
 Introduction to Grammars and Parsing Techniques 1

Introduction to
Grammars and

Parsing Techniques

Paul Klint

Grammars and Languages are one
of the most established areas of

Computer Science

N. Chomsky,
Aspects of the theory of syntax,
1965

A.V. Aho & J.D. Ullman,
The Theory of Parsing,
Translation and Compilimg,
Parts I + II,
1972

A.V. Aho, R. Sethi,
J.D. Ullman,
Compiler, Principles,
Techniques and Tools,
1986

D. Grune, C. Jacobs,
Parsing Techniques,
A Practical Guide,
2008

 Introduction to Grammars and Parsing Techniques 7

Why are Grammars and Parsing
Techniques relevant?

● A grammar is a formal method to describe a
(textual) language
● Programming languages: C, Java, C#, JavaScript
● Domain-specific languages: BibTex, Mathematica
● Data formats: log files, protocol data

● Parsing:
● Tests whether a text conforms to a grammar
● Turns a correct text into a parse tree

 Introduction to Grammars and Parsing Techniques 8

How to define a grammar?

● Simplistic solution: finite set of acceptable
sentences
● Problem: what to do with infinite languages?

● Realistic solution: finite recipe that describes all
acceptable sentences

● A grammar is a finite description of a possibly
infinite set of acceptable sentences

 Introduction to Grammars and Parsing Techniques 9

Example: Tom, Dick and Harry

● Suppose we want describe a language that
contains the following legal sentences:
● Tom
● Tom and Dick
● Tom, Dick and Harry
● Tom, Harry, Tom and Dick
● ...

● How do we find a finite recipe for this?

 Introduction to Grammars and Parsing Techniques 10

The Tom, Dick and Harry Grammar

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and Name

Non-terminals:
Name, Sentence, List, End

Terminals:
tom, dick, harry, and, ,

Start Symbol:
Sentence

 Introduction to Grammars and Parsing Techniques 11

Variations in Notation

● Name -> tom | dick | harry
● <Name> ::= “tom” | “dick” | “harry”
● “tom” | “dick” | “harry” -> Name

 Introduction to Grammars and Parsing Techniques 12

Chomsky’s Grammar Hierarchy

● Type-0: Recursively Enumerable
● Rules: α -> β (unrestricted)

● Type-1: Context-sensitive
● Rules: αAβ -> αγβ

● Type-2: Context-free
● Rules: A -> γ

● Type-3: Regular
● Rules: A -> a and A -> aB

 Introduction to Grammars and Parsing Techniques 13

Context-free Grammar for TDH

● Name -> tom | dick | harry
● Sentence -> Name | List and Name
● List -> Name , List | Name

 Introduction to Grammars and Parsing Techniques 14

In practice ...

● Regular grammars used for lexical syntax:
● Keywords: if, then, while
● Constants: 123, 3.14, “a string”
● Comments: /* a comment */

● Context-free grammars used for structured and
nested concepts:
● Class declaration
● If statement

 Introduction to Grammars and Parsing Techniques 15

A sentence

o s i t i o n : = i n i t i + r a t e * 6 0p a l

position := initial + rate * 60

 Introduction to Grammars and Parsing Techniques 16

Lexical syntax

● Regular expressions define lexical syntax:
● Literal characters: a,b,c,1,2,3
● Character classes: [a-z], [0-9]
● Operators: sequence (space), repetition (* or +),

option (?)

● Examples:
● Identifier: [a-z][a-z0-9]*
● Number: [0-9]+
● Floating constant: [0-9]*.[0-9]*(e-[0-9]+)

 Introduction to Grammars and Parsing Techniques 17

Lexical syntax

● Regular expressions can be implemented with
a finite automaton

● Consider [a-z][a-z0-9]*

Start
[a-z]

End

[a-z0-9]*

 Introduction to Grammars and Parsing Techniques 18

Lexical Tokens

o s i t i o n : = i n i t i + r a t e * 6 0p a l

position := initial rate+ * 60

Identifier

*

Identifier Identifier Number

 Introduction to Grammars and Parsing Techniques 19

Context-free syntax

● Expression -> Identifier
● Expression -> Number
● Expression -> Expression + Expression
● Expression -> Expression * Expression
● Statement -> Identifier := Expression

 Introduction to Grammars and Parsing Techniques 20

Parse Tree

o s i t i o n : = i n i t i + r a t e * 6 0p a l

position := initial rate+ * 60

Identifier

*

identifier Identifier Number

expression

Identifier

Expression ExpressionExpression

Expression

Expression

Statement

 Introduction to Grammars and Parsing Techniques 21

Ambiguity:
one sentence, but several trees

Number

1 2 3+ *

Number Number

Expression

Expression

Number

1 2 3+ *

Number Number

Expression

Expression

 Introduction to Grammars and Parsing Techniques 22

Two solutions

● Add priorities to the grammar:
● * > +

● Rewrite the grammar:
● Expression -> Expression + Term
● Expression -> Term
● Term -> Term * Primary
● Term -> Primary
● Primary -> Number
● Primary -> Identifier

 Introduction to Grammars and Parsing Techniques 23

Unambiguous Parse Tree

Number

1 2 3+ *

Number Number

TermTerm

Primary Primary Primary

TermExpression

Expression

 Introduction to Grammars and Parsing Techniques 24

Some Grammar Transformations

● Left recursive production:
● A -> A α | β
● Example: Exp -> Exp + Term | Term

● Left recursive productions lead to loops in some
kinds of parsers (recursive descent)

● Removal:
● A -> β R
● R -> α R | ε (ε is the empty string)

 Introduction to Grammars and Parsing Techniques 25

Some Grammar Transformations

● Left factoring:
● S -> if E then S else S | if E then S

● For some parsers it is better to factor out the
common parts:
● S -> if E then S P
● P -> else S | ε

 Introduction to Grammars and Parsing Techniques 26

A Recognizer

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

Recognizer Yes or No

 Introduction to Grammars and Parsing Techniques 27

A Parser

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

Parser

Parse tree or Errors

 Introduction to Grammars and Parsing Techniques 28

General Approaches to Parsing

● Top-Down (Predictive)
● Each non-terminal is a goal
● Replace each goal by subgoals (= elements of rule)
● Parse tree is built from top to bottom

● Bottom-Up
● Recognize terminals
● Replace terminals by non-terminals
● Replace terminals and non-terminals by left-hand

side of rule

 Introduction to Grammars and Parsing Techniques 29

Top-down versus Bottom-up

Top-down Bottom-up

Number

4 5 6* +

Number Number

Expression

Expression

Number

1 2 3+ *

Number Number

Expression

Expression

 Introduction to Grammars and Parsing Techniques 30

How to get a parser?

● Write parser manually
● Generate parser from grammar

 Introduction to Grammars and Parsing Techniques 31

Example

● Given grammar:
● Expr -> Expr + Term
● Expr -> Expr – Term
● Expr -> Term
● Term -> [0-9]

● Remove left recursion:
● Expr -> Term Rest
● Rest -> + Term Rest | - Term Rest | ε
● Term -> [0-9]

 Introduction to Grammars and Parsing Techniques 32

Recursive Descent Parser
Expr(){ Term(); Rest(); }

Rest(){ if(lookahead == '+'){
Match('+'); Term(); Rest();

 } else if(lookahead == '-'){
 Match('-'); Term(); Rest();
 } else ;
}

Term(){ if(isdigit(lookahead)){
Match(lookahead);

} else
Error();

}

 Introduction to Grammars and Parsing Techniques 33

A Trickier Case: Backtracking

● Example
● S -> aSbS | aS | c

● Naive approach (input ac):
● Try aSbS, but this fails hence error

● Backtracking approach:
● First try aSbS but this fails
● Go back to initial input position and try aS, this

succeeds.

 Introduction to Grammars and Parsing Techniques 34

Automatic Parser Generation

Syntax of L

Parser
Generator

 Parser
for L

L text
L

tree

 Introduction to Grammars and Parsing Techniques 35

Some Parser Generators
● Bottom-up

● Yacc/Bison, LALR(1)
● CUP, LALR(1)
● SDF, SGLR

● Top-down:
● ANTLR, LL(k)
● JavaCC, LL(k)
● Rascal

● Except Rascal and SDF, all depend on a
scanner generator

 Introduction to Grammars and Parsing Techniques 36

Assessment parser implementation

● Manual parser construction

+ Good error recovery

+ Flexible combination of parsing and actions

- A lot of work

● Parser generators

+ May save a lot of work

- Complex and rigid frameworks

- Rigid actions

- Error recovery more difficult

 Introduction to Grammars and Parsing Techniques 37

Further Reading

● http://en.wikipedia.org/wiki/Chomsky_hierarchy
● D. Grune & C.J.H. Jacobs, Parsing Techniques:

A Practical Guide, Second Edition, Springer,
2008

 Introduction to Grammars and Parsing Techniques 38

Further Reading

● http://en.wikipedia.org/wiki/Chomsky_hierarchy
● Paul Klint, Quick introduction to Syntax

Analysis, http://www.meta-environment.org/
doc/books//syntax/syntax-analysis/syntax-
analysis.html

● D. Grune & C.J.H. Jacobs, Parsing Techniques:
A Practical Guide, Second Edition, Springer,
2008

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

