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Why are Grammars and Parsing 
Techniques relevant?

● A grammar is a formal method to describe a 
(textual) language
● Programming languages: C, Java, C#, JavaScript
● Domain-specific languages: BibTex, Mathematica
● Data formats: log files, protocol data

● Parsing:
● Tests whether a text conforms to a grammar
● Turns a correct text into a parse tree
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How to define a grammar?

● Simplistic solution: finite set of acceptable 
sentences
● Problem: what to do with infinite languages?

● Realistic solution: finite recipe that describes all 
acceptable sentences

● A grammar is a finite description of a possibly 
infinite set of acceptable sentences
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Example: Tom, Dick and Harry

● Suppose we want describe a language that 
contains the following legal sentences:
● Tom
● Tom and Dick
● Tom, Dick and Harry
● Tom, Harry, Tom and Dick
● ...

● How do we find a finite recipe for this?
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The Tom, Dick and Harry Grammar

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and Name

Non-terminals: 
Name, Sentence, List, End

Terminals: 
tom, dick, harry, and, ,

Start Symbol: 
Sentence
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Variations in Notation

● Name -> tom | dick | harry
● <Name> ::= “tom” | “dick” | “harry”
● “tom” | “dick” | “harry” -> Name
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Chomsky’s Grammar Hierarchy

● Type-0: Recursively Enumerable
● Rules: α -> β (unrestricted)

● Type-1: Context-sensitive
● Rules: αAβ -> αγβ

● Type-2: Context-free
● Rules: A -> γ

● Type-3: Regular
● Rules: A -> a and A -> aB
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Context-free Grammar for TDH

● Name -> tom | dick | harry
● Sentence -> Name | List and Name
● List -> Name , List | Name
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In practice ...

● Regular grammars used for lexical syntax:
● Keywords: if, then, while
● Constants: 123, 3.14, “a string”
● Comments: /* a comment */

● Context-free grammars used for structured and 
nested concepts:
● Class declaration
● If statement
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A sentence

o s i t i o n : = i n i t i + r a t e * 6 0p a l

position := initial + rate * 60
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Lexical syntax

● Regular expressions define lexical syntax:
● Literal characters: a,b,c,1,2,3
● Character classes: [a-z], [0-9]
● Operators: sequence (space), repetition (* or +), 

option (?)

● Examples:
● Identifier: [a-z][a-z0-9]*
● Number: [0-9]+
● Floating constant: [0-9]*.[0-9]*(e-[0-9]+)
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Lexical syntax

● Regular expressions can be implemented with 
a finite automaton

● Consider [a-z][a-z0-9]*

Start
[a-z]

End

[a-z0-9]*
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Lexical Tokens

o s i t i o n : = i n i t i + r a t e * 6 0p a l

position := initial rate+ * 60

Identifier

*

Identifier Identifier Number
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Context-free syntax

● Expression -> Identifier
● Expression -> Number
● Expression -> Expression + Expression
● Expression -> Expression * Expression
● Statement -> Identifier := Expression
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Parse Tree

o s i t i o n : = i n i t i + r a t e * 6 0p a l

position := initial rate+ * 60

Identifier

*

identifier Identifier Number

expression

Identifier

Expression ExpressionExpression

Expression

Expression

Statement
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Ambiguity: 
one sentence, but several trees

Number

1 2 3+ *

Number Number

Expression

Expression

Number

1 2 3+ *

Number Number

Expression

Expression
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Two solutions

● Add priorities to the grammar:
● * > +

● Rewrite the grammar:
● Expression -> Expression + Term
● Expression -> Term
● Term -> Term * Primary
● Term -> Primary
● Primary -> Number
● Primary -> Identifier



 Introduction to Grammars and Parsing Techniques 23

Unambiguous Parse Tree

Number

1 2 3+ *

Number Number

TermTerm

Primary Primary Primary

TermExpression

Expression
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Some Grammar Transformations

● Left recursive production:
●  A -> A α | β
● Example: Exp -> Exp + Term | Term

● Left recursive productions lead to loops in some 
kinds of parsers (recursive descent)

● Removal:
● A -> β R
● R -> α R | ε          (ε is the empty string)
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Some Grammar Transformations

● Left factoring:
● S -> if E then S else S | if E then S

● For some parsers it is better to factor out the 
common parts:
● S -> if E then S P
● P -> else S | ε
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A Recognizer

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text 

Recognizer  Yes    or     No



 Introduction to Grammars and Parsing Techniques 27

A Parser

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text 

Parser

Parse tree    or       Errors
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General Approaches to Parsing

● Top-Down (Predictive)
● Each non-terminal is a goal
● Replace each goal by subgoals (= elements of rule)
● Parse tree is built from top to bottom

● Bottom-Up
● Recognize terminals
● Replace terminals by non-terminals
● Replace terminals and non-terminals by left-hand 

side of rule
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Top-down versus Bottom-up

Top-down Bottom-up

Number

4 5 6* +

Number Number

Expression

Expression

Number

1 2 3+ *

Number Number

Expression

Expression
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How to get a parser?

● Write parser manually
● Generate parser from grammar
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Example

● Given grammar:
● Expr -> Expr + Term
● Expr -> Expr – Term
● Expr -> Term
● Term -> [0-9]

● Remove left recursion:
● Expr -> Term Rest
● Rest -> + Term Rest | - Term Rest | ε
● Term -> [0-9]
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Recursive Descent Parser
Expr(){ Term(); Rest(); }

Rest(){ if(lookahead == '+'){
Match('+'); Term(); Rest();

    } else if( lookahead == '-'){
 Match('-'); Term(); Rest();
    } else ;
}

Term(){ if(isdigit(lookahead)){
Match(lookahead);

} else
Error();

}
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A Trickier Case: Backtracking

● Example
● S -> aSbS | aS | c

● Naive approach (input ac):
● Try aSbS, but this fails hence error

● Backtracking approach:
● First try aSbS but this fails
● Go back to initial input position and try aS, this 

succeeds.
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Automatic Parser Generation

Syntax of L

Parser
Generator

 Parser 
for L

L text
L

tree
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Some Parser Generators
● Bottom-up

● Yacc/Bison, LALR(1)
● CUP, LALR(1)
● SDF, SGLR

● Top-down:
● ANTLR, LL(k)
● JavaCC, LL(k)
● Rascal

● Except Rascal and SDF, all depend on a 
scanner generator
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Assessment parser implementation

● Manual parser construction

+ Good error recovery

+ Flexible combination of parsing and actions

- A lot of work

● Parser generators

+ May save a lot of work

- Complex and rigid frameworks

- Rigid actions

- Error recovery more difficult
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Further Reading

● http://en.wikipedia.org/wiki/Chomsky_hierarchy
● D. Grune & C.J.H. Jacobs, Parsing Techniques: 

A Practical Guide, Second Edition, Springer, 
2008
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Further Reading

● http://en.wikipedia.org/wiki/Chomsky_hierarchy
● Paul Klint, Quick introduction to Syntax 

Analysis, http://www.meta-environment.org/ 
doc/books//syntax/syntax-analysis/syntax-
analysis.html

● D. Grune & C.J.H. Jacobs, Parsing Techniques: 
A Practical Guide, Second Edition, Springer, 
2008
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