aggregations, and hierarchies
at each granularity level and at every dimension intersection. OLAP also sup-
ports functional models for forecasting, trend analysis, and statistical analysis.
In this context, an OLAP engine is a powerful data analysis tool.

4.3. DATA WAREHOUSE DESIGN AND USAGE 27

OLAP Systems versus Statistical Databases

Many of the characteristics of OLAP systems, such as the use of a multidi-
mensional data model and concept hierarchies, the association of measures with
dimensions, and the notions of roll-up and drill-down, also exist in earlier work
on statistical databases (SDBs). A statistical database is a database system
that is designed to support statistical applications. Similarities between the two
types of systems are rarely discussed, mainly due to differences in terminology
and application domains.

OLAP and SDB systems, however, have distinguishing differences. While
SDBs tend to focus on socioeconomic applications, OLAP has been targeted for
business applications. Privacy issues regarding concept hierarchies are a major
concern for SDBs. For example, given summarized socioeconomic data, it is
controversial to allow users to view the corresponding low-level data. Finally,
unlike SDBs, OLAP systems are designed for handling huge amounts of data
efficiently.

4.2.6 A Starnet Query Model for Querying

Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model.
A starnet model consists of radial lines emanating from a central point, where
each line represents a concept hierarchy for a dimension. Each abstraction level
in the hierarchy is called a footprint. These represent the granularities available
for use by OLAP operations such as drill-down and roll-up.

Example 4.5 Starnet. A starnet query model for the AllElectronics data warehouse is shown
in Figure 4.13. This starnet consists of four radial lines, representing concept
hierarchies for the dimensions location, customer, item, and time, respectively.
Each line consists of footprints representing abstraction levels of the dimension.
For example, the time line has four footprints: “day,” “month,” “quarter,” and
“year.” A concept hierarchy may involve a single attribute (like date for the time
hierarchy) or several attributes (e.g., the concept hierarchy for location involves
the attributes street, city, province or state, and country). In order to examine
the item sales at AllElectronics, users can roll up along the time dimension from
month to quarter, or, say, drill down along the location dimension from country
to city. Concept hierarchies can be used to generalize data by replacing low-
level values (such as “day” for the time dimension) by higher-level abstractions
(such as “year”), or to specialize data by replacing higher-level abstractions
with lower-level values.

4.3 Data Warehouse Design and Usage

“What goes into the design of a data warehouse? How are data warehouses
used? How do data warehousing and OLAP relate to data mining?” This sec-
tion tackles these questions. We study the design and usage of data warehousing

28CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

continent

country

province_or_state

city

street

name brand category type

name

category

group

year

quarter

month

day

time

item

location
customer

Figure 4.13: Modeling business queries: a starnet model.

for information processing, analytical processing, and data mining. We begin
by presenting a business analysis framework for data warehouse design (Sec-
tion 4.3.1). Section 4.3.2 looks at the design process, while Section 4.3.3 studies
data warehouse usage. Finally, Section 4.3.4 describes multidimensional data
mining a powerful paradigm that integrates OLAP with data mining technol-
ogy.

4.3.1 A Business Analysis Framework for Data Warehouse

Design

“What can business analysts gain from having a data warehouse?” First, having
a data warehouse may provide a competitive advantage by presenting relevant
information from which to measure performance and make critical adjustments
in order to help win over competitors. Second, a data warehouse can enhance
business productivity because it is able to quickly and efficiently gather infor-
mation that accurately describes the organization. Third, a data warehouse
facilitates customer relationship management because it provides a consistent
view of customers and items across all lines of business, all departments, and all
markets. Finally, a data warehouse may bring about cost reduction by tracking
trends, patterns, and exceptions over long periods in a consistent and reliable
manner.

To design an effective data warehouse we need to understand and analyze
business needs and construct a business analysis framework. The construction

4.3. DATA WAREHOUSE DESIGN AND USAGE 29

of a large and complex information system can be viewed as the construction of
a large and complex building, for which the owner, architect, and builder have
different views. These views are combined to form a complex framework that
represents the top-down, business-driven, or owner’s perspective, as well as the
bottom-up, builder-driven, or implementor’s view of the information system.

Four different views regarding the design of a data warehouse must be con-
sidered: the top-down view, the data source view, the data warehouse view, and
the business query view.

• The top-down view allows the selection of the relevant information nec-
essary for the data warehouse. This information matches the current and
future business needs.

• The data source view exposes the information being captured, stored,
and managed by operational systems. This information may be doc-
umented at various levels of detail and accuracy, from individual data
source tables to integrated data source tables. Data sources are often
modeled by traditional data modeling techniques, such as the entity-
relationship model or CASE (computer-aided software engineering) tools.

• The data warehouse view includes fact tables and dimension tables.
It represents the information that is stored inside the data warehouse,
including precalculated totals and counts, as well as information regarding
the source, date, and time of origin, added to provide historical context.

• Finally, the business query view is the perspective of data in the data
warehouse from the viewpoint of the end user.

Building and using a data warehouse is a complex task because it requires
business skills, technology skills, and program management skills. Regarding
business skills, building a data warehouse involves understanding how such sys-
tems store and manage their data, how to build extractors that transfer data
from the operational system to the data warehouse, and how to build ware-
house refresh software that keeps the data warehouse reasonably up-to-date
with the operational system’s data. Using a data warehouse involves under-
standing the significance of the data it contains, as well as understanding and
translating the business requirements into queries that can be satisfied by the
data warehouse. Regarding technology skills, data analysts are required to un-
derstand how to make assessments from quantitative information and derive
facts based on conclusions from historical information in the data warehouse.
These skills include the ability to discover patterns and trends, to extrapolate
trends based on history and look for anomalies or paradigm shifts, and to present
coherent managerial recommendations based on such analysis. Finally, program
management skills involve the need to interface with many technologies, ven-
dors, and end users in order to deliver results in a timely and cost-effective
manner.

30CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

4.3.2 The Data Warehouse Design Process

Let’s look at various approaches to the process of data warehouse design and
the steps involved.

A data warehouse can be built using a top-down approach, a bottom-up
approach, or a combination of both. The top-down approach starts with the
overall design and planning. It is useful in cases where the technology is mature
and well known, and where the business problems that must be solved are clear
and well understood. The bottom-up approach starts with experiments and
prototypes. This is useful in the early stage of business modeling and technology
development. It allows an organization to move forward at considerably less
expense and to evaluate the benefits of the technology before making significant
commitments. In the combined approach, an organization can exploit the
planned and strategic nature of the top-down approach while retaining the rapid
implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a
data warehouse may consist of the following steps: planning, requirements study,
problem analysis, warehouse design, data integration and testing, and finally de-
ploymentof thedatawarehouse. Large software systemscanbedevelopedusing two
methodologies: thewaterfallmethod or the spiralmethod. Thewaterfallmethod
performs a structured and systematic analysis at each step before proceeding to
the next, which is like a waterfall, falling from one step to the next. The spiral
method involves the rapid generation of increasingly functional systems, with
short intervals between successive releases. This is considered a good choice for
data warehouse development, especially for data marts, because the turnaround
time is short, modifications can be done quickly, and new designs and technologies
can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

1. Choose a business process to model, for example, orders, invoices, ship-
ments, inventory, account administration, sales, or the general ledger. If
the business process is organizational and involves multiple complex ob-
ject collections, a data warehouse model should be followed. However, if
the process is departmental and focuses on the analysis of one kind of
business process, a data mart model should be chosen.

2. Choose the grain of the business process. The grain is the fundamental,
atomic level of data to be represented in the fact table for this process, for
example, individual transactions, individual daily snapshots, and so on.

3. Choose the dimensions that will apply to each fact table record. Typi-
cal dimensions are time, item, customer, supplier, warehouse, transaction
type, and status.

4. Choose the measures that will populate each fact table record. Typical
measures are numeric additive quantities like dollars sold and units sold.

Because data warehouse construction is a difficult and long-term task, its
implementation scope should be clearly defined. The goals of an initial data

4.3. DATA WAREHOUSE DESIGN AND USAGE 31

warehouse implementation should be specific, achievable, and measurable. This
involves determining the time and budget allocations, the subset of the orga-
nization that is to be modeled, the number of data sources selected, and the
number and types of departments to be served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and ori-
entation. Platform upgrades and maintenance must also be considered. Data
warehouse administration includes data refreshment, data source synchroniza-
tion, planning for disaster recovery, managing access control and security, man-
aging data growth, managing database performance, and data warehouse en-
hancement and extension. Scope management includes controlling the number
and range of queries, dimensions, and reports; limiting the size of the data
warehouse; or limiting the schedule, budget, or resources.

Various kinds of data warehouse design tools are available. Data warehouse
development tools provide functions to define and edit metadata repository
contents (such as schemas, scripts, or rules), answer queries, output reports,
and ship metadata to and from relational database system catalogues. Plan-
ning and analysis tools study the impact of schema changes and of refresh
performance when changing refresh rates or time windows.

4.3.3 Data Warehouse Usage for Information Processing

Data warehouses and data marts are used in a wide range of applications.
Business executives use the data in data warehouses and data marts to perform
data analysis and make strategic decisions. In many firms, data warehouses
are used as an integral part of a plan-execute-assess “closed-loop” feedback
system for enterprise management. Data warehouses are used extensively in
banking and financial services, consumer goods and retail distribution sectors,
and controlled manufacturing, such as demand-based production.

Typically, the longer a data warehouse has been in use, the more it will have
evolved. This evolution takes place throughout a number of phases. Initially, the
data warehouse is mainly used for generating reports and answering predefined
queries. Progressively, it is used to analyze summarized and detailed data, where
the results are presented in the form of reports and charts. Later, the data
warehouse is used for strategic purposes, performing multidimensional analysis
and sophisticated slice-and-dice operations. Finally, the data warehouse may
be employed for knowledge discovery and strategic decision making using data
mining tools. In this context, the tools for data warehousing can be categorized
into access and retrieval tools, database reporting tools, data analysis tools, and
data mining tools.

Business users need to have the means to know what exists in the data ware-
house (through metadata), how to access the contents of the data warehouse,
how to examine the contents using analysis tools, and how to present the results
of such analysis.

There are three kinds of data warehouse applications: information process-
ing, analytical processing, and data mining:

32CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

• Information processing supports querying, basic statistical analysis,
and reporting using crosstabs, tables, charts, or graphs. A current trend
in data warehouse information processing is to construct low-cost Web-
based accessing tools that are then integrated with Web browsers.

• Analytical processing supports basic OLAP operations, including slice-
and-dice, drill-down, roll-up, and pivoting. It generally operates on his-
torical data in both summarized and detailed forms. The major strength
of online analytical processing over information processing is the multidi-
mensional data analysis of data warehouse data.

• Data mining supports knowledge discovery by finding hidden patterns
and associations, constructing analytical models, performing classification
and prediction, and presenting the mining results using visualization tools.

“How does data mining relate to information processing and online analytical
processing?” Information processing, based on queries, can find useful informa-
tion. However, answers to such queries reflect the information directly stored
in databases or computable by aggregate functions. They do not reflect sophis-
ticated patterns or regularities buried in the database. Therefore, information
processing is not data mining.

Online analytical processing comes a step closer to data mining because it can
derive information summarized at multiple granularities from user-specified sub-
sets of a data warehouse. Such descriptions are equivalent to the class/concept
descriptions discussed in Chapter 1. Because data mining systems can also
mine generalized class/concept descriptions, this raises some interesting ques-
tions: “Do OLAP systems perform data mining? Are OLAP systems actually
data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint:
OLAP is a data summarization/aggregation tool that helps simplify data anal-
ysis, while data mining allows the automated discovery of implicit patterns and
interesting knowledge hidden in large amounts of data. OLAP tools are tar-
geted toward simplifying and supporting interactive data analysis, whereas the
goal of data mining tools is to automate as much of the process as possible,
while still allowing users to guide the process. In this sense, data mining goes
one step beyond traditional online analytical processing.

An alternative and broader view of data mining may be adopted in which
data mining covers both data description and data modeling. Because OLAP
systems can present general descriptions of data from data warehouses, OLAP
functions are essentially for user-directed data summarization and comparison
(by drilling, pivoting, slicing, dicing, and other operations). These are, though
limited, data mining functionalities. Yet according to this view, data min-
ing covers a much broader spectrum than simple OLAP operations because it
performs not only data summarization and comparison but also association,
classification, prediction, clustering, time-series analysis, and other data analy-
sis tasks.

4.3. DATA WAREHOUSE DESIGN AND USAGE 33

Data mining is not confined to the analysis of data stored in data warehouses.
It may analyze data existing at more detailed granularities than the summa-
rized data provided in a data warehouse. It may also analyze transactional,
spatial, textual, and multimedia data that are difficult to model with current
multidimensional database technology. In this context, data mining covers a
broader spectrum than OLAP with respect to data mining functionality and
the complexity of the data handled.

Because data mining involves more automated and deeper analysis than
OLAP, data mining is expected to have broader applications. Data mining
can help business managers find and reach more suitable customers, as well
as gain critical business insights that may help drive market share and raise
profits. In addition, data mining can help managers understand customer
group characteristics and develop optimal pricing strategies accordingly, cor-
rect item bundling based not on intuition but on actual item groups derived
from customer purchase patterns, reduce promotional spending, and at the
same time increase the overall net effectiveness of promotions.

4.3.4 From Online Analytical Processing to

Multidimensional Data Mining

The field of data mining has conducted substantial research regarding mining
on various types of data, including relational data, data from data warehouses,
transaction data, time-series data, spatial data, text data, and flat files. Multi-
dimensional data mining (also known as exploratory multidimensional data
mining, online analytical mining, or OLAM) integrates online analytical
processing (OLAP) with data mining to uncover knowledge in multidimen-
sional databases. Among the many different paradigms and architectures of
data mining systems, multidimensional data mining is particularly important
for the following reasons:

• High quality of data in data warehouses: Most data mining tools
need to work on integrated, consistent, and cleaned data, which requires
costly data cleaning, data integration, and data transformation as pre-
processing steps. A data warehouse constructed by such preprocessing
serves as a valuable source of high-quality data for OLAP as well as for
data mining. Notice that data mining may also serve as a valuable tool
for data cleaning and data integration as well.

• Available information processing infrastructure surrounding data
warehouses: Comprehensive information processing and data analysis
infrastructures have been or will be systematically constructed surround-
ing data warehouses, which include accessing, integration, consolidation,
and transformation of multiple heterogeneous databases, ODBC/OLE
DB connections, Web-accessing and service facilities, and reporting and
OLAP analysis tools. It is prudent to make the best use of the available
infrastructures rather than constructing everything from scratch.

34CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

• OLAP-based exploration of multidimensional data: Effective data
mining needs exploratory data analysis. A user will often want to
traverse through a database, select portions of relevant data, analyze
them at different granularities, and present knowledge/results in differ-
ent forms. Multidimensional data mining provides facilities for mining on
different subsets of data and at varying levels of abstraction, by drilling,
pivoting, filtering, dicing, and slicing on a data cube and/or intermediate
data mining results. This, together with data/knowledge visualization
tools, greatly enhance the power and flexibility of data mining.

• Online selection of data mining functions: Users may not always
know the specific kinds of knowledge they would like to mine. By
integrating OLAP with various data mining functions, multidimensional
data mining provides users with the flexibility to select desired data
mining functions and swap data mining tasks dynamically.

Chapter 5 describe data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and
multidimensional data mining. The chapters following it are devoted to the
study of data mining techniques. As we have seen, the introduction to data
warehousing and OLAP technology presented in this chapter is essential to our
study of data mining. This is because data warehousing provides users with
large amounts of clean, organized, and summarized data, which greatly facili-
tates data mining. For example, rather than storing the details of each sales
transaction, a data warehouse may store a summary of the transactions per
item type for each branch or, summarized to a higher level, for each country.
The capability of OLAP to provide multiple and dynamic views of summarized
data in a data warehouse sets a solid foundation for successful data mining.

Moreover,wealsobelievethatdataminingshouldbeahuman-centeredprocess.
Rather thanasking adatamining systemtogeneratepatterns andknowledgeauto-
matically, a user will often need to interactwith the system to perform exploratory
dataanalysis. OLAPsetsagoodexample for interactivedataanalysis andprovides
the necessary preparations for exploratory data mining. Consider the discovery of
association patterns, for example. Instead of mining associations at a primitive
(i.e., low) data level among transactions, users should be allowed to specify roll-up
operations along any dimension. For example, a user may like to roll up on the item
dimension to go from viewing the data for particular TV sets that were purchased
to viewing the brands of these TVs, such as SONY or Toshiba. Users may also
navigate from the transaction level to the customer level or customer-type level
in the search for interesting associations. Such an OLAP-style of data mining is
characteristic of multidimensional data mining. In our study of the principles of
data mining in this book, we place particular emphasis on multidimensional data
mining, that is, on the integration of data mining and OLAP technology.

4.4. DATA WAREHOUSE IMPLEMENTATION 35

4.4 Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that
decision support queries be answered in the order of seconds. Therefore, it
is crucial for data warehouse systems to support highly efficient cube compu-
tation techniques, access methods, and query processing techniques. In this
section, we present an overview of methods for the efficient implementation of
data warehouse systems. Section 4.4.1 explores how to compute data cubes
efficiently. Section 4.4.2 shows how OLAP data can be indexed, using either
bitmap or join indices. Next, we study how OLAP queries are processed (Sec-
tion 4.4.3). Finally, Section 4.4.4 presents various types of warehouse servers
for OLAP processing.

4.4.1 Efficient Data Cube Computation: An Overview

At the core of multidimensional data analysis is the efficient computation of
aggregations across many sets of dimensions. In SQL terms, these aggregations
are referred to as group-by’s. Each group-by can be represented by a cuboid,
where the set of group-by’s forms a lattice of cuboids defining a data cube.
In this section, we explore issues relating to the efficient computation of data
cubes.

The compute cube Operator and the Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute
cube operator. The compute cube operator computes aggregates over all subsets
of the dimensions specified in the operation. This can require excessive storage
space, especially for large numbers of dimensions. We start with an intuitive
look at what is involved in the efficient computation of data cubes.

Example 4.6 A data cube is a lattice of cuboids. Suppose that you would like to create
a data cube for AllElectronics sales that contains the following: city, item,
year, and sales in dollars. You would like to be able to analyze the data, with
queries such as the following:

• “Compute the sum of sales, grouping by city and item.”

• “Compute the sum of sales, grouping by city.”

• “Compute the sum of sales, grouping by item.”

What is the total number of cuboids, or group-by’s, that can be computed
for this data cube? Taking the three attributes, city, item, and year, as the
dimensions for the data cube, and sales in dollars as the measure, the total
number of cuboids, or group-by’s, that can be computed for this data cube is
23 = 8. The possible group-by’s are the following: {(city, item, year), (city,
item), (city, year), (item, year), (city), (item), (year), ()}, where () means that
the group-by is empty (i.e., the dimensions are not grouped). These group-by’s
form a lattice of cuboids for the data cube, as shown in Figure 4.14. The base

36CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

cuboid contains all three dimensions, city, item, and year. It can return the
total sales for any combination of the three dimensions. The apex cuboid,
or 0-D cuboid, refers to the case where the group-by is empty. It contains the
total sum of all sales. The base cuboid is the least generalized (most specific)
of the cuboids. The apex cuboid is the most generalized (least specific) of the
cuboids, and is often denoted as all. If we start at the apex cuboid and explore
downward in the lattice, this is equivalent to drilling down within the data
cube. If we start at the base cuboid and explore upward, this is akin to rolling
up.

An SQL query containing no group-by, such as “compute the sum of total
sales,” is a zero-dimensional operation. An SQL query containing one group-
by, such as “compute the sum of sales, group by city,” is a one-dimensional
operation. A cube operator on n dimensions is equivalent to a collection of
group by statements, one for each subset of the n dimensions. Therefore, the
cube operator is the n-dimensional generalization of the group by operator.

Similar to the syntax of SQL, the data cube in Example 4.1 could be de-
fined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the
base cuboid. A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids
for all of the eight subsets of the set {city, item, year}, including the empty
subset. A cube computation operator was first proposed and studied by Gray
et al. [GCB+97].

Online analytical processing may need to access different cuboids for dif-
ferent queries. Therefore, it may seem like a good idea to compute all or at
least some of the cuboids in a data cube in advance. Precomputation leads to
fast response time and avoids some redundant computation. Most, if not all,
OLAP products resort to some degree of precomputation of multidimensional
aggregates.

(item) (year)(city)

()

(item, year)

(city, item, year)

(city, item) (city, year)

O-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Figure 4.14: Lattice of cuboids, making up a 3-D data cube. Each cuboid
represents a different group-by. The base cuboid contains the three dimensions
city, item, and year.

4.4. DATA WAREHOUSE IMPLEMENTATION 37

A major challenge related to this precomputation, however, is that the re-
quired storage space may explode if all of the cuboids in a data cube are pre-
computed, especially when the cube has many dimensions. The storage require-
ments are even more excessive when many of the dimensions have associated
concept hierarchies, each with multiple levels. This problem is referred to as
the curse of dimensionality. The extent of the curse of dimensionality is
illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there
were no hierarchies associated with each dimension, then the total number of
cuboids for an n-dimensional data cube, as we have seen above, is 2n. However,
in practice, many dimensions do have hierarchies. For example, the dimension
time is usually not explored at only one conceptual level, such as year, but
rather at multiple conceptual levels, such as in the hierarchy “day < month <

quarter < year”. For an n-dimensional data cube, the total number of cuboids
that can be generated (including the cuboids generated by climbing up the
hierarchies along each dimension) is

Total number of cuboids =
n∏

i=1

(Li + 1), (4.1)

where Li is the number of levels associated with dimension i. One is added to
Li in Equation (4.1) to include the virtual top level, all. (Note that generalizing
to all is equivalent to the removal of the dimension.) This formula is based on
the fact that, at most, one abstraction level in each dimension will appear in a
cuboid. For example, the time dimension as specified above has 4 conceptual
levels, or 5 if we include the virtual level all. If the cube has 10 dimensions and
each dimension has 5 levels (including all), the total number of cuboids that
can be generated is 510 ≈ 9.8×106. The size of each cuboid also depends on the
cardinality (i.e., number of distinct values) of each dimension. For example, if
the AllElectronics branch in each city sold every item, there would be |city| ×
|item| tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space
required for many of the group-by’s will grossly exceed the (fixed) size of the
input relation.

By now, you probably realize that it is unrealistic to precompute and ma-
terialize all of the cuboids that can possibly be generated for a data cube (i.e.,
from a base cuboid). If there are many cuboids, and these cuboids are large in
size, a more reasonable option is partial materialization, that is, to materialize
only some of the possible cuboids that can be generated.

Partial Materialization: Selected Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

1. No materialization: Do not precompute any of the “nonbase” cuboids.
This leads to computing expensive multidimensional aggregates on the
fly, which can be extremely slow.

38CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

2. Full materialization: Precompute all of the cuboids. The resulting
lattice of computed cuboids is referred to as the full cube. This choice
typically requires huge amounts of memory space in order to store all of
the precomputed cuboids.

3. Partial materialization: Selectively compute aproper subset of thewhole
set of possible cuboids. Alternatively, we may compute a subset of the cube,
which contains only those cells that satisfy someuser-specified criterion, such
as where the tuple count of each cell is above some threshold. We will use the
term subcube to refer to the latter case, where only some of the cells may be
precomputed for various cuboids. Partialmaterialization represents an inter-
esting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three
factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit
the materialized cuboids or subcubes during query processing; and (3) efficiently
update the materialized cuboids or subcubes during load and refresh.

Theselectionofthesubsetofcuboidsor subcubestomaterialize shouldtake into
account the queries in the workload, their frequencies, and their accessing costs. In
addition, it should consider workload characteristics, the cost for incremental up-
dates, and the total storage requirements. The selection must also consider the
broad context of physical database design, such as the generation and selection of
indices. SeveralOLAPproducts have adoptedheuristic approaches for cuboid and
subcube selection. Apopular approach is tomaterialize the set of cuboids onwhich
other frequently referenced cuboids are based. Alternatively, we can compute an
iceberg cube, which is a data cube that stores only those cube cells whose aggre-
gate value (e.g., count) is above some minimum support threshold. Another com-
mon strategy is tomaterialize a shell cube. This involves precomputing the cuboids
for only a small number of dimensions (such as 3 to 5) of a data cube. Queries on
additional combinations of the dimensions can be computed on-the-fly. Because
our aim in this chapter is to provide a solid introduction andoverviewof data ware-
housing for data mining, we defer our detailed discussion of cuboid selection and
computation to Chapter 5, which studies various data cube computation methods
in greater depth.

Once the selected cuboids have been materialized, it is important to take
advantage of them during query processing. This involves several issues, such as
how to determine the relevant cuboid(s) from among the candidate materialized
cuboids, how to use available index structures on the materialized cuboids, and
how to transform the OLAP operations onto the selected cuboid(s). These
issues are discussed in Section 4.4.3 as well as in Chapter 5.

Finally, during load and refresh, the materialized cuboids should be updated
efficiently. Parallelism and incremental update techniques for this operation
should be explored.

4.4.2 Indexing OLAP Data: Bitmap Index and Join Index

To facilitate efficient data accessing, most data warehouse systems support in-
dex structures and materialized views (using cuboids). General methods to

4.4. DATA WAREHOUSE IMPLEMENTATION 39

select cuboids for materialization were discussed in the previous section. In
this section, we examine how to index OLAP data by bitmap indexing and join
indexing.

The bitmap indexing method is popular in OLAP products because it
allows quick searching in data cubes. The bitmap index is an alternative repre-
sentation of the record ID (RID) list. In the bitmap index for a given attribute,
there is a distinct bit vector, Bv, for each value v in the domain of the attribute.
If the domain of a given attribute consists of n values, then n bits are needed
for each entry in the bitmap index (i.e., there are n bit vectors). If the attribute
has the value v for a given row in the data table, then the bit representing that
value is set to 1 in the corresponding row of the bitmap index. All other bits for
that row are set to 0.

Example 4.7 Bitmap indexing. In the AllElectronics data warehouse, suppose the di-
mension item at the top level has four values (representing item types): “home
entertainment,” “computer,” “phone,” and “security.” Each value (e.g., “com-
puter”) is represented by a bit vector in the bitmap index table for item. Sup-
pose that the cube is stored as a relation table with 100,000 rows. Because the
domain of item consists of four values, the bitmap index table requires four bit
vectors (or lists), each with 100,000 bits. Figure 4.15 shows a base (data) ta-
ble containing the dimensions item and city, and its mapping to bitmap index
tables for each of the dimensions.

RID item city

R1

R2

R3

R4

R5

R6

R7

R8

H

C

P

S

H

C

P

S

V

V

V

V

T

T

T

T

RID H C

R1

R2

R3

R4

R5

R6

R7

R8

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

P S

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

RID V T

R1

R2

R3

R4

R5

R6

R7

R8

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

Base table Item bitmap index table City bitmap index table

Note: H for “home entertainment, ” C for “computer, ” P for “phone, ” S for “security, ”

V for “Vancouver, ” T for “Toronto.”

Figure 4.15: Indexing OLAP data using bitmap indices.

Bitmap indexing is advantageous compared to hash and tree indices. It
is especially useful for low-cardinality domains because comparison, join, and
aggregation operations are then reduced to bit arithmetic, which substantially
reduces the processing time. Bitmap indexing leads to significant reductions in
space and I/O since a string of characters can be represented by a single bit.
For higher-cardinality domains, the method can be adapted using compression

40CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

techniques.
The join indexing method gained popularity from its use in relational

database query processing. Traditional indexing maps the value in a given
column to a list of rows having that value. In contrast, join indexing registers
the joinable rows of two relations from a relational database. For example, if
two relations R(RID, A) and S(B, SID) join on the attributes A and B, then
the join index record contains the pair (RID, SID), where RID and SID are
record identifiers from the R and S relations, respectively. Hence, the join index
records can identify joinable tuples without performing costly join operations.
Join indexing is especially useful for maintaining the relationship between a
foreign key2 and its matching primary keys, from the joinable relation.

The star schema model of data warehouses makes join indexing attractive
for cross-table search, because the linkage between a fact table and its corre-
sponding dimension tables comprises the foreign key of the fact table and the
primary key of the dimension table. Join indexing maintains relationships be-
tween attribute values of a dimension (e.g., within a dimension table) and the
corresponding rows in the fact table. Join indices may span multiple dimen-
sions to form composite join indices. We can use join indices to identify
subcubes that are of interest.

Example 4.8 Join indexing. In Example 3.4, we defined a star schema for AllElectron-
ics of the form “sales star [time, item, branch, location]: dollars sold = sum
(sales in dollars)”. An example of a join index relationship between the sales
fact table and the dimension tables for location and item is shown in Fig-
ure 4.16. For example, the “Main Street” value in the location dimension table
joins with tuples T57, T238, and T884 of the sales fact table. Similarly, the
“Sony-TV ” value in the item dimension table joins with tuples T57 and T459
of the sales fact table. The corresponding join index tables are shown in Fig-
ure 4.17.

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations,
and 10 million sales tuples in the sales star data cube. If the sales fact table
has recorded sales for only 30 items, the remaining 70 items will obviously not
participate in joins. If join indices are not used, additional I/Os have to be
performed to bring the joining portions of the fact table and dimension tables
together.

To further speed up query processing, the join indexing and bitmap indexing
methods can be integrated to form bitmapped join indices.

4.4.3 Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures
is to speed up query processing in data cubes. Given materialized views, query
processing should proceed as follows:

2A set of attributes in a relation schema that forms a primary key for another relation
schema is called a foreign key.

4.4. DATA WAREHOUSE IMPLEMENTATION 41

location

sales

item

Sony-TV

T57

T238

T459

Main Street

T884

Figure 4.16: Linkages between a sales fact table and dimension tables for loca-
tion and item.

1. Determine which operations should be performed on the avail-
able cuboids: This involves transforming any selection, projection, roll-
up (group-by), and drill-down operations specified in the query into corre-
sponding SQL and/or OLAP operations. For example, slicing and dicing
a data cube may correspond to selection and/or projection operations on
a materialized cuboid.

2. Determinetowhichmaterializedcuboid(s) therelevantoperations
shouldbeapplied: This involves identifying all of thematerialized cuboids
thatmaypotentially beused to answer thequery, pruning theabove setusing
knowledge of “dominance” relationships among the cuboids, estimating the
costs of using the remaining materialized cuboids, and selecting the cuboid
with the least cost.

Example 4.9 OLAP query processing. Suppose that we define a data cube for AllElec-
tronics of the form “sales cube [time, item, location]: sum(sales in dollars)”.
The dimension hierarchies used are “day < month < quarter < year” for time,
“item name < brand < type” for item, and “street < city < province or state
< country” for location.

Suppose that the query to be processed is on {brand, province or state},
with the selection constant “year = 2010”. Also, suppose that there are four
materialized cuboids available, as follows:

• cuboid 1: {year, item name, city}

• cuboid 2: {year, brand, country}

• cuboid 3: {year, brand, province or state}

• cuboid 4: {item name, province or state} where year = 2010

42CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Figure 4.17: Join index tables based on the linkages between the sales fact
table and dimension tables for location and item shown in Figure 4.16.

“Which of the above four cuboids should be selected to process the query?”
Finer- granularity data cannot be generated from coarser-granularitydata. There-
fore, cuboid 2 cannot be used because country is a more general concept than
province or state. Cuboids 1, 3, and 4 can be used to process the query because
(1) they have the same set or a superset of the dimensions in the query, (2) the
selection clause in the query can imply the selection in the cuboid, and (3) the
abstraction levels for the item and location dimensions in these cuboids are at a
finer level than brand and province or state, respectively.

“How would the costs of each cuboid compare if used to process the query?”
It is likely that using cuboid 1 would cost the most because both item name
and city are at a lower level than the brand and province or state concepts
specified in the query. If there are not many year values associated with items
in the cube, but there are several item names for each brand, then cuboid 3
will be smaller than cuboid 4, and thus cuboid 3 should be chosen to process
the query. However, if efficient indices are available for cuboid 4, then cuboid
4 may be a better choice. Therefore, some cost-based estimation is required in
order to decide which set of cuboids should be selected for query processing.

4.4.4 OLAP Server Architectures: ROLAP vs. MOLAP

vs. HOLAP

Logically, OLAP servers present business users with multidimensional data from
data warehouses or data marts, without concerns regarding how or where the

4.4. DATA WAREHOUSE IMPLEMENTATION 43

data are stored. However, the physical architecture and implementation of
OLAP servers must consider data storage issues. Implementations of a ware-
house server for OLAP processing include the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that
stand in between a relational back-end server and client front-end tools.
They use a relational or extended-relational DBMS to store and manage
warehouse data, and OLAP middleware to support missing pieces. ROLAP
servers include optimization for each DBMS back end, implementation of
aggregation navigation logic, and additional tools and services. ROLAP
technology tends to have greater scalability than MOLAP technology. The
DSS server of Microstrategy, for example, adopts the ROLAP approach.

MultidimensionalOLAP (MOLAP) servers: These servers support multi-
dimensional views of data through array-based multidimensional storage en-
gines. They map multidimensional views directly to data cube array struc-
tures. Theadvantageofusingadata cube is that itallows fast indexing topre-
computed summarizeddata. Notice thatwith multidimensional data stores,
thestorageutilizationmaybe lowif thedataset is sparse. Insuchcases, sparse
matrix compression techniques should be explored (Chapter 5).

Many MOLAP servers adopt a two-level storage representation to handle
dense and sparse data sets: denser subcubes are identified and stored as ar-
ray structures, whereas sparse subcubes employ compression technology for
efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines
ROLAP and MOLAP technology, benefiting from the greater scalability of
ROLAP and the faster computation of MOLAP. For example, a HOLAP
server may allow large volumes of detail data to be stored in a relational
database, while aggregations are kept in a separate MOLAP store. The
Microsoft SQL Server 2000 supports a hybrid OLAP server.

Specialized SQL servers: To meet the growing demand of OLAP processing
in relational databases, some database system vendors implement special-
ized SQL servers that provide advanced query language and query pro-
cessing support for SQL queries over star and snowflake schemas in a
read-only environment.

Table 4.4: Single table for base and summary facts.
RID item . . . day month quarter year dollars sold

1001 TV . . . 15 10 Q4 2010 250.60
1002 TV . . . 23 10 Q4 2010 175.00
. .
5001 TV . . . all 10 Q4 2010 45,786.08
. .

44CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s
first look at ROLAP. As its name implies, ROLAP uses relational tables to store
data for online analytical processing. Recall that the fact table associated with
a base cuboid is referred to as a base fact table. The base fact table stores
data at the abstraction level indicated by the join keys in the schema for the
given data cube. Aggregated data can also be stored in fact tables, referred
to as summary fact tables. Some summary fact tables store both base fact
table data and aggregated data, as in Example 3.10. Alternatively, separate
summary fact tables can be used for each level of abstraction, to store only
aggregated data.

Example 4.10 A ROLAP data store. Table 4.4 shows a summary fact table that con-
tains both base fact data and aggregated data. The schema of the table is
“〈record identifier (RID), item, . . . , day, month, quarter, year, dollars sold〉”,
where day, month, quarter, and year define the date of sales, and dollars sold
is the sales amount. Consider the tuples with an RID of 1001 and 1002, re-
spectively. The data of these tuples are at the base fact level, where the date
of sales is October 15, 2010, and October 23, 2010, respectively. Consider the
tuple with an RID of 5001. This tuple is at a more general level of abstraction
than the tuples 1001 and 1002. The day value has been generalized to all, so
that the corresponding time value is October 2010. That is, the dollars sold
amount shown is an aggregation representing the entire month of October 2010,
rather than just October 15 or 23, 2010. The special value all is used to repre-
sent subtotals in summarized data.

MOLAP uses multidimensional array structures to store data for online
analytical processing. This structure is discussed in the following section on
data warehouse implementation and, in greater detail, in Chapter 5.

Most data warehouse systems adopt a client-server architecture. A rela-
tional data store always resides at the data warehouse/data mart server site.
A multidimensional data store can reside at either the database server site or
the client site.

4.5 DataGeneralization byAttribute-Oriented In-

duction

Conceptually, data cube can be viewed as one kind of multidimensional data
generalization. In general, data generalization summarizes data by replacing
relatively low-level values (such as numeric values for an attribute age) with
higher-level concepts (such as young, middle-aged, and senior) or by reduc-
ing the number of dimensions to summarize data in concept space involving
less number of dimensions (such as removing birth-date and telephone num-
bers when summarizing the behavior of a group of students). Given the large
amount of data stored in databases, it is useful to be able to describe con-
cepts in concise and succinct terms at generalized (rather than low) levels of
abstraction. Allowing data sets to be generalized at multiple levels of abstrac-

4.5. DATA GENERALIZATION BY ATTRIBUTE-ORIENTED INDUCTION45

tion facilitates users in examining the general behavior of the data. Given the
AllElectronics database, for example, instead of examining individual customer
transactions, sales managers may prefer to view the data generalized to higher
levels, such as summarized by customer groups according to geographic regions,
frequency of purchases per group, and customer income.

This leads us to the notion of concept description, which is a form of data
generalization. A concept typically refers to a collection of data such as fre-
quent buyers, graduate students, and so on. As a data mining task, concept
description is not a simple enumeration of the data. Instead, concept de-
scription generates descriptions for the characterization and comparison of
the data. It is sometimes called class description, when the concept to be
described refers to a class of objects. Characterization provides a concise and
succinct summarization of the given collection of data, while concept or class
comparison (also known as discrimination) provides descriptions comparing
two or more collections of data.

Up to this point, we have studied data cube (or OLAP) approaches to
concept description using multidimensional, multilevel data generalization in
data warehouses. “Is data cube technology sufficient to accomplish all kinds of
concept description tasks for large data sets?” Consider the following cases.

• Complex data types and aggregation: Data warehouses and OLAP
tools are based on a multidimensional data model that views data in
the form of a data cube, consisting of dimensions (or attributes) and
measures (aggregate functions). However, many current OLAP systems
confine dimensions to nonnumeric data and measures to numeric data. In
reality, the database can include attributes of various data types, includ-
ing numeric, nonnumeric, spatial, text, or image, which ideally should be
included in the concept description. Furthermore, the aggregation of at-
tributes in a database may include sophisticated data types, such as the
collection of nonnumeric data, the merging of spatial regions, the com-
position of images, the integration of texts, and the grouping of object
pointers. Therefore, OLAP, with its restrictions on the possible dimen-
sion and measure types, represents a simplified model for data analysis.
Concept description should handle complex data types of the attributes
and their aggregations, as necessary.

• User-control versus automation: Online analytical processing in data
warehouses is a user-controlled process. The selection of dimensions and
the application of OLAP operations, such as drill-down, roll-up, slicing,
and dicing, are primarily directed and controlled by the users. Although
the control in most OLAP systems is quite user-friendly, users do require a
good understanding of the role of each dimension. Furthermore, in order to
find a satisfactory description of the data, users may need to specify a long
sequence ofOLAPoperations. It is oftendesirable to have amore automated
process that helps users determine which dimensions (or attributes) should
be included in the analysis, and the degree to which the given data set should
be generalized in order to produce an interesting summarization of the data.

46CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

This section presents an alternative method for concept description, called
attribute-oriented induction, which works for complex types of data and relies
on a data-driven generalization process.

4.5.1 Attribute-Oriented Induction for Data Characteriza-

tion

The attribute-oriented induction (AOI) approach to concept description
was first proposed in 1989, a few years before the introduction of the data cube ap-
proach. The data cube approach is essentially based on materialized views of the
data, which typically have been precomputed in a data warehouse. In general, it
performs off-line aggregation before an OLAP or data mining query is submitted
for processing. On the other hand, the attribute-oriented induction approach is
basically a query-oriented, generalization-based, online data analysis technique.
Note that there is no inherent barrier distinguishing the two approaches based on
online aggregation versus off-line precomputation. Some aggregations in the data
cube can be computed online, while off-line precomputation of multidimensional
space can speed up attribute-oriented induction as well.

The general idea of attribute-oriented induction is to first collect the task-
relevant data using a database query and then perform generalization based on
the examination of the number of distinct values of each attribute in the rel-
evant set of data. The generalization is performed by either attribute removal
or attribute generalization. Aggregation is performed by merging identical gen-
eralized tuples and accumulating their respective counts. This reduces the size
of the generalized data set. The resulting generalized relation can be mapped
into different forms for presentation to the user, such as charts or rules.

The following examples illustrate the process of attribute-oriented induction.
We first discuss its use for characterization. The method is extended for the
mining of class comparisons in Section 4.5.3.

Example 4.11 A data mining query for characterization. Suppose that a user would like
to describe the general characteristics of graduate students in the Big University
database, given the attributes name, gender, major, birth place, birth date,
residence, phone# (telephone number), and gpa (grade point average). A data
mining query for this characterization can be expressed in the data mining
query language, DMQL, as follows:

use Big University DB
mine characteristics as “Science Students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
from student
where status in “graduate”

We will see how this example of a typical data mining query can apply
attribute-oriented induction for mining characteristic descriptions.

4.5. DATA GENERALIZATION BY ATTRIBUTE-ORIENTED INDUCTION47

First, data focusing should be performed before attribute-oriented induc-
tion. This step corresponds to the specification of the task-relevant data (i.e.,
data for analysis). The data are collected based on the information provided
in the data mining query. Because a data mining query is usually relevant to
only a portion of the database, selecting the relevant set of data not only makes
mining more efficient, but also derives more meaningful results than mining the
entire database.

Specifying the set of relevant attributes (i.e., attributes for mining, as indi-
cated in DMQL with the in relevance to clause) may be difficult for the user.
A user may select only a few attributes that he or she feels may be important,
while missing others that could also play a role in the description. For exam-
ple, suppose that the dimension birth place is defined by the attributes city,
province or state, and country. Of these attributes, let’s say that the user has
only thought to specify city. In order to allow generalization on the birth place
dimension, the other attributes defining this dimension should also be included.
In other words, having the system automatically include province or state and
country as relevant attributes allows city to be generalized to these higher con-
ceptual levels during the induction process.

At the other extreme, suppose that the user may have introduced too many
attributes by specifying all of the possible attributes with the clause “in rel-
evance to ∗”. In this case, all of the attributes in the relation specified by
the from clause would be included in the analysis. Many of these attributes
are unlikely to contribute to an interesting description. A correlation-based
(Section 3.3.2) or entropy-based (Section 3.5.6) analysis method can be used
to perform attribute relevance analysis and filter out statistically irrelevant
or weakly relevant attributes from the descriptive mining process. Other ap-
proaches, such as attribute subset selection, are also described in Chapter 3.

“What does the ‘where status in “graduate”’ clause mean?” This where
clause implies that a concept hierarchy exists for the attribute status. Such
a concept hierarchy organizes primitive-level data values for status, such as
“M.Sc.”, “M.A.”, “M.B.A.”, “Ph.D.”, “B.Sc.”, “B.A.”, into higher conceptual
levels, such as “graduate” and “undergraduate.” This use of concept hierarchies
does not appear in traditional relational query languages, yet is likely to become
a common feature in data mining query languages.

The data mining query presented above is transformed into the following
relational query for the collection of the task-relevant set of data:

use Big University DB
select name, gender, major, birth place, birth date, residence, phone#, gpa
from student
where status in {“M.Sc.”, “M.A.”, “M.B.A.”, “Ph.D.”}

The transformed query is executed against the relational database, Big University DB,
and returns the data shown in Table 4.5. This table is called the (task-relevant)
initial working relation. It is the data on which induction will be performed.
Note that each tuple is, in fact, a conjunction of attribute-value pairs. Hence,

48CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Table 4.5: Initial working relation: a collection of task-relevant data.
name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Richmond 253-9106 3.70
Laura Lee F physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83
· ·

we can think of a tuple within a relation as a rule of conjuncts, and of induction
on the relation as the generalization of these rules.

“Now that the data are ready for attribute-oriented induction, how is attribute-
oriented induction performed?” The essential operation of attribute-oriented
induction is data generalization, which can be performed in either of two ways
on the initial working relation: attribute removal and attribute generalization.

Attribute removal is based on the following rule: If there is a large set of
distinct values for an attribute of the initial working relation, but either (1) there
is no generalization operator on the attribute (e.g., there is no concept hierar-
chy defined for the attribute), or (2) its higher-level concepts are expressed in
terms of other attributes, then the attribute should be removed from the working
relation.

Let’s examine the reasoning behind this rule. An attribute-value pair rep-
resents a conjunct in a generalized tuple, or rule. The removal of a conjunct
eliminates a constraint and thus generalizes the rule. If, as in case 1, there
is a large set of distinct values for an attribute but there is no generalization
operator for it, the attribute should be removed because it cannot be gen-
eralized, and preserving it would imply keeping a large number of disjuncts,
which contradicts the goal of generating concise rules. On the other hand, con-
sider case 2, where the higher-level concepts of the attribute are expressed in
terms of other attributes. For example, suppose that the attribute in question
is street, whose higher-level concepts are represented by the attributes 〈city,
province or state, country〉. The removal of street is equivalent to the applica-
tion of a generalization operator. This rule corresponds to the generalization
rule known as dropping conditions in the machine learning literature on learning
from examples .

Attribute generalization is based on the following rule: If there is a large
set of distinct values for an attribute in the initial working relation, and there
exists a set of generalization operators on the attribute, then a generalization
operator should be selected and applied to the attribute. This rule is based on the
following reasoning. Use of a generalization operator to generalize an attribute
value within a tuple, or rule, in the working relation will make the rule cover
more of the original data tuples, thus generalizing the concept it represents.
This corresponds to the generalization rule known as climbing generalization
trees in learning from examples, or concept tree ascension.

Both rules, attribute removal and attribute generalization, claim that if there

4.5. DATA GENERALIZATION BY ATTRIBUTE-ORIENTED INDUCTION49

is a large set of distinct values for an attribute, further generalization should
be applied. This raises the question: how large is “a large set of distinct values
for an attribute” considered to be?

Depending on the attributes or application involved, a user may prefer some
attributes to remain at a rather low abstraction level while others are generalized
to higher levels. The control of how high an attribute should be generalized is
typically quite subjective. The control of this process is called attribute gen-
eralization control. If the attribute is generalized “too high,” it may lead to
overgeneralization, and the resulting rules may not be very informative. On the
other hand, if the attribute is not generalized to a “sufficiently high level,” then
undergeneralization may result, where the rules obtained may not be informative
either. Thus, a balance should be attained in attribute-oriented generalization.

There are many possible ways to control a generalization process. We will
describe two common approaches and then illustrate how they work with an
example.

The first technique, called attribute generalization threshold control,
either sets one generalization threshold for all of the attributes, or sets one
threshold for each attribute. If the number of distinct values in an attribute
is greater than the attribute threshold, further attribute removal or attribute
generalization should be performed. Data mining systems typically have a
default attribute threshold value generally ranging from 2 to 8 and should allow
experts and users to modify the threshold values as well. If a user feels that the
generalization reaches too high a level for a particular attribute, the threshold
can be increased. This corresponds to drilling down along the attribute. Also,
to further generalize a relation, the user can reduce the threshold of a particular
attribute, which corresponds to rolling up along the attribute.

The second technique, called generalized relation threshold control,
sets a threshold for the generalized relation. If the number of (distinct) tuples
in the generalized relation is greater than the threshold, further generalization
should be performed. Otherwise, no further generalization should be performed.
Such a threshold may also be preset in the data mining system (usually within
a range of 10 to 30), or set by an expert or user, and should be adjustable.
For example, if a user feels that the generalized relation is too small, he or she
can increase the threshold, which implies drilling down. Otherwise, to further
generalize a relation, the threshold can be reduced, which implies rolling up.

These two techniques can be applied in sequence: first apply the attribute
threshold control technique to generalize each attribute, and then apply relation
threshold control to further reduce the size of the generalized relation. No
matter which generalization control technique is applied, the user should be
allowed to adjust the generalization thresholds in order to obtain interesting
concept descriptions.

In many database-oriented induction processes, users are interested in ob-
taining quantitative or statistical information about the data at different levels
of abstraction. Thus, it is important to accumulate count and other aggregate
values in the induction process. Conceptually, this is performed as follows. The
aggregate function, count, is associated with each database tuple. Its value for

50CHAPTER4. DATAWAREHOUSINGANDONLINEANALYTICALPROCESSING

each tuple in the initial working relation is initialized to 1. Through attribute
removal and attribute generalization, tuples within the initial working relation
may be generalized, resulting in groups of identical tuples. In this case, all
of the identical tuples forming a group should be merged into one tuple. The
count of this new, generalized tuple is set to the total number of tuples from the
initial working relation that are represented by (i.e., were merged into) the new
generalized tuple. For example, suppose that by attribute-oriented induction,
52 data tuples from the initial working relation are all generalized to the same
tuple, T . That is, the generalization of these 52 tuples resulted in 52 identical
instances of tuple T . These 52 identical tuples are merged to form one instance
of T , whose count is set to 52. Other popular aggregate functions that could
also be associated with each tuple include sum and avg. For a given generalized
tuple, sum contains the sum of the values of a given numeric attribute for the
initial working relation tuples making up the generalized tuple. Suppose that
tuple T contained sum(units sold) as an aggregate function. The sum value for
tuple T would then be set to the total number of units sold for each of the 52
tuples. The aggregate avg (average) is computed according to the formula, avg
= sum/count.

Example 4.12 Attribute-oriented induction. Here we show how attribute-oriented induc-
tion is performed on the initial working relation of Table 4.5. For each attribute
of the relation, the generalization proceeds as follows:

1. name: Since there are a large number of distinct values for name and
there is no generalization operation defined on it, this attribute is re-
moved.

2. gender: Since there are only two distinct values for gender, this attribute
is retained and no generalization is performed on it.

3. major: Suppose that a concept hierarchy has been defined that allows the
attribute major to be generalized to the values {arts&science, engineer-
ing, business}. Suppose also that the attribute generalization threshold is
set to 5, and that there are more than 20 distinct values for major in the
initial working relation. By attribute generalization and attribute gen-
eralization control, major is therefore generalized by climbing the given
concept hierarchy.

4. birth place: This attribute has a large number of distinct values; therefore,
we would like to generalize it. Suppose that a concept hierarchy exists for
birth place, defined as “city < province or state < country”. If the number
of distinct values for country in the initial working relation is greater
than the attribute generalization threshold, then birth place should be
removed, because even though a generalization operator exists for it, the
generalization threshold would not be satisfied. If instead, the number
of distinct values for country is less than the attribute generalization
threshold, then birth place should be generalized to birth country.

4.5. DATA GENERALIZATION BY ATTRIBUTE-ORIENTED INDUCTION51

5. birth date: Suppose that a hierarchy exists that can generalize birth date to
age, and age to age range, and that the number of age ranges (or intervals) is
small with respect to the attribute generalization threshold. Generalization
of birth date should therefore take place.

6. residence: Suppose that residence is definedby theattributesnumber, street,
residence city,residence province or state,andresidence country. Thenum-
ber ofdistinctvalues fornumber and street will likelybeveryhigh, since these
concepts are quite low level. The attributes number and street should there-
forebe removed, so that residence is thengeneralized to residence city, which
contains fewer distinct values.

7. phone#: As with the attribute name above, this attribute contains too
many distinct values and should therefore be removed in generalization.

8. gpa: Suppose that a concept hierarchy exists for gpa that groups values for
grade point average into numerical intervals like {3.75–4.0, 3.5–3.75,. . . },
which in turn are grouped into descriptive values, such as {excellent, very
good,. . . }. The attribute can therefore be generalized.

The generalization process will result in groups of identical tuples. For
example, the first two tuples of Table 4.5 both generalize to the same identical
tuple (namely, the first tuple shown in Table 4.6). Such identical tuples are
then merged into one, with their counts accumulated. This process leads to the
generalized relation shown in Table 4.6.

Based on the vocabulary used in OLAP, we may view count as a measure,
and the remaining attributes as dimensions. Note that aggregate functions,
such as sum, may be applied to numerical attributes, like salary and sales.
These attributes are referred to as measure attributes.

4.5.2 Efficient Implementation of Attribute-Oriented In-

duction

“How is attribute-oriented induction actually implemented?” The previous sub-
section provided an introduction to attribute-oriented induction. The general
procedure is summarized in Figure 4.18. The efficiency of this algorithm is
analyzed as follows:

• Step 1 of the algorithm is essentially a relational query to collect the task-
relevant data into the working relation, W . Its processing efficiency

Table 4.6: A generalized relation obtained by attribute-oriented induction on the
data of Table 4.5.
gender major birth country age range residence city gpa count

M Science Canada 20 – 25 Richmond very good 16
F Science Foreign 25 – 30 Burnaby excellent 22
· ·

52CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Algorithm: Attribute oriented induction. Mining generalized characteristics in a relational database given
a user’s data mining request.

Input:

• DB, a relational database;

• DMQuery, a data mining query;

• a list, a list of attributes (containing attributes, ai);

• Gen(ai), a set of concept hierarchies or generalization operators on attributes, ai;

• a gen thresh(ai), attribute generalization thresholds for each ai.

Output: P , a Prime generalized relation.

Method:

1. W ← get task relevant data (DMQuery, DB); // Let W , the working relation, hold the task-relevant
data.

2. prepare for generalization (W); // This is implemented as follows.

(a) Scan W and collect the distinct values for each attribute, ai. (Note: If W is very large,
this may be done by examining a sample of W .)

(b) For each attribute ai, determine whether ai should be removed, and if not, compute
its minimum desired level Li based on its given or default attribute threshold, and

determine the mapping-pairs (v, v′), where v is a distinct value of ai in W , and v′ is
its corresponding generalized value at level Li.

3. P ← generalization (W),

The Prime generalized relation, P , is derived by replacing each value v in W by its corresponding
v′ in the mapping while accumulating count and computing any other aggregate values.

This step can be implemented efficiently using either of the two following variations:

(a) For each generalized tuple, insert the tuple into a sorted prime relation P by a binary
search: if the tuple is already in P , simply increase its count and other aggregate values
accordingly; otherwise, insert it into P .

(b) Since in most cases the number of distinct values at the prime relation level is small,
the prime relation can be coded as an m-dimensional array where m is the number
of attributes in P , and each dimension contains the corresponding generalized attribute
values. Each array element holds the corresponding count and other aggregation values,
if any. The insertion of a generalized tuple is performed by measure aggregation in the
corresponding array element.

Figure 4.18: Basic algorithm for attribute-oriented induction.

depends on the query processing methods used. Given the successful
implementation and commercialization of database systems, this step is
expected to have good performance.

• Step 2 collects statistics on the working relation. This requires scanning
the relation at most once. The cost for computing the minimum desired
level and determining the mapping pairs, (v, v′), for each attribute is
dependent on the number of distinct values for each attribute and is
smaller than |W |, the number of tuples in the working relation. Notice
it may not be necessary to scan the working relation once since if the
working relation is large, a sample of such a relation will be sufficient to
get statistics and determine which attributes to be generalized to certain
high-level and which attributes to be removed. Moreover, such statistics
may also be obtained in the process of extracting and generating working
relation in Step 1.

• Step 3 derives the prime relation, P . This is performed by scan each
tuple in the working relation and inserting generalized tuples into P .
There are a total of |W | tuples in W and p tuples in P . For each tuple,

4.5. DATA GENERALIZATION BY ATTRIBUTE-ORIENTED INDUCTION53

Table 4.7: A generalized relation for the sales last year.
location item sales (in million dollars) count (in thousands)

Asia TV 15 300
Europe TV 12 250
North America TV 28 450
Asia computer 120 1000
Europe computer 150 1200
North America computer 200 1800

t, in W , we substitute its attribute values based on the derived mapping-
pairs. This results in a generalized tuple, t′. If variation (a) is adopted,
each t′ takes O(log p) to find the location for count increment or tuple
insertion. Thus the total time complexity is O(|W | × log p) for all of the
generalized tuples. If variation (b) is adopted, each t′ takes O(1) to find
the tuple for count increment. Thus the overall time complexity is O(N)
for all of the generalized tuples.

Many data analysis tasks need to examine a good number of dimensions or
attributes. This may involve dynamically introducing and testing additional
attributes rather than just those specified in the mining query. Moreover, a
user with little knowledge of the truly relevant set of data may simply specify
“in relevance to ∗” in the mining query, which includes all of the attributes into
the analysis. Therefore, an advanced concept description mining process needs
to perform attribute relevance analysis on large sets of attributes to select the
most relevant ones. Such analysis may employ correlation or entropy measures,
as described in Chapter 3 on data preprocessing.

Example 4.13 Presentation of generalization results. Suppose that attribute-oriented
induction was performed on a sales relation of the AllElectronics database,
resulting in the generalized description of Table 4.7 for sales last year. The
description is shown in the form of a generalized relation. Table 4.6 of Exam-
ple 4.11 is another example of a generalized relation.

Such generalized relations can also be presented in the form of cross tabu-
lation forms, various kinds of graphic presentation (such as pie charts and bar
charts), and quantitative characteristics rules (i.e., showing how different value
combinations are distributed in the generalized relation).

4.5.3 Attribute-Oriented Induction for Class Comparisons

In many applications, users may not be interested in having a single class
(or concept) described or characterized, but rather would prefer to mine a
description that compares or distinguishes one class (or concept) from other
comparable classes (or concepts). Class discrimination or comparison (here-
after referred to as class comparison) mines descriptions that distinguish a

54CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

target class from its contrasting classes. Notice that the target and contrasting
classes must be comparable in the sense that they share similar dimensions and
attributes. For example, the three classes, person, address, and item, are not
comparable. However, the sales in the last three years are comparable classes,
and so are computer science students versus physics students.

Our discussions on class characterization in the previous sections handle
multilevel data summarization and characterization in a single class. The tech-
niques developed can be extended to handle class comparison across several
comparable classes. For example, the attribute generalization process described
for class characterization can be modified so that the generalization is per-
formed synchronously among all the classes compared. This allows the at-
tributes in all of the classes to be generalized to the same levels of abstraction.
Suppose, for instance, that we are given the AllElectronics data for sales in 2009
and sales in 2010 and would like to compare these two classes. Consider the
dimension location with abstractions at the city, province or state, and coun-
try levels. Data in each class should be generalized to the same location level.
That is, they are all synchronously generalized to either the city level, or the
province or state level, or the country level. Ideally, this is more useful than
comparing, say, the sales in Vancouver in 2009 with the sales in the United
States in 2010 (i.e., where each set of sales data is generalized to a different
level). The users, however, should have the option to overwrite such an auto-
mated, synchronous comparison with their own choices, when preferred.

“How is class comparison performed?” In general, the procedure is as fol-
lows:

1. Data collection: The set of relevant data in the database is collected
by query processing and is partitioned respectively into a target class and
one or a set of contrasting classes.

2. Dimension relevance analysis: If there are many dimensions, then di-
mension relevance analysis should be performed on these classes to select
only the highly relevant dimensions for further analysis. Correlation or
entropy-based measures can be used for this step (Chapter 3).

3. Synchronous generalization: Generalization is performed on the tar-
get class to the level controlled by a user- or expert-specified dimension
threshold, which results in a prime target class relation. The concepts
in the contrasting class(es) are generalized to the same level as those in
the prime target class relation, forming the prime contrasting class(es)
relation.

4. Presentation of the derived comparison: The resulting class com-
parison description can be visualized in the form of tables, graphs, and
rules. This presentation usually includes a “contrasting” measure such
as count% (percentage count) that reflects the comparison between the
target and contrasting classes. The user can adjust the comparison de-
scription by applying drill-down, roll-up, and other OLAP operations to
the target and contrasting classes, as desired.

4.5. DATA GENERALIZATION BY ATTRIBUTE-ORIENTED INDUCTION55

The above discussion outlines a general algorithm for mining comparisons in
databases. In comparison with characterization, the above algorithm involves
synchronous generalization of the target class with the contrasting classes, so
that classes are simultaneously compared at the same levels of abstraction.

The following example mines a class comparison describing the graduate
students and the undergraduate students at Big University.

Example 4.14 Mining a class comparison. Suppose that you would like to compare the
general properties between the graduate students and the undergraduate stu-
dents at Big University, given the attributes name, gender, major, birth place,
birth date, residence, phone#, and gpa.

This data mining task can be expressed in DMQL as follows:

use Big University DB
mine comparison as “grad vs undergrad students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
for “graduate students”
where status in “graduate”
versus “undergraduate students”
where status in “undergraduate”
analyze count%
from student

Let’s see how this typical example of a data mining query for mining com-
parison descriptions can be processed.

First, the query is transformed into two relational queries that collect two
sets of task-relevant data: one for the initial target class working relation, and
the other for the initial contrasting class working relation, as shown in Tables 4.8
and 4.9. This can also be viewed as the construction of a data cube, where
the status {graduate, undergraduate} serves as one dimension, and the other
attributes form the remaining dimensions.

Second, dimension relevance analysis can be performed, when necessary, on
the two classes of data. After this analysis, irrelevant or weakly relevant dimen-
sions, such as name, gender, birth place, residence, and phone#, are removed
from the resulting classes. Only the highly relevant attributes are included in
the subsequent analysis.

Table 4.8: Initial working relations: the target class (graduate students)
name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Vancouver 253-9106 3.70
Laura Lee F Physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83
· ·

56CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Table 4.9: Initial working relations: the contrasting class (undergraduate students)
name gender major birth place birth date residence phone# gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 10-1-78 2642 Halifax St., Burnaby 294-4291 2.96
Amy Eau F Biology Golden, BC, Canada 30-3-76 463 Sunset Cres., Vancouver 681-5417 3.52

· ·

Table 4.10: Prime generalized relation for the target
class (graduate students)
major age range gpa count%

Science 21...25 good 5.53%
Science 26...30 good 5.02%
Science over 30 very good 5.86%

· · · · · · · · · · · ·

Business over 30 excellent 4.68%

Third, synchronous generalization is performed: Generalization is performed
on the target class to the levels controlled by user- or expert-specified dimension
thresholds, forming the prime target class relation. The contrasting class is
generalized to the same levels as those in the prime target class relation, forming
the prime contrasting class(es) relation, as presented in Tables 4.10 and 4.11.
In comparison with undergraduate students, graduate students tend to be older
and have a higher GPA, in general.

Finally, the resulting class comparison is presented in the form of tables,
graphs, and/or rules. This visualization includes a contrasting measure (such
as count%) that compares between the target class and the contrasting class.
For example, 5.02% of the graduate students majoring in Science are between 26
and 30 years of age and have a “good” GPA, while only 2.32% of undergraduates
have these same characteristics. Drilling and other OLAP operations may be
performed on the target and contrasting classes as deemed necessary by the
user in order to adjust the abstraction levels of the final description.

As shown in the above introduction to attribute-oriented induction for data
characterization and generalization, attribute-oriented induction provides an

Table 4.11: Prime generalized relation for the
contrasting class (undergraduate students)
major age range gpa count%

Science 16...20 fair 5.53%
Science 16...20 good 4.53%

· · · · · · · · · · · ·

Science 26...30 good 2.32%
· · · · · · · · · · · ·

Business over 30 excellent 0.68%

4.6. SUMMARY 57

alternative data generalization method in comparison with data cube approach.
It is not confined to relational data since such induction can be performed on
spatial, multimedia, sequence and other kinds of data sets, and there is no need
to precompute a data cube since generalization can be performed online upon
receiving a user’s query. Moreover, automated analysis can be added to such
an induction process to automatically filter out some irrelevant or unimportant
attributes and add some closed relevant ones. Analysis can also be performed
to generalize the data to certain high level for further analysis. However, since
attribute-oriented induction automatically generalize data to certain high-level,
it cannot efficiently support the process of drilling down to the level deeper than
those provided in the generalized relation. It is desirable to integrate data cube
technology with attribute-oriented induction to balance precomputation and
online computation and to support fast online computation when it is necessary
to drill down to the level deeper than that provided in the generalized relation.

4.6 Summary

• A data warehouse is a subject-oriented, integrated, time-variant, and
nonvolatile collection of data organized in support of management deci-
sion making. Several factors distinguish data warehouses from operational
databases. Because the two systems provide quite different functionali-
ties and require different kinds of data, it is necessary to maintain data
warehouses separately from operational databases.

• Data warehouses often adopt a three-tier architecture. The bottom tier
is a warehouse database server, which is typically a relational database sys-
tem. The middle tier is an OLAP server, and the top tier is a client, contain-
ing query and reporting tools.

• A data warehouse contains back-end tools and utilities for populating
and refreshing the warehouse. These cover data extraction, data cleaning,
data transformation, loading, refreshing, and warehouse management.

• Data warehouse metadata are data defining the warehouse objects. A
metadata repository provides details regarding the warehouse structure,
data history, the algorithms used for summarization, mappings from the
source data to warehouse form, system performance, and business terms
and issues.

• A multidimensional data model is typically used for the design of cor-
porate data warehouses and departmental data marts. Such a model can
adopt a star schema, snowflake schema, or fact constellation schema. The
core of the multidimensional model is the data cube, which consists of a
large set of facts (or measures) and a number of dimensions. Dimensions
are the entities or perspectives with respect to which an organization
wants to keep records and are hierarchical in nature.

58CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

• A data cube consists of a lattice of cuboids, each corresponding to a
different degree of summarization of the given multidimensional data.

• Concept hierarchies organize the values of attributes or dimensions
into gradual levels of abstraction. They are useful in mining at multiple
levels of abstraction.

• Online analytical processing (OLAP) can be performed in data ware-
houses/marts using the multidimensional data model. Typical OLAP op-
erations include roll-up, drill-(down, across, through), slice-and-dice, pivot
(rotate), as well as statistical operations such as ranking and computing
moving averages and growth rates. OLAP operations can be implemented
efficiently using the data cube structure.

• Data warehouses are used for information processing (querying and report-
ing), analytical processing (which allows users to navigate through sum-
marized and detailed data by OLAP operations), and data mining (which
supports knowledge discovery). OLAP-based data mining is referred to as
multidimensional data mining (also known as exploratory multidimen-
sional data mining, online analytical mining, or OLAM). It emphasizes the
interactive and exploratory nature of data mining.

• OLAP servers may adopt a relational OLAP (ROLAP), a multidi-
mensional OLAP (MOLAP), or a hybrid OLAP (HOLAP) imple-
mentation. A ROLAP server uses an extended relational DBMS that
maps OLAP operations on multidimensional data to standard relational
operations. A MOLAP server maps multidimensional data views directly
to array structures. A HOLAP server combines ROLAP and MOLAP.
For example, it may use ROLAP for historical data while maintaining
frequently accessed data in a separate MOLAP store.

• Full materialization refers to the computation of all of the cuboids in the
lattice defining a data cube. It typically requires an excessive amount of stor-
age space, particularly as the number of dimensions and size of associated
concept hierarchies grow. This problem is known as the curse of dimen-
sionality. Alternatively, partial materialization is the selective compu-
tation of a subset of the cuboids or subcubes in the lattice. For example, an
iceberg cube is a data cube that stores only those cube cells whose aggre-
gate value (e.g., count) is above some minimum support threshold.

• OLAP query processing can be made more efficient with the use of index-
ing techniques. In bitmap indexing, each attribute has its own bitmap
index table. Bitmap indexing reduces join, aggregation, and comparison
operations to bit arithmetic. Join indexing registers the joinable rows
of two or more relations from a relational database, reducing the overall
cost of OLAP join operations. Bitmapped join indexing, which com-
bines the bitmap and join index methods, can be used to further speed
up OLAP query processing.

4.7. EXERCISES 59

• Data generalization is a process that abstracts a large set of task-
relevant data in a database from a relatively low conceptual level to higher
conceptual levels. Data generalization approaches include data cube–
based data aggregation and attribute-oriented induction. item Concept
description is the most basic form of descriptive data mining. It de-
scribes a given set of task-relevant data in a concise and summarative
manner, presenting interesting general properties of the data. Concept
(or class) description consists of characterization and comparison (or
discrimination). The former summarizes and describes a collection of
data, called the target class, whereas the latter summarizes and dis-
tinguishes one collection of data, called the target class, from other
collection(s) of data, collectively called the contrasting class(es).

• Concept characterization can be implemented using data cube (OLAP-
based) approaches and the attribute-oriented induction approach.
These are attribute- or dimension-based generalization approaches. The
attribute-oriented induction approach consists of the following tech-
niques: data focusing, data generalization by attribute removal or attribute
generalization, count and aggregate value accumulation, attribute general-
ization control, and generalization data visualization.

• Concept comparison can be performed using the attribute-oriented in-
duction or data cube approaches in a manner similar to concept charac-
terization. Generalized tuples from the target and contrasting classes can
be quantitatively compared and contrasted.

4.7 Exercises

1. State why, for the integration of multiple heterogeneous information sources,
many companies in industry prefer the update-driven approach (which
constructs and uses data warehouses), rather than the query-driven ap-
proach (which applies wrappers and integrators). Describe situations
where the query-driven approach is preferable over the update-driven ap-
proach.

2. Briefly compare the following concepts. You may use an example to ex-
plain your point(s).

(a) Snowflake schema, fact constellation, starnet query model

(b) Data cleaning, data transformation, refresh

(c) Discovery-driven cube, multifeature cube, virtual warehouse

3. Suppose that a data warehouse consists of the three dimensions time,
doctor, and patient, and the two measures count and charge, where charge
is the fee that a doctor charges a patient for a visit.

60CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

(a) Enumerate three classes of schemas that are popularly used for mod-
eling data warehouses.

(b) Draw a schema diagram for the above data warehouse using one of
the schema classes listed in (a).

(c) Starting with the base cuboid [day, doctor, patient], what specific
OLAP operations should be performed in order to list the total fee
collected by each doctor in 2004?

(d) To obtain the same list, write an SQL query assuming the data is
stored in a relational database with the schema fee (day, month,
year, doctor, hospital, patient, count, charge).

4. Suppose that a data warehouse for Big-University consists of the fol-
lowing four dimensions: student, course, semester, and instructor, and
two measures count and avg grade. When at the lowest conceptual level
(e.g., for a given student, course, semester, and instructor combination),
the avg grade measure stores the actual course grade of the student. At
higher conceptual levels, avg grade stores the average grade for the given
combination.

(a) Draw a snowflake schema diagram for the data warehouse.

(b) Starting with the base cuboid [student, course, semester, instructor],
what specific OLAP operations (e.g., roll-up from semester to year)
should one perform in order to list the average grade of CS courses
for each Big-University student.

(c) If each dimension has five levels (including all), such as “student <

major < status < university < all”, how many cuboids will this cube
contain (including the base and apex cuboids)?

5. Suppose that a data warehouse consists of the four dimensions, date,
spectator, location, and game, and the two measures, count and charge,
where charge is the fare that a spectator pays when watching a game on
a given date. Spectators may be students, adults, or seniors, with each
category having its own charge rate.

(a) Draw a star schema diagram for the data warehouse.

(b) Starting with the base cuboid [date, spectator, location, game], what
specific OLAP operations should one perform in order to list the
total charge paid by student spectators at GM Place in 2004?

(c) Bitmap indexing is useful in data warehousing. Taking this cube
as an example, briefly discuss advantages and problems of using a
bitmap index structure.

6. A data warehouse can be modeled by either a star schema or a snowflake
schema. Briefly describe the similarities and the differences of the two

4.7. EXERCISES 61

models, and then analyze their advantages and disadvantages with regard
to one another. Give your opinion of which might be more empirically
useful and state the reasons behind your answer.

7. Design a data warehouse for a regional weather bureau. The weather bu-
reau has about 1,000 probes, which are scattered throughout various land
and ocean locations in the region to collect basic weather data, includ-
ing air pressure, temperature, and precipitation at each hour. All data
are sent to the central station, which has collected such data for over 10
years. Your design should facilitate efficient querying and on-line analyt-
ical processing, and derive general weather patterns in multidimensional
space.

8. A popular data warehouse implementation is to construct a multidimen-
sional database, known as a data cube. Unfortunately, this may often
generate a huge, yet very sparse multidimensional matrix.

(a) Present an example illustrating such a huge and sparse data cube.

(b) Design an implementation method that can elegantly overcome this
sparse matrix problem. Note that you need to explain your data
structures in detail and discuss the space needed, as well as how to
retrieve data from your structures.

(c) Modify your design in (b) to handle incremental data updates. Give
the reasoning behind your new design.

9. Regarding the computation of measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggre-
gate functions used in computing a data cube.

(b) For a data cube with the three dimensions time, location, and item,
which category does the function variance belong to? Describe how
to compute it if the cube is partitioned into many chunks.

Hint: The formula for computing variance is 1

N

∑
N

i=1
(xi − x̄i)

2,
where x̄i is the average of xis.

(c) Suppose the function is “top 10 sales.” Discuss how to efficiently
compute this measure in a data cube.

10. Suppose a company would like to design a data warehouse that may fa-
cilitate the analysis of moving vehicles in an online analytical processing
manner. The company registers huge amounts of auto movement data
in the format of (Auto ID, location, speed, time). Each Auto ID repre-
sents one vehicle associated with information, such as vehicle category,
driver category, etc., and each location could be associated with a street
in a city. You may assume a street map is available for the city.

(a) Design such a data warehouse that may facilitate effective on-line
analytical processing in multidimensional space.

62CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

(b) The movement data may contain noise. Discuss how you can develop
a method that may automatically discover some data records are
likely erroneously registered in the data repository.

(c) The movement data may be sparse. Discuss how you can develop
a method that may construct reliable data warehouse despite of the
sparsity of data.

(d) If one wants to drive from A to B starting at a particular time,
discuss how a system may use the data in this warehouse to work
out a fast route for the driver.

11. RFID has been used substantially to trace object movements and perform
inventory control. An RFID reader can successfully read an RFID tag at
certain limited distance at any scheduled time. Suppose a company would
like to design a data warehouse that may facilitate the analysis of objects
with RFID tags in an online analytical processing manner. The company
registers huge amounts of RFID data in the format of (RFID, at-location,
time), and also has some information about the objects carrying the RFID
tag, e.g., (RFID, product-name, product-category, producer, produced-
date, price).

(a) Design a data warehouse that may facilitate effective registration
and on-line analytical processing of such data.

(b) The RFID data may contain lots of redundant information. Discuss
one method that maximally reduces redundancy in the registration
of them in the RFID data warehouse.

(c) The RFID data may contain lots of noises, such as missing registra-
tion, misreading of IDs. Discuss one method that clean-up the noise
data effectively in the RFID data warehouse.

(d) One may like to perform online analytical processing to find how
many TV sets shipping from the LA seaport to BestBuy in Cham-
paign by month, by brand, and by price-range. Outline how this can
be done efficiently if you store such RFID data in the warehouse.

(e) If a customer brings back a jug of milk and complains it is rotten
before its expiration data, discuss how you could investigate such
a case in the warehouse to find out what could be the problem, in
shipping or in storage.

12. In many applications, new data sets are incrementally added to the ex-
isting large data sets. Thus an important consideration is whether a
measure can be computed efficiently in incremental manner. Use count,
standard deviation, and median as examples to show that a distributive or
algebraic measure facilitates efficient incremental computation, whereas a
holistic measure does not.

13. Suppose that we need to record three measures in a data cube: min, aver-
age, and median. Design an efficient computation and storage method for

4.7. EXERCISES 63

each measure given that the cube allows data to be deleted incrementally
(i.e., in small portions at a time) from the cube.

14. In data warehouse technology, a multiple dimensional view can be imple-
mented by a relational database technique (ROLAP), or by a multidimen-
sional database technique (MOLAP), or by a hybrid database technique
(HOLAP).

(a) Briefly describe each implementation technique.

(b) For each technique, explain how each of the following functions may
be implemented:

i. The generation of a data warehouse (including aggregation)

ii. Roll-up

iii. Drill-down

iv. Incremental updating

Which implementation techniques do you prefer, and why?

15. Suppose that a data warehouse contains 20 dimensions, each with about
five levels of granularity.

(a) Users are mainly interested in four particular dimensions, each hav-
ing three frequently accessed levels for rolling up and drilling down.
How would you design a data cube structure to support this prefer-
ence efficiently?

(b) At times, a user may want to drill through the cube, down to the raw
data for one or two particular dimensions. How would you support
this feature?

16. A data cube, C, has n dimensions, and each dimension has exactly p

distinct values in the base cuboid. Assume that there are no concept
hierarchies associated with the dimensions.

(a) What is the maximum number of cells possible in the base cuboid?

(b) What is the minimum number of cells possible in the base cuboid?

(c) What is the maximum number of cells possible (including both base
cells and aggregate cells) in the data cube, C?

(d) What is the minimum number of cells possible in the data cube, C?

17. What are the differences between the three main types of data warehouse
usage: information processing, analytical processing, and data mining?
Discuss the motivation behind OLAP mining (OLAM).

64CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

4.8 Bibliographic Notes

There are a good number of introductory-level textbooks on data warehousing
and OLAP technology, including Kimball and Ross [KR02], Imhoff, Galemmo
and Geiger [IGG03], Inmon [Inm96], Berson and Smith [BS97], and Thom-
sen [Tho97]. Chaudhuri and Dayal [CD97] provide a general overview of data
warehousing and OLAP technology. A set of research papers on material-
ized views and data warehouse implementations were collected in Materialized
Views: Techniques, Implementations, and Applications by Gupta and Mumick
[GM99].

The history of decision support systems can be traced back to the 1960s.
However, the proposal of the construction of large data warehouses for mul-
tidimensional data analysis is credited to Codd [CCS93] who coined the term
OLAP for online analytical processing. The OLAP council was established in
1995. Widom [Wid95] identified several research problems in data warehous-
ing. Kimball and Ross [KR02] provide an overview of the deficiencies of SQL
regarding the ability to support comparisons that are common in the business
world and present a good set of application cases that require data warehous-
ing and OLAP technology. For an overview of OLAP systems versus statistical
databases, see Shoshani [Sho97].

Gray et al. [GCB+97] proposed the data cube as a relational aggregation
operator generalizing group-by, crosstabs, and subtotals. Harinarayan, Rajara-
man, and Ullman [HRU96] proposed a greedy algorithm for the partial mate-
rialization of cuboids in the computation of a data cube. Data cube computa-
tion methods have been investigated by numerous studies, such as Sarawagi and
Stonebraker [SS94], Agarwal et al. [AAD+96], Zhao, Deshpande, and Naughton
[ZDN97], Ross and Srivastava [RS97], Beyer and Ramakrishnan [BR99], Han,
Pei, Dong, Wang [HPDW01], Xin, Han, Li and Wah [XHLW03]. These meth-
ods will be discussed in depth in Chapter 5. The concept of iceberg queries
was first introduced in Fang, Shivakumar, Garcia-Molina, et al. [FSGM+98].
The use of join indices to speed up relational query processing was proposed
by Valduriez [Val87]. O’Neil and Graefe [OG95] proposed a bitmapped join
index method to speed up OLAP-based query processing. A discussion of the
performance of bitmapping and other nontraditional index techniques is given
in O’Neil and Quass [OQ97].

For work regarding the selection of materialized cuboids for efficient OLAP
query processing, see Chaudhuri and Dayal [CD97], Harinarayan, Rajaraman,
and Ullman [HRU96], Sristava et al. [SDJL96]. Methods for cube size estima-
tion can be found in Deshpande et al. [DNR+97], Ross and Srivastava [RS97],
and Beyer and Ramakrishnan [BR99]. Agrawal, Gupta, and Sarawagi [AGS97]
proposed operations for modeling multidimensional databases. Methods for
answering queries quickly by online aggregation are described in Hellerstein,
Haas, and Wang [HHW97] and Hellerstein et al. [HAC+99]. Techniques for
estimating the top N queries are proposed in Carey and Kossman [CK98] and
Donjerkovic and Ramakrishnan [DR99]. Further studies on intelligent OLAP
and discovery-driven exploration of data cubes are presented in the Biblio-

4.8. BIBLIOGRAPHIC NOTES 65

graphic Notes of Chapter 5.

66CHAPTER 4. DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

Bibliography

[AAD+96] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, and S. Sarawagi. On the compu-
tation of multidimensional aggregates. In Proc. 1996 Int. Conf.
Very Large Data Bases (VLDB’96), pages 506–521, Bombay, In-
dia, Sept. 1996.

[AGS97] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimen-
sional databases. In Proc. 1997 Int. Conf. Data Engineering
(ICDE’97), pages 232–243, Birmingham, England, April 1997.

[BR99] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse
and iceberg cubes. In Proc. 1999 ACM-SIGMOD Int. Conf. Man-
agement of Data (SIGMOD’99), pages 359–370, Philadelphia, PA,
June 1999.

[BS97] A. Berson and S. J. Smith. Data Warehousing, Data Mining, and
OLAP. McGraw-Hill, 1997.

[CCH91] Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in
relational databases. In G. Piatetsky-Shapiro and W. J. Fraw-
ley, editors, Knowledge Discovery in Databases, pages 213–228.
AAAI/MIT Press, 1991.

[CCS93] E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support.
Computer World, 27, July 1993.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and
OLAP technology. SIGMOD Record, 26:65–74, 1997.

[CK98] M. Carey and D. Kossman. Reducing the braking distance of an
SQL query engine. In Proc. 1998 Int. Conf. Very Large Data Bases
(VLDB’98), pages 158–169, New York, NY, Aug. 1998.

[DNR+97] P. Deshpande, J. Naughton, K. Ramasamy, A. Shukla, K. Tufte,
and Y. Zhao. Cubing algorithms, storage estimation, and storage
and processing alternatives for OLAP. Bull. Technical Committee
on Data Engineering, 20:3–11, 1997.

67

68 BIBLIOGRAPHY

[DR99] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization
of top N queries. In Proc. 1999 Int. Conf. Very Large Data Bases
(VLDB’99), pages 411–422, Edinburgh, UK, Sept. 1999.

[FSGM+98] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D.
Ullman. Computing iceberg queries efficiently. In Proc. 1998 Int.
Conf. Very Large Data Bases (VLDB’98), pages 299–310, New
York, NY, Aug. 1998.

[GCB+97] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A rela-
tional aggregation operator generalizing group-by, cross-tab and
sub-totals. Data Mining and Knowledge Discovery, 1:29–54, 1997.

[GM99] A. Gupta and I. S. Mumick. Materialized Views: Techniques, Im-
plementations, and Applications. MIT Press, 1999.

[HAC+99] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Ra-
man, T. Roth, and P. J. Haas. Interactive data analysis: The
control project. IEEE Computer, 32:51–59, July 1999.

[HCC93] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quanti-
tative rules in relational databases. IEEE Trans. Knowledge and
Data Engineering, 5:29–40, 1993.

[HF96] J. Han and Y. Fu. Exploration of the power of attribute-oriented
induction in data mining. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 399–421. AAAI/MIT Press,
1996.

[HHW97] J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In
Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’97), pages 171–182, Tucson, AZ, May 1997.

[HPDW01] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation
of iceberg cubes with complex measures. In Proc. 2001 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’01), pages
1–12, Santa Barbara, CA, May 2001.

[HRU96] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
data cubes efficiently. In Proc. 1996 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’96), pages 205–216, Montreal,
Canada, June 1996.

[IGG03] C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Ware-
house Design : Relational and Dimensional Techniques. John Wi-
ley & Sons, 2003.

BIBLIOGRAPHY 69

[Inm96] W. H. Inmon. Building the Data Warehouse. John Wiley & Sons,
1996.

[KR02] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Com-
plete Guide to Dimensional Modeling (2nd ed.). John Wiley &
Sons, 2002.

[Mic83] R. S. Michalski. A theory and methodology of inductive learning.
In R. S. Michalski, J. G. Carbonell, , and T. M. Mitchell, edi-
tors, Machine Learning: An Artificial Intelligence Approach, Vol.
1, pages 83–134. Morgan Kaufmann, 1983.

[OG95] P. O’Neil and G. Graefe. Multi-table joins through bitmapped join
indices. SIGMOD Record, 24:8–11, Sept. 1995.

[OQ97] P. O’Neil and D. Quass. Improved query performance with variant
indexes. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’97), pages 38–49, Tucson, AZ, May 1997.

[RS97] K. Ross and D. Srivastava. Fast computation of sparse datacubes.
In Proc. 1997 Int. Conf. Very Large Data Bases (VLDB’97), pages
116–125, Athens, Greece, Aug. 1997.

[SDJL96] D. Sristava, S. Dar, H. V. Jagadish, and A. V. Levy. Answering
queries with aggregation using views. In Proc. 1996 Int. Conf.
Very Large Data Bases (VLDB’96), pages 318–329, Bombay, India,
Sept. 1996.

[Sho97] A. Shoshani. OLAP and statistical databases: Similarities and
differences. In Proc. 16th ACM Symp. Principles of Database Sys-
tems, pages 185–196, Tucson, AZ, May 1997.

[SS94] S. Sarawagi and M. Stonebraker. Efficient organization of large
multidimensional arrays. In Proc. 1994 Int. Conf. Data Engineer-
ing (ICDE’94), pages 328–336, Houston, TX, Feb. 1994.

[Tho97] E. Thomsen. OLAP Solutions: Building Multidimensional Infor-
mation Systems. John Wiley & Sons, 1997.

[Val87] P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218–
246, 1987.

[Wid95] J. Widom. Research problems in data warehousing. In Proc. 4th
Int. Conf. Information and Knowledge Management, pages 25–30,
Baltimore, MD, Nov. 1995.

[XHLW03] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing
iceberg cubes by top-down and bottom-up integration. In Proc.
2003 Int. Conf. Very Large Data Bases (VLDB’03), pages 476–487,
Berlin, Germany, Sept. 2003.

70 BIBLIOGRAPHY

[ZDN97] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-
based algorithm for simultaneous multidimensional aggregates. In
Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’97), pages 159–170, Tucson, AZ, May 1997.

