Strongly regular graphs

Andries E. Brouwer Hendrik Van Maldeghem
The present volume is a monograph on the topic of Strongly Regular Graphs. So far, no book-length treatment of this subject area has been available.

The topic of strongly regular graphs is an area where statistics, Euclidean geometry, group theory, finite geometry, and extremal combinatorics meet. The subject concerns beautifully regular structures, studied mostly using spectral methods, group theory, geometry and sometimes lattice theory.

Roughly around 1970–1980, Algebraic Combinatorics came up as a separate branch in mathematics. It turned out that the same structures were studied in statistics (for the design of experiments), in Euclidean geometry (e.g. in the construction of systems of equiangular lines), in group theory (where several sporadic groups arise as automorphism groups of a strongly regular graph), in coding theory (where association schemes provide a tool for obtaining bounds on the size of codes, and beautiful structures give rise to good and easy-to-decode codes), in the theory of special functions (where the spectral data of association schemes give rise to series of orthogonal polynomials), in finite geometry (where collinearity graphs of polar spaces are strongly regular), in extremal combinatorics, in cryptography, and elsewhere. More recently such very regular structures find some application in the theory of quantum computation (e.g. for mutually unbiased bases (MUBs) and symmetric, informationally complete, positive operator-valued measures (SICPOVMs)).

Axiomatizing the combinatorial information in the action of a finite permutation group \(G \) on a set \(X \) yields a hierarchy of combinatorial structures. A general group gives the structure of coherent configuration. For a transitive group one finds an association scheme. If the representation is multiplicity-free, the pair \((G, K)\), where \(K \) is the point stabilizer in \(G \), is called a Gelfand pair. The corresponding combinatorial object is a commutative association scheme. If \(G \) is generously transitive, one finds a symmetric association scheme. The simplest nontrivial case is that of a strongly regular graph, the combinatorial analog of a rank 3 group, where \(K \) has three orbits on \(X \times X \).

Delsarte’s 1973 thesis\(^1\) defined the concept of (commutative) association scheme and showed the use of the linear programming bound. Bannai & Ito\(^2\) introduced the term ‘algebraic combinatorics’, described as ‘character-theoretical study of combinatorial objects’, or ‘group theory without groups’. Brouwer, Cohen & Neumaier\(^3\) published a monograph on distance-regular graphs (that is, \(P \)- and \(Q \)-polynomial association schemes) of diameter at least 3 (where the

strongly regular graphs are precisely the distance-regular graphs of diameter 2). They wrote ‘Another book would be required to cover the present knowledge about strongly regular graphs (no such book is available at present)’. The present monograph fills this gap.

Various teams of authors, starting around 1980 with Van Lint and the present first author, contemplated writing such a book, but for various reasons such a project was never completed. Many years later J. I. Hall, at a 2011 meeting in Oisterwijk, again commented on the lack of a good source of information about strongly regular graphs more recent than Hubaut’s 1975 survey, and the project was rekindled.

This book was started with the aim to give the classification of rank 3 graphs and to describe these graphs, possibly as members of larger families, and give information such as parameters, group, cliques, cocliques, local structure, and characterization. Later, the project was widened to include the theory of general strongly regular graphs.

The bulk of the material is more or less well known. Many details are new. In particular, we give information about regular subsets that is often new. Our approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces is original and based on the idea of ‘thickening’ the Clebsch graph. We felt free to omit proofs that are rather technical, or that do not fit naturally into the line of development of the book.

Chapter 1 contains the fundamentals. Chapters 2 and 3 find the finite polar geometries in a uniform way and describe the related graphs and substructures. Chapter 4 is a brief introduction to buildings, and provides an explicit and elementary construction of the finite buildings of types E_6 and G_2. Chapter 5 is a very short introduction to the geometry related to the Fischer groups. For later use, lax embeddings of symplectic copolar spaces are studied. Chapter 6 gives the main facts on the Golay codes and Witt designs, and contains a very short introduction to the Leech lattice. Chapter 7 is about cyclotomy and difference sets, and the relation to two-weight codes. Chapter 8 contains combinatorial material that is partly new, with, for example, discussions of orthogonal arrays, quasi-symmetric designs, partial geometries, regular two-graphs, spherical designs, randomness properties and much more. Chapter 9 discusses the p-rank of the adjacency matrix, in some cases a useful invariant that may distinguish graphs with the same parameters. The long Chapter 10 consists of a hundred sections discussing (more than) a hundred individual graphs in some more detail. In Chapter 11 we give the classification of rank 3 groups, and identify in each case the corresponding strongly regular graph. Everywhere there are extensive tables. Chapter 12 is just a table, listing all feasible parameter sets of strongly regular graphs with at most 512 vertices together with some information about existence and other details, with references to other parts of the book.

We would like to especially thank Jon Hall, Ferdinand Ihringer, Alexander Gavrilyuk, Dina Pasechnik, and the anonymous referees for detailed comments.

on earlier drafts. We are also grateful to Maarten De Boeck, Ludmila Tsiolkina, Paulien Jansen, Jeroen Schillewaert, Anneleen De Schepper, Sam Mattheus, and Jan De Beule for reading, and commenting on, draft versions of specific chapters. Finally, we acknowledge with thanks the help of the librarian, Samuel Perez, for locating several difficult-to-find papers.

Amsterdam and Ghent, March 2021.
Contents

1 Graphs 1
1.1 Strongly regular graphs . 1
 1.1.1 Parameters . 2
 1.1.2 Complement . 2
 1.1.3 Imprimitivity . 2
 1.1.4 Spectrum . 3
 1.1.5 Rank 3 permutation groups 3
 1.1.6 Local graphs . 4
 1.1.7 Johnson graphs . 4
 1.1.8 Hamming graphs . 4
 1.1.9 Paley graphs . 5
 1.1.10 Strongly regular graphs with smallest eigenvalue -2 . . . 5
 1.1.11 Seidel switching . 7
 1.1.12 Regular two-graphs . 8
 1.1.13 Regular partitions and regular sets 9
 1.1.14 Inequalities for subgraphs 10
 1.1.15 Connectivity . 13
 1.1.16 Graphs induced on complementary subsets of the vertex set of a graph . 14
 1.1.17 Enumeration . 14
 1.1.18 Prolific constructions . 16
1.2 Distance-regular graphs . 16
 1.2.1 Distance-transitive graphs 17
 1.2.2 Johnson graphs . 18
 1.2.3 Hamming graphs . 18
 1.2.4 Grassmann graphs . 18
 1.2.5 Van Dam-Koolen graphs 18
 1.2.6 Imprimitive distance-regular graphs 19
 1.2.7 Taylor graphs . 19
1.3 Association schemes and coherent configurations 20
 1.3.1 Association schemes . 20
 1.3.2 The Bose-Mesner algebra 21
 1.3.3 Linear programming bound and code-clique theorem 22
 1.3.4 Krein parameters . 23
 1.3.5 Euclidean representation 25
 1.3.6 Subschemes . 26
 1.3.7 Absolute bound and μ-bound 27
 1.3.8 Coherent configurations . 28
2 Polar spaces

2.1 Polar spaces

- Projective spaces
- Definition of polar spaces
- Description of polar spaces
- Rank and radical
- Maximal singular subspaces
- Order of a polar space

2.2 Embedded polar spaces

- Projective spaces
- Definition of embedded polar spaces
- Rank and radical
- Maximal singular subspaces
- Order of an embedded polar space
- Parameters and spectrum of the polar space strongly regular graphs
- Ovoids, spreads, m-systems, h-ovoids, hemisystems
- Intriguing or regular sets; i-tight sets
- Distance-regular graphs on singular subspaces
- Generalized quadrangles
- Strongly regular graphs on the lines
- Distance-regular graphs on half of the maximal singular subspaces

2.3 Classification of finite embedded polar spaces

- Residues
- Reduction to rank 2
- The finite rank 2 polar spaces in 3-space
- The finite embedded generalized quadrangles
- Summary
- Group orders

2.4 Witt’s theorem

- Reflexive forms
- Reflexive forms and embedded polar spaces
- Classification of sesquilinear reflexive forms
- Orthogonal direct sum decomposition
- Witt’s theorem

2.5 Symplectic polar spaces

- Symplectic forms, polar spaces, and graphs
- Parameters
- Automorphism groups
- Maximal cliques
- Ovoids
- Maximal cocliques
- h-Ovoids
- Spreads
- Tight sets
- Local graph

2.6 Orthogonal polar spaces

- Quadratic forms and orthogonal polar spaces
- Finite orthogonal polar spaces and graphs
- Parameters
- Isomorphisms
- Automorphism groups
- Maximal cliques
- Ovoids and maximal cocliques
- Tight sets, spreads, and h-ovoids
4.3 Coxeter geometries ... 113
4.4 Coxeter geometries of types A_n, D_n, and E_6 115
4.5 Buildings ... 115
 4.5.1 Generalities ... 116
 4.5.2 Spherical buildings 117
 4.5.3 Characterizations 118
 4.5.4 Chain calculus ... 118
4.6 The Klein quadric and Klein correspondence 121
4.7 Triality .. 122
 4.7.1 Split octonion algebras 122
 4.7.2 Triality ... 124
4.8 A construction of $G_2(q)$ 124
4.9 The $E_{6,1}(q)$ graph 126
 4.9.1 Parameters ... 126
 4.9.2 Cliques, cocliques and regular sets 127
 4.9.3 Construction of $E_{6,1}(q)$ 128
5 Fischer spaces ... 131
 5.1 Definition ... 131
 5.2 Fischer’s classification 134
 5.3 Hall triple systems ... 138
 5.4 Cotriangular graphs .. 139
 5.5 Locally grid graphs .. 140
 5.6 Copolar spaces .. 141
 5.6.1 Hall’s classification 141
 5.6.2 Lax embeddings of the symplectic copolar spaces ... 142
6 Golay codes, Witt designs, and Leech lattice 147
 6.1 Codes .. 147
 6.1.1 The Golay codes 148
 6.1.2 The Golay codes — constructions 148
 6.1.3 Properties and uniqueness 150
 6.1.4 The Mathieu group M_{24} 151
 6.1.5 More uniqueness results 152
 6.2 Designs .. 152
 6.2.1 The Witt designs 153
 6.2.2 Substructures of $S(5,8,24)$ 155
 6.2.3 Near polygons .. 157
 6.2.4 The geometry of the projective plane of order 4 ... 158
 6.3 Lattices .. 162
 6.3.1 The Leech lattice 163
 6.3.2 The mod 2 Leech lattice 164
 6.3.3 The complex Leech lattice 164
7 Cyclotomic constructions .. 165
 7.1 Difference sets ... 165
 7.1.1 Two-character projective sets 165
 7.1.2 Projective two-weight codes 166
 7.1.3 Delsarte duality 166
 7.1.4 Parameters .. 167
CONTENTS

7.1.5 Complements and imprimitivity 167
7.1.6 Divisibility . 167
7.1.7 Field change . 168
7.1.8 Unions and differences 168
7.1.9 Geometric examples . 168
7.1.10 Small two-weight codes 171
7.1.11 Sporadic two-weight codes 173
7.2 Cyclic codes . 174
7.2.1 Trace representation of an irreducible cyclic code 174
7.2.2 Wolfmann’s theorem . 174
7.2.3 Irreducible cyclic two-weight codes 174
7.3 Cyclotomy . 175
7.3.1 The Van Lint-Schrijver graphs 176
7.3.2 The Hill graph . 176
7.3.3 The De Lange graphs . 176
7.3.4 Generalizations . 177
7.3.5 Amorphic association schemes 177
7.3.6 Self-complementary graphs and Peisert graphs 177
7.4 One-dimensional affine rank 3 groups 177
7.4.1 Divisibility . 178
7.4.2 Subgroups of $\Gamma L(1,q)$ with two orbits 178
7.4.3 One-dimensional affine rank 3 groups 181
7.4.4 Paley graphs . 181
7.4.5 Power residue difference sets 183
7.5 Icosahedrals . 184
7.5.1 Orbits of A_5 on the projective line and plane 184
7.5.2 Orbits of S_4 on the projective line 185
7.6 Bent functions . 185
8 Combinatorial constructions 187
8.1 Regular Hadamard matrices with constant diagonal 187
8.1.1 Examples . 188
8.1.2 Errata . 189
8.2 Conference matrices and conference graphs 189
8.3 Symmetric designs . 191
8.3.1 Generalities . 191
8.3.2 The McFarland difference sets 191
8.4 Latin squares . 192
8.4.1 Generalities . 192
8.4.2 Latin square graphs . 193
8.4.3 Transversal 3-designs . 194
8.5 Quasi-symmetric designs . 195
8.5.1 The Calderbank-Cowen inequality 195
8.5.2 Neumaier’s inequality . 195
8.5.3 No triangular graph . 197
8.5.4 Examples . 197
8.5.5 Classification . 199
8.5.6 Table . 199
8.5.7 Parameter conditions from coding theory 201
8.5.8 Haemers cocliques . 203
CONTENTS

8.6 Partial geometries ... 204
 8.6.1 Examples .. 205
 8.6.2 Enumeration ... 206
 8.6.3 Nonexistence .. 206
 8.6.4 The claw bound ... 206
 8.6.5 Claws and cliques 208
8.7 Semipartial geometries .. 211
 8.7.1 Examples of partial quadrangles 211
 8.7.2 Examples of semipartial geometries 212
8.8 Zara graphs .. 213
8.9 Terwilliger graphs ... 214
8.10 Regular two-graphs .. 215
 8.10.1 Examples .. 216
 8.10.2 Enumeration ... 218
 8.10.3 Completely regular two-graphs 218
 8.10.4 Covers and quotients 219
8.11 Pseudocyclic association schemes 220
8.12 Tensor products of skew schemes 221
8.13 Cospectral graphs .. 222
 8.13.1 Godsil-McKay switching 222
 8.13.2 Wang-Qiu-Hu switching 222
8.14 Equiangular sets of lines 223
8.15 Spherical designs ... 224
 8.15.1 Tight spherical designs 225
 8.15.2 Spherical designs from association schemes 226
 8.15.3 Bounds on the number of K_q’s 226
8.16 Higher regularity conditions 226
 8.16.1 The t-vertex condition 226
 8.16.2 t-Isoregularity .. 227
8.17 Asymptotics ... 228
 8.17.1 Graph isomorphism 228
 8.17.2 Pseudo-randomness 228
8.18 Conditions in case $\mu = 1$ or $\mu = 2$ 230
8.19 Coloring .. 230
8.20 Graphs that are locally strongly regular 232
8.21 Dropping regularity ... 232
8.22 Directed strongly regular graphs 232
9 p-Ranks .. 235
 9.1 Points and hyperplanes of a projective space 235
 9.2 Graphs .. 235
 9.3 Strongly regular graphs 236
 9.4 Smith normal form .. 241
10 Individual graph descriptions 245
 10.1 The pentagon .. 245
 10.2 The 3×3 grid .. 246
 10.3 The Petersen graph .. 246
 10.4 The Paley graph on 13 vertices 247
 10.5 $\mathrm{GQ}(2,2)$.. 247
CONTENTS

10.6 The Shrikhande graph .. 248
10.7 The Clebsch graph ... 250
10.8 The Paley graph on 17 vertices 252
10.9 The Paulus-Rozenfel’d graphs 252
10.10 The Schläfli graph ... 254
10.11 $T(8)$ and the Chang graphs 257
10.12 The strongly regular graphs on 29 vertices 258
10.13 The S_8 graph on 35 vertices 259
10.14 The $G_2(2)$ graph on 36 vertices 260
10.15 $NO_6^−(2)$... 263
10.16 The $O_5^+(3)$ graphs on 40 vertices 264
10.17 The $U_4(2)$ graph on 45 vertices 266
10.18 The rank 3 conference graphs on 49 vertices 267
10.19 The Hoffman-Singleton graph 267
10.20 The Gewirtz graph ... 272
10.21 Sp_6 .. 273
10.22 The $G_2(2)$ graph on 63 vertices 274
10.23 The block graph of the smallest Ree unital 275
10.24 $GQ(3,5)$ and the hexacode 276
10.25 $NO_6^−(3)$... 277
10.26 The halved folded 8-cube and $VO_6^+(2)$ 277
10.27 The M_{22} graph on 77 vertices 278
10.28 The Brouwer-Haemers graph 280
10.29 $VNO_4^−(3)$ and the Van Lint-Schrijver partial geometry . 282
10.30 The rank 3 conference graphs on 81 vertices 283
10.31 The Higman-Sims graph .. 283
10.32 The Hall-Janko graph ... 285
10.33 The 105 flags of PG(2,4) 289
10.34 The $O_6^−(3)$ graph on 112 vertices 290
10.35 $NO_6^+(3)$... 293
10.36 The $O_8^−(2)$ graph on 119 vertices 294
10.37 The $L_3(4),2^2$ graph on 120 vertices 294
10.38 $NO_8^+ (4)$... 295
10.39 $NO_8^−(2)$... 296
10.40 The S_{10} graph on 126 vertices 299
10.41 $NO_6^+(3)$... 300
10.42 The Goethals graph on 126 vertices 301
10.43 The $O_8^+(2)$ graph on 135 vertices 302
10.44 $NO_8^+ (2)$... 303
10.45 The $L_3(4)$ graph on 144 vertices 304
10.46 Three $M_{12}.2$ graphs on 144 vertices 305
10.47 The $O_5(5)$ graphs on 156 vertices 305
10.48 The $U_4(3)$ graph on 162 vertices 306
10.49 The nonisotropic points of $U_5(2)$ 308
10.50 A polarity of Higman’s symmetric design 308
10.51 The M_{22} graph on 176 vertices 308
10.52 The nonisotropic points of $U_5(4)$ 309
10.53 A rank 16 representation of S_7 310
10.54 The Cameron graph ... 310
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.55</td>
<td>The Berlekamp-Van Lint-Seidel graph</td>
<td>311</td>
</tr>
<tr>
<td>10.56</td>
<td>The M_{23} graph</td>
<td>311</td>
</tr>
<tr>
<td>10.57</td>
<td>$2^8.S_{10}$ and $2^8.(A_8 \times S_3)$</td>
<td>312</td>
</tr>
<tr>
<td>10.58</td>
<td>$2^8.L_2(17)$</td>
<td>312</td>
</tr>
<tr>
<td>10.59</td>
<td>$VO_8(2)$</td>
<td>313</td>
</tr>
<tr>
<td>10.60</td>
<td>$VO_8^+(2)$</td>
<td>313</td>
</tr>
<tr>
<td>10.61</td>
<td>The McLaughlin graph</td>
<td>314</td>
</tr>
<tr>
<td>10.62</td>
<td>The Mathon-Rosa graph</td>
<td>317</td>
</tr>
<tr>
<td>10.63</td>
<td>The lines of $U_5(2)$</td>
<td>318</td>
</tr>
<tr>
<td>10.64</td>
<td>$NO_5^-(5)$ and $NO_5^+(5)$</td>
<td>318</td>
</tr>
<tr>
<td>10.65</td>
<td>$NO_5^-(3)$ and $NO_5^+(3)$</td>
<td>319</td>
</tr>
<tr>
<td>10.66</td>
<td>$NO_7^-(3)$</td>
<td>320</td>
</tr>
<tr>
<td>10.67</td>
<td>$NO_7^+(3)$</td>
<td>321</td>
</tr>
<tr>
<td>10.68</td>
<td>The $G_2(4)$ graph on 416 vertices</td>
<td>322</td>
</tr>
<tr>
<td>10.69</td>
<td>The $O_{15}(2)$ graph on 495 vertices</td>
<td>324</td>
</tr>
<tr>
<td>10.70</td>
<td>The rank 3 conference graphs on 529 vertices</td>
<td>325</td>
</tr>
<tr>
<td>10.71</td>
<td>The $U_4(2)$ graphs on 540 vertices</td>
<td>326</td>
</tr>
<tr>
<td>10.72</td>
<td>The $Aut(Sz(8))$ graph on 560 vertices</td>
<td>326</td>
</tr>
<tr>
<td>10.73</td>
<td>The rank 3 graphs on 625 vertices</td>
<td>326</td>
</tr>
<tr>
<td>10.74</td>
<td>The $U_5(2)$ graph on 693 vertices</td>
<td>328</td>
</tr>
<tr>
<td>10.75</td>
<td>The Games graph</td>
<td>329</td>
</tr>
<tr>
<td>10.76</td>
<td>$VO_8(3)$</td>
<td>330</td>
</tr>
<tr>
<td>10.77</td>
<td>The rank 3 graphs on 961 vertices</td>
<td>330</td>
</tr>
<tr>
<td>10.78</td>
<td>$NO_5^+(3)$</td>
<td>330</td>
</tr>
<tr>
<td>10.79</td>
<td>$NO_8^+(3)$</td>
<td>332</td>
</tr>
<tr>
<td>10.80</td>
<td>The dodecad graph</td>
<td>332</td>
</tr>
<tr>
<td>10.81</td>
<td>The Conway graph on 1408 vertices</td>
<td>333</td>
</tr>
<tr>
<td>10.82</td>
<td>The Tits graph on 1600 vertices</td>
<td>334</td>
</tr>
<tr>
<td>10.83</td>
<td>The Suzuki graph</td>
<td>334</td>
</tr>
<tr>
<td>10.84</td>
<td>$2^{11}.M_{24}$ on 2048 vertices with valency 276</td>
<td>336</td>
</tr>
<tr>
<td>10.85</td>
<td>$2^{11}.M_{24}$ on 2048 vertices with valency 759</td>
<td>337</td>
</tr>
<tr>
<td>10.86</td>
<td>The rank 3 graphs on 2209 vertices</td>
<td>338</td>
</tr>
<tr>
<td>10.87</td>
<td>$D_{5,5}(2)$</td>
<td>338</td>
</tr>
<tr>
<td>10.88</td>
<td>The Conway graph on 2300 vertices</td>
<td>339</td>
</tr>
<tr>
<td>10.89</td>
<td>The rank 3 graphs on 2401 vertices</td>
<td>340</td>
</tr>
<tr>
<td>10.90</td>
<td>The Fi_{22} graph</td>
<td>344</td>
</tr>
<tr>
<td>10.91</td>
<td>The Rudvalis graph</td>
<td>345</td>
</tr>
<tr>
<td>10.92</td>
<td>$2^{12}.HJ.S_3$ on 4096 vertices</td>
<td>347</td>
</tr>
<tr>
<td>10.93</td>
<td>The $3^5.2^{1+6}.O_6^-(2).2$ graph on 6561 vertices</td>
<td>348</td>
</tr>
<tr>
<td>10.94</td>
<td>The Fi_{22} graph on 14080 vertices</td>
<td>349</td>
</tr>
<tr>
<td>10.95</td>
<td>The $5^6.4.HJ.2$ graph on 15625 vertices</td>
<td>350</td>
</tr>
<tr>
<td>10.96</td>
<td>The Fi_{23} graph</td>
<td>350</td>
</tr>
<tr>
<td>10.97</td>
<td>The Fi_{23} graph on 137632 vertices</td>
<td>351</td>
</tr>
<tr>
<td>10.98</td>
<td>The $E_6(2)$ graph</td>
<td>352</td>
</tr>
<tr>
<td>10.99</td>
<td>The Fi_{24} graph</td>
<td>352</td>
</tr>
<tr>
<td>10.100</td>
<td>The Suz graph on 531441 vertices</td>
<td>353</td>
</tr>
</tbody>
</table>
CONTENTS

11 Classification of rank 3 graphs 355
 11.1 Primitive rank 3 permutation groups 355
 11.2 Wreath product 355
 11.3 Simple socle 356
 11.3.1 Alternating socle 356
 11.3.2 Classical simple socle 357
 11.3.3 Exceptional simple socle 358
 11.3.4 Sporadic simple socle 358
 11.3.5 Triangular graphs 359
 11.4 The affine case 359
 11.5 Rank 3 parameter index 362
 11.6 Small rank 3 graphs 365
 11.7 Small rank 4–10 strongly regular graphs 369

12 Parameter table 371

References 397

Parameter Index 425

Author Index 427

Subject Index 431
Chapter 1

Graphs

This chapter collects some basic material on strongly regular graphs and gives some information about more general objects (distance-regular graphs and association schemes) that will be needed later.

1.1 Strongly regular graphs

A graph is a set X of vertices provided with a symmetric relation \sim on X called adjacency, such that no $x \in X$ is adjacent to itself. If the graph is denoted Γ, then its vertex set X is also denoted by $V\Gamma$. A pair of adjacent vertices is called an edge. If xy is an edge, then y is called a neighbor of x.

Let Γ be a finite graph. The adjacency matrix A of Γ is the square matrix indexed by the vertices of Γ such that $A_{xy} = 1$ when $x \sim y$, and $A_{xy} = 0$ otherwise. The spectrum of Γ is by definition the spectrum (eigenvalues and multiplicities) of A, considered as a real matrix. A nonzero (column) vector u, indexed by $V\Gamma$, is an eigenvector of A with eigenvalue θ when $Au = \theta u$, i.e., when $\sum_{y \sim x} u_y = \theta u_x$ for all x.

A graph Γ is regular of degree (or valency) k, for some integer k, when every vertex has precisely k neighbors.

Let Γ be finite with adjacency matrix A. The all-1 vector 1 (of appropriate length) is an eigenvector (with eigenvalue k) if and only if Γ is regular (of valency k). If Γ is regular of valency k, then the multiplicity of the eigenvalue k is the number of connected components of Γ. An eigenvalue θ of a regular graph is called restricted if it has an eigenvector orthogonal to 1.

A finite regular graph without restricted eigenvalues has at most one vertex. A finite regular graph with only one restricted eigenvalue is complete or edgeless. A strongly regular graph is a finite regular graph with precisely two restricted eigenvalues.

History

The term ‘strongly regular graph’ was first used by Bose [92]. An equivalent concept was studied by Bose & Shimamoto [97].
1.1.1 Parameters

Let Γ be a strongly regular graph, regular of valency k, with adjacency matrix A and restricted eigenvalues r, s, where $r > s$. Let J be the all-1 matrix of suitable size, so that $AJ = JA = kJ$. We have $(A - rI)(A - sI) = \mu J$ for some constant μ, so that $A^2 = kI + \lambda A + \mu(J - I - A)$ for certain constants k, λ, μ. Apparently $k = k$ and $\lambda = \mu + r + s$ and $k - \mu = -rs$.

This can be stated in a combinatorial way: For $x, y \in V$, the number of common neighbors of x, y is k when $x = y$, and λ when $x \sim y$, and μ when $x \not\sim y$. One says that the strongly regular graph Γ has parameters (v, k, λ, μ), where $v = |V|$ is the number of vertices. Conversely, if in a finite graph Γ, not complete and not edgeless, the number of common neighbors of two vertices is k, λ, μ depending on whether they are equal, adjacent or nonadjacent, then Γ is strongly regular, and the restricted eigenvalues r, s are found as the roots of $x^2 + (\mu - \lambda)x + (\mu - k) = 0$.

The combinatorial definition of k, λ, μ shows that these are nonnegative integers, and $0 \leq \lambda \leq k - 1$ and $0 \leq \mu \leq k$. By Perron-Frobenius’ theorem, $k \geq r$. Since $\text{tr} A = 0$ it follows that $s < 0$ and $r \geq 0$.

If $\mu \neq 0$, then the parameters are related by $v = 1 + k + k(k - 1 - \lambda)/\mu$.

From $(A - rI)(A - sI) = \mu J$ one gets the identity $(k - r)(k - s) = \mu v$.

History

The parameters $n, k, l, \lambda, \mu, r, s, f, g$ (with $n = v$ and $l = v - k - 1$) were perhaps first used in [419]. Earlier, Bose [92] used $v, n_1, n_2, \rho_{11}^1, \rho_{11}^2$.

1.1.2 Complement

If Γ is a strongly regular graph with parameters (v, k, λ, μ) and restricted eigenvalues r, s, then the complementary graph Γ (with the same vertex set as Γ, and where distinct vertices are adjacent if and only if they are nonadjacent in Γ) is also strongly regular, with parameters (v, k, λ, μ) and restricted eigenvalues \bar{r}, \bar{s}, where $\bar{k} = v = k - 1$, $\bar{\lambda} = v - 2k + \mu - 2$, $\bar{\mu} = v - 2k + \lambda$, $\bar{r} = -1 - s$, $\bar{s} = -1 - r$, as is immediately clear from the definitions and the fact that Γ has adjacency matrix $\overline{A} = J - I - A$.

1.1.3 Imprimitivity

A strongly regular graph Γ is called imprimitive when Γ or $\overline{\Gamma}$ is a nontrivial equivalence relation, equivalently, when $\lambda = k - 1$ or $\mu = k$, equivalently, when $\mu = 0$ or $v = 2k - \lambda$, equivalently, when $s = -1$ or $r = 0$.

In the former case Γ is a disjoint union aK_m of a complete graphs of size m (and $v = am, k = m - 1, \lambda = m - 2, \mu = 0, r = m - 1, s = -1$), where $a > 1$.

In the latter case Γ is a complete multipartite graph $K_{a \times m}$ (and $v = am, k = (a-1)m, \lambda = (a-2)m, \mu = (a-1)m, r = 0, s = -m$), again with $a > 1$.

(The graphs K_m and $K_{1 \times m} = K_m$ have only one restricted eigenvalue, namely -1 and 0 respectively, and hence are not strongly regular.)

For a primitive strongly regular graph it follows that $0 \leq \lambda < k - 1$ and $0 < \mu < k$ and $r > 0$ and $s < -1$. A primitive strongly regular graph is connected, and hence $k > r$.

The graph nK_2 is sometimes called a ladder graph. Its complement $\overline{nK_2} = K_{n \times 2}$ is a cocktail party graph.
1.1. STRONGLY REGULAR GRAPHS

1.1.4 Spectrum

Let Γ be strongly regular, with spectrum k, r (with multiplicity f) and s (with multiplicity g). Then f, g can be solved from $1 + f + g = v$ and $k + fr + gs = \text{tr} A = 0$. The fact that f, g must be integers is a strong restriction on possible parameter sets.

If $f \neq g$, then one can also solve r, s from $r + s = \lambda - \mu$ and $fr + gs = -k$, and it follows that r, s are rational. Since they are also algebraic integers, they are integral in this case. On the other hand, if $f = g$, then $f = g = (v - 1)/2$.

Now $k = (\mu - \lambda)f = (\mu - \lambda)(v - 1)/2$, and since $0 < k < v - 1$ it follows that $k = (v - 1)/2$ and $\mu = \lambda + 1$. Now $v = 1 + k + k(k - 1 - \lambda)/\mu$ yields $\mu = k - 1 - \lambda = k/2$, so that $(v, k, \lambda, \mu) = (4t + 1, 2t, t - 1, t)$ for a suitable integer t, and $r, s = (-1 \pm \sqrt{r})/2$. This is known as the 'half case'. It occurs e.g. for the Paley graphs (see §1.1.9). For further details, see §8.2.

Summary: if we are not in the half case, then the spectrum is integral.

- Explicit expressions for f, g are $f = \frac{(s+1)k(k-s)}{k(s-r)}$ and $g = \frac{(r+1)k(k-r)}{\mu(r-s)}$.
- The identity $\frac{vk(v-1-k)}{fg} = (r - s)^2$ (known as the Frame quotient, cf. [123]) §2.2A, 2.7A) follows.

In particular, $v = (r - s)^2$ if and only if $\{f, g\} = \{k, v - k - 1\}$.

1.1.5 Rank 3 permutation groups

A permutation group is a group G together with an action of G on some set X, that is, together with a map $G \times X \to X$ written $(g, x) \mapsto gx$, such that $1x = x$ and $g(hx) = (gh)x$ for all $g, h \in G$ and $x \in X$, where 1 is the identity element of G.

An orbit of G on X is a set of the form Gx for some $x \in X$. The G-orbits form a partition of X. The action (or the group) is called transitive when this partition has a single element only, that is, when $Gx = X$ for all $x \in X$. A set A is preserved by G when $gA = A$ for all $g \in G$.

The action of G on X induces an action of G on $X \times X$ via $g(x, y) = (gx, gy)$. If G is transitive, then it is said to be of (permutation) rank r when it has precisely r orbits on $X \times X$.

The action (or the group) is called primitive when there is no nontrivial equivalence relation $R \subseteq X \times X$ that is preserved by G. The trivial equivalence relations are the full set $X \times X$ and the diagonal $D = \{(x, x) \mid x \in X\}$.

Suppose G is a rank 3 permutation group on the set X. Then G has three orbits D, E, F on $X \times X$, where D is the diagonal. Now either E and F are inverse relations: $F = \{(y, x) \mid (x, y) \in E\}$, or E and F are symmetric. In the former case (X, E) is a complete directed graph, a tournament (and (X, F) is the opposite tournament). In the latter case (X, E) and (X, F) are a complementary pair of graphs. When X is finite, they are a complementary pair of strongly regular graphs: the group G acts as a group of automorphisms on the graphs (X, E) and (X, F), and since E and F are single orbits, G is transitive on ordered pairs of adjacent (nonadjacent) vertices, and the number of common neighbors of two vertices does not depend on the vertices chosen, but only on whether they are equal, adjacent or nonadjacent.
CHAPTER 1. GRAPHS

History

The study of rank 3 permutation groups was initiated by Higman [420].

1.1.6 Local graphs

If Γ is a graph, and x a vertex of Γ, then the local graph of Γ at x is the graph induced by Γ on the set of neighbors of x in Γ.

A graph Γ is called locally Δ (or locally X) where Δ is a graph and X a graph property, when all local graphs are isomorphic to Δ and nonadjacent to Δ.

For example, the icosahedron is the unique connected locally pentagon graph. Hall [391] determined all locally Δ graphs on at most 11 vertices, for all possible Δ, and determined for each graph Δ on at most 6 vertices whether there exists a locally Δ graph.

If Γ is a connected graph, and x a vertex of Γ, then the i-th subconstituent of Γ (at x) is the graph induced on the set of vertices at (graph) distance i from x. If Γ is a strongly regular graph, and x a vertex of Γ, then the second subconstituent of Γ (at x) is the graph induced on the set of vertices other than x and nonadjacent to x.

1.1.7 Johnson graphs

Let Ω be a set, and $d \geq 0$ an integer. The Johnson graph $J(\Omega, d)$ is the graph that has as vertex set the set $\binom{\Omega}{d}$ of d-subsets of Ω, where two d-sets D, E are adjacent when $|D \cap E| = d - 1$. Suppose $|\Omega| \geq 2d$. Then $J(\Omega, d)$ has diameter d, and the symmetric group $\text{Sym}(\Omega)$ acts as a group of automorphisms that is transitive of rank $d + 1$. If $|\Omega| = m$ one writes $J(m, d)$ instead of $J(\Omega, d)$.

The full group of automorphisms of $J(\Omega, d)$ is $\text{Sym}(\Omega)$ when $|\Omega| > 2d > 0$, but $\text{Sym}(\Omega) \times 2$ when $|\Omega| = 2d > 0$, and 1 when $d = 0$.

In particular, the graph $J(m, 2)$ (also called the triangular graph $T(m)$), where $m \geq 4$, is strongly regular. It has parameters $v = m(m - 1)/2$, $k = 2(m - 2)$, $\lambda = m - 2$, $\mu = 4$ and eigenvalues k, $r = m - 4$, $s = -2$ with multiplicities 1, $f = m - 1$, $g = m(m - 3)/2$. The graph $T(m)$ is the line graph of the complete graph K_m on m vertices. The complement $\overline{T(5)}$ of $T(5)$ is the Petersen graph (§10.3).

These graphs are characterized by their parameters, except when $m = 8$. There are four graphs with the parameters $(v, k, \lambda, \mu) = (28, 12, 6, 4)$ of $T(8)$, namely $T(8)$ itself and three graphs known as the Chang graphs ([191, 192]), cf. §10.11.

1.1.8 Hamming graphs

Let Ω be a set, and $d \geq 0$ an integer. The Hamming graph $H(d, \Omega)$ is the graph that has as vertex set the set Ω^d of d-tuples of elements of Ω, where two d-tuples (a_1, \ldots, a_d), (b_1, \ldots, b_d) are adjacent when they have Hamming distance 1, i.e., when $a_i \neq b_i$ for a unique i. Suppose $|\Omega| \geq 2$. Then $H(d, \Omega)$ has diameter d, and its full group of automorphisms is the wreath product $\text{Sym}(\Omega) \wr \text{Sym}(d)$. This group is transitive of rank $d + 1$. If $|\Omega| = q$ one writes $H(d, q)$ instead of $H(d, \Omega)$.
1.1. STRONGLY REGULAR GRAPHS

In particular, the graph $H(2, q)$ (also called the lattice graph $L_2(q)$ or the $q \times q$ grid), where $q \geq 2$, is strongly regular. It has parameters $v = q^2$, $k = 2(q - 1)$, $\lambda = q - 2$, $\mu = 2$ and eigenvalues $k, r = q - 2$, $s = -2$ with multiplicities $1, f = 2(q - 1)$, $g = (q - 1)^2$. The graph $H(2, q)$ is the line graph of the complete bipartite graph $K_{q,q}$. The graph $L_2(3)$ is isomorphic to its complement. It is the Paley graph (see §1.1.9) of order 9.

These graphs are characterized by their parameters, except when $q = 4$. There are two graphs with the parameters $(v, k, \lambda, \mu) = (16, 6, 2, 2)$, namely $L_2(4)$ and the Shrikhande graph ([649]), cf. §10.6.

The graph $H(d, q)$ is locally dK_{q-1}, the disjoint union of d complete graphs of size $q - 1$. The Shrikhande graph is locally a hexagon.

1.1.9 Paley graphs

Let $q = 4t + 1$ be a prime power. The Paley graph $Paley(q)$ is the graph with the finite field \mathbb{F}_q as vertex set, where two vertices are adjacent when they differ by a nonzero square. It is strongly regular with parameters $(4t + 1, 2t, t - 1, t)$. (The restriction $q \equiv 1 \pmod{4}$ is to ensure that -1 is a square, so that the resulting graphs are undirected.)

Let $q = p^r$, where p is prime. The full group of automorphisms consists of the maps $x \mapsto ax^\sigma + b$ where $a, b \in \mathbb{F}_q$, a a nonzero square, and $\sigma = p^i$ with $0 \leq i < \sqrt{q}$ (186]). It has order $eq(q - 1)/2$.

Paley(5) is the pentagon. Paley(9) is the 3×3 grid. Paley(13) is a graph that is locally a hexagon. For a more detailed discussion, see §7.4.4.

1.1.10 Strongly regular graphs with smallest eigenvalue -2

A disjoint union of cliques has smallest eigenvalue $s = -1$. The pentagon has smallest eigenvalue $(-1 - \sqrt{5})/2$. All other strongly regular graphs satisfy $s \leq -2$. Seidel [642] determined the strongly regular graphs with smallest eigenvalue $s = -2$. There are three infinite families and seven more graphs:

(i) the complete n-partite graph $K_{n \times 2}$, with parameters $(v, k, \lambda, \mu) = (2n, 2n - 2, 2n - 4, 2n - 2)$, $n \geq 2$,

(ii) the lattice graph $L_2(n)$, that is, the Hamming graph $H(2, n)$, that is, the $n \times n$ grid, with parameters $(v, k, \lambda, \mu) = (n^2, 2(n - 1), n - 2, 2)$, $n \geq 3$,

(iii) the triangular graph $T(n)$ with parameters $(v, k, \lambda, \mu) = \left(\binom{n}{2}, 2(n - 2), n - 2, 4\right)$, $n \geq 5$,

(iv) the Shrikhande graph (cf. §10.6), with parameters $(v, k, \lambda, \mu) = (16, 6, 2, 2)$,

(v) the three Chang graphs (cf. §10.11), with parameters $(v, k, \lambda, \mu) = (28, 12, 6, 4)$,

(vi) the Petersen graph (cf. §10.3), with parameters $(v, k, \lambda, \mu) = (10, 3, 0, 1)$,

(vii) the Clebsch graph (cf. §10.7), with parameters $(v, k, \lambda, \mu) = (16, 10, 6, 6)$,

(viii) the Schläfli graph (cf. §10.10), with parameters $(v, k, \lambda, \mu) = (27, 16, 10, 8)$.

More generally, the strongly regular graphs with fixed smallest eigenvalue are (i) complete multipartite graphs, (ii) Latin square graphs, (iii) block graphs of Steiner systems, (iv) finitely many further graphs, see Theorem 8.6.4.

We include a proof of Seidel’s classification. (For different proofs, see [419] and [123], Theorem 3.12.4. See also below.)

Theorem 1.1.1 A strongly regular graph with smallest eigenvalue -2 is one of the examples in (i)–(viii) above.

Proof. We shall assume the classification of the graphs with the parameters of the examples. The proof here derives the possible parameters.

Let Γ be a strongly regular graph with parameters v, k, λ, μ and spectrum $k^1 r^f s^g$, where $s = -2$. Then $\lambda = \mu + r - 2$ and $k = \mu + 2r$ (by §1.1.1), so that $k = 2\lambda - \mu + 4$.

If $\mu = 2$, then Γ has the parameters of $L_2(n)$ (for $n = r + 2$), and hence is $L_2(n)$, or (if $n = 4$) the Shrikhande graph (cases (ii) and (iv)). If $\mu = 4$, then Γ has the parameters of $T(n)$ (for $n = r + 4$), and hence is $T(n)$, or (if $n = 8$) a Chang graph (cases (iii) and (v)). Assume $\mu \neq 2, 4$.

From $1 + f + g = v$ and $k + fr - 2g = 0$ and $\mu v = (k - r)(k + 2)$, we find $f = \frac{2v - k - 2}{r + 2} = \frac{(\mu + 2r)(\mu + 2r + 2)}{r(r + 2)}$.

Let an m-claw be an induced $K_{1,m}$ subgraph. Let a quadrangle be an induced C_4 subgraph. Let $x \sim a, b$ with $a \not\sim b$. If (x, a, b) is contained in c 3-claws and in q quadrangles, then $k = 2 + 2\lambda - (\mu - 1 - q) + c$ so that $c = q + 1$.

First consider the case where the graph contains a 3-claw. Let $x \sim a, b, c$ with mutually nonadjacent a, b, c. We shall show that $v = 2k + 4$ and Γ is one of the examples (iv)–(vi).

For a list of vertices Z, let $N(Z)$ (‘near’) be the set of vertices adjacent to each z in Z, and $F(Z)$ (‘far’) the set of vertices not in Z and nonadjacent to each z in Z. Since the $k - \lambda - 1 = r + 1$ vertices in $N(x) \cap F(a)$ are in $\{b, c\} \cup N(b, c) \setminus \{x\}$, we have $r \leq \mu$. Since the $k - \lambda$ vertices in $(N(a) \cap F(x)) \cup \{a\}$ are among the $\lambda = v - 2k + \mu - 2$ vertices of $F(b, c)$, we have $v \geq 5\mu + \mu + 4$.

Since $\mu v = (k - r)(k + 2)$ we have $v = 3r + \mu + 2 + \frac{2r(r + 1)}{\mu}$ so that $\mu \leq r$.

It follows that $\mu = r$, $\lambda = 2r - 2$, $k = 3r$, $v = 6r + 4 = 2k + 4$, $f = 9 - \frac{12}{r + 2}$ so that $r \in \{1, 2, 4\}$. For $r = 1, 2, 4$ we are in case (vi), (iv), (v), respectively. The case $(v, k, \lambda, \mu) = (64, 30, 18, 10)$ has $f = 8$, which violates the absolute bound $v \leq \frac{1}{2}f(f + 3)$ (Proposition 1.3.14 below).

Now assume that Γ does not contain 3-claws. Since $c + q = 1$, each 2-claw is in a unique quadrangle. It follows that μ is even, say $\mu = 2m$, and if $a \not\sim b$, then $N(a, b)$ induces a $K_{m \times 2}$. If moreover $d \sim a, d \not\sim b$, then d is adjacent to precisely m vertices of $N(a, b)$. (If $x, y \in N(a, b)$ with $x \not\sim y$, then d cannot be nonadjacent to both x and y, since $(a; x, y, d)$ would be a 3-claw, and d cannot be adjacent to both x and y, since we already see the μ common neighbors of x and y in $N(a, b) \cup \{a, b\}$.)

Let b be a vertex, and consider the graph induced on $F(b)$. It is strongly regular or complete or edgeless with parameters $(v_0, k_0, \lambda_0, \mu_0) = (v - k - 1, k - \mu, \lambda - m, \mu)$. If it is edgeless, then $k = \mu$, so that Γ is imprimitive, and we are in case (i). If it is complete, then $v - k - 1 = k - \mu + 1$ so that $(\mu + 2r)(r + 1) = \mu(2r + 1)$, hence $\mu = 2(r + 1)$ and $f = 8 - \frac{12}{r + 2}$, so that
1.1. STRONGLY REGULAR GRAPHS

For \(r = 1 \) we have \(T(5) \) (in case (iii)), for \(r = 2 \) the Clebsch graph (case (vii)), and \(r = 4 \) (\(v = 28, f = 6 \)) and \(r = 10 \) (\(v = 64, f = 7 \)) both violate the absolute bound.

So we may assume that \(F(b) \) induces a strongly regular graph \(\Delta \). Since \(k_0 = 2\lambda_0 - \mu_0 + 4 \), also \(\Delta \) has smallest eigenvalue \(-2\), and the other restricted eigenvalue is \(r_0 = r - m \) with multiplicity \(f_0 = \frac{2r(r+1)}{m(r-m+2)} \). By induction we already know \(\Delta \) (and it does not contain 3-claws) so either \(\mu \in \{6, 8\} \), or \(\Delta \) is \(K_{n \times 2} \). For \(\mu = 6 \) there are no feasible parameters. For \(\mu = 8 \) we find the Schläfli graph (case (viii)). If \(\Delta \) is \(K_{n \times 2} \), then \((v, k, \lambda, \mu) = (6n - 3, 4n - 4, 3n - 5, 2n - 2) \).

\(r = n - 1, f = 8 - \frac{12}{\sqrt{2}}, \) so that \(r \in \{1, 2, 4, 10\} \). For \(r = 1 \) we have \(L_6(3) \) (in case (ii)), for \(r = 2 \) we have \(T(6) \) (in case (iii)), for \(r = 4 \) the Schläfli graph (case (viii)), and \(r = 10 \) (\(v = 63, f = 7 \)) violates the absolute bound.

Root systems

In fact it is possible to find all graphs with smallest eigenvalue \(\geq -2 \). By the beautiful theorem of CAMERON, GOETHALS, SEIDEL & SHULT [179] (see also [123], §3.12 and [132], §8.4) such a graph is either a generalized line graph or is one in a finite (but large) collection.

(Sketch of the proof: Consider \(A + 2I \). It is positive semidefinite, so one can write \(A + 2I = M^T M \). Now the columns of \(M \) are vectors of squared length 2 with integral inner products, and this set of vectors can be completed to a root system. By the classification of root systems one gets one of \(A_n, D_n, E_6, E_7 \) or \(E_8 \). In the first two cases the graph was a generalized line graph. In the latter three cases the graph is finite: at most 36 vertices, each vertex of degree at most 28. If the graph was regular, it has at most 28 vertices, and each vertex has degree at most 16. For details, see [123], Theorem 3.12.2 or [132], Chapter 8.)

There is a lot of literature describing manageable parts of this large collection, and related problems. A book-length treatment is CVETKOVIĆ et al. [249].

1.1.11 Seidel switching

Instead of the ordinary adjacency matrix \(A \), Seidel considered the \textit{Seidel matrix} \(S \) of a graph, with zero diagonal, where \(S_{xy} = -1 \) if \(x \sim y \), and \(S_{xy} = 1 \) otherwise. These matrices are related by \(S = J - I - 2A \).

Let \(\Gamma \) be a graph with vertex set \(X \). Let \(Y \subseteq X \). The graph \(\Gamma' \) obtained by \textit{switching} \(\Gamma \) with respect to \(Y \) is the graph with vertex set \(X \), where two vertices that are both inside or both outside \(Y \) are adjacent in \(\Gamma' \) when they are adjacent in \(\Gamma \), while a vertex inside \(Y \) is adjacent in \(\Gamma' \) to a vertex outside \(Y \) when they are not adjacent in \(\Gamma \). If \(\Gamma \) has Seidel matrix \(S \), then \(\Gamma' \) has Seidel matrix \(S' \) where \(S' \) is obtained from \(S \) by multiplying each row and each column with index in \(Y \) by \(-1\). It follows that \(S \) and \(S' \) have the same spectrum.

If \(\Gamma' \) is obtained from \(\Gamma \) by switching w.r.t. \(Y \), and \(\Gamma'' \) is obtained from \(\Gamma' \) by switching w.r.t. \(Z \), then \(\Gamma'' \) is obtained from \(\Gamma \) by switching w.r.t. \(Y \cup Z \). It follows that graphs related by switching fall into equivalence classes (called \textit{switching classes}). Two graphs in the same switching class are called \textit{switching equivalent}.

If two regular graphs of the same valency are switching equivalent, then they have the same ordinary spectrum. This happens precisely when each vertex
inside (outside) the switching set is adjacent to half of the vertices outside (resp. inside) the switching set. For example, the Shrikhande graph is obtained from the 4 × 4 grid by switching w.r.t. a diagonal.

It may happen that two strongly regular graphs of different valencies are switching equivalent. If that happens, then they are related to regular 2-graphs (see §1.1.12).

Proposition 1.1.2 Let Γ be a strongly regular graph with parameters (v, k, λ, μ) and spectrum $k^1 r^f s^g$. Let Δ be a strongly regular graph of valency $\ell > k$ switching equivalent to Γ. Then (i) Δ has spectrum $\ell^1 r^{\ell f} s^{\ell g} + 1$, (ii) $\frac{1}{2}v = k - s = \ell - r$, (iii) $k - r = 2\mu$, (iv) $\frac{1}{2}v = 2k - \lambda - \mu$, (v) any switching set from Γ to Δ has size $\frac{1}{2}v$ and is regular of degree $k - \mu$.

Proof. (i)–(iv) The Seidel matrices $S = J - I - 2A$ of Γ and Δ have the same spectrum $(v - 1 - 2k)^1 (-1 - 2r)^f (-1 - 2s)^g$, and if $k < \ell$ it follows that $v - 1 - 2k = -1 - 2s$ and $v - 1 - 2\ell = -1 - 2r$. Since $(k - r)(k - s) = \mu v$ for all strongly regular graphs, it follows from $k - s = \frac{1}{2}v$ that $k - r = 2\mu$. Since $r + s = \lambda - \mu$ for all strongly regular graphs, we find $\frac{1}{2}v = k - s = k - r - s + r = k + \mu - k + 2\mu = 2k - \lambda - \mu$. (v) Suppose Δ is obtained from Γ by switching w.r.t. a set U of size u. Let $x \in U$ have k_1 neighbors in U and k_2 outside. Then $k = k_1 + k_2$ and $\ell = k_1 + v - u - k_2$, so that k_1 and k_2 can be expressed in terms of k, ℓ, u, v and are independent of x. Similarly, if $y \notin U$ has k_3 neighbors in U and k_4 outside, then $k = k_3 + k_4$ and $\ell = u - k_3 + k_4$, so that k_3 and k_4 are independent of y. Counting the number of edges with one end in U in two ways, we find $k_2u = k_3(v - u)$, and since $k_3 = \frac{1}{2}(k - \ell - u + v)$ and $k_4 = \frac{1}{2}(k - \ell + u)$ this simplifies to $(k - \ell)u = (k - \ell)(v - u)$, so that $u = \frac{1}{2}v, k_2 = k_3, k_1 = k_4$. □

The Seidel matrix plays a role in the description of regular two-graphs and of sets of equiangular lines, cf. [132], Chapter 10. The condition $\frac{1}{2}v = 2k - \lambda - \mu$ is necessary and sufficient for a strongly regular graph to be associated to a regular two-graph, cf. [132], 10.3.2(i), and see below.

History
The Seidel matrix was introduced in Seidel [641].

1.1.12 Regular two-graphs

A two-graph $\Omega = (V, \Delta)$ is a finite set V provided with a collection Δ of unordered triples from V, such that every 4-subset of V contains an even number of triples from Δ. The triples from Δ are called coherent.

From a graph $\Gamma = (V, E)$, one can construct a two-graph $\Omega = (V, \Delta)$ by calling a triple from V coherent if the three vertices induce a subgraph in Γ with an odd number of edges. One checks that Ω is a two-graph. It is called the two-graph associated to Γ. Switching equivalent graphs have the same associated two-graph.

Conversely, from any two-graph $\Omega = (V, \Delta)$, and any fixed $w \in V$, we can construct a graph $\Gamma = \Omega_w$ with vertex set V as follows: let w be an isolated vertex in Γ, and let any two other vertices x, y be adjacent in Γ if $\{w, x, y\} \in \Delta$. Then Ω is the two-graph associated to Γ.

1.1. STRONGLY REGULAR GRAPHS

Thus we have established a one-to-one correspondence between two-graphs and switching classes of graphs.

Let $\Omega = (V, \Delta)$ be a two-graph, and $w \in V$. The descendant of Ω at w is the graph Ω^*_w, obtained from Ω_w by deleting the isolated vertex w.

A two-graph (V, Δ) is called regular (of degree a) if every unordered pair from V is contained in exactly a triples from Δ. The two-graph $\Omega = (V, \Delta)$ with $v = |V|$ vertices and $0 < |\Delta| < \binom{v}{2}$ is regular if and only if any descendant is strongly regular with parameters $(v - 1, k, \lambda, \mu)$ where $\mu = k/2$ (and then this holds for all descendants). If this is the case, then $a = k$ and $v = 3k - 2\lambda$.

See also §8.10 and [132], §10.3.

History

Regular two-graphs were introduced by G. Higman. See also Taylor [677].

1.1.13 Regular partitions and regular sets

Let Γ be a finite graph with vertex set X. A partition $\{X_1, \ldots, X_m\}$ of X is called regular or equitable when there are numbers e_{ij}, $1 \leq i, j \leq m$, such that each vertex of X_i is adjacent to precisely e_{ij} vertices in X_j. In this situation the matrix $E = (e_{ij})$ of order m is called the quotient matrix of the partition.

If θ is an eigenvalue of E, say $Eu = \theta u$, then θ is also an eigenvalue of Γ, for the eigenvector that is constant u_i on X_i. And conversely, the eigenvalues of Γ that belong to eigenvectors constant on each X_i are eigenvalues of E.

Let Γ be finite and regular of valency k. A subset Y of the vertex set X is called regular (of degree d and nexus e) when the partition $\{Y, X \setminus Y\}$ is regular (and $e_{11} = d$, $e_{21} = e$ where $X_1 = Y$). Now the quotient matrix $E = (\begin{smallmatrix} d & k-d \\ e & k-e \end{smallmatrix})$ has eigenvalues k and $d - e$, so that $d - e$ is an (integral) eigenvalue of Γ.

A regular set is also called an intriguing set ([263]).

Proposition 1.1.3 Let Γ be strongly regular with parameters (v, k, λ, μ). If Y and Y' are regular sets of degrees d, d' and nexus e, e' belonging to different eigenvalues $d - e$ and $d' - e'$ other than k, then $|Y \cap Y'| = ee'/\mu$.

Proof. The vector u that is 1 on Y and $a := \frac{1}{k-\theta}$ outside Y is an eigenvector of the adjacency matrix A of Γ with eigenvalue $\theta := d - e$. Here $a \neq 1$ since $\theta \neq k$. The characteristic vector of Y is $\chi_Y = \frac{1}{\sqrt{\mu}}u - \frac{a}{\sqrt{\mu}}1$, where $\frac{a}{\sqrt{\mu}}1 = \frac{d}{\sqrt{\mu}}$. Similarly for Y'.

Since $u, u', 1$ are mutually orthogonal, $(1, 1) = v$, and $\mu v = (k-\theta)(k-\theta')$, we have $|Y \cap Y'| = (\chi_Y, \chi_{Y'}) = \frac{ee'}{(k-\theta)(k-\theta')}v = ee'/\mu$. □

We also see that $|Y| = (\chi_Y, 1) = \frac{ee'}{k-\theta}$ with $\theta = d - e$.

The collection of regular sets belonging to the same eigenvalue $\theta = d - e$ (together with \emptyset and X) is closed under taking complements, under taking disjoint unions, and under removal of one set from one containing it.

In descendants of regular two-graphs, switching sets are regular sets.

Proposition 1.1.4 Let Γ be strongly regular with parameters (v, k, λ, μ) and restricted eigenvalues r, s, where $k = 2\mu$. Let Y be a regular set in Γ of degree d and nexus e. If $|Y| = k - c$, where $\{c, d - e\} = \{r, s\}$, then adding an isolated vertex and switching w.r.t. Y yields a strongly regular graph with parameters $(v + 1, k - c, \lambda - c, \mu - c)$. □
Inequalities for subgraphs

We give inequalities that must hold for a graph \(\Gamma \) to have certain induced subgraphs. Additional regularity holds when there are such subgraphs and the inequality holds with equality.

Interlacing

Let \(\Gamma \) be a finite graph with adjacency matrix \(A \), and let \(\Pi = \{ X_1, \ldots, X_m \} \) be a partition of a subset of \(V \Gamma \). The quotient matrix of \(A \) w.r.t. \(\Pi \) is the matrix \(B \) of order \(m \) where \(B_{ij} \) is the average row sum of the submatrix \(A(i,j) \) of \(A \) that has rows indexed by \(X_i \) and columns indexed by \(X_j \). If each \(A(i,j) \) has constant row sums, and \(\Pi \) partitions \(V \Gamma \), then \(\Pi \) is an equitable partition of \(\Gamma \), and \(B \) is a quotient matrix in the sense of §1.1.13 (hence the present definition generalizes the previous one).

Theorem 1.1.5 Let \(\Gamma \) be a graph with adjacency matrix \(A \) and \(v \) vertices. Let \(\Pi = \{ X_1, \ldots, X_m \} \) be a partition of a subset of \(V \Gamma \) with quotient matrix \(B \). Then the eigenvalues of \(B \) interlace those of \(A \). That is, if \(A \) has eigenvalues \(\theta_1 \geq \cdots \geq \theta_i \) and \(B \) has eigenvalues \(\eta_1 \geq \cdots \geq \eta_m \), then \(\theta_i \geq \eta_i \) for \(1 \leq i \leq m \) and \(\eta_{m-i} \geq \theta_{i-1} \) (0 \(\leq i \leq m - 1 \)).

If the interlacing is tight, that is, if there is an \(h \) such that \(\eta_k = \theta_k \) for \(1 \leq i \leq h \) and \(\eta_{h+1} = \theta_{h+1} \) for \(h + 1 \leq i \leq m \), then the partition is equitable.

For a proof, and related results, see [132], §2.5.

Note that this theorem applies to an (induced) subgraph \(\Delta \) of \(\Gamma \) with adjacency matrix \(B \). Indeed, one can take for \(\Pi \) the partition of \(V \Delta \) into singletons.

Bounds on the size of regular subgraphs

As an application of interlacing, we find bounds on the size of regular subgraphs of a graph.

Proposition 1.1.6 Let \(\Gamma \) be a regular graph with \(v \) vertices, valency \(k \), second largest eigenvalue \(r \), and smallest eigenvalue \(s \). Let \(Y \) be a nonempty proper subset of \(X := V \Gamma \) inducing a subgraph that is regular of degree \(d \). Then

(i) \(|Y| \leq \frac{v(d-k)}{k-d} \), and

(ii) \(|Y| \geq \frac{v(d-r)}{k-r} \) if \(r < k \).

(iii) If equality holds in either (i) or (ii), then each vertex in \(X \setminus Y \) has the same number \(e = d - \theta \) of neighbors in \(Y \), where \(\theta = s \) in case (i), and \(\theta = r \) in case (ii).

Proof. Apply Theorem 1.1.5 with \(\Pi = \{ Y, X \setminus Y \} \). Put \(u = |Y| \). The quotient matrix is

\[
B = \begin{pmatrix}
d & k - d \\
\frac{u(k-d)}{v-d} & \frac{k - u(k-d)}{v-d}
\end{pmatrix}
\]

with eigenvalues \(k \) and \(d - \frac{u(k-d)}{v-d} \). By interlacing we have \(s \leq d - \frac{u(k-d)}{v-d} \leq r \), which gives (i) and (ii). If equality holds on either side, then the partition is equitable, and \(e = \frac{u(k-d)}{v-d} \). \(\square \)

One sees that in case of equality the vector \(\chi_Y - \frac{v}{d} \mathbf{1} \) is an eigenvector of \(A \) with eigenvalue \(\theta = d - e \). If \(\theta \) has small multiplicity this allows a computer search for all such subgraphs \(Y \).
1.1. STRONGLY REGULAR GRAPHS

Hoffman bound

In particular, we have the so-called Hoffman bounds (due to Delsarte for strongly regular graphs, generalized by Hoffman to arbitrary regular graphs, then further by Haemers to arbitrary graphs) on the sizes of cliques and cocliques.

Proposition 1.1.7 Let Γ be a strongly regular graph with parameters (v, k, λ, μ) and smallest eigenvalue s. Then

(i) If C is a coclique in Γ, then $|C| \leq v/(1 + k - s)$. If equality holds, then each vertex outside C has the same number $-s$ of neighbors inside.

(ii) If D is a clique in Γ, then $|D| \leq 1 + k - s$. If equality holds, then each vertex outside D has the same number $\mu/(s)$ of neighbors inside.

(iii) If a coclique C and a clique D both meet the bounds of (i) and (ii), then $|C \cap D| = 1$.

Proof. Part (i) is the special case $d = 0$ of Proposition 1.1.6. Part (ii) is part (i) applied to Γ. For part (iii), clearly C and D cannot have more than one point in common. If they are disjoint, then the number of edges joining C and D is both $k - s$ and $\mu v/(k - s) = k - r$, a contradiction. \square

If a regular set in a strongly regular graph is a coclique or a clique, then it has equality in (i) or (ii), respectively.

The bound on cocliques for Γ equals the bound on cliques for the complementary graph $\overline{\Gamma}$, i.e., $v/(1 + k - s) = 1 + v - k - 1/r + 1$.

Quadratic counting

Similar results are obtained by combinatorial methods. Consider a strongly regular graph with parameters (v, k, λ, μ) and an induced subgraph with u vertices, e edges, and degree sequence d_1, \ldots, d_u. Let there be x_i vertices outside the subgraph that are adjacent to precisely i vertices inside. Then

$$
\sum_i x_i = A = v - u,
$$

$$
\sum_i ix_i = B = ku - 2e,
$$

$$
\sum_i \binom{i}{2} x_i = C = \lambda e + \mu\left(\binom{u}{2} - e\right) - \sum_{i=1}^u \binom{d_i}{2}.
$$

Let $\gamma = B/A$ and put $\tilde{i} = \lfloor \gamma \rfloor$ and $\tilde{7} = \lceil \gamma \rceil$. Then

$$
(B + 2C) - (\tilde{i} + 7)B + \tilde{7}A = \sum_i (i - \tilde{i})(i - \tilde{7})x_i \geq 0. \quad (*)
$$

Equality holds if and only if every vertex outside the subgraph is adjacent to either \tilde{i} or $\tilde{7}$ vertices inside.

If the subgraph is a clique or a coclique, the inequality $\sum_i (i - \gamma)^2 x_i \geq 0$ is equivalent to the Hoffman bound. When γ is nonintegral, inequality (*) is slightly stronger.

This inequality is folklore. For the case of cliques an equivalent inequality was rediscovered in [364]. Sometimes combinatorial bounds are stronger than the Hoffman bound. For example,
for the parameter set \((v, k, \lambda, \mu) = (400, 21, 2, 1)\) with \(s = -4\), the Hoffman bound for the size of cliques is 6.25, but the obvious upper bound \(\lambda + 2\) is 4.

For the case of cliques of size \(u\), the above counts become

\[
\sum x_i = v-u, \quad \sum ix_i = u(k-u+1), \quad \sum (i^2)x_i = \binom{u}{2}(\lambda-u+2).
\]

For example, for \((v, k, \lambda, \mu) = (235, 42, 9, 7)\) with \(s = -5\), the Hoffman bound is 9.4, but the above counting also rules out size 9. And for example for \((v, k, \lambda, \mu) = (11124, 882, 45, 72)\), with \(s = -45\), the Hoffman bound is 20.6, but the above counting rules out size 18 so that the upper bound for clique sizes becomes 17.

Cvetković bound

Let \(\Gamma\) be a graph on \(v\) vertices, and let \(A\) be a matrix indexed by \(V\) such that \(A_{xy} = 0\) when \(x \not\sim y\). Let \(n^+(A)\) (resp. \(n^-(A)\)) be the number of positive (resp. negative) eigenvalues of \(A\). For the independence number \(\alpha(\Gamma)\) of \(\Gamma\) we have the bound (known as **Cvetković bound** or **inertia bound**)

\[
\alpha(\Gamma) \leq \min(v - n^+(A), v - n^-(A)).
\]

One has additional regularity in case both the Hoffman and the Cvetković bound are tight.

Proposition 1.1.8 (Haemers [376], Theorem 2.1.7) Let \(\Gamma\) be a strongly regular graph with point set \(X\), and \(C\) a coclique in \(\Gamma\) with \(|C| = 1 + v - k - 1 = g\). Then the graph induced on \(X \setminus C\) is strongly regular.

This happens for example for a 21-coclique in a graph with parameters \((v, k, \lambda, \mu) = (77, 16, 0, 4)\). See also §8.5.8.

Greaves-Koolen-Park bound

Greaves, Koolen & Park [363] derived a bound on the size of maximal cliques that rules out an interval of values. In some cases that interval extends past the Hoffman upper bound, so that the upper bound is greatly strengthened. If in addition one can show that cliques must exist with a size past the start of the interval, then the corresponding parameter set is ruled out.

Denote by \(H(a, t)\) the graph on \(a + t + 1\) vertices consisting of a clique \(K_{a+t}\) together with a vertex that is adjacent to precisely \(a\) vertices of the clique. The graph \(H(a, t)\) has an obvious equitable partition with quotient matrix

\[
Q = \begin{bmatrix}
0 & a & 0 \\
1 & a-1 & t \\
0 & a & t-1
\end{bmatrix}.
\]

Lemma 1.1.9 Let \(\Gamma\) be a graph having smallest eigenvalue \(-m\) that contains \(H(a, t)\) as an induced subgraph. Then

\[
(a - m(m-1))(t - (m-1)^2) \leq (m(m-1))^2.
\]

Proof. This inequality expresses \(\det(Q + mI) \geq 0\). □

If a strongly regular graph \(\Gamma\) has a maximal clique \(C\) of size \(c\), and a vertex outside adjacent to \(a\) vertices of the clique, then \(a \leq \mu\). The above lemma (with \(t = c - a\)) gives a quadratic inequality on \(a\), and if the quadratic has two roots \(r_1, r_2\), then \(r_1 < a < r_2\) is excluded. If \(r_1 \leq \mu < r_2\), it follows that
1.1. STRONGLY REGULAR GRAPHS

Let $\alpha \leq r_1$. On the other hand, there are certainly vertices outside C that have at least $\alpha = 1 + \frac{(c-1)(\lambda-c+2)}{k-c+1}$ neighbors in C. The inequality $\alpha \leq a \leq r_1$ gives a condition on c.

Lemma 1.1.10 Let Γ be a strongly regular graph with parameters (v, k, λ, μ) and smallest eigenvalue $-m$, where $\mu > m(m-1)$. If Γ has a maximal clique C of order $c > \max\{(m-1)(4m-1), \frac{\mu^2}{\mu-m(m-1)}-m+1\}$ and $D = (c+m-1)(c-(m-1)(4m-1))$ then $$(2(c-1)(\lambda-c+2)-(c+m-3)(k-c+1))^2-(k-c+1)^2D \geq 0.$$ This lemma gives a cubic condition on c.

For example, consider the case $(v, k, \lambda, \mu) = (1344, 221, 88, 26)$ where $m = 3$. The Hoffman bound is $c \leq 74$. Lemma 1.1.10 says that $32 \leq c \leq 80$ is impossible for maximal cliques. So a maximal clique has size at most 31.

By the usual claw-and-clique method (cf. §8.6.5) one finds a lower bound for the size of maximum cliques.

Lemma 1.1.11 Let Γ be a strongly regular graph with parameters (v, k, λ, μ). If e is a nonnegative integer such that $(\mu - 1)^2 < e(\lambda + 1) - k$, then Γ has a clique of size at least $\lambda + 2 - (\mu - 1)$.

Together with the above, this sometimes suffices to rule out a parameter set.

For example, consider the case $(v, k, \lambda, \mu) = (23276, 1330, 372, 58)$ with $m = 4$. The Hoffman bound says that cliques have sizes $c \leq 333$. By Lemma 1.1.10, for maximal cliques $71 \leq c \leq 340$ is impossible. By Lemma 1.1.11 with $e = 6$, there is a clique of size $c \geq 146$. It follows that no such graph exists.

Various refinements are possible.

1.1.15 Connectivity

For a graph Γ, let $\Gamma_i(x)$ denote the set of vertices at distance i from x in Γ. Instead of $\Gamma_1(x)$ we write $\Gamma(x)$. Using interlacing, we see that the 2nd subconstituent of a primitive strongly regular graph is connected.

Proposition 1.1.12 If Γ is a primitive strongly regular graph, then the subgraph $\Gamma_2(x)$ is connected for each vertex x.

Proof. Note that $\Gamma_2(x)$ is regular of valency $k - \mu$. If it is not connected, then its eigenvalue $k - \mu$ would have multiplicity at least two, and hence would be not larger than the second largest eigenvalue r of Γ. Then $x^2 + (\mu - \lambda)x + \mu - k \leq 0$ for $x = k - \mu$, i.e., $(k - \mu)(k - \lambda - 1) \leq 0$, a contradiction. □

The vertex connectivity $\kappa(\Gamma)$ of a connected non-complete graph Γ is the smallest integer m such that Γ can be disconnected by removing m vertices.

Theorem 1.1.13 (Brouwer & Mesner [138]) Let Γ be a connected strongly regular graph of valency k. Then $\kappa(\Gamma) = k$, and the only disconnecting sets of size k are the sets of all neighbors of some vertex x. □

One might guess that the cheapest way to disconnect a strongly regular graph such that all components have at least two vertices would be by removing the $2k - \lambda - 2$ neighbors of an edge. Cioabă, Kim & Koole [198] observed that this is false (the simplest counterexample is probably $T(6)$, where edges have 10 neighbors and certain triangles only 9), but proved it for several infinite classes of strongly regular graphs and conjectured that any counterexample must have $\lambda \geq k/2$. See also [199].
1.1.16 Graphs induced on complementary subsets of the vertex set of a graph

For a real symmetric matrix with two distinct eigenvalues, and with a symmetric 2×2 partition of rows and columns, the spectrum of the upper left-hand corner determines the spectrum of the lower right-hand corner (cf. [132], Lemma 2.11.1).

For strongly regular graphs with adjacency matrix A this applies to $A - aJ$ for suitable a, so that the spectrum of a regular induced subgraph determines the spectrum of the subgraph induced on the complementary set of vertices, when that is also regular. More generally, one has

Proposition 1.1.14 (de Caen [264]) Let Γ be strongly regular on v vertices, with spectrum $k^1 r^f s^g$, and suppose that $V\Gamma$ has a partition $\{C, D\}$ such that the graph $\Gamma[C]$ induced by Γ on C is regular, with valency k_C. Let $c = |C|$. If $\Gamma[C]$ has eigenvalues $k_C, \lambda_1, \ldots, \lambda_{c-1}$, then the graph $\Gamma[D]$ has eigenvalues r (with multiplicity $f-c$), s (with multiplicity $g-c$), $r+s-\lambda_j$ ($1 \leq j \leq c-1$), together with the two roots of $(X - k)(X - r - s + k_C) + \mu c = 0$.

In the case of a regular partition, these two roots can be given explicitly:

Proposition 1.1.15 If also the graph $\Gamma[D]$ is regular, with valency k_D, then $k_C + k_D - k \in \{r, s\}$, and $(X - k)(X - r - s + k_C) + \mu c = \frac{(X-k)(X-r)(X-s)}{X-k_C-k_D+k}$.

For example, if Γ is a strongly regular graph with parameters $(v, k, \lambda, \mu) = (28, 9, 0, 4)$ and C is a point-neighborhood (a 9-coclique), then D has spectrum $1^{12} (-5)^{-3} (-4)^8 5^1 0^1$, a contradiction. So no such graph exists.

For example, if Γ is the unique strongly regular graph with parameters $(v, k, \lambda, \mu) = (77, 16, 0, 4)$ and C is a 21-coclique, then D induces a Gewirtz subgraph (with parameters $(v, k, \lambda, \mu) = (56, 10, 0, 2)$ and spectrum $10^1 2^{15} (-4)^{20}$, see §10.20).

For example, if Γ is the $O_6^-(3)$ graph on 112 vertices (with parameters $(v, k, \lambda, \mu) = (112, 30, 2, 10)$ and spectrum $30^1 2^{90} (-10)^{21}$, see §10.34), and C induces a Gewirtz subgraph, then the subgraph induced on the remaining 56 vertices has the same spectrum, and hence is also a Gewirtz subgraph.

See also [178], [381].

1.1.17 Enumeration

For some smallish parameter sets, a complete enumeration of all strongly regular graphs has been made. We list only one graph from a complementary pair. Triangular graphs and $n \times n$ grids on more than 50 vertices are not listed.

<table>
<thead>
<tr>
<th>count</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>pentagon</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3×3 grid</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>Petersen graph, $T(5)$</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>Paley</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>$GQ(2,2)$, $T(6)$</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>folded 5-cube, complement of the Clebsch graph</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4×4 grid, Shrikhande graph</td>
</tr>
</tbody>
</table>

continued...
Let us call a parameter set \((v, k, \lambda, \mu)\) feasible when it and its complement satisfy the conditions of §1.1.1 and §1.1.4. There are further general conditions on strongly regular graphs, such as the absolute bound (§1.3.7), the Krein conditions (§1.3.4), the claw bound (§8.6.4), and the condition on conference graphs (§8.2), and on graphs with \(\mu = 1\) or \(\mu = 2\) (§8.18). For a few sets of parameters there is an ad hoc proof that no such graph exists. Below the current list of such cases.
Table 1.2: Sporadic parameter sets for which no srg exists

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>µ</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>460</td>
<td>153</td>
<td>32</td>
<td>60</td>
<td>Bondarenko et al. [88]</td>
</tr>
<tr>
<td>486</td>
<td>165</td>
<td>36</td>
<td>66</td>
<td>Makhnev [534]</td>
</tr>
<tr>
<td>1127</td>
<td>486</td>
<td>165</td>
<td>243</td>
<td>Makhnev [534]</td>
</tr>
<tr>
<td>1911</td>
<td>270</td>
<td>105</td>
<td>27</td>
<td>Koolen & Gebremichel¹</td>
</tr>
<tr>
<td>3159</td>
<td>1408</td>
<td>532</td>
<td>704</td>
<td>Bannai et al. [49], [646]</td>
</tr>
</tbody>
</table>

Makhnev [535] purports to show the nonexistence of graphs with parameters \((v, k, \lambda, \mu) = (784, 116, 0, 20)\), but the proof is wrong. Also the proof in Makhnev [536] of the nonexistence of graphs with parameters \((3250, 57, 0, 1)\) is wrong.

Money

J. H. Conway [214] offered $1000 for the construction or nonexistence proof of a strongly regular graph with parameters \((v, k, \lambda, \mu) = (99, 14, 1, 2)\).

Wilbrink [731] showed that such a graph cannot have an automorphism of order 11, and hence cannot have a transitive group. Behbahani & Lam [55] show that any automorphism of prime order must have order 2 or 3. Crnković & Maksimović [240] rule out groups of order six or nine.

History

Uniqueness of the triangular graphs \(T(n)\), given the parameters, was shown for \(n \geq 9\) by Connor [211], for \(n \leq 6\) by Shrikhande [648], and for \(n \neq 8\) by Hoffman [432]. The latter also found a counterexample for \(n = 8\). Independently, Chang [191, 192] settled all cases and found the three counterexamples for \(n = 8\).

Uniqueness of the lattice graph \(L_2(n)\), \(n \neq 4\) was shown by Mesner [559]. Shrikhande [649] gave a shorter proof and also found the single exception.

1.1.18 Prolific constructions

Strongly regular graphs live on the boundary between the crystalline world and the random world. For some parameters there is no graph, or a unique graph. For other parameters the number of examples is exponentially large. Constructions that produce hyperexponentially many strongly regular graphs for certain parameters have been given by Wallis [718] and Fon-Der-Flaass [328]. See also [184], [176], [580].

1.2 Distance-regular graphs

A finite connected graph \(\Gamma\) of diameter \(d\) is called distance-regular with parameters \(a_i, b_i, c_i \ (0 \leq i \leq d)\) if for any two vertices \(x, y\) with mutual distance \(d(x, y) = i\) the number of vertices \(z\) adjacent to \(y\) and at distance \(i - 1\) or \(i\) or \(i + 1\) from \(x\) equals \(c_i\) or \(a_i\) or \(b_i\), respectively.

A distance-regular graph is regular with valency \(k = b_0\), and \(a_i + b_i + c_i = k\) for all \(i\). Obviously \(c_0 = a_0 = b_d = 0\) and \(c_1 = 1\). The intersection array is the symbol \(\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}\) that suffices to determine all parameters.

The distance-regular graphs of diameter 2 are precisely the connected strongly regular graphs. A connected strongly regular graph with parameters \((v, k, \lambda, \mu)\) is distance-regular with intersection array \(\{k, k - \lambda - 1; 1, \mu\}\).

Let \(\Gamma\) be distance-regular, with vertex \(x\). The number \(k_i\) of vertices at distance \(i\) from \(x\) is found by \(k_0 = 1\) and \(k_{i+1} = k_i b_i/c_{i+1}\) for \(0 \leq i \leq d - 1\), and is independent of the choice of \(x\). The total number of vertices is \(v = k_0 + \cdots + k_d\).

Let \(v = |\Gamma|\). Let \(A_i\) be the matrix of order \(v\) indexed by \(\Gamma\) with \((A_i)_{xy} = 1\) when \(d(x, y) = i\) and \((A_i)_{xy} = 0\) otherwise. Clearly \(A_0 = I\). Let \(A = A_1\) be the adjacency matrix of \(\Gamma\). Then \(A_i = b_1 A_{i-1} + a_1 A_i + c_{i+1} A_{i+1}\) for \(0 \leq i \leq d\), if we agree that \(b_{-1} A_{-1} = c_{d+1} A_{d+1} = 0\). We find an expression for \(A_i\) of degree \(i\) in \(A\), and then an equation of degree \(d + 1\) for \(A\), so that \(A\) has precisely \(d + 1\) distinct eigenvalues (since the matrices \(A_i\) are linearly independent).

Biggs’ multiplicity formula

The previous paragraph implies (for a precise argument see also below) that the \(d + 1\) eigenvalues of \(A\) are the \(d + 1\) eigenvalues of the matrix \(L\), where

\[
L = \begin{pmatrix}
0 & b_0 & 0 \\
c_1 & a_1 & b_1 \\
c_2 & a_2 & b_2 \\
& \cdots & \cdots & \cdots \\
0 & & & c_d & a_d
\end{pmatrix}.
\]

Theorem 1.2.1 (Biggs [67], Theorem 21.4) If \(Lu = \theta u\) and \(u_0 = 1\), then the multiplicity of \(\theta\) as eigenvalue of \(\Gamma\) equals

\[
m(\theta) = v/(\sum k_i u_i^2).
\]

Proof. We have \(A_i = p_i(A)\) where the polynomials \(p_i\) are defined by \(p_0(x) = 1\), \(p_1(x) = x\), \(xp_i(x) = b_{i-1} p_{i-1}(x) + a_i p_i(x) + c_{i+1} p_{i+1}(x)\). If \(\eta\) is an eigenvalue of \(A\), then \(p(\eta) = (p_0(\eta), \ldots, p_d(\eta))\) is a left eigenvector of \(L\) and \(p(\eta)L = \eta p(\eta)\). The \(u_i\) satisfy \(c_i u_{i-1} + a_i u_i + b_{i+1} u_{i+1} = \theta u_i\), so that \(p_i(\theta) = k_i u_i\). Now \(v = tr \sum u_i A_i = \sum_i u_i m(\eta)p_i(\eta) = m(\theta) \sum_i k_i u_i^2\), where the sum is over the eigenvalues \(\eta\) of \(A\), and the last equality holds because left and right eigenvectors for different eigenvalues are orthogonal.

Thus, the parameters of a distance-regular graph determine eigenvalues and multiplicities. The fact that the multiplicities must be integers is a strong restriction on candidate parameter sets.

A comprehensive monograph on the topic of distance-regular graphs, complete up to 1989, is Brouwer, Cohen & Neumaier [123]. An update to the state of affairs in 2016 is Van Dam, Koolen & Tanaka [252].

1.2.1 Distance-transitive graphs

A connected graph \(\Gamma\) is called **distance-transitive** if for any vertices \(x, y, z, w\) with \(d(x, y) = d(z, w)\) there is an automorphism \(g\) of \(\Gamma\) such that \(g(x) = z\) and \(g(y) = w\). If \(\Gamma\) is distance-transitive of diameter \(d\), then its group of automorphisms is transitive, of rank \(d + 1\).
Every finite distance-transitive graph is distance-regular.

The classification of distance-transitive graphs of diameter \(d > 2 \) is unfinished. For a survey of the status in 2007, see Van Bon [86].

1.2.2 Johnson graphs

The Johnson graph \(J(m, d) \), where \(m \geq 2d \), is distance-transitive of diameter \(d \). It has parameters \(b_i = (d - i)(m - d - i) \), \(c_i = i^2 \) and eigenvalues \(b_i - i \) with multiplicity \(\binom{m}{i} - \binom{m}{i-1} \) \((0 \leq i \leq d)\) and \(v = \binom{m}{d} \) vertices.

1.2.3 Hamming graphs

The Hamming graph \(H(d, q) \), where \(q > 1 \), is distance-transitive of diameter \(d \). It has parameters \(b_i = (q - 1)(d - i) \), \(c_i = i \) and eigenvalues \(b_i - i \) with multiplicity \(\binom{d}{i}(q - 1)^i \) \((0 \leq i \leq d)\) and \(v = q^d \) vertices.

1.2.4 Grassmann graphs

Let \(V \) be a vector space of dimension \(n \) over the field \(\mathbb{F}_q \). The Grassmann graph \(J_q(n, m) \) is the graph with vertex set \(\binom{V}{m} \), the set of all \(m \)-subspaces of \(V \), where two \(m \)-subspaces are adjacent when they intersect in an \((m - 1) \)-space. This graph is distance-transitive, with parameters \(b_i = q^{2i+1} \binom{m-i}{n-m-i} \) \(\binom{n-m-i}{i-1} \), \(c_i = \binom{i}{1}^2 \), diameter \(d = \min(m, n - m) \), and eigenvalues \(q^{i+1} \binom{n-i}{i-1} \binom{m-i}{n-m-i} - \binom{i}{1} \) with multiplicity \(\binom{n}{i} - \binom{n}{i-1} \). (Here \(\binom{n}{i} = q^n - 1 \cdots (q^{n-i+1} - 1)/(q - 1) \cdots (q - 1) \) is the \(q \)-binomial coefficient, the number of \(i \)-subspaces of an \(n \)-space.)

In particular, for \(m = 2 \), \(n \geq 4 \), we find the graph \(J_q(n, 2) \) of lines in a projective space, adjacent when they meet. This graph is strongly regular, with parameters \(v = \binom{n}{2} \), \(k = (q + 1)(\binom{n-1}{1} - 1) \), \(\lambda = \binom{n-1}{1} + q^2 - 2 \), \(\mu = (q + 1)^2 \), and eigenvalues \(k, r = q^2 \binom{n-3}{1} - 1, s = -q - 1 \) with multiplicities, 1, \(f = \binom{n}{1} - 1, g = \binom{n}{2} - \binom{n}{1} \).

1.2.5 Van Dam-Koolen graphs

Van Dam & Koolen [251] construct distance-regular graphs \(\text{vDK}(q, m) \) with the same parameters as \(J_q(2m + 1, m) \). (They call them the twisted Grassmann graphs.) The group of automorphisms of these graphs is not transitive.

The construction is as follows. Let \(V \) be a vector space of dimension \(2m + 1 \) over \(\mathbb{F}_q \), and let \(H \) be a hyperplane of \(V \). Take as vertices the \((m + 1) \)-subspaces of \(V \) not contained in \(H \), and the \((m - 1) \)-subspaces contained in \(H \), where two subspaces of the same dimension are adjacent when their intersection has codimension 1 in both, and two subspaces of different dimension are adjacent when one contains the other.

It follows that Grassmann graphs need not be determined by their parameters. Also, that the combinatorial definition of distance-regular graphs does not directly imply the existence of a nice group of automorphisms, not even when the diameter is large.

For \(m = 2 \), these graphs are strongly regular.
1.2. DISTANCE-REGULAR GRAPHS

1.2.6 Imprimitive distance-regular graphs

Let Γ be a distance-regular graph of diameter d, and let Γ_i be the graph with the same vertex set, where two vertices are adjacent when they have distance i in Γ, so that A_i is the adjacency matrix of Γ_i ($0 \leq i \leq d$). The graph Γ is called \textit{imprimitive} if Γ_i is disconnected for some i, $2 \leq i \leq d$.

If Γ is a \textit{polygon} (i.e., if it has valency 2) then Γ_i is disconnected for each i with $i | v$, $1 < i < v$. The only imprimitive distance-regular graphs of valency $k > 2$ are the bipartite and the antipodal graphs.

A graph is called \textit{bipartite} if it does not contain an odd cycle. A \textit{halved graph} of a connected bipartite graph Γ is the graph with as vertex set one of the two bipartite classes, where two vertices are adjacent when they have distance 2 in Γ.

A distance-regular graph of diameter d is called \textit{antipodal} when having distance 0 or d is an equivalence relation on its vertex set. The \textit{folded graph} of an antipodal distance-regular graph is the graph with as vertices the equivalence classes of Γ_d, where two equivalence classes are adjacent when they contain adjacent vertices.

\textbf{Theorem 1.2.2} An imprimitive distance-regular graph of valency k, $k > 2$, is bipartite or antipodal (or both). Let Γ be distance-regular of diameter d with intersection array $\{b_0, \ldots, b_{d-1}; c_1, \ldots, c_d\}$, and put $\mu = c_2$ and $m = \lfloor d/2 \rfloor$.

(i) Γ is bipartite if and only if $a_i = 0$ (i.e., $b_i + c_i = k$) for all i. If Γ is bipartite, then its halved graphs are distance-regular of diameter m with intersection array

$$\{b_0 b_1 \mu^{-1}, b_2 b_3 \mu^{-1}, \ldots, b_{2m-2} b_{2m-1} \mu^{-1}, c_1 c_2 \mu^{-1}, c_3 c_4 \mu^{-1}, \ldots, c_{2m-1} c_{2m} \mu^{-1}\}.$$

(ii) Γ is antipodal if and only if $b_i = c_{d-i}$ for all $i \neq m$. If Γ is antipodal, then its antipodal classes have size $r = 1 + b_m/c_{d-m}$, and the folded graph is distance-regular of diameter m with intersection array

$$\{b_0, \ldots, b_{m-1}; c_1, \ldots, c_{m-1}, \gamma c_m\}$$

where $\gamma = r$ if $d = 2m$, and $\gamma = 1$ if $d = 2m + 1$. \hfill \Box

For example, the Johnson graph $J(2d, d)$ is antipodal. The \textit{folded Johnson graph} $\overline{J}(2d, d)$ (of which the vertices are the partitions of a $2d$-set into two d-sets) is distance-regular of diameter $\lfloor d/2 \rfloor$, and in particular is strongly regular for $d = 4, 5$.

1.2.7 Taylor graphs

A distance-regular graph Γ with intersection array $\{k, \mu, 1; 1, \mu, k\}$ is called a \textit{Taylor graph}. Such a graph is an antipodal double cover of the complete graph K_{k+1}. The local graphs $\Delta = \Gamma(x)$ are strongly regular, and satisfy $v_\Delta = k$, $k_\Delta = \lambda_\mu = k - \mu - 1 = 2\mu_\Delta$, and $\lambda_\Delta = \frac{1}{2}(3k_\Delta - k - 1)$. See §8.10.4.

Given a graph Σ with vertex set X, its \textit{Taylor double} is the graph with vertex set $\{x^\varepsilon \mid x \in X, \varepsilon = \pm 1\}$ and edges $x^\varepsilon y^\varepsilon$ (for $x \neq y$) with $\delta_\varepsilon = 1$ when $x \sim y$ and $\delta_\varepsilon = -1$ otherwise.

Given a strongly regular graph Δ with $k_\Delta = 2\mu_\Delta$, its \textit{Taylor extension} $T\Delta$ is the Taylor double of $\{\infty\} + \Delta$. It is a Taylor graph.
1.3 Association schemes and coherent configurations

We briefly state the main facts for symmetric association schemes. For more details, see [123], Chapter 2, and [132], Chapter 11. Results proved there are given here without proof.

1.3.1 Association schemes

A (symmetric) association scheme with \(d \) classes is a finite set \(X \) together with \(d + 1 \) relations \(R_i \) on \(X \) such that

(i) \(\{R_0, R_1, \ldots, R_d\} \) is a partition of \(X \times X \);

(ii) \(R_0 = \{(x,x) \mid x \in X\} \);

(iii) if \((x,y) \in R_i\), then also \((y,x) \in R_i\), for all \(x, y \in X \) and \(i \in \{0, \ldots, d\} \);

(iv) for any \((x,y) \in R_k\) the number \(p_{ij}^k \) of \(z \in X \) with \((x,z) \in R_i\) and \((z,y) \in R_j\) depends only on \(i, j \) and \(k \).

The numbers \(p_{ij}^k \) are called the intersection numbers of the association scheme.

Define \(n = |X| \), and \(n_i = p_{0i}^i \). Clearly, for each \(i \in \{1, \ldots, d\} \), \((X, R_i)\) is a simple graph which is regular of degree \(n_i \).

Proposition 1.3.1 The intersection numbers of an association scheme satisfy

(i) \(p_{ij}^0 = \delta_{jk}, \; p_{ij}^0 = \delta_{ij} n_j, \; p_{ij}^k = p_{ji}^k \),

(ii) \(\sum_i p_{ij}^k = n_j, \; \sum_j n_j = n, \)

(iii) \(p_{ij}^k n_k = p_{ij}^k n_j, \)

(iv) \(\sum_l p_{ij}^l p_{kl}^m = \sum_l p_{kj}^l p_{il}^m. \) \(\square \)

It is convenient to write the intersection numbers as entries of the so-called intersection matrices \(L_0, \ldots, L_d \) defined by

\[
(L_i)_{kj} = p_{ij}^k.
\]

Note that \(L_0 = I \) and \(L_i L_j = \sum p_{ij}^k L_k \).

From the definition it is clear that an association scheme with two classes is the same as a pair of complementary strongly regular graphs. If \((X, R_1)\) is strongly regular with parameters \((v, k, \lambda, \mu)\), then the intersection matrices of the scheme are

\[
L_1 = \begin{bmatrix}
0 & k & 0 \\
1 & \lambda & k - \lambda - 1 \\
0 & \mu & k - \mu
\end{bmatrix}, \quad L_2 = \begin{bmatrix}
0 & 0 & v - k - 1 \\
0 & k - \lambda - 1 & v - 2k + \lambda \\
1 & k - \mu & v - 2k + \mu - 2
\end{bmatrix}.
\]

History

Association schemes as defined above (also known as ‘symmetric association schemes’) were introduced in Bose & Shimamoto [97] as one of the ingredients for a PBIBD (partially balanced incomplete block design). Almost the same definition of PBIBD occurs already in Bose & Nair [96].
1.3. ASSOCIATION SCHEMES AND COHERENT CONFIGURATIONS

1.3.2 The Bose-Mesner algebra

The relations R_i of an association scheme are described by their adjacency matrices A_i of order n defined by

$$(A_i)_{xy} = \begin{cases} 1 & \text{whenever } (x, y) \in R_i, \\ 0 & \text{otherwise}. \end{cases}$$

In other words, A_i is the adjacency matrix of the graph (X, R_i). In terms of the adjacency matrices, the axioms (i)–(iv) become

(i) $\sum_{i=0}^{d} A_i = J$,
(ii) $A_0 = I$,
(iii) $A_i = A_i^T$, for all $i \in \{0, \ldots, d\}$,
(iv) $A_i A_j = \sum_k p_{ij}^k A_k$, for all $i, j \in \{0, \ldots, d\}$.

From (i) we see that the $(0, 1)$ matrices A_i are linearly independent, and by use of (ii)–(iv) we see that they generate a commutative $(d + 1)$-dimensional algebra \mathcal{A} of symmetric matrices with constant diagonal. This algebra was first studied by Bose \& Mesner [95] and is called the Bose-Mesner algebra of the association scheme.

Since the matrices A_i commute, they can be diagonalized simultaneously. It follows that the algebra \mathcal{A} is semisimple and has a unique basis of minimal idempotents E_0, \ldots, E_d, where $E_i E_j = \delta_{ij} E_i$ and $\sum_{i=0}^{d} E_i = I$.

The matrix $\frac{1}{n} J$ is a minimal idempotent. We shall fix the numbering so that $E_0 = \frac{1}{n} J$. Let P and $\frac{1}{n} Q$ be the matrices relating our two bases for \mathcal{A}:

$$A_j = \sum_{i=0}^{d} P_{ij} E_i, \quad E_j = \frac{1}{n} \sum_{i=0}^{d} Q_{ij} A_i.$$

Then clearly

$$PQ = QP = nI.$$

It also follows that

$$A_j E_i = P_{ij} E_i,$$

which shows that the P_{ij} are the eigenvalues of A_j and that the columns of E_i are the corresponding eigenvectors. Thus $m_i = \text{rk} E_i$ is the multiplicity of the eigenvalue P_{ij} of A_j (provided that $P_{ij} \neq P_{kj}$ for $k \neq i$). We see that $m_0 = 1$, $\sum_{i} m_i = n$, and $m_i = \text{trace } E_i = n \cdot (E_i)_{jj}$ (indeed, E_i has only eigenvalues 0 and 1, so rk E_i equals the sum of the eigenvalues).

Proposition 1.3.2 The numbers P_{ij} and Q_{ij} satisfy

(i) $P_{i0} = Q_{i0} = 1$, $P_{0i} = n_i$, $Q_{0i} = m_i$,
(ii) $P_{ij} P_{ik} = \sum_{l=0}^{d} p_{jk}^l P_{il}$,
(iii) $m_i P_{ij} = n_j Q_{ji}$, $\sum_i m_i P_{ij} P_{ik} = nm_j \delta_{jk}$, $\sum_i m_i Q_{ij} Q_{ik} = nm_j \delta_{jk}$,
(iv) $|P_{ij}| \leq n_j$, $|Q_{ij}| \leq m_j$. \[\square\]
An association scheme is called \textit{primitive} if no union of the relations is a nontrivial equivalence relation. Equivalently, if no graph \((X, R_i)\) with \(i \neq 0\) is disconnected. For a primitive association scheme, (iv) above can be sharpened to \(|P_{ij}| < n_j\) and \(|Q_{ij}| < m_j\) for \(j \neq 0\).

If \(d = 2\), and \((X, R_1)\) is strongly regular with parameters \((v, k, \lambda, \mu)\) and spectrum \(k^1 r^f s^g\), the matrices \(P\) and \(Q\) are

\[
P = \begin{bmatrix} 1 & k & v - k - 1 \\ 1 & r & -r - 1 \\ 1 & s & -s - 1 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & f & g \\ 1 & fr/k & gs/k \\ 1 & -fr/(v-k-1) & -gs/(v-k-1) \end{bmatrix}.
\]

The matrices \(P\) and \(Q\) can be computed from the intersection numbers of the scheme.

\textbf{Proposition 1.3.3} For \(j = 0, \ldots, d\), the intersection matrix \(L_j\) has eigenvalues \(P_{ij}\) \((0 \leq i \leq d)\).

\textbf{Proof.} Let \(\chi = \chi_C\). Then

\[
|C|(aQ)_j = \chi^\top \sum_i Q_{ij} A_i \chi = n \chi^\top E_j \chi = n \|E_j \chi\|^2 \geq 0.
\]

This theorem gives inequalities on subsets when information on their inner distribution is given. For example, let \(\Gamma\) be the graph \((X, R_j)\) defined by relation \(R_j\) in an association scheme. Let it have valency \(\lambda\) (namely, \(n_j\)) and smallest eigenvalue \(s\) (namely, some \(P_{ij}\)) with \(k > 0\). A clique \(C\) of size \(c\) in \(\Gamma\) has inner distribution \(a\) with \(a_0 = 1\), \(a_j = c - 1\) and \(a_h = 0\) for \(h \neq 0, j\). The inequality \((aQ)_j \geq 0\) yields \(1 + \frac{c}{2}(c - 1) \geq 0\), that is, \(c \leq 1 + \frac{\lambda}{2}\). For strongly regular graphs this is the Hoffman bound on cliques.

One can also give results for pairs of subsets. First a lemma.
Lemma 1.3.5 (Roos [630]) For any vectors \(x, y \in \mathbb{R}^v \), we have
\[
\sum_{i=0}^d \frac{x^\top A_i y}{n_m_i} A_i = \sum_{j=0}^d \frac{x^\top E_j y}{m_j} E_j.
\]

Proof.
\[
\sum_i \frac{x^\top A_i y}{n_m_i} A_i = \sum_{i,j} \frac{x^\top P_{ji} E_j y}{n_m_j} A_i = \sum_j \frac{x^\top Q_{ij} E_j y}{m_j} A_i = \sum_j \frac{x^\top E_j y}{m_j} E_j. \quad \square
\]

Let \(T \subseteq \{1, \ldots, d\} \). A nonempty subset \(C \) of \(X \) with characteristic vector \(\chi \) and inner distribution \(a \) is called a \(T \)-code when \(a_i = 0 \) for all \(i \in T \). It is called a \(T \)-anticode when \(a_i = 0 \) for all \(i \in \{1, \ldots, d\} \setminus T \). It is called a \(T \)-design when \(E_j \chi = 0 \) for all \(j \in T \). It is called a \(T \)-antidesign when \(E_j \chi = 0 \) for all \(j \in \{1, \ldots, d\} \setminus T \).

Theorem 1.3.6 Let \(C \) be a \(T \)-design and \(D \) a \(T \)-antidesign in \(X \), where \(T \subseteq \{1, \ldots, d\} \). Then \(|C \cap D| = |C| \cdot |D|/n \).

Proof. Let \(C \) and \(D \) have characteristic vectors \(\chi \) and \(\eta \). Then \(n \chi^\top A_i \eta = n \sum_j P_{ji} \chi^\top E_j \eta = n_i |C| \cdot |D|/n \). The theorem is the special case \(i = 0 \). \(\square \)

Theorem 1.3.7 Let \(C \) be a \(T \)-code and \(D \) a \(T \)-anticode in \(X \), where \(T \subseteq \{1, \ldots, d\} \). Then \(|C| \cdot |D| \leq n \). When equality holds, \(|C \cap D| = 1 \).

Proof. Let \(\chi \) and \(\eta \) be the characteristic vectors of \(C \) and \(D \), respectively. Apply Roos’ lemma with \(x = y = \chi \), and pre- and post-multiply by \(\eta^\top \) and \(\eta \) to find \(\sum_i \frac{1}{n_i} (\chi^\top A_i \chi)(\eta^\top A_i \eta) = n \sum_j \frac{1}{m_j} (\chi^\top E_j \chi)(\eta^\top E_j \eta) \). The only nonzero term on the left-hand side is that for \(i = 0 \), which is \(|C| \cdot |D| \). The right-hand side is bounded below by the term for \(j = 0 \), which is \(\frac{1}{n}|C|^2 |D|^2 \). When equality holds, \(C \) and \(D \) are an \(S \)-design and \(S \)-antidesign for some \(S \subseteq \{1, \ldots, d\} \), and the previous theorem yields the desired conclusion. \(\square \)

For example, if in a strongly regular graph a clique and a coclique both meet the Hoffman bound, then they meet in a single point (see also Proposition 1.1.7(iii)).

History
The linear programming bound is due to Delsarte [276].

1.3.4 Krein parameters
The Bose-Mesner algebra \(\mathcal{A} \) is not only closed under ordinary matrix multiplication, but also under componentwise (Hadamard, Schur) multiplication (denoted \(\odot \)). Clearly \(\{A_0, \ldots, A_d\} \) is the basis of minimal idempotents with respect to this multiplication. Write
\[
E_i \odot E_j = \frac{1}{n} \sum_{k=0}^d q_{ij}^k E_k.
\]

The numbers \(q_{ij}^k \) thus defined are called the Krein parameters.
Proposition 1.3.8 The Krein parameters of an association scheme satisfy

(i) $q^k_{ij} = \delta_{jk}$, $q^0_{ij} = \delta_{ij} m_j$, $q^k_{ij} = q^k_{ji}$,

(ii) $\sum_i q^k_{ij} = m_j$, $\sum_j m_j = n$,

(iii) $q^k_{ij} m_k = q^j_{ik} m_j$,

(iv) $\sum_i q^l_{ij} q^m_{kl} = \sum_{l=0}^d q^l_{kj} q^m_{il}$,

(v) $Q_{ij} Q_{ik} = \sum_{l=0}^d q^l_{kj} Q_{il}$,

(vi) $nm_k q^k_{ij} = \sum_i m_l Q_{li} Q_{lj} Q_{lk}$.

The main use of the Krein parameters is the fact that they are nonnegative, and that the scheme satisfies additional regularity properties when some Krein parameter is zero.

Theorem 1.3.9 (Scott [638, 639]) The Krein parameters of an association scheme satisfy $q^k_{ij} \geq 0$ for all $i, j, k \in \{0, \ldots, d\}$.

Theorem 1.3.10 ([123], Theorem 2.3.2) For given $i, j, k \in \{0, \ldots, d\}$ one has $q^k_{ij} = 0$ if and only if

$$\sum_{x \in X} E_i(u, x) E_j(v, x) E_k(w, x) = 0$$

for all $u, v, w \in X$.

The Krein parameters can be computed by use of equation (vi) above. In the case of a strongly regular graph we obtain

$$q^1_{11} = \frac{f^2}{v} \left(1 + \frac{r^3}{k^2} - \frac{(r + 1)^3}{(v - k - 1)^2}\right) \geq 0,$$

$$q^2_{22} = \frac{g^2}{v} \left(1 + \frac{s^3}{k^2} - \frac{(s + 1)^3}{(v - k - 1)^2}\right) \geq 0$$

or, equivalently (assuming $r \neq k$ and $s \neq -1$),

$$(r + 1)(k + r + 2rs) \leq (k + r)(s + 1)^2,$$

$$(s + 1)(k + s + 2rs) \leq (k + s)(r + 1)^2$$

(the other Krein conditions are trivially satisfied in this case).

History

L. L. Scott, jr. gave the Krein conditions in the case of finite groups with abelian centralizer algebra, and credited C. Dunkl, who in turn quoted Kreın [502], p. 139. See also [422].
Smith graphs and graphs with strongly regular subconstituents

A strongly regular graph is called a Smith graph when \(q_{22}^2 = 0 \), or, equivalently, when \(k = \frac{s^2(2r+1) - r^2}{(r+1)^2 - r - 1} \).

Theorem 1.3.11 (Cameron, Goethals & Seidel [178]) Let \(\Gamma \) be a strongly regular graph with \(q_{11}^2 = 0 \) or \(q_{22}^2 = 0 \). Then for each vertex \(x \) both subconstituents of \(x \) are themselves strongly regular or complete or edgeless.

Proof. Given three vertices \(u, v, w \), let \(p_{ijk}(u, v, w) \) be the number of vertices \(x \) at distances \(i, j, k \) from \(u, v, w \), respectively. When one of \(i, j, k \) is 0, the numbers \(p_{ijk}(u, v, w) \) do not depend on \(u, v, w \) but only on their mutual distances. E.g., \(p_{ij0}(u, v, w) = 1 \) if \(d(u, v) = i \) and \(d(v, w) = j \) and \(p_{ij0}(u, v, w) = 0 \) otherwise. We also have identities like \(\sum p_{ijk}(u, v, w) = p_{ij}^E \) when \(d(u, v) = h \). It follows that all \(p_{ijk}(u, v, w) \) can be expressed in the single value \(p_{111}(u, v, w) \) (given the mutual distances of \(u, v, w \)). Since \(E_j = \frac{1}{n} \sum Q_{hj} A_h \), we have \(E_j(u, x) = \frac{Q_{1j}}{n} \) if \(d(u, x) = h \). Now by Theorem 1.3.10, if \(q_{11}^2 = 0 \), then \(\sum_{i,j,k} p_{ijk}(u, v, w) Q_{ij} Q_{k} = 0 \). One checks that this equation is independent of the previous identities for the \(p_{ijk}(u, v, w) \), so that all values \(p_{ijk}(u, v, w) \) are determined.

For example, there is no graph with parameters \((2950, 891, 204, 297)\) since it would have \(q_{22}^2 = 0 \) but there is no feasible parameter set on \(891 \) vertices with valency \(204 \) ([88]). There are various generalizations of this theorem to distance-regular graphs of small diameter. See, e.g., [224].

Conversely, the authors of [178] investigated in what cases both subconstituents of a strongly regular graph are themselves strongly regular or complete or edgeless. The primitive strongly regular graphs in question are the Smith graphs and their complements, and possibly graphs with Latin square or full or edgeless. The primitive strongly regular graphs in question are the Smith graphs and their complements, and possibly graphs with Latin square or full or edgeless. The primitive strongly regular graphs in question are the Smith graphs and their complements, and possibly graphs with Latin square or full or edgeless.

Examples of Smith graphs are the pentagon, \(mK_2 \), \(K_{m,m} \), the complement of the Clebsch graph (§10.7), the complement of the Schlafli graph (§10.10), the Higman-Sims graph (§10.31), the McLaughlin graph (§10.61), and both of its subconstituents (§10.34, 10.48). An infinite family of examples is that of the strongly regular graphs with the parameters of the collinearity graph of a generalized quadrangle of order \((q, q^2)\). It follows that these graphs are collinearity graphs of such generalized quadrangles ([178], Theorem 7.9).

Graphs with negative Latin square parameters \(NL_r(v^2 + 3r) \) are Smith graphs (with \(\lambda = 0 \), cf. p. 203). All further known strongly regular graphs with parameters \(LS_m(n) \) or \(NL_m(n) \) and strongly regular subconstituents are the grids \(m \times m \) or have parameters \(LS_t(2t) \) or \(NL_t(2t) \) (that is, \((v, k, \lambda) = (4t^2, t(2t + 1), t(t + 1)) \)). The authors of [178] conjecture that there are no further example parameters. Examples are the graphs \(VO_{2m}^2(2) \).

1.3.5 Euclidean representation

Let \((X, \mathcal{E})\) be an association scheme with \(d \) classes. Fix a primitive idempotent \(E \) of the scheme. Let \(m := \text{rk} E \). Now the map \(x \mapsto x \) that maps \(x \in X \) to

\[\sum a_{ijk} p_{ijk} = 0 \] with \(a_{111} + a_{122} + a_{212} + a_{221} = a_{112} + a_{121} + a_{211} + a_{222} \). But the final equation has \(a_{ijk} = Q_{ij} Q_{j} Q_{k} \) and is of this form only when \(Q_{ij} = Q_{21} \), impossible.
column x of E maps X into a system of vectors in \mathbb{R}^m (namely, the column space of E) with the property that the inner product $\langle x, y \rangle$ only depends on the relation x, y are in, and not on the choice of x, y. Indeed, if $E = \sum c_i A_i$, and $(x, y) \in R_i$, then $\langle x, y \rangle = (E^T E)_{xy} = E_{xy} = c_i$, since $E^T = E$ and $E^2 = E$. This allows one to use Euclidean geometry to study (X, \mathscr{R}).

In particular we find, after scaling, that if θ is an eigenvalue $\neq k$ of a primitive strongly regular graph Γ of multiplicity m, then the vertices x of Γ have a representation in \mathbb{R}^m by unit vectors \bar{x} such that $\langle \bar{x}, \bar{y} \rangle = \frac{\theta}{k}$ if $x \sim y$ and $\langle \bar{x}, \bar{y} \rangle = \frac{-\theta - 1}{k - 1}$ if $x \not\sim y$.

There are many applications.

1.3.6 Subschemes

An association scheme (X, \mathscr{R}) is called a subscheme (or fusion scheme) of the association scheme (X, \mathscr{R}') (with $\mathscr{R}' = \{R_0, \ldots, R_d\}$) when each $S \in \mathscr{R}$ is the union of a subset of \mathscr{R}', that is, when the partition \mathscr{R}' of $X \times X$ is a refinement of \mathscr{R}. Equivalently, when the Bose-Mesner algebra of (X, \mathscr{R}) is a subalgebra of the Bose-Mesner algebra of (X, \mathscr{R}').

Given the P matrix of (X, \mathscr{R}) one can find all subschemes with e classes by considering all possible partitions Π of $\{0, \ldots, d\}$ into $e + 1$ parts, one of which is $\{0\}$. Let Z be the $(d + 1) \times (e + 1)$ $(0, 1)$-matrix with columns indexed by Π with entries $Z_{i\pi} = 1$ if $i \in \pi$. (Then Z has row sums 1.) The partition Π defines a subscheme if and only if the $(d + 1) \times (e + 1)$ matrix $P \cdot Z$ has precisely $e + 1$ distinct rows.

For example, the P matrix of $J(13, 6)$ is

$$
\begin{pmatrix}
1 & 42 & 315 & 700 & 525 & 126 & 7 \\
1 & 29 & 120 & 50 & -125 & -69 & -6 \\
1 & 18 & 21 & -60 & -15 & 30 & 5 \\
1 & 9 & -15 & -15 & 30 & -6 & -4 \\
1 & 2 & -15 & 20 & -5 & -6 & 3 \\
1 & -3 & 0 & 10 & -15 & 9 & -2 \\
1 & -6 & 15 & -20 & 15 & -6 & 1
\end{pmatrix}
$$

and with $\Pi = \{\{0\}, \{1, 2, 4\}, \{3, 5, 6\}\}$ one finds the P matrix of a subscheme by taking the rows of $P \cdot Z$, deleting duplicates:

$$
\begin{pmatrix}
1 & 882 & 833 \\
1 & 24 & -25 \\
1 & -18 & 17
\end{pmatrix}
$$

With $\Pi = \{\{0\}, \{1, 6\}, \{2, 5\}, \{3, 4\}\}$ one finds

$$
\begin{pmatrix}
1 & 49 & 441 & 1225 \\
1 & 23 & 51 & -75 \\
1 & 5 & -21 & 15 \\
1 & -5 & 9 & -5
\end{pmatrix}
$$

Subschemes of the Johnson scheme

Trivially, $J(2m, m)$ has the subscheme with $\Pi = \{\{0\}, \{1, \ldots, m-1\}, \{m\}\}$, where R_m has valency 1. The scheme $J(2m + 1, m)$ has the subscheme with
1.3. ASSOCIATION SCHEMES AND COHERENT CONFIGURATIONS

\[\Pi = \{ \{0\}, \{1, m\}, \{2, m - 1\}, \ldots, \{ \lfloor \frac{m+1}{2} \rfloor, \lceil \frac{m+1}{2} \rceil \} \} \]

is isomorphic to the folded scheme \(J(2m + 2, m + 1) \). Sporadic examples are due to Mathon and Klin: the distance 1-or-3 graphs of \(J(10, 3) \) and \(J(12, 4) \), the distance 1-or-4 graph of \(J(11, 4) \), and the distance 1-or-2-or-4 graph of \(J(13, 6) \) are strongly regular with parameters \((v, k, \lambda, \mu) = (35, 16, 6, 8)\) and \((126, 25, 8, 4)\), respectively. For \(m = 3, 4 \), the distance 1-or-\(m \) graph of \(J(2m + 1, m) \) is strongly regular with parameters \((v, k, \lambda, \mu) = (120, 56, 28, 24)\), \((495, 256, 136, 128)\), \((330, 63, 24, 9)\), and \((1716, 882, 456, 450)\), respectively.

Muzychuk [579] and Uchida [707] showed that \(J(n, m) \) does not have a nontrivial subscheme for \(n \geq f(m) \), where \(f(3) = 11, f(4) = 13, f(5) = 15, f(6) = 18 \) and \(f(m) = 3m - 1 \) for \(m \geq 7 \).

Subschemes of distance-regular graphs of diameter 3

Proposition 1.3.12 Let \(\Gamma \) be a distance-regular graph of diameter 3. Then

(i) the distance-2 graph \(\Gamma_2 \) of \(\Gamma \) is strongly regular if and only if \(c_3(a_3 + a_2 - a_1) = b_1a_2 \), and

(ii) the distance-3 graph \(\Gamma_3 \) of \(\Gamma \) is strongly regular if and only if \(\Gamma \) has eigenvalue \(-1\), that is, if and only if \(k = b_2 + c_3 - 1 \).

Proof. See [123], 4.2.17.

For example, the distance-3 graph of the collinearity graph of a generalized hexagon of order \(s \) is strongly regular.

1.3.7 Absolute bound and \(\mu \)-bound

The absolute bound

The absolute bound expresses the fact that in a Euclidean representation the dimension cannot be too small.

Proposition 1.3.13 The multiplicities \(m_i \) \((0 \leq i \leq d)\) of a \(d \)-class association scheme satisfy

\[\sum_{q_{ij} \neq 0} m_k \leq \begin{cases} m_im_j & \text{if } i \neq j, \\ \frac{1}{2}m_i(m_i + 1) & \text{if } i = j. \end{cases} \]

Proof. See [123], 2.3.3.

In particular, one finds for strongly regular graphs:

Proposition 1.3.14 (Absolute bound) The multiplicities \(f, g \) of a primitive strongly regular graph satisfy \(v \leq \frac{1}{2}f(f + 3) \) and \(v \leq \frac{1}{2}g(g + 3) \).

Proof. See [132], 10.6.8.

Proposition 1.3.13 implies ‘if \(q_{11}^1 \neq 0 \) then \(v \leq \frac{1}{2}f(f + 1) \)’. It follows that if \(v = \frac{1}{2}f(f + 3) \) then \(q_{11}^1 = 0 \) and if \(v = \frac{1}{2}g(g + 3) \) then \(q_{22}^1 = 0 \).

This rules out, e.g., \((v, k, \lambda, \mu) = (841, 200, 87, 35)\) with \(f = 40 \) and \(q_{11}^1 \neq 0 \).
The μ-bound

For primitive strongly regular graphs with smallest eigenvalue $s = -m$, the value of μ is bounded as a function of m.

This was first shown by Hoffman who developed a structure theory for families of graphs with lower bounded smallest eigenvalue (cf. [433, 435]). An explicit (and sharp) bound was given by Neumaier.

Theorem 1.3.15 (Neumaier [587]) Let Γ be a primitive strongly regular graph with integral smallest eigenvalue $s = -m$. Then $\mu \leq m^3(2m - 3)$. If equality holds, then $n = m(m - 1)(2m - 1)$, where $n = r - s$. \square

This bound is proved as a consequence of the Krein condition and the absolute bound. It does not yield new feasibility conditions. Equality holds for the Schläfli graph ($m = 2$) and the McLaughlin graph ($m = 3$).

Equality in Krein condition or absolute bound

With the notation from Theorem 1.3.15, the three independent parameters of a strongly regular graph can be taken to be m, n, μ.

Proposition 1.3.16 For a primitive strongly regular graph:

(i) We have $q_{11}^1 = 0$ if and only if

$$\mu = \frac{(n + m^2 - m)(n - m)(n - 1)}{n - m^2 + m}.$$

(ii) We have $v = \frac{1}{2}(f + 3)$ if and only if μ has the value given in (i), and $n = m(m - 1)(2m - 1)$. Now $\mu = m^3(2m - 3)$.

(iii) We have $q_{22}^2 = 0$ if and only if

$$\mu = \frac{(r + 1)(r^2 + s)s}{r^2 + 2r - s}.$$

(iv) We have $v = \frac{1}{2}(g + 3)$ if and only if μ has the value given in (iii), and $-s = r^2(2r + 3)$. Now $\mu = r^3(2r + 3)$. \square

If the graph does not have integral eigenvalues, then these conditions hold if and only if the graph is the pentagon. The graphs from (iii) are the Smith graphs.

1.3.8 Coherent configurations

Above we gave the definition of a symmetric association scheme. It is the combinatorial analog of the permutation group-theoretical situation of a transitive permutation group with only self-paired orbits. More general schemes are the analogs of more general group actions.
1.3. ASSOCIATION SCHEMES AND COHERENT CONFIGURATIONS

Coherent configurations

Consider a permutation group G acting on a finite set X. For $g \in G$, let P_g be the permutation matrix indexed by X with entries $(P_g)_{xy} = 1$ if $x = gy$, so that $P_g P_h = P_{gh}$. The centralizer algebra \mathcal{A} of G is the algebra consisting of the matrices M such that $P_g M = M P_g$ for all $g \in G$. A basis for \mathcal{A} is the set of 0-1 matrices indexed by $X \times X$, where P is a G-orbit on $X \times X$, and A_O is the 0-1 matrix with $(A_O)_{xy} = 1$ if $(x, y) \in O$.

The corresponding combinatorial analog is called coherent configuration, see Higman [423, 424]. Thus, a coherent configuration is described by a collection of 0-1 matrices $\{A_0, \ldots, A_d\}$ that is a basis for an algebra \mathcal{A} such that (i) $\sum_i A_i = J$, (ii) $I \in \mathcal{A}$, (iii) for each i there is a j such that $A_i^T = A_j$. As before, the A_i are viewed as adjacency matrices for relations. The fact that \mathcal{A} is an algebra means that $A_i A_j = \sum p_{ij}^k A_k$ for certain constants p_{ij}^k.

A coherent configuration is called Schurian if it is derived from a permutation group as above.

Homogeneous coherent configurations

If G is transitive, then the diagonal of $X \times X$ is a single relation, so that we can take $A_0 = I$. Now $\dim \mathcal{A} = d + 1$ is the rank of the permutation action.

A coherent configuration with $A_0 = I$ is called homogeneous, or also a (general) association scheme, following Delsarte [276].

Commutative association schemes

For transitive G, the action of G on X is isomorphic to the action of G on G/K (by left multiplication), where $K = G_a$ is a point stabilizer. The algebra \mathcal{A} is commutative precisely when this action is multiplicity-free, that is, when all irreducible constituents of the permutation character $\pi = \chi_K^G$ are distinct (see [729], §29). Now (G, K) is a Gelfand pair.

An association scheme is called commutative when \mathcal{A} is commutative. Now $p_{ij}^k = p_{ji}^k$ for all i, j, k.

Symmetric association schemes

A permutation group G is called generously transitive if for arbitrary elements $x, y \in X$ there is a $g \in G$ with $gx = y$ and $gy = x$. This happens if and only if G is transitive and all its suborbits are self-paired (Neumann [591]).

An association scheme is called symmetric when $A_i^T = A_i$ for all i, so that $M^T = M$ for all $M \in \mathcal{A}$. This was the original definition of association scheme (Bose & Shimamoto [97]). A symmetric association scheme is commutative since $M N = (MN)^T = N^T M^T = NM$.

Linear programming bound

Hobart [431] proved an analog of Delsarte’s linear programming bound for general coherent configurations.
The Weisfeiler-Leman algorithm

The k-dimensional Weisfeiler-Leman algorithm is a procedure that given a graph Γ with vertex set X computes a canonical partition (coloring) Π of X^k.

Compute for $h \geq 0$ partitions Π_h of X^k by successive refinement. Start with Π_0, the partition according to the ordered isomorphism type of the k-tuples, so that u,v are in the same part if and only if the map $u_i \mapsto v_i$ ($1 \leq i \leq k$) preserves identity, adjacency and nonadjacency.

For $u \in X^k$ and $x \in X$ and $1 \leq i \leq k$, let $f^x_i(u)$ be the k-tuple v with $v_i = x$ and $v_j = u_j$ for $j \neq i$. For $h \geq 0$ and $u \in X^k$, let $c_h(u)$ be the color of u after step h, that is, the part of Π_h containing u. Given Π_h, compute the refinement Π_{h+1} by splitting each part according to the value of the map that assigns to the k-tuple u the multiset $\{(c_h(f^x_1(u)), \ldots, c_h(f^x_k(u))) \mid x \in X\}$ of k-tuples of colors of neighboring k-tuples. Repeat this step until no further splitting occurs. Put $\Pi = \Pi_h$ when $\Pi_h = \Pi_{h+1}$.

This algorithm is efficient (takes time $O(v^{k+1} \log v)$), and any automorphism of Γ must preserve Π. The special case $k = 2$ of this algorithm computes the coarsest coherent configuration that is a refinement of Γ, in the sense that its algebra \mathcal{A} contains the adjacency matrix A of Γ.
Chapter 2

Polar spaces

In this chapter we define and study (finite) polar spaces and their collinearity graphs. We first give a geometric description of polar spaces embedded in a finite-dimensional vector space, and classify them, next describe the same spaces in terms of bilinear, sesquilinear, and quadratic forms, and finally look in detail at the geometries and graphs of each of the three families, the symplectic, unitary, and orthogonal spaces. We give parameter information, and state what is currently known about substructures like caps, ovoids, spreads, and tight sets.

2.1 Polar spaces

Generalities

A partial linear space is a set of points together with a collection of subsets (called lines) such that two points are on at most one line and each line has at least two points.

The collinearity graph (or point graph) of a partial linear space is the graph with the points as vertices, where two (distinct) points are adjacent when they are collinear.

The incidence graph of a partial linear space is the bipartite graph with the points and lines as vertices, where a point is adjacent to a line when it is on the line. The geometry is connected when its incidence graph is connected.

A flag is an incident point-line pair. An antiflag is a nonincident point-line pair.

A subspace is a subset of the point set that contains each line that meets it in at least two points. A singular subspace is a subspace such that any two of its points are collinear. A (geometric) hyperplane is a proper subspace that meets each line.

Polar spaces

A polar space is a partial linear space \((X, \mathcal{L})\) such that for each line \(L\) and point \(x \notin L\), the point \(x\) is collinear with either 1 or all points of \(L\). This is known as the Buekenhout-Shult axiom. The polar spaces where the second alternative of the Buekenhout-Shult axiom does occur, every line contains at least 3 points, every nested family of singular subspaces is finite, and no point is collinear to all other points, were classified by Buekenhout & Shult [158]. They showed that such a polar space is equivalent to a polar space in the sense
of Veldkamp [715] and Tits [694] and then one can use the classification in [694]. Below we study embedded polar spaces, i.e., polar spaces embedded in a finite-dimensional vector space. This covers all nondegenerate finite polar spaces containing proper projective planes. In the infinite case further examples arise.

Comments

The results of Veldkamp [715] also include a classification, but restricted to the case where all planes of the polar space are Desarguesian. This is enough for the finite case. In the general case, there is one class of polar space (of rank 3) which does not have Desarguesian planes; these polar spaces are usually referred to as non-embeddable polar spaces. They are related to octonion division rings and algebraic groups of type E_7. The corresponding planes still satisfy the so-called Moufang condition (every line is a translation line).

In the Desarguesian case, besides the line Grassmannian of any projective 3-space, the polar spaces (of rank at least 3) are classified by (nondegenerate) pseudo-quadratic forms. However, in the case the characteristic of the skew field underlying the projective planes is different from 2, the nondegenerate pseudo-quadratic forms are equivalent to ordinary non-degenerate reflexive sesquilinear forms (and these are equivalent to nondegenerate Hermitian forms and nondegenerate symmetric and alternating bilinear forms). Hence in this case the polar space is fully embedded in a projective space in such a way that its point set is the set of absolute points of a polarity of that projective space. In the characteristic 2 case this is not true and the situation is more complicated. Roughly, besides the polar spaces arising from nondegenerate reflexive forms (for a suitable definition of nondegeneracy), there are also polar spaces contained in such a polar space that cannot be described by reflexive forms, but only by pseudo-quadratic forms. As a result, all polar spaces in characteristic 2 can be fully embedded in a projective space, but in some cases only as a proper subset of the set of absolute points of a polarity.

In the finite case, the anomalies in characteristic 2 do not appear, and every Moufang plane is Desarguesian, even Pappian (corresponding to a field). Hence all finite polar spaces of rank at least 3 are embeddable in a finite projective space. Moreover, all examples of polar spaces of rank 2 that produce rank 3 graphs are also embeddable in a projective space. The embeddings also provide other rank 3 graphs by looking at points off the polar space, lines not belonging to polar space, etc. Reasons enough to introduce embedded polar spaces and explicitly classify the finite ones. We consider a slight variation of the definitions of Veldkamp and Tits to adapt them to the embeddable setting. Along the way we also show that the Buekenhout-Shult axiom is satisfied.

2.2 Embedded polar spaces

2.2.1 Projective spaces

Let V be a vector space. The projective space PV is the collection of subspaces of V. A point (line, plane) of PV is a 1-space (2-space, 3-space) in V. A hyperplane of PV is a hyperplane (subspace of codimension 1) of V.

If S is a subset of V, or of PV, then $\langle S \rangle$ denotes the subspace of V spanned by S. We write $\langle v \rangle$ instead of $\langle \{v\} \rangle$. The empty set of vectors spans the 0-dimensional subspace 0.

Suppose V has finite dimension n over the finite field \mathbb{F}_q. Then V has q^n vectors, and PV has $(q^n-1)/(q-1)$ points. More generally, V has $\binom{n}{m}_q$ subspaces of dimension m, where $\binom{n}{m}_q = \prod_{i=0}^{m-1} \frac{q^{n-i} - 1}{q^{m-i} - 1}$ is the Gaussian (or q-binomial) coefficient. The subscript q is usually omitted.
2.2. EMBEDDED POLAR SPACES

2.2.2 Definition of embedded polar spaces

Let \(V \) be a vector space and \(PV \) the corresponding projective space. A pair \((X, \Omega)\) is a polar space (embedded) in \(PV \) if \(X \) is a set of points spanning \(PV \) and \(\Omega \) is a nonempty family of finite-dimensional subspaces of \(V \) satisfying conditions (EPS1) and (EPS2) below. We shall view the members of \(\Omega \) as sets of projective points, and write \(x \in \omega \) instead of \(x \subseteq \omega \) and \(\omega \cap \omega' = \emptyset \) for \(x \in X \) and \(\omega, \omega' \in \Omega \).

Two points \(x, y \) of \(X \) are called collinear (in \((X, \Omega)\)), notation \(x \perp y \), if they are contained in a common member of \(\Omega \). Otherwise they are called opposite.

(EPS1) For every \(\omega \in \Omega \), the set of points of \(\omega \) is contained in \(X \).

(EPS2) For every \(x \in X \) and every \(\omega \in \Omega \) with \(x \notin \omega \), the set \(U \) of points of \(\omega \) collinear with \(x \) is a codimension 1 subspace of \(\omega \) and \(\langle x, U \rangle \in \Omega \).

Let \((X, \Omega)\) be an embedded polar space. By (EPS1), \(\bigcup \Omega \subseteq X \); by (EPS2), \(X \subseteq \bigcup \Omega \), since \(\Omega \neq \emptyset \). Hence \(X \) is the union of all elements of \(\Omega \).

The intersection \(R := \bigcap \Omega \) of all members of \(\Omega \) is called the radical of \((X, \Omega)\).

The collinearity graph \(\Gamma(X, \Omega) \) of \((X, \Omega)\) is the graph with vertex set \(X \) with collinearity as adjacency. We shall show that the collinearity graph of a nondegenerate embedded polar space with finite set of points is strongly regular.

2.2.3 Rank and radical

Let \((X, \Omega)\) be an embedded polar space. Let \(\Delta = \Delta(X, \Omega) \) be the graph with vertex set \(\Omega \), where \(\omega \sim \omega' \) when \(\omega \cap \omega' \) has codimension 1 in both \(\omega \) and \(\omega' \). Vertices in the same connected component of \(\Delta \) have the same dimension.

Lemma 2.2.1 The graph \(\Delta \) is connected. In particular, the dimensions of all members of \(\Omega \) are the same.

Proof. By (EPS1) and (EPS2), no member of \(\Omega \) is strictly contained in another. (If \(\omega \subset \omega' \) and \(x \in \omega \setminus \omega' \) then \(x \in X \) by (EPS1) and \(x \) is collinear with all of \(\omega \), contradicting (EPS2).)

Hence, if \(\omega \) and \(\xi \) are distinct members of \(\Omega \), then we can find \(x \in \xi \setminus \omega \) and by (EPS2) there is an \(\omega' \in \Omega \) that is adjacent to \(\omega \) and such that \(\omega' \) contains \(\langle x, \omega \cap \xi \rangle \). Since \(\xi \) is finite-dimensional, an induction on \(\dim(\omega \cap \xi) \) implies that \(\xi \) and \(\omega \) are in the same connected component of \(\Delta \). \(\Box \)

The common (vector space) dimension \(n \) of all members of \(\Omega \) is called the (polar) rank of \((X, \Omega)\).

We show some equivalent forms of axiom (EPS3).

Lemma 2.2.2 Equivalent are

(i) (EPS3),
(ii) Every point of \(X \) is opposite some other point of \(X \),
(iii) Every member of \(\Omega \) is disjoint from some other member of \(\Omega \),
(iv) There exist two disjoint members of \(\Omega \).
More generally, if R is the radical of (X, Ω), then
(a) Every point of $X \setminus R$ is opposite some other point of $X \setminus R$.
(b) Every member of Ω meets some member of Ω in precisely R.

\textbf{Proof.} (a). Let $x \in X \setminus R$. Then by definition of R there is an $\omega \in \Omega$ with $x \notin \omega$. By (EPS2) the point x is not collinear to all points of ω.

(a)⇒(b). Let $\xi \in \Omega$ be given, and $\omega \in \Omega$ be arbitrary. If $x, x' \in X$, where $x \in \omega \cap \xi$ and x' is opposite x (by (a), there is such a pair when $\omega \cap \xi \neq R$), then by (EPS2) there is an ω' containing x' adjacent to ω in Δ. Now $\omega' \cap \xi$ is strictly contained in $\omega \cap \xi$ since $x \notin \omega'$ and x is already collinear with the points of the hyperplane $\omega \cap \omega'$ of ω', and cannot be collinear with any further points of ω'. Since ξ is finite-dimensional and $\dim(\omega' \cap \xi) < \dim(\omega \cap \xi)$, we inductively end with a member of Ω meeting ξ precisely in R.

Now each of the four statements (i)–(iv) says that R is empty. \hfill \Box

\subsection{2.2.4 Maximal singular subspaces}

A subspace S of an embedded polar space (X, Ω) is a subset $S \subseteq X$ such that, if $x, y \in S$ are two distinct collinear points, then all points of the line $\langle x, y \rangle$ belong to S. A singular subspace S is a subspace containing no opposite pair of points.

\textbf{Proposition 2.2.3} In an embedded polar space (X, Ω), the maximal singular subspaces are precisely the elements of Ω.

\textbf{Proof.} Certainly the elements of Ω are singular subspaces. Let S be a maximal singular subspace. Given $\omega \in \Omega$ not containing S, we find a neighbor ω' that meets S in a strictly larger subspace. But the intersection $\omega \cap S$ cannot have dimension larger than the rank n, so S is contained in, and therefore equals, some element of Ω. \hfill \Box

\textbf{Corollary 2.2.4 (Buekenhout-Shult axiom)} Let L be a line containing two collinear points of an embedded polar space (X, Ω), and let $x \in X$. Then x is collinear to either exactly one or all points of L.

\textbf{Proof.} Including L in a maximal singular subspace, which is a member of Ω by the foregoing proposition, yields the corollary. \hfill \Box

\subsection{2.2.5 Order of an embedded polar space}

For $x \in X$, let x^\perp be the set of all points of X collinear with x.

\textbf{Lemma 2.2.5} Given an embedded polar space (X, Ω) with radical R, and a point $x \in X$,

(i) for every $\omega \in \Omega$ with $x \in \omega$ there exists $\omega' \in \Omega$ with $\omega \cap \omega' = \langle x, R \rangle$;
(ii) for each point $y \in x^\perp \setminus \langle x, R \rangle$, there exists an opposite point $y' \in x^\perp$.

\textbf{Proof.} By Lemma 2.2.2 (b) we may assume $x \notin R$. Let $\omega \in \Omega$ with $x \in \omega$. By Lemma 2.2.2 (b) we find $\xi \in \Omega$ with $\omega \cap \xi = R$. By (EPS2), there exists $\omega' \in \Omega$ with $x \in \omega' \sim \xi$. A line in $\omega \cap \omega'$ intersects ξ nontrivially, hence intersects R. Consequently R is a hyperplane of $\omega \cap \omega'$ and so $\omega \cap \omega' = \langle x, R \rangle$. Take $y \in \omega \setminus \langle x, R \rangle$ arbitrarily (then y is arbitrary in $x^\perp \setminus \langle x, R \rangle$), then by (EPS2) there is a point $y' \in \omega'$ not collinear to y. \hfill \Box
Lemma 2.2.6 Let \((X, \Omega)\) be an embedded polar space and \(p \in X\). Let \(H_p = \langle p^\perp \rangle\). Then \(H_p \cap X = p^\perp\).

Proof. Suppose not, and let \(y \in H_p \cap X\) be opposite \(p\) such that the number, say \(m\), of members \(\omega_1, \ldots, \omega_m\) of \(\Omega\) containing \(p\) needed to generate \(y\) is minimal. (Such an \(m\) exists since \(y\) is generated by a finite number of points of \(p^\perp\).) Obviously \(m > 1\). Let \(\omega \in \Omega\) be such that \(y \in \omega \sim \omega_m\) and put \(S = \langle \omega_1, \ldots, \omega_{m-1} \rangle\). Since \(\omega \subseteq \langle S, \omega_m \rangle\), so that \(\dim(S, \omega) \leq \dim(S, \omega_m)\), we have \(\dim(S \cap \omega) \geq \dim(S \cap \omega_m)\). And since \(p \in \omega_m \setminus \omega\), there is at least one point \(z\) in \((S \cap \omega) \setminus \omega_m\). Now \(z \in X\) since \(\omega \subseteq X\), and \(z \in p^\perp\) by minimality of \(m\), so that \(z\) is collinear with all points of \(\omega_m\), contradicting (EPS2).

Proposition 2.2.7 Let \(p\) be a point of the embedded polar space \((X, \Omega)\) of rank \(n\) and with radical \(R\), where \(p \notin R\). Put \(X_p = p^\perp\) and \(\Omega_p = \{\omega \in \Omega \mid p \in \omega\}\). Then \((X_p, \Omega_p)\) is an embedded polar space of rank \(n\) and radical \((p, R)\) in \(H_p\).

Proof. Note that two points of \(X_p\) are collinear in \((X_p, \Omega_p)\) if and only if they are collinear in \((X, \Omega)\).

Lemma 2.2.8 Let \((X, \Omega)\) be an embedded polar space of rank \(n\) with radical \(R\), and let \(p \in X \setminus R\). If \(\dim R \leq n - 2\), then \(H_p\) is a hyperplane of \(PV\).

Proof. Fix \(z \in X \setminus p^\perp\) and let \(z' \in X \setminus p^\perp\) be arbitrary. We show that \(z' \in \langle H_p, z \rangle\), which completes the proof of the lemma. By Lemma 2.2.5 (ii) we can find noncollinear \(y, y' \in p^\perp\) (since each \(\omega\) on \(p\) has dimension \(n\), while \(\langle p, R \rangle\) has dimension at most \(n - 1\)). By Corollary 2.2.4 we may assume that \(z \in y^\perp\) and \(z' \in y'^\perp\) (by adapting the choices of \(y\) and \(y'\) in the lines \(\langle p, y \rangle\) and \(\langle p, y' \rangle\)).

By the same corollary, since \(y\) is not collinear to \(y'\), the point \(y\) is collinear to a unique point \(w'\) of the line \(\langle z', y' \rangle\). Since lines contain at least three points, we can pick a point \(u'\) of \(\langle z', y' \rangle \setminus \{y', w'\}\). The point \(u'\) is collinear to a unique point \(u\) of \(\langle z, y \rangle \setminus \{y\}\). Again by Corollary 2.2.4, there is a unique point \(v \in \langle u, u' \rangle \cap p^\perp\) and \(v \notin \{u, u'\}\). We conclude \(z' \in \langle H_p, u' \rangle = \langle H_p, u \rangle = \langle H_p, z \rangle\).}

Two polar spaces \((X, \Omega)\) and \((X', \Omega')\) in the projective spaces \(PV\) and \(PV'\), respectively, are isomorphic if there is an isomorphism \(\theta : PV \rightarrow PV'\) mapping \(X\) bijectively to \(X'\) and mapping \(\Omega\) bijectively onto \(\Omega'\). Isomorphic embedded polar spaces have isomorphic collinearity graphs. An isomorphism from \((X, \Omega)\) to itself is called an automorphism, or a collineation.

Proposition 2.2.9 Let \(x\) and \(y\) be two opposite points of an embedded polar space \((X, \Omega)\) of rank \(n\) and with radical \(R\), where \(\dim R \leq n - 2\). Set \(\Omega_{x,y} = \{\omega \cap x^\perp \mid \omega \in \Omega\}\). Then \(\Omega_{x,y} = \Omega_{y,x}\) and \((x^\perp \cap y^\perp, \Omega_{x,y})\) is an embedded polar space of rank \(n - 1\) in the subspace \(x^\perp \cap y^\perp\) of dimension \(\dim V - 2\), with radical \(R\).

Moreover, if \(z\) is opposite \(x\), then the embedded polar spaces \((x^\perp \cap y^\perp, \Omega_{x,y})\) and \((x^\perp \cap z^\perp, \Omega_{x,z})\) are isomorphic.

Proof. The fact that \(\Omega_{x,y} = \Omega_{y,x}\) follows immediately from Axiom (EPS2). Since \(\langle x^\perp \rangle = \langle x, x^\perp \cap y^\perp \rangle\), and hence \(\langle x^\perp \cap y^\perp \rangle = \langle x^\perp \rangle \cap \langle y^\perp \rangle\), the fact that \(\dim (x^\perp \cap y^\perp) = \dim V - 2\) follows from Lemma 2.2.8. Now, (EPS1) is trivial for
(x⁺ ∩ y⁺, Ωₓₙₓ) and (EPS2) follows from noting that x⁺ ∩ y⁺ does not contain any element of Ω (hence the rank of Ωₓₙₓ is n − 1). The fact that R is the radical follows immediately from Proposition 2.2.7.

Finally, projection of (x⁺ ∩ y⁺) into (x⁺ ∩ z⁺) from x induces an isomorphism between (x⁺ ∩ y⁺, Ωₓₙₓ) and (x⁺ ∩ z⁺, Ωₓₙₓ).

Let V be finite and defined over the field Fₙ. We can show, in the non-degenerate case, that the graph Γ = Γ(X, Ω) is strongly regular, without explicitly calculating the precise parameters.

Theorem 2.2.10 Let (X, Ω) be finite nondegenerate embedded polar space of rank at least 2. Then the associated collinearity graph Γ is strongly regular.

Proof. Note that Γ is not complete and not edgeless. Proposition 2.2.9 implies that |x⁺| = 1 + q|x⁺ ∩ y⁺| = |y⁺| for all pairs of opposite points x, y ∈ X. Now let x, y ∈ X be collinear. Select z ∈ ⟨x, y⟩ \ {x, y}. Then by Lemma 2.2.5(ii), there exists u ∈ z⁺ opposite x and hence also opposite y by Corollary 2.2.4. Hence k + 1 := |x⁺| = |u⁺| = |y⁺| is a constant and Γ is k-regular. It also follows that the sets x⁺ ∩ y⁺, for x opposite y, have constant size k/q.

Given collinear points x, z, let y ∈ z⁺ \ x⁺. Suppose w is a point in x⁺ ∩ z⁺ not on ⟨x, z⟩. Let v be the unique point collinear with y on ⟨x, w⟩. Then v ∈ x⁺ ∩ y⁺ ∩ z⁺. Hence, if the valency of the graph Γ(x⁺ ∩ y⁺, Ωₓₙₓ) is k′ (note that k′ = 0 if n = 2), then the number of points of X collinear to both x and z is q + 1 + qk′.

The last part of the proof also shows that there are a constant number of singular planes of (X, Ω) through a line of (X, Ω). Similarly, continuing that argument, we derive the following consequence, also valid in the infinite case.

Corollary 2.2.11 If the rank of the not necessarily finite nondegenerate embedded polar space (X, Ω) is n, then there are a constant number of maximal singular subspaces of (X, Ω) which contain a given singular subspace of dimension n − 1.

Order

Let (X, Ω) be a finite nondegenerate embedded polar space of rank n. We set t + 1 equal to the number of maximal singular subspaces of (X, Ω) that contain a given singular subspace of dimension n − 1. We call (q, t) the order of (X, Ω). Note that t ≥ 0 by Proposition 2.2.3. But in fact we have t ≥ 1 by Lemma 2.2.5(ii), as t + 1 is the number of singular lines of a polar space of rank 2 through a point. Note that, by the definition of t, the order of (x⁺ ∩ y⁺, Ωₓₙₓ), for x ∈ X opposite y ∈ X is also (q, t). Polar spaces with t = 1 are called non-thick.

Clique and coclique extensions

If Γ is a graph with vertex set X, then its m-coclique extension is the graph with vertex set M × X, where |M| = m, and adjacencies (i, x) ∼ (j, y) whenever x ∼ y. Its m-clique extension is the graph with vertex set M × X, and adjacencies (i, x) ∼ (j, y) whenever x ∼ y or i ≠ j, x = y. If Γ has adjacency matrix A
then these graphs have adjacency matrices $J_m \otimes A$ and $(J_m \otimes (A + I_v)) - I_m \otimes I_v$, respectively, where $v = |X|$.

Now Proposition 2.2.9 implies: Let (X, Ω) be an embedded polar space of rank $n \geq 2$ and order (q, t). Then its collinearity graph Γ is locally the q-clique extension of a polar space of rank $n - 1$ and order (q, t).

2.2.6 Parameters and spectrum of the polar space strongly regular graphs

We are now ready to determine the parameters of Γ in terms of (q, t).

Theorem 2.2.12 Let (X, Ω) be a finite embedded polar space of rank $n \geq 2$ and order (q, t). Then the strongly regular graph $\Gamma(X, \Omega)$ has parameters (v, k, λ, μ) and spectrum $k^1 r^1 s^0$, where

\[
\begin{align*}
v &= \frac{q^n - 1}{q - 1} (tq^{n-1} + 1), & r &= q^{n-1} - 1, \\
k &= q\frac{q^{n-1} - 1}{q - 1} (tq^{n-2} + 1), & s &= -tq^{n-2} - 1, \\
\lambda &= q^2 \frac{q^{n-2} - 1}{q - 1} (tq^{n-3} + 1) + q - 1, & f &= \frac{tq(q^n - 1)(tq^{n-2} + 1)}{(q - 1)(q + t)}, \\
\mu &= q\frac{q^{n-1} - 1}{q - 1} (tq^{n-2} + 1) = \frac{k}{q}, & g &= \frac{q^2(q^{n-1} - 1)(tq^{n-1} + 1)}{(q - 1)(q + t)}.
\end{align*}
\]

Note that the use of ‘order’ implies that (X, Ω) is nondegenerate.

Proof. We count the number $v = |X|$ of points as follows. Fix $\omega \in \Omega$. Every point x outside ω is contained in a unique $\xi \in \Omega$ with $x \in \xi$ and $\omega \cap \xi$ a hyperplane in ω. There are $(q^n - 1)/(q - 1)$ hyperplanes in ω each contained in t members of Ω distinct from ω itself. Each such member contains q^{n-1} points outside ω. This gives v.

Now μ is the number of points of a polar space of rank $n - 1$ and order (q, t) and $k = q\mu$. Finally, λ is q times the number of points in $x^+ \cap y^+$ collinear to a given point $z \in x^+ \cap y^+$ (including z), minus 1 (namely, excluding z itself). \qed

Proposition 2.2.13 Let (X, Ω) be a finite embedded polar space of rank $n \geq 2$ and order (q, t). Then $|\Omega| = \prod_{i=0}^{n-1} (tq^i + 1)$. \qed

2.2.7 Ovoids, spreads, m-systems, h-ovoids, hemisystems

Let (X, Ω) be a finite embedded polar space of rank $n \geq 2$ and order (q, t). Let $\Gamma = \Gamma(X, \Omega)$ be its collinearity graph.

Proposition 2.2.14 In the strongly regular graph Γ the maximal cliques are precisely the elements of Ω (and have size $(q^n - 1)/(q - 1)$). Every coclique C satisfies $|C| \leq tq^{n-1} + 1$. Equivalent are: (i) $|C| = tq^{n-1} + 1$, (ii) $|C \cap \omega| = 1$ for each $\omega \in \Omega$, (iii) $|x^+ \cap C| = tq^{n-2} + 1$ for each $x \notin C$.

Proof. Since the span of a clique is a clique again, the maximal cliques of Γ are the maximal singular subspaces of (X, Ω), i.e., the elements of Ω. These
have dimension n and size $(q^n - 1)/(q - 1)$, and hence attain the Hoffman bound (Proposition 1.1.7). For cocliques C, the upper bound on $|C|$, and the conclusions for equality follow from that same proposition. That (iii) implies (i) follows by counting edges between C and $X \setminus C$. Let $m_n(q,t)$ be the size of Ω as given in Proposition 2.2.13. That (ii) implies (i) follows from $|C| = m_n(q,t)/m_{n-1}(q,t)$. □

A set of points C that meets each $\omega \in \Omega$ in a single point is called an ovoid of the polar space. For a discussion of when ovoids exist, see the various subsections of §§2.5–2.7. A general result is that existence (nonexistence) of ovoids implies the existence (nonexistence) of ovoids in embedded polar spaces of smaller (larger) rank.

Proposition 2.2.15 If $\Gamma(X,\Omega)$ has a coclique of size c, then there is a pair of opposite points $x,y \in X$ such that the embedded polar space $(x^\bot \cap y^\bot, \Omega_{x,y})$ of rank $n-1$ (with the notation of Proposition 2.2.9) has a coclique of size at least $\lceil 1 + \frac{c-1}{q} \rceil$.

Proof. Let C be a coclique of $\Gamma(X,\Omega)$ and let L be a line of (X,Ω) containing a point $p \in C$. For each $x \in L \setminus \{p\}$ we select $y \in X$ opposite x and construct a coclique C_x as follows. For every point $u \in C \cap x^\bot$, let u' be the point on the line xu collinear in (X,Ω) to y. Then the set of all such points u' is a coclique C_y in $\Gamma(x^\bot \cap y^\bot, \Omega_{x,y})$. Since every point of $C \setminus \{p\}$ is collinear to a unique point x of $L \setminus \{p\}$, the q cocliques thus obtained contain in total $q + |C| - 1$ points. Hence at least one among them contains at least $\lceil 1 + \frac{|C| - 1}{q} \rceil$ points. □

In particular we have:

Corollary 2.2.16 If the embedded polar spaces $(X',\Omega') = (x^\bot \cap y^\bot, \Omega_{x,y})$, for noncollinear $x,y \in X$, do not contain an ovoid, then neither does (X,Ω). □

Spreads and m-systems

A spread of an embedded polar space (X,Ω) is a collection of members of Ω that partitions X. If (X,Ω) has rank $n \geq 2$ and order (q,t), then clearly $|S| \leq |X|/q^{n-1} - 1 = tq^{n-1} + 1$, the same bound we found for ovoids.

Shult & Thas [653] define more generally a partial m-system to be a collection $\{U_1,\ldots,U_r\}$ of singular subspaces U_i of projective dimension m such that $U_i^\bot \cap U_j = 0$ whenever $i \neq j$. They prove $r \leq tq^{m-1} + 1$, independent of m, and call the collection an m-system when equality holds. For $m = 0$ the m-systems are the ovoids, for $m = n - 1$ the spreads.

For an m-system, let $M = \bigcup_i U_i$ and $\omega \in \Omega$. Then $|M \cap \omega| = q^{m+1}-1$. □

In the cases $Sp_{2n}(q)$, $O_{2n+2}(q)$ and $U_{2n+1}(q)$ (cf. Theorem 2.3.6), the size of the intersection $H \cap M$ takes two values for hyperplanes H, so that in these spaces an m-system gives rise to a strongly regular graph (§7.1.1).

See also [654], [411], [658].

h-Ovoids, h-spreads and hemisystems

An h-ovoid of an embedded polar space (X,Ω) is a subset of X that meets each $\omega \in \Omega$ in precisely h points. Thus, a 1-ovoid is an ovoid. If O is an h-ovoid
2.2. EMBEDDED POLAR SPACES

in \((X, \Omega)\), and \(H\) is a hyperplane spanned by \(\Omega_H = \{\omega \in \Omega \mid \omega \subseteq H\}\), then \(O \cap H\) is an \(h\)-ovoid in the induced embedded polar space \((X \cap H, \Omega_H)\). Every \(h\)-ovoid is a regular set of size \(h(tq^{n-1} + 1)\), degree \((h-1)(tq^{n-2}+1)\) and nexus \(h(tq^{n-2}+1)\) in \(\Gamma(X, \Omega)\).

An \(h\)-spread of an embedded polar space \((X, \Omega)\) is a collection of members of \(\Omega\) such that each \(x \in X\) is contained in precisely \(h\) of them. Thus, a 1-spread is a spread.

A hemisystem of an embedded polar space \((X, \Omega)\) is a subset of \(\Omega\) that for each \(x \in X\) contains precisely half of the members of \(\Omega\) containing \(x\). Thus, a hemisystem is an \(h\)-spread, where \(h = \frac{1}{2} \prod_{i=0}^{n-2} (tq^i + 1)\). Hemisystems were introduced by Segre [640], who showed that a nontrivial \(h\)-spread of \(U(4,q)\) must be a hemisystem, and constructed such hemisystems in case \(q = 3\). A hemisystem of points in an embedded polar space \((X, \Omega)\) of rank 2 is a \((q+1)/2\)-ovoid, i.e., a subset of \(X\) meeting each line in exactly half of its points.

2.2.8 Intriguing or regular sets; \(i\)-tight sets

In the polar space literature the notion of ‘intriguing set’ is used to refer to a regular set of the underlying strongly regular graph; we shall use ‘regular set’. Let \(Y\) be a regular set of the embedded polar space \((X, \Omega)\) of order \((q,t)\), and let \(Y\) have degree \(d\) and nexus \(e\). (Then \(|Y|(k - d) = (v - |Y|)e\) implies \(|Y| = \frac{ev}{k - d + e}\).) According to §1.1.13, there are two cases.

Case \(d - e = r\). Since in this case \(|Y| = \frac{ev}{k - d + e} = e \cdot \frac{q^n - 1}{q - 1}\), and \(\gcd(q^n - 1, q^n - 1) = q - 1\), we deduce that \(e\) is a multiple of \(\frac{2^{n+1} - 1}{q - 1}\), say \(e = i \cdot \frac{2^{n+1} - 1}{q - 1}\).

In this case, \(Y\) is called a tight set of \((X, \Omega)\), in particular an \(i\)-tight set. So, the size, degree, and nexus of \(i\)-tight sets is \(|Y| = i \cdot \frac{q^n - 1}{q - 1}\), \(d = q^n - 1 + i \cdot \frac{q^{n-1} - 1}{q - 1}\), and \(e = i \cdot \frac{2^{n+1} - 1}{q - 1}\). The terminology ‘tight set’ is from [608].

An example of a 1-tight set is a maximal singular subspace.

Case \(d - e = s\). Applying Proposition 1.1.3 to \(Y\) with \(Y'\) any maximal singular subspace, we see that each maximal singular subspace intersects \(Y\) in a constant number of points. Hence \(Y\) is an \(h\)-ovoid for some natural number \(h\).

There are some results in the literature that classify \(i\)-tight sets for small \(i\) in various polar spaces. We will review some of these in the various subsections of §§2.5–2.7. For now, we content ourselves with mentioning some standard examples of \(i\)-tight sets.

Disjoint unions of maximal singular subspaces

Since disjoint unions of tight sets are tight again, in particular the disjoint union of \(i\) maximal singular subspaces is an \(i\)-tight set. For \(i = 1\), this is the only possible example, as is easily seen from the value of the degree. The papers [42] and [565] contain for each finite polar space an upper bound \(b\) so that if \(i \leq b\), then an \(i\)-tight set is automatically the union of disjoint maximal singular subspaces.
Polar subspaces of the same rank

Let \((X, \Omega)\) be an embedded polar space of rank \(n\) and order \((q, t)\) and let \((X', \Omega')\) be an embedded polar space of rank \(n\) order \((q, t')\), with \(X' \subseteq X\) and \(\Omega' \subseteq \Omega\). If \(t' < t\), then \(X'\) is an \(s\)-tight set with \(i = t'q^{n-1} + 1\), that is the size of a putative ovoid or spread in \((X', \Omega')\), which is not surprising as a spread in \((X', \Omega')\) gives rise to the tight set \(X'\) of \((X, \Omega)\) of type ‘the disjoint union of maximal singular subspaces’.

2.2.9 Distance-regular graphs on singular subspaces

We show that the graphs \(\Delta(X, \Omega)\) (on the maximal singular subspaces, adjacent when they meet in codimension 1) are distance-regular (cf. §1.2).

Theorem 2.2.17 Let \((X, \Omega)\) be a finite embedded polar space of rank \(n \geq 2\) and order \((q, t)\). Then \(\Delta(X, \Omega)\) is distance-regular of diameter \(n\). The parameters are \(c_i = (q^i - 1)/(q - 1)\) and \(b_i = tq^i(q^{n-i} - 1)/(q - 1)\) for \(0 \leq i \leq n\). The distance of two vertices \(\omega, \omega'\) in \(\Delta(X, \Omega)\) is the codimension of \(\omega \cap \omega'\) in both.

Proof. Let \(\omega, \omega' \in \Omega\), where \(\dim \omega \cap \omega' = n - i\). If \(\omega'' \sim \omega'\) and \(\dim \omega \cap \omega'' > n - i\), then \(\omega''\) contains some \(x \in \omega \setminus \omega'\) and then is uniquely determined by \(x \in \omega'' \sim \omega'\). The number of such \(\omega''\) is \((q^i - 1)/(q - 1)\), which is nonzero for \(i > 0\). This shows that \(\omega\) and \(\omega'\) have distance at most, and therefore precisely, \(i\) in \(\Delta(X, \Omega)\), and that \(c_i = (q^i - 1)/(q - 1)\). If \(\omega'' \sim \omega'\) and \(\dim \omega \cap \omega'' < n - i\), then \(\omega' \cap \omega''\) is a hyperplane in \(\omega'\) not containing \(\omega \cap \omega'\). There are \((q^n - q^i)/(q - 1)\) such hyperplanes, each contributing \(t\) choices for \(\omega''\). This yields the stated value of \(b_i\).

These graphs have eigenvalues \(\theta_i = i(q^{n-i} - 1)/(q - 1) - q^i/(q - 1)\) \((0 \leq i \leq n)\).

For more details, see [123], §9.4.

The special case \(n = 2\) yields strongly regular graphs. See Theorem 2.2.19 below.

2.2.10 Generalized quadrangles

A *generalized quadrangle* \((X, \mathcal{L})\) is a partial linear space such that given a point \(x \in X\) and a line \(L \in \mathcal{L}\) not incident with \(x\), there is exactly one pair \((y, M) \in X \times \mathcal{L}\) with \(x \in M \ni y \in L\).

If every point is contained in at least two lines, then the *dual* of a generalized quadrangle \((X, \mathcal{L})\) is the partial linear space with point set \(\mathcal{L}\) and set of lines \(\{L \in \mathcal{L} \mid x \in L\} \mid x \in X\) and is also a generalized quadrangle.

A finite generalized quadrangle is said to be of order \((s, t)\) when \(s > 0, t > 0\) and every line is incident with \(s + 1\) points and every point is incident with \(t + 1\) lines. Then its dual has order \((t, s)\). An arbitrary generalized quadrangle of order \((s, t)\) is often denoted by \(\text{GQ}(s, t)\).

Examples of generalized quadrangles of order \((s, t)\) are known when \(s = 1\) or \((s, t) = (q, q), (q, q^2), (q^2, q^3), (q - 1, q + 1)\) (where \(q\) is a prime power), and the duals of these. For constructions and properties, see [609], [687], [710].
2.2. EMBEDDED POLAR SPACES

Proposition 2.2.18 The collinearity graph of a generalized quadrangle of order \((s, t)\) is strongly regular with parameters \((v, k, \lambda, \mu)\) and spectrum \(k^1 r^f a^g\), where

\[
\begin{align*}
 v &= (s+1)(st+1), \\
 k &= s(t+1), \\
 \lambda &= s-1, \\
 \mu &= t+1,
\end{align*}
\]

\[
\begin{align*}
 r &= s-1, \\
 a &= -t-1, \\
 f &= \frac{s(s+1)t(t+1)}{st+t}, \\
 g &= \frac{s^2(st+1)}{st+t}.
\end{align*}
\]

(We named the negative eigenvalue here \(a\) instead of \(s\) to avoid a conflict with the \(s\) from the order.)

Since the multiplicities are integers, one has the divisibility condition that \((s+t)|s^2(s^2-1)\).

The 2nd Krein condition implies \(s = 1\) or \(t \leq s^2\). Dually, one has \(t = 1\) or \(s \leq t^2\).

2.2.11 Strongly regular graphs on the lines

An embedded polar space of rank 2 is a generalized quadrangle, and the above applies, and we have strongly regular graphs on the duals. Or, we might invoke Theorem 2.2.17 with \(n = 2\).

Theorem 2.2.19 Let \((X, \Omega)\) be a finite embedded polar space of rank 2 and order \((q, t)\). Then the graph \(\Delta = \Delta(X, \Omega)\) is strongly regular with parameters \((v, k, \lambda, \mu)\) and spectrum \(k^1 r^f s^g\), where

\[
\begin{align*}
 v &= (1+t)(1+qt), \\
 k &= t(q+1), \\
 \lambda &= t-1, \\
 \mu &= q+1 = \frac{k}{t},
\end{align*}
\]

\[
\begin{align*}
 r &= t-1, \\
 s &= -q-1, \\
 f &= \frac{tq(t+1)(q+1)}{q+t}, \\
 g &= \frac{t^2(tq+1)}{q+t}.
\end{align*}
\]

2.2.12 Distance-regular graphs on half of the maximal singular subspaces

Let \((X, \Omega)\) be a finite embedded polar space of rank \(n\) and order \((q,1)\). We see from Theorem 2.2.17 that the graph \(\Delta = \Delta(X, \Omega)\) has diameter \(n\), and is bipartite (since \(k = b_i + c_i\) for all \(i\)). Now Theorem 1.2.2 tells us that the halved graphs are distance-regular of diameter \(\lfloor n/2 \rfloor\). In particular, they will be strongly regular for \(n = 4, 5\).

Let \(\Delta_{1/2}\) be one of the two connected components of the distance-2 graph of \(\Delta\). We will see later (see §3.2) that both components are isomorphic. It will also turn out that, if \((X, \Omega)\) has rank 4, then \(\Gamma = \Gamma(X, \Omega)\) is isomorphic to \(\Delta_{1/2}\). Hence, we only obtain a new strongly regular graph for rank 5. See §3.2 for more details.
Theorem 2.2.20 Let \((X, \Omega)\) be a finite embedded polar space of rank 5 of order \((q,1)\). Then the graph \(\Delta_{1/2}\) is strongly regular with parameters \((v,k,\lambda,\mu)\) and spectrum \(k^1 r^f s^g\), where

\[v = (q^4 + 1)(q^3 + 1)(q^2 + 1)(q + 1), \quad r = q^5 + q^4 + q^3 - 1, \]

\[k = q(q^2 + 1) \frac{q^2 - 1}{q - 1} = q \left[\frac{5}{2} \right], \quad s = -q^2 - 1, \]

\[\lambda = q - 1 + q^2(q + 1)(q^2 + q + 1), \quad f = q^7 + q^6 + q^4 + q^3 + q, \]

\[\mu = (q^2 + 1)(q^2 + q + 1) = \left[\frac{4}{2} \right], \quad g = q^2(q^4 + 1) \frac{q^2 - 1}{q - 1}. \]

Proof. Immediate from Theorems 2.2.17 and 1.2.2(i). \(\square\)

2.3 Classification of finite embedded polar spaces

2.3.1 Residues

We first note the following straightforward generalization of Proposition 2.2.9. For a subset \(A \subseteq X\) we use the notation \(A^\perp\) to denote the set of points of \(X\) collinear to all points of \(A\).

Proposition 2.3.1 Let \(S\) be a singular subspace of dimension \(i\), \(0 \leq i \leq n - 2\), of a nondegenerate embedded polar space \((X, \Omega)\) of rank \(n\). Then there exists a singular subspace \(T\) of dimension \(i\) with the property that no point of \(S \cup T\) is collinear to all points of \(S \cup T\). Also, if \(X_{S,T} = S^\perp \cap T^\perp\) and \(\Omega_{S,T} = \{ \omega \cap X_{S,T} \mid \omega \in \Omega \}\), then \((X_{S,T}, \Omega_{S,T})\) is a nondegenerate polar space in \(\langle X_{S,T} \rangle\) of rank \(n - i\) whose isomorphism type does not depend on \(T\), i.e., if \(U\) is an arbitrary singular subspace of dimension \(i\) with the property that no point of \(S \cup U\) is collinear to all points of \(S \cup U\), then the embedded polar spaces \((X_{S,T}, \Omega_{S,T})\) and \((X_{S,U}, \Omega_{S,U})\) are isomorphic. We also have \(\dim(X_{S,T}) = \dim V - 2i\). In the finite case, \((X, \Omega)\) and \((X_{S,T}, \Omega_{S,T})\) have the same order.

Proof. Proceeding by induction on \(\dim S\), we note that for \(\dim S = 1\) we can refer to Proposition 2.2.9. For \(\dim S \geq 2\), we choose a pair of noncollinear points \(x, y\) with \(x \in S\). Induction implies that we can find a singular subspace \(T' \subseteq x^\perp \cap y^\perp\) with the property that no point of \((S \cap y^\perp) \cup T'\) is collinear to all points of \((S \cap y^\perp) \cup T'\). Set \(T = (T', y)\). Clearly, no point of \(S \cup T\) is collinear to all points of \(S \cup T\). Now we see that, inside \(x^\perp \cap y^\perp\), the set of points collinear to all points of \((S \cap y^\perp) \cup T'\) is exactly \(S^\perp \cap T^\perp\) and so induction yields that \((X_{S,T}, \Omega_{S,T})\) is a nondegenerate polar space in \(\langle X_{S,T} \rangle\) of rank \(n - i\).

The claim about the isomorphism type is proved exactly in the same way as the last assertion of Proposition 2.2.9. \(\square\)

Since the isomorphism class of \((X_{S,T}, \Omega_{S,T})\) does not depend on \(T\), we denote that polar space by \(\text{Res}\, S\) and call it the residue of \(S\).

Subspaces \(S\) and \(T\) with the property that no point of \(S \cup T\) is collinear to all points of \(S \cup T\) are called opposite.
2.3.2 Reduction to rank 2

Let \((X, \Omega)\) be a nondegenerate embedded polar space of rank \(n \geq 3\). Let \(x \in X\). Then \(\text{Res}_x\) is a nondegenerate embedded polar space of rank \(n-1 \geq 2\) whose isomorphism type is independent of \(x\). Hence, in order to classify all (finite) embedded polar spaces, it suffices to determine all nondegenerate embedded polar spaces of rank 2, and then determine all extensions to higher ranks. In this paragraph, we will show that a nondegenerate embedded polar space admits at most one extension to any given higher rank. More precisely:

Theorem 2.3.2 Let \((X, \Omega)\) be a nondegenerate embedded polar space of rank \(n \geq 2\). Then, up to isomorphism, there exists at most one nondegenerate embedded polar space \((X', \Omega')\) of rank \(n+1\) such that for any pair of opposite points \(x, y \in X'\) the embedded polar space \((X'_{x,y}, \Omega'_{x,y})\) is isomorphic to \((X, \Omega)\).

Proof. Suppose two embedded polar spaces \((X_1', \Omega_1')\) and \((X_2', \Omega_2')\) as described in the theorem exist. Let \(\perp_i\) denote the collinearity in \((X_i', \Omega_i')\), \(i = 1, 2\), and let \(\perp_X\) denote the collinearity in \((X, \Omega)\).

Let \(x_i, y_i\) be two opposite points of \(X_i', i = 1, 2\). Then \(x_i \perp y_i\) is isomorphic to \((X, \Omega)\). By Proposition 2.3.1, \(\dim(X_1') = \dim(X) + 2 = \dim(X_2')\). For convenience, and without loss of generality, we can thus identify \(x_i \perp y_i\) with \(X, i = 1, 2\), and moreover assume that \(x_1 = x_2 =: x\) and \(y_1 = y_2 =: y\). Then \(\langle X' \rangle = \langle X' \rangle'\) and \(x^{-1} \perp y^{-1}\) coincides with \(x^{-2} \perp y^{-2}\).

Let \(u, v \in X\) be two opposite points and choose arbitrarily \(y' \in \langle u, y \rangle \setminus \{u, y\}\). By possibly applying a projective collineation fixing all points of \(\langle y, X \rangle \setminus \{x\}\), we may assume that the same point \(x' \in \langle v, x \rangle \setminus \{v, x\}\) is collinear to \(y'\) in both \((X_1', \Omega_1')\) and \((X_2', \Omega_2')\). Then \(\langle u^x, x' \rangle \subseteq \langle y'^x \rangle\). Since every line of \((X_1', \Omega_1')\), or equivalently, \((X_2', \Omega_2')\), through \(x\) contains a unique point of \(y'^{-1}, i = 1, 2\), and also a unique point of \(\langle u^x, x' \rangle\) (for dimension reasons: it is a hyperplane in \(\langle x^{-1} \rangle\)), we see that \(y'^{-1} \cap x^{-1} = x^{-1} \cap \langle u^x, x' \rangle, i = 1, 2\). Since \(x^{-1} = x^{-2}\), this shows that \(y'^{-1} = y'^{-2}\). Now pick a maximal singular subspace \(\omega \in \Omega\) through \(u\) and an opposite (disjoint) one, say \(\xi\), containing \(v\). Then \(\omega = \langle \omega, y \rangle\) and \(\xi = \langle \xi, x \rangle\) belong to \(\Omega_2' \setminus \Omega_2'\). In \((X_1', \Omega_1')\), \(i = 1, 2\), the mapping \(\rho_1: \omega' \rightarrow \xi': z \mapsto z^{-1} \cap \xi'\) is an isomorphism from the \(n\)-dimensional projective space \(\omega'\) to the dual of \(\xi'\). The images of the points in \(\omega\) under \(\rho_1\) and \(\rho_2\) coincide because if \(z \in \omega\), then \(\rho_i(z) = \langle z^{-x} \cap \xi, x \rangle\), which is independent of \(i, i \in \{1, 2\}\). Also, the images of \(y\) and \(y'\) under both \(\rho_1\) and \(\rho_2\) are \(\xi\) and \(\langle y'^{-x} \cap \xi, x' \rangle\), respectively. Hence \(\rho_1\) and \(\rho_2\) completely coincide. In particular, for each point \(y''\) on \(\langle y, u \rangle \setminus \{y, u\}\), we know that \(y''^{-1} \cap \langle x, v \rangle = y''^{-2} \cap \langle x, v \rangle\). Then what we proved about \(y''\) also holds for \(y''\), and in particular \(y''^{-1} = y''^{-2}\).

Since \(u \in X\) was chosen arbitrarily, we conclude that \(w^{-1} = w^{-2}\), for all \(w \in (x^{-1} \cup y^{-1}) \setminus X\). Interchanging the roles of \(\langle v, y \rangle\) and \(\langle x, y \rangle\), this argument yields \(v^{-1} = v^{-2}\). Since \(v\) in \(X\) was chosen arbitrarily, we conclude \(w^{-1} = w^{-2}\) for all \(w \in X\), too. Since every point of \(X'\) is \(\perp\)-collinear to at least one point of \(\langle y, u \rangle\), this already implies \(X'_1 = X'_2\).

The foregoing implies that collinearity in \((X_1', \Omega_1')\) coincides with collinearity in \((X_2', \Omega_2')\) as soon as there is a point of \(x^{-1} \cup y^{-1}\) involved. Now let \(w \in X'_1 \setminus (x^{-1} \cup y^{-1})\). Then the previous sentence implies \(w^{-1} \cap x^{-1} = w^{-2} \cap x^{-2}\). This implies that collinearity in \((X_1', \Omega_1')\) coincides with collinearity in \((X_2', \Omega_2')\), globally. Hence \(\Omega_1' = \Omega_2'\).

\(\Box\)
2.3.3 The finite rank 2 polar spaces in 3-space

Let an embedded generalized quadrangle be an embedded polar space of rank 2. Degenerate examples consist of a number of lines on a common point. We classify the finite nondegenerate examples. The classification is due to Buekenhout & Leefèvre [157].

Theorem 2.3.3 Let \((X, \mathcal{L})\) be an embedded nondegenerate generalized quadrangle of order \((q, t)\) with \(\dim V = 4\). Then we have one of the following three possibilities.

(i) \(t = 1\) and \(\mathcal{L}\) is the set of lines of a nondegenerate ruled quadric.

(ii) \(t = \sqrt{q}\) and \(\mathcal{L}\) is the set of fixed lines under a unitary polarity, or equivalently, \((X, \mathcal{L})\) arises from a nondegenerate \(\sigma\)-Hermitian form on \(V\), with \(\sigma : \mathbb{F}_q \rightarrow \mathbb{F}_q : a \mapsto a^\sigma\).

(iii) \(t = q\) and \(\mathcal{L}\) is a linear complex, or equivalently, \(\mathcal{L}\) is the set of fixed lines under a symplectic polarity, or equivalently, \((X, \mathcal{L})\) arises from a nondegenerate alternating form on \(V\).

Proof. We first note the following property \((*)\).

\((*)\) All lines of \((X, \mathcal{L})\) through a point \(x \in X\) are contained in a plane \(\pi_x\) and every line \(N\) of \(PV\) through \(x\) not in \(\pi_x\) contains \(t + 1\) points of \(X\).

The first assertion of \((*)\) follows from Lemma 2.2.8.

For the second, let \(L \in \mathcal{L}\) be such that \(x \notin L\) and let \(M \in \mathcal{L}\) with \(x \in M\) and \(M \cap L = \emptyset\). The plane \(\pi = \langle M, N \rangle\) meets \(L\) in a point \(y\) not in \(\pi_x\), and \(y\) is collinear with a point \(z\) on \(M\) distinct from \(x\). Now \(\pi = \pi_z\), and the \(t + 1\) lines on \(z\) in \(\mathcal{L}\) meet \(N\) in \(t + 1\) points in \(X\), and \(N\) cannot contain any further points in \(X\). Property \((*)\) is proved.

Since \((X, \mathcal{L})\) is a generalized quadrangle, one has

\((**)\) For \(L \in \mathcal{L}\), let \(\pi(L)\) be the set of planes of \(PV\) through \(L\). The mapping \(L \mapsto \pi(L) : x \mapsto \pi_x\) is a bijection.

Suppose first \(t = 1\). Then clearly (i) holds.\(^1\)

Suppose \(t = q\). Then for every point \(x \in X\) we have \(\pi_x \subseteq X\) and \((**)\) implies that \(X = PV\). It is then routine to check that the mapping \(x \mapsto \pi_x\) is a polarity all of whose points are incident with their image; hence the polarity is a symplectic one and (iii) follows.

Now suppose \(1 < t < q\). Let \(\pi\) be a plane of \(PV\) containing some point \(x \in X\), but not containing any line of \((X, \mathcal{L})\) through \(x\) (\(\pi\) exists since \(t < q\)). Then \(\pi\) does not contain any line of \((X, \mathcal{L})\), and every line through \(x\) in \(\pi\) except for \(\pi \cap \pi_x\) contains \(t + 1\) points of \(X\), while \(\pi \cap \pi_x\) only contains \(x\) of \(X\). It follows that \(|\pi \cap X| = tq + 1\). Let \(L\) be any line of \(PV\) in \(\pi\) through \(x\) not contained in \(\pi_x\). Then \([L \cap X] = t + 1\). Pick \(y_1, y_2 \in L \cap X \setminus \{x\}\), then each point of \(y_1^\perp \cap y_2^\perp\) is collinear with \(y_1\) and \(y_2\), and hence with all points of \(L \cap X\).

It follows that \(\pi_x\) contains \((y_1^\perp \cap y_2^\perp)\), which intersects \(\pi\) in a projective point \(x_L\). Then each of the \(t + 1\) lines joining \(x_L\) with a point of \(L \cap X\) intersects \(X\).

\(^1\)When \(t = 1\) (two lines on each point), we have a grid consisting of \(q + 1\) mutually skew lines, all intersected by \(q + 1\) transversals. Any three mutually skew lines uniquely determine the \(q + 1\) transversals, and then the remaining lines. The projective group is transitive on triples of mutually skew lines, so we may take them to be \(X = Y = 0\), \(Z = W = 0\), and \(X = Z, Y = W\). Now all lines lie on the hyperbolic (ruled) quadric \(XW = YZ\).
in exactly one point, whereas the other $q - t$ lines of π through x_L intersect X in at most $t + 1$ points. It follows that

$$tq + 1 \leq t + 1 + (t + 1)(q - t),$$

which reduces to $t^2 \leq q$. Since also $q \leq t^2$ (by the Krein condition), we conclude $t = \sqrt{q}$. Then $U = \pi \cap X$ is a unital2 in π with flat feet3, so, by THAS [686], it is a Hermitian unital arising from a unitary polarity.

Since all Hermitian unitals are projectively equivalent, we can fix one of them and so $\pi \cap X$ is projectively unique. Now we consider a line $K \in \mathcal{L}$ through x and two points $x_0, x_1 \in K \setminus \{x\}$. We also consider two lines M_0, M_1 in π through x distinct from $M := \pi \cap \pi_x$. Without loss of generality we may assume that $\pi_{2i} = \langle x_i, M_i \rangle$, $i = 0, 1$. The substructure $U \cup x_0^\perp \cup x_1^\perp$ of X is projectively unique; we show that it determines the rest of X. Set $z = \langle x_0, x_{M_0} \rangle \cap \langle x_1, x_{M_1} \rangle$. Note that $x_{M_i} \in M$, $i = 0, 1$, and hence z is well defined. For any point $u \in U \cap (M_0 \cup M_1)$ we have $z \in \pi_u$. Hence, if $v \in U$ is a point on a block of U that intersects both $M_0 \cap U$ and $M_1 \cap U$ in points distinct from x, then $z \in \pi_v$ and hence $z \in \langle x(v, x), v^\perp \cap K \rangle$. All points of U except for $q - 2\sqrt{q}$ points on $\sqrt{q} - 2$ blocks through x are on a block of U intersecting both $(M_0 \cap U) \setminus \{x\}$ and $(M_1 \cap U) \setminus \{x\}$. But then these $q - 2\sqrt{q}$ points are obtained by repeating the argument with M_1 replaced by another (appropriate) line of π through x. It follows that for an arbitrary point $x_2 \in K$, the plane π_{x_2} is determined by being spanned by x_2 and $\rho(\langle x_2, z \rangle \cap M)$, where ρ is the unitary polarity associated with U.

Hence the structure of (X, \mathcal{L}) is uniquely determined and it necessarily arises from a unitary polarity in PV. \square

2.3.4 The finite embedded generalized quadrangles

Theorem 2.3.4 Let (X, \mathcal{L}) be an embedded generalized quadrangle. Let $\langle X \rangle$ be a hyperplane of the projective space PV. Suppose (X', \mathcal{L}') is an embedded generalized quadrangle with $\langle X' \rangle = PV$ and such that $X = X' \cap \langle X \rangle$. Then the isomorphism type of (X', \mathcal{L}') only depends on the isomorphism type of (X, \mathcal{L}), and $X \neq \langle X \rangle$. In particular, (X, \mathcal{L}) is not a symplectic quadrangle.

Proof. Let $x' \in X' \setminus X$ and let $L' \in \mathcal{L}'$ with $x' \in L'$. Then there is a unique point $x \in L' \cap X$. Set $O = x^\perp \cap X$. Since x^\perp is a hyperplane of PV, the set O spans a hyperplane of $\langle X \rangle$ and by Proposition 2.2.7 $O = x^\perp \cap \langle X \rangle$. Clearly O is an ovoid of (X, \mathcal{L}). Hence (X, \mathcal{L}) is not symplectic as in this case every plane intersects the quadrangle in the perp of a point. Since in the other cases all hyperplanes intersecting (X, \mathcal{L}) in ovoids are projectively equivalent, the dataset $\{X, \mathcal{L}, x', O\}$, with $x^\perp \cap X = O$, is projectively unique. Let $y \in O \setminus \{x\}$, and let $u \in X$ be an arbitrary point distinct from y but collinear.

2A unital is a Steiner system $S(2, a^2, a + 1, a^3 + 1)$, that is, is a $2(a^3 + 1, a + 1, 1)$ design. An embedded unital is such a design embedded in a projective plane $PG(2, a^3)$, where the point set of the design is a subset P of the set of projective points, and the blocks of the design are the nontrivial intersections $P \cap L$ of P with projective lines L.

3A tangent of an embedded unital U is a projective line containing precisely one point of U. An embedded unital has a unique tangent at each point, and $a + 1$ tangents through each point $p \notin U$. An embedded unital is said to have flat feet if for each point $p \notin U$ the tangents passing through p meet the unital in collinear points.
with y and not collinear with x. Let $v \in \langle x, x' \rangle$ be the unique point of $\langle x, x' \rangle$ collinear with u in X'. Up to a collineation fixing all points of $\langle X \rangle \cup \{x'\}$ the point v is unique; hence the dataset $\{(X, \mathcal{L}), x', O, u, v\}$ with the above relations is projectively unique. We now claim that it uniquely determines (X', \mathcal{L}'). In fact, since the symplectic quadrangle can never be an embedded subquadrangle of (X', \mathcal{L}'), the set X' determines \mathcal{L}', and so we only need to show that X' is determined. Set $H = \langle x^+x \rangle \cap (O) = \langle x^+ \rangle \cap (x^+1) \cap (X)$. Then H has codimension 2 in $\langle X \rangle$. Suppose $\langle v^+ \rangle$ does not contain H. Then $\langle v^+ \rangle \cap (x^+1)$ contains a line M in $\langle X \rangle$ through x not contained in x^+. Hence M intersects X in a second point p. Then $p \in x^+ \cap v^+$ and so $p = x$, a contradiction. We have shown that $H \subseteq \langle v^+ \rangle$. Now $H \cap (y^+x)$ and u belong to v^+, hence $H_u := \langle H \cap (y^+x), u \rangle$ belongs to v^+. But H_u has codimension 1 in $\langle y^+x \rangle$, hence H_u intersects every line of (X, \mathcal{L}) through y. Hence the set $v^+ \cap y^+x$ is uniquely determined.

Note that the previous argument shows that, in an embedded generalized quadrangle, the following property $(*)$ holds.

\textbf{(*)} If a line L is opposite two intersecting lines M_1, M_2, and L does not intersect the plane (M_1, M_2), then all lines $\langle u_1, u_2 \rangle$, with $u_i \in M_i, i = 1, 2$, $u_1 \neq u_2$, collinear to the same point of L, contain a fixed point only depending on L and the plane (M_1, M_2). (In the above argument, M_1 and M_2 are two lines of X through y, and L is the line $\langle x, x' \rangle$.)

We can now interchange y with any other point of O collinear with any of $H_u \cap X$. The same argument then gives further points of $v^+ \cap X$, and one point v' is enough to see that $v^+ \cap X = \langle H_u, v' \rangle \cap X$ is determined. Hence all points of X' collinear with v are determined.

Set $L = \langle u, y \rangle$ and let M_1 be a line of X through x opposite L. Let w and w' be the unique point of X on M_1 collinear with u and y, respectively. Let v_0 be an arbitrary point on $\langle x, x' \rangle \setminus \{x'\}$. Let w_0 be the intersection of M_1 with the line $\langle v_0, \langle v, w \rangle \cap \langle x', w' \rangle \rangle$. By $(*)$ (with $M_2 = \langle x, x' \rangle$), the point v_0 is collinear with the unique point on L which is (in X) collinear with w_0. Hence we can interchange the roles of v and v_0 and by the foregoing, all points of v_0^+ are determined. Hence all points collinear with a point of $\langle x, x' \rangle \setminus \{x\}$ are determined. We can interchange x with any point $x_0 \in X$ collinear with X. But then all points of X' are determined as no point of $X' \setminus \{x\}$ is collinear with both x and x_0. \hfill \square

\section{2.3.5 Summary}

We list the finite embedded polar spaces of rank at least 2 in a vector space V over the finite field \mathbb{F}_q, and give order and full collineation group G.

One also meets the notation $W_{2n-1}(q), Q_{2n-1}(q), Q_{2n}(q), Q_{2n+1}(q), H_{2n-1}(q^2), H_{2n}(q^2)$ for the polar spaces $Sp_{2n}(q), O_{2n}(q), O_{2n+1}(q), U_{2n+2}(q), U_{2n}(q), U_{2n+1}(q)$, respectively.

\textbf{Theorem 2.3.5} For $n = 2$, Table 2.1 is a list of all finite nondegenerate embedded generalized quadrangles.

\textbf{Proof.} The case $\dim V = 4$ follows from Theorem 2.3.3. Theorem 2.3.4 implies that only $O_{4}^+(q)$ and $U_4(q)$ possibly extend to a quadrangle in dimension 4. And they do, in view of the existence of the appropriate quadrics and Hermitian
forms, see §2.6–§2.7. Now let \(\dim V = 6 \). Note that, if \(Q' \) is a subquadrangle of order \((s, t')\) of some generalized quadrangle \(Q \) of order \((s, t)\), then through every point of \(Q' \) there are \(t - t' \) lines of \(Q \setminus Q' \). Hence \((1 + t)(1 + st) \geq (1 + t')(1 + st') + (1 + s)(1 + st')(t - t')\), which simplifies to \(t \geq st' \). Hence, if \((s, t') = (q, q^{3/2})\), then \(t \geq q^{5/2} > q^2 \), a contradiction. Consequently, \(U_5(q) \) cannot be extended anymore. Since there exists a quadric with Witt index 2 in 6-dimensional space, it is the unique one extending \(O_5(q) \). Note that the above inequality yields \((q, t) = (q, q^2)\) for \(O_5(q) \) since \(O_5(q) \) has order \((q, q)\). The latter follows from applying the Klein correspondence to the symplectic quadrangle (which shows that the quadrangle \(\text{Sp}_4(q) \) is the dual of \(O_5(q) \)). The above inequality shows that \(O_5(q) \) does not extend to a quadrangle in dimension 7.

Using Theorem 2.3.2 and the constructions in §2.5–§2.7, we have the following theorem.

Theorem 2.3.6 Table 2.1 is a list of all finite nondegenerate embedded polar spaces.

The embedded polar space \(O_5^+(q) \) is a ruled quadric. The automorphism group of the embedded polar space (defined as the subgroup of the collineation group of \(PV \) preserving the embedded polar space) is \(\text{PGO}_5^+(q) \). If one forgets the embedding, this geometry is a grid, with automorphism group \(S_{q^2 - 1} \wr 2 \). In all other cases (of rank at least 2) the corresponding two groups coincide.

2.3.6 Group orders

We define the various classical groups and give their orders. We follow the Atlas [215] where possible. Let \(q = p^e \) and let \(V \) be a vector space over \(F_q \).

If \(G \) is the name of a group of semilinear transformations of \(V \), then \(\text{PG} \) is the name of the corresponding projective group, that is, \(G/(G \cap \text{Z}) \) where \(\text{Z} = \{cI \mid c \in F_q\} \) is the group of scalars.

If \(G \) is the name of a group of linear transformations of \(V \), then \(\text{SG} \) is the name of the subgroup of \(G \) consisting of the elements of determinant \(1 \). The prefix \(\text{SG} \) is simplified to \(S \).
Linear groups

The general linear group $\text{GL}_n(q)$ is the group of nonsingular linear transformations of a vector space V of dimension n over \mathbb{F}_q. Its order is

$$N = \prod_{i=0}^{n-1} (q^n - q^i) = q^{\frac{1}{2}n(n-1)} \prod_{i=1}^{n} (q^i - 1).$$

We have $|\text{SL}_n(q)| = |\text{PGL}_n(q)| = N/(q-1)$ and $|\text{PSL}_n(q)| = N/(d(q-1))$, where $d = (q - 1, n)$. The group $\text{PSL}_n(q)$ is also called $\text{L}_n(q)$. The general semilinear group $\Gamma \text{L}_n(q)$ consists of $\text{GL}_n(q)$ extended by the field automorphisms. Its subgroup $\Sigma \text{L}_n(q)$ consists of $\text{SL}_n(q)$ extended by the field automorphisms. The size of $\Gamma \text{L}_n(q)$, $\Sigma \text{L}_n(q)$, $\text{PGL}_n(q)$, $\Gamma \Sigma \text{L}_n(q)$ is a factor e larger than that of $\text{GL}_n(q)$, $\text{SL}_n(q)$, $\text{PGL}_n(q)$, $\text{PSL}_n(q)$, respectively.

Unitary groups

The general unitary group $\text{GU}_n(q)$ is the subgroup of $\text{GL}_n(q^2)$ consisting of the elements that preserve a nondegenerate Hermitian form. Its order is

$$N = q^{\frac{1}{2}n(n-1)} \prod_{i=1}^{n} (q^i - (-1)^i).$$

We have $|\text{SU}_n(q)| = |\text{PGU}_n(q)| = N/(q+1)$ and $|\text{PSU}_n(q)| = N/(d(q+1))$, where $d = (q+1, n)$. The group $\text{PSU}_n(q)$ is also called $\text{U}_n(q)$.

The Atlas [215] does not have separate names for groups larger than $\text{GU}_n(q)$, but one has the group preserving the Hermitian form up to a scalar multiple, and the same group extended by the field automorphisms, and the projective versions of these two. We call the last group $\text{PGU}_n(q)$. Its size is $2eN/(q+1)$.

Symplectic groups

The symplectic group $\text{Sp}_n(q)$, where $n = 2m$, is the subgroup of $\text{GL}_n(q)$ consisting of the elements that preserve a nondegenerate symplectic form. (Such elements all have determinant 1.) Its order is

$$N = q^{mn} \prod_{i=1}^{m} (q^{2i} - 1).$$

We have $|\text{PSp}_n(q)| = N/d$ where $d = (2, q-1)$, and $|\Gamma \text{PSp}_n(q)| = eN$. (The group $\Gamma \text{PSp}_n(q)$ is also called $\text{S}_n(q)$.)

Orthogonal groups

The general orthogonal group $\text{GO}_n(q)$ is the subgroup of $\text{GL}_n(q)$ consisting of the elements that preserve a nondegenerate quadratic form. If $n = 2m + 1$ is odd, its order is

$$N = dq^{m^2} \prod_{i=1}^{m} (q^{2i} - 1).$$

where $d = (2, q-1)$. We have $|\text{SO}_n(q)| = |\text{PGO}_n(q)| = |\text{PSO}_n(q)| = N/d$. Also $|\Omega_n(q)| = |\Gamma \text{O}_n(q)| = |\text{O}_n(q)| = N/d^2$ and $|\Gamma \text{GO}_n(q)| = eN/d$.
2.4. WITT’S THEOREM

We have $|\mathit{SO}_n^\varepsilon(q)| = |\mathit{PGO}_n^\varepsilon(q)| = N/d$, where $d = (2, q^m - \varepsilon)$, $|\mathit{PSO}_n^\varepsilon(q)| = N/d^2$, $|\Omega_n^\varepsilon(q)| = N/(2d)$, $|\mathit{PGO}_n(q)| = |\mathit{GO}_n(q)| = N/(2d')$, where $d' = (4, q^m - \varepsilon)$, and $|\mathit{PGO}_n(q)| = eN$.

In the above, if q is odd, then $\Omega_n^\varepsilon(q)$ is the subgroup of index 2 of $\mathit{SO}_n^\varepsilon(q)$ consisting of the elements with spinor norm 1. If q is even and n is odd, then $\Omega_n(q) = \mathit{SO}_n(q)$. For any q and even n, let the quasideterminant of an element be $(-1)^f$, where f is the dimension of the fixed space. If q is odd, this agrees with the determinant. If q is even, let $\Omega_n^\varepsilon(q)$ be the subgroup of $\mathit{SO}_n^\varepsilon(q)$ of index 2 consisting of the elements with quasideterminant 1. Geometrically (for $\varepsilon = 1$) this is the subgroup preserving one of the two classes of maximal totally isotropic subspaces. (These are the Atlas [215] definitions.)

2.4 Witt’s theorem

The spaces considered here have large groups of automorphisms, as follows from Witt’s theorem. Witt’s theorem concerns spaces with a reflexive form, and we first relate these to embedded polar spaces.

2.4.1 Reflexive forms

Let V be a vector space over the field F. A map $f : V \times V \to F$ is called reflexive when f is linear in the second coordinate, and $f(x, y) = 0 \iff f(y, x) = 0$ for all $x, y \in V$.

Two vectors x, y are called orthogonal (for a given reflexive f) when $f(x, y) = 0$. Orthogonality is a symmetric relation. If A is a set of vectors, then A^\perp is the set of all vectors orthogonal to each element of A. This is a subspace of V. The pair (V, f) (or, when f or V is understood, just V or f) is called nondegenerate when $V^\perp = 0$.

If V is finite-dimensional and nondegenerate, and U is a subspace of V, then $U^\perp = U$ and $\dim U + \dim U^\perp = \dim V$.

2.4.2 Reflexive forms and embedded polar spaces

Let V be a vector space over the field F, and let f be a reflexive form on V. A subspace U of V is called totally isotropic when the restriction of f to $U \times U$ vanishes identically.

Proposition 2.4.1 Let V be finite-dimensional, and let Ω be the set of maximal totally isotropic subspaces of V, and let $X = \bigcup \Omega$. Then (X, Ω) is an embedded polar space.

Proof. Indeed, first of all we have $f(x, x) = 0$ for all $x \in V$ with $\langle x \rangle \in X$, since such an x is contained in a totally isotropic subspace. Next, two points $\langle x \rangle$ and $\langle y \rangle$ are collinear if and only if they are orthogonal: If they are orthogonal,
then the subspace \((x, y)\) is totally isotropic and contained in a maximal totally isotropic subspace \(\omega \in \Omega\). The converse is clear. Finally, axiom (EPS2) is satisfied: if \(\langle x \rangle \in X\) and \(\omega \in \Omega\) with \(x \notin \omega\), then, since \(f\) is linear in the second coordinate, the set \(\xi = \{y \in \omega \mid f(x, y) = 0\}\) is a codimension 1 subspace of \(\omega\), and \(\eta = \langle x, \xi \rangle\) is totally isotropic. Since \(\omega\) is maximal, and \(x \notin \omega\), there is a \(z \in \omega\) with \(f(x, z) \neq 0\). Now \(\omega = \langle z, \xi \rangle\). If \(\eta\) were not maximal, it would be properly contained in a totally isotropic \(\eta'\), and its subspace orthogonal to \(z\) would properly contain \(\xi\), violating the maximality of \(\omega\). Hence \(\eta \in \Omega\). □

2.4.3 Classification of sesquilinear reflexive forms

Let \(V\) be a vector space over a field \(F\). A map \(f: V \times V \to F\) is called \textit{bilinear} if it is linear in each coordinate, and \textit{sesquilinear}, more precisely \(\sigma\)-sesquilinear, when \(\sigma: F \to F\) is a field automorphism, when it is additive in each coordinate, and \(f(ax, by) = a^\sigma b f(x, y)\). Thus, the bilinear forms are the \(\sigma\)-sesquilinear forms where \(\sigma\) is the identity. A \(\sigma\)-sesquilinear form \(f\) is called \(\sigma\)-\textit{Hermitian} when \(\sigma\) has order 2 and \(f(y, x) = f(x, y)^\sigma\) for all \(x, y \in V\).

A bilinear form \(f\) is called \textit{symmetric} (resp. \textit{skew-symmetric}) when \(f(x, y) = f(y, x)\) (resp. \(f(x, y) = -f(y, x)\)) for all \(x, y\). It is called \textit{alternating} (or \textit{symplectic}) when \(f(x, x) = 0\) for all \(x\). An alternating form is skew-symmetric since \(0 = f(x+y, x+y) = f(x, x) + f(y, y) + f(x, y) + f(y, x)\). If \(F\) has characteristic different from 2, then a skew-symmetric form is alternating.

Clearly, symmetric and alternating and \(\sigma\)-Hermitian forms are reflexive, and we show that essentially there are no other sesquilinear reflexive forms.

Proposition 2.4.2 A bilinear form \(f\) is reflexive if and only if it is either symmetric or alternating.

Proof. Clearly, symmetric and alternating forms are reflexive. Now let \(f\) be reflexive and bilinear. Then for all \(x, y, z\):

\[
f(x, yz) - f(x, y)z = f(x, z)f(x, y) - f(x, y)f(x, z) = 0,
\]

and therefore

\[
f(x, z)f(y, x) - f(x, y)f(z, x) = f(f(x, z)y - f(x, y)z, x) = 0. \tag{2.1}
\]

Substituting \(z = x\) yields \(f(x, y)(f(y, x) - f(x, y)) = 0\) for all \(x, y\). It follows that if \(f(y, x) \neq f(x, y)\) then \(f(x, x) = 0\). Suppose \(f(y, x) \neq f(x, y)\) and \(f(z, z) \neq 0\) for some \(x, y, z\). Then \(f(w, z) = f(z, w)\) for all \(w\), and (2.1) implies \(f(x, z) = 0\). By symmetry also \(f(y, z) = 0\). Now \(f(x + z, y) = f(x, y)\) and \(f(y, x + z) = f(y, x)\), so that \(f(x + z, y) \neq f(y, x + z)\) and therefore \(f(x + z, x + z) = 0\). But \(f(x + z, x + z) = f(x, x) + f(x, z) + f(z, x) + f(z, z) = f(z, z) = 0\), contradiction. □

Proposition 2.4.3 Let \(f\) be a nondegenerate reflexive \(\sigma\)-sesquilinear form on \(V\), where \(\dim V \geq 2\). Then either \(\sigma = 1\) and \(f\) is symmetric or alternating, or \(\sigma \neq 1\), \(\sigma^2 = 1\) and there is a nonzero constant \(a \in F\) such that \(af\) is \(\sigma\)-Hermitian.
Proof. For fixed x, the linear functionals $y \mapsto f(x,y)$ and $y \mapsto \sigma^{-1}f(y,x)$ have the same kernel, so differ by a constant. It follows that there are constants $c_x \in F$ such that $\sigma^{-1}f(y,x) = c_x f(x,y)$ for all $x,y \in V$. By linearity of f in the second argument, we have $c_{x+y}f(x+y,z) = \sigma^{-1}f(z,x+y) = c_x f(x,z) + c_y f(y,z)$, i.e., by additivity in the first coordinate, $f((d_{x+y}x+y) - d_x x - d_y y, z) = 0$ for all x,y,z, where $c_x = \sigma(d_x)$ for all x. Since f is nondegenerate, it follows that $d_{x+y}(x+y) - d_x x - d_y y = 0$ for all x,y. If x,y are independent, $d_{x+y} = d_x = d_y$. If x,y are dependent, then we can pick z independent from x,y since $\dim V \geq 2$, and $d_x = d_z = d_y$. So, c_x and d_x do not depend on x, and we drop the index. From $f(y,x) = (cf(x,y))^{\sigma} = (c(cf(y,x))^{\sigma}$ it follows that $(cc^{\sigma})^a a^{\sigma^2} = a$ for all $a \in F$, so that $cc^{\sigma} = 1$ and $\sigma^2 = 1$. If $\sigma = 1$, then f is bilinear and the previous proposition applies. Otherwise, pick a constant a such that $c = a/a^{\sigma}$. Then af is σ-Hermitian.

(If $cc^{\sigma} = 1$, does there exist an a with $c = a/a^{\sigma}$? Try $a = b + b^{\sigma}c$. Then $a^{\sigma}c = b^{\sigma}c + b = a$ as desired, and one only has to choose b so that $a \neq 0$.)

If $\dim V = 1$, then w.l.o.g. $V = F$, and up to a nonzero constant $f(a,b) = a^{\sigma}b$. There is no need for σ to have order 2.

2.4.4 Orthogonal direct sum decomposition

Let V be a finite-dimensional vector space provided with a reflexive form f. We write $V = V_1 \perp \ldots \perp V_r$ when V is the vector space direct sum of the V_i, and the V_i are mutually orthogonal, i.e., $f(x,y) = 0$ for $x \in V_i$, $y \in V_j$, $i \neq j$.

Conversely, let (V_i, f_i) ($1 \leq i \leq r$) be finite-dimensional vector spaces provided with reflexive forms f_i. Put $V = \oplus_i V_i$ and define f by $f(x,y) = 0$ for $x \in V_i$, $y \in V_j$, $i \neq j$, and $f(x,y) = f_i(x,y)$ if $x,y \in V_i$. Then f is a reflexive form on V, and $V = V_1 \perp \ldots \perp V_r$ (for this f), and f is symmetric, or alternating, or σ-sesquilinear when each of the f_i is.

A point is called isotropic when it is totally isotropic. A hyperbolic line is a nondegenerate 2-space spanned by two isotropic points.

Symplectic spaces

Let f be a symplectic form (that is, f is bilinear and $f(x,x) = 0$ for all $x \in V$). Then V can be written

$$V = L_1 \perp \ldots \perp L_r \perp V^\perp$$

where the L_i are hyperbolic lines. (Indeed, if $x \notin V^\perp$, then there is a y with $f(x,y) \neq 0$ so that $L = \langle x, y \rangle$ is a hyperbolic line, and $V = L \perp L^\perp$. Now apply induction on $\dim V$.)

For a hyperbolic line $L = \langle x, y \rangle$ we may take $f(x,x) = f(y,y) = 0$, $f(x,y) = 1$, so that (V,f) is determined up to isomorphism by $\dim V$ and $\dim V^\perp$.

Orthogonal spaces

Let f be a symmetric bilinear form and assume $\text{char } F \neq 2$. Then V can be written

$$V = P_1 \perp \ldots \perp P_r \perp V^\perp$$
where the \(P_i \) are nonisotropic points. (Indeed, if \(f(x, x) = 0 \) for all \(x \), then \(f \) is skew-symmetric and hence identically zero since \(\text{char} F \neq 2 \). If \(f(x, x) \neq 0 \) then \(V = P \perp P^\perp \) where \(P = \langle x \rangle \). Now apply induction on \(\dim V \).

Assume \(F \) is finite. If \(P \) is nonisotropic, then we can pick \(x \) with \(P = \langle x \rangle \) so that either \(f(x, x) = 1 \) or \(f(x, x) = a \), where \(a \) is a fixed nonsquare in \(F \). If \(V = P \perp Q \) is the sum of two nonisotropic points \(P = \langle x \rangle \) and \(Q = \langle y \rangle \), and both are of the second type, then \(f(\lambda x + \mu y, \lambda x + \mu y) = (\lambda^2 + \mu^2)a \) and since \(\text{char} F \neq 2 \) the squares do not form a field, and we may pick \(R = \langle z \rangle \) with \(z = \lambda x + \mu y \) such that \(f(z, z) = 1 \). (Now \(P \perp Q = R \perp S \) for \(S = \langle w \rangle \), \(w = \lambda x - \mu y \), and \(f(w, w) = 1 \).) Thus, in the above orthogonal direct sum we may take all points \(P_i \) of the first type, with at most one exception.

A change of basis changes \(\det f \) by a square, so the two types are really different, and \((V, f) \) is determined up to isomorphism by \(\dim V \) and \(\dim V^\perp \) and the quadratic character of \(\det f \).

Hermitian spaces

Let \(f \) be a \(\sigma \)-Hermitian form. Then \(V \) can be written

\[
V = P_1 \perp \ldots \perp P_r \perp V^\perp
\]

where the \(P_i \) are nonisotropic points. (Indeed, if \(f(x, x) = 0 \) for all \(x \), then \(f \) is skew-symmetric and hence identically zero since \(\sigma \neq 1 \). If \(f(x, x) \neq 0 \) then \(V = P \perp P^\perp \) where \(P = \langle x \rangle \). Now apply induction on \(\dim V \).

Assume \(F \) is finite, and let \(F_0 \) be the subfield of \(F \) fixed by \(\sigma \). Then \(f(x, x) \in F_0 \) for all \(x \), and since \(\sigma^a \) takes all values in \(F_0 \), we can write any nonisotropic point as \(P = \langle x \rangle \) with \(f(x, x) = 1 \). Thus \((V, f) \) is determined up to isomorphism by \(\dim V \) and \(\dim V^\perp \).

2.4.5 Witt’s theorem

Let, just for this section, a space be a pair \((V, f)\) where \(V \) is a finite-dimensional vector space and \(f \) a reflexive sesquilinear form on \(V \), either symplectic, or orthogonal (with \(\text{char} F \neq 2 \)), or \(\sigma \)-Hermitian. Given two spaces \((V, f)\) and \((W, g)\), an injective linear map \(\phi: V \to W \) is called an **isometry** when \(f(x, y) = g(\phi(x), \phi(y)) \) for all \(x, y \in V \).

Theorem 2.4.4 (Witt’s theorem) Let \(V, V' \) be isometric nondegenerate spaces, and let \(\phi: U \to V' \) be an isometry from a subspace \(U \) of \(V \) into \(V' \). Then \(\phi \) can be extended to an isometry from \(V \) onto \(V' \).

Proof. Induction on \(\dim V \), and for fixed \(\dim V \) on the codimension of \(U \) in \(V \). Let \(R = U \cap U^\perp \). If \(R \neq 0 \), then let \(r \) be a nonzero vector in \(R \). Pick \(s \in V \) with \(f(r, s) \neq 0 \). We may take \(f(r, s) = 1 \). Let \(r' = \phi(r) \). We want to pick \(s' \in V' \) with \(g(r', s') = 1 \) and \(g(\phi(u), s') = 0 \) whenever \(f(u, s) = 0 \). That is possible: let \(Y = U \cap s^\perp \). Then \(Y \) is a hyperplane in \(U \), and \(\phi(Y) \) is a hyperplane in \(\phi(U) \). Now \(\phi(Y)^\perp \) strictly contains \(\phi(U)^\perp \), and we can choose \(s' \in \phi(Y)^\perp \setminus \phi(U)^\perp \). Linearly extend \(\phi \) to \(\bar{\phi} \) by letting \(\bar{\phi}(u) = \phi(u) \) for \(u \in U \), and \(\bar{\phi}(s) = s' \). Then \(\bar{\phi} \) is an isometry defined on \(\langle s, U \rangle \), and induction applies.

Now assume that \(R = 0 \), so that \(U \) is nondegenerate. Then \(U^\perp \) is non-degenerate, and \(V = U \perp U^\perp \). Since \(V \) and \(V' \) are isometric, also \(U^\perp \) and
2.5. SYMPLECTIC POLAR SPACES

\(\phi(U)^\perp\) are isometric, and given an isometry \(\phi_1: U^\perp \to \phi(U)^\perp\) we can define
\(\bar{\phi}(u + u') = \phi(u) + \phi_1(u')\) for \(u \in U\) and \(u' \in U^\perp\). \(\square\)

2.5 Symplectic polar spaces

We review some properties of the strongly regular graph defined by the points of a finite symplectic polar space, adjacent when collinear. We pay special attention to (maximal) cliques and cocliques, regular sets and geometric notions in the corresponding polar space such as \(h\)-ovoids and spreads.

2.5.1 Symplectic forms, polar spaces, and graphs

Symplectic forms

Let \(V\) be a vector space over a field \(F\). A \textit{symplectic form} \(f\) on \(V\) is a bilinear map \(f: V \times V \to F\) such that \(f(v, v) = 0\) for all \(v \in V\). A symplectic form is \textit{alternating}: since
\[f(v + w, v + w) = f(v, v) = f(w, w) = 0\]
it follows that \(f(w, v) = -f(v, w)\).

If \(S\) is a subset of \(V\), then \(S^\perp\) is the subspace of \(V\) consisting of all vectors \(v\) for which \(f(s, v) = 0\) for all \(s \in S\). The \textit{radical} \(\text{Rad} V\) of \((V, f)\) is \(V^\perp\). The symplectic form is called \textit{nondegenerate} if \(\text{Rad} V = 0\). A subspace \(W\) of \(V\) is called \textit{totally isotropic} when \(f\) vanishes identically on \(W \times W\).

Symplectic polar spaces

Suppose \(V\) is finite-dimensional. Let \(X\) be the set of totally isotropic 1-spaces of \(V\) and let \(\Omega\) be the set of maximal totally isotropic subspaces in \(V\) with respect to \(f\). Then \((X, \Omega)\) is a polar space embedded in \(P^1 V\), called a \textit{symplectic polar space}. The radical of \((X, \Omega)\) coincides with the radical \(\text{Rad} V\) of \((V, f)\), so that \((X, \Omega)\) is nondegenerate precisely when \(f\) is nondegenerate. If \((X, \Omega)\) is nondegenerate and \(\dim V\) is finite, then \(\dim V = 2n\), where \(n\) is the rank of \((X, \Omega)\), and this polar space is called \textit{Sp\(_{2n}\)(F)}.

(In the literature one also finds \(W_{2n-1}(F)\).) If \(F = \mathbb{F}_q\) then we also write \(\text{Sp}_{2n}(q)\).

Symplectic graphs

The \textit{symplectic graph} of \((V, f)\) is the collinearity graph \(\Gamma = \Gamma(X, \Omega)\) of \((X, \Omega)\) and thus has as vertex set the set of points of \(P^1 V\), where distinct vertices \(\langle u \rangle\) and \(\langle v \rangle\) are adjacent when \(f(u, v) = 0\). Note that the condition \(f(u, v) = 0\) does not depend on the choice of \(u\) and \(v\) in \(\langle u \rangle\) and \(\langle v \rangle\), and that it is symmetric:
\(f(u, v) = 0\) implies \(f(v, u) = 0\).

2.5.2 Parameters

Let \(f\) be nondegenerate, let \(V\) have finite dimension \(2n\), and let \(F\) be the finite field \(\mathbb{F}_q\). We determine the parameters of \(\Gamma\). For \(n = 0\) the symplectic graph \(\Gamma\) has no vertices. For \(n = 1\) the graph \(\Gamma\) is empty, a coclique of size \(q + 1\).
For \(n > 1 \) the graph \(\Gamma \) is strongly regular and the parameters are given as in Theorem 2.2.12 with \((q, t) = (q, q)\):

\[
\begin{align*}
v &= (q^{2n} - 1)/(q - 1), \\
k &= q(q^{2n-2} - 1)/(q - 1), \\
\lambda &= q^2(q^{2n-4} - 1)/(q - 1) + q - 1, \\
\mu &= (q^{2n-2} - 1)/(q - 1),
\end{align*}
\]

so that \(\lambda = \mu - 2 \) and \(\mu = k/q \).

2.5.3 Automorphism groups

The symplectic group \(\text{Sp}(V, f) \) is the group of all linear transformations of \(V \) that preserve the form \(f \). The general symplectic group \(\text{GSp}(V, f) \) is the group of all linear transformations of \(V \) that preserve the form \(f \) up to a constant.

The subgroup \(D \) of \(\text{GL}(V) \) consisting of all multiples of the identity acts trivially on \(PV \), and \(D \cap \text{Sp}(V, f) = \{\pm I\} \). The projective symplectic group \(\text{PSp}(V, f) \) is the quotient \(\text{Sp}(V, f)/\{\pm I\} \). The projective general symplectic group \(\text{PGSp}(V, f) \) is \(\text{GSp}(V, f)/D \).

If \(f \) is nondegenerate and \(V \) has finite dimension \(2n \) over the field \(F \), we also write \(\text{Sp}_{2n}(F) \) etc. instead of \(\text{Sp}(V, f) \) etc.

The full automorphism group of \(\Gamma \) is \(\text{PGL}_{2n}(F) \), that is, \(\text{PGSp}_{2n}(F) \) extended by the field automorphisms of \(F \). This group acts rank 3 on \(\Gamma \), and already \(\text{PGL}_{2n}(F) \) acts rank 3.

For \(n \geq 2 \), the group \(\text{PGSp}_{2n}(F) \) is simple if \((n, |F|) \neq (2, 2)\). The group \(\text{PSp}_{4}(2) \) is isomorphic to the symmetric group \(S_6 \) and has a simple subgroup of index 2 (isomorphic to the alternating group \(A_6 \)), which also acts rank 3 on \(\Gamma \).

2.5.4 Maximal cliques

As remarked in §2.2.7, the maximal cliques of \(\Gamma \) are the maximal totally isotropic subspaces of \((V, f)\), i.e., the elements of \(\Omega \). In the finite nondegenerate case of \(\text{Sp}_{2n}(q) \) these have dimension \(n \) and size \((q^n - 1)/(q - 1)\). The maximal cliques form a single orbit under \(\text{Aut} \Gamma \). The polar space \(\text{Sp}_{2n}(q) \) has spreads (partitions into maximal cliques).

2.5.5 Ovoids

Recall that a (symplectic) ovoid in a nondegenerate symplectic polar space \(\text{Sp}_{2n}(F) \) is a set of points that meets every maximal totally isotropic subspace in precisely one point. Ovoids (when they exist) are maximal cocliques. In \(\text{Sp}_{2n}(q) \) one has \(|C| \leq q^n + 1\) and \(|O| = q^n + 1\) for each coclique \(C \) and ovoid \(O \). Ovoids exist precisely when \(n = 2 \) and \(q \) is even. We first show the nonexistence part of that statement.

Proposition 2.5.1 The generalized quadrangle \(\text{Sp}_4(q) \) has no ovoid when \(q \) is odd.
2.5. SYMPLECTIC POLAR SPACES

Proof. Suppose \(O \) is an ovoid of \(\Sp_4(q) \). Let \(L \) be a hyperbolic line of \(PV \). The \((q+1)^2 \) lines of \(PV \) meeting both \(L \) and \(\perp L \) are totally isotropic. But every point of \(PV \) (remember \(V \) has dimension 4) is either on \(L \cup \perp L \), or on precisely one line meeting both \(L \) and \(\perp L \). Let \(a \) be the number of points of \(O \) on \(L \cup \perp L \); we may assume these \(a \) points are contained in \(L \). Then there is a bijective correspondence between the points of \(O \setminus L \) and the lines of \(PV \) joining a point of \(\perp L \) with a point of \(L \setminus O \). Hence \(q^2 + 1 - a = (q+1)(q+1-a) \), implying \(a = 2 \).

We conclude that every hyperbolic line contains an even number of points of \(O \). Now let \(p \) be any point of \(O \), select a totally isotropic line \(M \) through \(p \) and two points \(x, y \in M \setminus O \), with \(x \neq y \). In the plane \(y^2 \) all lines through \(x \) other than \(M \) are hyperbolic. Hence, by the foregoing, \(y^2 \setminus M \) contains an even number of points of \(O \). But that number is \(q \). Hence \(q \) is even. □

Proposition 2.5.2 The polar space \(\Sp_{2n}(q) \) has no ovoid, for \(n \geq 3 \).

Proof. By Corollary 2.2.16, it suffices to consider \(n = 3 \).

Let, for a contradiction, \(O \) be an ovoid of the polar space \(\Sp_{6}(q) \). Then \(|O| = q^3 + 1 \). Every hyperplane of \(PV \) is the perp \(p^⊥ \) of some point \(p \). If \(p \in O \), then \(|p^⊥ \cap O| = 1 \); if \(p \notin O \), then \(|p^⊥ \cap O| = q^2 + 1 \). Let \(W \) be a 4-space containing at least two points of \(O \) and set \(|W \cap O| = t \). Every hyperplane containing \(W \) intersects \(O \) in \(q^2 + 1 \) points. Hence \(q^3 + 1 = t + (q+1)(q^2 + 1 - t) \), implying \(t = q + 1 \). Now let \(\pi \) be a plane in \(W \) containing at least 3 points \((q \geq 2)\) of \(O \) and set \(|\pi \cap O| = t' \). Then, similarly counting the number of points in \(O \) in some hyperplane \(H \) with \(W \subseteq H \), we obtain \(q^2 + 1 = t' + (q+1)(q+1 - t') \), implying \(t' = 2 \), a contradiction. □

Proposition 2.5.3 The generalized quadrangle \(\Sp_4(q) \), \(q \) even, has an ovoid.

Proof. Let \(V \) be 4-dimensional over \(F_q \), and let the alternating form \(f \) be given by

\[
f((x_0, x_1, x_2, x_3), (y_0, y_1, y_2, y_3)) = x_0 y_1 + x_1 y_0 + x_2 y_3 + x_3 y_2.
\]

Let \(g(x) = x^2 + x + d \) be an irreducible quadratic polynomial over \(F_q \) (one can always find one of this form) and let \(g(x, y) = x^2 + xy + dy^2 \). Consider the set \(O \) of projective points \(\{(x_0, x_1, 1, g(x_0, x_1)) : x_0, x_1 \in F_q \} \cup \{(0, 0, 0, 1)\} \). We claim that no two points of \(O \) are conjugate with respect to the alternating form \(f \). Denote \(v_{x_0, x_1} = (x_0, x_1, 1, g(x_0, x_1)) \) and \(v_{\infty} = (0, 0, 0, 1) \). Then \(f(v_{x_0, x_1}, v_{\infty}) = 1 \). Also one computes

\[
f(v_{x_0, x_1}, v_{y_0, y_1}) = g(x_0 + y_0, x_1 + y_1),
\]

which implies our claim. Since \(|O| = q^2 + 1 \), the proposition is proved. □

The Suzuki-Tits ovoids

For \(q \) divisible by 4, every known ovoid of \(\Sp_4(q) \) is isomorphic to the example in the previous proposition (and we call that example the classical ovoid).

However, for \(q = 2^{2q-1} \), there is a unique second known example.

Let \(V \) and \(f \) be as above, and let \(q = 2^{2q-1} \). Set \(r = 2^r \) and define the following set of points of \(PV \), given by their coordinates:
\[O = \{(0,0,0,1)\} \cup \{(x_0,x_1,1,x_0r^{1+2} + x_0x_1 + x_1^r) \mid x_0,x_1 \in \mathbb{F}_q\}. \]

We claim that \(\mathcal{P} \) is an ovoid of \(\text{Sp}_4(q) \). Since \(|O| = q^2 + 1 \), it suffices to show that no pair of points of \(O \) is collinear in \(\text{Sp}_4(q) \). Let \(p_{x_0,x_1} \) be the point with coordinates \((x_0, x_1, 1, x_0r^{1+2} + x_0x_1 + x_1^r)\), \(x_0, x_1 \in \mathbb{F}_q \), and \(p_{\infty} = (0,0,0,1) \). Then clearly \(p_{\infty} \not\in p_{x_0,x_1} \). Also, \(p_{x_0,x_1} \perp p_{x_0,y_1} \) if and only if

\[x_0y_1 + x_1y_0 + x_0^r + x_0x_1 + x_1^r + y_0^r + y_0y_1 + y_1^r = 0. \]

This is equivalent to

\[(x_0 + y_0)(x_1 + y_1) = x_0r^{1+2} + y_0r^{1+2} + (x_1 + y_1)^r. \]

If \(x_0 = y_0 \), then clearly also \(x_1 = y_1 \). Assume now \(x_0 \neq y_0 \). Then we can divide both sides of the equality by \((x_0 + y_0)^{r+2}\) and obtain, after some elementary manipulation,

\[\frac{x_1 + y_1}{(x_0 + y_0)^{r+1}} = 1 + \left(\frac{x_0}{x_0 + y_0}\right)^r + \left(\frac{x_0}{x_0 + y_0}\right)^2 + \frac{(x_1 + y_1)^r}{(x_0 + y_0)^{r+2}}, \]

which we can rewrite, setting

\[z_0 = \left(\frac{x_0}{x_0 + y_0}\right)^r, \quad z_1 = \frac{x_1 + y_1}{(x_0 + y_0)^{r+1}}, \]

as

\[z_1 + z_1^r = 1 + z_0 + z_0^r, \]

so that \(w = z_0 + z_1 \) satisfies \(w^r + w + 1 = 0 \). Raising this equality to the power \(r \), we obtain \(w^r + w + 1 = 0 \), which combines to \(w + w^2 = 0 \). However, then \(w \in \{0,1\} \) and clearly \(w^r + w + 1 \neq 0 \). The claim is proved.

This ovoid \(O \) is called the Suzuki-Tits ovoid (also sometimes the Suzuki ovoid, or the Tits ovoid). When \(q \) is even and \(q \leq 32 \), then it is known that the only ovoids (up to a collineation) of \(\text{Sp}_4(q) \) are the classical and Suzuki-Tits ovoids (only appearing for \(q = 8,32 \); for \(q = 2 \), the classical ovoid and the Suzuki-Tits ovoid are equivalent). For \(q = 2, 4 \), this is folklore; for \(q = 8 \) this was first proved by Fellegara [317]; for \(q = 16 \), see O’Keefe & Penttila [594]; for \(q = 32 \), see O’Keefe, Penttila & Royle [595].

The Suzuki-Tits ovoid of \(\text{Sp}_4(2^{2e-1}) \) can also be constructed as follows. It is well-known that, as a (finite abstract) rank 2 geometry, \(\text{Sp}_4(2^{2e-1}) \) is a self-dual geometry which even admits a (unique up to conjugacy) polarity, i.e., a permutation of order 2 of the union of the point and the line set interchanging the points with the lines, and preserving incidence. The set of points which are incident with their image is precisely a Suzuki-Tits ovoid, see Tits [692, 693].

2.5.6 Maximal cocliques

In \(\text{Sp}_{2n}(q) \), the smallest maximal cocliques are the hyperbolic lines (of size \(q + 1 \)).

In \(\text{Sp}_4(q) \), odd, a coclique (partial ovoid) has size at most \(q^2 - q + 1 \) (Tallini [675]). For \(q = 3, 5, 7 \) the largest partial ovoids have size 7, 18, 33 (Cimráková & Fack [197]). Upper bounds for the size of cocliques in \(\text{Sp}_{2n}(q) \), \(n \geq 3 \), have been given by Thas [685], Dye [301], and De Beule et al. [255] (Theorem 6.1).

The following proposition, derived from Section 6 of De Beule et al. [255], summarizes the best bounds at present.
2.5. SYMPLECTIC POLAR SPACES

Proposition 2.5.4 A coclique of $\Gamma(\mathcal{S}p_{2n}(q))$, $n \geq 3$, has at most

- $2n + 1$ vertices, $q = 2$;
- $15 \cdot 2^{n-3} - 2$ vertices, $q = 3$;
- $\frac{q(q - 1)^{n-3} - 2}{q - 2}$ vertices, $q \geq 4$.

The first bound of the previous proposition is sharp. Indeed, we inductively define a coclique of size $2n + 1$ in $\mathcal{S}p_{2n}(2)$, $n \geq 2$, as follows. For $n = 2$, it is just an ovoid (as for instance constructed in Proposition 2.5.3). Now let $n \geq 3$. Let $\{x_0, x_1, x_2\}$ be a hyperbolic line in \mathcal{P}. The definition of embedded polar space yields $x_1^2 \cap x_0^2 = x_2^2 \cap x_0^2$. Hence on each line L through x_0 there is a unique point $x_L \notin (x_1^2 \cup x_2^2)$. Let \mathcal{C}' be a coclique of size $2n - 1$ of the symplectic polar space $x_1^2 \cap x_2^2$, then $\mathcal{C}' \subseteq x_0^2$, and

$$\mathcal{C} = \{x_1, x_2\} \cup \{x_L \mid x_0 \in L \text{ and } L \cap \mathcal{C}' \neq \emptyset\}$$

is a coclique of $\mathcal{S}p_{2n}(2)$ of size $2n + 1$. The case $(n, q) = (3, 3)$ of the second bound is exact (namely 13). It is not known whether the other bounds are sharp, but presumably they are not.

2.5.7 h-Ovoids

As we saw, $\mathcal{S}p_{2n}(q)$ has 1-ovoids (i.e., ovoids) if and only if $n = 2$ and q is even. For odd q there is a partition of $\mathcal{S}p_{2n}(q)$ into 2-ovoids ([43], Cor. 5.2), and there exist many $\frac{1}{2}(q + 1)$-ovoids ([227]). For even q and $n = 2$ there are h-ovoids for all h, $1 \leq h \leq q$ ([227]). See also [321] for examples in spaces of larger rank. Note that since h-ovoids are regular sets in $\Gamma(\mathcal{S}p_{2n}(q))$ and the point neighborhoods are the hyperplanes, these h-ovoids are also two-character sets in $\mathcal{P}G(2n - 1, q)$. By Theorem 13 of [42], no h-ovoids of $\mathcal{S}p_{2n}(q)$, $n \geq 3$, exist for $1 \leq h \leq (-3 + \sqrt{9 + 4q^2})/(2q - 2)$.

2.5.8 Spreads

DYE [300] showed that the $\mathcal{S}p_{2n}(q)$ polar space has spreads, partitions of the point set into $q^n + 1$ pairwise disjoint t.i. subspaces. For $\Gamma = \Gamma(\mathcal{S}p_{2n}(q))$ this means that its complement has chromatic number $\chi(\Gamma) = q^n + 1$.

2.5.9 Tight sets

Since $\mathcal{S}p_{2n}(q)$ has spreads, it has i-tight sets for all $i \in \{1, 2, \ldots, q^n\}$.

It is possible to prove for small i that an i-tight set must be the union of some specific examples. If q is a square and $i < 1 + q^{5/8}/\sqrt{2}$ (DE BEULE et al. [254]), or $q \geq 81$ is an odd square and $i < (q^{2/3} - 1)/2$ (NAKIĆ & STORME [584]), an i-tight subset X of $\mathcal{S}p_{2n}(q)$ must be the disjoint union of pairwise disjoint subspaces $\mathcal{P}G(n - 1, q)$ and Baer subgeometries $\mathcal{P}G(2n - 1, \sqrt{q})$. More precisely, X must be a disjoint union of some of the examples (i)-(iv) below.

- (i) A maximal t.i. subspace ($i = 1$).
- (ii) The union $W \cup W^\perp$ of a conjugate pair of nondegenerate n-spaces ($i = 2$).
(iii) The point set Z of a Baer subgeometry $\mathcal{S}_{2n}(\sqrt{q})$ invariant for the symplectic polarity ($i = \sqrt{q} + 1$).

(iv) The union $Z_1 \cup Z_2$ of two disjoint Baer subgeometries $\mathcal{S}_{2n}(\sqrt{q})$ conjugate under the symplectic polarity ($i = 2\sqrt{q} + 2$).

Two Baer subgeometries Z and Z' are called conjugate under the symplectic polarity when for each $z \in Z$ the hyperplane z^\perp meets Z' in a $PG(2n - 2, \sqrt{q})$.

Further examples can be constructed as follows. Let $\mathcal{S}_{2n}(\sqrt{q})$ be naturally embedded in $\mathcal{S}_{2n}(q) = (X, \Omega)$. Let X' be the set of points of $\mathcal{S}_{2n}(\sqrt{q})$. Each point of $X \setminus X'$ is contained in a unique line meeting X' in $\sqrt{q} + 1$ points. Let X'' (resp. X''') be the set of points of $X \setminus X'$ where this line is totally isotropic (resp. hyperbolic). Then Theorem 8 of [42] asserts that each of X', X'', X''' is tight. (They are i-tight for $i = \sqrt{q} + 1, i = \sqrt{q}(q^{n-1} - 1), i = q^{n-1}(q - \sqrt{q})$, respectively.)

Example 4 of Section 8 of [43] yields i-tight sets in $\mathcal{S}_4(7)$, with $i = 5, 15$ (and $i = 35, 45$ for the complementary set), containing no singular line. With the notation of §10.89C, the 15-tight set is \mathcal{S}_0. The 5-tight set is obtained as the union of the four vertices of 10 quadrangles; one typical quadrangle has sides corresponding to the points $(1, 2, 4, 0, 0, 0, 0), (1, 4, 2, 0, 0, 0, 0), (0, 0, 0, 1, 2, 4, 0)$ and $(0, 0, 0, 1, 4, 2, 0)$ (still using the notation of §10.89C), the other quadrangles are obtained by letting S_6 act on the first six coordinates.

In the same vein, §10.89B provides a 10-tight set in $\mathcal{S}_4(7)$ not containing any singular line by taking the orbit of size 80 in $PG(3, 7)$ of the group $2^4 : S_5$. The fact that this is a tight set in $\mathcal{S}_4(7)$ follows, with the notation of §10.89B, from the fact that $2^4 : S_5$ fixes the point $(00000; 1)$ and hence also its perp, which defines $\mathcal{S}_4(7)$.

Other constructions of tight sets in symplectic polar spaces are contained in [231]. For q even, we also refer to the tight sets mentioned on p. 71 for parabolic polar spaces.

2.5.10 Local graph

Suppose f is nondegenerate. If U is totally isotropic then f induces a non-degenerate symplectic form f_U on U^\perp / U given by $f_U(v + U, w + U) = f(v, w)$. In particular, for $\mathcal{S}_{2n}(q)$, if x is a point of PV, then x^\perp / x carries the structure of $\mathcal{S}_{2n-2}(q)$. This means that $\Gamma(\mathcal{S}_{2n}(q))$ is locally the q-clique extension of $\Gamma(\mathcal{S}_{2n-2}(q))$.

2.6 Orthogonal polar spaces

We review some properties of the strongly regular graph defined by the points of a finite orthogonal polar space, adjacent when collinear. We pay special attention to (maximal) cliques and cocliques, regular sets and geometric notions in the corresponding polar space such as h-ovoids and spreads.
2.6.1 Quadratic forms and orthogonal polar spaces

Quadratic forms

Let V be a vector space over a field F. A quadratic form is a map $Q: V \to F$ satisfying the two conditions

- $Q(\lambda v) = \lambda^2 Q(v)$, for all $v \in V$ and all $\lambda \in F$;
- the (symmetric) form $f_Q: V \times V \to F$ defined by $(v, w) \mapsto f_Q(v, w) = Q(v + w) - Q(v) - Q(w)$ is bilinear.

If Q is a quadratic form, we call (V, Q) a quadratic space. The quadratic form Q is called anisotropic on a subspace U of V if $Q(u) = 0$ for $u \in U$ only if $u = 0$. If S is a subset of V, then we denote by S^\perp the subspace of V consisting of all vectors v for which $f_Q(s, v) = 0$ for all $s \in S$. The radical $\operatorname{Rad} V$ of Q is the subspace V^\perp. The quadratic form is called nondegenerate if Q is anisotropic on the radical $\operatorname{Rad} V$. We then say that (V, Q) is a nondegenerate quadratic space.

A subspace W of V is called totally singular when Q vanishes identically on W. The Witt index is the dimension of a maximum totally singular subspace. The set of totally singular 1-spaces, also called the null set of Q, is a quadric in PV.

Orthogonal polar spaces

Let V be a vector space over F and let (V, Q) be a quadratic space. Let X be the set of totally singular 1-spaces of V and let Ω be the set of maximal totally singular subspaces in V with respect to Q. If X spans V, then (X, Ω) is a polar space embedded in PV, called an orthogonal polar space. Moreover, the radical R of (X, Ω) coincides with the intersection $X \cap \operatorname{Rad} V$ of the radical of Q with the set of totally singular 1-spaces. Hence (X, Ω) is nondegenerate precisely when Q is nondegenerate. We have $\langle X \rangle = V$ when either $\Omega \neq \{R\}$, or $V = R$. Two points $\langle v \rangle$ and $\langle w \rangle$ of (X, Ω) are collinear if and only if $f_Q(v, w) = 0$.

We have the following reduction theorem for nondegenerate quadratic forms.

Theorem 2.6.1 Let (V, Q) be a nondegenerate quadratic space with finite Witt index n. Then V admits a direct sum decomposition $V = V_0 \oplus V_1$ such that $\dim V_0 = 2n$, and there exists a basis $E = \{e_{-n}, e_{-n+1}, \ldots, e_{-1}, e_1, e_2, \ldots, e_n\}$ of V_0 such that Q is given by

$$Q\left(\sum_{i=1}^{n}(x_{-i}e_{-i} + x_ie_i) + v_1\right) = x_{-n}x_n + \cdots + x_{-2}x_2 + x_{-1}x_1 + Q(v_1),$$

with Q anisotropic on V_1.

Proof. The 1-spaces $\langle e_i \rangle$, $i \in \{-n, -n + 1, \ldots, -1, 1, 2, \ldots, n\}$ correspond to points in two disjoint maximal singular subspaces, chosen in such a way that $e_i \in e_j^\perp$ if and only if $i + j \neq 0$. Set $V_0 = \langle E \rangle$, and set $V_1 = E^\perp$. It is routine to check that $V = V_0 \oplus V_1$ and an elementary calculation proves the last assertion. \(\Box\)
2.6.2 Finite orthogonal polar spaces and graphs

By Theorem 2.6.1, the nondegenerate orthogonal polar spaces of rank n over a field F are classified by anisotropic quadratic forms over F. There are always two standard anisotropic quadratic forms which exist over any field: the trivial one (in a 0-dimensional vector space), and the form $Q : F \to F : x \mapsto x^2$.

If $F = \mathbb{F}_q$, then the fact that all quadratic field extensions are isomorphic yields that the embedded polar spaces arising from anisotropic quadratic forms in 2-dimensional vector spaces are isomorphic to each other. Since a quadratic field extension always exists, there exists, for any rank n, a nondegenerate orthogonal polar space in a $(2n + 1)$-dimensional projective space over \mathbb{F}_q.

There is no anisotropic quadratic form Q on a vector space V of dimension at least 3 over \mathbb{F}_q. Indeed, let x, y, z be three vectors in V that are mutually orthogonal for f_Q. Then $Q(x + \lambda y + \mu z) = Q(x) + \lambda^2 Q(y) + \mu^2 Q(z)$. Now each of λ^2 and μ^2 takes at least $(q + 1)/2$ values, so $Q(x) + \lambda^2 Q(y)$ and $-\mu^2 Q(z)$ have a common value, and for this λ, μ the point $x + \lambda y + \mu z$ is isotropic. (This also follows from Theorem 2.3.4.)

Hence there are exactly three cases: The trivial anisotropic quadratic form (hyperbolic orthogonal polar spaces, also said to be of type +1), the 1-dimensional one (parabolic orthogonal polar spaces), and the 2-dimensional one (elliptic orthogonal polar spaces, also said to be of type -1).

The orthogonal graph of (V, Q) is the collinearity graph $\Gamma = \Gamma(X, \Omega)$ of (X, Ω) and thus has as vertex set the set X of points, where distinct vertices (u) and (v) are adjacent when $f(u, v) = 0$. Note that, as before, the condition $f(u, v) = 0$ does not depend on the choice of u and v in (u) and (v), and it is obviously symmetric since $f(u, v) = f(v, u)$. For Witt index at most 1, the graph Γ has no edges.

2.6.3 Parameters

If (V, Q) has finite Witt index n, and V is defined over \mathbb{F}_q, and Q is nondegenerate, then $\dim V \in \{2n, 2n + 1, 2n + 2\}$ and the corresponding quadric is denoted by $Q^+_{2n}(q)$, $Q_{2n+1}(q)$ and $Q^-_{2n+2}(q)$, respectively. (In the literature one also finds $Q^+_{2n-1}(q)$, $Q_{2n}(q)$ and $Q^-_{2n+1}(q)$.) If the Witt index is at least 2, then the corresponding embedded polar space has order $(q, 1)$, (q, q), (q, q^2), respectively.

For $n \geq 2$, the orthogonal graphs are strongly regular and the parameters are given as in Theorem 2.2.12 with $(q, t) \in \{(q, 1), (q, q), (q, q^2)\}$:

- The hyperbolic orthogonal graph $\Gamma(Q^+_{2n}(q))$.

\[
\begin{align*}
v &= (q^n - 1)(q^{n-1} + 1)/(q - 1), \\
k &= q(q^{n-1} - 1)(q^{n-2} + 1)/(q - 1), \\
\lambda &= q^2(q^{n-2} - 1)(q^{n-3} + 1)/(q - 1) + q - 1, \\
\mu &= (q^{n-1} - 1)(q^{n-2} + 1)/(q - 1),
\end{align*}
\]

so that $\mu = k/q$. The eigenvalues are k, $-1 + q^{n-1}$ and $-1 - q^{n-2}$ with multiplicities 1, $f = \frac{g(q^{n-1})(q^{n-2} + 1)}{q^2 - 1}$ and $g = \frac{q^2(q^{n-2} - 1)}{q^2 - 1}$, respectively.
2.6. ORTHOGONAL POLAR SPACES

- The parabolic orthogonal graph $\Gamma(\text{O}_{2n+1}(q))$. Here we find the same parameters as for $\Gamma(\text{Sp}_{2n}(q))$ but the graphs are not isomorphic in characteristic different from 2; they are isomorphic in characteristic 2.

$$
\begin{align*}
v & = (q^{2n} - 1)/(q - 1), \\
k & = q(q^{2n-2} - 1)/(q - 1), \\
\lambda & = q^2(q^{2n-4} - 1)/(q - 1) + q - 1, \\
\mu & = (q^{2n-2} - 1)/(q - 1),
\end{align*}
$$

so that $v - k - 1 = q^{2n-1}$, $\lambda = \mu - 2$ and $\mu = k/q$. The eigenvalues are k and $-1 \pm q^{n-1}$ with multiplicities 1, $f = \frac{1}{2}(\frac{q^m - q}{q - 1} + q^n)$, $g = \frac{1}{2}(\frac{q^m - q}{q - 1} - q^n)$.

- The elliptic orthogonal graph $\Gamma(\text{O}^+_2(q))$.

$$
\begin{align*}
v & = (q^n - 1)(q^{n+1} + 1)/(q - 1), \\
k & = q(q^{n-1} - 1)(q^n + 1)/(q - 1), \\
\lambda & = q^2(q^{n-2} - 1)(q^{n-1} + 1)/(q - 1) + q - 1, \\
\mu & = (q^{n-1} - 1)(q^n + 1)/(q - 1),
\end{align*}
$$

so that $\mu = k/q$. The eigenvalues are k, $-1 + q^{n-1}$ and $-1 - q^n$ with multiplicities 1, $f = \frac{q^2(q^{2n-1})}{q^2 - 1}$ and $g = \frac{q(q^{n-1} - 1)(q^{n+1} + 1)}{q^2 - 1}$, respectively.

- For convenience, we give combined expressions for $\Gamma(\text{O}^+_2m(q))$.

$$
\begin{align*}
v & = (q^m - \varepsilon)(q^{m+1} + \varepsilon)/(q - 1), \\
k & = q(q^{m-1} - \varepsilon)(q^{m+2} + \varepsilon)/(q - 1), \\
\lambda & = q^2(q^{m-2} - \varepsilon)(q^{m-1} + \varepsilon)/(q - 1) + q - 1, \\
\mu & = (q^{m-1} - \varepsilon)(q^{m+2} + \varepsilon)/(q - 1),
\end{align*}
$$

so that $v - k - 1 = q^{2m-2}$ and $\mu = k/q$. The eigenvalues are k, $-1 + q^{m-1}$ and $-1 - q^{m-2}$ with multiplicities 1, $\frac{q(q^{m+1} - \varepsilon)(q^{m+2} - \varepsilon)}{q^2 - 1}$ and $\frac{q^2(q^{m+1} - \varepsilon)}{q^2 - 1}$, respectively.

2.6.4 Isomorphisms

- As already mentioned, the graph $\Gamma(\text{O}_{2n+1}(q))$ is isomorphic to $\Gamma(\text{Sp}_{2n}(q))$ when q is even.

- The graph $\Gamma(\text{O}_2(q))$ is isomorphic to the graph $\Delta(\text{Sp}_4(q))$ of maximal singular subspaces of $\text{Sp}_4(q)$, see §2.2.11.

- The graph $\Gamma(\text{O}_2^+(q))$ is isomorphic to the graph $\Delta(\text{U}_4(q))$ of maximal singular subspaces of $\text{U}_4(q)$, see §2.2.11.

- The graph $\Gamma(\text{O}_6^+(q))$ is isomorphic to the Hamming graph $H(2, q + 1)$.

- The graph $\Gamma(\text{O}_6^+(2)) \cong \Gamma(\text{Sp}_4(2))$ is isomorphic to the complement of the Johnson graph $J(6, 2)$.

- The graph $\Gamma(\text{O}_6^+(2))$ is isomorphic to the complement of the Schläfli graph (§10.10), or the complement of the collinearity graph of $E_6(1)$ (§4.9).

- Since $\text{O}_6^+(q)$ is the so-called Klein quadric, the graph $\Gamma(\text{O}_6^+(q))$ is isomorphic to the Grassmann graph $J_q(4, 2)$.

2.6.5 Automorphism groups

Let the general orthogonal group $\text{GO}(V, Q)$ be the group of all linear transformations of V that preserve the nondegenerate quadratic form Q. Let (just here) $\text{GGO}(V, Q)$ be the group of all linear transformations of V that preserve Q up to a constant.

The subgroup D of $\text{GL}(V)$ consisting of all multiples of the identity acts trivially on PV, and $D \cap \text{GO}(V, Q) = \{ \pm I \}$. Let the projective general orthogonal group $\text{PGO}(V, Q)$ be the quotient $\text{GO}(V, Q)/\{ \pm I \}$, and let (just here) $\text{PGGO}(V, Q) = \text{GGO}(V, Q)/D$.

The full automorphism group of Γ and of the corresponding embedded polar space (X, Ω) is $\text{PGO}(V, Q)$, that is, $\text{PGGO}(V, Q)$ extended by the field automorphisms of the underlying field F, except if the corresponding embedded polar space is $O^+(4, q)$, in which case $\text{Aut} \Gamma$ is S_{q+1} wr 2 (see §1.1.8).

If V and F are finite, say V is n-dimensional over $F = F_q$, then we denote $\text{GO}(V, Q)$ and $\text{PGO}(V, Q)$ by

\[
\begin{cases}
\text{GO}_n(q) \text{ and } \text{PGO}_n(q) & \text{if } n \text{ is odd (and hence } (V, Q) \text{ is parabolic),} \\
\text{GO}^-_n(q) \text{ and } \text{PGO}^-_n(q) & \text{if } n \text{ is even and } (V, Q) \text{ is elliptic,} \\
\text{GO}^+_n(q) \text{ and } \text{PGO}^+_n(q) & \text{if } n \text{ is even and } (V, Q) \text{ is hyperbolic.}
\end{cases}
\]

Unlike the symplectic case, the group $\text{PGO}(V, Q)$ is in general not simple. One reason is that the determinant of an element of $\text{GO}(V, Q)$ can be equal to -1. So let $\text{SO}(V, Q)$ be the (normal) subgroup of $\text{GO}(V, Q)$ of matrices with determinant 1, and let $\text{PSO}(V, Q)$ be its quotient with the subgroup of scalar matrices it contains. In the finite case we also use the corresponding more specific (self-explaining) notation $\text{SO}_n(q)$, $\text{PSO}_n(q)$ (n odd), $\text{SO}^-_n(q)$, $\text{PSO}^-_n(q)$, $\text{SO}^+_n(q)$ and $\text{PSO}^+_n(q)$ (n even).

Now $\text{PSO}_n(q)$ is simple if $(n, q) \neq (5, 2)$, and it is denoted by $\text{O}_n(q)$. If $n = (5, 2)$, then $\text{PSO}_5(2)$ is isomorphic to the symmetric group S_6. However, in the elliptic and hyperbolic cases, the groups $\text{PSO}^-_n(q)$ and $\text{PSO}^+_n(q)$ are generally not simple. Here, the reason is that hyperbolic polar spaces contain two systems of maximal singular subspaces, and the stabilizer of these systems in $\text{PSO}^+_n(q)$ is a normal subgroup of index at most 2 (could be 1), which we denote by $\text{O}^+_n(q)$ if $n \geq 6$. The latter is always simple; if $n = 4$, that normal subgroup is the direct product of two copies of $\text{PSL}_2(q)$. In the elliptic polar space $\text{O}^-_{2n}(q)$, there are likewise two systems of imaginary maximal singular subspaces (of dimension m) obtained after quadratically extending the field to F_{q^2}. Again, the stabilizer of these systems in $\text{PSO}^-_{2n}(q)$, $n = 2m$, is a normal subgroup of index at most 2 (could be 1), which we denote by $\text{O}^-_{2n}(q)$. The latter is again always simple.

In all cases, except the case $\text{O}^+_n(q)$, the simple group is the intersection of all groups acting rank 3 on the graph Γ, and hence that group and all larger groups in the full automorphism group act rank 3.

2.6.6 Maximal cliques

As remarked in §2.2.7, the maximal cliques of Γ are the maximal totally singular subspaces of (V, Q), i.e., the elements of Ω. In the finite nondegenerate cases $\text{O}^+_n(q)$, $\text{O}^-_{2n+1}(q)$, and $\text{O}^-_{2n+2}(q)$, these have dimension n and size $(q^n-1)/(q-1)$. The maximal cliques form a single orbit under $\text{Aut} \Gamma$.
2.6. OVOIDS AND MAXIMAL COCLIQUEs

Recall that an ovoid in a nondegenerate orthogonal polar space is a set of points that meets every maximal totally singular subspace in precisely one point. Also recall that ovoids (when they exist) are maximal cocliques of the corresponding graph. For \(\dim V = n+m+1 \), where \(n \) is the Witt index and \(m \in \{ n-1, n, n+1 \} \), one has \(|C| \leq q^m + 1 \) and \(|O| = q^m + 1 \) for each coclique \(C \) and ovoid \(O \). There are ovoids in \(O^+_d(q) \), in \(O^+_d(q) \), in \(O^+_d(q) \) for \(q \) an odd prime, or \(q \equiv 2 \) (mod 3), in \(O_5(q) \) and in \(O_7(q) \), \(q = 3^e \). Not in \(O_{2n+1}(q) \), \(n \geq 2 \), \(q \) even or prime \(\neq 3 \), or \(n > 3 \). \(q = 5^e \); not in \(O_{2n+3}(q) \), \(n > 1 \); not in \(O^+_d(q) \), \(n > 4 \), \(q = 2^e, 3^e \) or \(n > 5 \), \(q = 5^e, 7^e \). (Thas [683], Kantor [478], Conway et al. [216], Shult [652], Blokhuis & Moorhouse [82].)

No ovoids are known in finite embedded polar spaces of rank at least 5, and we can conjecture there are none. It seems hard to prove this conjecture, but many partial results exist. Below we discuss some details.

A bound on the size of caps

Let \(q = p^e \) where \(p \) is prime, and let \(A \) be the point-hyperplane incidence matrix of \(\PG(d,q) \). Then \(\text{rk}_p A = \binom{p+d-1}{d}^e + 1 \). Let \(Q \) be a nondegenerate quadratic form on this projective space. It induces a partition \(A = (B C D) \) with the rows partitioned into those for singular and nonsingular points and columns ordered like the rows, with column \(x^\perp \) corresponding to row \(x \), so that \(A \) is a symmetric matrix, and \(B \) is the collinearity matrix of the polar space on the quadric defined by \(Q \). Blokhuis & Moorhouse [82] show that \(\text{rk}_p(B C) = \binom{p+d-1}{d} - \binom{p+d-3}{d-1}^e + 1 \). Let a cap or partial ovoid be a coclique in the collinearity graph on \(Q \). If \(K \) is a cap, then the corresponding rows and columns induce an identity submatrix of the matrix \(B \), so that \(|K| \leq \text{rk}_p(B C) \).

Subsequently, Arslan & Sin [11] determined the precise value of \(\text{rk}_p(B C) \). Often this equals \(\text{rk}_p(B C) \), sometimes it is slightly smaller.

Theorem 2.6.2 (Blokhuis & Moorhouse [82]) Let \(K \) be a coclique in the collinearity graph of the polar space on \(\PG(d,q) \) provided with nondegenerate quadric. Let \(q = p^e \). Then \(|K| \leq \binom{p+d-1}{d} - \binom{p+d-3}{d-1}^e + 1 \). \(\square \)

Theorem 2.6.3 (Arslan & Sin [11]) In the above situation, let \(n = d + 1 \).

(i) Let \(p = 2 \). If \(n \) is even, \(\text{rk}_p B = n^e + 1 \). If \(n \) is odd, \(\text{rk}_p B = (n-1)^e + 1 \).

(ii) Let \(p > 2 \). If there exists a positive integer \(a \) such that \(a + 1 \equiv n \) (mod 2) and \(n-3 \leq ap \leq n+p-5 \), then \(\text{rk}_p B = \binom{p+n-2}{n-1} - \binom{p+n-4}{n-1} - \binom{ap}{n-1} + \binom{ap+2}{n-1} \), otherwise \(\text{rk}_p B = \binom{p+n-2}{n-1} - \binom{p+n-4}{n-1} \). \(\square \)

In particular, if an ovoid would have size \(q^m + 1 \), then an ovoid can exist only when \(p^m \leq \binom{p+d-1}{d} - \binom{p+d-3}{d-1} \). For example, this shows that \(O_5(5^e) \) does not have ovoids. This bound on the size of caps is sometimes tight for \(q = 2 \), see §3.6.

Ovoids in elliptic polar spaces

Proposition 2.6.4 The elliptic polar space \(O^-_{2n+2}(q) \), \(n \geq 2 \), \(q \) an arbitrary prime power, does not have an ovoid.
Proposition 2.6.5 Suppose a generalized quadrangle $GQ(s, t)$ has an ovoid (i.e., a coclique of size $1 + st$). Then $t \leq s(s - 1) - 1$.

Proof. The collinearity graph has eigenvalues $s(t + 1)$, $s - 1$ and $-t - 1$ with multiplicities 1, $s(s + 1)(t(t + 1))/(s + t)$ and $s^2(st + 1)/(s + t)$, respectively. By the Cvetković bound, the size of a coclique is at most the number of nonpositive eigenvalues, so if $s > 1$ then $st + 1 \leq s^2(st + 1)/(s + t)$, i.e., $t \leq s^2 - s$. □

Partial ovoids in elliptic polar spaces

Let $x_{n,q}$ be the maximal size of a partial ovoid of $O_q^n(e)$, and let $q = p^e$. KLEIN [491] showed that if $n \geq 2$ then $x_{n,q} - 2 \leq q^{n-1}/(n-1,q) - 2$. DE BEULE et al. [256] showed that $x_{2,q} \leq q(q^2 + 1) + 1$. The bound from Theorem 2.6.3 is (for odd p) $x_{2,q} \leq (q^2 + 1)^e + 1$, which is better for $e \geq 2$, and (for $p = 2$) $x_{2,q} \leq 2e^e + 1$, which is better for $e \geq 3$. Also for larger n and small p Theorem 2.6.3 is sometimes better.

For $(n,q) \in \{(2,2),(2,3)\}$ the bound is sharp: $x_{2,2} = 6$ and $x_{2,3} = 16$.

If $(n,q) = (2,2)$, then the graph $\Gamma(O_6^3(2))$ is the complement of the Schl"{a}fli graph (§10.10) and a maximum coclique has 6 vertices.

If $(n,q) = (2,3)$, let $Q(x) = \sum_{i=1}^6 x_i^2$. The set of 16 isotropic points without zero coordinate and with an even number of 2's is a coclique. See also EBERT \\ & HIRSCHFELD [303].

The value of $x_{n,q}$ is known exactly for $q = 2$, see §3.6.

Ovoids in parabolic polar spaces

For finite parabolic polar spaces, the situation concerning existence of ovoids is still satisfying, although not as straight as for the elliptic case. We start with some constructions.

Proposition 2.6.6 The generalized quadrangle $O_5(q)$ has ovoids for any prime power q.

Proof. The intersection of $O_5(q)$ with a hyperplane that contains no lines of $O_5(q)$ is an ovoid. More concretely, let $O_5(q)$ be given in PV, with V 5-dimensional over F_q, by the equation $X_1X_2 + X_3X_4 = X_5^2$. Let $x^2 - tx + n$ be an irreducible quadratic polynomial over F_q. Then the hyperplane of PV given by the equation $X_4 = tX_0 - nX_3$ intersects $O_5(q)$ in an elliptic quadric (with equation $X_1X_2 = X_0^2 - tX_0X_3 + nX_3^2$), which contains $q^2 + 1$ points and does not contain any pair of collinear points.

For q a power of 2, the quadrangles $O_5(q)$ and $Sp_4(q)$ are isomorphic and the above construction is equivalent to the one in Proposition 2.5.3. Also, because of that isomorphism, $O_5(q)$ is self dual. It is self polar (meaning it admits a polarity) if and only if $q = 2^{2e-1}$, for some positive integer e (see TRS [693]). Hence $O_5(2^{2e-1})$ admits a second isomorphism class of ovoids, $e \geq 2$, namely the Suzuki-Tits ovoids.
2.6. ORTHOGONAL POLAR SPACES

Ball, Govaerts & Storme [36] prove that for \(q \) a prime, the ovoids constructed in Proposition 2.6.6 are unique, up to a collineation.

Proposition 2.6.7 The parabolic polar space \(O_7(3^e) \) has ovoids for any integer \(e \geq 1 \).

Proof. For \(r = 3^e \), let \(O_7(r) \) be given in projective 6-space by the standard equation \(x_0x_4 + x_1x_5 + x_2x_6 = x_3^2 \), so that the corresponding bilinear form \(f \) on \(V \) is given by

\[
 f((x_0, x_1, \ldots, x_6), (y_0, y_1, \ldots, y_6)) = x_0y_4 + x_1y_5 + x_2y_6 + x_3y_3 + x_4y_0 + x_5y_1 + x_6y_2.
\]

Let \(\gamma \in \mathbb{F}_r \) be an arbitrary nonsquare. Let \(P(x, y, z) \) denote the point with coordinates

\[
 (z^2 - \gamma^{-1}(\gamma x^2 - y^2)^2, x, y, z, 1, \gamma x^3 - x y^2 - y z, \gamma^{-1}y^3 + xz - x^2y),
\]

\(x, y, z \in \mathbb{F}_r \). Set \(P(\infty) = (1, 0, 0, 0, 0, 0, 0) \). We claim that

\[
 O_\gamma = \{ P(\infty) \} \cup \{ P(x, y, z) \mid x, y, z \in \mathbb{F}_r \}
\]

is an ovoid of \(O_7(r) \).

Clearly \(P(\infty) \) is not collinear to any other point of \(O_\gamma \). Now assume for a contradiction that \(P(x, y, z) \) and \(P(u, v, w) \) are collinear points of \(O_7(r) \). Then, using the bilinear form \(f \) given above, one calculates that

\[
 -\gamma^{-1}(\gamma(x - u)^2 - (y - v)^2)^2 + (z - w - xv + yu)^2 = 0,
\]

which contradicts \(\gamma \) being a nonsquare in \(\mathbb{F}_r \).

Hence \(O \) is a coclique, and since \(|O| = 1 + r^2 \), it is an ovoid. \(\square \)

One might wonder where the algebraic construction in the above proof comes from. It has to do with the existence of a generalized hexagon, called the split Cayley hexagon \(G_2(q) \), whose points are all the points of \(O_7(q) \) and whose lines are some lines on the quadric (see Tits [691] and §4.8). The lines of \(G_2(q) \) in an elliptic hyperplane of \(O_7(q) \) constitute a spread of \(G_2(q) \), which is a set of \(q^3 + 1 \) lines, pairwise opposite in both \(G_2(q) \) and \(O_7(q) \). (This spread is called a Hermitian spread.) If \(q \) is a power of 3, then \(G_2(q) \) is a self-dual geometry and a duality takes this spread to an ovoid of both \(G_2(q) \) and \(O_7(q) \) (where an ovoid in a generalized hexagon is defined to be a set of points such that every point is equal to or collinear with exactly one point of the ovoid).

Just like \(O_5(2^{2e-1}), e \geq 2 \), admits Suzuki-Tits ovoids, \(O_7(3^{2e-1}), e \geq 2 \), admits a second isomorphism type of ovoids, called the Ree-Tits ovoids. These arise as the set of points incident with their image under a polarity of the generalized hexagon \(G_2(q) \) mentioned in the previous paragraph and embedded in \(O_7(3^{2e-1}) \). An explicit coordinate description of a Ree-Tits ovoid can be found in Section 9.2.4 of Thas, Thas & Van Maldeghem [687].

From the isomorphism \(\Gamma(O_{2n+1}(q)) \cong \Gamma(Sp_{2n}(q)) \) we deduce with Proposition 2.5.2:

Proposition 2.6.8 The parabolic polar space \(O_{2n+1}(2^e), n \geq 3, \) has no ovoids for any integer \(e \geq 1 \). \(\square \)
For odd q not a prime power of 3, the situation is that no ovoids are known, but only for q a prime there is a nonexistence proof. We will not reproduce that proof here; it goes in two steps. First, O’Keefe & Thas [596] show that, if $O_3(q)$ only admits ovoids equivalent to the classical one (given in the proof of Proposition 2.6.6), then $O_7(q)$ does not admit any ovoid at all. Then we can use the result by Ball, Govaerts & Storme [36] mentioned above to conclude the following proposition.

Proposition 2.6.9 The parabolic polar space $O_{2n+1}(p)$, $n \geq 3$, has no ovoids for any prime $p > 3$.

Now we consider the case of rank at least 4. If q is even, then no ovoids exist by Proposition 2.6.8. But also for odd q, $O_{2n+1}(q)$ does not admit any ovoid if $n \geq 4$.

Proposition 2.6.10 (Gunawardena & Moorhouse [371]) For $n \geq 4$ and any prime power q, the parabolic polar space $O_{2n+1}(q)$ has no ovoids.

Proof. By Corollary 2.2.16 it suffices to prove this for $n = 4$ and by Proposition 2.6.8 we may assume q odd. Assume for a contradiction that O is an ovoid of the polar space $O_9(q)$. Pick a point $p \in O$. Let $X = O \setminus \{p\}$ and define a symmetric relation \sim on X by $x \sim x'$ if $p^+ \cap x^+ \cap x'^+$ is a hyperbolic quadric (the only alternative is an elliptic quadric since p, x, x' are pairwise noncollinear). We show that (X, \sim) is a strongly regular graph.

First, we claim that (X, \sim) is regular with degree $\frac{1}{2}(q^3 + 1)(q - 1)$. Indeed, fix a point $x \in X$ and let k be its degree. We count the pairs (u, y), with $u \perp y$, $u \in p^+ \cap x^+$, and $y \in X \setminus \{x\}$. For u we have $q^3 + q^4 + q^3 + q^2 + q + 1$ choices (the number of points of $O_7(q)$), while for given u, there are $q^3 + 1$ members of O collinear to u (among which p and x). Hence there are $(q^6 - 1)(q^2 + q + 1)$ pairs (u, y) as described. Now, there are k choices for $y \sim x$ and $q^3 - 1 - k$ for $y \in X$ not adjacent to x. If $y \sim x$, then there are $(q^2 + 1)(q^2 + q + 1)$ points $u \in p^+ \cap x^+ \cap y^+$; otherwise this number is $(q + 1)(q^3 + 1)$. Hence
\[
(q^6 - 1)(q^2 + q + 1) = k(q^2 + 1)(q^2 + q + 1) + (q^3 - 1 - k)(q + 1)(q^3 + 1).
\]

It follows that $k = \frac{1}{2}(q^3 + 1)(q - 1)$. Hence (X, \sim) is regular.

Now let (V, f) be the associated orthogonal space of $O_9(q)$. If $v_1, v_2, v_3 \in V$ are three pairwise non-conjugate isotropic vectors, and if p_1, p_2, p_3 are the associated points in $P V$, then the type of $p_1^+ \cap p_2^+ \cap p_3^+$ only depends on the quadratic residue class of $n(v_1, v_2, v_3) := f(v_1, v_2)f(v_2, v_3)f(v_3, v_1)$. If $p_1, p_2, p_3, p_4 \in O$, and $p_4 = \{v_4\}$, then
\[
n(v_1, v_2, v_3)n(v_1, v_2, v_4)n(v_1, v_3, v_4)n(v_2, v_3, v_4) = \left[\prod_{1 \leq i < j \leq 4} f(v_i, v_j) \right]^2
\]
is a square and hence an even number of triples from $\{p_1, p_2, p_3, p_4\}$ are orthogonal to a hyperbolic quadric. So we obtain a two-graph Γ with vertex set O and triples defining hyperbolic quadrics. The descendant Γ_p is precisely (X, \sim). Since (X, \sim) is regular, so is Γ, and hence, by §1.1.12, (X, \sim) is strongly regular with parameters
\[
(q^4, \frac{1}{2}(q^3 + 1)(q - 1), \frac{1}{4}(q^4 - 3q^3 + 3q - 5), \frac{1}{4}(q^3 + 1)(q - 1)).
\]

One now easily calculates $r = \frac{1}{2}(q - 1)$ and $s = -\frac{1}{2}(q^3 + 1)$. It follows that $g = q^2(q^2 - 1)/(q^2 + 1)$, which is never an integer. \hfill \&
Partial ovoids in parabolic polar spaces

In the cases where it is known that no ovoid exist, there are usually better upper bounds for the coclique number of the corresponding graph than just the ovoid number minus one. Note first that, if \(q \) is even, then \(\Gamma(O_{2n+1}(q)) \) is isomorphic to \(\Gamma(\text{Sp}_{2n}(q)) \), and hence Proposition 2.5.4 applies.

Now let \(q \) be odd. Then we know that there are no ovoids if either \(n \geq 4 \), or if \(n = 3 \) and \(q > 3 \), \(q \) prime. The following two results are proved by De Beule et al. [255].

Proposition 2.6.11 A coclique of the parabolic polar space graph \(\Gamma(O_{2n+1}(q)) \), \(n \geq 4 \), \(q \) odd, \(q \) not a prime, has at most

\[
q^n - q^{n-\frac{2}{5}} - q^{n-4} + 1
\]

vertices.

For primes \(q \) there is a better bound, at least, when \(q \geq 17

Proposition 2.6.12 A coclique of the parabolic polar space graph \(\Gamma(O_{2n+1}(q)) \), \(n \geq 3 \), \(q \geq 17 \) a prime, has at most

\[
q^n - 2q^{n-2} + 1
\]

vertices.

For \(q \in \{5, 7, 11, 13\} \), we only have the trivial upper bound \(q^3 \) for the size of a partial ovoid of \(O_{7}(q) \).

From Theorem 2.6.2 we obtain a bound for \(O_{5}(q) \) when \(q \) is a power of 5.

Proposition 2.6.13 Let \(K \) be a coclique of the parabolic polar space graph \(\Gamma(O_{2n+1}(q)) \), where \(q = 5^e \), \(e \) a natural number, and \(n \geq 4 \). Then

(i) \(|K| \leq q^n \cdot \left(\frac{18}{5} \right)^e + 1 \),

(ii) \(|K| \leq \left(\frac{1}{5} n(n+1)(2n+1)(2n+7) \right)^e + 1 \).

Proof. (i) Use Theorem 2.6.2 for \(n = 4 \) and apply Proposition 2.2.15. (ii) Use Theorem 2.6.2 directly. \(\square \)

h-Ovoids in \(O_{5}(q) \)

For each odd prime power \(q \) there is an \(h \)-ovoid in \(O_{5}(q) \) with \(h = (q-1)/2 \), see [42], [319], [320].

Ovoids in hyperbolic polar spaces

We start with ranks 2 and 3, where ovoids always exist.

Proposition 2.6.14 The hyperbolic polar spaces \(O_{4}^{-}(q) \) and \(O_{6}^{-}(q) \) always admit ovoids, for each prime power \(q \).
Proof. Since the hyperbolic polar space $O^+_d(q)$ is just the $(q + 1) \times (q + 1)$ grid, it has precisely $(q + 1)!$ ovoids, namely all grid transversals.

There exists a solid (4-space) Σ intersecting $O^+_d(q)$ in an elliptic quadric Q; then Q is an ovoid since every plane of PV intersects Σ nontrivially by a dimension argument. In fact, every spread of projective 3-space becomes under the Klein correspondence an ovoid of $O^+_d(q)$ and vice versa (ovoids of $O^+_d(q)$ and spreads of projective 3-space over \mathbb{F}_q are equivalent objects).

The construction in the beginning of the last paragraph of the previous proof can obviously be generalized as follows: If O is an ovoid of $O_{2n+1}(q)$, $n \geq 2$, and we see $O_{2n+1}(q)$ as a hyperplane section of $O_{2n+2}(q)$, then O is an ovoid of $O_{2n+2}(q)$. Applied to the case $n = 3$, this gives us the following result.

Proposition 2.6.15 The hyperbolic polar space $O^+_d(3^e)$ has ovoids for each integer $e \geq 1$.

Proof. This follows from the previous discussion and Proposition 2.6.7. \(\square\)

However, there is no argument to make the converse of the preceding argument work, i.e., the fact that $O_{2n+1}(q)$, $n \geq 2$, does not admit an ovoid does not guarantee that $O_{2n+2}(q)$ has no ovoid. Here are some counterexamples.

Proposition 2.6.16 The hyperbolic polar space $O^+_d(p)$ has ovoids (i) for $q = p$, a prime, (ii) for prime powers q such that $q \equiv 2 \mod 3$, (iii) for $q = 2^e$, $e \geq 1$.

Proof. For the construction of ovoids of $O^+_d(p)$, with p prime, see Conway, Kleidman & Wilson [216]. The construction uses the E_8 root lattice modulo 2 and 3, and the set of vectors of that lattice with norm p and $2p$, respectively (these two constructions are referred to as the binary and the ternary construction). Moorhouse [573] generalized this to a construction modulo r for arbitrary primes r (instead of 2 and 3). See also [572].

Let $q \equiv 2 \mod 3$. We present an explicit construction of an ovoid in $O^+_d(q)$.

First note that the condition $q \equiv 2 \mod 3$ implies that F_q has no nontrivial cubic roots of unity. In particular, the quadratic polynomial $x^2 - x + 1$ is irreducible over \mathbb{F}_q. Let η and $\overline{\eta} := \eta^q$ be the roots of $x^2 - x + 1 = 0$ in \mathbb{F}_{q^2}. We shall from now on write x^q more compactly as x, $x \in \mathbb{F}_{q^2}$.

Let the quadric $O^+_d(q)$ be given by the equation $X_0X_1 + X_2X_3 + X_4X_5 + X_6X_7 = 0$. Consider the set of points $O = \{1,0,0,0,0,0,0\} \cup \{P(a,b) \mid a \in \mathbb{F}_q, b \in \mathbb{F}_{q^2}\}$, where $P(a,b)$ is the point with coordinates

\[
\begin{align*}
(9ab\overline{b} - 9a^2 - 3(b\overline{b})^2, 1, b + \overline{b}, -3a(\eta b + \eta \overline{b}) + b\overline{b}(b + \overline{b} + \eta b + \eta \overline{b}), \\
\eta b + \eta \overline{b}, 3a(b + \overline{b}) + b\overline{b}(\eta b + \eta \overline{b} - 2(b + \overline{b})), 3a, 3a - 3b\overline{b}).
\end{align*}
\]

With an elementary calculation one verifies that $O \subseteq O^+_d(q)$. Now, $|O| = q^3 + 1$ for if $P(a,b) = P(a',b')$, then the second last coordinate implies $a = a'$, and the third and fifth imply $b = b'$ since

\[
\begin{vmatrix}
1 & 1 \\
\eta & \eta
\end{vmatrix} \neq 0.
\]

Clearly $(1,0,0,0,0,0,0,0)$ is not collinear to $P(a,b)$, for any $a \in \mathbb{F}_q$ and any $b \in \mathbb{F}_{q^2}$. Now assume for a contradiction that $P(a,b)$ is collinear to $P(a',b')$,.
2.6. ORTHOGONAL POLAR SPACES

Let \(a, a' \in F_q, b, b' \in F_{q^2} \), \((a, b) \neq (a', b')\). After simplification, the algebraic condition expressing this is

\[
3(a - a')^2 - (a - a')[3(b - b') + (\eta - \overline{\eta})(b - b')] \\
- b\overline{\eta}(\eta b' - b\overline{b}) - b\overline{b}(\eta b' - b\overline{b}) = 0.
\]

The discriminant of this equation (viewing \(a - a' \) as the unknown) is, after simplification, equal to \(-3(\overline{b} - b')(\overline{b} - b')^2\). Since \(-3\) is the discriminant of the equation \(x^2 - x + 1 = 0\), which has no solution in \(F_q\), we see that \(-3\) is not a square in \(F_q\). Hence \(b = b'\). It then easily follows that \(a = a'\), a contradiction. Hence \(O\) is an ovoid.

Finally, let \(q = 2^e, e \geq 1 \). We construct an ovoid in \(O^+_q(q)\), cf. KANTOR [480].

For \(x \in F_{q^2} \), let \(x = x^3 \) and \(T(x) = x + \overline{x} + \bar{x} \) and \(N(x) = x\overline{x}\).

Choose \(r \in F_{q^3} \setminus F_q \) so that \(T(r) \neq 0 \) and \(T(r\bar{r}) = 0 \).

For each \(x \in F_{q^3} \), define the following point \(P(x) \):

\[
(T(r), T(r)N(x), T(rx), T(r\overline{x}), T(r\bar{r}x), T(r\bar{x}), T(r\bar{r}\bar{x})).
\]

An elementary calculation shows that \(P(x) \) belongs to \(O^+_q(q)\). Now let \(x, y \in F_{q^3} \) with \(x \neq y \). Then we show that \(P(x) \) and \(P(y) \) are noncollinear on \(O^+_q(q)\).

In view of the equation of the quadric \(O^+_q(q)\) given above, \(P(x) \) and \(P(y) \) are noncollinear if and only if

\[
0 \neq T(r)^2(N(x) + N(y)) + T(rx)T(r\overline{y}) + T(ry)T(r\bar{x}) \\
+ T(r\bar{x})T(r\bar{y}) + T(r\bar{y})T(r\bar{r}x) + T(r\bar{x})T(r\bar{r}y) + T(r\bar{y})T(r\bar{r}\bar{x}),
\]

which is easily seen to be equivalent to

\[
0 \neq T(r)^2N(x + y),
\]

which is true. It follows that the set \(\{P(x) \mid x \in F_{q^3}\} \cup \{(0, 1, 0, 0, 0, 0)\} \) is an ovoid of \(O^+_q(q)\).

□

From Theorem 2.6.2 we get bounds for \(q \) a power of \(2, 3, 5\) and \(7\).

Proposition 2.6.17 Let \(q = p^c \), where \(p \) is prime and \(e \) a natural number. Let \(K \) be a coclique of the hyperbolic polar space graph \(\Gamma(O_{2n}^+(q))\).

(i) If \(p = 2, n \geq 5 \), then \(|K| \leq (2n)^e + 1 \).

(ii) If \(p = 3, n \geq 5 \), then \(|K| \leq ((n + 1)(2n - 1))^e + 1 \).

(iii) If \(p = 5, n \geq 6 \), then \(|K| \leq (\frac{n+3}{2}(2n+1))^{\frac{e}{2}} + 1 \).

4Suppose for a contradiction that \(T(xx) = 0 \) implies \(T(x) = 0 \). Let \(y \in F_q \) be such that \(T(y) = 0 \) and set \(y' = y + \sqrt{T(y)\bar{y}} \). Then \(T(y\bar{y}) = 0 \) and \(T(y') = \sqrt{T(y\bar{y})} = 0 \) and the conditions \(T(xx) = 0 \) and \(T(x) = 0 \) are equivalent. Choose a basis \(\{1, u, v\} \) of \(F_q \) over \(F_q \) so that \(T(u) = T(v) = 0 \) (obtained by possibly replacing \(u \) by \(u + T(u) \) and \(v \) by \(v + T(v) \)).

Let \(a, b \in F_q \) be arbitrary and set \(w = au + bv \). Then \(T(w) = 0 \) and hence \(T(w\bar{w}) = 0 \). This easily implies \(w^2 + w\bar{w} + \bar{w}^2 = 0 \), hence \(w = w\bar{w} \) with \(v \) a nontrivial third root of unity (which must necessarily belong to \(F_q \)). Then \(w^2 = w(2a^2 + 2b^2) = N(w) \in F_q \). Hence there are at least \(q^e - 1 \) solutions of an equation \(x^e = c \), with \(c \in F_q \setminus \{0\} \). Since also 1 is such a solution, we have \(q^e \leq 3(q - 1) \), a contradiction.
(iv) If \(p = 7, \ n \geq 6, \) then \(|K| \leq \left(\frac{n+5}{3} \right)^{\ell} + 1. \)

For \(q = 2 \) the sizes of cocliques are given in §3.6. The previous proposition implies that \(O^+_2(n)(q) \) has no ovoids if \(n \geq 5 \) and \(p \in \{2, 3\} \), and if \(n \geq 6 \) and \(p \in \{5, 7\} \). Whilst Proposition 2.6.17 relies on an algebraic argument (\(p \)-ranks of matrices), Bamberg, De Beule & Ihringer [38] produce a particularly nice geometric argument to disprove the existence of ovoids in \(O^+_2(n)(q) \) for \(q \) even. Note that, however, the proof of their Lemma 4.3 is incorrect; they will present a corrected version on arXiv. We here present another argument to bypass their Lemma 4.3.

Proposition 2.6.18 No ovoids exist in \(O^+_0(2^e), \ e \geq 1. \)

Proof. Let, for a contradiction, \(O \) be an ovoid of \(O^+_0(2^e) \). Select two points \(x_1, x_2 \in O \) and consider the polar space with point set \(X = x_1^\perp \cap x_2^\perp \). (This is isomorphic to \(O^+_0(2^n) \).) Consider three pairwise disjoint maximal t.s. subspaces \(W_1, W_2, W_3 \) in \(X \). The map \(\rho \) taking each point \(p_1 \in W_1 \) to the hyperplane \(p_2^\perp \cap W_1 \), where \(\{p_2\} = W_2 \cap (p_1^\perp \cap W_3)^\perp = W_2 \cap (p_1, p_1^\perp \cap W_3) \), is easily checked to be a symplectic polarity of \(W_1 \). (It is obviously a duality every point of which is contained in its image; then by Lemma 3.2 of [680], it is a polarity). Also, the map taking \(p_1 \) to \(p_2 \) (defined as above) is an isomorphism \(\beta : W_1 \to W_2 \).

Let \(x \) be an arbitrary point of \(O \setminus \{p_1, p_2\} \). Then \(x^\perp \cap W_i \) is a plane \(\pi_i, \ i = 1, 2, \) and \(\beta(\pi_1) \perp \pi_2 \) and \(x \in (\rho(\pi_1), \pi_2, x_1) \), for some \(i \in \{1, 2\} \), a contradiction. Hence \(\beta(\pi_1) \) intersects \(\pi_2 \) in a line \(L_2 \); set \(L_1 = \beta^{-1}(L_2) \). Then \(x \) is collinear to each line \(\langle z, \beta(z) \rangle \), for \(z \in L_1 \), and not collinear to any line \(\langle u, \beta(u) \rangle \), for \(u \in W_1 \setminus L_1 \). Note that \(L_1 \) is not fixed by \(\rho \).

Now let \(Q \) be an elliptic quadric \(O^+_4(2^e) \) in \(W_1 \) such that \(Q \) is an ovoid of the symplectic polar space (generalized quadrangle) defined by \(\rho \). If \(x \) is collinear to a line \(\langle y, \beta(y) \rangle \), with \(y \in Q \), then the previous paragraph (in particular the fact that \(L_1 \) is not fixed under \(\rho \) and hence is not tangent to \(Q \)) implies that there is precisely one other such line \(\langle y', \beta(y') \rangle \), \(y' \in Q \setminus \{y\} \), collinear to \(x_1 \). So \(x_1 \) contains an even number of lines \(\langle y, \beta(y) \rangle \) with \(y \in Q \). Since \(|Q| \) is odd and since each line \(\langle z, \beta(z) \rangle \), \(z \in W_1 \), is collinear to an odd number \(2^{2n} - 1 \) of points of \(O \setminus \{x_1, x_2\} \), this leads to a contradiction. \(\Box \)

2.6.8 Tight sets, spreads, and \(h \)-ovoids

Elliptic case The natural inclusions \(O^+_2(n)(q) \subseteq O_{2n+1}(q) \subseteq O^-_{2n+2}(q) \) give rise to \((q^{n-1}+1) \)-tight and \((q^n+1) \)-tight sets, respectively, of \(O_{2n+2}(q) \).

If \(U \) is a nondegenerate \(n \)-space in \(O^+_2(n)(q) \), then \(U \cup U^\perp \) is 2-tight. For odd \(n \) one can choose \(U \) such that \(U \) and \(U^\perp \) induce \(O_n(q) \). For even \(n \) one can choose \(U \) such that \(U \) and \(U^\perp \) induce \(O^-_n(q) \) and \(O^+_n(q) \), respectively (De Bruyn [262]).

For other values of \(i \), the only known examples are partial spreads and disjoint unions of maximal singular subspaces and (disjoint) copies of the 2-tight sets of the previous paragraph. Metsch [565] shows that, as soon as \(i^3 - 3i + 6 \leq q \), every \(i \)-tight set is like that. Not much is known about partial spreads, except for \(q \) even or \(n \) small.

Indeed, if \(q \) is even, then \(O_{2n+1}(q) \cong Sp_{2n}(q) \) has a spread. Intersecting with a nondegenerate hyperplane yields a spread of \(O^+_2(n)(q) \). Also, nondegenerate
2.6. ORTHOGONAL POLAR SPACES

hyperplane sections of $U_4(q)$ yield ovoids of $U_4(q)$ and hence spreads of $O_6^-(q)$, for all prime powers q.

Except for the cases $n = 3, 4$, not much is known about the existence of h-ovoids in $O_{2n}^-(q), n \geq 3$. Segre [640] showed that any h-ovoid of $O_6^-(q)$ is a hemisystem of points, and that these do not exist for q even. Cossidente & Penttila [233] construct hemisystems of points of $O_6^-(q)$, for every odd q, admitting the group $F_4(q)$.

By Theorem 13 of [42], no h-ovoids of $O_{2n}^-(q), n \geq 3$, exist for $1 \leq h \leq (-3 + \sqrt{9 + 4q^n})/(2q - 2)$.

Parabolic case The natural inclusions $O_{2n}^-(q) \subseteq O_{2n+1}(q)$ and $O_{2n}^+(q) \subseteq O_{2n+1}(q)$ give rise to $(q^{n-1} - 1)/(q - 1)$-ovoids and $(q^{n-1} + 1)$-tight sets, respectively. For n odd, one can also take away two disjoint maximal singular subspaces from $O_{2n}^+(q)$, which produces a $(q^{n-1} - 1)$-tight set of $O_{2n+1}(q)$ which is neither the union of maximal singular subspaces, nor the complement of such union.

Like in the symplectic case, other examples of tight sets can be constructed as follows. Let $O_{2n+1}(\sqrt{q})$ be naturally embedded in $O_{2n+1}(q) = (X, \Omega)$. Let X' be the set of points of $O_{2n+1}(\sqrt{q})$, let X'' be the set of points of $X \setminus X'$ contained in a line of $O_{2n+1}(\sqrt{q})$, and set $X''' = X \setminus (X' \cup X'')$. Then Theorem 8 of [42] asserts that each of X', X'', X''' is tight. (They are i-tight for $i = \sqrt{q} + 1, \sqrt{q} + 2$, respectively.)

By Theorem 14 of [42], no 2-ovoids of $O_{2n+1}(q), n \geq 5$, exist.

For q even, $O_{2n+1}(q)$ is isomorphic to $Sp_{2n}(q)$. For q odd not much additionally to the previous constructions and nonexistence is known, neither about spreads, except for the cases $n = 2, 3$.

For $n = 2$, Metsch [565] shows that, if an i-tight set of $O_5(q)$ is not the union of pairwise disjoint lines, then $i \geq \sqrt{q} + 1$, with equality if and only if the tight set is an embedded $O_5(\sqrt{q})$.

For $n = 3$, there exist some computer results for $q \in \{3, 5\}$, see Section 7.3 of [42]. In general, one explores the link with the split Cayley generalized hexagon $G_2(q)$, see §4.8, whose point set is exactly the point set of $O_7(q)$, as follows.

(i) A distance-2-ovoid O of $G_2(q)$ is a set of points meeting every line exactly once. Then O is a $(q^2 - q + 1)$-tight set of $O_7(q)$. There exist examples for $q = 2, 3, 4$, see [288], [286].

(ii) The point set of a (non-thick) subhexagon H of $G_2(q)$ of order $(q, 1)$ is a $(q + 1)$-tight set of $O_7(q)$. Such subhexagons exist if and only if q is a power of 3, see [710].

(iii) A spread S of $G_2(q)$ is a set of $q^3 + 1$ lines which are pairwise opposite, that is, the only pairs of collinear points on the union of all members of S are contained in the members of S. Then the union of all members of S is a $(q^{n-1} - 1)/(q - 1)$-ovoid. There is always the so-called Hermitian spread S_H in $G_2(q)$, which is obtained by taking the lines of $G_2(q)$ in an elliptic hyperplane of $O_7(q)$. It follows that the union of all members of S_H is the point set of $O_6^-(q)$, and so the corresponding $(q^{n-1} - 1)/(q - 1)$-ovoids are not new. If $q \neq 2 \mod 3$, then nonisomorphic spreads exist, see [71], and these yield new $(q^{n-1} - 1)/(q - 1)$-ovoids of $O_7(q)$.
Hyperbolic case The natural inclusion \(O_{2n-1}(q) \subseteq O_{2n}^-(q) \) yields a \((q^{n-1} - 1)/(q-1)\)-ovoid. CARDINALI & DE BRUYN [185] construct \((q^3 + 1)\)-tight sets of \(O_q^+(q^2) \) as follows. Let \(X_0^2 + aX_0X_1 + bX_1^2 \) be a quadratic form with \(a, b \in F_q \), which is irreducible over \(F_q \) but reducible over \(F_{q^2} \). Let \(O_q^+(q^2) \) be defined by the equation
\[
X_0^2 + aX_0X_1 + bX_1^2 + X_2X_3 + X_4X_5 + X_6X_8 = 0
\]
over \(F_{q^2} \), and let \(O_q^-(q) \) be defined by the same equation, but then considered over \(F_q \). This way, \(O_q^-(q) \subseteq O_q^+(q^2) \). Recall that the graph on maximal singular subspaces (which are \(4\)-spaces) of \(O_q^+(q^2) \), adjacent when intersecting in a plane (a \(3\)-space) is bipartite. Let \(\Phi \) be one of the corresponding bipartition classes. Let \(\Phi' \) be the subset of \(\Phi \) consisting of the members containing a singular plane of \(O_q^-(q) \). Let \(\tau \) be a triality (cf. §3.2.2) of \(O_q^+(q^2) \) mapping \(\Phi \) to the set of points of the polar space \(O_q^+(q^2) \). Then \(\tau(\Phi') \) is a \((q^3 + 1)\)-tight set of \(O_q^+(q^2) \).

For \(n \geq 4 \), there are no known examples of tight sets other than the ones in the previous paragraph and disjoint unions of maximal singular subspaces. Upper bounds \(b \) on \(i \) such that an \(i \)-tight set of \(O_{2n}^+(q) \), with \(i \leq b \), is automatically the union of maximal singular subspaces are given in [42], [63] and [564]. GAVRILIYUK [334] provides other restrictions on \(i \) for \(i \)-tight sets that are not the union of maximal singular subspaces.

Through the Klein correspondence, tight sets of \(O_q^+(q) \) are equivalent to so-called Cameron-Liebler line classes (first studied by CAMERON & LIEBLER [180]), for which many examples and nonexistence results exist. See, e.g., [615], [295], [151], [563], [360], [339], [318], [257], [338], [232].

2.7 Hermitian or unitary polar spaces

We review some properties of the strongly regular graph defined by the points of a finite unitary polar space, adjacent when collinear. We pay special attention to (maximal) cocliques and regular sets (which translate to the geometric notions of partial ovoids and tight sets, respectively, in the corresponding polar space). We also mention a result on hemisystems.

2.7.1 Hermitian forms

Let \(V \) be a vector space over a field \(F \), and let \(\sigma : F \rightarrow F \) be an involutive field automorphism. Recall that a map \(f : V \times V \rightarrow F \) is called a (\(\sigma \)-)Hermitian form if it is additive in each coordinate, semi-linear in the first and linear in the second component, i.e., \(f(ax, by) = a^\sigma b f(x, y) \), for all \(a, b \in F \) and all \(x, y \in V \), and \(\sigma \)-symmetric, i.e., \(f(y, x) = f(x, y)^\sigma \) for all \(x, y \in V \).

If \(f \) is a \(\sigma \)-Hermitian form, then we call \((V, f)\) a Hermitian space, and \(\sigma \) is called the companion field automorphism of \(f \). The fixed point set of \(\sigma \) is a subfield of \(F \) which we denote by \(F_\sigma \). A \(\sigma \)-Hermitian form is nondegenerate if for all \(x \in V \), \(x = 0 \) as soon as \(f(x, y) = 0 \), for all \(y \in V \). The set \(\{ x \in V : f(x, y) = 0, \forall y \in V \} \) is again called the radical of \(f \) and denoted \(\text{Rad}(f) \) (and then \(f \) is nondegenerate precisely when \(\text{Rad}(f) \) is trivial). The Hermitian form \(f \) is called anisotropic if \(f(x, x) = 0 \) implies \(x = 0 \), for all \(x \in V \).

We adopt the same notation as in §2.6. Given a \(\sigma \)-Hermitian form \(f \) and a subset \(S \) of \(V \), put \(S^+ = \{ x \in V : f(s, x) = 0, \forall s \in S \} \) (then the radical is
2.7. HERMITIAN OR UNITARY POLAR SPACES

just V^\perp again). A subspace W of V is called totally isotropic when f vanishes identically on W. The Witt index is the dimension of a maximal isotropic subspace. The set of totally isotropic 1-spaces, also called the null set of f, is a Hermitian variety in PV, sometimes also called a σ-quadric.

2.7.2 Hermitian or unitary polar spaces

Suppose V is a vector space over F and let (V,f) be a Hermitian space. Let X be the set of totally isotropic 1-spaces of V and let Ω be the set of maximal totally isotropic subspaces in V with respect to Q. Then it is easy to check that, if the Witt index is at least 2, (X,Ω) is a polar space embedded in PV, called a Hermitian or unitary polar space. The singular subspaces of (X,Ω) coincide with the totally isotropic subspaces of (V,f). Moreover, the radical of (X,Ω) coincides with $\text{Rad}(f)$. Hence (X,Ω) is nondegenerate precisely when f is nondegenerate. Moreover, one checks that two points $\langle v \rangle$ and $\langle w \rangle$ of (X,Ω) are collinear if and only if $f(v,w) = 0$.

Similarly to Theorem 2.4.1, we have the following reduction theorem for nondegenerate σ-Hermitian forms. The proof is also similar and is omitted.

Theorem 2.7.1 Let (V,f) be a nondegenerate unitary space with finite Witt index n. Then V admits a direct sum decomposition $V = V_0 \oplus V_1$ such that $\dim V_0 = 2n$, and there exists a basis $E = \{e_{-n},e_{-n+1},\ldots,e_{-1},e_1,e_2,\ldots,e_n\}$ of V_0 such that f is given by

$$f(\sum_{i=1}^n (x_{-i}e_i + x_ie_i) + v_1, \sum_{i=1}^n (y_{-i}e_i + y_ie_i) + w_1) = x_{-n}^\sigma y_n + \cdots + x_{-2}^\sigma y_2 + x_{-1}^\sigma y_1 + x_1^\sigma y_{-1} + \cdots + x_n^\sigma y_{-n} + f_1(v_1, w_1),$$

with $f_1 : V_1 \times V_1 \to F : (v_1, w_1) \mapsto f(v_1, w_1)$ anisotropic.

2.7.3 Finite unitary polar spaces and graphs

By Theorem 2.7.1, the nondegenerate unitary polar spaces of rank n over a field F are classified by anisotropic Hermitian forms over F. There are always two standard anisotropic Hermitian forms which exist over any field F admitting an involute field automorphism σ: the trivial one (in a 0-dimensional vector space), and the form $f : F \times F \to F : (x,y) \mapsto x^\sigma y$.

For finite fields F no 2-dimensional anisotropic Hermitian form over F exists. Indeed, let F be arbitrary, with involutive field automorphism σ, and let f be such a form. Its null set is given by an equation (in the unknowns x,y) of shape

$$ax^\sigma + bx^\sigma y + b^\sigma xy^\sigma + cyy^\sigma = 0,$$

with $a, c \in F_\sigma$, $b \in F$.

Since f is anisotropic, $(x,y) = (1,0)$ is not a solution, so $a \neq 0$ and we may assume $a = 1$. Substituting x by $x - by$, the equation reduces to $xx^\sigma = (bb^\sigma - c)yy^\sigma$, which has a solution if and only if $bb^\sigma - c = zz^\sigma$ for some $z \in F$. Hence no 2-dimensional anisotropic σ-Hermitian form exists over F if and only if every element of F_σ can be written as xx^σ, $x \in F$.

A finite field admits an involutive automorphism if and only if its order is a square. So let $F = F_{q^2}$, then $\sigma : x \mapsto x^{q}$ is the unique involutive field
autormorphism. Now $F_\sigma = \mathbb{F}_q$ and since the polynomial x^{q+1}, that maps the $q^2 - 1$ nonzero elements of \mathbb{F}_q to the $q - 1$ nonzero elements of \mathbb{F}_q, can take any value at most $q + 1$ times, it must take each value precisely $q + 1$ times, and in particular at least once. Hence there are no 2-dimensional anisotropic Hermitian forms over a finite field.

We find that if F is finite, there are exactly two cases: The trivial anisotropic Hermitian form (small unitary polar spaces) and the unique 1-dimensional one large unitary polar spaces. This means that in every finite-dimensional vector space over a given finite field of square order, there exists a unique nondegenerate Hermitian form. Hence in every projective space of dimension at least 3 over a field of square order a unique unitary embedded polar space (X, Ω) exists.

The unitary graph of a Hermitian space (V, f) is the collinearity graph $\Gamma = \Gamma(X, \Omega)$ of the corresponding embedded polar space (X, Ω) and thus has as vertex set the set X of points of Δ, where distinct vertices $\langle u \rangle$ and $\langle v \rangle$ are adjacent when $f(u, v) = 0$. Note that, as before, the condition $f(u, v) = 0$ does not depend on the choice of u and v in $\langle u \rangle$ and $\langle v \rangle$, and it is obviously symmetric since $f(u, v) = f(v, u)^\sigma$. The graph Γ can similarly also be defined for Witt index ≤ 1, but then it is has no edges.

2.7.4 Parameters

If V has finite dimension m over the field \mathbb{F}_q, and f is nondegenerate, then (V, f) has Witt index $n = \lceil m/2 \rceil$ and the corresponding Hermitian variety is denoted by $U_m(q)$. (In the literature one also finds $H_{m-1}(q^2)$.) If the Witt index is at least 2, then the corresponding embedded polar space has order (q^2, q) if m is even, and (q^2, q^3) if m is odd. The collinearity graph of this polar space is called $\Gamma(U_m(q))$.

For $m \geq 4$, the unitary graphs are strongly regular and the parameters are given as in Theorem 2.2.12 with (q, t) replaced by (q^2, q) or (q^3, q^3). Let $\varepsilon = (-1)^m$. The unitary graph $\Gamma(U_m(q))$, has the following parameters.

\[
\begin{align*}
 v &= (q^m - \varepsilon)(q^{m-1} + \varepsilon)/(q^2 - 1), \\
 k &= q^2(q^{m-2} - \varepsilon)(q^{m-3} + \varepsilon)/(q^2 - 1), \\
 \lambda &= q^4(q^{m-4} - \varepsilon)(q^{m-5} + \varepsilon)/(q^2 - 1) + q^2 - 1, \\
 \mu &= (q^{m-2} - \varepsilon)(q^{m-3} + \varepsilon)/(q^2 - 1),
\end{align*}
\]

so that $\mu = k/q^2$. The eigenvalues are $k, -1 + \varepsilon q^{m-2}$ and $-1 - \varepsilon q^{m-3}$ with multiplicities 1, $\frac{q^2(q^{m-2} - \varepsilon)(q^{m-3} + \varepsilon)}{(q^2 - 1)(q+1)}$ and $\frac{q^2(q^{m-2} - \varepsilon)(q^{m-3} + \varepsilon)}{(q^2 - 1)(q+1)}$, respectively.

2.7.5 Isomorphisms

The generalized quadrangle $U_4(q)$ is dual to the orthogonal quadrangle $O_6^-(q)$. Hence the graph $\Gamma(U_4(q))$ is isomorphic to the graph $\Delta(O_6^-(q))$ on the maximal singular subspaces of $O_6^-(q)$ and the graph $\Gamma(O_6^-(q))$ is isomorphic to the graph $\Delta(U_4(q))$ on the maximal singular subspaces of $U_4(q)$.

2.7.6 Automorphism groups

Let the general unitary group $GU(V, f)$ be the group of all linear transformations of V that preserve the nondegenerate σ-Hermitian form f. The subgroup D
of $\text{GL}(V)$ consisting of all multiples of the identity acts trivially on PV, and $D \cap \text{GU}(V,f) = \{aI : aa^\sigma = 1\}$. Let the projective general unitary group $\text{PGU}(V,f)$ be the quotient $\text{GU}(V,Q)/\{aI : aa^\sigma = 1\}$. The automorphism group $\text{Aut} \Gamma$ contains $\text{PGU}(V,f)$. The full automorphism group of Γ is $\text{PGL}_n U(V,f)$, that is, $\text{PGU}(V,f)$ extended by the field automorphisms of the underlying field F commuting with σ. It is also the full automorphism group of the embedded polar space $U_n(q)$.

If V and F are finite, say V is n-dimensional over $F = \mathbb{F}_{q^2}$, then we denote $\text{GU}(V,f)$ and $\text{PGU}(V,f)$ by $\text{GU}_n(q)$ and $\text{PGU}_n(q)$, respectively. Also, in this case, the automorphism group of the field is abelian and so the subscript σ in the notation of the full automorphism group is redundant and is omitted; hence we denote $\text{PGL}_n(q)$.

The group $\text{PGU}(V,f)$ is in general not simple. Let $\text{SU}(V,f)$ be the (normal) subgroup of $\text{GU}(V,f)$ of all its matrices with determinant 1, and let $\text{PSU}(V,f)$ be its quotient with the subgroup of scalar matrices it contains. In the finite case we also use the corresponding more specific (self-explaining) notation $\text{SU}_n(q)$ and $\text{PSU}_n(q)$, respectively. The latter is also denoted by $U_n(q)$ (there will be no confusion with the polar space) and is simple (remember we have $n \geq 4$).

The group $U_n(q)$ is the intersection of all groups acting rank 3 on the graph $\Gamma(U_n(q))$. Hence that group, and all overgroups in $\text{PGL}_n(q)$, act rank 3 on the graph Γ.

2.7.7 Maximal cliques

Again, the maximal cliques of Γ are the maximal totally isotropic subspaces of (V,f). In the finite nondegenerate cases $U_{2n}(q)$ and $U_{2n+1}(q)$, these have dimension n and size $(q^{2n} - 1)/(q^2 - 1)$. The maximal cliques form a single orbit under $\text{Aut} \Gamma$.

2.7.8 Maximal cocliques

Recall that an ovoid in a nondegenerate unitary polar space is a set of points that meets every maximal totally singular subspace in precisely one point. Also, ovoids (when they exist) are maximal cocliques. For $\dim V = n + m + 1$, where n is the Witt index and $m \in \{n-1, n\}$, one has $|C| \leq q^{2m+1} + 1$ and $|O| = q^{2m+1} + 1$ for each coclique C and ovoid O.

There are ovoids in $U_4(q)$ and no ovoids in $U_{2n+1}(q)$ for $n \geq 2$. There is no ovoid in $U_6(2)$ ([258]; see also §10.74). For $U_{2n+2}(q), n \geq 2$, the best result is due to Moorhouse [574], see Proposition 2.7.8 below.

Proposition 2.7.2 The generalized quadrangle $U_4(q)$ has ovoids for each prime power q.

Proof. Any plane of PV that does not have any line in common with $U_4(q)$ intersects the latter in an ovoid. Such planes exist in abundance. Algebraically, if $U_4(q)$ is given by the equation $x_0x_1^q + x_1x_0^q + x_2x_3^q + x_3x_2^q = 0$, then pick $a \in \mathbb{F}_{q^2}$ so that $a + a^q = 1$ and the plane with equation $x_3 = ax_2$ intersects $U_4(q)$ in the Hermitian curve O with (more or less) standard equations

\[
\begin{align*}
0 &= x_3 - ax_2, \\
0 &= x_0x_1^q + x_1x_0^q + x_2^{q+1}
\end{align*}
\]
which clearly contains no lines. □

Let \(U_4(q) \) have point set \(X \). Let a plane ovoid of \(U_4(q) \) be the intersection \(X \cap \pi \) of \(X \) with a nontangent plane \(\pi \). If \(H \) is any hyperbolic line, then \(H \) and \(H^\perp \) meet precisely the same totally isotropic lines. Thus, if \(O \) is any ovoid, and \(H \cap X \subseteq O \) then \((O \setminus H) \cup (H^\perp \cap X)\) is again an ovoid. In particular this applies to plane ovoids and produces nonisomorphic ovoids. This can be done multiple times (at least \(q^2 - q + 1 \) times) to produce many nonisomorphic classes of ovoids.

No partition of \(X \) into ovoids can consist of plane ovoids only. But nevertheless we can construct such partitions.

Proposition 2.7.3 (Brouwer & Wilbrink [144]) The generalized quadrangle \(U_4(q) \) admits partitions into ovoids.

Proof. Fix a nonisotropic point \(p \), an isotropic point \(x \in p^\perp \), and a tangent \(T \) on \(x \) in \(p^\perp \). Put \(O_x = X \cap p^\perp \), and \(O_y = (\langle y^\perp \cap X \rangle \setminus p^\perp) \cup (\langle y, p \rangle \cap X) \) for each \(y \in T \setminus \{x\} \). Then each \(O_u \) is an ovoid, and \(\{O_u \mid u \in T\} \) is a partition of \(X \) into ovoids. □

Corollary 2.7.4 The graph \(\Gamma(U_4(q)) \) has chromatic number \(q^2 + 1 \). □

Proposition 2.7.5 The unitary polar space \(U_{2n+1}(q) \), \(n \geq 2 \), has no ovoids for any prime power \(q \).

Proof. As before, due to Corollary 2.2.16, it suffices to show the assertion for \(n = 2 \).

In this case, an ovoid \(O \) has \(q^3 + 1 \) points. A hyperplane (4-space) \(H \) contains \(q^3 + 1 \) points of \(O \) if the hyperplane intersects \(U_5(q) \) in a nondegenerate unitary space (isomorphic to \(U_4(q) \)); in this case \(H \cap O \) is an ovoid of \(U_4(q) \), or if it intersects \(U_5(q) \) in a degenerate unitary space and the radical \(p \) does not correspond to a point of \(O \) (then every line of \(U_5(q) \) through \(p \) contains a unique point of \(O \) and there are precisely \(q^3 + 1 \) such lines). Otherwise the hyperplane contains a unique point of \(O \), and we can pick a plane \(\pi \) disjoint from \(O \). If exactly \(k \) hyperplanes through \(\pi \) intersect \(O \) in \(q^3 + 1 \) points, then \(k(q^3 + 1) + (q^3 + 1 - k) = q^3 + 1 \). This is impossible for integer \(k \). □

We mention without proof the following upper bound, proved by De Beule et al. [256].

Proposition 2.7.6 The maximum size of a coclique of the graph \(\Gamma(U_{2n+1}(q)) \) is

\[1 + q^{2(n-3)}(q^7 - q^6 + q^5 + 1) - q^3 \cdot \frac{q^{2(n-2)} - 1}{q^2 - 1} \]

Finally, we mention a result due to Blokhuis & Moorhouse [82].

Proposition 2.7.7 The unitary polar space \(U_{2n}(q) \), has no ovoids for \(n \geq 4 \) and \(q \) a power of 2 or 3. Also, it has no ovoids for \(n \geq 5 \) and \(q \) a power of 5 or 7.
2.7. HERMITIAN OR UNITARY POLAR SPACES

The latter proposition is also a consequence of the following stronger result due to Moorhouse [574].

Proposition 2.7.8 Let \(q = p^e \), \(p \) prime and \(e \) a positive integer. If \(C \) is a coclique of \(\Gamma(U_m(q)) \), then

\[
|C| \leq \left(\frac{(p + m - 2)^2}{m - 1} - \left(\frac{p + m - 3}{m - 1} \right)^2 \right)^e + 1.
\]

If \(U_{2n}(q) \) contains an ovoid, then

\[
p^{2n-1} \leq \left(\frac{p + 2n - 2}{2n - 1} \right)^2 - \left(\frac{p + 2n - 3}{2n - 1} \right)^2.
\]

The bounds presented in Propositions 2.7.6 and 2.7.8 are complementary; none of them is always better than the other.

2.7.9 Tight sets

The natural inclusions \(U_{2n}(q) \subseteq U_{2n+1}(q) \subseteq U_{2n+1}(q) \) give rise to standard \((q^{2n-1} + 1)\)-tight sets and \((q^{2n} - 1)/(q^2 - 1)\)-ovoids of \(U_{2n+1}(q) \) and \(U_{2n+2}(q) \), respectively. Every \(i \)-tight set of \(U_{2n}(q) \) is by natural inclusion also an \(i \)-tight set of \(U_{2n+1}(q) \). There are two other generic examples, which we now describe. Let \(U_{2n+1}(q) \) be defined by the Hermitian form

\[
f : (x_0, x_1, \ldots, x_{2n}) \mapsto \sum_{i=0}^{2n} (-1)^i x_i x_i^q.
\]

Its restriction to \(\mathbb{F}_q \) defines a polar space \(O_{2n+1}(q) \) contained in \(U_{2n+1}(q) \), and this is a \((q + 1)\)-tight set (as shown in [259]). Also, let \(U_{2n}(q) \) be defined by the Hermitian form

\[
f : (x_1, x_2, \ldots, x_{2n}) \mapsto \sum_{i=1}^{n} x_{2i-1} x_{2i}^q - x_{2i} x_{2i-1}^q.
\]

Its restriction to \(\mathbb{F}_q \) defines a polar space \(Sp_{2n}(q) \) contained in \(U_{2n}(q) \) and this is a \((q + 1)\)-tight set of both \(U_{2n}(q) \) and \(U_{2n+1}(q) \). Except for some sporadic examples in small cases, these are essentially the only known tight sets (up to disjoint unions of these) in finite Hermitian polar spaces.

Načić & Storme [584] prove that every \(i \)-tight set of \(U_{2n}(q) \), with \(q \geq 9 \) odd, and \(i < q^{4/3} - 1)/2 \), is the disjoint union of a number of the above examples.

Metsch & Werner [566] prove that every \(i \)-tight set of \(U_{2n+1}(q) \), with \(i \leq (q + 1)/2 \), is the disjoint union of a number of maximal singular subspaces. The ultimate conjecture is that this is true as soon as \(i < q + 1 \). This conjecture is proved for \(U_5(q) \) by De Beule & Metsch [259]. The latter paper also contains an improvement for the above bound when \(n = 3 \): Every \(i \)-tight set of \(U_7(q) \), with \(i \leq q + 1 - \sqrt{2q} \), is the disjoint union of a number of maximal singular subspaces.

There is not much hope of constructing large tight sets using disjoint maximal singular subspaces as it is known that \(U_{2n}(q) \) and \(U_5(2) \) have no spreads (see [683] and §10.63, respectively), and for the other Hermitian polar spaces, nothing is known about the existence of spreads.
2.7.10 Partial spreads

Luyckx [530] constructed partial spreads of size $q^{2n+1} + 1$ in $U_{4n+2}(q)$, and Vanhove [708] shows that there are no larger partial spreads.

2.7.11 Hemisystems

A hemisystem in $U_4(q)$, where q is odd, is a system of lines covering each point $(q+1)/2$ times. Equivalently, a hemisystem of points in $O^+_6(q)$ is a set of isotropic points that meets every t.i. line in $(q+1)/2$ points.

Proposition 2.7.9 (Cameron et al. [177]) Let S be a hemisystem of points in $O^+_6(q)$. Then S induces in $\Gamma(O^+_6(q))$ a strongly regular graph with parameters $(v, k, \lambda, \mu) = (1/2(q+1)(q^3+1), 1/2(q-1)(q^2+1), 1/2(q-3), 1/2(q-1)^2)$ and eigenvalues $r = q-1, s = -1/2q(q-1) - 1$.

This is a special case of the following lemma.

Lemma 2.7.10 Let Γ be a strongly regular graph with spectrum k^1, r^f, s^g, and let C be a regular subset of Γ of size c, degree d, and nexus e. If $d-e = s$ and $cd - d^2 - (c-g)r^2 - \frac{(d+(c-g)r)r^2}{g-1} = 0$, then C induces a strongly regular graph with eigenvalues d, r, and $-\frac{d+(c-g)r}{g-1}$.

Proof. Use that the sum of the eigenvalues of a graph with adjacency matrix A is $\text{tr}A = 0$, and the sum of the squares of the eigenvalues is $\text{tr}A^2$ which is twice the number of edges. Apply this to the graph $\Gamma[C]$ induced by Γ on C. It has eigenvalues d, and r with multiplicity at least $c-g$, and certain other eigenvalues θ_i, say. (Let U be the space of vectors indexed by $V\Gamma$ that vanish outside C and are orthogonal to the s-eigenspace W of Γ. Then $\dim U \geq c-g$ and all $u \in U$ restrict to r-eigenvectors of $\Gamma[C]$ since W contains a nonzero vector constant on C.) We find $\sum \theta_i = g-1, \sum \theta_i = -d - (c-g)r$ and $\sum \theta_i^2 = cd - d^2 - (c-g)r^2$. If $\bar{\theta}$ is the average of the θ_i, then $\bar{\theta} = -\frac{d+(c-g)r}{g-1}$ and our condition says $\sum (\theta_i - \bar{\theta})^2 = 0$, so that all θ_i are equal. □

Other examples of this situation are subgraphs $4K_2$ in the complement of the Clebsch graph, and Hoffman-Singleton subgraphs of the Higman-Sims graph.
Chapter 3

Graphs related to polar spaces

The previous chapter discussed the collinearity graphs of embedded polar spaces. Here we discuss other strongly regular graphs that are found in the same setting, such as graphs on the nonisotropic points or on the maximal singular subspaces.

3.1 Graphs on the nonsingular or nonisotropic points

3.1.1 Association scheme in even characteristic

Let q be a power of 2, and $n \geq 3$. Let V be an n-dimensional vector space over \mathbb{F}_q provided with a nondegenerate quadratic form. If n is odd, there will be a nucleus $N = V^\perp$. Let X be the set of nonsingular points other than N.

Consider the following relations on X.

- $R_0 = \{(x,x) \mid x \in X\}$,
- $R_1 = \{(x,y) \mid \langle x,y \rangle \text{ is a hyperbolic line (secant)}\}$,
- $R_2 = \{(x,y) \mid \langle x,y \rangle \text{ is an elliptic line (exterior line)}\}$,
- $R_3 = \{(x,y) \mid \langle x,y \rangle \text{ is a tangent}\}$,
- $R_{3a} = \{(x,y) \mid \langle x,y \rangle \text{ is a tangent not on } N\}$,
- $R_{3n} = \{(x,y) \mid \langle x,y \rangle \text{ is a tangent on } N\}$.

Note that every line on N is a tangent, and that for $n = 3$ there are no other tangents, so that R_{3a} is empty. For $q = 2$ a hyperbolic line contains only one nonsingular point, and a tangent on N contains only one nonsingular point distinct from N, so that R_1 and R_{3n} are empty.

Theorem 3.1.1 (Vanhove [709])

(i) If n is even or $n = 3$, then $(X, \{R_0, R_1, R_2, R_3\})$ is an association scheme.

(ii) If n is odd and $n \geq 5$, then $(X, \{R_0, R_1, R_2, R_{3a}, R_{3n}\})$ is an association scheme.
(Part (ii) corrects [123], Theorem 12.11.)

All parameters $p_{l,k}$ are given in loc. cit. For $n = 2m$ the graph (X, R_3) has parameters $v = q^{2m-1} - \varepsilon q^{m-1}$, $k = n_3 = q^{2m-2} - 1$, $\lambda = p_{33} = q^{2m-3} - 2$. It is strongly regular only when $q = 2$.

The eigenvalue matrix and multiplicities are for $O_{2m}(q)$:

$$P = \begin{pmatrix}
1 & \frac{1}{2}q^{m-1}(q-2) & \frac{1}{2}q^m(q^{m-1} - \varepsilon) & \frac{1}{2}q^m(q^{m-1} + \varepsilon)(q-2) & \frac{1}{2}q^m(q^{m-1} - \varepsilon)(q-2) \\
1 & \frac{1}{2}q^{m-2}(q+1)(q-2) & \frac{1}{2}q^m(q^{m-1} - \varepsilon) & \frac{1}{2}q^m(q^{m-1} + \varepsilon)(q-2) & \frac{1}{2}q^m(q^{m-1} - \varepsilon)(q-2) \\
1 & 0 & \frac{1}{2}q^{m-1} & 0 & \frac{1}{2}q^{m-1} \\
1 & -\varepsilon q^{m-1} & 0 & \frac{1}{2}q^{m} & 0 \\
1 & 0 & 0 & \frac{1}{2}q^{m} & \frac{1}{2}q^{m}
\end{pmatrix}$$

with multiplicities (in the order of the rows of P) $1, q^2(q^{2m-2} - 1)/(q^2 - 1)$, $\frac{1}{2}q(q^{m-1} - \varepsilon)(q^{m} - \varepsilon)/(q + 1), \frac{1}{2}(q-2)(q^{m-1} + \varepsilon)(q^{m} - \varepsilon)/(q - 1)$.

For $O_{2m+1}(q)$:

$$P = \begin{pmatrix}
1 & \frac{1}{2}q^{2m-1}(q-2) & \frac{1}{2}q^m(q^{2m-2} - 1) & q-2 \\
1 & \frac{1}{2}q^{m-1}(q-2) & \frac{1}{2}q^m(q^{m-1} - \varepsilon)(q-2) & q-2 \\
1 & -\frac{1}{2}q^{m-1}(q-2) & -\frac{1}{2}q^m(q^{m-1} - \varepsilon)(q-2) & q-2 \\
1 & \frac{1}{2}q^m & -\frac{1}{2}q^m & 0 & -1 \\
1 & -\frac{1}{2}q^{m} & \frac{1}{2}q^{m} & 0 & -1
\end{pmatrix}$$

with multiplicities (in the order of the rows of P) $1, \frac{1}{2}q(q^{m-1} - \varepsilon)(q^{m} - \varepsilon)/(q-1), \frac{1}{2}q(q^{m-1} + \varepsilon)/(q - 1), \frac{1}{2}(q-2)(q^{m-1} - \varepsilon)(q^{m} - \varepsilon)/(q - 1)$ (twice).

For $q = 2$ and $n = 2m + 1$ the graph (X, R_3) is isomorphic to $\Gamma(O_{2m+1}(2))$. The graph obtained for $q = 2$ and $n = 2m$ is discussed below.

3.1.2 Nonsingular points over F_2

Let V be a vector space of dimension $2m$ over F_2, provided with a nongenerate quadratic form of type ε, $\varepsilon = \pm 1$. The corresponding quadric has $2^{2m-1} + \varepsilon 2^{m-1} - 1$ points, so that V has $2^{2m-1} - \varepsilon 2^{m-1}$ nonsingular points. Let Γ be the graph on these nonsingular points, adjacent when they are orthogonal, i.e., when the connecting line is a tangent. If $m \geq 2$, then Γ is strongly regular with parameters $(v, k, \lambda, \mu, \theta, \theta)$ and spectrum $k^1 \theta^1 \theta^2$, where

- $v = 2^{2m-1} - \varepsilon 2^{m-1}$
- $k = 2^{2m-2} - 1$
- $\lambda = 2^{2m-3} - 2$
- $\mu = 2^{2m-3} + \varepsilon 2^{m-2}$
- $\theta_1 = 1$ (the identification of θ^1 with θ^1 depends on the sign of ε.)
- $\theta_2 = \frac{4}{3}(2^{m-1} - 1)$

(The identification of θ^1 with θ^2 depends on the sign of ε.)

We shall denote this graph by $NO_{2m}(2)$.

The group $O_{2m}(2)$ acts as a group of automorphisms.

For $m = 1, 2$ one finds $NO_2^+(2) = K_1$, $NO_2^-(2) = 3K_1$, $NO_4^+(2) = K_{3,3}$, and $NO_4^-(2) = \frac{1}{2}(5)$. The details on cliques and cocliques are given in §3.6.
3.1.3 Nonsingular points of one type over \mathbb{F}_3 in dimension $2m$

Let V be a vector space of dimension $2m$ over \mathbb{F}_3, provided with a nondegenerate quadratic form Q of type ε, $\varepsilon = \pm 1$. The corresponding quadric has $\frac{1}{2}(3^{2m-1} + \varepsilon 3^{m-1} - 1)$ points, and the set of nonsingular points is split into two parts of equal size by considering the value of Q. Let Γ be the graph on one part, where two points are adjacent when they are orthogonal (i.e., when the connecting line is elliptic). If $m \geq 2$, then Γ is strongly regular with parameters (v, k, λ, μ) and spectrum $k^1 \theta_1^{m_1} \theta_2^{m_2}$, where

\[
v = \frac{1}{2} 3^{m-1}(3^m - \varepsilon), \quad \theta_1 = \varepsilon 3^{m-1}, \n\]
\[
k = \frac{1}{2} 3^{m-1}(3^m - \varepsilon), \quad \theta_2 = -\varepsilon 3^{m-2}, \n\]
\[
\lambda = \frac{1}{2} 3^{m-2}(3^m + \varepsilon), \quad m_1 = \frac{1}{8}(3^m - \varepsilon)(3^{m-1} - \varepsilon), \n\]
\[
\mu = \frac{1}{2} 3^{m-1}(3^m - 2\varepsilon), \quad m_2 = \frac{9}{8}(3^{2m-2} - 1). \n\]

We shall denote this graph by $NO_2^{\pm}(3)$.

The group $O_2^{\pm}(3)$ acts as a group of automorphisms.

For $m = 1, 2$ one finds $NO_2^{+}(3) = K_1$, $NO_2^{-}(3) = K_2$, $NO_4^{+}(3) = 3K_4$, and $NO_4^{-}(3) = Sp_4(2)$.

Cocliques and chromatic number of $NO_2^{\pm}(3)$

The Hoffman bound for cocliques in $NO_2^{\pm}(3)$ is 3^{m-1}. Cocliques of this size are for example the sets C_U of vertices in a perp U^{\perp} where U is a t.s. $(m-1)$-space. If U runs through all hyperplanes of a t.s. m-space, then the sets C_U partition V, so that this graph has chromatic number $\frac{1}{2}(3^m - 1)$.

If $m \geq 2$, and W is a t.s. $(m-2)$-space, then W^{\perp}/W is a 4-space in which $NO_4^{+}(3) = 3K_4$. That means that W^{\perp} meets the vertex set in the 3^{m-2}-coclique extension of $3K_4$ and we find $4^{\frac{m}{2}}$ cocliques of size 3^{m-1} in W^{\perp}. Of these, 4^2 are of the form C_U for some $U \supset W$. In particular, we found two types of cocliques meeting the Hoffman bound.

3.1.4 Nonsingular points of one type in dimension $2m + 1$

Let V be a vector space of dimension $2m + 1$ over \mathbb{F}_q, where $m \geq 1$, provided with a nondegenerate quadratic form Q. The set of nonsingular hyperplanes is split into two parts of sizes $\frac{1}{2} q^n(q^n + \varepsilon)$ ($\varepsilon = \pm 1$), with $\varepsilon = +1$ (resp. -1) for hyperbolic (resp. elliptic) hyperplanes. Let Γ be the graph on one part, where two hyperplanes x, y are adjacent when $Q \cap x \cap y$ is degenerate. Then Γ is strongly regular with parameters (v, k, λ, μ) and spectrum $k^1 \theta_1^{m_1} \theta_2^{m_2}$, where

\[
v = \frac{1}{2} q^n(q^n + \varepsilon), \quad \theta_1 = -\varepsilon q^{m-1} - 1, \n\]
\[
k = (q^{n-1} + \varepsilon)(q^n - \varepsilon), \quad \theta_2 = \varepsilon(q - 2)q^{m-1} - 1, \n\]
\[
\lambda = 2(q^{2n-2} - 1) + \varepsilon q^{m-1}(q - 1), \quad m_1 = \frac{1}{2} q^{2n-1} - 1 - \frac{q(q^{2m-1} - 1)}{2(q - 1)}, \n\]
\[
\mu = 2q^{m-1}(q^{m+1} + \varepsilon), \quad m_2 = \frac{q(q^{2m-1} - 1)}{2(q - 1)} + \frac{1}{2} \varepsilon q^m. \n\]
(To be more precise: this graph is complete if \(q = 2 \), edgeless if \((m, \varepsilon) = (1, -1)\), and strongly regular otherwise.)

This construction is due to Wilbrink (cf. [137]).

We shall also call this latter graph \(NO_{2m+1}(q) \).

The group \(O_{2m+1}(q) \) acts as a group of automorphisms, see below for the cases of a rank 3 action.

For odd \(q \), this description is equivalent to: Let \(V \) be a vector space of dimension \(2m + 1 \) over \(\mathbb{F}_q \), where \(m \geq 1 \), provided with a nondegenerate quadratic form \(Q \). The set of nonsingular points is split into two parts of sizes \(\frac{1}{2} q^m(q^m + \varepsilon) \) \((\varepsilon = \pm 1) \), where the points \(x \) are distinguished by the type \(\varepsilon \) \((= \pm 1) \) of the hyperplane \(x^\perp \). Let \(\Gamma \) be the graph on one part, where two points are adjacent when the line joining them is a tangent. Then \(\Gamma \) is strongly regular with parameters as given above. For even \(q \) this second description fails because of the nucleus.

For \(\varepsilon = +1 \), the maximum cliques have size \(q^m \), and reach the Hoffman bound.

For \(\varepsilon = +1 \), \(m = 2 \) and odd \(q \), the maximum cocliques have size \((q^2 + 1)/2 \) and reach the Hoffman bound.

The complementary graph \(\overline{\Gamma} \) is strongly regular with parameters \((v, k, \lambda, \mu)\) and spectrum \(k^1 \theta_1^{m_1}, \theta_2^{m_2} \), where

\[
\begin{align*}
v &= \frac{1}{2} q^m(q^m + \varepsilon), & \theta_1 &= -\varepsilon(q - 2)q^{m-1}, \\
k &= \frac{1}{2} (q - 2)q^{m-1}(q^m - \varepsilon), & \theta_2 &= \varepsilon q^{m-1}, \\
\lambda &= \frac{1}{2} (q - 2)^2 q^{2m-2} - \frac{1}{2} \varepsilon(3q - 8)q^{m-1}, & m_1 &= \frac{q(q^{2m-1} - 1)}{2(q - 1)} + \frac{1}{2} \varepsilon q^m, \\
\mu &= \frac{1}{2} (q - 2)^2 q^{2m-2} - \frac{1}{2} \varepsilon(q - 2)q^{m-1}, & m_2 &= \frac{1}{2} q^{2m} - 1 - \frac{q(q^{2m-1} - 1)}{2(q - 1)}.
\end{align*}
\]

In the special case \(q = 3 \), this graph \(\overline{\Gamma} \) has parameters

\[
\begin{align*}
v &= \frac{1}{2} 3^m(3^m + \varepsilon), & \theta_1 &= -\varepsilon 3^{m-1}, \\
k &= \frac{1}{2} 3^{m-1}(3^m - \varepsilon), & \theta_2 &= \varepsilon 3^{m-1}, \\
\lambda &= \frac{1}{2} 3^{m-1}(3^{m-1} - \varepsilon), & m_1 &= \frac{3(3^{2m-1} - 1)}{4} + \frac{1}{2} \varepsilon 3^m, \\
\mu &= \frac{1}{2} 3^{m-1}(3^{m-1} - \varepsilon), & m_2 &= \frac{1}{2} 3^{2m} - 1 - \frac{3(3^{2m-1} - 1)}{4}.
\end{align*}
\]

and vertices (in the second description) are adjacent when they are orthogonal.

We shall also call this latter graph \(NO_{2m+1}^\perp(3) \), so that \(NO_{2m+1}^\perp(3) \) is the same as \(NO_{2m+1}^{\perp}(3) \). One has \(NO_{3}^{\perp}(3) \approx 3K_2 \) and \(NO_{3}^{-}(3) \approx K_3 \).

Rank 3 graphs

The graph \(NO_{2m+1}(q) \) is rank 3 if \(q \in \{3, 4, 8\} \) and \((m, \varepsilon) \neq (1, -1) \), and for \((m, \varepsilon) = (1, 1) \) and any \(q \). In the latter case this graph is the triangular graph \(T(q + 1) \). The groups \(O_{3}(3) \) \(\simeq \text{PGL}_2(3) \), \(O_{4}(4) \) \(\simeq \text{PSL}_2(4) \) and \(O_{8}(8) \) \(: 3 \simeq \text{PSL}_2(4) \).
PTL_2(8) act as a rank 3 permutation group on NO^+_3(3), NO^+_4(4) and NO^+_5(8), respectively. For \(q = 8 \), we always need to extend the group by the nontrivial field automorphisms to obtain a rank 3 action on NO^+_{2m+1}(8), \((m, \varepsilon) \neq (1, -1)\).

For \(m = 3 \), the graph NO_2(q) admits a description using the generalized hexagons \(G_2(q) \), see §4.8. Indeed, a hyperbolic hyperplane of \(V \) intersects \(G_2(q) \) in a subhexagon of order \((1, q)\) (and all such subhexagons arise this way) and an elliptic hyperplane of \(V \) intersects \(G_2(q) \) in a Hermitian spread (and all Hermitian spreads arise this way). Then NO^+_7(q) is the graph with vertices the subhexagons of order \((1, q)\) of \(G_2(q) \), adjacent when they share at least one point (in which case they share exactly 2 or \(q + 2 \) points), and NO^+_7(q) is the graph with vertices the Hermitian spreads of \(G_2(q) \), adjacent when they share exactly one line (the only alternative is that they share a regulus of a hyperbolic quadric in the intersection of \(Q \) and a solid).

For \(q = 3, 4, 8 \), the group \(G_2(q) \) (extended by the field automorphisms if \(q = 8 \)) acts rank 3 on NO^+_{7}(q); it cannot act rank 3 on NO^+_7(q) as there are always three possibilities for the number of points in the intersection of two subhexagons of order \((1, q)\) of the split Cayley hexagon \(G_2(q) \), namely 0, 2 and \(q + 2 \). However, it is rank 4 precisely when the stabilizer in the group \(G_2(q) \) of a given subhexagon \(H \) of order \((1, q)\) acts transitively on the subhexagons sharing exactly a given set of \(q + 1 \) (mutually opposite) lines with \(H \) (and no points). Since such hexagons have two points on either such line, this is equivalent to PGL_2(q) acting rank 3 on the triangular graph \(T(q + 1) \) obtained from the projective line PG(1, q) by taking pairs of points, adjacent when sharing a point. Hence \(G_2(q) \) acts rank 4 on NO^+_{7}(q) precisely when \(q \in \{3, 4\} \), and \(G_2(8) : 3 \) acts rank 4 on NO^+_{7}(8) (as one can easily check; it also follows from Theorem 11.3.3(ii)).

Tower and clique sizes

The \(NO^+(3) \) graphs form a tower: the graph \(NO^+_{2n+3}(3) \) is locally \(NO^+_2(3) \), and the graph \(NO^+_{2n+1}(3) \) is locally \(NO^+_2(3) \). Conversely, Pasechnik [599] shows that for \(n \geq 3 \) the only locally \(NO^+_{2n}(3) \) graph is \(NO^+_{2n+1}(3) \), and the only locally \(NO^+_{2n-1}(3) \) graph is \(NO^+_2(3) \).

It follows that maximum cliques in \(NO^+_{2n}(3) \) have size \(2m \) if \(\varepsilon = (-1)^m \), and \(2m - 1 \) otherwise; and that maximum cliques in \(NO^+_{2m+1}(3) \) have size \(2m + 1 \) if \(\varepsilon = (-1)^m \), and \(2m \) otherwise.

3.1.5 Nonsingular points of one type over \(F_5 \) in dimension \(2m + 1 \)

Let \(V \) be a vector space of dimension \(2m + 1 \) over \(F_5 \), provided with a non-degenerate quadratic form \(Q \). The set of nonsingular points is split into two parts, depending on the type \(\varepsilon = (\pm 1) \) of the hyperplane \(x^+ \). Let \(\Gamma \) be the graph on one part, where two points are adjacent when they are orthogonal. Then \(\Gamma \) is strongly regular with parameters \((v, k, \lambda, \mu)\) and spectrum \(k^1 \theta_1^m \theta_2^m \), where

\[
\begin{align*}
v &= 5^m(5^m + \varepsilon)/2, & \theta_1 &= 2\varepsilon 5^{m-1}, \\
 k &= 5^{m-1}(5^m - \varepsilon)/2, & \theta_2 &= -\varepsilon 5^{m-1}, \\
 \lambda &= 5^{m-1}(5^m - 1)/2, & m_1 &= \frac{1}{6} (5^{2m} - 1), \\
 \mu &= 5^{m-1}(5^{m-1} + \varepsilon)/2, & m_2 &= \frac{5}{6} (5^m - \varepsilon)(2 \cdot 5^{m-1} + \varepsilon).
\end{align*}
\]
This construction is due to Wilbrink (cf. [137]).

We shall denote this graph $NO_{2m+1}^2(5)$.

The group $O_{2m+1}(5)$ acts as a group of automorphisms.

3.1.6 Nonisotropic points for a Hermitian form

Let V be a vector space of dimension n over \mathbb{F}_{q^2}, provided with a nondegenerate Hermitian form. Let $n \geq 3$ and $\varepsilon = (-1)^n$. Let Γ be the graph on the nonisotropic points, adjacent when joined by a tangent. Then Γ is strongly regular with parameters (v, k, λ, μ) and spectrum $k^1 \theta_1^{m_1} \theta_2^{m_2}$, where

$$v = q^{n-1}(q^n - \varepsilon)/(q + 1), \quad \theta_1 = \varepsilon q^{n-2} - 1,$$

$$k = (q^{n-1} + \varepsilon)(q^{n-2} - \varepsilon), \quad \theta_2 = -\varepsilon(q^2 - q - 1)q^{n-3} - 1,$$

$$\lambda = q^{2n-5}(q + 1) - \varepsilon q^{n-2}(q - 1) - 2, \quad m_1 = \frac{(q^2 - q - 1)(q^n - \varepsilon)(q^{n-1} + \varepsilon)}{(q + 1)(q^2 - 1)},$$

$$\mu = q^{n-3}(q + 1)(q^{n-2} - \varepsilon), \quad m_2 = \frac{q^3(q^{n-2} - \varepsilon)(q^{n-1} + \varepsilon)}{(q + 1)(q^2 - 1)}.$$

We shall denote this graph by $NU_n(q)$. The group $U_n(q)$ acts as a group of automorphisms.

If n is odd, the Hoffman bound for cliques is q^{n-1}. Cliques meeting this bound are obtained as $Z^\perp \setminus Z$ where Z is a maximal totally isotropic subspace.

If $n = 3$, the Hoffman bound for cocliques is $q^2 - q + 1$. Cocliques meeting this bound are obtained as the sets C_x of vertices in $\{x\} \cup x^\perp$ for nonisotropic x. The collection of sets C_x where x varies on a fixed tangent line is a partition of the vertex set, so that $NU_3(q)$ has chromatic number q^2. (See §10.22 and §10.52 for $q = 3, 4$).

The complementary graph $NU_n^c(q)$ is the graph on the nonisotropic points, adjacent when on a secant. It is strongly regular with parameters (v, k, λ, μ) and spectrum $k^1 \theta_1^{m_1} \theta_2^{m_2}$, where

$$v = q^{n-1}(q^n - \varepsilon)/(q + 1), \quad \theta_1 = \varepsilon q^{n-3}r,$$

$$k = q^{n-2}r(q^{n-1} + \varepsilon)/(q + 1), \quad \theta_2 = -\varepsilon q^{n-2},$$

$$\lambda = \mu + \varepsilon q^{n-3}r - \varepsilon q^{n-2}, \quad m_1 = \frac{q^3(q^{n-2} - \varepsilon)(q^n - \varepsilon)}{(q + 1)(q^2 - 1)},$$

$$\mu = \frac{q^{n-2}r(q^{n-3}r + \varepsilon)}{q + 1}, \quad m_2 = \frac{r(q^n - \varepsilon)(q^{n-1} + \varepsilon)}{(q + 1)(q^2 - 1)},$$

where $r = q^2 - q - 1$.

Rank 3 tower

The case $q = 2$ is special. The group action is rank 3 for $q = 2$. The graph $NU_n(2)$ is the graph on the nonisotropic points, adjacent when orthogonal. It is locally $NU_{n-1}(2)$.

Hyperplanes

The graph $\overline{NU}_n(q)$ can also be seen as the set of nondegenerate hyperplanes of a nondegenerate hermitian form on a vector space V of dimension n over \mathbb{F}_{q^2}, adjacent if they intersect in a nondegenerate subhyperplane (i.e., a subspace of codimension 2). For $n = 3$, $\overline{NU}_3(q)$ is hence the graph on the blocks of a Hermitian unital, adjacent if they are disjoint.

Orthogonality in the plane

Let V be a vector space of dimension 3 over \mathbb{F}_{q^2}, provided with a nondegenerate Hermitian form. Let Γ be the graph on the nonisotropic points, adjacent when orthogonal. Then Γ has $v = q^2(q^2 - q + 1)$ vertices. If $q = 2$, then $\Gamma \cong 4K_3$, the disjoint union of four triangles. If $q > 2$ the Γ is distance-regular with intersection array \(\{q^2 - q, q^2 - q - 2, q + 1; 1, 1, q^2 - 2q\}\) and spectrum \((q^2 - q)^1 q(q^2 - q - 2)(q^2 - q + 1)\). See [123], Theorem 12.4.1.

Unitals and O’Nan configurations

A unital (of order q) is a Steiner system $S(2, q + 1, q^3 + 1)$, that is, a 2-$(q^3 + 1, q + 1, 1)$ design. The order q need not be a prime power; examples for $q = 6$ were constructed in [547] and [32]. An embedded unital is a unital of order q of which the point set X is a subset of the set of points of an arbitrary projective plane $\text{PG}(2, q^2)$, and the blocks are the nontrivial intersections of X with lines. For example, the Hermitian unitals (where the point set is the set of absolute points for a unitary polarity) are embedded unitals, and the name comes from this example. Embedded unitals are two-character sets: each line meets X in either 1 or $q + 1$ points. A monograph on embedded unitals is [51].

An O’Nan configuration (say, in a partial linear space) is a configuration of four lines meeting in six points. O’NAN [597] proved that the full automorphism group of the Hermitian unital is $\text{PΓU}_3(q)$. Also, that this design does not contain O’Nan configurations. An immediate consequence is that $NU_3(q)$ (viewed as the block graph of the unital) has precisely two types of maximal cliques: cliques of size q^2 (meeting the Hoffman bound) consisting of all blocks on a fixed point, and cliques of size $q + 2$ consisting of the $q + 1$ blocks on a point p meeting a block B not on p, together with this block B.

Piper [619] conjectured that the Hermitian unital is characterized among the $S(2, q + 1, q^3 + 1)$ designs by the absence of O’Nan configurations. This conjecture remains open. Wilbrink [730] has partial results. See also [367] for another intrinsic characterization of the Hermitian unitals.

History

The above graphs were constructed in Chakravarti [189] for $n = 3, 4$. The chromatic number of $NU_3(q)$ was given by Seicher.
3.2 Graphs on half of the maximal singular subspaces

3.2.1 General observations

Let \((X, \Omega)\) be a finite embedded polar space of rank \(n\) and order \((q, 1)\). Recall from §2.2.12 that the graph \(\Delta = \Delta(X, \Omega)\) has diameter \(n\), and is bipartite, and hence that the halved graphs are distance-regular of diameter \([n/2]\). In particular, they are strongly regular for \(n = 4, 5\). We take a look at these cases separately, but we first show that the halved graphs are mutually isomorphic.

Lemma 3.2.1 The two connected components \(\Delta_{1/2}\) and \(\Delta'_{1/2}\) of the distance-2 graph of \(\Delta\) are isomorphic.

Proof. Let \(X\) be given by its standard equation in \(2n\)-dimensional space \(V\) over the field \(\mathbb{F}_q\):

\[
X_{-1}X_1 + X_{-2}X_2 + \cdots + X_{-n}X_n = 0,
\]

and let \(\varphi\) be the linear mapping interchanging the \(X_{-1}\)- and the \(X_1\)-coordinate of every vector (and leaving the rest as it is). Clearly \(\varphi\) preserves \(X\) and \(\Omega\). Then the maximal singular subspace \(W\) with equations \(X_1 = X_2 = \cdots = X_n = 0\) is mapped onto the subspace \(W'\) with equations \(X_{-1} = X_2 = X_3 = \cdots = X_n = 0\), which intersects \(W\) in an \((n-1)\)-space. Hence \(W\) and \(W'\) correspond to adjacent vertices in \(\Delta\) and hence to different connected components of the distance-2 graph of \(\Delta\).

So from now on, we denote by \(\Delta_{1/2}\) one of the two connected components of the distance-2 graph of \(\Delta\). When we want to emphasize the corresponding polar space \(O^+_n(q)\) we write \(\Delta_{1/2}(O^+_n(q))\).

We have the following isomorphism result.

Proposition 3.2.2 The graph \(\Delta_{1/2}(O^+_n(q))\) is isomorphic to the distance-\(\{1, 2\}\) graph of \(\Delta(O^+_n(q))\). If \(q\) is even, then it is also isomorphic to the distance-\(\{-1, 2\}\) graph of \(\Delta(Sp^+_n(q))\).

Proof. Let \(Q^+\) be a hyperbolic quadric in a \((2n + 2)\)-dimensional space \(V\) over \(\mathbb{F}_q\), \(n \geq 2\). Let \(Q = Q^+ \cap H\) be a hyperplane section of \(Q^+\) with a hyperplane \(H\) such that \(Q\) is a nondegenerate parabolic quadric in \(H\). Let \(\Omega\) be the set of maximal singular subspaces of \(Q\), and let \(\Omega_1\) and \(\Omega_2\) be the two natural classes of maximal singular subspaces of \(Q^+\) (so any member of \(\Omega_1\) intersects any member of \(\Omega_2\) in a subspace of odd codimension in both, and \(\Omega_1 \cup \Omega_2\) is the complete set of maximal singular subspaces—which are \((n+1)\)-spaces), \(M \in \Omega\). Then \(M\) is an \(n\)-dimensional singular subspace of \(Q^+\) and hence contained in exactly two maximal singular subspaces (since \(Q^+\) is hyperbolic).

Clearly, exactly one of them belongs to \(\Omega_1\) (and the other to \(\Omega_2\)). Conversely, for every member \(M^+ \in \Omega_1\), the intersection \(H \cap M^+\) belongs to \(\Omega\) (since \(M^+\) is not contained in \(H\)). This defines a natural bijection \(\beta : \Omega \leftrightarrow \Omega_1\). Suppose \(M^+, N^+ \in \Omega_1\) intersect in an \((n-1)\)-space. Then \(\beta(M^+)\) and \(\beta(N^+)\) intersect in \((M^+ \cap H) \cap (N^+ \cap H) = (M^+ \cap N^+) \cap H\), which has dimension \(n-1\) or \(n-2\), i.e., \(M^+ \cap H\) and \(N^+ \cap H\) are at distance 1 or 2 in the graph, with self-explaining notation, \(\Delta(Q) \cong \Delta(O^+_n(q))\). Conversely, let \(M, N \in \Omega\) be at
distance at most 2 in $\Delta(Q)$. Then $M \cap N$ has dimension at least $n - 2$, and so $\beta(M) \cap \beta(N)$ has dimension at least $n - 2$. Since the parity of the dimension of $\beta(M) \cap \beta(N)$ is that of $n + 1$, the dimension of $\beta(M) \cap \beta(N)$ cannot be $n - 2$ and hence is at least $n - 1$. This means that $\beta(M)$ and $\beta(N)$ are adjacent in $\Delta(Q^+)$.\hfill\Box

3.2.2 The rank 4 case: the triality quadric

Suppose that the rank of (X, Ω) is 4. The next proposition says that the graph $\Delta_{1/2}$ is isomorphic to $\Gamma(X, \Omega)$. Usually, this is proved using a trilinear form (cf. [710], §2.4.6). We proceed with an explicit isomorphism.

Proposition 3.2.3 If (X, Ω) is an embedded polar space of rank 4 and order $(q, 1)$, then the collinearity graph $\Gamma(X, \Omega)$ is isomorphic to each of the halved graphs of $\Delta(X, \Omega)$.

Proof. Let X be given by the equation $X_{-1}X_1 + X_{-2}X_2 + X_{-3}X_3 + X_{-4}X_4 = 0$, and order the coordinates $(x_{-4}, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, x_4)$. Consider the following mapping τ from the point set X into the set Ω of maximal singular subspaces (every such subspace is given by a 4×8 matrix whose rows represent spanning vectors):

\[
\begin{pmatrix}
1, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, -x_{-1}x_1 - x_{-2}x_2 - x_{-3}x_3
\end{pmatrix} \mapsto \begin{pmatrix}
1 & 0 & 0 & 0 & x_{-1} & x_{-2} & x_{-3} & 0
0 & 1 & 0 & 0 & -x_2 & x_1 & 0 & -x_{-3}
0 & 0 & 1 & 0 & x_3 & 0 & -x_1 & -x_{-2}
0 & 0 & 0 & 1 & 0 & -x_3 & x_2 & -x_{-1}
\end{pmatrix}
\]

\[
(0, 1, x_{-2}, x_{-1}; x_1, x_2, -x_{-1}x_1 - x_{-2}x_2, x_4) \mapsto \begin{pmatrix}
x_1 & -x_{-2} & 1 & 0 & -x_4 & 0 & 0 & 0
-x_2 & -x_{-1} & 0 & 1 & 0 & x_4 & 0 & 0
0 & 0 & 0 & 0 & x_{-1} & x_2 & 1 & 0
0 & 0 & 0 & 0 & x_2 & -x_{-1} & 0 & 1
\end{pmatrix}
\]

\[
(0, 0, 1, x_{-1}; x_1, -x_{-1}x_1, x_3, x_4) \mapsto \begin{pmatrix}
-x_1 & 1 & 0 & 0 & x_4 & 0 & 0 & 0
x_3 & 0 & -x_{-1} & 1 & 0 & 0 & -x_4 & 0
0 & 0 & 0 & 0 & x_{-1} & 1 & 0 & 0
0 & 0 & 0 & 0 & -x_3 & 0 & x_1 & 1
\end{pmatrix}
\]

\[
(0, 0, 0, 1; x_2, x_3, x_4) \mapsto \begin{pmatrix}
x_2 & 1 & 0 & 0 & 0 & -x_4 & 0 & 0
-x_3 & 0 & 1 & 0 & 0 & 0 & x_4 & 0
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & x_3 & -x_2 & 1
\end{pmatrix}
\]

\[
(0, 0, 0, 0; 1, x_2, x_3, x_4) \mapsto \begin{pmatrix}
1 & 0 & 0 & 0 & -x_4 & 0 & 0 & 0
0 & x_3 & x_2 & 1 & 0 & 0 & 0 & x_4
0 & 0 & 0 & 0 & -x_2 & 1 & 0 & 0
0 & 0 & 0 & 0 & -x_3 & 0 & 1 & 0
\end{pmatrix}
\]
$\langle 0, 0, 0; 0, 1, x_3, x_4 \rangle \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \ -x_4 & 0 & 0 & 0 \\ 0 & x_3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \ -x_3 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

$\langle 0, 0, 0; 0, 0, 1, x_4 \rangle \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \ -x_4 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

$\langle 0, 0, 0; 0, 0, 0, 1 \rangle \mapsto \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

From the fact that the matrices on the right are diagonalized (up to permuting columns), we see that τ is injective in Ω. Now let Ω_1 be the collection of maximal singular subspaces intersecting the subspace W_1 with equations $X_{-1} = X_{-2} = X_{-3} = X_{-4} = 0$ in a subspace of even codimension (disjoint or intersecting in a line). We claim that τ is surjective on Ω_1. Indeed, let $W \in \Omega_1$ be arbitrary and let p_{ijkl} be the Grassmann coordinate of W corresponding to the positions $i, j, k, \ell \in \{-4, -3, -2, -1, 1, 2, 3, 4\}$, where we write i instead of $-i$ for brevity. If W and W_1 are disjoint, then $p_{3421} \neq 0$, and so W is the image under τ of a point $(1, \ldots)$. If W intersects W_1 in a line, then we can pick a generating set of points of W such that the 4×4 matrix consisting of the first four coordinates of these four points is in diagonalized form, and has rank 2. Hence W is the image of a point of one of the following six shapes: $(0, 1, \ldots), (0, 0, 1, \ldots), (0, 0, 0, 1, \ldots), (0, 0, 0, 0, 1, \ldots)$ or $(0, 0, 0, 0, 0, 1, \ldots)$. Finally, if $W = W_1$, then the inverse image of W is $(0, \ldots, 0, 1)$.

Now we claim that two points of X are collinear if and only if their images under τ intersect nontrivially. This follows from inspecting the 36 different cases for the shapes of the pair of points, according to the definition of τ. Let us do the most involved case, where the points, say u and v, have respective coordinates

$$(1, x_{-3}, x_{-2}, x_1; x_2, x_3, -x_{-1}x_1 - x_{-2}x_2 - x_{-3}x_3)$$

and

$$(1, y_{-3}, y_{-2}, y_1; y_2, y_3, -y_{-1}y_1 - y_{-2}y_2 - y_{-3}y_3).$$

It is easy to calculate that u and v are collinear if and only if

$$(x_{-1} - y_{-1})(x_1 - y_1) + (x_{-2} - y_{-2})(x_2 - y_2) + (x_{-3} - y_{-3})(x_3 - y_3) = 0,$$

whereas the determinant of the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & x_{-1} & x_{-2} & x_{-3} & 0 \\ 0 & 1 & 0 & 0 & -x_2 & x_1 & 0 & -x_{-3} \\ 0 & 0 & 1 & 0 & x_3 & 0 & -x_1 & -x_{-2} \\ 0 & 0 & 0 & 1 & 0 & -x_3 & x_2 & -x_{-1} \\ 1 & 0 & 0 & 0 & y_{-1} & y_{-2} & y_{-3} & 0 \\ 0 & 1 & 0 & 0 & -y_2 & y_1 & 0 & -y_{-3} \\ 0 & 0 & 1 & 0 & y_3 & 0 & -y_1 & -y_{-2} \\ 0 & 0 & 0 & 1 & 0 & -y_3 & y_2 & -y_{-1} \end{pmatrix}$$

is equal to

$$[(x_{-1} - y_{-1})(x_1 - y_1) + (x_{-2} - y_{-2})(x_2 - y_2) + (x_{-3} - y_{-3})(x_3 - y_3)]^2.$$
3.2. GRAPHS ON HALF OF THE MAXIMAL SINGULAR SUBSPACES

This shows the claim for \(u \) and \(v \). Similar, but simpler, calculations hold for the other cases.

It is rather cumbersome to calculate the inverse images of a given generic member of \(\Omega_1 \). Except in characteristic 2. Indeed, in general, the image of the set of members of \(\Omega_1 \) through a fixed line \(L \) on the Grassmannian of 4-spaces of \(V \) is a conic. When \(q \) is a power of 2, we can project the Grassmannian from the subspace generated by the nuclei of all such conics; this gives us precisely a point set projectively equivalent to \(X \).

Proposition 3.2.4 Let \(q \) be even and let \(W \in \Omega_1 \) be arbitrary. Let \(p_{i,j,k,\ell} \), \(i,j,k,\ell \in \{4,\ldots,1,1,\ldots,4\} \), be as above. Then \(\tau^{-1}(W) \) is the point with coordinates

\[
\left(\frac{p_{1}}{2}, \frac{p_{1}}{2}, \frac{p_{3}}{2}, \frac{p_{5}}{2}, \frac{p_{7}}{2}, \frac{p_{9}}{2}, \frac{p_{11}}{2}, \frac{p_{13}}{2} \right).
\]

Proof. This follows immediately by calculating the relevant Grassmann coordinates of the images of a point, given in the definition of \(\tau \) above.

Remark One easily checks that the image under \(\tau \) of the point set of a member \(W_1 \) of \(\Omega_1 \) is a set of 4-spaces sharing 3-spaces with a fixed member \(W_2 \) of \(\Omega_2 := \Omega \setminus \Omega_1 \). We set \(W_2 = \tau(W_1) \). The image under \(\tau \) of the point set of \(W_2 \) is the set of members of \(\Omega_1 \) containing a fixed point \(P \) and we can define \(P = \tau(W_2) \). If we call points of \((X, \Omega) \) type 0 objects, members of \(\Omega_1 \) type 1 objects and members of \(\Omega_2 \) type 2 objects, then \(\tau \) is an adjacency preserving and type rotating \((0 \to 1 \to 2 \to 0) \) map in \(\Delta \), with adjacency inherited by \(\Gamma(X, \Omega) \) and the two halved graphs \(\Delta_{1/2} \) and \(\Delta'_{1/2} \). Such a map is called a triality. Trialities of order 3 play a special role since they give rise to generalized hexagons (i.e., the fixed lines with all their points form a possibly degenerate generalized hexagon).

3.2.3 Rank 5 hyperbolic polar spaces

Let \((X, \Omega) \) be a finite embedded polar space of rank 5 of order \((q,1) \) and set \(\Gamma = \Gamma(X, \Omega) \) and \(\Delta = \Delta(X, \Omega) \). This latter graph is bipartite. Let \(\Omega_1 \) and \(\Omega_2 \) be the two vertex classes, and let \(\Delta_{1/2} \) be the halved graph of \(\Delta \) with vertex set \(\Omega_1 \). The graph \(\Delta_{1/2} \) is strongly regular, with parameters given in Theorem 2.2.20.

Maximal cliques

The Hoffman bound yields \(|C| \leq q^5 + q^4 + q^3 + q^2 + q + 1 \) for a maximal clique \(C \) of \(\Delta_{1/2} \). But no maximal clique meets this bound; in fact, maximal cliques are much smaller as the following proposition shows.

Proposition 3.2.5 Every maximal clique is either the set of members of \(\Omega_1 \) containing a fixed line (and then has size \(q^4 + q^3 + q^2 + q + 1 \)), or the set of members of \(\Omega_1 \) intersecting a fixed member of \(\Omega_2 \) in codimension 1 (and then has size \(q^4 + q^3 + q^2 + q + 1 \)).

Proof. Let \(\mathcal{C} \) be a maximal clique of \(\Delta_{1/2} \). Any two members of \(\mathcal{C} \) meet in a plane. Let \(M_1, M_2, M_3 \) be three distinct elements of \(\mathcal{C} \), not all on the
same plane. If P is a point of $M_2 \cap M_3 \setminus M_1$, then $P^\perp \cap M_1$ has codimension 1 in M_1, so $(M_1 \cap M_2) \cup (M_1 \cap M_3)$ does not span M_1, so the two planes $M_1 \cap M_2$ and $M_1 \cap M_3$ span a hyperplane of M_1, i.e., a point of the dual projective space M_1^*.

Let M be a fixed element of \mathcal{C}, and let Π be the set of planes $M \cap M'$ for $M' \in \mathcal{C}$, $M' \neq M$. In the dual projective space M^*, the set Π is a set of lines pairwise intersecting in a point. Either all these lines have a common point, or are contained in a common plane. In the former case that point corresponds to a hyperplane H of M, which is contained in a unique $N \in \Omega_2$ (and all elements of \mathcal{C} have a codimension 2, hence codimension 1 space in common with N); in the latter case the plane corresponds to a line L of M and all elements of Π, and hence of \mathcal{C}, contain L.

We record a useful corollary of the above proposition.

Corollary 3.2.6 Let u,v be two adjacent vertices of $\Delta_{1/2}$. Then the intersection of all maximal cliques containing u,v is the set of all members of Ω_1 containing a fixed projective plane of $O_{10}^+(q)$.

Maximal cocliques

The Hoffman bound for cocliques is \(\frac{q^5 - 1}{q - 1} \) which is not an integer. An obvious construction of (much smaller) maximal cocliques runs as follows.

Proposition 3.2.7 Let p be a point of $O_{10}^+(q)$. Then $\text{Res}(p)$ is an embedded polar space in the quotient space $\mathbb{P}V/p$ isomorphic to $O_9^+(q)$. Let \mathcal{I} be a spread of $O_9^+(q)$ contained in Ω_1. Then \mathcal{I} corresponds to a maximal coclique (of size $q^3 + 1$) of $\Delta_{1/2}$.

Larger cocliques exist, but the known examples are messy.

Automorphism group

The automorphism group of (X, Ω) is $\text{PfGO}^+_{10}(q)$. The subgroup that preserves the parts Ω_1 and Ω_2 has index 2 in $\text{PfGO}^+_{10}(q)$, and is a group of automorphisms of $\Delta_{1/2}$. We show that it is the full group. To this end, we introduce the notion of *clique-convex subgraph* of a graph: This is a subgraph closed under taking shortest paths between its vertices and such that, for every pair u,v of adjacent vertices of the subgraph, the intersection of all maximal cliques containing u and v is contained in the subgraph. The *clique-convex closure* of a subset of vertices is the intersection of all clique-convex subgraphs containing that subset; clearly this is a clique-convex subgraph.

The above claim about the automorphism group of $\Delta_{1/2}$ follows from the next proposition.

Proposition 3.2.8 The family of clique-convex subgraphs of $\Delta_{1/2}$ which are the clique-convex closure of two vertices at distance 2 from each other, is in natural bijective correspondence with the set of vertices of Γ; moreover two such subgraphs are disjoint if and only if the corresponding vertices of Γ are not adjacent.
Then the definition of clique-convexity readily implies that
3.2.4 Disjoint t.i. planes in $O_7(q)$ and $\text{Sp}_6(q)$
The dual polar graphs on the t.i. planes in the $O_7(q)$ or $\text{Sp}_6(q)$ geometry, adjacent when they meet in codimension 1, are distance-regular of diameter 3, with parameters $b_i = q^{i+1}/(q^i - 1)$ and $c_i = (q^i - 1)/(q - 1)$ and eigenvalues $\theta_1 = (q^{4} - q^{3})/(q - 1) - 1 (0 \leq i \leq 3)$, cf. §2.2.9. In particular, $\theta_2 = -1$. It follows from Proposition 1.3.12 that the distance-3 graph of each is strongly regular. Their parameters are

$$v = (q^2 + 1)(q^2 + 1)(q + 1), \quad r = q^2,$$

$$k = q^6, \quad s = -q^3,$$

$$\lambda = q^3(q^3 - 1)(q - 1), \quad f = q^2(q^3 + q^2 + 1),$$

$$\mu = (q - 1)q^6, \quad g = q(q + 1)^2.$$

For the $O_7(q)$ geometry, this graph is just the (complement of the) $O_7^+(q)$ polar graph. Indeed, by triality that polar graph is isomorphic to the graph on one kind of t.i. solids, adjacent when they meet in a line, and hitting with a hyperplane we find the above description. For $\text{Sp}_6(q)$ (with odd q) however, this graph is not isomorphic to graphs discussed earlier. The group is rank 4.
the graph Γ on the t.i. planes of $O_7^+(q)$, adjacent when disjoint, has local graphs that are strongly regular with parameters $v = q^6$, $k = (q^3 - 1)(q^3 - q^2 + 1)$, $\lambda = \mu = (q^3 - 2q^2 + 2)$, $\mu = q^2(q - 1)(q^3 - q^2 + 1)$.

The subgraph of the dual polar graph for $Sp_6(q)$ induced of the set of q^6 t.i. planes disjoint from a given plane is the symmetric bilinear forms graph on \mathbb{F}_q^6 ([123], Theorem 9.5.10). For even q the spaces $Sp_6(q)$ and $O_7^+(q)$ are isomorphic. So, let Γ be odd. Then the symmetric bilinear forms graph is the same as the quadratic forms graph (§3.4.3). We see for odd q that the graph Γ on the t.i. planes of $Sp_6(q)$, adjacent when disjoint, is locally the complement of the quadratic forms graph on V, so that both Γ and its local graph are strongly regular. For Γ the parameters were given above. Its local graph has parameters $v = q^6$, $k = q^2(q^3 - 1)(q - 1)$, $\lambda = \mu - q^2(q - 2)$, $\mu = q^2(q - 1)(q^3 - q^2 - 1)$. In particular, Γ satisfies the 4-vertex condition.

3.3 Affine polar graphs

So far our graphs were mostly defined on projective points. Here we construct strongly regular graphs the vertices of which are vectors, where the vector space has a polar space on its hyperplane at infinity. These graphs are associated with two-weight codes, cf. §7.1.1.

3.3.1 Isotropic directions

Let V be a vector space of dimension $2m$ over \mathbb{F}_q, $m \geq 1$, provided with a nondegenerate quadratic form Q of type ε ($= \pm 1$). Take as vertices the vectors in V, where two different vectors u and v are joined when $Q(v - u) = 0$. This yields a strongly regular graph Γ with parameters (v, k, λ, μ) and spectrum $k^1 \theta_1^{m_1} \theta_2^{m_2}$, where

$$v = q^{2m}, \quad \theta_1 = \varepsilon(q - 1)q^{m - 1} - 1,$$
$$k = (q^m - \varepsilon)(q^{m - 1} + \varepsilon), \quad \theta_2 = -\varepsilon q^{m - 1} - 1,$$
$$\lambda = q(q^m - \varepsilon)(q^{m - 1} + \varepsilon) + q - 2, \quad m_1 = (q^m - \varepsilon)(q^{m - 1} + \varepsilon) = k,$$
$$\mu = q^{m - 1}(q^{m - 1} + \varepsilon), \quad m_2 = q^{m - 1}(q - 1)(q^m - \varepsilon).$$

Let us call these graphs $VO_2^{2m}(q)$.

If we take the Hamming scheme $H(n, 4)$ and call two vertices adjacent when their distance is even, we obtain a strongly regular graph (as was observed in [474]). But this is just the graph $VO_2^{2n}(2)$, where $\varepsilon = (-1)^n$. Indeed, the weight of a quaternary digit is given by the (elliptic) binary quadratic form $x_1^2 + x_1x_2 + x_2^2$.

If $m = 1$, then $VO_2^{2}(q)$ is the $q \times q$ grid graph.

Rank 3 group action

Consider the graph $\Gamma(V, X)$ obtained by taking a vector space V as vertex set, and joining two vectors when the line joining them has a direction in X, where X is a subset of PV. This graph has a transitive group (namely the additive group V). It will have a rank 3 group when the stabilizer of X in the collineation group of PV has precisely two orbits (namely X and its complement).

The graphs $VO_2^{2m}(q)$ are obtained when X is the set of points on a quadric (and dim V is even).
3.3. AFFINE POLAR GRAPHS

Rank 3 action of the unitary group

If we take an \(m \)-dimensional vector space over \(F = \mathbb{F}_q^2 \) provided with a non-degenerate Hermitian form \(f(x,y) \), then \(Q(x) = f(x,x) \) is a nondegenerate quadratic form over \(\mathbb{F}_q \) of type \(\varepsilon = (-1)^m \). One finds that \(VO_{2m}(q) \) (with \(\varepsilon = (-1)^m \)) admits a rank 3 action of the group \(V.(F^* \circ SU(m,q)) \).

Rank 3 action of the 7-dimensional orthogonal group

Take the graph \(VO_7^+(q) \). We claim that it admits a rank 3 action of the group \(V.(F^* \circ PSO_7(q)) \), with \(PSO_7(q) \leq PGO_7^+(q) \) the image under triality of a subgroup \(G \leq PGO_7^+(q) \) stabilizing a nondegenerate hyperplane \(W \) of \(V \) (or, equivalently, fixing a nonisotropic point).

Let \(W \) be a nondegenerate hyperplane of \(V \). Then \(Q \) defines in \(W \) a polar space \((X', \Omega') \) of type \(O_7^+(q) \), which is a subspace of the polar space \((X, \Omega) \) related to \(Q \). Write \(\Omega = \Omega_1 \cup \Omega_2 \), with \(\Omega_1 \) and \(\Omega_2 \) the two orbits in \(\Omega \) under the action of \(O_7^+(q) \). Consider the group \(G = PSO_7(q) \) as subgroup of \(PGO_7^+(q) \) acting naturally on \(W \). Each member of \(\Omega' \) is contained in precisely one member of \(\Omega_1 \), and each member of \(\Omega_1 \) contains precisely one member of \(\Omega' \). Hence the group \(G \) acts transitively on \(\Omega_1 \), since it acts transitively on \(\Omega' \). Conjugating with an appropriate triality \(\tau : X \to \Omega_2 \to \Omega_3 \to X \) in \(\text{Out}(O_7^+(q)) \), we see that \(G^\tau \) acts transitively on the singular points of \(PV \).

We now show that \(G^\tau \) acts transitively on the nonsingular points of \(PV \). Since \(G^\tau \) acts transitively on the singular points, it suffices to prove that, for some singular point \(x \), the stabilizer \((G^\tau)_x \) acts transitively on the nonsingular points in \(\langle x^+ \rangle \) (here, \(\perp \) is with respect to the \(O_7^+(q) \) geometry). We achieve this in two steps: First we show that the stabilizer in \((G^\tau)_x \) of some nonsingular line \(L \) in \(\langle x^+ \rangle \) through \(x \) acts transitively on the nonsingular points of \(L \); then we show that \((G^\tau)_x \) acts transitively on the nonsingular lines in \(\langle x^+ \rangle \) through \(x \).

We start with determining the order and structure of the kernel \(K \leq (G^\tau)_x \) of the action of \((G^\tau)_x \) on the t.s. (totally singular) lines through \(x \).

Set \(Z_1 = x^{\tau^{-1}} \in \Omega_1 \) and set \(Z = Z_1 \cap W \). Let \(H := \{ g \in G | \tau^{-1} \tau \text{ fixes } x \text{ and all t.s. lines on } x \} \), so that \(K = H^\tau \). Then \(H = \{ g \in G | g \text{ fixes } Z_1 \text{ and all t.s. lines in } Z_1 \} = \{ g \in G | g \text{ fixes } Z_1 \text{ pointwise} \} \).

Taking for \(Q \) the standard quadratic form

\[
X_{-1}X_1 + X_{-2}X_2 + X_{-3}X_3 + X_{-4}X_4,
\]

for \(W \) the hyperplane with equation \(X_{-4} + X_4 = 0 \) and for \(Z_1 \) the solid (4-space) with equations \(X_1 = X_2 = X_3 = X_4 = 0 \), it is easily checked that \(H \) corresponds to the family of linear maps with generic matrix (action on the right)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & a & b & 0 & 1 & 0 & 0 & 0 \\
0 & c & -b & 0 & 1 & 0 & 0 & 0 \\
0 & -c & -a & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
where the coordinates are ordered \((x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, x_4)\). Hence both \(H\) and \(K\) are elementary abelian groups of order \(q^3\).

Let \(S_1\) be the t.s. solid with equations \(X_{-2} = X_{-1} = X_3 = X_4 = 0\). Then \(S_1 \in \Omega_1\) since \(N := S_1 \cap Z_1\) is a line. Computing the images of \(S_1\) under the action of \(H\), we see that \(H\) acts transitively on the \(q\) t.s. solids in \(\Omega_1\) on \(N\) distinct from \(Z_1\), so \(K\) acts transitively on \(M \setminus \{x\}\) for \(M = N^\tau\).

The t.s. solid \(S_2\) with equations \(X_1 = X_2 = X_3 = X_{-4} = 0\) contains \(Z\), belongs to \(\Omega_2\), and \(H\) fixes \(Z_2\) pointwise, hence fixes all solids in \(\Omega_1\) incident with \(Z_2\). Applying \(\tau\) we find a t.s. solid \(S = Z_2^\tau\) through \(x\) pointwise fixed by \(K\).

Considering a plane through \(M\) and a point of \(S\) not collinear to all points of \(M\), we deduce that there also exists a nonsingular line \(L\) such that \(K\) acts transitively on \(L \setminus \{x\}\). This shows Step 1.

Now the order of \(G\) is \(q^9(q^9 - 1)(q^3 - 1)(q^2 - 1)\). Since there are \((q^3 + 1)(q^2 + 1)(q + 1)\) singular planes in a polar space of type \(O_7(q)\), the stabilizer \((G^\tau)_x\) has order \(q^9(q^9 - 1)(q^2 - 1)(q - 1)\). Hence, since \(|K| = q^3\), the quotient group \((G^\tau)_x/K\), which is canonically isomorphic to \(G/Z_1/H\), has order \(q^6(q^3 - 1)(q^2 - 1)(q - 1)\). But \(G/Z_1/H\) acts faithfully on \(Z_1\), and is thus isomorphic to a subgroup of \(\text{PGL}(Z_1)_Z\). Since the latter has the same order, \(G/Z_1/H\) coincides with \(\text{PGL}(Z_1)_Z\).

The perp of a nonsingular line on \(x\) in \(\langle x^\perp \rangle\) induces in \(x^\perp\) a degenerate polar space with radical \(x\) of which the quotient space with respect to \(x\) is of type \(O_2(q)\). The triality \(\tau^{-1}\) takes the point set of such a space (i.e., the t.s. lines on \(x\) of the corresponding degenerate polar space) to the set of lines in \(Z_1\) t.i. with respect to a nondegenerate symplectic form. Hence Step 2 is equivalent to showing that the stabilizer in \(\text{PGL}(Z_1) \cong \text{PGL}_4(q)\) of the plane \(Z\) acts transitively on the family of symplectic polar spaces of type \(\text{Sp}_4(q)\) in \(Z_1 \cong \text{PG}(3, q)\), which follows from the transitivity of \(\text{PGL}_4(q)\) on this family and the transitivity of the group \(\text{Sp}_4(q)\) on the points of \(\text{PG}(3, q)\).

Hence we have shown that \(G^\tau\) acts transitively on the nonsingular points of \(PV\).

Note that, if we would have started with \(O_7(q)\) instead of \(\text{PSO}_7(q)\), then we would have ended up with \(\text{PSL}_4(q)\), which does not act transitively on the symplectic polar spaces in \(\text{PG}(3, q)\) if \(q\) is odd.

The Suzuki-Tits ovoid at infinity

There is another rank 3 graph with the same parameters and similar construction as \(V_{\wedge}^4(q)\). Let \(O\) be the Suzuki-Tits ovoid (see §2.5) embedded in \(PV\), where \(V\) is a 4-dimensional vector space over the field \(F_q\) with \(q = 2^{2e-1}\), and let \(V_{\wedge}^4(q)\) be the graph \(\Gamma(V, O)\) defined as above.

Since \(O\) is an ovoid of a symplectic quadrangle, the totally isotropic lines with respect to the corresponding alternating form (hence those of the symplectic quadrangle) intersect \(O\) in exactly one point. The first paragraph of the proof of Proposition 2.5.1 shows that nonisotropic lines intersect \(O\) in zero or two points. Hence \(O\) is an ovoid of \(PV\). There are as many planes that meet \(O\) in \(q + 1\) points forming an oval as there are nonisotropic points. Every such plane contains a unique nucleus of the corresponding oval, which is a point contained in all tangent lines to the oval. These tangent lines are, by the above discussion, totally isotropic, hence a point is the nucleus of exactly one oval. This implies that there is a bijective correspondence between the ovals on \(O\) and the points off
3.3. AFFINE POLAR GRAPHS

O. As the Suzuki group Sz(q) acts transitively on the ovals, it acts transitively on the points off O, and hence \(V(\mathbb{F}_q^* \circ Sz(q)) \) acts rank 3 on \(VSz(q) \).

3.3.2 Square directions

Let \(V \) be a vector space of dimension \(2m \) over \(\mathbb{F}_q \), where \(q \) is odd, provided with a nondegenerate quadratic form \(Q \) of type \(\varepsilon (= \pm 1) \). Take as vertices the vectors in \(V \), where two vectors \(u \) and \(v \) are joined when \(Q(v - u) \) is a nonzero square. This yields a strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) \) and spectrum \(k^1 r^f s^q \), where

\[
\begin{align*}
v &= q^{2m}, \\
k &= \frac{1}{2}(q-1)(q^m-\varepsilon)q^{m-1}, \\
r &= \frac{1}{2}q^{m-1}(q+\varepsilon), \\
s &= -\frac{1}{2}q^{m-1}(q-\varepsilon),
\end{align*}
\]

\(\lambda = \mu + \varepsilon q^{m-1} \), \(f = \frac{1}{2}(q^{2m} - q^m + q^{m-1} - 1) - \frac{1}{2}\varepsilon(q^{2m-1} - 1) \), \(g = \frac{1}{2}(q^{2m} + q^m - q^{m-1} - 1) + \frac{1}{2}\varepsilon(q^{2m-1} - 1) \).

Here \(f = k \) if \(\varepsilon = 1 \), and \(g = k \) if \(\varepsilon = -1 \).

Let us call these graphs \(VNO^f(2m, q) \). They have a rank 4 group.

3.3.3 Affine half spin graphs

The first subconstituent of the affine polar graph \(VO_{2m}^5(q) \) is a \((q-1) \)-clique extension of the graph \(\Gamma(\mathbb{O}_{2m}^5(q)) \). There is also an affine graph that is locally a \((q-1) \)-clique extension of the graph \(\Delta_{1/2} = \Delta_{1/2}(\mathbb{O}_q^1(q)) \). In order to define and construct this graph, which we shall denote by \(VD_{5,5}(q) \), we need to represent the vertex set of \(\Delta_{1/2} \) as \(1 \)-spaces in a vector space (and not as a set of higher dimensional subspaces, as we did above).

Let \(V = V_1 \oplus V_2 \) be a 16-dimensional vector space, written as the direct sum of two 8-dimensional subspaces \(V_1, V_2 \), over the finite field \(\mathbb{F}_q \) (but everything that follows, except for the counts, holds over an arbitrary field). Let \(\iota : V_1 \rightarrow V_2 \) be an isomorphism, identify \(V_1 \) with \(\mathbb{F}_q^8 \), labeling the coordinates \(X_i \), with \(i \in \{-4, -3, -2, -1, 1, 2, 3, 4\} \) and consider the quadratic form

\[
Q : V_1 \rightarrow \mathbb{F}_q : (x_{-4}, x_{-3}, \ldots, x_4) \mapsto X_{-1}X_1 + X_{-2}X_2 + X_{-3}X_3 + X_{-4}X_4.
\]

Let \(\Phi = \{ u \in V_1 \mid Q(u) = 0 \} \) be the corresponding hyperbolic quadric in \(V_1 \). Recall the map \(\tau \) defined in the proof of Proposition 3.2.3 sending the \(1 \)-spaces in \(\Phi \) to 4-spaces of \(V_1 \) contained in \(\Phi \), and define \(\rho(u) = \tau(\langle u \rangle) \) for \(u \in \Phi \setminus \{0\} \). Let \(S \) be the union over all \(u \in \Phi \setminus \{0\} \) of the 5-dimensional subspaces \(\langle u, \iota \rho(u) \rangle \).

The vertex set of \(VD_{5,5}(q) \) is \(V \), and two vectors \(u_1 \) and \(u_2 \) are adjacent when \(u_1 - u_2 \in S \).

Proposition 3.3.1 The graph \(VD_{5,5}(q) \) is a rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) \) and spectrum \(k^1 r^f s^q \), where

\[
\begin{align*}
v &= q^{16}, \\
k &= (q^8 - 1)(q^3 + 1), \\
r &= q^8 - q^3 - 1, \\
\lambda &= q^8 + q^3 - q^3 - 2, \\
f &= (q^8 - 1)(q^3 + 1) = k, \\
\mu &= q^3(q^3 + 1), \\
g &= q^3(q^8 - 1)(q^5 - 1).
\end{align*}
\]
The proof of this proposition will occupy the rest of this subsection. It will reveal some interesting structure of $VD_{5,5}(q)$ and its underlying geometry.

Lemma 3.3.2 With the above notation, choose coordinates in V_2 so that t maps a vector in V_1 to a vector with the same coordinates in V_2. Let the coordinates of a generic vector in V be labeled as

$$\langle x_{-4}, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, x_4 \mid y_{-4}, y_{-3}, y_{-2}, y_{-1}; y_1, y_2, y_3, y_4 \rangle.$$

Then S is given by the intersection of the null sets of the following quadratic forms:

\begin{align*}
X_{-4}X_4 + X_{-3}X_3 + X_{-2}X_2 + X_{-1}X_1, \\
Y_{-4}Y_4 + Y_{-3}Y_3 + Y_{-2}Y_2 + Y_{-1}Y_1, \\
X_{-4}Y_4 + X_{-3}Y_3 + X_{-2}Y_2 + X_{-1}Y_1, \\
X_{-4}Y_3 - X_{-3}Y_4 - X_2Y_{-1} + X_1Y_{-2}, \\
X_{-4}Y_2 + X_3Y_{-1} - X_2Y_{-4} - X_1Y_{-3}, \\
X_{-4}Y_1 - X_3Y_{-2} + X_2Y_{-3} - X_1Y_{-4}, \\
X_4Y_{-1} - X_3Y_2 + X_2Y_3 - X_1Y_4, \\
X_4Y_{-2} + X_3Y_1 - X_2Y_4 - X_1Y_3, \\
X_4Y_{-3} - X_3Y_4 - X_2Y_1 + X_1Y_2, \\
X_4Y_{-4} + X_3Y_3 + X_2Y_2 + X_1Y_1.
\end{align*}

Proof. Let T denote the intersection of the null sets of the quadratic forms in the statement of the lemma. We show $S \subseteq T$ and $T \subseteq S$.

Part 1: $S \subseteq T$

We present an algebraic argument. This consists of going through the possible coordinate shapes of a vector u of Φ, $u \neq 0$, and then show that $\langle u, t\rho(u) \rangle$ is contained in T. Let us do this for the most involved case, i.e., when u has coordinates

$$(1, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, -x_{-1}x_1 - x_{-2}x_2 - x_{-3}x_3).$$

Then a generic vector of $\langle u, t\rho(u) \rangle$ has, according to the proof of Proposition 3.2.3, the following coordinates:

$$(1, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, -x_{-1}x_1 - x_{-2}x_2 - x_{-3}x_3 | y_{-4}, y_{-3}, y_{-2}, y_{-1}; y_{-4}x_{-1} - y_{-3}x_2 + y_{-2}x_3, y_{-4}x_{-2} + y_{-3}x_1 - y_{-1}x_3, y_{-4}x_{-3} - y_{-2}x_1 + y_{-1}x_2, y_{-3}x_{-3} - y_{-2}x_2 - y_{-1}x_{-1}).$$

An elementary calculation shows that this vector vanishes under all of the given quadratic forms.

Part 2: $T \subseteq S$

Let there now be given a vector w with coordinates

$$(x_{-4}, x_{-3}, x_{-2}; x_{-1}; x_1, x_2, x_3, x_4 | y_{-4}, y_{-3}, y_{-2}, y_{-1}; y_1, y_2, y_3, y_4)$$

vanishing under all of the given quadratic forms. Since both sets S and T are projective, we may assume that the first nonzero coordinate is equal to 1. We
and by 3.6 implies

\[\begin{align*}
 x_4 &= -x_1 x_1 - x_2 x_2 - x_3 x_3, \\
 y_4 &= -y_3 x_3 - y_2 x_2 - y_1 x_1, \\
 y_3 &= y_4 x_3 - y_2 x_2 + y_1 x_1, \\
 y_2 &= y_4 x_2 + y_3 x_1 - y_1 x_3, \\
 y_1 &= y_4 x_1 - y_3 x_2 + y_2 x_3,
\end{align*} \]

and yields the coordinates of a generic vector of \(\langle u, \iota \rho(u) \rangle \), with \(u \) as in Part 1 of this proof.

Let us denote by \(G \) the automorphism group of \(V D_{5,5}(q) \) induced by \(AGL(V) \), and by \(G_0 \) the stabilizer in \(G \) of the zero vector of \(V \); so \(G_0 = G \cap GL(V) \).

Lemma 3.3.3 The group \(G_0 \) acts transitively on the set of \(1 \)-spaces in \(S \).

Proof. Each of the quadratic forms 3.1–3.10 defines a hyperbolic quadric of type \(Q^+_8(q) \) in an 8-dimensional subspace of \(V \) (generated by the basis vectors corresponding to the variables appearing in the quadratic form). We first show that \(G_0 \) acts transitively on this set of ten quadrics.

We define a graph \(\Upsilon \) on the set of basis vectors of \(V \) by declaring two basis vectors \(e \) on \(f \) adjacent if \(e + f \in S \) (hence \(\Upsilon \) is the graph on the basis vectors induced by \(\Gamma \)). It is easy to see that two basis vectors are adjacent in \(\Upsilon \) if and only if the corresponding coordinate variables do not appear together in a common term of one of the forms 3.1–3.10. One now checks that the correspondence

\[
\begin{align*}
X_{-4} &\mapsto 00000 & X_1 &\mapsto 10010 & Y_{-4} &\mapsto 00011 & Y_1 &\mapsto 01111 \\
X_{-3} &\mapsto 11000 & X_2 &\mapsto 01010 & Y_{-3} &\mapsto 00101 & Y_2 &\mapsto 10111 \\
X_{-2} &\mapsto 10100 & X_3 &\mapsto 00110 & Y_{-2} &\mapsto 01001 & Y_3 &\mapsto 11011 \\
X_{-1} &\mapsto 01100 & X_4 &\mapsto 11110 & Y_{-1} &\mapsto 10001 & Y_4 &\mapsto 11101
\end{align*}
\]

yields an isomorphism of \(\Upsilon \) (where we indicated every basis vector with its corresponding coordinate variable) to the Clebsch graph, which is the graph on the set of even weight binary vectors of length 5, adjacent when the Hamming distance is 2, see §10.7. We now claim that the full automorphism group of \(\Upsilon \) acts on (extends to) \(\Gamma \).

We define \(g_1, g_2, g_3 \in GL(V) \) by their action on a generic vector

\[
u = (x_{-4}, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, x_4 | y_{-4}, y_{-3}, y_{-2}, y_{-1}; y_1, y_2, y_3, y_4)\]

as follows:

\[
\begin{align*}
g_1 &; \; u \mapsto (-x_{-4}, x_{-3}, x_{-2}, x_{-1}; y_{-1}, y_{-2}, y_{-3}, -y_4) \\
&| -y_{-4}, x_3, x_2, x_1; y_1, y_2, y_3, -x_4), \\
g_2 &; \; u \mapsto (-x_{-4}, x_{-1}, -x_2, x_3; -x_{-3}, x_{-2}, -x_1, x_4) \\
&| y_{-1}, y_{-4}, y_{-3}, y_{-2}; y_2, y_3, y_4, y_1), \\
g_3 &; \; u \mapsto (x_{-1}, -x_{-4}, -x_{-3}, x_{-2}; x_2, -x_3, -x_4, x_1) \\
&| y_1, -y_4, -y_{-3}, y_{-2}; y_2, -y_3, -y_{-4}, y_{-1}).
\end{align*}
\]
Then one checks that g_i, $i = 1, 2, 3$, stabilizes the set of quadratic forms 3.1–3.10. Moreover, g_1, g_2 fix the coordinate X_{-4}, hence they permute the five binary coordinate positions in the representation of Ψ given above. The action of g_2 is a 4-cycle on the first four coordinate positions, whereas g_1 induces the transposition related to the last two positions. Hence $\langle g_1, g_2 \rangle$ induces the full stabilizer S_5 of 00000 in Aut(Ψ). Since g_3 moves the basis vector corresponding to the coordinate X_{-4}, we conclude that $\langle g_1, g_2, g_3 \rangle$ induces the full automorphism group of Ψ and our claim, to which we will refer as Observation 1, is proved.

Now we observe that, since ρ is a triality, every automorphism $\varphi \in \text{GL}(V_1)$ of Φ preserving each of the natural systems of maximal singular subspaces, induces an automorphism $\iota(\varphi) \in \text{GL}(V_2)$ of $\iota(\Phi)$, unique up to a scalar, such that $\langle \varphi, \iota(\varphi) \rangle$, acting on $V_1 \oplus V_2$, preserves S. We refer to this as Observation 2. We denote the group of automorphisms of Φ preserving the systems of maximal singular subspaces by Aut(Ψ).

We note that Witt’s theorem implies that the stabilizer in Aut(Ψ) of a maximal singular subspace W of Φ (as an embedded polar space) acts transitively on the 1-spaces of W. This will be referred to as Observation 3.

Now let $u \in S$ be given by coordinates as above and different from the zero vector. We establish an automorphism of S mapping u to a vector in V_1. The transitivity of Aut(S) on the 1-spaces of S then follows from Observation 2.

First note that, if $(x_{-4}, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, x_4) = (0, 0, 0, 0; 0, 0, 0, 0)$, then $u \in \iota(\Phi)$ and, using Observation 1, we may use an automorphism of S interchanging V_1 and V_2; this automorphism does the job. Henceforth we assume $(x_{-4}, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, x_4) \neq (0, 0, 0, 0; 0, 0, 0, 0)$.

Then note that, by Observation 2, we may assume that

$$(x_{-4}, x_{-3}, x_{-2}, x_{-1}; x_1, x_2, x_3, x_4) = (1, 0, 0, 0; 0, 0, 0, 0).$$

Let $e \in V$ be the first basis vector (all coordinates 0 except for the first, which is 1). Then Observation 2, combined with Observation 3 (applied to the maximal singular subspace $\langle \iota(\rho)(e) \rangle$), implies that, if $u \notin V_1$, we may assume that

$$(y_{-4}, y_{-3}, y_{-2}, y_{-1}; y_1, y_2, y_3, y_4) = (1, 0, 0, 0; 0, 0, 0, 0).$$

Hence u is contained in the quadric corresponding to one of the quadratic forms 3.4, 3.5 or 3.6. But then Observation 1 yields an automorphism of S mapping u in Φ. \square

Now we can start looking at the parameters of $VD_{5,5}(q)$. Clearly, $v = |V| = q^{16}$. Also, $k = |S| = |\Phi \setminus \{0\}| \cdot (q^4 + 1) = (q^8 - 1)(q^4 + 1)$.

Proposition 3.3.4 $\lambda = q^8 + q^6 - q^3 - 2$.

Proof. Obviously, λ is equal to $q - 2$ plus $q^2 - q$ times the number N_u of 2-spaces entirely contained in S and containing a given vector u of S. By the previous lemma we may assume $u \in \Phi$. Let us briefly call two vectors or 1-spaces of S spanning a 2-space entirely contained in S collinear. Then N_u can be written as $N_1 + N_2 + N_3$, where N_1 is the number of 2-spaces in Φ through u, N_2 is the number of 1-spaces in $\iota(\rho(u))$, and $N_3 = N_u - N_1 - N_2$. Clearly

$N_1 = (q^2 + 1)(q^2 + q + 1),$

$N_2 = q^3 + q^2 + q + 1$.
Taking into account that every 1-space of $V \setminus (V_1 \cup V_2)$ lies on a unique 2-space intersecting both V_1 and V_2 nontrivially, we deduce that a vector w of $V \setminus (V_1 \cup \langle u, \iota \rho(u) \rangle)$ is collinear to u if and only if it is contained in a 3-space intersecting V_2 in a 1-space T on $\iota \rho(u)$ and V_1 in a 2-space U containing u and contained in Φ. There are $q^3 + q^2 + q + 1$ possibilities for T, and fixing T, there are $q^2 + q + 1$ possibilities for U. This yields
\[N_3 = (q - 1)(q^3 + q^2 + q + 1)(q^2 + q + 1) = (q^4 - 1)(q^2 + q + 1). \]

An easy calculation now completes the proof of the proposition. \qed

Lemma 3.3.5 Every 1-space of S is contained in exactly $q^3 + q^2 + q + 1$ quadrics of type $O_3^+(q)$ entirely contained in S and contained in the orbit of Φ under G_0.

Proof. Let $u \in S$, $u \neq 0$, be arbitrary. By Lemma 3.3.3 we may assume $u \in \Phi$ is the first basis vector of the standard basis. Let e be the eighth basis vector of the standard basis. Then $W = \iota \rho(e)$ is a 4-space in $\iota(\Phi)$ disjoint from $\iota \rho(u)$. The 5 standard basis vectors of $\langle e, \iota \rho(e) \rangle$ are each contained in a quadric of type $O_3^+(q)$ entirely contained in S and contained in the orbit of Φ under G_0, by Observation 1 of the proof of Lemma 3.3.3. Since the stabilizer in $\text{Aut}(\iota(\Phi))$ of the 4-space $\iota \rho(u)$ acts transitively on the 1-spaces of $\iota(\rho(e))$, we deduce that every 1-space of $\iota \rho(e)$ is together with u contained in a quadric of type $O_3^+(q)$ entirely contained in S and contained in the orbit of Φ under G_0. Again using Observation 1 of the proof of Lemma 3.3.3, we see that the stabilizer of u in G_0 acts transitively on the set of 1-spaces of $\langle e, \iota \rho(e) \rangle$, and hence deduce that each 1-space of the latter is together with u contained in a quadric of type $O_3^+(q)$ entirely contained in S and contained in the orbit of Φ under G_0. This yields $q^4 + q^3 + q^2 + q + 1$ such quadrics. Denote by \mathcal{Q} this set of quadrics.

Now we claim that two such quadrics intersect in a singular subspace. Indeed, by transitivity we may assume that one of them is Φ. Now two noncollinear 1-spaces of Φ are only collinear with common 1-spaces of Φ, as follows from the construction of S. This yields the claim.

We conclude that there are precisely $q^6(q^4 + q^3 + q^2 + q + 1)$ 1-spaces of S not collinear to u contained in some member of \mathcal{Q}. But that is exactly equal to the number of 1-spaces on S (namely, $(q^4 + 1)(q^3 + 1)(q^2 + 1)(q + 1)$), minus the number of 1-spaces of S spanned by or collinear to u (and that is equal to $1 + q(q^4 + q^3 + q^2 + q + 1)(q^2 + 1)$), which concludes the proof of the lemma. \qed

Proposition 3.3.6 The group G_0 acts transitively on $V \setminus S$. Also, for a given vector $w \in V \setminus S$, precisely $\frac{1}{2}(q^6 + q^4)$ 2-spaces containing w intersect S in exactly two 1-spaces (and we call such a 2-space a secant), and no 2-space through w intersects S in at least three 1-spaces. This implies $\mu = q^6 + q^4$.

Proof. It is easy to see directly from the construction of S that no 2-space of V intersecting V_1 in a 1-space outside Φ has more than one 1-space in common with S. This first implies, after a moment’s thought, that no vector outside S is contained in at least two 8-spaces spanned by members of \mathcal{Q}. Second, this implies that all secants through $w \in V_1 \setminus \Phi$ are contained in V_1. This easily
yields $\frac{1}{2}(q^6 + q^4)$ secants through such w. Now we count the number of 1-spaces contained in at least (and then in precisely) one 8-space spanned by a member of \mathcal{Q}.

An elementary double count reveals that

$$|\mathcal{Q}| = (q^4 + q^3 + q^2 + q + 1)(q^4 + 1).$$

This gives rise to $(q^4 + q^3 + q^2 + q + 1)(q^{11} - q^3)$ 1-spaces all nonzero vectors w of which satisfy the proposition. But this is exactly equal to the number of 1-spaces in $V \setminus S$, as one easily calculates.

The transitivity of G_0 on $V \setminus S$ now follows from the transitivity of G_0 on \mathcal{Q} together with the transitivity of $GO^+_9(q)$ on the nonisotropic vectors.

Since the common neighbors in $VD_{5,5}(q)$ of 0 and w are given by the nonzero vectors $u \in S$ such that $w - u \in S$, each secant through w defines two such common neighbors. Hence $\mu = q^6 + q^4$. □

Automorphism group

The additive group of V, which is isomorphic to the elementary abelian group q^{16}, acts simply transitively on the vertex set of $VD_{5,5}(q)$. The full isomorphism group of $VD_{5,5}(q)$ is the group of index 2 in q^{16}: $\text{Aut}(GO^+_9(q))$ preserving the systems of maximal singular subspaces.

Clique's and cocliques

The maximal cliques correspond to the maximal subspaces of V contained in S, and these have dimensions 5 and 4, each forming a single orbit. Examples of the former are $\langle u, \iota\rho(u) \rangle$, with $u \in \Phi$; examples of the latter are the maximal singular subspaces of $\iota(\Phi)$ not in the natural system containing $\iota\rho(u)$, for some $u \in \Phi$.

There are cocliques of size q^4 obtained by the span of two 2-spaces; one in V_1 intersecting Φ trivially, and one in V_2 intersecting $\iota(\Phi)$ trivially. We conjecture that these are maximal (but there are several orbits).

Note that the sizes of the cliques and cocliques mentioned above are much smaller than the Hoffman bound q^8.

3.4 Forms graphs

3.4.1 Bilinear forms graphs

The bilinear forms graph $H_q(d,e)$ is the graph of which the vertices are the $d \times e$ matrices over the field \mathbb{F}_q, adjacent when the difference has rank 1. This graph has q^{de} vertices, and is distance-transitive of diameter $\min(d,e)$, cf. [123], Theorem 9.5.2. The neighbors of the zero matrix are the rank 1 matrices xy^\top, where $x \in \mathbb{F}_q^d$ and $y \in \mathbb{F}_q^e$. If we fix y and vary x, or fix x and vary y, we find cliques of sizes q^d and q^e.

The bilinear forms graph $H_q(d,e)$ is isomorphic to the graph on the d-subspaces of a $(d + e)$-space that are disjoint from a fixed e-space E, adjacent when they meet in codimension 1. There are two types of maximal cliques:
those of size q^d (all vertices contained in a fixed $(d + 1)$-space that meets E in a single point), and those of size q^e (all vertices containing a fixed $(d - 1)$-space disjoint from E).

In particular, for $d = 2$ and $e \geq 2$ we get a strongly regular graph with parameters (v, k, λ, μ) and spectrum $k^1 r^f s^g$, where

\[
v = q^{2e}, \quad r = q^e - q - 1, \quad k = (q + 1)(q^e - 1), \quad s = -q - 1, \quad \lambda = q^e + (q - 2)(q + 1), \quad f = k, \quad \mu = q(q + 1), \quad g = v - k - 1 = q(q^e - 1)(q^{e-1} - 1).
\]

The large cliques reach the Hoffman bound, and we have a partial geometry $pg(K, R, T)$ with $K = q^e$, $R = q + 1$, $T = q$ (cf. §8.6). This is a net, a dual transversal design. The small cliques are the lines of a semipartial geometry (cf. §§7.7.2, (vii)).

This graph is its own Delsarte dual (cf. §7.1.3).

For $d = e = 2$, the condition $\rk M \leq 1$ for a $d \times e$ matrix M is equivalent to $m_{11}m_{22} - m_{12}m_{21} = 0$, and the bilinear forms graph is the strongly regular graph $VO^*_4(q)$ with vertex set \mathbb{F}_q^4 where two vertices are adjacent when the line joining them hits the hyperplane at infinity in a point of a fixed hyperbolic quadric.

Let $q = p^r$ with p prime and r an integer. The full automorphism group of the graphs $H_d(d, e)$ is $G = PGL_v(q) : (\text{PGL}_d(q) \times \text{PGL}_e(q)) : r$ when $d \neq e$, and is $G.2$ when $d = e$. This group acts distance-transitively ([123], Theorem 9.5.1). In particular, for $d = 2$ and $e \geq 2$ the group G is rank 3. For $q = 2$, it is easy to see that the group $2^e : (S_3 \times H)$ still acts rank 3 for any subgroup H of $\text{PGL}_e(2)$ acting transitively on the set of points and on the set of lines of $\text{PG}(e - 1, 2)$. For example, for $e = 2, 3, 5$ one can take $H = 3, 7, 31 : 5$. For $e = 4$ the smallest rank 3 group is $2^8 : (3 \times A_7)$.

3.4.2 Alternating forms graphs

The **alternating forms graph** on \mathbb{F}_q^n is the graph of which the vertices are the skew-symmetric matrices with zero diagonal of order n over the field \mathbb{F}_q, adjacent when the difference has rank 2. This graph has $q^{n(n-1)/2}$ vertices, and is distance-transitive of diameter $\lfloor n/2 \rfloor$, cf. [123], Theorem 9.5.6. In particular, we get a strongly regular graph for $n = 4$ and $n = 5$. The parameters for $n = 4$ are

\[
v = q^6, \quad r = q^3 - q^2 - 1, \quad k = (q^2 + 1)(q^3 - 1), \quad s = -q^2 - 1, \quad \lambda = q^4 + q^3 - q^2 - 2, \quad f = k, \quad \mu = q^2(q^2 + 1), \quad g = v - k - 1 = q^2(q^3 - 1)(q - 1).
\]

The parameters for $n = 5$ are

\[
v = q^{10}, \quad r = q^5 - q^2 - 1, \quad k = (q^2 + 1)(q^5 - 1), \quad s = -q^2 - 1, \quad \lambda = q^5 + q^4 - q^2 - 2, \quad f = k, \quad \mu = q^2(q^2 + 1), \quad g = v - k - 1 = q^2(q^5 - 1)(q^3 - 1).
\]
This graph is its own Delsarte dual (cf. §7.1.3).

For \(n = 4 \), the condition \(\operatorname{rk} A \leq 2 \) for an alternating matrix \(A \) is equivalent to \(a_{12}a_{34} + a_{14}a_{23} + a_{13}a_{42} = 0 \), and the alternating forms graph is the strongly regular graph \(VO_4^\perp(q) \) with vertex set \(\mathbb{F}_q^6 \) where two vertices are adjacent when the line joining them hits the hyperplane at infinity in a point of a fixed hyperbolic quadric. In the special case \(n = 4, q = 2 \) we find the complement of the folded halved 8-cube.

3.4.3 Quadratic forms graphs

The quadratic forms graph on \(V = \mathbb{F}_q^n \) is the graph of which the vertices are the quadratic forms on \(V \), adjacent when the rank of the difference is 1 or 2. It has \(v = q^{n(n+1)/2} \) vertices, and is distance-regular of diameter \(\lfloor (n+1)/2 \rfloor \) ([123], Theorem 9.6.3). In particular, we get a strongly regular graph for \(n = 3 \) and \(n = 4 \).

The quadratic forms graph on \(\mathbb{F}_q^n \) is distance-regular with the same parameters as the alternating forms graph on \(\mathbb{F}_q^{n+1} \), but these graphs are nonisomorphic for \(n \geq 3, (n,q) \neq (3,2) \), as the former is not distance-transitive.

3.4.4 Hermitian forms graphs

Let \(q = u^2 \), where \(u \) is a prime power. A Hermitian matrix is a matrix \(A \) satisfying \(\overline{A} = A^\top \). The Hermitian forms graph on \(\mathbb{F}_q^d \) is the graph of which the vertices are the Hermitian matrices of order \(d \) over the field \(\mathbb{F}_q \), adjacent when the difference has rank 1. This graph has \(v = u^{d^2} \) vertices, and is distance-transitive of diameter \(d \), with parameters \(b_i = (u^{2d} - u^{2i})/(u + 1) \), \(c_i = u^{d-1}(u^i - (-1)^i)/(u + 1) \) (0 \(\leq i \leq d \) ([123], Theorem 9.5.7). In particular, we get a strongly regular graph for \(d = 2 \). The parameters are

\[
\begin{align*}
v &= u^4, \\
r &= u - 1, \\
k &= (u^2 + 1)(u - 1), \\
s &= -u^2 + u - 1, \\
\lambda &= u - 2, \\
f &= u(u - 1)(u^2 + 1), \\
\mu &= u(u - 1), \\
g &= k.
\end{align*}
\]

Let \(\Delta \) be the collinearity graph of the dual polar space \(U(2d,q) \). Then \(\Delta \) is distance-regular of diameter \(d \), and the Hermitian forms graph is the graph induced on the vertices at distance \(d \) from a fixed vertex of \(\Delta \) ([123], Theorem 9.5.10).

When lines (\(q \)-cliques) are given, one can use this to characterize the Hermitian forms graph:

Theorem 3.4.1 ([IVANOV & SHPECTOROV [458]]) Let \(\Gamma \) be a distance-regular graph with the parameters of the Hermitian forms graph, and assume that each edge in \(\Gamma \) is contained in a clique of size \(q \). If \(d \geq 3 \), then \(u \) is a prime power, and \(\Gamma \) is the Hermitian forms graph on \(\mathbb{F}_q^d \). If \(d = 2 \), then \(\Gamma \) is the subgraph induced on the vertices at distance 2 from a fixed vertex in a generalized quadrangle \(\text{GQ}(q,q^2) \).
3.4. **Forms Graphs**

3.4.5 **Baer subspaces**

Let V be a vector space of dimension m over \mathbb{F}_q, so that $|V| = q^{2m}$, and let X be a Baer subspace of the hyperplane $\mathcal{P}V$ at infinity, so that $|X| = \frac{q^{m-1}}{q-1}$. For hyperplanes H, the intersection size $|X \cap H|$ takes the two values $m_1 = \frac{q^{m-1}}{q-1}$ and $m_2 = \frac{q^{m-2}-1}{q-1}$. It follows (cf. §7.1.1) that the graph with vertex set V, where two vectors $x, y \in V$ are joined when $\langle y - x \rangle \in X$, is strongly regular with parameters

\[v = q^{2m}, \quad r = q^m - q - 1, \]
\[k = (q+1)(q^m-1), \quad s = -q - 1, \]
\[\lambda = q^m + q^2 - q - 2, \quad f = (q+1)(q^m-1), \]
\[\mu = q(q+1), \quad g = q(q^m-1)(q^m-1). \]

This graph is isomorphic to the bilinear forms graph $H_q(2, m)$.

More generally, let V be a vector space of dimension e over \mathbb{F}_q, so that $|V| = q^{de}$, and let X be an \mathbb{F}_q-subspace of dimension e of the hyperplane $\mathcal{P}V$ at infinity, so that $|X| = \frac{q^{e-1}}{q-1}$. Then the graph with vertex set V, where two vertices $x, y \in V$ are joined when $\langle y - x \rangle \in X$, is isomorphic to $H_q(d, e)$. The q^e-cliques are the lines of V in the direction of X. The q^e-cliques are the \mathbb{F}_q-subspaces of dimension e in X as hyperplane at infinity.

The special case $d = 3, e = 2$ occurs in the classification of rank 3 groups because $\text{PGL}_2(r)$ has two orbits (of sizes $r + 1$ and $r^3 - r$) on $\text{PG}(1, r^3)$.

In fact $\mathcal{P}V$ has a partition into $\frac{q^{m+1}}{q+1}$ Baer subspaces. Each hyperplane H hits one in $\frac{q^{m-1}}{q-1}$ points, and $\frac{q^m-q}{q+1}$ in $\frac{q^{m-2}-1}{q-1}$ points. Let D be the union of t of these Baer subspaces, where $0 < t < \frac{q^{m+1}}{q+1}$. Then $|D \cap H|$ takes the two values $t^2\frac{q^{m-2}-1}{q-1}$ and $q^m - t^2\frac{q^{m-2}-1}{q-1}$. Let Γ be the graph on V where $x, y \in V$ are joined when $\langle y - x \rangle \in D$. Then Γ is strongly regular with parameters

\[v = q^{2m}, \quad r = q^m - t(q+1), \]
\[k = t(q+1)(q^m-1), \quad s = -t(q+1), \]
\[\lambda = q^m + t(q+1)(tq + t - 3), \quad f = t(q+1)(q^m-1), \]
\[\mu = t(q+1)(tq + t - 1), \quad g = (q^m-1)(q^m + 1 - tq - t). \]

3.4.6 **A hyperoval at infinity**

Let V be a 3-dimensional vector space over \mathbb{F}_q, where q is even, and let X be a fixed hyperoval of the hyperplane $\mathcal{P}V$ at infinity, so that $|X| = q + 2$. Now $|X \cap H|$ takes the two values 0 and 2 for lines H. It follows (cf. §7.1.1) that the graph with vertex set V, where two vectors $x, y \in V$ are joined when $\langle y - x \rangle \in X$, is strongly regular with parameters

\[v = q^3, \quad r = q - 2, \]
\[k = (q-1)(q+2), \quad s = -q - 2, \]
\[\lambda = q - 2, \quad f = \frac{1}{2}(q^2 - 1)(q + 2), \]
\[\mu = q + 2, \quad g = \frac{1}{2}q(q - 1)^2. \]
These graphs are the collinearity graphs of generalized quadrangles with parameters \((q - 1, q + 1)\). See [6].

3.5 Grassmann graphs

The graph on the \(d\)-subspaces of an \(n\)-space, adjacent when they meet in a \((d - 1)\)-space, is distance-regular of diameter \(d\) (for \(n \geq 2d\)). The case \(d = 2\) yields strongly regular graphs.

3.5.1 Lines in a projective space

Let \(\Gamma\) be the graph on the lines in \(\text{PG}(n-1, q)\), where \(n \geq 4\), adjacent when they meet. (This is the Grassmann graph \(J_q(n, 2)\), cf. §1.2.4.) Then \(\Gamma\) is strongly regular, with parameters \(v = \left[\begin{array}{c} n \\ 1 \end{array}\right], k = (q + 1)(\left[\begin{array}{c} n \\ 1 \end{array}\right] - 1), \lambda = \left[\begin{array}{c} n \\ 1 \end{array}\right] + q^2 - 2, \mu = (q + 1)^2\), and eigenvalues \(k, r = q^2\left[\begin{array}{c} n - 3 \\ 1 \end{array}\right] - 1, s = -q - 1\) with multiplicities, \(1, f = \left[\begin{array}{c} n \\ 1 \end{array}\right] - 1, g = \left[\begin{array}{c} n \\ 2 \end{array}\right] - \left[\begin{array}{c} n \\ 1 \end{array}\right]\).

For \(n = 4\), the lines can be seen as points on the Klein quadric, and \(\Gamma\) is isomorphic to the \(O^+_6(q)\) graph.

Group

The full automorphism group \(\text{Aut } \Gamma\) of \(\Gamma\) is \(\text{PGL}_n(q)\) if \(n > 4\) and \(\text{PGL}_n(q).2\) if \(n = 4\).

Cliques

Maximal cliques are maximal sets of pairwise intersecting lines, and come in two types: (i) all lines on a given point, and (ii) all lines in a given plane. Sets of type (i) have size \(\left[\begin{array}{c} n \\ 1 \end{array}\right]\) (and reach the Hoffman bound), those of type (ii) have size \(\left[\begin{array}{c} n \\ 2 \end{array}\right]\). Both types are in the same \(\text{Aut } \Gamma\)-orbit for \(n = 4\).

Cocliques

Maximal cocliques are maximal sets of pairwise disjoint lines. If \(n\) is even, the largest of these are line spreads, of size \((q^n - 1)/(q^2 - 1)\). If \(n\) is odd, the largest are partial spreads of size \((q^n - q^3)/(q^2 - 1) + 1\) (Beutelspacher [66]).

Chromatic number

If the set of all lines can be partitioned into spreads, then \(n\) is even and \(\Gamma\) has chromatic number \(\chi(\Gamma) = \left[\begin{array}{c} n \\ 1 \end{array}\right]\). Such a partition is known as a line packing or parallelism. The existence of a parallelism is known for \(n = 4\) (Denniston [282]), for \(n = 2^e, e \geq 2\) (Beutelspacher [66]), for \(q = 2, n\) even (Baker [34]; see also [728]), and for \((q, n) = (3, 6)\) (Etzion & Vardy [308]).

For odd \(n \geq 5\), and \(q = 2\), Meszka [561] showed that \(\chi(\Gamma) = 2^{n-1} + 2\).
3.6 The case \(q = 2 \)

3.6.1 Local structure

We have precise information about the local structure of the polar graphs \(O_m^2(2) \).

Proposition 3.6.1 (Brouwer & Shult [142])

\[
\begin{align*}
TO_m^e(2) &= 1 + O_m^e(2) + O_m^e(2) + 1 \\
VO_m^e(2) &= 1 + O_m^e(2) + NO_m^e(2) + VO_m(2)\quad \text{and}\quad VO_m(2) = TO_m(2) \\
NO_m^e(2) &= 1 + O_m^e-2(2) + TO_m^e-2(2) \\
O_m^e(2) &= 1 + O_m^e-2(2) + VO_m^e(2).
\end{align*}
\]

Here we indicate the subgraphs found at a given distance from a fixed point, writing \(\Gamma = \Gamma_0(x) + \Gamma_1(x) + \Gamma_2(x) + \cdots \). The graphs occurring here are \(O_m^e(2) \), the graph on the singular points, adjacent when orthogonal, \(NO_m^e(2) \), the graph on the nonsingular points, adjacent when orthogonal, \(VO_m^e(2) \), the graph on \(\mathbb{F}_2^m \) where distinct vectors \(x, y \) are adjacent when \(Q(y - x) = 0 \), and \(TO_m^e(2) \), the Taylor extension of \(O_m^e(2) \). The notation \(T.2 \) denotes the 2-clique extension of \(\Gamma \).

Small cases are \(O_2^e(2) = K_6 \), \(O_4^e(2) = K_5 \), \(O_6^e(2) = K_4 \), \(O_8^e(2) = 2 \times 3 \), \(NO_2^e(2) = K_3 \), \(NO_4^e(2) = T(5) \), \(NO_6^e(2) = K_1 \), \(NO_8^e(2) = K_{3,3} \), \(NO_4^e(2) = T(8) \), \(VO_2^e(2) = K_3 \), \(VO_4^e(2) = 2 \times 2 \), \(TO_2^e(2) = K_2 \), \(TO_4^e(2) = C_6 \).

As a consequence, the size of the largest cocliques in \(O_m^e(2) \) depends on \(m \) (mod 8). See also [746].

Proposition 3.6.2 For even \(m \geq 2 \), the largest cocliques in the graphs \(TO_m^e(2), NO_m^e(2), VO_m^e(2), \) and \(O_m^e(2) \) have sizes given in the following table

<table>
<thead>
<tr>
<th>(m) (mod 8)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TO_m^e(2))</td>
<td>(m)</td>
<td>(m)</td>
<td>(m + 2)</td>
<td>(m + 1)</td>
</tr>
<tr>
<td>(TO_m^e(2))</td>
<td>(m + 2)</td>
<td>(m + 1)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>(NO_m^e(2))</td>
<td>(m - 1)</td>
<td>(m + 1)</td>
<td>(m)</td>
<td>(m - 1)</td>
</tr>
<tr>
<td>(NO_m^e(2))</td>
<td>(m)</td>
<td>(m - 1)</td>
<td>(m - 1)</td>
<td>(m + 1)</td>
</tr>
<tr>
<td>(VO_m^e(2))</td>
<td>(m)</td>
<td>(m + 2)</td>
<td>(m + 1)</td>
<td>(m)</td>
</tr>
<tr>
<td>(VO_m^e(2))</td>
<td>(m + 1)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m + 2)</td>
</tr>
<tr>
<td>(O_m^e(2))</td>
<td>(m - 1)</td>
<td>(m - 1)</td>
<td>(m + 1)</td>
<td>(m)</td>
</tr>
<tr>
<td>(O_m^e(2))</td>
<td>(m + 1)</td>
<td>(m)</td>
<td>(m - 1)</td>
<td>(m - 1)</td>
</tr>
</tbody>
</table>

except for the empty graph \(O_2^e(2) \), where the largest coclique has size 0.

If we call this maximum \(c_{\text{max}} \), then the smaller maximal cocliques have all possible sizes \(c_0 \leq c < c_{\text{max}} \) with \(c \equiv c_0 \) (mod 4), where \(c_0 = 2, 3, 4, 5 \) for the cases \(TO_m^e(2), NO_m^e(2), VO_m^e(2), O_m^e(2) \), respectively. When size \(c \) occurs, there is a single orbit of maximal cocliques of size \(c \). \(\square \)

For example, \(O_{14}^e(2) \) has single orbits of maximal cocliques of sizes 5, 9, 13, 14. In particular, the bound obtained from Theorem 2.6.3 holds with equality for \(O_{14}^e(2) \) and \(O_{14}^e(2) \).

Proposition 3.6.3 The maximal cocliques in \(VO_{2n+1}(2) \), \(n \geq 0 \), have all even sizes \(c \) with \(2 \leq c \leq 2n + 2 \). The maximal cocliques in \(O_{2n+1}(2) \), \(n \geq 1 \) have all odd sizes \(c \) with \(3 \leq c \leq 2n + 1 \). When size \(c \) occurs, there is a single orbit of maximal cocliques of size \(c \). The graph \(O_1(2) \) has no vertices. The graph \(S_{2n}(2) \) is isomorphic with \(O_{2n+1}(2) \). \(\square \)
The maximal cliques of \(O_{2n}^-(2), O_{2n}^+(2), O_{2n+1}(2) \) have size \(2^{n-1} - 1, 2^n - 1, 2^n - 1 \), respectively. The maximal cliques of \(VO_{2n}(2), VO_{2n}^+(2), VO_{2n+1}(2) \) have size \(2^{n-1}, 2^n, 2^n \), respectively. The maximal cliques of \(NO_{2n}(2) \) have size \(2^{n-1} \). In all cases they form a single orbit.

Above we gave the partition of a binary orthogonal graph around a point. There are further such partitions, induced by the perp of a nonsingular point. These give rise to regular sets

\[
O_{2n}^\varepsilon(2) = TO_{2n-2}^\varepsilon(2) + O_{2n-1}(2).
\]

3.6.2 Symmetric groups

Let \(V \) be the \(m \)-dimensional vector space over \(\mathbb{F}_2 \), provided with the quadratic form \(Q(x) = \sum_{i<j} x_i x_j \). Then the symmetric group \(S_m \) acts on \(V \) by coordinate permutation.

We determine the type of the corresponding polar space. Let \(\text{wt}(x) \) be weight of the vector \(x \), i.e., its number of nonzero coordinates. Then \(Q(x) = (\text{wt}(x))^2 \) and \(B(x,y) = \text{wt}(x)\text{wt}(y) + \sum x_i y_i \). In particular, \(B(x,1) = (m+1)\text{wt}(x) \). It follows that \(V^\perp = \{1\} \) if \(m \) is odd, while the bilinear form \(B \) is nondegenerate if \(m \) is even. A vector \(x \) is singular when \(\text{wt}(x) \equiv 0 \) or \(1 \) (mod 4), and nonsingular when \(\text{wt}(x) \equiv 2 \) or \(3 \) (mod 4). In particular, the space \(V \) is degenerate only when \(m \equiv 1 \) (mod 4).

Proposition 3.6.4

(i) If \(m = 4t \), the polar space \(PV \) and the quotient \(V^\perp / \langle 1 \rangle \) are both nondegenerate of Witt type \((-1)^t\).

(ii) If \(m = 4t + 1 \), the quotient \(V / \langle 1 \rangle \) is nondegenerate of Witt type \((-1)^t\).

(iii) If \(m = 4t + 2 \), the polar space \(PV \) is nondegenerate of Witt type \((-1)^t\).

(iv) If \(m = 4t + 3 \), the polar space \(PV \) is nondegenerate parabolic. □
Chapter 4

Buildings

Generalizing the situation of projective spaces and polar spaces, Tits associated a building to arbitrary Chevalley groups and classified the resulting groups and geometries in [694]. Finite buildings of type E_6 have strongly regular collinearity graphs that are most easily and naturally described in this buildings setup.

4.1 Geometries

A Buekenhout-Tits geometry (or just geometry) Γ is a set X of objects together with a type function $t : X \to I$, where I is the set of types, and a symmetric and reflexive incidence relation $*$ such that if $x * y$ and $x \neq y$, then $t(x) \neq t(y)$. The corresponding intuition is that one has objects of several types, maybe points and lines and planes and circles, and that objects of different types may be incident; conventionally each object is incident with itself.

The rank of a geometry is the cardinality $|I|$ of its set of types.

A flag F in a geometry is a set of pairwise incident objects. If $t(F) = I$ (that is, if F contains one object of each type), then F is called a chamber. The residue $\text{Res}_\Gamma F$ (or just $\text{Res} F$) of a flag F in a geometry $\Gamma = (X, I, t, *)$ is the geometry $\Delta = (X', I', t', *)$, where X' is the set of objects not in F incident with each element of F, and $I' = I \setminus t(F)$, and t', $*$' are the restrictions of t, $*$ to X' and $X' \times X'$, respectively. We say that I' is the type of $\text{Res} F$.

A geometry is called connected when its incidence graph (with the objects as vertices, different objects joined when they are incident) is connected. A geometry is called residually connected when all of its residues of rank at least 2 are connected, and all of its residues of rank at least 1 are nonempty (i.e., have a nonempty set of objects). A residually connected geometry is called thick (resp. thin) when all of its residues of rank 1 have at least three (resp. precisely two) objects.

A subgeometry of a geometry $\Gamma = (X, I, t, *)$ is a geometry $(Y, J, t', *)'$ with $Y \subseteq X$, $J \subseteq I$, and t', $*$' the restrictions of t, $*$ to Y and $Y \times Y$, respectively.

4.1.1 Generalized polygons

A generalized polygon (generalized d-gon) with $d \geq 3$ is a partial linear space with an incidence graph of diameter d and girth $2d$. For example, a generalized 3-gon is a projective plane.
A generalized polygon of order \((s,t)\) is one where each line has \(s+1\) points, and each point is on \(t+1\) lines. If \(s = t\) one says of order \(s\).

The dual of a generalized polygon \((P, L)\) is the generalized polygon \((L, P)\) obtained by interchanging the roles of points and lines.

The standard reference for generalized polygons is Van Maldeghem [710].

Example: the Fano plane

The Fano plane is the (unique) projective plane of order 2. It has 7 points and 7 lines. One can take as points the integers mod 7, and as lines the sets \(\{0, 1, 3\} + i\) (mod 7). In the notation of §6.2, it is an \(S(2,3,7)\).

Example: the generalized quadrangle of order 2

There is a unique generalized quadrangle of order 2. It has 15 points and 15 lines. One can take as points the \(\binom{6}{2} = 15\) pairs from a set \(\Omega\) of 6 symbols, and as lines the partitions of \(\Omega\) into three pairs, where a point is incident with a line when the pair is one of the parts of the partition.

Example: the generalized hexagons of order 2

There are precisely two nonisomorphic generalized hexagons of order 2, one the dual of the other, so that the incidence graph is uniquely determined (Cohen & Tits [205]). They have 63 points and 63 lines. Diagram of the collinearity graph:

Combinatorially the two can be distinguished by looking at the subgraph of the collinearity graph induced by the vertices at distance 3 from a given point. In what one calls the classical \(G_2(2)\) generalized hexagon, this subgraph is connected. In its dual this subgraph has two connected components of size 16. See also [114].

The classical generalized hexagon of order 2 is found by taking the \(7 + 7 + 21 + 28 = 63\) points, lines, flags, and antiflags of the Fano plane as points, and whenever \((p, L)\) is a flag of the Fano plane and \(L = \{p, q, r\}\) and \(p\) is on \(L, M, N\), taking the sets \(\{p, L, (p, L)\}\) and \(\{(p, L), (q, M), (r, N)\}\) as lines ([711]).

According to [691], the dual of the classical generalized hexagon of order 2 is found by taking as points the nonisotropic points of \(PG(2,9)\) provided with a nondegenerate Hermitian form, and as lines the orthogonal bases. See also [710], (1.3.12) and [123], p. 384.

Terminology: what we have called here the ‘classical’ generalized hexagon of order 2 (to distinguish it from its dual) is known in the literature as the ‘short root’ or ‘split Cayley’ or ‘symplectic’ generalized hexagon (the latter in characteristic 2), whereas its dual is called the ‘long root’ or ‘dual split Cayley’ generalized hexagon. For a construction of the split Cayley hexagon over an arbitrary field, see §4.8.

1This construction shows that the classical generalized hexagon of order 2 contains the generalized hexagon of order \((1,2)\). Its dual does not—this is another way to distinguish them.
4.1.2 Diagrams

A diagram for a geometry is a labeled directed graph on the set of types. It is interpreted as an axiom system for the geometry, as follows: the label on the pair \((i, j)\) is a class of rank 2 geometries \(\Gamma_{ij}\) with set of types \(\{1, 2\}\) (thought of as \{points, lines\}) such that each residue of rank 2 with set of types \(\{i, j\}\) is isomorphic to a member of \(\Gamma_{ij}\) under an isomorphism that maps \(i\) to 1 and \(j\) to 2.

Below a dictionary of traditional labels.

- Every point is incident to every line.
- Points and lines of a projective plane.
- Points and lines of a generalized quadrangle.
- Points and lines of a generalized hexagon.
- Points and lines of a generalized \(n\)-gon, \(n \geq 2\)
- Points and lines of an affine plane.
- Points and edges of a complete graph.

Examples

The geometry of points, lines and planes in a 3-dimensional projective space satisfies the axioms given by the diagram \(\bullet \cdots \bullet\).

(That is: the lines and planes on a point form the points and lines of a projective plane; every point on a line is on every plane containing that line; the points and lines on a plane are the points and lines of a projective plane.)

The geometry of points, lines and planes in a 3-dimensional affine space satisfies the axioms given by the diagram \(\bullet \cdots \bullet\).

The geometry of 8 vertices, 12 edges and 6 faces of a cube satisfies the axioms given by the diagram \(\bullet \cdots \bullet\). This is a thin geometry.

The geometry of totally singular points, lines, planes and solids in a geometry of type \(\mathcal{O}_8^+ (F)\) satisfies the axioms given by the diagram \(\bullet \cdots \bullet\).

The geometry of totally singular points, lines, solids of the first kind, and solids of the second kind in a geometry of type \(\mathcal{O}_8^+ (F)\) satisfies the axioms given by the diagram \(\bullet \cdots \bullet\). The solids are 4-spaces (as vector spaces) and two solids of the same type have an intersection of even (vector space) dimension. Two solids of different types are incident when they meet in a plane (that is, in a 3-space).

4.1.3 Simple properties

In principle, the diagram is a labeled complete graph. However, we omit the edges labeled with the label of invisibility which denotes a generalized digon (every point incident to every line). Now it makes sense to talk about connected components of the diagram.
Proposition 4.1.1 (Buekenhout [155]) Let $\Gamma = (X, I, t, \ast)$ be a residually connected Buekenhout-Tits geometry of finite rank. Let $X_i = t^{-1}(i)$ be the set of objects of type i.

(i) For any two distinct types $i, j \in I$, the subgraph of the incidence graph induced on $X_i \cup X_j$ is connected.

(ii) If the types i, j belong to different connected components of the diagram, then each i-object is incident with each j-object.

Proof. (i) Induction on the rank. The case of rank at most 2 holds by definition. Since Γ is connected, we can join two objects in $X_i \cup X_j$ by a chain $x_0 * x_1 * \cdots * x_l$. Next, for each x_h in this chain with a type different from i and j, we can replace x_h by a chain in $X_i \cup X_j$ in $\Res(x_h)$ (by the induction hypothesis and residual connectedness).

(ii) Induction on the rank. The case of rank at most 2 holds by definition. Using part (i) we can join two objects $x \in X_i$ and $y \in X_j$ by a chain $x = x_0 * x_1 * \cdots * x_l = y$ contained in $X_i \cup X_j$ (so that the types alternate between i and j). Let the length l be chosen minimal, and suppose that $l > 1$. Let k be a third type different from i and j. We may suppose that j and k belong to different connected components of the Buekenhout-Tits diagram. In $\Res(x_1)$ we can replace $x_0 * x_1 * x_2$ by a path $x_0 = x_0' * x_1' * \cdots * x_m' = x_2$ using only types i and k. Now x_3 and its two predecessors in the chain have types $k-i-j$, and by the induction hypothesis we can omit the middle object (of type i). Then x_3 and its two predecessors have types $i-k-j$, and again we can omit the middle object. It follows after m steps that $x_0 * x_3$, so that l was not minimal. \square

After this preparation, it is an easy exercise to prove the Veblen-Young axiom from the A_n diagram, so that a (thick) residually connected geometry satisfying the A_n diagram is a projective space.

Buildings (§4.5) provide the prototypes of diagram geometries.

4.1.4 Shadow geometries

Consider a geometry (X, I, t, \ast) and fix an element $i \in I$, calling the objects of that type points. Let the shadow of any flag F be the set of points p incident with all elements of F. Let lines be the shadows of the flags of cotype $\{i\}$ (i.e., of type $I \setminus \{i\}$). In this way, a Buekenhout-Tits geometry yields a point-line geometry (where lines are sets of points) if we specify the point type.

4.2 Coxeter systems

Let W be a group generated by a finite nonempty set $S = \{s_1, \ldots, s_n\}$ of involutions and let, for each pair $(s_i, s_j) \in S \times S$, the number m_{ij} be the order of the product $s_i s_j$ (setting $m_{ij} = \infty$ if $s_i s_j$ generates an infinite group). Then (W, S) is a Coxeter system, and W is a Coxeter group, if W has the presentation by generators and relations $W = \langle S : (s_i s_j)^{m_{ij}} = 1, \forall i, j \in \{1, 2, \ldots, n\} \rangle$. The natural number n is called the rank of the system. Two Coxeter systems (W, S) and (W, S') are isomorphic if there is a bijection $S \to S'$ extending to an isomorphism $W \to W'$.

The symmetric matrix $(m_{ij})_{1 \leq i, j \leq n}$ is called the Coxeter matrix belonging to (W, S). The Coxeter diagram is the edge labeled graph $\Gamma(W, S)$ with vertex
set S and no edge between s_i and s_j if $m_{ij} = 2$; otherwise an edge with label (m_{ij}) between s_i and s_j, for all $i, j \in \{1, 2, \ldots, n\}$. The labels of edges with label (3) are usually omitted, those with label (4) are usually drawn as a double edge, and those with label (6) are sometimes drawn as a triple edge. Note that the Coxeter diagram completely determines the Coxeter group and system. However, it is not true that any Coxeter group determines a unique isomorphism class of Coxeter systems, as distinct sets of generators may lead to different Coxeter diagrams. For example, the Coxeter group $D_{12} = \langle s_1, s_2 : s_1^2 = s_2^2 = (s_1s_2)^6 = 1 \rangle$ is also generated by the involutions $r_1 := s_1$, $r_2 := s_2s_1s_2$, and $r_3 := s_2s_1s_2s_1s_2s_1$, and the group can be presented as $\langle r_1, r_2, r_3 : r_1^2 = r_2^2 = r_3^2 = (r_1r_2)^3 = (r_1r_3)^2 = (r_2r_3)^2 = 1 \rangle$.

Let (W, S) be a Coxeter system. If $S = S_1 \cup S_2$, with $W = \langle S_1 \rangle \times \langle S_2 \rangle$ (then automatically $S_1 \cap S_2 = \emptyset$), then we say that (W, S) is reduced. If (W, S) is not reduced, then it is called irreducible. For instance, the above Coxeter group D_{12} is the direct product $\langle r_1, r_2 \rangle \times \langle r_3 \rangle$.

We will only be concerned with finite Coxeter groups. These were classified by COXETER [237], and the Coxeter diagrams of the irreducible ones are the following.

- **Type A_n**: \[\begin{array}{ccccccc} 1 & 2 & 3 & \cdots & n-1 & n \end{array} \quad n \geq 1, \]

- **Type B_n/C_n**: \[\begin{array}{ccccccc} 1 & 2 & 3 & \cdots & n-1 & n \end{array} \quad n \geq 2, \]

- **Type D_n**: \[\begin{array}{ccccccc} 1 & 2 & 3 & \cdots & n-2 & n \end{array} \quad n \geq 4, \]

- **Type E_n**: \[\begin{array}{ccccccc} 1 & 3 & 4 & 5 & 6 & 7 & 8 \end{array} \quad n \in \{6, 7, 8\}, \]

- **Type F_4**: \[\begin{array}{ccc} 1 & 2 & 3 & 4 \end{array} \]

- **Type G_2**: \[\begin{array}{cc} 1 & 2 \end{array} \]

- **Type H_n**: \[\begin{array}{ccc} 1 & (5) & 2 & \cdots & 3 & \cdots & 4 \end{array} \quad n \in \{2, 3, 4\}, \]

- **Type $I_2^{(m)}$**: \[\begin{array}{cc} 1 & (m) & 2 \end{array} \quad m \geq 7. \]

Standard references for Coxeter groups are BOURBAKI [102] and HUMPHREYS [448].
Most finite irreducible Coxeter systems \((W, S)\) are related to an irreducible crystallographic root system, i.e., a finite set \(R\) of vectors spanning the real Euclidean \(n\)-space \(\mathbb{R}^n\), not contained in the union of two nontrivial orthogonal subspaces and satisfying the following three conditions: (1) if \(v \in R\) and \(rv \in R\), for some \(r \in \mathbb{R}\), then \(r \in \{1, -1\}\); (2) if \(v, w \in R\), then \(w - 2\frac{(v, w)}{(v, v)} v \in R\); and (3) if \(v, w \in R\), then \(2\frac{(v, w)}{(v, v)} \in \mathbb{Z}\). Given an irreducible crystallographic root system \(R\), there exists a basis \(B \subseteq R\) of \(\mathbb{R}^n\), called a fundamental basis, such that every element of \(R\) can be expressed as a linear combination of members of \(B\) only using either nonnegative integer coefficients, or nonpositive integer coefficients. The set \(S\) of reflections about the hyperplanes perpendicular to the members of \(B\) generates the automorphism group \(W\) of \(R\), and \((W, S)\) is a Coxeter system. The Coxeter systems arising as such are the ones of types \(A\) to \(G\) above.

The reason why the second diagram has two names (\(B_n\) and \(C_n\)) is because this particular Coxeter system is related to two nonisomorphic root systems, one of type \(B_n\) and one of type \(C_n\). A root system of type \(B_n\) (resp. \(C_n\)) can be obtained from one of type \(C_n\) (resp. \(B_n\)) by multiplying the shortest vectors by 2.

The Dynkin diagram of a crystallographic root system is an edge labeled graph with vertices the elements of a fundamental basis, and an edge with label \((k)\) joining two vertices if the angle between the corresponding basis vectors is equal to \(\frac{k-1}{k}\pi\). Edges with label \((2)\) are usually omitted. It is easy to see that basis vectors corresponding to vertices joined by an edge with label \((3)\) have the same length. If the label is \((4)\) or \((6)\), then the length of one vector is \(\sqrt{2}\) or \(\sqrt{3}\), respectively, times that of the other. No other labels are possible. An edge with label \((4)\) or \((6)\) is further furnished with an arrow pointing from the longer to the shorter vector. By removing the arrows of the Dynkin diagram one obtains the Coxeter diagram of the corresponding Coxeter system.

Coxeter groups of type \(A_n\) are isomorphic to the full symmetric group \(\text{Sym}(n+1)\); those of type \(B_n\) are the full automorphism group of the \(n\)-cube; the one of type \(F_4\) is the automorphism group of the 24-cell in \(\mathbb{R}^4\); those of type \(H_n\), \(n = 2, 3, 4\) are the automorphism group of a regular pentagon in \(\mathbb{R}^2\), a dodecahedron or icosahedron in \(\mathbb{R}^3\), and a 120-cell or 600-cell in \(\mathbb{R}^4\), respectively.

The Coxeter groups of types \(E_6, E_7, E_8\) are isomorphic to the groups \(\text{GO}^{-6}_0(2)\), \(2 \times \text{GO}^{-7}_7(2)\), \(2 \times \text{GO}^+_8(2)\), respectively.

Coxeter systems of type \(I_2^{(m)}\) are dihedral groups \(D_{2m}\) with generators two reflections about axes forming an angle of \(\pi/m\). Occasionally one denotes the types \(A_2, B_2, C_2, H_2\) by \(I_2^{(3)}, I_2^{(4)}, I_2^{(6)}, I_2^{(5)}\), respectively.

We mention some fundamental properties of Coxeter systems, the first one of which is called the deletion condition.
Proposition 4.2.1 Let \((W,S) \) be a Coxeter system and let \(w \in W \) be arbitrary. Let \(\ell(w) \) be the minimum length of an expression in the generators (members of \(S \)) producing \(w \). Suppose \(w = s_1 s_2 \cdots s_m \), with \(m > \ell(w) \). Then there exist \(i,j \in \{1,2,\ldots,m\} \), with \(i < j \), such that \(w = s_1 \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_j \cdots s_m \).

Proposition 4.2.2 Every symmetric matrix \(M = (m_{ij})_{1 \leq i,j \leq n} \), with \(m_{ij} \in \mathbb{Z}_{\geq 1} \cup \{\infty\} \), for all \(i \neq j \), and \(m_{ii} = 1 \), for all \(i \), is the Coxeter matrix belonging to a Coxeter system. In other words, if \(S = \{s_1,s_2,\ldots,s_n\} \) and \(W = \{S : (s_i s_j)^{m_{ij}} = 1, \forall i,j \in \{1,2,\ldots,n\}\} \), then \((W,S) \) is a Coxeter system with Coxeter matrix \(M \); in particular, the order of the product \(s_i s_j \) is exactly equal to \(m_{ij} \). Also, for any subset \(S' \subseteq S \), the system \((\langle S' \rangle,S') \) is a Coxeter system with Coxeter matrix the restriction of \(M \) to \(S' \), with self-explaining terminology.

A consequence of these properties is the following.

Corollary 4.2.3 Let \((W,S) \) be a Coxeter system, and let \(w \in W \) be arbitrary. Then all expressions of \(w \) in the elements of \(S \) of length \(\ell(w) \) contain exactly the same elements of \(S \).

Proof. Induction on \(\ell(w) \). Set \(\ell = \ell(w) \) and let \(s_1 s_2 \cdots s_\ell \) and \(r_1 r_2 \cdots r_\ell \) be two expressions of \(w \) in the elements of \(S \). We have \(s_1 \cdots s_{\ell-1} = r_1 r_2 \cdots r_\ell s_\ell \), and the right-hand side is not reduced, while the expression \(r_1 r_2 \cdots r_\ell \) is, so \(s_\ell \) can be canceled against some factor \(r_i \), and \(s_1 \cdots s_{\ell-1} = r_1 \cdots r_{i-1} r_j \cdots r_{\ell-1} r_\ell \). Similarly, \(s_2 \cdots s_\ell = r_1 \cdots r_j \cdots r_{\ell-1} r_\ell \) for some \(j \), proving (by induction) that the \(s_i \) occur among the \(r_j \).

This also implies that, with the terminology of Proposition 4.2.2, \(\langle S' \rangle \cap S = S' \). Another consequence is the following.

Corollary 4.2.4 Let \((W,S) \) be a Coxeter system. Let \(R,T \subseteq S \). Then \(\langle R \rangle \cap \langle T \rangle = \langle R \cap T \rangle \).

Proof. Clearly \(\langle R \cap T \rangle \leq \langle R \rangle \cap \langle T \rangle \). Conversely, let \(w \in \langle R \rangle \cap \langle T \rangle \). The set \(S_w \) of elements occurring in one (and then each) minimal expression of \(w \) is contained in \(R \) and in \(T \), hence in \(R \cap T \). It follows that \(w \in \langle R \cap T \rangle \).

4.3 Coxeter geometries

Let \((W,S) \) be a Coxeter system. A standard parabolic subgroup is a subgroup of \(W \) generated by a proper subset of \(S \). A parabolic subgroup is a conjugate of a standard parabolic subgroup. A maximal standard parabolic subgroup is one not properly contained in another one, i.e., generated by all but one elements of \(S \). We shall use the notation \(P_T = \langle S \setminus T \rangle \) for \(T \subseteq S \), and \(P_s = P_{\{s\}} \).

Let \((W,S) \) be a Coxeter system. We define a Coxeter geometry \(\Gamma(X,S,t,\ast) \) as follows. The set \(X \) is the set of all right cosets of any maximal standard parabolic subgroup. Two members of \(X \) are incident if they are, as subsets of \(W \), not disjoint. The type function is defined by \(t(P_s w) = s \) for \(s \in S \) and \(w \in W \). We have the following results.
Lemma 4.3.1 Let \((W,S)\) be a Coxeter system, and let \(T \subseteq S\). If the cosets \(P_tw_t\) (for \(t \in T\)) meet pairwise, then \(\bigcap_{t \in T} P_tw_t\) is nonempty. If \(T = S\), then this intersection is a singleton.

Proof. Let \(U = \{t \in T \mid w_t = 1\}\). Apply induction on \(|T \setminus U|\).

If \(|T \setminus U| = 0\), then \(\bigcap_{t \in T} P_tw_t = P_T\), as desired.

If \(t \in T \setminus U\), then let \(w_t\) be a shortest representative of \(P_tw_t\). Since \(P_tw_t\) meets \(P_u\) for all \(u \in U\), \(w_t\) can be written without \(u\) for all \(u \in U\), so that \(w_t \in P_U\). Now multiply on the right by \(w_t^{-1}\) to reduce to the case \(U' = U \cup \{t\}\). Finally, if \(T = S\), then we reduce to \(P_S = \{1\}\).

Proposition 4.3.2 Let \((W,S)\) be a Coxeter system. Then the corresponding Coxeter geometry \(\Gamma(X,S,t,\ast)\) is a residually connected thin Buckenhout-Tits geometry of rank \(|S|\).

Proof. It is clear that the type function \(t\) is well defined, as \(W\) is not generated by a proper subset of \(S\). In the previous lemma we showed:

(*) Any flag of type \(T \subseteq S\) can be written as \(\{P_tw : t \in T\}\) for some \(w \in W\), that is, is the collection of objects of type \(t\) (with \(t \in T\)) containing \(P_tw\).

It follows that a chamber is just a coset of the trivial subgroup; hence the chambers are in one-to-one correspondence with the elements of \(W\). Let \(s \in S\) and let \(F\) be a flag of type \(S \setminus \{s\}\). Then (*) implies that \(F\) is the set of cosets of maximal standard parabolics containing a fixed coset of \(\{1,s\}\), say \(\{1,s\}w, w \in W\). Then only \(P_sw\) and \(P_ssw\) complete \(F\) to chambers, corresponding to \(w\) and \(sw\), respectively. Hence \(\Gamma(X,S,t,\ast)\) is thin.

Now let \(T \subseteq S\), \(|T| < |S| - 1\), and let \(F\) be a flag of type \(T\). Using an appropriate translate, we may assume that \(F\) is the set \(\{P_t : t \in T\}\). Since \(\bigcap_{t \in T} P_t = \langle S \setminus T \rangle\), the set of elements incident with every member of \(F\) can be identified with the set of maximal standard parabolics of \(\langle S \setminus T \rangle\). Hence \(\text{Res } F\) is the Coxeter geometry corresponding to the Coxeter system \((\langle S \setminus T \rangle, S \setminus T)\). Hence, to show local connectivity, it suffices to show that every Coxeter geometry of rank at least 2 is connected.

Consider the graph on \(X\) where adjacency is incidence. For each \(w\), all objects \(P_sw\) (\(s \in S\)) are mutually adjacent, and hence are in the same connected component. If \(w \neq 1\), say \(w = rv\) with \(\ell(w) = \ell(v) + 1\), then the factor \(r\) can be absorbed in \(P_s\) whenever \(s \neq r\). So induction on \(\ell(w)\) shows that this graph is connected.

Since Coxeter geometries are residually connected and thin, all rank 2 residues of a Coxeter geometry are (as incidence graphs) even length cycles or (bi)infinite paths. In the finite case only cycles appear, and the cycle has \(2\ell\) vertices if and only if the corresponding Coxeter group (of the residue) is the dihedral group \(D_{2\ell}\). A cycle with \(2\ell\) vertices is the incidence graph of a geometry called an ordinary polygon.

Hence the Coxeter diagram can be interpreted geometrically as follows: the label of the diagram of a Coxeter system \((W,S)\) between nodes \(i\) and \(j\) is \((k)\) if and only if each residue in the corresponding Coxeter geometry \((X,S,t,\ast)\) of type \(\{i,j\}\) is an ordinary \(k\)-gon.
4.4 Coxeter geometries of types A_n, D_n and E_6

We describe the Coxeter geometries of types A_n, D_n and E_6 and find that they belong to the complete graph K_{n+1}, the complete n-partite graph $K_{n\times 2}$, and the Schlaffi graph (§10.10).

An object of type i will be called an i-object. Given a diagram X_n and a point type i we denote the corresponding shadow geometry by $X_{n,i}$.

A_n

Let $\Omega = \{1, \ldots, n+1\}$. The Coxeter group (W, S) of type A_n can be taken to be the symmetric group $Sym(\Omega)$ of order $(n+1)!$, with set of generators $S = \{s_1, \ldots, s_n\}$, where s_i is the transposition $(i, i+1)$ interchanging i and $i+1$.

The standard i-object can be identified with the i-subset $\{1, \ldots, i\}$ of Ω fixed by the standard maximal parabolic $Sym\{1, \ldots, i\} \times Sym\{i+1, \ldots, n+1\}$. Then the i-objects are the i-subsets of Ω, collinear when they meet in an $(i-1)$-set (and have an $(i+1)$-set as union). It follows that the collinearity graph of the shadow geometry of type $A_{n,i}$ is the Johnson graph $J(\Omega, i)$.

D_n

Let Ω be the set $\{1, \ldots, n\} \times \{\pm 1\}$. The Coxeter group (W, S) of type D_n can be taken to be the group W of shape $2^{n-1}: Sym(n)$ acting on Ω by permutation of $\{1, \ldots, n\}$, and changing an even number of signs, together with the generators $S = \{s_1, \ldots, s_n\}$, where s_i interchanges $(i, \pm 1)$ and $(i+1, \pm 1)$ (preserving signs) for $1 \leq i \leq n-1$, and s_n interchanges $(n-1, \pm 1)$ and $(n, \mp 1)$.

Let Γ be the complete n-partite graph $K_{n\times 2}$ on Ω with $(i, 1)$ and $(i, -1)$ nonadjacent ($1 \leq i \leq n$). The i-objects can be identified with the i-cliques in Γ ($1 \leq i \leq n-2$). The $(n-1)$-objects and n-objects can be identified with the n-cliques in Γ containing an even (odd) number of vertices with second coordinate -1, adjacent when they differ by a single sign change. We see that Γ is the collinearity graph of the shadow geometry of type $D_{n,1}$, and find for $D_{n,n-1}$ and $D_{n,n}$ the halved graphs of the Hamming graph $H(n, 2)$.

E_6

\[
\begin{array}{cccccc}
1 & 16 & 1 & 16 & 5 & 10 \\
& & & & & \\
10 & & & & & \\
\end{array}
\quad v = 27
\]

The Weyl group $W(E_6)$ is isomorphic to $GO^-_6(2)$, and the collinearity graph Γ of the shadow geometry of type $E_{6,1}$ is the Schlaffi graph, the noncollinearity graph of an elliptic quadric in $PG(5, 2)$ (§10.10).

The i-objects of the Coxeter geometry of type E_6 ($1 \leq i \leq 6$) can be identified with the vertices, 6-cliques, edges, triangles, maximal 5-cliques and subgraphs $K_{5\times 2}$ in Γ, respectively.

4.5 Buildings

Buildings provide a geometrical setting e.g. for groups of Lie type. They were introduced in Tits [694]. See also [4], [147], [628], [727].
4.5.1 Generalities

Let \((W, S)\) be a Coxeter system with corresponding Coxeter geometry \((X, S, t, \ast)\), which will be called the standard apartment. A building of type \((W, S)\) is a geometry \((B, S, t, \ast)\) endowed with a family \(\mathcal{A}\) of subgeometries, called apartments, over the type set \(S\), all isomorphic (preserving types) to \((X, S, t, \ast)\), such that

(B1) Every pair of flags of \((B, S, t, \ast)\) is contained in a member of \(\mathcal{A}\);
(B2) If two flags \(F, F'\) are both contained in two apartments \(\Sigma, \Sigma'\), then there exists an isomorphism (preserving types) \(\Sigma \rightarrow \Sigma'\) fixing \(F \cup F'\) vertexwise.

Note that it does no harm to have the same notation for the type map and the incidence relation in the building and in the standard apartment.

The Coxeter group \(W\) is sometimes also called the Weyl group of the building. If \((W, S)\) is of type \(X_n\), with \(X \in \{A, \ldots, G\}\) and \(n\) appropriate, then the building is also said to be of type \(X_n\) itself.

The family of apartments is not necessarily unique, but in finite buildings it always is.

To gain more insight into the structure of a building, we now determine its diagram, using the list of traditional labels. So we ought to look at the residues.

First note that any set \(B\) can be seen as a building of rank 1 by considering every pair of elements of \(B\) as an apartment; the Weyl group is the group of order 2.

Proposition 4.5.1 Any nonempty residue of a building is a building.

Proof. Let \(F\) be a flag of the building \(\Delta = (B, S, t, \ast)\) of type \((W, S)\) and set of apartments \(\mathcal{A}\), and assume that \(F\) is not a chamber. Endow \(\text{Res} F\) with the family of apartments \(\mathcal{A}_F = \{\text{Res}_\Sigma F : F \subseteq \Sigma \in \mathcal{A}\}\). Pick two flags \(G, G'\) in \(\text{Res}_\Delta F\). Then \(F \cup G\) and \(F \cup G'\) are contained in a common apartment \(\Sigma\), and so \(G\) and \(G'\) are contained in the common apartment \(\text{Res}_\Sigma F\) of \(\text{Res} F\).

Now assume that \(G\) and \(G'\) are both contained in two apartments \(\text{Res}_\Sigma F\) and \(\text{Res}_{\Sigma'} F\) with \(\Sigma, \Sigma' \in \mathcal{A}\). Then any type preserving isomorphism \(\Sigma \rightarrow \Sigma'\) fixing \(F \cup G\) and \(\Sigma \cup G'\) vertexwise induces a type preserving isomorphism \(\text{Res}_\Sigma F \rightarrow \text{Res}_{\Sigma'} F\) fixing \(G \cup G'\) vertexwise. □

A straightforward example of a building is a Coxeter geometry. The easiest thick examples are those of rank 2 related to finite dihedral groups.

Proposition 4.5.2 Let \((W, S)\) be a Coxeter system of rank 2 with \(W\) finite. Then every building of type \((W, S)\) is a generalized polygon, more exactly a generalized \(\frac{|W|}{2}\)-gon. Conversely, every generalized polygon is a building of rank 2 with finite dihedral Weyl group.

Proof. Let \((B, S, t, \ast)\) be a rank 2 building with finite Weyl group \(W\), say \(|W| = 2n\). The graph \(\Gamma = (B, \ast)\) is bipartite and the bipartition classes correspond to the types \(S\). According to the definition in §4.1.1, we only need to show that \(\Gamma\) has diameter \(n\) and girth \(2n\). In fact, it suffices to show that the diameter is at most \(n\) and the girth is exactly \(2n\).

Note that apartments of \((B, S, t, \ast)\) are \(2n\)-cycles in \(\Gamma\). Since every pair of vertices is contained in an apartment by \((B1)\), we see that the diameter of \(\Gamma\) is at most \(n\). Also, the girth is even, say \(2g\), and at most \(2n\).
Let $\gamma = (v_1, v_2, \ldots, v_{2g})$ be any $2g$-cycle. Obviously, by the definition of girth, the distance between two vertices of γ in Γ equals the distance between these vertices in γ (as a subgeometry). Let $j < g$ be maximal with the property that every apartment through two vertices of γ at distance j from each other contains all vertices on the shortest path between them in γ. Note that j is well defined since obviously $j \geq 1$. Suppose for a contradiction that $j < g - 1$.

Without loss we may assume that there is an apartment Σ containing v_1 and v_{j+2} not containing any of v_2, \ldots, v_{j+1}.

Any apartment Σ' through $\{v_1, v_2\}$ and v_{j+2} contains the path $\mu = (v_1, v_2, \ldots, v_{j+2})$. Now μ together with its image under any isomorphism $\Sigma' \to \Sigma$ fixing v_1 and v_{j+2} forms a cycle of length $2j + 2 < 2g$, a contradiction. Hence $j = g - 1$.

Now consider an apartment Σ'' through the chambers $\{v_1, v_2\}$ and $\{v_{g+1}, v_{g+2}\}$. By the previous paragraph, Σ'' contains γ, so $g = n$ as desired.

The converse is easy (the apartments being the $2n$-cycles of the incidence graph).

We can now recover the diagram of any building.

Corollary 4.5.3 The diagram of any building as a Buekenhout-Tits geometry coincides with the diagram of its Weyl group as the corresponding Coxeter system.

Proof. Follows directly from Propositions 4.5.1 and 4.5.2.

4.5.2 Spherical buildings

A building is called spherical if its Weyl group is finite. Non-spherical buildings are necessarily infinite, hence we now take a closer look at the spherical ones, in particular the finite ones.

By Corollary 4.5.3, spherical buildings are geometries of type A_n, $n \geq 1$, B_n, $n \geq 2$, D_n, $n \geq 4$, E_n, $n = 6, 7, 8$, F_4, H_n, $n = 3, 4$, or $I^{(m)}_2$, $m \geq 5$. In each case the Coxeter geometry of the corresponding type is a finite thin example. Thick buildings of type H_3 and H_4 do not exist (see [695]). Also, thick finite buildings of type $I^{(m)}_2$ with $m \neq 2, 3, 4, 6, 8$, do not exist by [316] (by an eigenvalue argument).

We give the identification of finite thick buildings with classical geometries.

- Thick buildings of type A_n, $n \geq 2$, are the projective spaces. With the numbering of the nodes of the diagram as before, elements of type i correspond to subspaces of projective dimension $i - 1$ and incidence is symmetrized containment.

- Thick buildings of type B_n, $n \geq 2$, are the thick polar spaces, i.e., polar spaces of order (s, t) with $s, t \geq 2$. With the numbering of the nodes of the diagram as before, elements of type i correspond to singular subspaces of projective dimension $i - 1$ and incidence is symmetrized containment.

- Thick buildings of type D_n, $n \geq 4$, are the oriflamme geometries of the non-thick polar spaces, i.e., of the polar spaces of order $(s, 1)$, $s \geq 2$. The oriflamme geometry of a non-thick polar space of rank n is the geometry of rank n where the elements of type i, $1 \leq i \leq n - 2$, are the singular
subspaces of projective dimension $i - 1$, and where the elements of type $n - 1$ and n correspond to the partition of maximal singular subspaces into the two classes given by the bipartite graph of Theorem 2.2.17. Incidence is given by containment when at least one element has type $i \leq n - 3$; two elements of types $n - 1$ and n are incident if they intersect in a singular subspace of projective dimension $n - 2$. The moral here is that we throw away the $(n - 2)$-spaces as elements of the geometry, but they sneak in again via the incidence (in graph theoretical language: they cease to be vertices and become edges).

- Thick buildings of type E_n, $n \in \{6, 7, 8\}$, and F_4 are called of exceptional type. They do not correspond to classical objects. Only type E_6 will be of interest to us, and we provide an explicit construction below (§4.9.3).

In the not necessarily finite case, thick buildings of type A_n also include vector spaces over skew fields, and for $n = 2$ also non-Desarguesian projective planes. Similarly, the projective spaces that occur as residues in arbitrary thick buildings of types B_n and F_4 need not be defined over fields and for B_3 and F_4 can be non-Desarguesian. On the other hand, thick buildings of types D_n ($n \geq 4$) and E_n are always defined over a field and uniquely determined by that field. In the infinite case, the s and t in the order of polar spaces can be infinite cardinal numbers.

In the finite case there is a unique building of type A_n, D_n ($n \geq 3$) and E_6, E_7, E_8 such that the rank 2 residues are projective planes that have order q. We denote such buildings by $X_n(q), X \in \{A, D, E\}$. The corresponding shadow geometry with respect to type i (in the labeling given in the list of diagrams in Section 4.2) is denoted by $X_n,i(q)$. If we do not want to specify the field, then we write X_n,i.

4.5.3 Characterizations

Tits [696] characterizes various buildings as residually connected geometries with given diagram and point type such that the shadows (cf. §4.1.4) satisfy certain axioms. Brouwer & Cohen [124] show that in the case of E_6 these axioms are automatically satisfied. Hence

Proposition 4.5.4 Every residually connected geometry of type A_n, $n \geq 2$, D_n, $n \geq 4$, or E_6 is a building.

For other spherical diagrams quotients exist that are not buildings. However, an eigenvalue argument shows that in the finite case quotients do not occur.

Today only one example is known of a finite residually connected thick geometry of rank at least 3 with a spherical Coxeter diagram and not the quotient of any building. It is the famous Neumaier geometry, with 7 points, 35 lines and 15 planes constituting a geometry of type B_3 with full automorphism group A_7 ([500], [16]; cf. §6.2.2).

4.5.4 Chain calculus

The chain calculus due to Tits [690] allows one to obtain results on the diameter of a geometry from its diagram.
We shall talk about chains \(x_0 * x_1 * \cdots * x_i \) (in some residually connected Buekenhout-Tits geometry satisfying a given diagram) by just giving the sequence of types \(t_0 \cdots t_i \), where the object \(x_i \) is of type \(t_i \).

A sequence of types given as a statement, denotes the claim that arbitrary objects \(x_0 \) and \(x_1 \) of the types occurring first and last can be joined by a chain of objects of the indicated types, each incident with the preceding and following.

In the proofs we shall modify chains, but always keep the ends fixed. A main ingredient is Proposition 4.1.1, which we shall not explicitly quote.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & \ldots & n-1 & n & A_n.
\end{array}
\]

Proposition \(A_n \): For \(2 \leq i \leq n \) we have \(1-i-(i-1) \). In particular, for \(n \geq 2 \), we have 1-2-1.

Proof. If \(i < n \), then by induction we find that if 1-2-1-i-(i-1), then 1-2-(i+1)-i-(i-1), hence 1-(i+1)-(i-1), hence 1-i-(i-1), so chains 1-2-1-i-(i-1) can be shortened to 1-i-(i-1), and by residual connectedness we are done. By definition of \(A_2 \) we have 1-2-1 in \(A_2 \). There remains the case \(i = n \geq 3 \). But in that case 1-2-1-(n-1), so 1-2-n-(n-1), so 1-n-(n-1), by induction and since 1-2-1 holds.

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & \ldots & n-2 & n & D_n.
\end{array}
\]

Proposition \(D_n \): Let \(n \geq 2 \). Then the following hold.

(a) 1-(n-1)-n.
(b) 1-i-(i-1)-i for \(2 \leq i \leq n-2 \). In particular: 1-2-1-2.
(c) If \(n \) is even, then \((n-1)-1-n \). If \(n \) is odd, then \(n-1-n \).

Proof. In \(D_2 \) we have 1-2, implying all our claims. For \(n = 3 \) everything follows from Proposition \(A_3 \). Now use induction on \(n \). For part (a) we find by induction and Proposition \(A_n \): if 1-2-1-(n-1)-n then 1-2-n-(n-1)-n so 1-n-(n-2)-n so 1-(n-1)-(n-2)-n so 1-(n-1)-n, proving part (a).

For part (b): by part (a) 1-(n-1)-n-i, so 1-(n-1)-(i-1)-i, so 1-i-(i-1)-i.

For part (c): if \(n \) is even, then (by part (a) and induction): \((n-1)-n-1-n \), so \((n-1)-2-n \), so \((n-1)-1-2-n \), so \((n-1)-1-n \), and if \(n \) is odd, then \(n-1-(n-1) \), so \(n-2-(n-1) \), so \(n-2-1-n \), so \(n-1-n \).

For \(E_6, E_7, E_8 \) we shall omit the ‘-’ in type sequences.

\[
\begin{array}{cccccc}
1 & 3 & 4 & 5 & 6 & E_6.
\end{array}
\]

Proposition \(E_6 \): (a) 161,
(b) 13126,
(c) if 1316 then 126.

Proof. (c) 1316 yields 1326 and then 126.

(a) 13161 yields 1261, 1251, 1651, 161.
(b) 1616 yields 15216, 15236, 131236, 131436, 131426, 13126.
Proposition E_7: (a) 7671,
(b) 7176,
(c) if 76767 then 717.
Proof. (c) 76767 yields 76167 and then 717.
(a) 767671 yields 7171, 7161, 7671, 7671.
(b) 7676767 yields 717676, 717616, 71716, 767616, 76716, 76767, 7176.
\[\square\]

Proposition E_8: (a) 8181,
(b) if 81878 then 87878,
(c) 87878.
Proof. (a) 181878 yields 1817678, 181768, 187868, 187878, 176787, 1767178, 1787178, 1818.
(b) 81878 yields 817678, 81768, 87868, 87878.
(c) 81817 (by (a)), 81887, 878787 (by (b)).
\[\square\]

For the collinearity graph Γ of the shadow geometry for the circled node (vertices: objects of the circled type, say i; adjacency: both in the residue of some flag of cotype i — in our cases this is equivalent to both incident to some object of type j, where j is the unique neighbor of i in the diagram) the above means the following:

$A_{n,1}$: Γ is a clique (has diameter 1).

$D_{n,1}$: Γ has diameter 2; any line carries a point at distance at most one from a given point.

$E_{6,1}$: Γ has diameter 2 — indeed, any two vertices are in a $D_{6,1}$ subgraph.

$E_{7,7}$: Γ has diameter 3; any two vertices at distance 2 are in a $D_{7,1}$ subgraph; any line carries a point at distance at most two from a given point.

$E_{8,8}$: Γ has diameter 3; if x and y are two points at distance 2 in a $D_{7,1}$ subgraph, then y has no neighbors at distance 3 from x; any line carries a point at distance at most two from a given point.

For the relation between points x and symplecta S (objects of type 6,1,1 in E_6, E_7, E_8, respectively), the above implies:

$E_{6,1}$: $x^\perp \cap S$ is either empty or a projective 4-space.

$E_{7,7}$: $x^\perp \cap S$ is either a single point or a projective 5-space.

$E_{8,8}$: $x^\perp \cap S$ is either empty or a line or a projective 6-space.

We established that the collinearity graph of a geometry of type $E_{6,1}$ has diameter 2. In the finite case, it will turn out to be strongly regular.
4.6 The Klein quadric and Klein correspondence

The A_3 and D_3 diagrams are the same, and hence they describe the same buildings. The circled node differs: different objects are called ‘points’. The A_3 diagram (for a finite geometry) is that of the points, lines, and planes of projective 3-space. The D_3 diagram (for a finite geometry) is that of the points and the totally singular planes (of two kinds) of a hyperbolic quadric in projective 5-space.

In coordinates the correspondence goes as follows. Let V be a 4-dimensional vector space over F_q with basis e_1, \ldots, e_4. Let $W = V \wedge V$ be the 6-dimensional vector space over F_q with basis $f_{ij} = e_i \wedge e_j$ ($1 \leq i < j \leq 4$). A vector $w = \sum a_{ij} f_{ij}$ is of the form $u \wedge v$ when $Q(w) = 0$, where $Q(w) = a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23}$ is a nondegenerate quadratic form on W. If $\langle u \rangle, \langle v \rangle$ are distinct points in $P(V)$, then $\langle u \wedge v \rangle$ is a point in $P(W)$ corresponding to the line $\langle u, v \rangle$ of $P(V)$. Thus, projective lines in $PG(3, q)$ correspond to singular points on this hyperbolic quadric. The quadric is called the Klein quadric, and this correspondence the Klein correspondence.

Ovoids and spreads

Let B be the symmetric bilinear form derived from Q, so that $B(w, w') = Q(w + w') - Q(w) - Q(w')$. Put $f = e_1 \wedge e_2 \wedge e_3 \wedge e_4$. Then $w \wedge w' = B(w, w') f$. Two singular points w, w' are orthogonal if and only if they correspond to intersecting lines. An ovoid in $P(W)$, that is, a set of $q^2 + 1$ pairwise nonorthogonal singular points, corresponds to a spread in $P(V)$, that is, a set of $q^2 + 1$ pairwise disjoint lines (a partition of the space).

Symplectic forms

Each $w \in W$ defines a symplectic form f_w on V via $f_w(u, v) = B(u \wedge v, w)$, and conversely all symplectic forms occur in this way. The nonsingular points correspond to the nondegenerate symplectic forms. The isotropic lines for f_w correspond to the singular points in w^\perp. Thus the points and lines of the $Sp(4, q)$ generalized quadrangle correspond to the lines and points of the $O_5^+(q)$ generalized quadrangle.

Groups

The linear group $PGL_4(q)$ corresponds to the subgroup of the orthogonal group $PGO_{6}^+(q)$ that preserves both types of maximal singular planes. The simple groups are isomorphic: $L_4(q) \simeq O_5^+(q)$.
4.7 Triality

By the classification of buildings of type D_4 (Veldkamp [715], Tits [694]) there is for each field F up to isomorphism a unique building $D_4(F)$. It is the geometry $Q_1^2(F)$ of points, lines, and totally singular solids (of two kinds) of a hyperbolic quadric in projective 7-space.

By the symmetry of the diagram, also the objects of types 3 and 4 can be viewed as the singular points on a quadric in projective 7-space, and the building admits triality, non-type-preserving automorphisms that permute the types $1 \rightarrow 3 \rightarrow 4 \rightarrow 1$ and $2 \rightarrow 2$.

In order to give a compact algebraic description, we now first introduce split octonion algebras. These will also be used later to construct buildings of type E_6 and the split Cayley generalized hexagons.

4.7.1 Split octonion algebras

Composition algebras

An algebra is a vector space provided with a bilinear multiplication. A composition algebra C is an algebra with two-sided identity element e and a non-degenerate quadratic form N such that $N(xy) = N(x)N(y)$ for all x, y. Define a symmetric bilinear inner product by $f(x, y) = N(x + y) - N(x) - N(y)$, and define $\pi = f(x, e)x - x$. Then $x^2 - f(x, e)x + N(x)e = 0$ for all x, and $\overline{x} = x$, and $x\overline{x} = \overline{xx} = N(x)e$, and $\overline{xy} = \overline{yx}$. If f is degenerate, one can show that its radical $R = C^\perp$ is a field, and then that $C = R$. Assume that f is nondegenerate. One can show that $\dim C \in \{1, 2, 4, 8\}$ (and the real numbers, complex numbers, quaternions and octaves are examples over \mathbb{R} where $N(x)$ is positive definite). The composition algebra C is called split when there is a nonzero x with $N(x) = 0$. For each $\dim C \in \{2, 4, 8\}$ there is a unique split example, given the underlying field.

Split octonion algebras

We introduce the split octonion algebra or split Cayley algebra over the field F. Let $M = M_{2 \times 2}(F)$ be the algebra of 2×2 matrices over the field F. Then the split Cayley algebra $O(F)$ over F consists of pairs $(A, B) \in M \times M$ with componentwise addition, and multiplication given by

\[
(A, B) \cdot (C, D) = (AC + DB^{ad}, A^{ad}D + CB)
\]

1In $N(xy) = N(x)N(y)$ replace y by $y + z$ and expand to get $f(xy, xz) = N(x)f(y, z)$. Replace x by $x + w$ and expand to get $f(xy, wz) = f(xy, w)f(y, z)$. With $w = e$ this becomes $f(xy, x) = f(y, f(x, e) - x) = f(y, e\pi)$. Similarly, $f(xy, z) = f(y, e\pi)$. Since $N(e) = 1$ and $N(\pi) = N(x)$ and $\overline{\pi} = x$, one finds $f(x, y) = f(\pi, y)$. Now $f(xy, z) = f(xy, \pi) = f(xy, \pi) = f(x, \overline{\pi}) = f(z, \overline{\pi})$ for all z, so that $\overline{\pi} - \pi \overline{x}$ belongs to the radical of f. Using $2N(w) = f(w, w)$ for $w = \pi$ we see that $N(\pi) - \pi \overline{\pi} = 0$, and hence, since N is nondegenerate, $\overline{\pi} = \pi \overline{\pi}$. From $N(f(y, z) = f(xy, xz) = f(\pi(xy), z)$ and symmetry one gets $\pi(xy) = N(x)y = (yx)\pi$. With $y = e$ this proves all claims.
for $A, B, C, D \in M$, where Ad denotes the adjoint operator, i.e.,

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\text{Ad}} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},
$$

so that $AA^{\text{Ad}} = A^{\text{Ad}}A = (\det A)I$ and $(AB)^{\text{Ad}} = B^{\text{Ad}}A^{\text{Ad}}$.

We call this multiplication the Cayley-Dickson multiplication, as it is the result of the so-called Cayley-Dickson process in composition algebras. In the literature, a traditional direct definition of this multiplication is the following. Denote by $v \cdot w$ and $v \times w$ the ordinary dot product and vector product,\(^3\) respectively, of vectors $v, w \in F^3$, and by $a v$ the scalar multiplication, $a \in F$, $v \in F^3$. Define the following multiplication in the set of mixed matrices

$$
\left\{ \begin{pmatrix} a & v \\ w & b \end{pmatrix} \mid a, b \in F, \ v, w \in F^3 \right\}:
$$

Let $v, v', w, w' \in F^3$ and let a, a', b, b' be scalars (elements of F). Then

$$
\begin{pmatrix} a & v \\ w & b \end{pmatrix} \odot \begin{pmatrix} a' & v' \\ w' & b' \end{pmatrix} = \begin{pmatrix} aa' + v \cdot w' & aa' + b'v + w \times w' \\ a'w + bw' + v' \times v & bb' + w \cdot v' \end{pmatrix}.
$$

In fact, the Cayley-Dickson multiplication and the traditional multiplication \odot are opposite multiplications\(^4\) under the identification (denoting the components of the vector $v \in F^3$ by (v_1, v_2, v_3) and similar for w)

$$
\begin{pmatrix} a & v \\ w & b \end{pmatrix} \leftrightarrow \begin{pmatrix} a & w_1 \\ v_1 & b \end{pmatrix} = \begin{pmatrix} v_2 \\ -w_3 \\ w_2 \end{pmatrix}.
$$

For $x = (A, B) \in O(F)$, we define $\overline{x} = (A^{\text{Ad}}, -B)$ (in terms of mixed matrices, this amounts to the adjoint defined in the obvious way). Now $x \overline{x} = \overline{x} x$ for all $x, y \in O(F)$. Let I and O be the identity matrix and zero matrix, respectively, in $M^{2 \times 2}(F)$. We can identify F with $F' = \{(aI, O) \mid a \in F\} \subseteq O(F)$. Then the addition and multiplication of F coincides with the addition and multiplication of $O(F)$ restricted to F'. One easily calculates that, using this identification, $x + \overline{x} \in F$ and $x \cdot \overline{x} = \overline{x} \cdot x \in F$ for all $x \in O(F)$. The mapping $x \mapsto \overline{x}$ is called the standard involution in $O(F)$. The multiplication in $O(F)$ is not associative, but it is alternative, i.e., for all $x, y \in O(F)$ it is true that

$$
\begin{align*}
 x \cdot (x \cdot y) &= (x \cdot x) \cdot y, \\
 x \cdot (y \cdot x) &= (y \cdot y) \cdot x, \\
 y \cdot (x \cdot x) &= (y \cdot x) \cdot x.
\end{align*}
$$

Note that $O(F)$ is in the natural way an 8-dimensional vector space over F. The scalar multiplication $(c, x) \mapsto cx$ is, for $x = (A, B)$, given by $cx = (cA, cB) = (cI, O) \cdot (A, B)$.

With $N(x) = x \overline{x}$, the algebra $O(F)$ is an 8-dimensional composition algebra over F. For $x = (A, B)$, we have $N(x) = \det A - \det B$ and $T(x) := x + \overline{x} = \text{tr } A$.

\(^3\)That is, $v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$, and $(v \times w)_i = v_j w_k - v_k w_j$ for $i, j, k \in \{1, 2, 3\}$ where $(i, j, k) = (i, i + 1, i + 2) \pmod 3$.

\(^4\)The opposite multiplication of $(a, b) \mapsto ab$ is $(a, b) \mapsto ba$.

4.7.2 Triality

The two previous paragraphs imply that the norm map in $O := O(F_q)$ is a quadratic form that defines the $O_4^+(q)$ geometry, where the t.i. vectors are given by the elements of O with norm 0. The perp of a vector x is given by the elements $y \in O$ such that $f(x, y) = xx + yx = 0$, or equivalently, $f(x, y) = vx + xv = 0$. For $a \in O$, define the linear maps $\varphi_a : O \to O : x \mapsto xa$ and $a\varphi : O \to O : x \mapsto ax$.

Noting that two t.i. vectors $x, y \in O$ are collinear if and only if $x + y$ is t.i., one deduces that $\text{Ker} \varphi_a$ and $\text{Im} \varphi_a = Oa$ are singular subspaces, and hence their dimension is at most 4. Since clearly $\text{Im} \varphi_a \subseteq \text{Ker} \varphi_0$ we conclude that $\text{Im} \varphi_a = \text{Ker} \varphi_0$ is a maximal singular subspace. In fact, it turns out that the following facts hold (see §2 of [70]):

(i) Every maximal singular subspace is of the form Oa or aO, for a unique $a \in O$ with $N(a) = 0$.

(ii) Two distinct maximal singular subspaces have a plane in common if and only if they are of the form aO and Ob, with $ab = 0$.

(iii) Two distinct maximal singular subspaces intersect in a line if and only if they are of the form either Oa and Ob, or aO and bO, with $N(a) = N(b) = N(a + b) = 0$.

So we can view the maximal singular subspaces of the form Ox, $N(x) = 0$, as the elements of type 3 of the corresponding building of type D_4. It follows that $x \mapsto Ox$ induces an isomorphism from the shadow geometry $D_{4,1}(q)$ to the shadow geometry $D_{4,3}(q)$. It is precisely the map given in the proof of Proposition 3.2.3 when interchanging columns i and $-i$, $i \in \{1, 2, 3\}$, and negating the last column. One checks that this isomorphism maps Ox back to x and interchanges xO and xO.

Hence the mapping $x \mapsto Ox \mapsto xO \mapsto x$ induces a triality of order 3. We say a little more about this triality in Section 4.8.

4.8 A construction of $G_2(q)$

The only known finite generalized hexagons of order s are the split Cayley hexagon $G_2(s)$ and its dual (and then s is any prime power). It is self-dual if and only if s is a power of 3 (see Section 3.5 of [710]). It arises as the absolute geometry of a suitable triality of order 3, like the one in Subsection 4.7.2 defined on the t.i. points of $O(F(s))$ under the bilinear form defined by the norm and given by $\tau : x \mapsto Ox \mapsto xO \mapsto x$, $N(x) = 0$. A point (x), $x \in O$, $N(x) = 0$, is absolute for τ if and only if $x \in Ox$, or equivalently $x \in \text{Ker} \varphi_x$, which is clearly equivalent to $x^2 = 0$, and then to $f(x, e) = 0$, or $x + \tau = 0$. Consequently, the points of $G_2(s)$ are the t.i. points in the hyperplane e^2, hence the points of a parabolic polar space $O_7(s)$. The lines fixed under τ are the 2-spaces spanned by two vectors $x, y \in O$ with $x^2 = y^2 = xy = yx = 0$. This can be calculated explicitly, and then one obtains the following description, first given in [691].

As we already deduced, the points of $G_2(s)$ are the points of a parabolic polar space $O_7(s)$. In order to describe the lines it is convenient to fix the
4.8. A CONSTRUCTION OF $G_2(q)$

corresponding quadratic form $\beta : V \to \mathbb{F}_s$ of the 7-dimensional vector space V
over \mathbb{F}_s as

$$(x_0, x_1, \ldots, x_6) \mapsto x_0x_4 + x_1x_5 + x_2x_6 - x_3^2.$$

Then the lines are given by the singular 2-spaces of V whose Plücker coordinates satisfy

$p_{12} = p_{34}$, $p_{20} = p_{35}$, $p_{01} = p_{36}$, $p_{03} = p_{56}$, $p_{13} = p_{64}$ and $p_{23} = p_{45}$, where

$p_{ij} = \begin{vmatrix} x_i & x_j \\ y_i & y_j \end{vmatrix}$, for independent vectors (x_0, x_1, \ldots, x_6) and (y_0, y_1, \ldots, y_6) of
the 2-space in question. This representation of $G_2(s)$, or any isomorphic one, will be called the standard representation of $G_2(s)$.

The diagram of the collinearity graph of both $G_2(s)$ and its dual is

$$\begin{array}{cccccc}
1 & s^2+s & \cdots & s^2+s & s^2+s & v = s^2+s^3+s^2+s+1 \\
& \downarrow & & \downarrow & & \\
n-1 & s^2+s & \cdots & s^2+s & s^2+s & \\
& & \downarrow & & \downarrow & \\
& & & s^2+s & s^2+s+1 & \\
& & & \downarrow & & \\
& & & & s^2+s & \\
\end{array}$$

and we see that $k = s^2 + s = b_2 + c_3 - 1$. Proposition 1.3.12 implies that the graph with vertices the points of $G_2(s)$ or its dual, adjacent when they are at distance 3 from one another in the collinearity graph, is strongly regular. For $G_2(s)$, this graph is the complement of the $O_7(s)$ graph and is rank 3. For the dual of $G_2(s)$, if s is not a power of 3, this graph has the same parameters of the complement of the $O_7(s)$ graph but is not isomorphic to it. By Theorem 4 of Govaert & Van Maldeghem [359], the full group of this graph equals Aut $G_2(s)$. It is rank 4.

Another rank 4 permutation group is obtained by considering the action of $SO_7(q)$ on the set of standard representations of the split Cayley hexagons on $O_7(q)$. There are $q^3(q^4 - 1)$ such representations. The group $O_7(q)$ has $\gcd(2, q - 1)$ orbits on this set. The suborbits can be seen geometrically as follows. Let ω be a fixed split Cayley hexagon on $O_7(q)$ and let v be the orbit of ω under the action of $O_7(q)$.

- ω contains $\frac{1}{2}q^3(q^3 - 1)$ Hermitian spreads, and each Hermitian spread is the intersection of the line set of ω with the line set of every member of a set of $\frac{q^3(q^3 - 1)}{\gcd(2, q - 1)} - 1$, that is, q (if q is even) or $\frac{q^3(q^3 - 1)}{2}$ (if q is odd) split Cayley hexagons from Ω.

- ω contains $\frac{1}{2}q^3(q^3 + 1)$ non-thick subhexagons of order $(1, q)$, and the line set of each such subhexagon is the intersection of the line set of ω with the line set of every member of a set of $\frac{q^3(q^3 + 1)}{\gcd(2, q - 1)} - 1$, that is, $q - 2$ (if q is even) or $\frac{q^3(q^3 + 1)}{2}$ (if q is odd) split Cayley hexagons from Ω.

- For each point x of ω, the set of lines at distance 1 from x (that is, the lines not containing x but containing a point collinear to x) is the intersection of the line set of ω with the line set of every member of a set of $q - 1$ split Cayley hexagons from Ω.

An elementary count reveals that the union of the subsets of Ω described above (also considering ω) is Ω.

The group $G_2(q)$, seen as an automorphism group of ω, acts transitively on each of the three above subsets of Ω, hence we obtain a rank 4 permutation group of $O_7(q)$ on the cosets of its subgroup $G_2(q)$. However, the number $\frac{q^3(q^3 - 1)}{\gcd(2, q - 1)} - 1$ equals 0 if and only if $q \in \{2, 3\}$, in which case we obtain a rank 3 group. The
corresponding strongly regular graphs are $NO_2^+(2)$ and $NO_2^+(3)$ and they have larger full automorphism group, to be precise $Q_2^+(2) : 2$ and $PGO_5^+(3)$.

4.9 The $E_{6,1}(q)$ graph

We study the collinearity graph of the shadow geometry $E_{6,1}(q)$. The literature contains several constructions of $E_{6,1}(q)$ (or, more generally, $E_{6,1}(F)$). The standard construction is as coset geometry in an algebraic group of type E_6. Alternatively, one can use the blueprint construction of Ronan & Tits [629]. The geometry $E_{6,1}(q)$ admits an embedding in $PG(26,q)$, of which there exists a construction using a trilinear form, see Aschbacher [15]. One can also construct it as an intersection of quadrics, see Cohen [204] and the remarks in §4.9.3 below. Here, we provide a construction of $E_{6,1}(F)$ over an arbitrary field F using a split octonion algebra.

4.9.1 Parameters

The parameters can be read off from the diagram.

Proposition 4.9.1 The collinearity graph of $E_{6,1}(q)$ is strongly regular with parameters (v,k,λ,μ) and spectrum $k^1 r^7 s^9$, where

$$
\begin{align*}
v &= \frac{(q^{12} - 1)(q^9 - 1)}{(q^4 - 1)(q - 1)}, & r &= q^8 + q^7 + q^6 + q^5 + q^4 - 1, \\
k &= q(q^3 + 1) \left\lceil \frac{8}{1} \right\rceil, & s &= -q^3 - 1, \\
\lambda &= q^2(q^2 + 1) \left\lceil \frac{5}{1} \right\rceil + q - 1, & f &= q^{11} + q^8 + q^7 + q^5 + q^4 + q, \\
\mu &= (q^3 + 1) \left\lceil \frac{4}{1} \right\rceil, & g &= q^2(q^6 + 1)(q^4 + 1) \left\lceil \frac{5}{1} \right\rceil.
\end{align*}
$$

In the thin case ($q = 1$) we find the Schläfli graph (§10.10).

Proof. It suffices to find k, λ, and μ.

The local structure is clear by inspection of the diagram: the residue of $E_{6,1}$ at a point (that is, of $E_6(q)$ at a type 1 vertex, taking as points of the residue the vertices corresponding to the lines of $E_{6,1}(q)$) is a geometry of type $D_{5,5}$. By Theorem 2.2.20 we have $v(D_{5,5}(q)) = (q^4 + 1)\left\lceil \frac{5}{1} \right\rceil$ and $k(D_{5,5}(q)) = q\left\lceil \frac{5}{1} \right\rceil$. The points of $D_{5,5}(q)$ are lines in $E_{6,1}(q)$, and each contributes q neighbors, so $k = q \cdot v(D_{5,5}(q))$ and $\lambda = q \cdot k(D_{5,5}(q)) + q - 1$.

That $\mu(E_{6,1}(q)) = \mu(D_{5,1}(q))$ follows from the fact that the symplecton (object of type 6) on two noncollinear points is unique. (Indeed, if s_1, s_2 are symplecta on the points p_1, p_2, then $\{p_1, s_1\}$ and $\{p_2, s_2\}$ are flags contained in an apartment. The apartment consists of the 27 vertices, 72 6-cliques, 216 edges, 720 triangles, 216 maximal 5-cliques and 27 subgraphs of the form $\Gamma_2(x)$ for a vertex x in the Schläfli graph Γ, the noncollinearity graph of the generalized quadrangle $GQ(2,4)$, cf. §10.10. Now $\{p_1,p_2,s_1\}$ and $\{p_1,p_2,s_2\}$ correspond to 3-cocliques in Γ, hence to lines in the $GQ(2,4)$, hence $s_1 = s_2$.)

We saw that the local graph of the collinearity graph of $E_{6,1}(q)$ is the q-clique extension of the collinearity graph of $D_{5,5}(q)$.
4.9.2 Cliques, cocliques and regular sets

Clique

The maximal cliques correspond to the maximal singular subspaces of the shadow geometry $\mathbb{E}_{6,1}(q)$, which, on their turn, correspond to the objects of types 2 and 5 in the corresponding building and hence contain $q^5 + q^4 + q^3 + q^2 + q + 1$ points (singular subspaces of projective dimension 5) and $q^3 + q^2 + q + 1$ points (singular subspaces of projective dimension 4), respectively.

Coclique

Cooperstein [225] shows that the existence of an ovoid in the $\mathbb{O}_{10}(q)$ hyperbolic quadric implies the existence of a coclique of largest possible size $q^2 + q + 1$ in the collinearity graph of $\mathbb{E}_{6,1}(q)$. However, no such ovoid is known (for $q > 1$), and for many q nonexistence has been established, see for instance Proposition 2.6.17.

A regular set of type F_4

The geometry $\mathbb{E}_{6,1}(q)$ has exactly three types (orbits) of geometric hyperplanes. Two types have the property that they contain all points collinear to some fixed point, and hence these cannot give rise to a regular bipartition. The third type does give rise to a regular bipartition. In fact, such a geometric hyperplane H has the following property. Let \mathcal{L}_H be the set of lines contained in H and lying in at least two maximal singular subspaces of projective dimension 5 which are also entirely contained in H. Then (H, \mathcal{L}_H) is isomorphic to the point-line geometry $\mathbb{F}_{4,4}(q)$. Also, the stabilizer in $\text{Aut} \mathbb{E}_{6,1}(q)$ of H acts transitively on the complement of H (this is true in general for any field, see [285]).

Hence H is a regular set of size $(q+1)(q^2+1)(q^3+1)(q^4+1)$ with degree $q(q^3+1)(q^2+q+q^3+q^2+q^3+q+1)$ and nexus $(q+1)(q^2+1)(q^3+1)(q^4+1)$.

A regular set of type $3D_4$

Let $O := O(F_4)$ be the split Cayley algebra over \mathbb{F}_q. Then the absolute points and fixed lines of the triality map $\tau : x \mapsto O^T \mapsto \tau O \mapsto x^{\tau}$, $N(x) = 0$, constitute a $\mathbb{G}H(q^3, q)$. Since the line grassmannian of the $\mathbb{O}_q^+(q^3)$ quadric embeds in the shadow geometry $\mathbb{F}_{4,1}(q^3)$, we obtain an embedding of the dual $\mathbb{G}H(q, q^3)$ in $\mathbb{F}_{4,1}(q^3)$. It turns out that this embedding is contained in the subgroup isomorphic to $\mathbb{F}_{4,1}(q)$ obtained by field restriction.

Now the regular set of type F_4 described in the previous paragraph gives rise to an embedding of the $\mathbb{F}_{4,1}(q)$ shadow geometry into the $\mathbb{E}_{6,2}(q)$ shadow geometry. It follows that there is a representation of the $\mathbb{G}H(q, q^3)$ in $\mathbb{E}_{6,1}(q)$ where points p are maximal (projective) 5-spaces U_p and the lines L are planes π_L, with natural incidence. The lines of $\mathbb{G}H(q, q^3)$ incident with a given point p form a symplectic spread in U_p. This symplectic spread is pointwise fixed by a (Singer) group of order $q^2 + q + 1$, and all elements of that group extend to elements of $\text{Aut} \mathbb{E}_{6,1}(q)$ pointwise stabilizing $\mathbb{G}H(q, q^3)$ (i.e., stabilizing the plane π_L, for each line L of $\mathbb{G}H(q, q^3)$). Let W be the union of all such planes. Together with the cyclic group generated by the field automorphism $x \mapsto x^q$ acting on $\mathbb{G}H(q, q^3)$, which becomes a linear automorphism in $\mathbb{E}_{6,1}(q)$, we obtain
a group \((q^2 + q + 1) \times 3D_4(q)\): 3 stabilizing \(W\). (This is a maximal subgroup of \(E_6(q)\).)

Let \(x\) be a point in \(W\). Then \(x\) is contained in a unique plane \(\pi_L\), with \(L\) a line of \(GH(q, q^3)\). If \(M\) is a line of \(GH(q, q^3)\) opposite \(L\), then \(\pi_L\) and \(\pi_M\) are opposite in \(E_{6,1}(q)\) and no point of \(\pi_M\) is collinear to \(x\). If \(M\) is concurrent to \(L\), then \(\pi_M\) is contained in a projective 5-space together with \(x\) and so all points of \(\pi_M\) are collinear to \(x\). Finally, if \(M\) is at distance 1 from \(L\) (meaning that the minimal distance in the collinearity graph of \(GH(q, q^3)\) between points of \(M\) and points of \(L\) is 1; so there exist unique collinear points \(u \in L\) and \(v \in M\)), then \(x\) is collinear to the points of a solid \(S\) of \(U_v\). Since \(\pi_{uv} \subseteq S\), we see that \(S \cap \pi_M\) is a point. (Note that we used the fact that a point outside a given projective 5-space \(U\) is either collinear with a unique point of \(U\), or with the points of a unique solid in \(U\), see Fact 4.2.10 in [285].) This yields the degree of the graph induced on \(W\), namely

\[
(q^2 + q) + (q + 1)q^3(q^2 + q + 1) + (q + 1)q^7 = q(q^3 + 1)(q^4 + q^3 + q^2 + q + 1).
\]

Now let \(x\) be a point off \(W\), and let \(p\) be a point of \(GH(q, q^3)\). Then, as mentioned earlier, \(x\) is collinear to either a unique point of \(U_p\), or all points of a solid in \(U_p\). In the former case, we see that \(x\) is collinear to either one or zero points of the planes \(\pi_L\) contained in \(U_p\); in the latter case \(x\) is collinear to either 1 or \(q + 1\) points of the planes \(\pi_L\) contained in \(U_p\) and there are exactly \(q + 1\) such planes in \(U_p\) containing \(q + 1\) points collinear to \(x\) (if \(x^+\) would contain a plane \(\pi_L\), then it would follow that \(x \in W\)). It can now be argued that the projective 5-spaces \(U_p\) with \(x^+ \cap W\) a solid and the planes \(\pi_L\) with \(x^+ \cap \pi_L\) a line, form a subhexagon \(\mathcal{H}\) of order \(q\) of \(GH(q, q^3)\). Moreover, \(x^+ \cap \pi_L\) is a point if and only if \(L\) is a line not contained in \(\mathcal{H}\) but incident with a point of \(\mathcal{H}\). We see that

\[
|x^+ \cap W| = (q + 1)^2(q^4 + q^2 + 1) + (q^3 - q)(q^4 + q^2 + 1) = (q^3 + 1)^2(q^2 + q + 1).
\]

Hence \(W\) is a regular set of size \((q^2 + q + 1)(q^3 + 1)(q^3 + q^4 + 1)\) with degree \(q(q^2 + 1)(q^4 + q^3 + q^2 + q + 1)\) and nexus \((q^3 + 1)^2(q^2 + q + 1)\).

4.9.3 Construction of \(E_{6,1}(q)\)

Let \(F^2 \times O(F)^3\) be a model for the 26-dimensional affine space \(AG(26, F)\) over \(F\), with projective completion \(PG(26, F)\). We use 27-tuples over \(F\) to describe the points of \(PG(26, F)\) and order them so that a point with coordinates \((1, \ldots)\) belongs to \(AG(26, F)\), and the coordinates following the 1 belong to \(F^2 \times O(F)^3\).

It is convenient to write a semicolon between the third and fourth position, separating the coordinates in \(F\) from those in \(O(F)\). Also, we denote the zero element of \(O(F)\) simply by 0.

For every pair \((x, y) \in O(F) \times O(F)\), we define the point \(p(x, y)\) of \(AG(26, F)\) by \(p(x, y) = (1, x, y, y, x).\) We set \(S_1 = \{p(x, y) \mid x, y \in O(F)\}\).

For every pair \(((x_1, y_1), (x_2, y_2)) \in (O(F) \times O(F))^2\) with

\[
(*) \begin{cases}
(x_1 - x_2)(\overline{x}_1 - \overline{x}_2) = 0, \\
(y_1 - y_2)(\overline{y}_1 - \overline{y}_2) = 0, \\
(x_1 - x_2)(\overline{y}_1 - \overline{y}_2) = 0,
\end{cases}
\]

we define the point \(p(x_1, y_1, x_2, y_2) = p(x_1, y_1) - p(x_2, y_2).\) The set of all points \(p(x_1, y_1, x_2, y_2)\) with \(((x_1, y_1)(x_2, y_2))\) satisfying \((*)\), is denoted by \(S_2\).
Finally, let S_3 be the set of points with coordinates $(0, a, b; x, 0, 0)$ satisfying $ab = x\bar{x}$ (S_3 is a nonsingular hyperbolic quadric Q in a 9-dimensional projective subspace, an element of type 6 in the corresponding building of type E_6). Then $S := S_1 \cup S_2 \cup S_3$, endowed with all projective lines contained in it, is a model for $E_{6,1}(F)$.

Remarks

- If $|F| > 2$, then S_2 is just the set of points lying on the projective extension of an affine line of $AG(26, F)$ entirely contained in S_1. Likewise, S_4 is the set of points lying on a line of which all points but one are contained in S_2. Now all lines of $PG(26, F)$ all but possibly one of whose points belong to $S_1 \cup S_2 \cup S_3$ are entirely contained in $S_1 \cup S_2 \cup S_3$. This procedure can be seen as the Zariski closure of the set S_1, viewed as a variety of low degree.

- The set $S_2 \cup S_3$ is a geometric hyperplane of S with S_3 as its set of deep points. A deep point of a geometric hyperplane is a point p with the property that all points collinear to p also belong to the hyperplane. The geometric hyperplane $S_2 \cup S_3$ arises as the intersection of the hyperplane $H_1 := PG(26, F) \setminus AG(26, F)$.

- The orbit of H_1 under the group $E_6(F)$ forms a set of points in the dual of $PG(26, F)$ which is isomorphic to S. This exhibits the duality of the building of type E_6 apparent in its diagram.

- There are two other orbits of hyperplanes; the first is the orbit of the hyperplane H_2 spanned by all points of S_1 collinear in $E_{6,1}(F)$ to $(1, 0, 0, 0, 0, 0)$ (these all have coordinates of the form $(1, 0, 0, 0, x, y)$, with $x\bar{x} = y\bar{y} = x\bar{y} = 0$) and the points of a nonsingular parabolic subquadric of Q in an 8-dimensional projective subspace. The point $(1, 0, 0, 0, 0, 0)$ is the unique deep point of the corresponding geometric hyperplane; hence every geometric hyperplane in this orbit has a unique deep point. But unlike the situation with H_1, where the set of deep points determines the geometric hyperplane, here there are many geometric hyperplanes (of the same orbit) having the same deep point as the one corresponding to H_2. The second orbit is an orbit of a hyperplane H_3 such that $H_3 \cap S$ has no deep points, and does not contain any element of type 6. The stabilizer is a group of type F_4. If we restrict the set of lines to the set of lines contained in at least two 5-spaces entirely contained in $S \cap H_3$, then we obtain a shadow geometry of type $F_{4,4}$.

- Let $GQ(2, 4) = (\mathcal{P}, \mathcal{L})$ be the unique generalized quadrangle of order $(2, 4)$. The complement of its collinearity graph is the Schl"afli graph (§10.10). Recall that a spread is a set of lines that partitions the point set. There are two isomorphism classes of spreads in $GQ(2, 4)$ ([144]). One isomorphism class contains spreads \mathcal{S}, called regular or Hermitian spreads, with the property that, given any pair of lines $L_1, L_2 \in \mathcal{S}$, the unique line L_3 composed of the three points outside $L_1 \cup L_2$ that are collinear with collinear points of $L_1 \cup L_2$, also belongs to \mathcal{S}. We consider such a spread \mathcal{S}. Let a basis of the projective space $PG(26, F)$ be indexed by the 27 points of $GQ(2, 4)$. Hence an arbitrary point of $PG(26, F)$ has...
coordinates of the form \((x_i)_{i \in \mathcal{P}}, x_i \in F\), for all \(i \in \mathcal{P}\). Given a point \(i \in \mathcal{P}\), we define the quadric \(Q_i\) with equation

\[x_{j_1} x_{j_2} + x_{j_3} x_{j_4} + x_{j_5} x_{j_6} + x_{j_7} x_{j_8} = x_{j_9} x_{j_0},\]

where \(\{i, j_1, j_2\}, \{i, j_3, j_4\}, \{i, j_5, j_6\}, \{i, j_7, j_8\}\) are the four lines of \(GQ(2, 4)\) on \(i\) not belonging to \(\mathcal{S}\), and \(\{i, j_9, j_0\}\) \(\in \mathcal{S}\). Then the set \(S\) constructed above is projectively equivalent to the intersection of the 27 quadrics \(Q_i\), with \(i\) ranging over \(\mathcal{P}\). Up to the numbering, it is the same set of quadrics as given by COHEN [204].

- A brief algebraic way to note down the set of 27 quadrics of the previous remark is to label a generic point of \(PG(26, F)\) with the coordinates \((x_1, x_2, x_3, X_1, X_2, X_3) \in F^3 \times O(F)^3\), up to an \(F\)-multiple. Then \(E_{6,1}(F)\) is given by the set of points whose coordinates satisfy \(X_i X_i = x_i + x_{i+1} x_{i+2}\) and \(x_i X_i = X_{i+1} X_{i+2}\), for all \(i \in \{1, 2, 3\} \mod 3\).
Chapter 5

Fischer spaces

Fischer classified the groups generated by a conjugacy class D of 3-transpositions (involutions such that the product of any two has order at most 3) and discovered three new sporadic groups that bear his name. These groups are rank 3 groups: D carries in a natural way the structure of a geometry with lines of length 3 and the structure of a rank 3 graph.

5.1 Definition

Let (X, \mathcal{L}) be a partial linear space. A subset Y of X, together with the lines contained in it, is called a subspace when Y contains each line that meets it in at least two points. A Fischer space is a partial linear space such that (i) each line has size 3, and (ii) any two intersecting lines span a subspace, called a plane, that is isomorphic either to the dual affine plane of order 2 (with 6 points and 4 lines), or to the affine plane of order 3 (with 9 points and 12 lines).

Consider a partial linear space (X, \mathcal{L}) with three points on each line. Each point x defines a permutation s_x of X defined by $s_x(y) = z$ when $\{x, y, z\} \in \mathcal{L}$, and $s_x(y) = y$ otherwise. Now $s_x^2 = 1$ and s_x is an involution (unless there are no lines on x, and $s_x = 1$). If (X, \mathcal{L}) is a Fischer space, then each s_x induces an automorphism of each plane on x, and hence an automorphism of (X, \mathcal{L}). If x, y are not collinear then $s_x s_y = s_y s_x$ and $(s_x s_y)^2 = 1$. If $\{x, y, z\}$ is a line, then $s_z = s_x s_y s_x = s_y s_x s_y$ and $(s_x s_y)^3 = s_z^2 = 1$, so that $\langle s_x, s_y \rangle$ acts on $\{x, y, z\}$ as the symmetric group S_3.

We see that if the Fischer space is connected, then all s_x are conjugate, and each product $s_x s_y$ has order at most 3. Conversely, suppose that G is a group generated by a conjugacy class of involutions D, such that the product of any two elements of D has order at most 3. (Then D is called a class of 3-transpositions.) Make a partial linear space with point set D and lines of size 3 given by $\{s, t, sts\}$ when s, t are distinct involutions in D that do not commute. Now the group G acts by conjugation, and the partial linear space is a connected Fischer space. (See also Example (vi) below.)

The Fischer graph of a Fischer space is its noncollinearity graph, that is, is the commuting involutions graph of D. The Fischer group of a Fischer space (X, \mathcal{L}) is the group $G = \langle s_x \mid x \in X \rangle$.

131
Examples

We list examples of groups with a class \(D \) of 3-transpositions. Detailed parameter information is given below.

(i) Let \(D \) be the class of transpositions \((ij) \) in the symmetric group \(S_n \), \(n \geq 2 \). The corresponding Fischer graph is \(\bar{T}(n) \), the complement of the triangular graph \(T(n) \).

(ii) Let \(V \) be a 2\(n \)-dimensional vector space over \(\mathbb{F}_2 \) provided with a non-degenerate symplectic form. Let \(D \) be the class of transvections \(t_v: x \mapsto x + (x,v)v \), where \(v \neq 0 \), in the symplectic group \(\text{Sp}_{2n}(2) \) acting on \(V \). If \((v,w) = 0 \), then \(t_v \) and \(t_w \) commute. Otherwise, \((v,w) = 1 \), and \(t_v t_w t_v = t_{v+w} \). The Fischer graph is the collinearity graph of the symplectic space provided with its totally isotropic lines, and the lines of the Fischer space are the hyperbolic lines of the geometry.

(iii) Let \(V \) be a 2\(n \)-dimensional vector space over \(\mathbb{F}_2 \) provided with a non-degenerate quadratic form \(Q \) of type \(\varepsilon = \pm 1 \). Let \(D \) be the class of transvections \(t_v: x \mapsto x + (x,v)v \), where \(Q(v) = 1 \), in the orthogonal group \(\text{O}_{2n}^+(2) \) acting on \(V \). If \((v,w) = 0 \), then \(t_v \) and \(t_w \) commute. Otherwise, \((v,w) = 1 \), and \(t_v t_w t_v = t_{v+w} \). The Fischer graph and Fischer spaces here are the induced ones from the symplectic example.

(iv) Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F}_4 \) provided with a non-degenerate quadratic form \(Q \) of type \(\varepsilon = \pm 1 \). Let \(D \) be the class of transvections \(t_v: x \mapsto x + (x,v)v \), where \((v,w) = 0 \), \(v \neq 0 \), in the unitary group \(\text{SU}_n(2) \). Here \(t_v \) and \(t_w \) commute when \((v,w) = 0 \). Otherwise, \(t_v t_w t_v = t_u \), where \(u = v + (v,w)w \). The Fischer graph is the collinearity graph of the unitary space provided with its totally isotropic lines, and the lines of the Fischer space are the triples of isotropic points on nondegenerate lines.

(v) Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F}_3 \) provided with a non-degenerate quadratic form \(Q \) of type \(\varepsilon = \pm 1 \). Let \(\eta = \pm 1 \). Let \(D_3 \) be the class of reflections \(t_v: x \mapsto x + \frac{(x,v)}{v}v \), where \(Q(v) = \eta \) (that is, \((v,v) = -\eta \)), in the orthogonal group \(\text{O}_{n}^+(3) \) acting on \(V \). Here \(t_v \) and \(t_w \) commute when \((v,w) = 0 \). Otherwise, \(t_v t_w t_v = t_u \), where \(u = v - \eta(v,w)w \). The subgroup of \(\text{O}_{n}^+(3) \) generated by \(D_3 \) is called \(\text{O}_{3}^{\varepsilon \eta}(3) \). The Fischer graph is the orthogonality graph on the set \(X \) of non-singular points of one kind. The Fischer space has as lines the intersections with \(X \) of tangent lines.

(v') The group \(S_6 = \text{Sp}_4(2) = \text{O}_4^{\pm+}(3) \) appears three times on the list above. It is most familiar as \(S_6 \), where it has an outer automorphism interchanging transpositions \((ij) \) and synthemes \((ab)(cd)(ef) \). Both classes give a Fischer group. The geometries and graphs are the same.

The existence of the outer automorphism is best understood in terms of \(\text{O}_3^{\varepsilon \eta}(3) \). Each 3-transposition group \(\text{O}_{2n}^{\pm+}(3) \) has two generating classes of 3-transpositions, the reflections of \(D_+ \) and negative reflections of \(-D_- \). As \(Q \) and \(-Q \) are isometric in even dimension, the two groups are canonically isomorphic, and these two classes are switched by an outer automorphism.

(vi) The noncommuting graph \(\Delta \) of a set \(S \) of 3-transpositions is often called the diagram of \(S \) since the group \(\langle S \rangle \) must be a quotient of the Coxeter group with simply laced diagram \(\Delta \). In particular, the generating reflection class of the finite Weyl groups \(W(A_m) \), \(W(D_m) \), and \(W(E_m) \) are all classes of 3-transpositions. The connected diagrams on three vertices are \(A_3 \) with Weyl group \(S_4 \)—yielding as Fischer space the dual affine plane on 6 points—and
5.1. DEFINITION

\tilde{A}_2 with affine Weyl group $(\mathbb{Z} \times \mathbb{Z}) : S_4$, whose 3-transposition quotients are $(2 \times 2) : S_3 = S_4$ and $(3 \times 3) : S_3 = SU_3(2)'$—yielding the dual affine plane again and the 9 point affine plane. This justifies the earlier claim that every 3-transposition group yields a Fischer space.

History

Fischer introduced classes of 3-transpositions— aiming to characterize the transposition class of the symmetric group—and was led to his broad classification (Theorem 5.2.2 below). Soon after that Buekenhout [154] introduced the concept of Fischer space in order to provide a uniform geometric context for Fischer’s examples.

Maximal cliques in a Fischer graph

Let (X, \mathcal{L}) be a finite Fischer space with Fischer graph Γ and Fischer group G. Then G acts transitively on the set of maximal cliques in Γ. More precisely, if M and M' are two maximal cliques, then there is a $g \in G$ mapping M to M' and fixing $M \cap M'$ pointwise. (Indeed, since $M \cup M'$ is not a clique, we can choose $x \in M \setminus M'$ and $y \in M' \setminus M$ joined by a 3-line $\{x, y, z\}$. Now $s_z = s_x s_y s_z$ fixes $M \cap M'$ pointwise and maps x to y, so that it sends M to a maximal clique with larger intersection with M'.)

Let G_M be the stabilizer in G of the maximal clique M. Then G_M contains the elementary abelian 2-group $\langle s_x \mid x \in M \rangle$ as a normal subgroup.

If (X, \mathcal{L}) is connected, then G is transitive on X and hence on pairs (x, M) with $x \in M$. It follows that G_M is transitive on M.

Subspaces

Every subspace of a Fischer space is again a Fischer space. If (X, \mathcal{L}) is a Fischer space, then the subset Y is a subspace if and only if Y is invariant under s_y for all $y \in Y$.

The connected components of Fischer spaces are subspaces. Conversely, given a collection of Fischer spaces (X_i, \mathcal{L}_i), where the X_i are disjoint, the union $(\bigcup X_i, \bigcup_i \mathcal{L}_i)$ is a Fischer space. If the (X_i, \mathcal{L}_i) are connected, they are the connected components of their union.

Also the connected components of Fischer graphs are subspaces. (If C is such a component, and $\{x, y, z\}$ is a line with $x, y \in C$, then s_x maps a path from x to y into a path from x to z, so that also $z \in C$.)

Let (X, \mathcal{L}) be a Fischer space with Fischer graph Γ. For each $x \in X$, the set $\Gamma(x)$ of neighbors of x in Γ, that is, the set of points noncollinear with x in (X, \mathcal{L}), is a subspace. (And so is $x^\perp = \{x\} \cup \Gamma(x)$.)

Diameter

The connected components of the collinearity and noncollinearity graphs of a Fischer space have diameter at most 2.

Indeed, if $a \sim b \sim c \sim d$ is an induced path in the collinearity graph, then both a and d are collinear with the third point of the line bc.
If $a \sim b \sim c \sim d$ is an induced path in the Fischer graph, then let e be the third point of the line ac (then $b \sim e$), f the third point of de, and g the third point of bf. The plane acd shows that $a \sim f$, so $a \sim g$. The plane bde shows that $d \sim g$. So $a \sim g \sim d$ is a shorter path.)

Quotient spaces and imprimitivity

Let $F = (X, \mathcal{L})$ be a Fischer space with Fischer group G, and let Π be a G-invariant partition of X. Then each $Y \in \Pi$ is a subspace of F. Moreover, Π, together with the lines $\{Y, Y', Y''\}$ where Y, Y', Y'' are distinct elements of Π and there are points $y \in Y$, $y' \in Y'$, $y'' \in Y''$ with $\{y, y', y''\} \in \mathcal{L}$, is again a Fischer space, called the quotient space F/Π of F with respect to Π. (Indeed, if $\{y, y', y''\} \in \mathcal{L}$, then s_y interchanges Y' and Y'', so for each $z \in Y'$ there is a line $\{y, z, s_y(z)\}$ with $s_y(z) \in Y''$. Similarly, y' and y'' are collinear with each point of Y, and $Y \cup Y' \cup Y''$ is a subspace of F.)

There are three sources of nontrivial invariant partitions, two of which were mentioned above:

(i) The connected components of a disconnected Fischer space. The quotient Fischer space is a collection of points with no lines.

(ii) The connected components of the Fischer graph. The quotient Fischer space has complete collinearity graph. (See the discussion of Hall triple systems below.)

(iii) Degenerate forms on classical spaces. In examples (ii)–(v) above, the form in question can be degenerate as long as the points of the Fischer space (transvection and reflection centers v) are chosen outside the radical. Nontrivial blocks of the invariant partition consist of the points in the same coset of the radical. In the characteristic 2 examples (ii)–(iv) the resulting group will have a noncentral normal 2-subgroup that respects the partition, while in case (v) the corresponding noncentral normal subgroup will be a 3-group.

Rank 3

Let (X, \mathcal{L}) be a finite Fischer space. Its Fischer group G is transitive (in its permutation action on X) when the space is connected. Suppose that moreover the action of G on X (with $|X| > 3$) is primitive. Then this action is rank 3 (cf. Fischer [327] (3.3.5)).

5.2 Fischer’s classification

Since $g(s_x) = s_{gx}$, it follows that s_x is central in G_x. From this, and Iwasawa’s Lemma, we see that if G acts primitively on X, it is close to being simple.

Lemma 5.2.1 (‘Iwasawa’s Lemma’, cf. [461], [678] (1.2)) Let G be a group acting primitively on a set X. Let $x \in X$ and suppose that G_x has an abelian normal subgroup A such that $G = \langle \langle A \mid g \in G \rangle \rangle$. If $N \leq G$, then $N \leq G_{[X]}$ (the pointwise stabilizer of X) or $N \geq G'$ (the commutator subgroup of G). In particular, if $G = G'$, then $G/G_{[X]}$ is simple.
5.2. FISCHER’S CLASSIFICATION

In our case (i.e., G primitive), we can take $A = \langle s_2 \rangle$ and $G_{|X|} = 1$ so that any nontrivial normal subgroup of G contains G'. Also, either $G = G'$ or G' has index 2 in G; in fact one easily proves that if $1 < N \leq G$ then $G = N \cup N s_x$.

(As follows: G is primitive, so N is transitive, and $G = NG_x$. Now any element of G is a product of conjugates of s_x, i.e., of the form $(n_1 g_1 s_x g_1^{-1} n_1^{-1}).(n_2 g_2 s_x g_2^{-1} n_2^{-1}) \ldots$, where $n_i \in N$ and $g_i \in G_x$. And this reduces to $(n_1 s_x n_1^{-1}).(n_2 s_x n_2^{-1}) \ldots$ since s_x is central in G_x. If the number of factors is even, this is in N (since N is normal), otherwise in $N s_x$.)

Since G'' is normal in G, either $G'' = G'$ or $G'' = 1$. But in the latter case G' is abelian and transitive, hence regular and we find that $|X| = p^h$ and G' is elementary abelian; since X is connected, G' contains elements of order 3, so $p = 3$; now our linear space is obtained from $AG(h, 3)$ by replacing all 3-lines in some parallel classes by 2-lines, and G' is the translation group. Clearly, s_x preserves parallelism, so that each parallel class of lines is a system of imprimitivity for G, a contradiction unless $|X| = 1$ or $|X| = 3$. This shows that in all cases, if G is primitive on X, then $G' = G''$.

Let $Z(G)$ be the center of G and $O_p(G)$ the largest normal p-subgroup of G. (Then we saw $Z(G) = O_p(G) = 1$ unless $|X| = 3$.) Now we can state the main theorem of Fischer.

Theorem 5.2.2 (Fischer [327]) Let G be a finite group, generated by a conjugacy class D of 3-transpositions. If $O_2(G)$ and $O_3(G)$ are both contained in the center $Z(G)$ of G, then $G/Z(G)$ is one of the following:

(i) the trivial group,
(ii) a symmetric group S_n with $n \geq 5$,
(iii) a symplectic group $Sp_{2n}(2)$ with $n \geq 3$,
(iv) a unitary group $PSU_n(2)$ with $n \geq 5$,
(v) an orthogonal group $O_{2n}^-(2)$ with $n \geq 4$,
(vi) $PO_{2n}^+(3)$, the subgroup of index 2 in $PO_{2n}^+(3)$ generated by the reflections in norm 1 vectors, where $n \geq 5$,
(vii) $O_9^-(2).S_3$ or $PO_9^+(3).S_3$,
(viii) Fi_{22}, Fi_{23}, or Fi_{24}.

If Γ is the collinearity graph of a Fischer space, then its 3-clique extension and sometimes also its 2-coclique extension are also collinearity graphs of Fischer spaces. It is this construction that is ruled out by the condition that $O_2(G)$ and $O_3(G)$ are contained in $Z(G)$. In Cuypers & Hall [248] the classification is redone, without this hypothesis.

Fischer graphs

We already mentioned most of the examples. Here we give the parameters and some further detail. Recall that a Fischer graph is the noncollinearity graph of a Fischer space.

(i) In S_n ($n \geq 2$) the set D of involutions is the set of transpositions (except for S_6, where there are two possibilities). The corresponding graph is $\overline{I}(n)$. The parameters are:

\[
\begin{align*}
v &= \binom{n}{2}, \\
k &= \binom{n-2}{2}, \\
\lambda &= \binom{n-4}{2}, \\
\mu &= \binom{n-3}{2}, \\
r &= 1, \\
s &= -(n-3), \\
f &= \frac{1}{2}n(n-3), \\
g &= n - 1.
\end{align*}
\]
CHAPTER 5. FISCHER SPACES

The group has order $n!$ and $(S_n)' = A_n$, of order $\frac{1}{2}n!$, is simple for $n \geq 5$.

(ii) In $Sp_{2n}(2)$ ($n \geq 1$) the set D of involutions is the set of transvections $t_a : x \mapsto x + (x,a)a$. The corresponding graph is the symplectic graph $\Gamma(Sp_{2n}(2))$ (note that t_a and t_b commute if and only if $(a,b) = 0$, i.e., $a \perp b$). The parameters are:

$$v = 2^{2n} - 1, \quad k = 2^{2n-1} - 2, \quad \lambda = 2^{2n-2} - 3, \quad \mu = 2^{2n-2} - 1,$$
$$r, s = \pm 2^{n-1} - 1, \quad f, g = 2^{2n-1} \pm 2^{n-1} - 1.$$

The group has order $2^n \prod_{i=1}^n (2^{2i} - 1)$ and is simple for $n \geq 3$. For $n = 2$ we have $Sp_2(2) \simeq O_2^+(3) \simeq S_5$ and we find $T(6)$ again; it occurs again under (v). For $n = 1$ we have $Sp_2(2) \simeq S_4$ and the graph is K_4.

(iii) In $O_{2n}^\pm(2)$ ($n \geq 3$) the set D of involutions is the set of transvections $t_a : x \mapsto x + (x,a)a$ with $Q(a) = 1$. The corresponding graph is the graph $NO_{2n}^\pm(2)$ (nonsingular points, adjacent when orthogonal). The parameters (v, k, λ, μ) and spectrum $k^i \theta_1^{m_1} \theta_2^{m_2}$ are:

$$v = 2^{2n-1} - \varepsilon 2^{n-1}, \quad \theta_1 = \varepsilon 2^{n-2} - 1,$$
$$k = 2^{2n-2} - 1, \quad \theta_2 = -\varepsilon 2^{n-1} - 1,$$
$$\lambda = 2^{2n-3} - 2, \quad m_1 = \frac{4}{3} (2^{2n-1} - 1),$$
$$\mu = 2^{2n-3} + \varepsilon 2^{n-2}, \quad m_2 = \frac{1}{3} (2^{3n-1} - \varepsilon)(2^n - \varepsilon).$$

The group has order $2^{n(n-1)+1}(2^n \pm 1) \prod_{i=1}^{n-1} (2^{2i} - 1)$ and has simple commutator subgroup $\Omega_{2n}^\pm(2)$ of index 2.

(If $n = 2$ then $\Omega_4^+(2) \simeq A_5$ is still simple, but $\Omega_4^+(2) \simeq S_3 \times S_3$. In the former case the graph is the Petersen graph, in the latter $K_{3,3}$.)

(iv) In $SU_n(2)$ ($n \geq 4$ or $n = 2$) the set D of involutions is the set of unitary transvections $x \mapsto x + (x,p)p$ with isotropic p. The corresponding graph is the unitary graph $\Gamma(U_n(2))$ (isotropic points, adjacent when orthogonal). Let $\varepsilon = (-1)^n$. The parameters (v, k, λ, μ) and spectrum $k^i \theta_1^{m_1} \theta_2^{m_2}$ are:

$$v = \frac{1}{3} (2^n - \varepsilon)(2^{n-1} + \varepsilon), \quad \theta_1 = -1 + \varepsilon 2^{n-2},$$
$$k = \frac{4}{3} (2^{n-2} - \varepsilon)(2^{n-3} + \varepsilon), \quad \theta_2 = -1 - \varepsilon 2^{n-3},$$
$$\lambda = \frac{16}{3} (2^{n-4} - \varepsilon)(2^{n-5} + \varepsilon) + 3, \quad m_1 = \frac{4}{9} (2^n - \varepsilon)(2^{n-3} + \varepsilon),$$
$$\mu = \frac{1}{4} k = \frac{1}{3} (2^{n-2} - \varepsilon)(2^{n-3} + \varepsilon), \quad m_2 = \frac{8}{9} (2^{n-2} - \varepsilon)(2^{n-1} + \varepsilon),$$

so that $v - k = 1 = 2^{2n-3}$. The group has order \(\frac{1}{(n,3)} 2^{2(\frac{n}{3})} \prod_{i=1}^n (2^i - (-1)^i) \) and is simple for $n \geq 4$.

(v) In $O_n^+(3)$ consider the reflections $t_a : x \mapsto x + \frac{(x,a)}{(a,a)}a$ with nonsingular a. The reflections t_a, t_b commute when $(a, b) = 0$. The group preserves the value of Q and there are two conjugacy classes $D_n (\eta = \pm 1)$ of such reflections, consisting of the t_a with $Q(a) = \eta$. Let $O_n^+(3)$ be the subgroup generated by D_n.

5.2. FISCHER’S CLASSIFICATION

If \(n \) is even, say \(n = 2m \), the corresponding Fischer graph is \(NO_{2m}(3) \). Its parameters \((v, k, \lambda, \mu)\) and spectrum \(k^1 \theta_1^m, \theta_2^m \) are:

\[
\begin{align*}
 v &= \frac{1}{2} 3^{m-1}(3^m - \varepsilon), \\
 k &= \frac{1}{2} 3^{m-1}(3^m - \varepsilon), \\
 \lambda &= \frac{1}{2} 3^{m-2}(3^{m-1} + \varepsilon), \\
 \mu &= \frac{1}{2} 3^{m-1}(3^{m-2} - \varepsilon),
\end{align*}
\]

\[\theta_1 = \varepsilon 3^{m-1}, \quad \theta_2 = -\varepsilon 3^{m-2}, \quad m_1 = \frac{1}{8} (3^m - \varepsilon)(3^{m-1} - \varepsilon), \quad m_2 = \frac{9}{8} (3^{2m-2} - 1).\]

The group \(O^{±}_{2m}(3) \) has order \(\frac{1}{2} 3^{3m-1}(3^m - \varepsilon) \prod_{i=1}^{m-1} (3^{2i} - 1) \) where \(d := (4,3^m - \varepsilon) \), and has commutator subgroup \(O^{±}_{2m}(3) \simeq PO^{±}_{2m}(3) \) of index 2. This latter group is simple, except when \(m = 2 \) and \(\varepsilon = +1 \), in which case \(PO^{±}_{2m}(3) \simeq A_4 \times A_4 \).

If \(n \) is odd, say \(n = 2m + 1 \), the corresponding Fischer graph is \(NO_{2m+1}(3) \). Its parameters are:

\[
\begin{align*}
 v &= \frac{1}{2} 3^m(3^m + \eta), \\
 k &= \frac{1}{2} 3^{m-1}(3^m - \eta), \\
 \lambda &= \mu, \\
 \mu &= \frac{1}{2} 3^{m-1}(3^{m-1} - \eta).
\end{align*}
\]

Here \(\eta \) is chosen such that for \(\eta = 1 \) (resp. \(-1\)) the perp of a vertex is a hyperbolic (resp. elliptic) quadric. This corresponds to the \(\eta \) as used earlier if we fix \(Q \) to have discriminant 1.

The group \(O^{±}_{2m+1}(3) \simeq PO^{±}_{2m+1}(3) \) has order \(3^m \prod_{i=1}^{m} (3^{2i} - 1) \) and has simple commutator subgroup \(O^{±}_{2m+1}(3) \simeq PO^{±}_{2m+1}(3) \) of index 2. (The first + in these group denotations is just a place-holder: there is no \(\epsilon \) here. Sometimes people do use the first sign to denote the discriminant of \(Q \). If \(Q \) defines \(O^{±}_{2m+1}(q) \), then \(-Q \) defines \(O^{±}_{2m+1}(q) \).

Group notation

Notation for the orthogonal groups in characteristic 3 varies.

Given a quadratic form \(Q \) on the vector space \(V \) of dimension \(n \) over \(\mathbb{F}_3 \), one defines a symmetric bilinear form by \((x, y) = Q(x+y) - Q(x) - Q(y) \), so that \((x,x) = 2Q(x) = -Q(x) \). The reflection corresponding to a nonsingular vector \(v \) is \(t_v : x \mapsto x - \frac{2\langle x, v \rangle}{\langle v, v \rangle} v = x - \frac{\langle x, v \rangle}{Q(v)} v \), and all authors agree. There are two conjugacy classes \(D_\varepsilon \) of such reflections, and the Fischer groups \(O^\varepsilon_{n}(3) \) are the groups generated by \(D_\varepsilon \) in \(O(V, Q) \) of type \(\varepsilon \).

Aschbacher ([13], p. 44) lets \(D_\varepsilon \) consist of the \(t_v \) with \(Q(v) = \eta \). Fischer ([327]) uses \((v, v) = \eta \) instead, so has the opposite sign.

Aschbacher, Fischer and others define and use a discriminant \(\delta \) for \(Q \) to distinguish forms, and they denote their groups \(O^\delta_{n}(3) \). Aschbacher takes as \(\delta \) the discriminant of the polar bilinear form \(f_Q \) given by \(Q(x + y) - Q(x) - Q(y) \), while Fischer lets \(\delta \) be the discriminant of the diagonal bilinear form \(d_Q \) determined by \(d_Q(x,x) = Q(x) \). We have \(f_Q = -d_Q \). In even dimension the distinction does not change the determinant, but in odd dimension it negates it. If \(n = 2m \) is even, then the Witt sign \(\varepsilon \) equals \((-1)^m \delta \). If \(Q \) defines \(O^{±}_{2m+1}(3) \), then \(-Q \) defines \(O^{±}_{2m+1}(3) \).
(vi) The graphs in the last three cases have parameters

\[
\begin{array}{cccccccccc}
 v & k & \lambda & \mu & \bar{\lambda} & \bar{\mu} & r & s & f & g \\
3510 & 693 & 180 & 126 & 2248 & 2304 & 63 & -9 & 429 & 3080 \\
31671 & 3510 & 693 & 351 & 25000 & 25344 & 351 & -9 & 782 & 30888 \\
306936 & 31671 & 3510 & 3240 & 246832 & 247104 & 351 & -81 & 57477 & 249458 \\
\end{array}
\]

The groups have orders

\[
|F_{i22}| = 2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13, \\
|F_{i23}| = 2^{18} \cdot 3^{13} \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23, \\
|F_{i24}| = 2^{22} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29.
\]

The first two are simple, the third has simple commutator subgroup of index 2. The point stabilizers are \(2\cdot PSU_6(2)\), \(2\cdot F_{i22}\) and \(2\cdot F_{i23}\), respectively. These graphs have maximal cliques of size 22, 23 and 24, respectively, and the stabilizers of the maximal cliques are the Mathieu groups \(M_{22}, M_{23}\) and \(M_{24}\).

The group \(F_{i22}\) has exactly one other rank 3 representation. It has parameters

\[
\begin{array}{cccccccccc}
 v & k & \lambda & \mu & \bar{\lambda} & \bar{\mu} & r & s & f & g \\
14080 & 3159 & 918 & 648 & 8408 & 8680 & 279 & -9 & 429 & 13650 \\
\end{array}
\]

The point stabilizer is \(O^+_7(3)\) of order \(2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13\).

Also \(F_{i23}\) has exactly one other rank 3 representation. It has parameters

\[
\begin{array}{cccccccccc}
 v & k & \lambda & \mu & \bar{\lambda} & \bar{\mu} & r & s & f & g \\
137632 & 28431 & 6030 & 5832 & 86600 & 86800 & 279 & -81 & 30888 & 106743 \\
\end{array}
\]

The point stabilizer is \(O^+_8(3).S_3 = \Omega^+_8(3).S_3\) of order \(2^{12} \cdot 3^{12} \cdot 5^2 \cdot 7 \cdot 13 \cdot 29\).

In both cases the points of the graph are the 3-lines through a fixed point in the next larger graph (belonging to \(F_{i23}\) and \(F_{i24}\), respectively), where two lines are adjacent when they span a dual affine plane of order 2. The lines through a fixed point in the \(F_{i22}\) graph give the Conway graph for \(U_6(2)\) (§10.81).

5.3 Hall triple systems

A Steiner triple system is a point-line geometry where any two points determine a unique line, and lines have three points. (That is, is a \(2-(v,3,1)\) design.) A Hall triple system is a Steiner triple system in which any two intersecting lines are contained in a subsystem isomorphic to \(AG(2,3)\). That is, Hall triple systems are precisely the connected Fischer spaces without 6-point subplanes, or, equivalently, precisely those whose Fischer graph is edgeless.

These systems were first investigated in HALL [396], where it is shown that a Steiner triple system satisfies the defining property for a Hall triple system if and only if for each point \(x\) there is an automorphism \(s_x\) of order at most 2 fixing only that point. If this is the case, then all \(s_x\) are conjugate, and for distinct \(x, y\) the product \(s_x s_y\) has order 3.

Obvious examples of Hall triple systems are the affine spaces \(AG(n, 3)\). The smallest nonaffine example has order 81 (loc. cit.).

The order (number of points) of a Hall triple system is a power of 3. A short proof is given in [389].
5.4. COTRIANGULAR GRAPHS

Commutative Moufang loops of exponent 3

A quasigroup is a set Q with binary operation \circ such that in $x \circ y = z$ any two of x, y, z uniquely determine the third. A loop is a quasigroup with two-sided identity e (satisfying $e \circ x = x \circ e = x$ for all $x \in Q$). A Moufang quasigroup is a quasigroup satisfying the identity $x \circ (y \circ z) = ((x \circ y) \circ x) \circ z$ for all $x, y, z \in Q$. Every Moufang quasigroup is a loop ([506]).

Any Steiner triple system (X, \mathcal{B}) defines a commutative idempotent quasigroup (X, \circ) by $x \circ x = x$ and $x \circ y = z$ if $\{x, y, z\} \in \mathcal{B}$. It also defines a loop $(X, *, e)$ if we pick an arbitrary element $e \in X$ and define $x * y = (e \circ x) \circ (e \circ y)$.

Moufang loops with at most 2 generators are associative ([Moufang] [575]; [149], p. 117). In particular, powers of an element are well defined. A Moufang loop $(X, *, e)$ is said to be of exponent 3 if $x^3 = e$ for all $x \in X$.

Hall triple systems are equivalent to commutative Moufang loops of exponent 3 (Bruck, cf. [397]). (Indeed, the above recipe produces a commutative Moufang loop of exponent 3 from any Hall triple system and arbitrarily chosen e. Conversely, a commutative Moufang loop $(X, *, e)$ of exponent 3 becomes a Hall triple system with the lines $\{x, y, x^2*y^2\}$. This correspondence is 1-1: the isomorphism type of $(X, *, e)$ does not depend on the choice of e since the corresponding Fischer group is transitive on points.) See also [539].

5.4 Cotriangular graphs

A cotriangular space is a partial linear space (X, \mathcal{L}) with lines of size 3, such that whenever a point x is not on a line L, it is collinear with none or all but one of the points of L. A Fischer space where any two intersecting lines span a subspace isomorphic to the dual affine plane of order 2 is a cotriangular space.

A cotriangular graph is a graph in which every nonedge lies in a 3-coclique (‘cotriangles’) T such that every vertex outside T is adjacent to one or all of the vertices of T. The noncollinearity graph of a cotriangular space is a cotriangular graph. A clique extension of a cotriangular graph is again cotriangular. A cotriangular graph is called reduced when $x^+ = y^+$ implies $x = y$. A reduced cotriangular graph is the noncollinearity graph of a unique cotriangular space. A graph Γ is called coconnected when its complement \bar{T} is connected.

Theorem 5.4.1 (Shult [651], cf. [395]) Let Γ be a finite reduced coconnected cotriangular graph. Then Γ is either (i) $N_{2n}(2)$ ($n \geq 3$), or (ii) $Sp_{2n}(2)$ ($n \geq 3$), or (iii) $\bar{T}(n)$ ($n \geq 2, n \neq 4$).

Here $N_{2n}(2)$ is the graph on the nonsingular vectors in a vector space of dimension $2n$ over \mathbb{F}_2 provided with a nondegenerate quadratic form of type e, adjacent when orthogonal, $Sp_{2n}(2)$ is the graph on the nonzero vectors in a vector space of dimension $2n$ over \mathbb{F}_2 provided with a nondegenerate symplectic form, adjacent when orthogonal, and $\bar{T}(n)$ is the complement of the triangular graph $T(n)$. Thus, the cotriangular graphs of the theorem are among the Fischer graphs for examples (i)–(iii) in the list of Fischer spaces in §5.1.

This theorem was generalized to the infinite case in Hall [392, 393]. The ‘1 or 3 neighbors’ of the definition of cotriangular was generalized to ‘an odd number of neighbors’ in Brouwer & Shult [142].
The locally cotriangular graphs are determined in HALL & SHULT [395]. See also HALL [394], Theorem 6.2. The special case of locally Petersen graphs was done in HALL [388]. The special case of locally $K_{3,3}$ or Petersen graphs was done in BLOKHUIS & BROUWER [75].

Cotriangular graphs and 2-ranks

A graph Γ is cotriangular (resp. the collinearity graph of a polar space with lines of size 3) precisely when the adjacency matrix A of Γ has the property that the mod 2 sum of any two rows corresponding to nonadjacent (resp. adjacent) vertices in Γ is again a row of A.

The graphs that occur in this situation are characterized by their low 2-rank:

Theorem 5.4.2 (Peeters [611]) For $n \geq 2$ the strongly regular graphs $Sp_{2n}(2)$, $S_{2n}^+(2)$, $N_{2n}^2(2)$ and their complements are uniquely determined by their parameters and the minimality of the 2-rank, which is $2n+1$ for the graphs mentioned, and $2n$ for their complements.

Here $S_{2n}^+(2)$ is the graph on the singular vectors in a vector space of dimension $2n$ over \mathbb{F}_2 provided with a nondegenerate quadratic form of type ε, adjacent when orthogonal. The parameters are:

<table>
<thead>
<tr>
<th>Name</th>
<th>v</th>
<th>k</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sp_{2n}(2)$</td>
<td>$2^{2n} - 1$</td>
<td>$2^{2n-1} - 2$</td>
<td>$2^{n-1} - 1$</td>
<td>$-2^{n-1} - 1$</td>
</tr>
<tr>
<td>$S_{2n}^+(2)$</td>
<td>$2^{2n-1} + 2^{n-1} - 1$</td>
<td>$2^{2n-2} + 2^{n-1} - 2$</td>
<td>$2^{n-2} - 1$</td>
<td>$-2^{n-2} - 1$</td>
</tr>
<tr>
<td>$S_{2n}^-(2)$</td>
<td>$2^{2n-1} - 2^{n-1} - 1$</td>
<td>$2^{2n-2} - 2^{n-1} - 2$</td>
<td>$2^{n-2} - 1$</td>
<td>$-2^{n-2} - 1$</td>
</tr>
<tr>
<td>$N_{2n}^+(2)$</td>
<td>$2^{2n-1} - 2^{n} - 1$</td>
<td>$2^{2n-2} - 1$</td>
<td>$2^{n-1} - 1$</td>
<td>$-2^{n-1} - 1$</td>
</tr>
<tr>
<td>$N_{2n}^-(2)$</td>
<td>$2^{2n-1} + 2^{n} - 1$</td>
<td>$2^{2n-2} - 1$</td>
<td>$2^{n-1} - 1$</td>
<td>$-2^{n-1} - 1$</td>
</tr>
</tbody>
</table>

(We followed the notation used in the literature. Elsewhere in this volume we used the names $\Gamma'(Sp_{2n}(2))$, $\Gamma(O_{2n}^2(2))$ and $NO_{2n}^2(2)$ for these graphs.)

5.5 Locally grid graphs

A grid graph $p \times q$ is the Cartesian product of the complete graphs K_p and K_q (with $(x, y) \sim (x', y')$ when either $x = x'$, $y \sim y'$ or $x \sim x'$, $y = y'$).

A graph Γ is locally grid when each point neighborhood $\Gamma(x)$ is a grid graph. If Γ is connected, then it follows that there are p, q such that Γ is locally $p \times q$. For example, the Johnson graph $J(p+q, p)$ is locally $p \times q$. HALL [392] observes that classifying locally $3 \times q$ graphs is equivalent to classifying cotriangular Fischer spaces.

Theorem 5.5.1 (HALL [392, 393]) Let Γ be a locally $3 \times q$ graph. Then there is a partial linear space (X, L) with lines of size 3, and where any two intersecting lines span a subspace isomorphic to the dual affine plane of order 2, such that Γ is the line graph of (X, L): the vertices are the lines of (X, L), adjacent when they meet. Conversely, such line graphs are locally $3 \times q$ for some fixed q when connected.

For example, the graph $J(m, 3)$ is the line graph of $T(m)$ with lines of the form $\{(ij), (ik), (jk)\}$. As another example, there are precisely two connected
locally 3×3 grid graphs, on 16 and 20 vertices, namely 4×4 and $J(6, 3)$. The former is the line graph of $PG(3, 2)$ minus a line; the noncollinearity graph of this partial linear space is $3K_4$.

Locally grid graphs have been classified in a few other cases. It is easy to see that the unique connected locally $2 \times q$ graph is the triangular graph $T(q + 2)$.

Blokhuis & Brouwer [74] show that there are precisely four connected locally 4×4 grid graphs, on 35, 40, 40 and 70 vertices. The last one is $J(8, 4)$, the first one its antipodal quotient. The second is a member of an infinite family constructed in Cameron [175]. The third one is ugly, with a group that is not vertex-transitive.

A μ-graph of a graph is the subgraph induced on the set of common neighbors of two vertices at distance 2.

In [74] the locally grid graphs such that all μ-graphs are unions of 4-cycles are characterized (as quotients of a Johnson graph). In [335] certain locally grid graphs are classified where all μ-graphs are hexagons. In [604] two types of locally 5×5 graphs are constructed inside the $O_6^+(4)$ polar graph. In [9] some locally $n \times n$ graphs are constructed, and certain locally 5×5 graphs are classified.

Grids are (thin) generalized quadrangles. More generally, people have looked at EGQs (extended generalized quadrangles) and at locally polar graphs. An early reference is Buekenhout & Hubaut [156].

5.6 Copolar spaces

5.6.1 Hall’s classification

Gamma spaces

A gamma space is a partial linear space such that for each point p and line L the point p is collinear to 0, 1, or all points of L. Equivalently, a gamma space is a partial linear space such that the set of points collinear with any given point is a subspace. For an example, see §10.54.

For graphs of Lie type a strong form of this property holds, see [123], Theorem 10.6.3.

Delta spaces

A delta space is a partial linear space such that for each point p and line L the point p is collinear to 0, all-but-one, or all points of L. Equivalently, a delta space is a partial linear space such that the set of points not collinear with any given point is a subspace. Examples are the copolar spaces below.

The concepts of gamma space and delta space are due to D. G. Higman (in various talks, maybe there is no publication). In his terminology, a ‘strict gamma space’ is a gamma space in which the possibility 0 never occurs, that is, a polar space. A ‘strict delta space’ is a delta space in which the possibility ‘all’ never occurs. These are the copolar spaces studied below.
Copolar spaces

A copolar space is a partial linear space \((X, \mathcal{L})\) such that for each line \(L\) and point \(x \notin L\), the point \(x\) is collinear with either 0 or all-but-one points of \(L\). For \(x \in L\), let \(x^\perp\) be the set of all points of \(X\) collinear with \(x\). The space is called reduced when \(x^\perp \setminus \{x\} \neq y^\perp \setminus \{y\}\) for distinct points \(x, y\). The space is called of order \(q\) when all lines have size \(q + 1\).

A copolar graph is a graph \(\Gamma\) that is the noncollinearity graph of a copolar space. Copolar spaces and copolar graphs generalize cotriangular spaces and cotriangular graphs (where lines have size 3).

Theorem 5.6.1 (Hall [390]) A finite reduced connected copolar space has some fixed order \(q\) and is one of the following.

1. A single line of size \(q + 1\).
2. The vertices and point neighborhoods \(\Gamma(x) = x^\perp \setminus \{x\}\) of a Moore graph \(\Gamma\) of diameter 2 (a strongly regular graph with \(\lambda = 0\) and \(\mu = 1\)). For \(q + 1 \in \{2, 3, 7\}\) there is a unique example. All other examples have \(q + 1 = 57\), and no such examples are known.
3. The \(\binom{n}{2}\) pairs and \(\binom{n}{3}\) sets of three pairs contained in a fixed triple, in a fixed \(n\)-set. Here \(q + 1 = 3\).
4. The points outside a nonsingular quadric in a projective space \(\text{PG}(d, q)\) with \(d\) odd and \(q = 2\), with the elliptic lines.
5. The points of a projective space \(\text{PG}(d, q)\) provided with a nondegenerate symplectic polarity, with the hyperbolic lines.

Examples (3) and (4) here are examples (i) and (iii) from the list of Fischer spaces in §5.1. The case \(q = 2\) of (5) is example (ii).

5.6.2 Lax embeddings of the symplectic copolar spaces

Let us denote the copolar spaces of Case (5) in Theorem 5.6.1 by \(\text{HSp}_{d+1}(q)\).

A lax embedding of a point-line geometry \((X, \mathcal{L})\) in a projective space \(\text{PG}(d, q)\) is an injection \(\phi\) sending points to points and lines to lines, preserving incidence and such that \(\phi(X)\) spans the space \(\text{PG}(d, q)\).

We are interested in classifying the lax embeddings of \(\text{HSp}_{d+1}(q)\) in projective spaces \(\text{PG}(d, q')\) for \(d \geq 3\) and \(q' \geq q\). The standard examples are obtained from including the projective space \(\text{PG}(3, q)\) provided with a nondegenerate symplectic form in a larger space \(\text{PG}(3, q')\) by extending the field \(\mathbb{F}_q\) to \(\mathbb{F}_{q'}\).

Proposition 5.6.2 If \(q \geq 4\), then every lax embedding of \(\text{HSp}_{4}(q)\) in \(\text{PG}(d, q')\), \(d \geq 3\), is standard.

Proof (sketch). The geometry induced on the set of points of \(\text{HSp}_{4}(q)\) not collinear to a fixed point is a dual affine plane, which, by [521], only admits a (canonical) embedding in \(\text{PG}(2, q')\), with \(\mathbb{F}_q\) a subfield of \(\mathbb{F}_{q'}\). Hence the points on any isotropic line are mapped into some line of \(\text{PG}(d, q')\). This yields a lax embedding of \(\text{PG}(3, q)\) in \(\text{PG}(d, q')\), leading to the proposition. □

The cases \(q = 2, 3\) remain. If \(q = 2\), then \(\text{HSp}_{4}(q)\) is the case \(n = 6\) of Case (3) of Theorem 5.6.1. Let us denote the copolar space corresponding to \(n\) of that case by \(\Omega_n\). Then \(\Omega_n\) admits the following standard lax embedding into the hyperplane \(H\) (after coordinatization) with equation \(\sum_{i=1}^{n} X_i = 0\) of \(\text{PG}(n-1, q')\): The point \(\{a, b\}\), \(a, b \in \{1, 2, \ldots, n\}\), \(a \neq b\) is identified with the point whose coordinates are zero, except on places \(a\) and \(b\), where the coordinates are nonzero and opposite. A subspace \(S\) of \(H\) is called admissible if \((S, x) \neq (S, y)\) as soon as \(x\) and \(y\) are distinct points of the copolar space. Without going into details, we just state that, using the techniques of [688], one can easily prove the following proposition.

Proposition 5.6.3 Every lax embedding of \(\Omega_n\) is the projection from an admissible subspace of the standard lax embedding described above.
5.6. COPOLAR SPACES

Since some rank 3 graphs are intimately related to $HSp_3(3)$ (see §10.89A and §10.93), we investigate the case $q = 3$ in some more detail. (We shall write 3 for q, and q' for q'.)

First a lemma. (Note that the planes of $HSp_4(3)$ are dual affine planes $AG(2,3)^*$.)

Lemma 5.6.4 Let P be the image of the dual affine plane $AG(2,3)^*$ into the projective plane $PG(2,q)$, $q = p^6 \geq 3$, under a lax embedding. Then either $p = 3$ and P is canonically contained in a subspace of order 3, or $q \equiv 1 \pmod{3}$ and P is completely determined by any four points of which three form a coclique. In this latter case, the stabilizer in $PG_3(q)$ of P is a group $(3^7.2):A_4$. The stabilizer in $PGL_3(q)$ is the same group when $p \equiv 1 \pmod{3}$, and $(3^2.2):S_4$ when $p \equiv 2 \pmod{3}$.

Proof. The collinearity graph of P is $K_{4,4,3}$, with four 3-cocliques. If each of these cocliques is contained in a line of $PG(2,q)$, then P is contained in a subspace $PG(2,q)$, so that q is a power of 3 and P is canonically embedded.

So we may assume that some coclique $\{p_1, p_2, p_3\}$ forms a triangle in $PG(2,q)$, and we label $p_1(1,0,0)$, $p_2(0,1,0)$ and $p_3(0,0,1)$. Let u be any other point of P. If u is on one of the lines $p_1 p_3$, $i \neq j$, $i, j \in \{1,2,3\}$, then all points of P must be contained in that line, a contradiction. Hence we may label $u(1,1,1)$. Now we label the points of the line of P containing u and p_1 by $(a_1,1,1)$ and $(b_1,1,1)$, and similarly we have the points $(1, a_2, 1)$, $(1, b_2, 1)$, and $(1, 1, a_3)$, $(1, 1, b_3)$. We may assume that $\{(a_1,1,1), (1, a_2, 1), (1, a_3, 1)\}$ is a coclique. Expressing that $\{(a_1,1,1), (1, a_2, 1), (0,0,1)\}$ forms a line we obtain $a_1 b_2 = 1$. Likewise $a_1 b_2 = a_2 b_1 = a_3 b_2 = 1$. Hence $a_1 = a_2 = a_3 = a$, where $a \neq 1$, and $b_1 = b_2 = b_3 = a^{-1}$. The three lines of $(2, q)$ with respective equations $aX_1 = X_2$, $aX_1 = X_3$, and $aX_3 = X_1$ have a point of P in common, which implies $a^3 = 1$. It follows that $q \equiv 1 \pmod{3}$. Finally, $a^9 = a^2$ if and only if $p \equiv 2 \pmod{3}$.

The small cases $q = 4,7$ have some interesting additional properties.

Lemma 5.6.5 Consider the situation of the previous lemma, with $q \equiv 1 \pmod{3}$.

(i) The set of points off P lying on at least two, and then on exactly 4, two-seants forms together these 12 two-seants, an affine plane W' of order 3.

(ii) For $q = 4$, W' is a Hermitian unital, and its point set is the complement of that of P.

(iii) For $q = 7$, the stabilizer of P acts transitively on the 36 points of $PG(2,7)$ not in P that are incident with a line of P.

Proof. (i) Using the coordinates introduced in the proof of Lemma 5.6.4, the nine points of the affine plane have coordinates $(0,1,-c)$, with $c^3 = 1$, and all permutations thereof.

(ii) Let G_L be the stabilizer of P in $PGL_3(q)$. By Lemma 5.6.4, the stabilizer $G_{L'}$ of a line L of P acts on L as A_4. Since no nontrivial element of this A_4 fixes at least three points of L, viewed as a line of $PG(2,7)$, we see that G_L acts transitively on the four remaining points of L.

Proposition 5.6.6 A non-standard lax embedding of $HSp_4(3)$ in $PG(d,q)$, $d \geq 3$, $q = p^6 \geq 3$, exists if and only if $d = 3$ and $q \equiv 1 \pmod{3}$, and for each such q unique up to a collineation. Moreover, for a given such embedding, the stabilizer in $PGL_d(q)$ of the image of $HSp_4(3)$ is the group $PSp_4(3) \cong U_4(2)$. The stabilizer in $PGL_4(q)$ is the same group when $p \equiv 1 \pmod{3}$, and the split extension $PSp_4(3) \cong \Sigma U_4(2)$ when $p \equiv 2 \pmod{3}$.

Proof. Let Σ be the image of a non-standard lax embedding of $HSp_4(3)$ in $PG(d,q)$, $d \geq 3$. Since $HSp_4(3)$ has planes isomorphic to $AG(2,3)^*$, Lemma 5.6.4 yields $q \equiv 1 \pmod{3}$.

Consider an isotropic line M of the $Sp_4(3)$ geometry on Σ. No three points of M are collinear in $PG(d,q)$, since any triple $M\{m\}$ is contained as a coclique in the dual affine plane $m^{-1}\{m\}$. Also, if all four points of M were contained in a plane of $PG(d,q)$, then Σ would be contained in that plane, contradicting $d \geq 3$. For $m \in M$, let π_m be the plane $\langle M\{m\} \rangle$ of $PG(d,q)$. It contains the plane $\Pi_m = m^{-1}\{m\}$ of Σ. The union of the point sets of Π_m over $m \in M$ is the point set of Σ, and it follows that $d = 3$. For $m, n \in M$ the three lines of Π_m through m, viewed as lines of $PG(3,q)$, intersect π_m in the points of the affine plane W', in π_m, as described in Lemma 5.6.5 (i). Hence, choosing Π_m without loss of generality in a unique way, Π_m is determined up to a homology in $PG(3,q)$ with center m and axis π_m. Hence $\Pi_m \cup M$ is projectively unique. If p is a third point of M, then using the same argument with Π_p now with respect to both Π_m and Π_p, we conclude that $HSp_4(3)$ has at most one projectively unique embedding in $PG(3,q)$. An easy but cumbersome explicit computation, which we shall not perform, now shows existence.
The uniqueness of the construction and the last assertion of Lemma 5.6.4 show the other assertions.

The above embeddings play a role in the construction of certain rank 3 graphs on 7^4 and 3^8 vertices.

The case \(q = 7 \)

Proposition 5.6.7 Let the copolar space \(HSp_4(3) \) be embedded in \(PG(3, 7) \). The stabilizer of \(HSp_4(3) \) in \(PGL_4(7) \) acts transitively on the 40 points of \(HSp_4(3) \) and also on the 360 points off \(HSp_4(3) \).

The point set of \(HSp_4(3) \) is a two-character set of \(PG(3, 7) \); planes intersect in either 12 points (and the intersection is a dual affine plane \(AG(2, 3)^* \)), or 5 points (and the intersection contains a unique line of \(HSp_4(3) \) plus some point).

Proof. Let \(G \) be the stabilizer of \(HSp_4(3) \) in \(PGL_4(7) \). By Lemma 5.6.5 and Proposition 5.6.6, \(G \) acts transitively on the set of points that are contained in a line of \(HSp_4(3) \). The number of such points is clearly equal to four times the number of lines of \(HSp_4(3) \), hence to \(90 \times 4 = 360 \). Consequently, this comprises all points off \(HSp_4(3) \).

The second assertion follows by a straightforward count.

With the point set of \(HSp_4(3) \) at infinity of \(\mathbb{E}_k^3 \), we find a rank 3 graph with parameters \((v, k, \lambda, \mu) = (2401, 240, 59, 20)\). This is the graph of \(§10.89A \).

The case \(q = 4 \) and a self-conjugate spread in \(HSp_4(3) \)

The uniqueness in Proposition 5.6.6 implies that for \(q = 4^m \) the copolar space \(HSp_4(3) \) is always contained in a subspace \(PG(3, 4) \). It arises there as the geometry on the nonisotropic points of the \(U_4(2) \) geometry, provided with the tangent lines—these are the lines with exactly one \(U_4(2) \)-isotropic point.

Consider \(PG(3, 3) \) provided with a nondegenerate symplectic form. A spread is called hyperbolic if it consists of hyperbolic lines, and self-conjugate if it is invariant under the symplectic polarity. Up to a collinearity, \(PG(3, 3) \) has a unique hyperbolic self-conjugate spread. In the current setting it is found by taking the ten tangents meeting a fixed t.i. line of \(U_4(2) \). An explicit example with respect to the standard alternating form \(x_0 y_1 - x_1 y_0 + x_2 y_3 - x_3 y_2 \) is given by the following (we omit the braces and commas):

- \(1000 + 0100 \quad 1010 + 0102 \quad 0110 + 1002 \quad 1011 + 0112 \quad 1101 + 0211 \)
- \(0010 + 0001 \quad 1020 + 0102 \quad 0120 + 1001 \quad 1110 + 2011 \quad 0111 + 1102 \)

This spread \(\mathcal{S} \) has the following property, which is easy to check with the above given coordinates: For each \(L \in \mathcal{S} \), the unique nontrivial homology with axes \(L \) and \(L^\perp \) (i.e., the unique collineation of \(PG(3, 3) \) fixing \(L \cup L^\perp \) pointwise) stabilizes \(\mathcal{S} \) and interchanges \(M \) and \(M^\perp \) for each \(M \in \mathcal{S} \), \(M \neq L, L^\perp \). All such homologies generate an elementary abelian 2-group \(P \) of order 16, normalized by \(A_5 \leq PSp_4(3) \), acting naturally on the five conjugate pairs of lines of \(\mathcal{S} \).

A rank 3 graph on 6561 vertices

Using the above spread, we construct a rank 3 graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (6561, 1440, 351, 306)\). This is the graph of \(§10.93 \).

Let \(\Sigma \) and \(\Sigma' \) be two disjoint solids of \(PG(7, 3) \), each furnished with a self-conjugate hyperbolic spread, say \(\mathcal{S} \) and \(\mathcal{S}' \), respectively. Let \(\theta: \Sigma \to \Sigma' \) be an isomorphism mapping \(\mathcal{S} \) to \(\mathcal{S}' \). There are precisely two collineations \(\varphi, \varphi' \) of \(PG(7, 3) \) interchanging \(x \in \Sigma \) with \(\theta(x) \in \Sigma' \). Let \(P \) be the elementary abelian 2-group of \(\Sigma \) stabilizing \(\mathcal{S} \). For each \(g \in P \), there are precisely two collineations, say \(\varphi_g \) and \(\varphi_g' \), of \(PG(7, 3) \) such that \(\varphi_g(x) = g(x) \), for all \(x \in \Sigma \), and \(\varphi_g'(x) = \theta(g^{-1}(\theta(x))) \), for all \(x \in \Sigma' \). The group \(Q \) generated by \(\varphi, \varphi' \) and all \(\varphi_g, \varphi_g' \), for \(g \in P \), is an elementary abelian 2-group of order 64. It has exactly 45 orbits of size 16, each consisting of four lines. The union \(X \) of all these orbits can be described as follows.

Each \(L \in \mathcal{S} \) has a symplectic conjugate \(L^\perp \) in \(\mathcal{S} \), which is the line corresponding to \(L \) under the corresponding symplectic polarity. Now \(X \) is the union of all solids of \(PG(7, 3) \) generated by a line \(L \in \mathcal{S} \) and its image \(\theta(L) \), or the symplectic conjugate of that image. The orbits of \(Q \) of size 16 can be recovered from this construction by iterating the following process.
Select $L \in \mathcal{S}$ arbitrarily. Denote $M := \theta(L)$, and let L^* and M^* be the symplectic conjugates of L and M, respectively. Let $\theta' = \theta \cdot g$, with $g \in QL$, arbitrary. Then there are exactly two solids ξ and ξ' intersecting each solid $(K, \theta'(K))$, $K \in \mathcal{S}$, in lines L_K and $L'_{K'}$, respectively. The set of lines L_K, $K \in \mathcal{S}$, is a hyperbolic self-conjugate spread \mathcal{S}_L of ξ, likewise for the set of lines $L'_{K'}$ of ξ'. The associated isomorphism $\theta_L : \xi \rightarrow \xi'$ is given by the unique nontrivial collineation σ of $\text{PG}(7,3)$ fixing all points of $\Sigma \cup \Sigma'$. For fixed $K \in \mathcal{S}$, the union of the four lines $L_K, L'_{K'}$ and their symplectic conjugates is an orbit of size 16 for Q. The above construction of X applied to ξ, ξ', \mathcal{S}_L and $\sigma(\mathcal{S}_L)$ yields X again. Hence the process can be iterated, and one obtains a set of 45 orbits of size 16.

The graph Γ has the points of \mathbb{F}_8^3 as vertex set, adjacent when the joining line hits X at infinity.

The previous paragraphs also imply that the stabilizer of X in $\text{PGL}_4(3)$ acts transitively on the orbits of Q of size 16. The graph with vertices these orbits, adjacent when they are contained in the union of two solids, is isomorphic to the graph on the singular points of the $U_4(2)$ geometry (hence isomorphic to the collinearity graph of the $GQ(4,2)$). It follows that $G = Q: \text{PGU}_4(2)$ acts as a transitive automorphism group of X.

We now show that G acts transitively on the complement X' of X in $\text{PG}(7,3)$. Indeed, it is not hard to see that the group Q acts freely on X'; it hence partitions X' in 40 orbits of size 64. Let $x \in X'$ be arbitrary. Then there are unique points $p_x, p' \in \Sigma$ and $p''_x \in \Sigma'$ such that $x \in \langle p_x, p' \rangle$. Now p_x and $\theta^{-1}(p'_x)$ are contained in unique respective members L_x and L'_x of the spread \mathcal{S}. For every point z in the same partition class P of X' as x we have $L_z, L'_z \in \{ L_x, L'_x, L_x^{\perp}, L'_x^{\perp} \}$. Letting $A_3 \leq G_{25, \Sigma'}$ act on $\Sigma \cup \Sigma'$ we see that the orbit of P under the action of G has size at least 10. Since $\text{PGU}_4(2)$ has only primitive permutation representations on 27, 35, 40 and 45 elements, we see that $\text{PGU}_4(2)$ acts transitively on X'.

We determine the dimension of the maximal subspaces contained in X'. Clearly any 5-space intersects both Σ and Σ' nontrivially. Now we construct solids entirely contained in X'. To that aim, we note that every solid S defines a unique isomorphism from Σ to Σ' by projection from S. A direct counting argument proves that every (linear) isomorphism arises in this way (and it arises precisely twice). If we consider the isomorphism θ followed by a fixed point free member ρ of $A_3 \leq G_{25, \Sigma'}$, then we see that the corresponding solid, say S, completely lies in X'. Such solids give rise to maximum cocliques of Γ of size 81.

Let S and ρ be as in the previous paragraph and let $L \in \mathcal{S}$ be arbitrary. Then $(L, S) \cap \Sigma' = \rho(\theta(L))$. The 5-dimensional subspace (L, S) has $4 + 4 + 16 \cdot 4 = 72$ points in common with X.

A standard count reveals that a hyperplane of $\text{PG}(7,3)$ containing a solid entirely contained in X intersects X in 261 points and contains exactly three solids contained in X. Each other hyperplane intersects X in 234 points. Hence X is a two-character set of $\text{PG}(7,3)$.

\section*{5.6. COPOLAR SPACES}
Chapter 6

Golay codes, Witt designs, and Leech lattice

We collect preliminary material on codes, designs, geometries and lattices. Then construct the Golay codes, the Witt designs, and the Leech lattice.

6.1 Codes

A code is a subset of a metric space, so that there is a concept of distance. Our metric spaces will mostly be vector spaces with given basis.

Let V be a vector space over \mathbb{F}_q with fixed basis $e_1, ..., e_n$. A code C is a subset of V. A linear code is a subspace of V. Its length is n. A binary (ternary) code is a code with $q = 2$ (resp. $q = 3$). The vector with all coordinates equal to zero (resp. one) will be denoted by 0 (resp. 1).

In a binary code, the complement of the vector u is $u + 1$.

The Hamming distance $d_H(u, v)$ between two vectors $u, v \in V$ is the number of coordinates where they differ: $d_H(u, v) = |\{i \mid u_i \neq v_i\}|$ when $u = \sum u_i e_i$, $v = \sum v_i e_i$. The weight of a vector u is its number of nonzero coordinates, i.e., $d_H(u, 0)$.

The minimum distance $d(C)$ of a code C is $\min\{d_H(u, v) \mid u, v \in C, u \neq v\}$. The support of a vector is the set of coordinate positions where it has a nonzero coordinate.

Two codes are called equivalent when one is obtained from the other by a permutation of coordinate positions, followed by a permutation of the set of coordinate values, independently for each coordinate position. Equivalent codes have the same size and length and minimum distance.

Parameters

An $(n, M, d)_q$-code is a code of length n, size M and minimum distance at least d. An $[n, k, d]_q$-code is a linear code of length n, dimension k and minimum distance at least d. Its size is q^k. The subscript q is omitted for binary codes. The parameter d may be omitted.
Given an \([n,k,d]_q\)-code \(C\), a shortened code is an \([n-1,k-1,d]_q\) code obtained by selecting all code words that are 0 at some fixed coordinate position, and dropping that coordinate position.

6.1.1 The Golay codes

The most beautiful and important sporadic structures in algebraic combinatorics are the Golay codes, named after their discoverer, M. J. E. Golay, who published them in the 1-page paper [357].

The binary and ternary Golay codes are perfect (defined below). The extended binary Golay code is the basis for the definition of the Leech lattice (§6.3.1), which in turn allows the definition of many sporadic simple groups, including the Fischer-Griess Monster group.

Theorem 6.1.1 There exist codes, unique up to equivalence, with the indicated values of \(n, q, |C|\) and \(d(C)\):

| \(n\) | \(q\) | \(|C|\) | \(d(C)\) | name of \(C\) |
|------|------|-------|-------|-----------|
| (i) | 23 | 2 | 4096 | 7 | binary Golay code |
| (ii) | 24 | 2 | 4096 | 8 | extended binary Golay code |
| (iii)| 11 | 3 | 729 | 5 | ternary Golay code |
| (iv) | 12 | 3 | 729 | 6 | extended ternary Golay code |

If they contain 0, these codes are linear (with dimensions 12, 12, 6, 6).

Below we first construct some examples of codes with these parameters, then we study their properties, and we finish showing uniqueness. The binary part of this theorem will be proved in full. For some details in the ternary case we refer to the literature.

6.1.2 The Golay codes — constructions

We give four constructions of the extended binary Golay code, and a construction of the binary and ternary Golay codes.

A construction of the extended binary Golay code

This code is the lexicographically first code with word length \(n = 24\) and minimum distance 8: write down the numbers 0, 1, ..., \(2^{24} - 1\) in binary and consider them as binary vectors of length 24. Cross out each vector that has distance less than 8 to a previous non-crossed out vector. The 4096 vectors not crossed out form the extended binary Golay code.

Proof: just do it. Some work may be saved by observing (Levenshtein [752]) that any lexicographically minimal binary code with a number of vectors that is a power of two is linear so that all one needs are the 12 base vectors. These turn out to be

1The ternary Golay code was discovered independently, and a year earlier, by Juhani Virtahalil (pseudonym Jukka) as a football pool system (Veikkaaja 27/1947 and subsequent issues). See [409] and [207], §15.3.
Construction from the icosahedron

Let A be the adjacency matrix of (the 1-skeleton of) the icosahedron (with 12 vertices, regular of valency 5). Then the rows of the 12×24 matrix \((I \ J - A)\) generate the extended binary Golay code.

Construction as quadratic residue codes

For \((n,q) = (11,3)\) or \((23,2)\) consider the linear code generated over \mathbb{F}_q by the n vectors c_i \((1 \leq i \leq n)\) with coordinates

\[
(c_i)_j = \begin{cases}
1 & \text{if } j - i \text{ is a nonzero square mod } n, \\
0 & \text{otherwise.}
\end{cases}
\]

This yields the ternary and binary Golay codes, and shows that these have an automorphism that permutes the 11 or 23 coordinate positions cyclically.

Two Hamming codes

Let H be the $[8,4,4]$ extended binary Hamming code consisting of the 8 rows of \[
\begin{pmatrix}
0 & 0^T \\
F
\end{pmatrix}
\] (where $F = \text{circ}(0110100)$ is the incidence matrix of the Fano plane $\text{PG}(2,2)$) and their complements.

Let H^* be the code obtained by replacing F by $F^* = \text{circ}(0001011)$. Then $H \cap H^* = \{0,1\}$.

Let $C = \{(a + x, b + x, a + b + x) \mid a, b \in H, x \in H^*\}$. Then C has word length 24, dimension 12 and minimum distance 8 as one easily checks. Hence C is the extended binary Golay code. This representation shows an automorphism with cycle structure 137^3.

Hexacode and Miracle Octad Generator

Up to equivalence, there is a unique $[6,3,4]_4$ code, known as the hexacode. A generator matrix (over $\mathbb{F}_4 = \{0,1,\omega,\omega^2\}$) is

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & \omega & \omega^2 \\
0 & 0 & 1 & 1 & \omega^2 & \omega
\end{bmatrix}.
\]
The weight enumerator (see below) is $1 + 45x^4 + 18x^6$. This code is self-dual (for the sesquilinear form $f(x, y) = \sum_i \bar{x}_i y_i$).

The extended binary Golay code can be defined in terms of the hexacode as follows: codewords are binary 4×6 matrices M that satisfy:

(i) The six column sums and the sum of the top row all have the same parity.
(ii) Let $n = (0, 1, \omega, \omega^2)$. Then nM is a codeword in the hexacode.

This description is due to CURTIS [246], and known as the Miracle Octad Generator or MOG.

6.1.3 Properties and uniqueness

We study properties of (arbitrary) codes with parameters as in Theorem 6.1.1. The codes (i) and (iii) are perfect, i.e., the balls with radius $\frac{1}{2}(d(C) - 1)$ around the code words partition the vector space.

(Proof by counting: $|ball| = 1 + (\binom{23}{11} + \binom{23}{2} + \binom{23}{3}) = 2048 = 2^{11}$ in case (i), and $|ball| = 1 + 2(\binom{11}{1}) + 4(\binom{11}{2}) = 243 = 3^5$ in case (iii).)

Except for the repetition codes (with $|C| = q$, $d(C) = n$), there are no other perfect codes C with $d(C) > 1$ (TIETÄVÄINEN [689], VAN LINT [523]).

From now on, assume that C contains 0. The weight enumerators $A(x) := \sum a_i x^i$, where a_i is the number of code words of weight i, are:

\begin{align*}
(i) & \quad 1 + 253x^7 + 506x^8 + 1288x^{11} + 1288x^{12} + 506x^{15} + 253x^{16} + x^{23} \\
(ii) & \quad 1 + 759x^8 + 2576x^{12} + 759x^{16} + x^{24} \\
(iii) & \quad 1 + 132x^5 + 132x^6 + 330x^8 + 110x^9 + 24x^{11} \\
(iv) & \quad 1 + 264x^6 + 440x^9 + 24x^{12}
\end{align*}

(Proof: For cases (i) and (iii) use the fact that the codes are perfect. E.g. in case (iii) the ball around 0 covers the vectors of weight at most 2. The $2^{3}(\binom{11}{3})$ vectors of weight 3 must be covered by balls around codewords of weight 5, so that $a_5 = 2^3(\binom{11}{3})/\binom{5}{3} = 132$. Next $a_6 = (2^4(\binom{11}{4}) - 132(\binom{5}{2} - 132(\binom{3}{2})/\binom{6}{3}) = 132$. Etc. For cases (ii) and (iv), use that dropping any coordinate yields a case (i) or (iii) code.)

The codes (ii) and (iv) are self-dual, i.e., with the standard inner product $(u, v) = \sum u_i v_i$ one has $C = C^\perp$ for these codes. In particular codes (ii) and (iv) are linear.

(Proof: If $v \in C$, then also $C - v$ contains 0, hence has the same weight enumerator as C. In the binary case this means that all distances are divisible by 4 so that all inner products vanish. In the ternary case, $(u, v) = (u - v, u - v) - (u, u) - (v, v) = 0$. That shows $C \subseteq C^\perp$. But C^\perp is linear. Since $|C|$ is 212 and 36 in the two cases, the span (C) has dimension at least 12 resp. 6, so that C^\perp has dimension at most 12 resp. 6, and equality holds.)

The codes (i) and (iii) are linear.

(Proof: Given one of the extended codes one may puncture it by deleting one coordinate position. This produces (i) and (iii) from (ii), (iv). Conversely, given (i) one may construct (ii) by extending it, i.e., adding a parity check bit so as to make the weight of all code words even. After adding the check bit all

\footnote{More generally, if the alphabet size q is not necessarily a prime power, nonexistence of perfect codes is known for $d \geq 7$. There are partial results for $d = 5$.}
6.1. CODES

distances are even, and \(d(C) \geq 8\). This shows that every code (i) is linear. For codes (iii) (normalized by multiplying certain coordinate positions by \(-1\) such that the normalized code contains \(1\)) one may construct (iv) by adding a check trit so as to make the sum of all coordinates a multiple of three, as was shown by Delsarte & Goethals [277]. Hence every code (iii) is linear.

The code (ii) is unique up to equivalence.

(Proof: Let \(C\) be a code as in (ii). From the weight enumerator we see that \(1 \in C\). Let \(u\) be a weight 12 vector in \(C\). The code \(C_u\) obtained from \(C\) by throwing away all coordinate positions where \(u\) has a 1, has word length 12 and dimension 11 and hence must be the even weight code (consisting of all vectors of even weight). This means that we can pick a basis for \(C\) consisting of \(u\) and 11 vectors \(v_j\) with \((u + 1, v_j) = 2\) so as to get a generator matrix of the form

\[
\begin{pmatrix}
0 & 0^\top & 1^\top & 1
\end{pmatrix},
\]

where \(I\) is an identity matrix of order 11. A little reflection shows that \(K\) is the incidence matrix of a 2-(11,5,2) biplane (see §6.2). This shows uniqueness of \(C\) given the uniqueness of the 2-(11,5,2) biplane, and the latter is easily verified by hand.)

Finally, the code (i) is unique up to equivalence.

(Proof: the unique code (ii) has a group that is transitive on the 24 positions.)

We omit the uniqueness proof in the ternary case.

The supports of the code words of minimal nonzero weight form Steiner systems \(S(4, 7, 23)\), \(S(5, 8, 24)\), \(S(4, 5, 11)\) and \(S(5, 6, 12)\), respectively. (See §6.2.)

6.1.4 The Mathieu group \(M_{24}\)

\(M_{24}\) is by definition the automorphism group of the extended binary Golay code \(C\), i.e., the group of permutations of the 24 coordinate positions preserving the code. For a beautiful discussion of this and related groups, see Conway [213].

Using the automorphisms visible in a few different constructions of the extended binary Golay code \(C\) it is not difficult to see

Theorem 6.1.2 \(M_{24}\) has order \(24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 16 \cdot 3\) and acts 5-transitively on the 24 coordinate positions.

Let a point be a coordinate position, and an octad be the support of a code word of weight 8.

Theorem 6.1.3 Let \(H\) be the subgroup of \(M_{24}\) fixing an octad \(B\) (setwise) and a point \(x \notin B\). Then \(H \simeq A_8 \simeq \text{PGL}_4(2)\).

Theorem 6.1.4 \(M_{24}\) is transitive on trios (partitions of the point set into 3 octads), sextets (partitions of the point set into six 4-sets, such that the union of any two is an octad) and dodecads (vectors in \(C\) of weight 12).
6.1.5 More uniqueness results

Theorem 6.1.5 (a) Let \(C^{(i)} \) be a binary code containing 0 with word length \(24 - i \), minimum distance 8, and size at least \(2^{12-i} \). If \(0 \leq i \leq 3 \) then \(C^{(i)} \) is the \(i \) times shortened extended binary Golay code.

(b) Let \(C_0^{(i)} \) be a binary code containing 0 with word length \(23 - i \), minimum distance 7, and size at least \(2^{12-i} \). If \(0 \leq i \leq 3 \) then \(C_0^{(i)} \) is the \(i \) times shortened binary Golay code.

The weight enumerators are (for \(i > 0 \)) given by

<table>
<thead>
<tr>
<th>(i)</th>
<th>(n)</th>
<th>(\text{dim})</th>
<th>weight enumerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>11</td>
<td>(1 + 506x^8 + 1288x^{12} + 253x^{16})</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>10</td>
<td>(1 + 330x^8 + 616x^{12} + 77x^{16})</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>9</td>
<td>(1 + 210x^8 + 280x^{12} + 21x^{16})</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>11</td>
<td>(1 + 176x^7 + 330x^8 + 672x^{11} + 616x^{12} + 176x^{15} + 77x^{16})</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>10</td>
<td>(1 + 120x^7 + 210x^8 + 336x^{11} + 280x^{12} + 56x^{15} + 21x^{16})</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>9</td>
<td>(1 + 80x^7 + 130x^8 + 160x^{11} + 120x^{12} + 16x^{15} + 5x^{16})</td>
</tr>
</tbody>
</table>

Adding a parity check bit to \(C_0^{(i)} \) we find \(C^{(i)} \), and for \(i > 0 \) the latter is the even weight subcode of \(C_0^{(i)} \).

(c) Let \(C_{00} \) be a binary self-dual code with word length 22 and minimum distance 6. Then \(C_{00} \) is the once truncated binary Golay code. \(\square \)

It is true that a binary code with word length 20 and minimum distance 8 has size at most 256 ([344]), but there are many codes achieving this ([141]).

6.2 Designs

A \(t-(v,k,\lambda) \) design is a set of \(v \) points together with a collection of subsets of size \(k \) (called blocks) such that each set of \(t \) points is in precisely \(\lambda \) blocks.

A Steiner system \(S(t,k,v) \) is such a design with \(\lambda = 1 \).

A projective plane \(PG(2,n) \) is a Steiner system \(S(2,n+1,n^2+n+1) \). (We shall not suppose that the plane is Desarguesian.)

An affine plane \(AG(2,n) \) is a Steiner system \(S(2,n,n^2) \).

A BIBD (balanced incomplete block design) is a \(2-(v,k,\lambda) \) design.

A square design, or symmetric design, or \(SBIBD \), is a \(2-(v,k,\lambda) \) design with equally many points as blocks. A biplane is such a design with \(\lambda = 2 \).

A parallel class is a set of blocks partitioning the point set. The design is resolvable when the set of blocks has a partition into parallel classes. For example, \(AG(2,n) \) is resolvable.

A necessary condition for the existence of a \(t-(v,k,\lambda) \) design is that \(\binom{k-1}{t-1} \) divides \(\lambda(v^{-i}) \) for \(0 \leq i \leq t \) (since the number of blocks on a given \(i \)-set is an integer). WILSON [736] showed for \(t = 2 \), and KEEVASH [487] showed for all \(t \), if \(t, k, \lambda \) are fixed, and the divisibility condition is satisfied, and \(v \) is sufficiently large, then a \(t-(v,k,\lambda) \) design exists.

The number of nonisomorphic designs increases quickly with \(v \): there are 1, 1, 2, 80, 11084874829 Steiner triple systems \(STS(v) \) (that is, \(S(2,3,v) \)) for \(v = 7,9,13,15,19 \), and \((v/e^2 + o(v))^{v^2/6} \) such systems for large \(v \) ([482], [488]).
Given a \(t-(v,k,\lambda) \) design one may delete one point and all blocks not containing that point and obtain a \((t-1)-(v-1,k-1,\lambda)\) design (called the derived design).

On the other hand, deleting a point and all blocks containing it one obtains a \((t-1)-(v-1,k,v-k)\lambda\) design (called the residual design).

For a \(t-(v,k,\lambda) \) design, the number of blocks containing a point set \(X \) and disjoint from a point set \(Y \) (where \(X \cap Y = \emptyset \)) can be expressed in the parameters \(t, v, k, \lambda, |X|, |Y| \) when \(|X \cup Y| \leq t \). Let us call these numbers \(\mu(|X|,|Y|) \).

6.2.1 The Witt designs

We are mostly interested in the systems \(S(5,8,24) \) and \(S(5,6,12) \) and derived designs.

These designs are generally known as the Witt designs because of Witt [740, 741]. An earlier construction was given in Carmichael [187].

For \(S(5,8,24) \) we have: \(\lambda_5 = 1, \lambda_4 = 5, \lambda_3 = 21, \lambda_2 = 77, \lambda_1 = 253, \lambda_0 = 759 \). The ‘intersection’ triangle here gives the numbers \(\mu(|X|,|Y|) \) with \(|X \cup Y| \) constant in each row and \(|X| \) increasing in each row, where \(X \cup Y \) is contained in a block.

\[
\begin{array}{cccc}
759 & 253 & 506 & \\
77 & 176 & 330 & \\
21 & 56 & 120 & 210 \\
5 & 16 & 40 & 80 & 130 \\
1 & 0 & 4 & 12 & 28 & 52 & 78 \\
1 & 0 & 0 & 4 & 8 & 20 & 32 & 46 \\
1 & 0 & 0 & 0 & 4 & 4 & 16 & 16 & 30 \\
1 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 30 \\
\end{array}
\]

Given a block \(B_0 \) of \(S(5,8,24) \), let \(n_i \) be the number of blocks \(B \) such that \(|B_0 \cap B| = i \). Then \(n_8 = 1, n_4 = 280, n_2 = 448, n_0 = 30 \) and all other \(n_i \) are zero.

For \(S(5,6,12) \) we have: \(\lambda_5 = 1, \lambda_4 = 4, \lambda_3 = 12, \lambda_2 = 30, \lambda_1 = 66, \lambda_0 = 132 \). Our intersection triangle becomes

\[
\begin{array}{cccc}
132 & 66 & 66 & \\
36 & 36 & 30 & \\
12 & 18 & 18 & 12 \\
4 & 8 & 10 & 8 & 4 \\
1 & 3 & 5 & 5 & 3 & 1 \\
1 & 0 & 3 & 2 & 3 & 0 & 1 \\
\end{array}
\]

Given a block \(B_0 \) of \(S(5,6,12) \), let \(n_i \) be the number of blocks \(B \) such that \(|B_0 \cap B| = i \). Then \(n_6 = 1, n_4 = 45, n_3 = 40, n_2 = 45, n_0 = 1 \) (and \(n_5 = n_1 = 0 \)). In particular the complement of a block is again a block.

Note that the above intersection numbers are a consequence of the parameters alone (and may thus be used in uniqueness proofs).
As we shall see, there exist unique designs $S(5, 8, 24), S(4, 7, 23), S(3, 6, 22), S(2, 5, 21), S(1, 4, 20), S(5, 6, 12), S(4, 5, 11), S(3, 4, 10), S(2, 3, 9), S(1, 2, 8)$. The system $S(2, 5, 21)$ is the projective plane of order 4, $S(2, 3, 9)$ the affine plane of order 3, $S(3, 4, 10)$ the Möbius plane of order 3. (In view of the derivation $S(t, k, v) \rightarrow S(t-1, k-1, v-1)$ it suffices to construct $S(5, 8, 24)$ and $S(5, 6, 12)$, and we shall find these as the supports of the code words of minimal nonzero weight in the extended Golay codes. Uniqueness will come as a corollary of the uniqueness of the Golay codes.)

Theorem 6.2.1 There is a unique Steiner system $S(5, 8, 24)$.

Proof. (i) Existence: the words of weight 8 in the extended binary Golay code C cover each 5-set at most once since $d(C) = 8$, and exactly once since $\binom{24}{8} = 759 \cdot \binom{5}{3}$.

(ii) Uniqueness: Let \mathcal{S} be such a system, and let C_1 be the binary linear code spanned by (the characteristic functions of) its blocks. From the intersection numbers we know that C_1 is self-orthogonal (i.e., $C_1 \subseteq C_1^\perp$) with all weights divisible by 4. In order to show that $|C_1| \geq 2^{12}$ (so that $|C_1| = 2^{12}$), fix three independent coordinate positions, say 1, 2, 3, and look at the subcode C_2 of C_1 consisting of the vectors u with $u_1 = u_2 = u_3$. Then $\dim C_1 = 2 + \dim C_2$. Thus, in order to prove $\dim C_1 \geq 12$ it suffices to show that the code generated by the blocks of $S(5, 8, 24)$ containing three given points has dimension at least 10. In other words, we must show that the code generated by the lines of the projective plane $PG(2, 4)$ (which is nothing but $S(2, 5, 21)$) has dimension at least 10, but that is the result of the next theorem.

The blocks of an $S(5, 8, 24)$ assume all possible 0-1 patterns on sets of cardinality at most 5 so that C_1^\perp has minimum weight at least 6. Since C_1 has all weights divisible by 4 and $C_1 \subseteq C_1^\perp$ it follows that $d(C_1) = 8$. Now apply Theorem 6.1.1 to see that C_1 is the extended binary Golay code. Since that has $a_8 = 759$, \mathcal{S} is the set of its weight 8 vectors. \qed

Theorem 6.2.2 The binary code spanned by the lines of the projective plane $PG(2, 4)$ has dimension 10.

Proof. Let $abcde$ be a line in $PG(2, 4)$. The set of ten lines consisting of all five lines on a, three more lines on b, and one more line on each of c, d, is linearly independent, so the dimension is at least 10. But the previous proof (or a simple direct argument showing that the extended code cannot be self-dual) shows that it is at most 10. \qed

Theorem 6.2.3 There is a unique Steiner system $S(4, 7, 23)$.

Proof. The proof is very similar to that of the uniqueness of $S(5, 8, 24)$. Let C_0 be the code spanned by the blocks and add a parity bit to obtain a self-orthogonal code C of word length 24. As before one identifies C as the extended binary Golay code, then C_0 as the (perfect) binary Golay code, then the blocks of $S(4, 7, 23)$ as the words of weight 7 in this code. \qed

Theorem 6.2.4 There is a unique Steiner system $S(3, 6, 22)$.
Proof. Inspired by Landau \cite{508} (esp. pp. 54 and 71), we first construct D as the binary linear code spanned by the lines of $\text{PG}(2,4)$, extended by a parity check bit. Then D has word length 22, and $\dim D = 10$. The code D is self-orthogonal and hence there are three codes D_i of dimension 11 such that $D \subseteq D_i \subseteq D^\perp (i = 1, 2, 3)$. But D can be identified with the subcode of the extended binary Golay code C defined by $u_1 = u_2 = u_3$, and the three codes D_i are found as subcodes defined by $u_2 = u_3, u_1 = u_3$ and $u_1 = u_2$, respectively. (More precisely, our codes are obtained from the subcodes of C just mentioned by dropping the first three coordinate positions and adding a parity bit; note that $1 \in D$.) Now 3-transitivity of M_{24} tells us that the three codes D_i are equivalent; each has 77 words of weight 6. Given any Steiner system $S(3,6,22)$, its blocks must span one of the codes D_i, and the blocks of the Steiner system are recovered as the supports of the code words of weight 6 in this code. □

Starting from $S(5,8,24)$ and taking successive derived or residual designs we find designs with the following parameters:

- 5-(24,8,1)
- 4-(23,7,1)
- 4-(23,8,4)
- 3-(22,6,1)
- 3-(22,7,4)
- 2-(21,5,1)
- 2-(21,6,4)
- 2-(21,7,12)
- 2-(21,8,28)

Up to now we have seen uniqueness of the three largest Steiner systems (and used the uniqueness of $S(2,5,21) = \text{PG}(2,4)$—an easy exercise). Such strong results are not available for the remaining six designs.

(In fact, observe that a 2-(21,7,3) design exists—e.g., the residual of an SBIBD 2-(31,10,3). Taking 4 copies of such a design, independently permuting the point sets in each case, produces large numbers of nonisomorphic designs with parameters 2-(21,7,12), so this structure is certainly not determined by its parameters alone.)

Let \mathcal{D} be a collection of k-subsets of an n-set such that (the characteristic vectors of) any two k-subsets have Hamming distance at least 8. Then for each of the cases listed below we have $|\mathcal{D}| \leq b$ with b as given in the table, and when equality holds then the system is known to be unique, except in five cases. For $(n, k, b) = (19,5,12)$ there are precisely two nonisomorphic systems, corresponding to the two Latin squares of order 4. For $(n, k, b) = (18,5,9)$ there are precisely three nonisomorphic systems. For the three cases $(n, k, b) = (19,6,28), (20,7,80), (21,8,210)$ no information is available. In all cases other than these three, the block intersection numbers are as shown ([116]).

<table>
<thead>
<tr>
<th>$k \setminus n$</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>40</td>
<td>56</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>120</td>
<td>176</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>210</td>
<td>330</td>
<td>506</td>
<td>759</td>
<td></td>
<td></td>
<td></td>
<td>0.2,4</td>
</tr>
</tbody>
</table>

Also the systems with $(n, k, b) = (22,10,616), (22,11,672), (23,11,1288)$, and $(24,12,2576)$ are unique ([141]).

6.2.2 Substructures of $S(5,8,24)$

Sextets

A tetrad is a 4-subset of the point set of $S(5,8,24)$.

Proposition 6.2.5 Let T_0 be a fixed tetrad. Then T_0 determines a unique sextet, i.e., partition of the 24-set into six tetrads T_i such that $T_i \cup T_j$ is a block for all $i, j \ (i \neq j)$.

Proof. Since $\lambda_4 = 5$ there are five blocks B_i on T_0 ($1 \leq i \leq 5$) and with $T_i := B_i \setminus T_0$ we have $T_i \cup T_j = B_i + B_j \ (0 \neq i \neq j \neq 0)$. Since $\lambda_5 = 1$, the six tetrads T_i are pairwise disjoint. \hfill \square

The embedding of $S(5,6,12)$

A dodecad is the support of a vector of weight 12 in C.

Proposition 6.2.6 Let D_0 be a fixed dodecad. The 132 octads meeting D_0 in six points form the blocks of a Steiner system $S(5,6,12)$ on D_0.

Proof. Each 5-set in D_0 is in a unique block of $S(5,8,24)$, and this block must meet D_0 in six points. \hfill \square

A Hadamard 3-design is a 3-$(4n,2n,n−1)$ design. If H is a Hadamard matrix of order $4n$ having a row $\mathbf{1}$, then the $8n−2$ rows different from $\pm \mathbf{1}$ in $(\frac{H}{H})$ give the $(±1$-characteristic vectors of the) blocks of a Hadamard 3-design.

Proposition 6.2.7 Let D_0 be a fixed dodecad and $x \notin D_0$. The 22 octads meeting D_0 in six points and containing x form the blocks of a Hadamard 3-design 3-$(12,6,2)$. There is a natural 1-1 correspondence between the $\frac{1}{2} \cdot 132 = 66$ pairs of disjoint blocks of the $S(5,6,12)$ on D_0 and the $\binom{12}{2} = 66$ pairs of points not in D_0.

Proof. Given a pair of points x,y outside D_0, there are precisely two octads on $\{x,y\}$ meeting D_0 in six points, and these give disjoint blocks in the $S(5,6,12)$ (for: if these octads are B, B' then $B' = B + D_0$). Varying y we find 11 pairs of disjoint blocks, blocks from different pairs having precisely 3 points in common. \hfill \square

Labeling the lines of $PG(3,2)$ with triples from a 7-set

The isomorphism $PGL_4(2) \simeq A_8$ can be seen inside M_{24}. A useful consequence is that the 35 lines of $PG(3,2)$ can be labeled with the 35 triples from a 7-set in such a way that intersecting lines correspond to triples that meet in a singleton.

Proposition 6.2.8 Let B_0 be a fixed octad. The 30 octads disjoint from B_0 form a self-complementary\footnote{A design (X, B) is called self-complementary if for each $B \in B$ also $X \setminus B \in B$.} 3-$(16,8,3)$ design, namely the design of the points and affine hyperplanes in $AG(4,2)$, the 4-dimensional affine space over \mathbb{F}_2. \hfill \square

Proposition 6.2.9 Let B_0 be a fixed octad, $x \in B_0$, $y \notin B_0$, Z the complement of $B_0 \cup \{y\}$. Then there is a natural 1-1 correspondence between the $\binom{1}{2} = 35$ triples in $B_0 \setminus \{x\}$ and the 35 lines in the $PG(3,2)$ defined on Z. Triples meeting in a singleton correspond to intersecting lines.
6.2. DESIGNS

Proof. A line in the $PG(3,2)$ on Z is a set $T \setminus \{y\}$ where T is a 4-set such that three of the blocks on it are disjoint from B_0. Of the remaining two blocks on T, precisely one contains the point x, and if B is this one then $B \cap B_0 \setminus \{x\}$ is the triple corresponding to the given line.

Remark. For a discussion of this correspondence, cf. JORDAN [469, n° 426, 516], MOORE [571], DICKSON [291], CONWELL [219], EDGE [304], WAGNER [717, p. 424] and HALL [387].

Remark. Using this correspondence we find a description of the Neumaier geometry. Let $Σ$ be a set of 7 symbols, and let a 1-1 correspondence between the triples from $Σ$ and the lines of $PG(3,2)$ be given, such that triples meeting in a singleton correspond to intersecting lines. Construct a geometry with three types: the 7 symbols of $Σ$, the 35 lines of $PG(3,2)$, and the 15 planes of $PG(3,2)$, where the incidence is natural, and each symbol is incident with each plane. This defines a geometry with diagram

!!! symbols ![lines](planes)

Remark. This also yields the ‘15+35’ construction of the Hoffman-Singleton graph (§10.19).

6.2.3 Near polygons

A near polygon is a partial linear space such that for each point x and each line L there is a unique point y on L closest to x in the collinearity graph. A quad in a near polygon is a geodetically closed sub near polygon of diameter 2. A near hexagon is a near polygon of diameter 3.

Near polygons were introduced in [655]. For properties and classification of near polygons, see [174], [143], [122], [260].

Example: the extended ternary Golay code

The partial linear space with as points the vectors of the extended ternary Golay code and as lines the cosets of 1-dimensional subspaces spanned by a vector of weight 12 is a near hexagon with 3 points per line and 12 lines per point and diagram (as distance-transitive graph)

It has quads (3×3 grids).

Example: the Witt design $S(5,8,24)$

The partial linear space with as points the 759 blocks of the Steiner system $S(5,8,24)$ and as lines the partitions of the point set of the design into three pairwise disjoint blocks, is a near hexagon with 3 points per line and 15 lines per point and diagram (as distance transitive graph)
It has quads (Sp(4,2) generalized quadrangles). A quad in the near polygon corresponds to a sextet in the design: a partition of the point set into six 4-sets such that the union of any two of them is a block. Distances 0, 1, 2, 3 in the near polygon correspond to intersections of size 8, 0, 4, 2, respectively.

6.2.4 The geometry of the projective plane of order 4

There is a unique projective plane of order 4. It has 5 points on each line and 5 lines on each point (by definition of ‘order’), and 21 points and 21 lines (more generally, a projective plane of order q has $q^2 + q + 1$ points and as many lines). Its geometry is closely related to the structure of the Witt designs, and we discuss it in some detail.

Hyperovals

A hyperoval in a projective plane is a set of points intersecting any line in either 0 or exactly 2 points. In PG(2,4) each hyperoval contains six points (in general a hyperoval of a projective plane of order q contains $q^2 + q + 1$ points) and may be constructed as follows. Select four points arbitrarily but such that no three are on a line, and cross out all points on each line containing two of these. Then exactly two points remain. Add these to the four previously selected points and these six points form a hyperoval. A simple count reveals that there are $\frac{21 \cdot 20 \cdot 16 \cdot 9}{6 \cdot 5 \cdot 4 \cdot 3} = 168$ hyperovals in PG(2,4).

Baer subplanes

A Baer subplane B of a projective plane P is a proper subset of points and lines such that the induced incidence relation renders it a projective plane with the property that every line of P contains at least one point of B and every point of P is on at least one line of B. In the finite case the order of B is necessarily equal to the square root of the order of P, and every subplane with that order is a Baer subplane. In PG(2,4) each Baer subplane is a Fano plane (see §4.1.1) and may be constructed as follows. Select four points arbitrarily but such that no three are on a line, and add the intersection points of all pairs of lines spanned by two of the selected points. A simple count reveals that there are $\frac{21 \cdot 20 \cdot 16 \cdot 9}{6 \cdot 5 \cdot 4 \cdot 3} = 360$ Baer subplanes in PG(2,4).

Unitals

A unital is an $S(2, q + 1, q^3 + 1)$ Steiner system, for a certain natural number q. An embedded unital U is a set of $q^3 + 1$ points in a projective plane P of order q^2 such that each line of P intersects U in either 1 (tangent line) or exactly $q + 1$ (secant line) points. It follows that each point of U is incident with a unique tangent line and that U together with the subsets induced by the secant lines is a unital. A Hermitian unital is a unital in a classical projective plane PG(2,F) over a field F such that its points correspond precisely to the set of isotropic
1-spaces of a nondegenerate Hermitian form on \(F^3 \). In \(\text{PG}(2, 4) \) every unital is Hermitian, contains 9 points and may be constructed as the set of points on the lines of a triangle, excluding the vertices of the triangle. A simple count reveals that there are \(\frac{21 \cdot 20 \cdot 16}{4 \cdot 3 \cdot 2 \cdot 1} = 280 \) unitals in \(\text{PG}(2, 4) \).

Going down

One can see \(\text{PG}(2, 4) \) and its hyperovals and Baer subplanes inside the Witt design \(S(5, 8, 24) \). Let \(Y \) be a 21-set, and \(X = Y \cup \{\infty_1, \infty_2, \infty_3\} \) be a 24-set, and \(\mathcal{S} \) the collection of 759 blocks of an \(S(5, 8, 24) \) on \(X \). Write the blocks using their characteristic vectors, with \(\infty_1, \infty_2, \infty_3 \) as the first three coordinates. The 21 blocks starting 111... give the 21 lines of a \(\text{PG}(2, 4) \) on \(Y \). The 56 + 56 + 56 = 168 blocks starting 110, 101, or 011 give the 168 hyperovals on \(Y \). The 120 + 120 + 120 = 360 blocks starting 100, 010, or 001 give the 360 Baer subplanes on \(Y \). Let \(C \) be the extended binary Golay code spanned by the characteristic vectors of the blocks in \(\mathcal{S} \). The 280 vectors of weight 12 in \(C \) starting 111 give the 280 unitals on \(Y \).

Often, geometric questions about \(\text{PG}(2, 4) \) can be answered quickly by using this representation. For example, \(\text{PG}(2, 4) \) does not contain three pairwise disjoint hyperovals since their sum would be a vector of weight more than 16 but less than 24 in the extended binary Golay code \(C \), and there is no such vector.

Going up

On the other hand, it is possible (but a bit cumbersome) to construct \(S(5, 8, 24) \) from the above data in \(\text{PG}(2, 4) \) ([697, 529]). The main step is partitioning the 168 hyperovals into three sets of 56 and the 360 Baer subplanes into three sets of 120.

One way to do this is via the group. The above discussion shows that \(\text{PGL}_3(4) \) is transitive on hyperovals and on Baer subplanes. Its index 3 subgroup \(\text{PSL}_3(4) \) has three orbits on hyperovals and on Baer subplanes, and provides the needed partition.

On the other hand, from the description in terms of the extended binary Golay code \(C \) (and the fact that \(C \) is self-orthogonal) it is clear that meeting in an even number of points is an equivalence relation with three classes on the hyperovals, and meeting in an odd number of points is an equivalence relation with three classes on the Baer subplanes. This can be verified directly, without use of \(C \), from the geometry of \(\text{PG}(2, 4) \):

Proposition 6.2.10 Let \(\mathcal{H} \) be the set of hyperovals of \(\text{PG}(2, 4) \) and let \(\mathcal{B} \) be the set of Baer subplanes of \(\text{PG}(2, 4) \). There are partitions \(\{\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\} \) of \(\mathcal{H} \) and \(\{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\} \) of \(\mathcal{B} \) into three classes such that

(i) hyperovals intersect in an even number of points if and only if they belong to the same class;

(ii) Baer subplanes intersect in an odd number of points if and only if they belong to the same class;

(iii) for \(H \in \mathcal{H}_i \) and \(B \in \mathcal{B}_j \) the intersection size \(|B \cap H| \) is even if and only if \(i = j \).
Proof. The proof is elementary but tedious. A simple count shows that there are 1, 3, 12, 48, 168 hyperovals on 4, 3, 2, 1, 0 given points, no three collinear. For a fixed hyperoval H it follows that there are 1, 0, 0, 40, 45, 72, 10 hyperovals intersecting H in precisely 6, 5, 4, 3, 2, 1, 0 points, respectively, so that there are precisely 56 hyperovals intersecting H in an even number of points.

For a fixed Baer subplane B, a simple count yields 1, 0, 56, 77, 168, 42, 16 Baer subplanes intersecting B in precisely 7, 6, 5, 4, 3, 2, 1, 0 points, respectively. Hence $1 + 0 + 77 + 42 = 120$ intersect B in an odd number of points.

Fix a Baer subplane B in $\mathbb{PG}(2,4)$. We show that there are 7, 42, 7 hyperovals meeting it in 4, 2, 0 points, respectively. Also, that the mutual intersection sizes of these 56 hyperovals are even. That will prove that meeting in an even number of points is an equivalence relation on the hyperovals, with classes of size 56.

Given 4 points of B no three on a line there is a unique hyperoval containing these. Hence 7 hyperovals intersect B in exactly 4 points.

Given two points p_1, p_2 of B, let q_1, q_2 be two points off B but on different lines of B through p_1 and such that no three points among p_1, p_2, q_1, q_2 are collinear (there are two possible choices for $\{q_1, q_2\}$). The hyperoval determined by p_1, p_2, q_1, q_2 intersects B in just $\{p_1, p_2\}$, and every hyperoval intersecting B in exactly two points arises this way. Hence there are 42 hyperovals intersecting B in exactly 2 points.

Given a point p of B, the points off B on the lines of B through p form a hyperoval disjoint from B; we claim every hyperoval H disjoint from B arises in this way: since the lines disjoint from H form a dual hyperoval (as can be easily checked), at most 4 can be contained in B; hence B contains at least three secants to H which must necessarily be concurrent and the claim follows. This accounts for 7 hyperovals disjoint from B.

In total we have $7 + 42 + 7$ hyperovals intersecting B in an even number of points. It is an elementary verification that each pair of such hyperovals intersects in an even number of points itself. Hence we have a set of 56 hyperovals pairwise intersecting in an even number of points.

Completely similar the reciprocal to the previous paragraph can be proved: Fix a hyperoval H in $\mathbb{PG}(2,4)$ and exhibit all Baer subplanes intersecting H in an even number of points. Clearly $\binom{6}{4} = 15$ intersect H in exactly 4 points. Consider two points p_1, p_2 of H. In order to include p_1, p_2 in a Baer subplane B it is necessary and sufficient to select two lines through each of them (distinct from the line $p_1 p_2$). To avoid further intersection points with H, it is necessary and sufficient to make the selection so that each points of $H \setminus \{p_1, p_2\}$ is on exactly one selected line. This can be done in 6 ways, giving rise to $6 \cdot \binom{4}{2} = 90$ Baer subplanes intersecting H in precisely 2 points. Finally, for each point p outside H, the set of points off H but on a secant through p constitutes a Fano plane, as is easily checked, and no other disjoint Fano planes exist. Hence there are 15 such and in total we have $15 + 90 + 15 = 120$ Baer subplanes intersecting H in an even number of points. Again it is readily seen that all these subplanes intersect each other in an odd number of points. \square

We have the following construction/theorem.

Theorem 6.2.11 Let $\mathcal{H}_i \subseteq \mathcal{H}$ and $\mathcal{B}_i \subseteq \mathcal{B}$, $i = 1, 2, 3$, be the partition classes of hyperovals and Baer subplanes, respectively, as defined in the previous proposition. Let \mathcal{L} be the set of lines of $\mathbb{PG}(2,4)$ and let X be the set of points
of PG(2, 4) enriched with three new elements \(\infty_1, \infty_2, \infty_3 \) (so \(|X| = 24 \)). Define the following 8-subsets of \(X \) and call them blocks of \(X \):

(i) \(L \cup \{ \infty_1, \infty_2, \infty_3 \} \), for every \(L \in \mathcal{L} \);

(ii) \(H \cup \{ \infty_i, \infty_j \} \), for every \(H \in \mathcal{H}_k \), for all \(i, j, k \) with \(\{i, j, k\} = \{1, 2, 3\} \);

(iii) \(B \cup \{ \infty_i \} \), for every \(B \in \mathcal{R}_i \), for all \(i \in \{1, 2, 3\} \);

(iv) \((L \cup M) \setminus (L \cap M) \), for all distinct \(L, M \in \mathcal{L} \).

Then \(X \) endowed with these 8-subsets is an \(S(5, 8, 24) \).

Moreover, if \(U \) is a Hermitian unital in PG(2, 4), then the set \(Y = U \cup \{ \infty_1, \infty_2, \infty_3 \} \) endowed with the blocks of \(X \) that intersect \(Y \) in at least 5 elements, is an \(S(5, 6, 12) \).

Proof. The fact that \(X \) endowed with its blocks is an \(S(5, 8, 24) \) is an easy exercise. The second statement follows from the observation that, if a block of \(X \) intersects \(Y \) in at least 5 elements, then it has precisely 6 elements in common with \(Y \), which is equivalent to verifying that

- If a line intersects \(U \) in at least 2 points, then it shares exactly 3 points with it.
- If a hyperoval intersects \(U \) in at least 3 points, then it shares exactly 4 points with it.
- If a Baer subplane intersects \(U \) in at least 4 points, then it shares exactly 5 points with it.

All these follow easily from the above construction of any Hermitian unital as the set of points on a given triangle, except for the vertices of the triangle. □

As a Hermitian unital of PG(2, 4) endowed with the secant lines is just an affine plane of order 3, we deduce the following independent construction of \(S(5, 6, 12) \).

Theorem 6.2.12 Let AG(2, 3) be the affine plane of order 3, let \(\mathcal{M} \) be its set of lines, and denote by \(\{p_1, p_2, p_3, p_4\} \) the set of directions (points at infinity). Let \(Y \) be the set of points of AG(2, 3) enriched with three new elements \(\infty_1, \infty_2, \infty_3 \) (so \(|Y| = 12 \)). If, for two intersecting lines \(L, M \) in AG(2, 3), we denote by \(L \Delta M = (L \cup M) \setminus (L \cap M) \), and we denote by \(p(L) \) the direction of \(L \), then we define the following 6-subsets of \(Y \) and call them blocks of \(Y \):

(i) \(L \cup \{ \infty_1, \infty_2, \infty_3 \} \), for every \(L \in \mathcal{M} \);

(ii) \((L \Delta M) \cup \{ \infty_i, \infty_j \} \), for every intersecting pair \(L, M \in \mathcal{M} \) such that the sets \(\{p(L), p(M)\} \) and \(\{p_i, p_j\} \) either coincide or are disjoint, \(i, j \in \{1, 2, 3\} \);

(iii) \(L \cup M \cup \{ \infty_i \} \), for all intersecting pairs \(L, M \in \mathcal{M} \) such that either \(\{p(L), p(M), p_i\} = \{p_1, p_2, p_3\} \), or \(\{p(L), p(M)\} = \{p_i, p_i, p_i\} \), \(i \in \{1, 2, 3\} \);

(iv) \(L \cup M \), for disjoint pairs \(L, M \in \mathcal{M} \).

Then \(Y \) endowed with these 6-subsets is an \(S(5, 6, 12) \).

Remarks

(1) The sets \(L \Delta M \), for intersecting lines in AG(2, 3) can also be defined as conics; the elements \(\infty_i, i = 1, 2, 3 \), can then be identified with the conjugate pairs of points at infinity in a quadratic extension plane AG(2, 9), and the
equivalence classes are defined by the relation ‘having the same points at infinity in $\mathbb{A}G(2,9)$’.

(2) The geometric construction can also be used to prove uniqueness. For example, let us prove uniqueness of $S(3,6,22)$. Since $S(2,5,21)$ is unique as a projective plane of order 4, we may without loss of generality view $S(3,6,22)$ as $PG(2,4) \cup \{\infty\}$, where the blocks are the lines completed with ∞, and 56 subsets of size 6 in $PG(2,4)$. These subsets do not intersect any line in at least 3 points, hence they are hyperovals. They do not mutually intersect in 3 points, and by the numbers, all hyperovals intersecting a given one (that is a block of $S(3,6,22)$) in two points, are also blocks of $S(3,6,22)$. It follows that the hyperovals that are blocks exactly constitute one equivalence class. This shows uniqueness. Likewise, uniqueness of $S(4,7,23)$ and $S(5,8,24)$ is shown, as well as uniqueness of $S(3,4,10), S(4,5,11)$ and $S(5,6,12)$.

6.3 Lattices

A lattice is a discrete additive subgroup of \mathbb{R}^n. (Or, equivalently, a finitely-generated free \mathbb{Z}-module with positive definite symmetric bilinear form.)

Determinant

Assume that the lattice Λ has dimension n, i.e., spans \mathbb{R}^n. Let $\{a_1, \ldots, a_n\}$ be a \mathbb{Z}-basis of Λ. Let A be the matrix with the vectors a_i as rows. If we choose a different \mathbb{Z}-basis $\{b_1, \ldots, b_n\}$, so that $b_i = \sum s_{ij}a_j$, and B is the matrix with the vectors b_i as rows, then $B = SA$, with $S = (s_{ij})$. Since S is integral and invertible, it has determinant ± 1. It follows that $|\det A|$ is uniquely determined by Λ, independent of the choice of basis.

Volume and Gram matrix

\mathbb{R}^n/Λ is an n-dimensional torus, compact with finite volume. Its volume is the volume of the fundamental domain, which equals $|\det A|$.

If Λ' is a sublattice of Λ, then $\text{vol}(\mathbb{R}^n/\Lambda') = \text{vol}(\mathbb{R}^n/\Lambda).|\Lambda/\Lambda'|$.

Let G be the matrix (a_i, a_j) of inner products of basis vectors for a given basis. Then $G = AA^\top$, so $\text{vol}(\mathbb{R}^n/\Lambda) = \sqrt{|\det G|}$.

Dual lattice

The dual Λ^* of a lattice Λ is the lattice of vectors having integral inner products with all vectors in Λ: $\Lambda^* = \{x \in \mathbb{R}^n \mid (x, r) \in \mathbb{Z} \text{ for all } r \in \Lambda\}$.

It has a basis $\{a_1^*, \ldots, a_n^*\}$ defined by $(a_i^*, a_j) = \delta_{ij}$. Now $A^*A^\top = I$, so $A^* = (A^{-1})^\top$ and Λ^* has Gram matrix $G^* = G^{-1}$.

It follows that $\text{vol}(\mathbb{R}^n/\Lambda^*) = 1/\text{vol}(\mathbb{R}^n/\Lambda)$. We have $\Lambda^{**} = \Lambda$.

Integral lattice

The lattice Λ is called integral when the inner products of lattice vectors are all integral. For an integral lattice Λ one has $\Lambda \subseteq \Lambda^*$.

The lattice Λ is called even when (x, x) is an even integer for each $x \in \Lambda$. An even lattice is integral. An integral lattice that is not even is called odd.
6.3. LATTICES

Roots are lattice vectors \(x \) with \((x, x) = 2\).

Unimodular lattice

The discriminant (or determinant) \(\text{disc} \Lambda \) of a lattice \(\Lambda \) is defined by \(\text{disc} \Lambda = \det G \). When \(\Lambda \) is integral, we have \(\text{disc} \Lambda = |\Lambda^*/\Lambda| \).

A lattice is called self-dual or unimodular when \(\Lambda = \Lambda^* \), i.e., when it is integral with discriminant 1. An even unimodular lattice is called Type II, the remaining unimodular lattices are called Type I.

If there is an even unimodular lattice in \(\mathbb{R}^n \), then \(n \) is divisible by 8. (This follows by studying the associated theta series and modular forms.)

6.3.1 The Leech lattice

The Leech lattice \(\Lambda \) is the unique even unimodular lattice in \(\mathbb{R}^{24} \) without roots. For lots of information, see CONWAY & SLOANE [217].

Theorem 6.3.1 (CONWAY [212]) There exists a unique even unimodular lattice without roots in \(\mathbb{R}^{24} \). It has 196560 vectors of norm (squared length) 4.

Proof (very brief sketch). For the construction, take the lattice spanned by the vectors \(\frac{1}{\sqrt{8}}(\pm 3, \pm 1^{23}) \) with \(\mp 3 \) in any position, and the upper signs in a code word of the extended binary Golay code.

For the vectors of norm 4 one finds the shapes \(4^2 0^{22}, 3^4 1^{23}, 2^8 0^{16} \) (omitting the \(\frac{1}{\sqrt{8}} \)) with frequencies \(2^2 \left(\frac{24}{2} \right) = 1104 \), \(2^{12} \cdot 24 = 98304 \) and \(2^7 \cdot 759 = 97152 \), respectively.

Uniqueness is proved using theta functions and the theory of modular forms.

Given a lattice \(\Lambda \), define

\[
\theta_\Lambda(z) = \sum_{x \in \Lambda} q^{\frac{1}{2}(x, x)}
\]

where \(q = e^{2 \pi i z} \) and \(\text{Im}(z) > 0 \).

One has

\[
\theta_{\Lambda^*}(z) = \det(\Lambda)^{\frac{1}{2}} \left(\frac{i}{z} \right)^\frac{1}{2} \theta_\Lambda(-\frac{1}{z}).
\]

For the Leech lattice one has \(\Lambda = \Lambda^* \) and \(\det(\Lambda) = 1 \), so that \(\theta_\Lambda(z) \) is a modular form of weight 12.

The space of modular forms of weight 12 has dimension 2, and the two conditions: unique vector of norm 0, no vectors of norm 2, determine \(\theta_\Lambda(z) \) uniquely. Thus, any even unimodular lattice without roots in \(\mathbb{R}^{24} \) must have the same weight enumerator as the Leech lattice.

Some more work gives the desired conclusion. \(\square \)

One can replace the requirement ‘unimodular’ by giving three counts.

Proposition 6.3.2 ([735], Theorem 5.1) Let \(\Lambda \) be an even integral lattice in \(\mathbb{R}^{24} \) with \(a_i \) vectors of squared norm \(i \), where \(a_2 = 0 \), \(a_4 = 196560 \), \(a_6 = 16773120 \), \(a_8 = 398034000 \). Then \(\Lambda \) is isomorphic to the Leech lattice. \(\square \)
The automorphism group of the Leech lattice (fixing the zero vector) is $2{\cdot}Co_1$ of order $2^{22}{\cdot}3^9{\cdot}5^4{\cdot}7^2{\cdot}11{\cdot}13{\cdot}23$. It is transitive on the vectors of squared norm 4 and on those of squared norm 6. The stabilizer of a vector of squared norm 4 is Co_2 of order $2^{18}{\cdot}3^6{\cdot}5^3{\cdot}7{\cdot}11{\cdot}23$. The stabilizer of a vector of squared norm 6 is Co_3 of order $2^{10}{\cdot}3^7{\cdot}5^3{\cdot}7{\cdot}11{\cdot}23$.

6.3.2 The mod 2 Leech lattice

Let V be the \mathbb{F}_2^{24} obtained as $\Lambda/2\Lambda$. The $2^{24} = 1 + \frac{1}{2}a_4 + \frac{1}{2}a_0 + \frac{1}{2^7}a_4$ vectors of V each have a representative of squared norm at most 8, unique up to sign when it has squared norm less than 8, while vectors in Λ of squared norm 8 fall into classes of 48 congruent mod 2Λ ([217], p. 332).

Let X be the image in V of the set of vectors of squared norm 4. Then $|X| = 98280$ and each hyperplane of P^V meets X in either 49128 or 51176 points. We find a rank 4 strongly regular graph with parameters $(v,k,\lambda,\mu) = (16777216, 98280, 4600, 552)$ with group $2^{24}{\cdot}Co_1$ ([129], [627]).

6.3.3 The complex Leech lattice

Let $\theta = \sqrt{-3}$ and $\omega = (-1 + \sqrt{-3})/2$, so that $\omega^3 = 1$ and $\theta = \omega - \bar{\omega}$ is a prime in $\mathbb{Z}[\omega]$. Let C be the extended ternary Golay code (as subset of $\{-1,0,1\}^{12}$).

The complex Leech lattice is the lattice L in $\mathbb{Z}[\omega]^{12}$ consisting of the vectors

$$0 + \theta c + 3x, \quad 1 + \theta c + 3y, \quad -1 + \theta c + 3z$$

with $c \in C$, $x, y, z \in \mathbb{Z}[\omega]^{12}$, and $\sum x_i \equiv 0$, $\sum y_i \equiv 1$, $\sum z_i \equiv -1$ (mod θ).

Now L is a lattice, with minimal squared norm 18.

If we view L as 24-dimensional real lattice, and scale by a factor $\frac{1}{4}\sqrt{2}$, we get the Leech lattice. (For example, by Proposition 6.3.2.)

See also [522], [217] (pp. 200, 293), [734], [735] (§5.6.10).

The automorphism group of L is $6\cdot Suz$ of order $2^{14}{\cdot}3^8{\cdot}5^2{\cdot}7{\cdot}11{\cdot}13$. The central 6 arises from the scalars $(-\omega)^i$. The quotient $L/\theta L$ is isomorphic to 3^{12}.

Let V be \mathbb{F}_2^{24} obtained as $L/\theta L$. Then $2\cdot Suz$ acts on V, and Suz has precisely two orbits on PV, of sizes 32760 and 232960, respectively. This leads to a rank 3 strongly regular graph with parameters $(v,k,\lambda,\mu) = (531441, 65520, 8559, 8010)$ and automorphism group $3^{12}\cdot 2\cdot Suz$. See also §10.100 and Table 11.6.
Chapter 7

Cyclotomic constructions

We look at graphs defined by a difference set in a usually abelian group. Difference sets in a vector space that are invariant under multiplication by scalars are equivalent to two-weight codes and to two-character subsets of a projective space.

7.1 Difference sets

Given an abelian group \(G \) and a subset \(D \) of \(G \) such that \(D = -D \) and \(0 \notin D \), we can define a graph \(\Gamma \) with vertex set \(G \) by letting \(x \sim y \) whenever \(y - x \in D \). This graph is known as the Cayley graph on \(G \) with difference set \(D \).

If \(A \) is the adjacency matrix of \(\Gamma \), and \(\chi \) is a character of \(G \), then
\[
(A\chi)(x) = \sum_{y \sim x} \chi(y) = \sum_{d \in D} \chi(x + d) = (\sum_{d \in D} \chi(d))\chi(x).
\]
It follows that the spectrum of \(\Gamma \) consists of the numbers \(\sum_{d \in D} \chi(d) \), where \(\chi \) runs through the characters of \(G \). In particular, the trivial character \(\chi_0 \) yields the eigenvalue \(|D| \), the valency of \(\Gamma \).

7.1.1 Two-character projective sets

Let \(V \) be a vector space of dimension \(m \) over the finite field \(\mathbb{F}_q \). Let \(X \) be a subset of size \(n \) of the point set of the projective space \(\mathbb{P}V \). Define a graph \(\Gamma \) with vertex set \(V \) by letting \(x \sim y \) whenever \(\langle y - x \rangle \in X \). This graph has \(v = q^m \) vertices, and is regular of valency \(k = (q - 1)n \). It is the Cayley graph on \(V \) with difference set \(D = \{ x \in V \mid \langle x \rangle \in X \} \).

Let \(q \) be a power of the prime \(p \), let \(\zeta = e^{2\pi i/p} \) be a primitive \(p \)-th root of unity, and let \(\text{tr}: \mathbb{F}_q \to \mathbb{F}_p \) be the trace function. Let \(V^* \) be the dual vector space to \(V \), that is the space of linear forms on \(V \). Then the characters \(\chi \) are of the form \(\chi_a(x) = \zeta^{\text{tr}(a(x))} \), with \(a \in V^* \). Now
\[
\sum_{\lambda \in \mathbb{F}_q} \chi_a(\lambda x) = \begin{cases} q & \text{if } a(x) = 0 \\ 0 & \text{otherwise.} \end{cases}
\]

1About the terminology: in the area of design theory a difference set \(D \) in a group \(G \) is a set such that \(\{gD \mid g \in G \} \) is a symmetric (i.e., square) design. A partial difference set is a set such that the Cayley graph for this difference set is a strongly regular graph.
Hence Γ has the eigenvalues $(q - 1)|X|$ and $\sum_{a \in D} \chi_\alpha(d) = q|H_a \cap X| - |X|$ (for $a \neq 0$), where H_a is the hyperplane $\{\langle x \rangle \ | \ a(x) = 0\}$ in PV. Consequently, Γ will be strongly regular precisely when $|H_a \cap X|$ takes only two different values.

The above construction of the graph Γ is often described as ‘take the vector space V with the subset X of PV at infinity’.

7.1.2 Projective two-weight codes

This can be formulated in terms of coding theory (Delsarte [275]). To the set X corresponds a linear code C of word length n and dimension m. Each $a \in V^*$ gives rise to the vector $(a(x))_{x \in X}$ indexed by X, and the collection of all these vectors is the code C^{\perp}. A code word a of weight w corresponds to a hyperplane H_a that meets X in $n - w$ points, and hence to an eigenvalue $q(n - w) - n = k = qw$ of Γ.

If X is a two-character set, that is, if the size of hyperplane intersections $H \cap X$ takes only two different values, then C is a two-weight code, that is, the weight $wt(c)$ of nonzero code words $c \in C$ takes only two different values.

A survey of two-weight codes was given by Calderbank & Kantor [169]. Additional families and examples were given in [112], [284], [283], [53], [511], [287], [230], [235], [228], [288], [229], [627].

The code C obtained above is called projective: no two coordinate positions are dependent. That is, the dual code C^{\perp} has minimum distance at least 3. The more general case of a code C with dual C^{\perp} of minimum distance at least 2 corresponds to a multiset X. Brouwer & van Eupen [127] gives a 1-1 correspondence between arbitrary projective codes and two-weight codes.

7.1.3 Delsarte duality

Suppose X is a subset of the point set of PV that meets hyperplanes in either n_1 or n_2 points. We find a subset Y of the point set of the dual space PV^* consisting of the hyperplanes that meet X in n_1 points. Also Y is a two-character set. If each point of PV is on n_1' or n_2' hyperplanes in Y, then $(n_1 - n_2)(n_1' - n_2') = q^{m-2}$. It follows that the difference of the weights in a projective two-weight code is a power of the characteristic. (This is a special case of the duality for translation association schemes. See [276], §2.6, and [123], §2.10B.)

A strongly regular graph invariant for a regular abelian translation group is called self-dual when it is isomorphic to its dual, and formally self-dual when it has the same parameters as its dual (so that $(k,\ell) = \{f,g\}$). For formally self-dual graphs/codes, $w_2 - w_1 = n_1 - n_2 = q^{m-1}$. This is the most common situation. Different examples are for example s-subspaces of PV (with $n_1 - n_2 = q^{s-1}$) or the third De Lange set (cf. §7.3.3 below), which can be seen as a 39-set in $PG(3,8)$ such that all planes meet it in either 3 or 7 points, so that $(q,n_1 - n_2) = (8,4)$.

2More precisely, each $a \in V^*$ gives rise to the vector $(a(u_x))_{x \in X}$ indexed by X, where u_x is some fixed vector in V spanning the projective point $x = \langle u_x \rangle$. Different choices for these representatives u_x yield equivalent codes.

3More precisely, the dimension of C is the dimension of the span $\langle X \rangle$ of X.

7.1. DIFFERENCE SETS

7.1.4 Parameters

Let \(V \) be a vector space of dimension \(m \) over \(\mathbb{F}_q \). Let \(X \) be a subset of size \(n \) of its hyperplane at infinity \(PV \). Construct the graph \(\Gamma \) by taking \(V \) as vertex set, where two vertices \(u, v \) are adjacent when \((v - u) \in X \). This graph has \(v = q^m \) vertices, and is regular of valency \(k = (q - 1)n \). As we saw, the other eigenvalues are \(q[H \cap X] - n \) where \(H \) runs through the hyperplanes of \(PV \).

We obtain a strongly regular graph when \(|H \cap X| \) takes precisely two values, say \(n_1 \) and \(n_2 \), with \(n_1 > n_2 \). Let \(f_1 \) and \(f_2 \) be the number of hyperplanes meeting \(X \) in \(n_1 \) and \(n_2 \) points, respectively. Then \(f_1 \) and \(f_2 \) satisfy

\[
 f_1 + f_2 = \frac{q^m - 1}{q - 1}, \\
 f_1 n_1 + f_2 n_2 = n \frac{q^m - 1}{q - 1}, \\
 f_1 n_1(n_1 - 1) + f_2 n_2(n_2 - 1) = n(n - 1) \frac{q^{m-2} - 1}{q - 1}
\]

and it follows that

\[
 (q^m - 1)n_1n_2 - n(q^m-1-1)(n_1 + n_2 - 1) + n(n - 1)(q^{m-2} - 1) = 0,
\]

so that in particular \(n \mid (q^m - 1)n_1n_2 \).

The strongly regular graph \(\Gamma \) has parameters

\[
 v = q^m, \\
r = qn_1 - n, \\
k = (q - 1)n, \\
\lambda = \mu + r + s, \\
\mu = k + rs = \frac{(n - n_1)(n - n_2)}{q^{m-2}}, \\
\lambda = k + rs = (q - 1)f_1, \\
g = (q - 1)f_2.
\]

If \(X \) spans \(PV \), then the code \(C \) constructed above has parameters \([n, m, w_1]_q\) and weight enumerator \(1 + f_2 w_2 + gw_2^2 \), where \(w_1 = n - n_1, w_2 = n - n_2 \), and

\[
 f = \frac{1}{w_2 - w_1}(w_2(q^m - 1) - nq^{m-1}(q - 1)).
\]

7.1.5 Complements and imprimitivity

If \(\Gamma \) is the graph corresponding to the subset \(X \) of \(PV \), then \(\overline{\Gamma} \) corresponds to the complementary subset \(\overline{X} = PV \setminus X \). For the parameters \(n, n_1, n_2 \) we find \(\overline{\pi} = \frac{q^{m-1}}{q-1} - n, \overline{\mu} = \frac{q^{m-1} - 1}{q-1} - n_j \), so that \(\overline{w_i} = q^{m-1} - w_j \), where \(\{i, j\} = \{1, 2\} \).

The graph \(\Gamma \) is disconnected if and only if \(X \) is a proper subspace of \(PV \). In particular, the code \(C \) has dimension \(m \) precisely when \(\Gamma \) is connected.

7.1.6 Divisibility

From \((n_1 - n_2)(n_1' - n_2') = q^{m-2} \) and \(f_1(n_1 - n_2) = n \frac{q^{m-1} - 1}{q - 1} - n_2 \frac{q^{m-1}}{q - 1} \), it follows that \((n_1 - n_2) \mid q^{m-2} \) and \((n_1 - n_2) \mid (n - n_2) \), so that \(w_1 \) and \(w_2 \) are divisible by \(w_2 - w_1 \).
Now \(w_1 \) and \(w_2 \) are divisible by \(p \), except perhaps when \(n_1 - n_2 = 1 \). If \(m \geq 3 \), this latter case occurs only when \(X \) is a point or the complement of a point, so that \(n = 1 \), \(\mu = 0 \) or \(n = q^{m-1}/q - 1, k = \mu \) ([103]).

(Indeed, since \(q \) divides \(pq^{m-2} = w_1w_2 \), it must divide one of \(w_1, w_2 \), if the other does not have a factor \(p \). Let \(A \) be an \((m-2)\)-space, and count the \(g_i \) hyperplanes on \(A \) meeting \(X \) in \(n_i \) points \((i = 1, 2)\). From \(g_1 + g_2 = q + 1 \) and \((n_1 - a)g_1 + (n_2 - a)g_2 = n - a \), where \(a = |A \cap X| \), we see \(g_1 = (n_1 - n_2)g_1 = (n - a) - (n_2 - a)(q + 1) = w_2 - q(n_2 - a) \) and \(g_2 = -w_1 + q(n_1 - a) \). Let \(\{i,j\} = \{1, 2\} \), where \(q|w_i \). Then \(q|g_j \), so that \(g_j \in \{0, q \} \) and \(a \in \{n_1 - \frac{q}{q}, n_2 - \frac{q}{q} \} \). If \(m > 3 \), then we are done by induction on \(m \). If \(m = 3 \), then \(A \) is a single point, so \(a \in \{0, 1 \} \) and \(n_2 = \frac{q}{q} \). If \(i = 1 \), then \(n_1 = (q + 1)n_2 \) so that all lines on a point of \(X \) meet \(X \) in \(n_1 \) points, and \(n_2 = 0 \), \(X \) is a single point. If \(i = 2 \), then \(n = (q + 1)n_2 \) so that all lines on a point outside \(X \) meet \(X \) in \(n_2 \) points, and \(n_1 = q + 1 \), \(X \) is the complement of a point.)

7.1.7 Field change

If \(q = r^e \), then from an \([n, k]_q\) code we find a \([\frac{q-1}{q}, \frac{n}{q}, k]\) code by choosing a basis of \(\mathbb{F}_q \) over \(\mathbb{F}_r \). To weights \(w \) of the \(q \)-ary code there correspond weights \(\frac{w}{r} \) of the \(r \)-ary code. The corresponding graphs are the same.

7.1.8 Unions and differences

Let \(Z \) be an arbitrary subset of \(\text{PG}(m-1, q) \) with hyperplane intersections of size \(n_i \) for \(f_i \) hyperplanes. Then, as above, \(\sum f_i = \frac{q^{m-1}}{q - 1} \), and \(\sum f_i n_i = n\frac{q^{m-1} - 1}{q - 1} \), and \(\sum f_i n_i(n_i - 1) = n(n - 1)\frac{q^{m-2} - 1}{q - 1} \). When at most three distinct \(n_i \) occur, the \(f_i \) are determined (since the coefficient determinant is nonzero), and we can conclude that \(Z \) is in fact a two-character set when one of these \(f_i \) vanishes.

Consider the situation where \(X \) and \(Y \) are disjoint, and \(|X \cap H| \in \{a, a + d\} \) and \(|Y \cap H| \in \{b, b + d\} \) for all hyperplanes \(H \). Put \(c = a + b \). Then \(|(X \cup Y) \cap H| \in \{c, c + d, c + 2d\} \) for all hyperplanes \(H \), and we can read off from the parameters whether \(c + 2d \) actually occurs. If \(|X \cup Y| = n \), then \(c + 2d \) does not occur precisely when \(c(c + d)\frac{q^{m-1}}{q - 1} - (2c - 1 + d)n\frac{q^{m-1} - 1}{q - 1} + n(n - 1)\frac{q^{m-2} - 1}{q - 1} = 0 \).

Let \(\mathcal{F} = \mathcal{F}(a, c, d, m, q) \) be the collection of two-character sets \(X \) in \(\text{PG}(m - 1, q) \) with hyperplane intersection sizes \(a|X| \) and \(c|X| + d \), where \(d \) may be negative. If

\[
\alpha^2(q^m - 1) - 2\alpha(q^{m-1} - 1) + (q^{m-2} - 1) = 0,
\]

then \(\mathcal{F} \) is closed under disjoint unions and under taking differences \(X \setminus Y \) when \(Y \subseteq X \). For example, if \(m \) is even, then \(\frac{1}{2}m \)-subspaces and hyperbolic quadrics belong to the same collection \(\mathcal{F} \), and we find the examples under \(C \) below.

7.1.9 Geometric examples

We give some examples of two-character sets in projective spaces \(\mathbb{P}V \), where \(V \) is an \(m \)-dimensional vector space over \(\mathbb{F}_q \).

A. Subspaces

Let \(W \) be an \(i \)-dimensional subspace of \(V \), where \(0 < i < m \). Then \(X = \mathbb{P}W \) is a two-character set of size \(n = \frac{q^i - 1}{q - 1} \) with hyperplane intersection sizes \(n_1 = \frac{q^{i-1} - 1}{q - 1} \) and \(n_2 = \frac{q^{i-1} - 1}{q - 1} \), so that \(n_1 - n_2 = q^{i-1} \).
7.1. DIFFERENCE SETS

B. Partial spreads

For \(m = 2d \), let \(X \) be the union of \(t \) pairwise disjoint \(d \)-subspaces of \(PV \) (\(1 \leq t \leq q^d \)). Then \(X \) is a two-character set of size \(n = t\frac{q^d}{q-1} \) with hyperplane intersection sizes \(n_1 = q^{d-1} + n_2 \) and \(n_2 = t\frac{q^d-1}{q-1} \), so that \(n_1 - n_2 = q^{d-1} \).

C. Quadrics

For \(m = 2d \), let \(X \) be the point set of a nondegenerate hyperbolic \((\varepsilon = 1) \) or elliptic \((\varepsilon = -1) \) quadric. Then \(X \) has size \(n = \frac{2^{2d-1}}{q-1} + \varepsilon q^{d-1} \) with hyperplane intersection sizes \(\{n_1, n_2\} = \{\frac{2^{2d-2}}{q-1}, \frac{2^{2d-2}}{q-1} + \varepsilon q^{d-1}\} \), so that \(n_1 - n_2 = q^{d-1} \).

The corresponding graphs are the affine polar graphs \(VQ\ell(m, q) \).

For \(\varepsilon = 1 \), this example has the same parameters as the partial spread construction (Ex. B) with \(t = q^{d-1} + 1 \). Since the union condition is satisfied one can take (for \(m = 2d \)) the disjoint union of pairwise disjoint \(d \)-spaces and nondegenerate hyperbolic quadrics, where possibly a number of pairwise disjoint \(d \)-spaces contained in some of the hyperbolic quadrics is removed ([134]).

Also for \(\varepsilon = -1 \) the union condition is satisfied. In particular, if \(m = 4 \), one can take the disjoint union of pairwise disjoint nondegenerate elliptic quadrics (or arbitrary ovoids). Since \(PG(3, q) \) has a partition into \(q + 1 \) ovoids, this gives two-character sets with intersection numbers \(n_1 = j(q + 1) \), \(n_2 = n_1 - q \) for \(1 \leq j \leq q \).

D. Nonisotropic points

For odd \(q \) and \(m = 2d \), consider a nondegenerate quadric \(Q \) of type \(\varepsilon = \pm 1 \) in \(V \). Let \(X \) be the set of nonisotropic projective points \(x = \langle v \rangle \) where \(Q(v) \) is a nonzero square. Then \(X \) has size \(n = \frac{1}{2}(q^{2d-1} - \varepsilon q^{d-1}) \) and \(n_1, n_2 = \frac{1}{2}q^{d-1}(q^{d-1} \pm 1) \) (independent of \(\varepsilon \)), so that \(n_1 - n_2 = q^{d-1} \). The corresponding graphs are the affine nonisotropics graphs \(VNQ\ell(m, q) \).

E. Quadratic minus quadric over overfield

Let \(r = q^e \) where \(e > 1 \), and write \(F_1 = F_r \), \(F = F_q \). Let \(V_1 \) be a vector space of dimension \(d \) over \(F_1 \), where \(d \) is even, and write \(V \) for \(V_1 \) regarded as a vector space of dimension \(de \) over \(F \). Let \(tr: F_1 \rightarrow F \) be the trace map. Let \(Q_1: V_1 \rightarrow F_1 \) be a nondegenerate quadratic form on \(V_1 \). Then \(Q = tr \circ Q_1 \) is a nondegenerate quadratic form on \(V \). Let \(X = \{x \in PV \mid Q(x) = 0 \text{ and } Q_1(x) \neq 0\} \). Write \(\varepsilon = 1 \) (\(\varepsilon = -1 \)) if \(Q \) is hyperbolic (elliptic). The set \(X \) is a two-character set in \(PV \), has size \(n = \frac{q^{e-1}-1}{q-1}(q^{de-e} - \varepsilon q^{de/2-e}) \), and hyperplane intersection sizes \(\{n_1, n_2\} = \{a, a + \varepsilon q^{de/2-1}\} \), with \(a = \frac{q^{e-1}-1}{q-1}(q^{de-e-1} - \varepsilon q^{de/2-e}) \), so that \(n_1 - n_2 = q^{de/2-1} \) (Brouwer [112]).

For example, when \(q = e = 2 \), \(d = 4 \), \(\varepsilon = -1 \), this yields a 68-set in \(PG(7, 2) \) with hyperplane intersections of sizes 28 and 36. This construction was generalized in Hamilton [410].
CHAPTER 7. CYCLOTONIC CONSTRUCTIONS

F. Hermitian quadrics

Let \(q = r^2 \) and let \(V \) be provided with a nondegenerate Hermitian form. Let \(X \) be the set of isotropic projective points. Then \(X \) has size \(n = (r^{m-\varepsilon})(r^{m-1} + \varepsilon)/(q-1) \) where \(\varepsilon = (-1)^m \), and \(n - n_2 = r^{2m-3}, n_1 - n_2 = r^{m-2} \).

If we view \(V \) as a vector space of dimension \(2m \) over \(\mathbb{F}_r \), the same set \(X \) now has \(n = (r^{m-\varepsilon})(r^{m-1} + \varepsilon)/(r-1) \), \(n - n_2 = r^{2m-2}, n_1 - n_2 = r^{m-1} \), as expected, since the form is a nondegenerate quadratic form in \(2m \) dimensions over \(\mathbb{F}_r \). Thus, the graphs that one gets here are also graphs one gets from quadratic forms, but the codes here are defined over a larger field.

G. Baer subspaces

Let \(q = r^2 \) and let \(m \) be odd. Then \(\text{PG}(m-1,q) \) has a partition into pairwise disjoint Baer subspaces \(\text{PG}(m-1,r) \). Each hyperplane hits all of these in \(\text{PG}(m-3,r) \), except for one which is hit in \(\text{PG}(m-2,r) \). Let \(X \) be the union of \(u \) such Baer subspaces, \(1 \leq u < r^{m+1} \cdot r^{m-2} \) and \(n_1 = u^{r^{m-2} - 1} \), so that \(n_1 - n_2 = r^{m-2} \).

H. Maximal arcs and hyperovals

A maximal arc in a projective plane \(\text{PG}(2,q) \) is a two-character set with intersection numbers \(n_1 = a, n_2 = 0 \), for some constant \(a \) \((1 < a < q)\). Clearly, maximal arcs have size \(n = qa - q + a \), and necessarily \(a \mid q \). For \(a = 2 \) these objects are called hyperovals, and exist for all even \(q \). DENNISTON [281] constructed maximal arcs for all even \(q \) and all divisors \(a \) of \(q \). BALL, BROKHUIS, & MAZZOCCA [35] showed that there are no maximal arcs in \(\text{PG}(2,q) \) when \(q \) is odd.

These arcs show that the difference between the intersection numbers need not be a power of \(q \).

I. Two-character subsets of the plane

PENTTILA & ROYLE [616] determined all two-character sets in each of the four projective planes of order 9. They say that a two-character set in a projective plane has standard parameters when \(q \) is a square and \(n_1 - n_2 = \sqrt{q} \). (It follows that the set has size \(n = n_2(q + \sqrt{q} + 1) \) or \(n = n_1(q - \sqrt{q} + 1) \).) For \(q = 9 \) only standard parameters are feasible and the number of nonisomorphic examples in \(\text{PG}(2,9) \) is given in the table below.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n_2)</th>
<th>(n_1)</th>
<th># comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>1 Baer subplane</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>4</td>
<td>2 unital</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>5</td>
<td>3 e.g., union of two Baer subplanes</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>5</td>
<td>7 sporadic</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>6</td>
<td>22 e.g., union of three Baer subplanes</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>6</td>
<td>6 sporadic</td>
</tr>
</tbody>
</table>

J. Caps

The dual code \(C^\perp \) has minimum distance at least 4 if and only if \(X \) is a cap, that is, does not have three collinear points.
7.1. DIFFERENCE SETS

Characterizing two-weight projective codes C with dual distance (minimum distance of C^\perp) at least 4 is equivalent to characterizing two-character projective sets that are caps. There are strong parameter conditions, and Calderbank, Beukers, Bremner and others solved the corresponding Diophantine equations in a series of papers [164], [64], [106], [107], [705]. The final result was:

Theorem 7.1.1 (Tzanakis & Wolfskill [706]) Let C be a q-ary two-weight $[n,m]$-code with weights w_1, w_2 and dual distance at least 4. Then we have one of the cases in Table 7.1 below.

<table>
<thead>
<tr>
<th>q</th>
<th>m</th>
<th>n</th>
<th>w_1</th>
<th>w_2</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>two points</td>
</tr>
<tr>
<td>2^e</td>
<td>3</td>
<td>$q+2$</td>
<td>q</td>
<td>$q+2$</td>
<td>hyperoval</td>
</tr>
<tr>
<td>q</td>
<td>4</td>
<td>q^2+1</td>
<td>q^2-q</td>
<td>q^2</td>
<td>ovoid</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>ternary Golay code</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>56</td>
<td>45</td>
<td>Hill [427]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>78</td>
<td>64</td>
<td>Hill [428]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>430</td>
<td>352</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>2^{m-1}</td>
<td>2^{m-2}</td>
<td>2^{m-1}</td>
<td>hyperplane complement</td>
</tr>
</tbody>
</table>

Table 7.1: Two-character sets that are caps

This table with examples already occurs in [332], p. 72.

7.1.10 Small two-weight codes

For $m = 2$ any subset of $PG(m-1, q)$ is met by any hyperplane in either 0 or 1 points. One finds q-ary projective two-weight codes $[n,2]_q$ with weights $n-1$ and n for $2 \leq n \leq q+1$, and primitive strongly regular graphs with parameters $LS_n(q)$ (cf. §8.4.2) for $2 \leq n \leq q-1$. For $n = 2$ these are the grid graphs $q \times q$.

Bouyukliev, Fack, Willems & Winne [103] enumerated the two-weight codes with $m \geq 3$, $q \leq 4$, $n \leq 68$ or $m = 4$, $q = 5$, $n \leq 39$ (and also give the automorphism group sizes). In the table below, the codes are $[n,m,w_1]_q$ codes. The weight enumerators are $1 + f_1z^{w_1} + f_2z^{w_2}$. The column $\#$ gives the number of nonequivalent such codes. The corresponding strongly regular graphs have the parameters given above. In particular, $v = q^m$ and $k = (q-1)n$ and $\mu = w_1w_2/q^{m-2}$.

<table>
<thead>
<tr>
<th>q</th>
<th>m</th>
<th>n</th>
<th>wt. enum.</th>
<th>$#$</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>$1 + 10z^2 + 5z^4$</td>
<td>1</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>$VO_4^+(2)$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>$1 + 6z^2 + 9z^4$</td>
<td>1</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>$VO_4^+(2)$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>14</td>
<td>$1 + 14z^4 + 49z^8$</td>
<td>1</td>
<td>64</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>$q = 8$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>18</td>
<td>$1 + 45z^8 + 18z^{12}$</td>
<td>1</td>
<td>64</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>$q = 4$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>21</td>
<td>$1 + 21z^8 + 42z^{12}$</td>
<td>2</td>
<td>64</td>
<td>21</td>
<td>8</td>
<td>6</td>
<td>$H_2(2,3)$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>27</td>
<td>$1 + 36z^{12} + 27z^{16}$</td>
<td>5</td>
<td>64</td>
<td>27</td>
<td>10</td>
<td>12</td>
<td>$VO_6^+(2)$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>28</td>
<td>$1 + 28z^{12} + 35z^{16}$</td>
<td>7</td>
<td>64</td>
<td>28</td>
<td>12</td>
<td>12</td>
<td>$VO_6^+(2)$</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>30</td>
<td>$1 + 30z^8 + 225z^{16}$</td>
<td>1</td>
<td>256</td>
<td>30</td>
<td>14</td>
<td>2</td>
<td>$q = 4$</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>45</td>
<td>$1 + 45z^{16} + 210z^{24}$</td>
<td>2</td>
<td>256</td>
<td>45</td>
<td>16</td>
<td>6</td>
<td>$H_2(2,4)$</td>
</tr>
</tbody>
</table>

continued...
with equality in the Griesmer bound are precisely the codes that correspond to
intersections'. Early publications also used 'min
subset
spaces), ..., then
In the above we have been looking at
\begin{align*}
5 & 4 12 1 + 48z^2 + 576z^{10} & 1 & 625 & 48 & 23 & 2 & \text{two skew lines} \\
5 & 4 18 1 + 72z^{10} + 552z^{15} & 1 & 625 & 72 & 25 & 3 & \text{three skew lines} \\
5 & 4 24 1 + 96z_{15} + 528z^{20} & 7 & 625 & 96 & 29 & 12 & \text{four skew lines} \\
5 & 4 26 1 + 520z^{20} + 104z^{25} & 1 & 625 & 104 & 3 & 20 & VΟ₂(5) \\
5 & 4 30 1 + 120z^{20} + 504z^{25} & 38 & 625 & 120 & 35 & 20 & \text{five skew lines} \\
5 & 4 36 1 + 144z^{25} + 480z^{30} & 547 & 625 & 144 & 43 & 30 & VΟ₂(5) \\
5 & 4 39 1 + 468z^{30} + 156z^{35} & 8 & 625 & 156 & 29 & 42 & \text{Hill cap} \end{align*}

Table 7.2: Small two-weight codes and graphs

Minihypers and the Griesmer bound

Part of the literature in this area is formulated in terms of ‘minihypers’. A
subset \(X\) of \(PG(m-1, q)\) is called an \(\{n, c; m-1, q\}\)-minihyper if \(|X| = n\) and
\(|X \cap H| \geq c\) for each hyperplane \(H\), with equality for at least one hyperplane.\(^3\)
In the above we have been looking at \(\{n, n/2; m-1, q\}\)-minihypers.

Put \(v_i = \frac{q^i - 1}{q - 1}\). If \(X\) is the disjoint union of \(e_0\) points (1-spaces), \(e_1\) lines (2-spaces), ..., then \(X\) is a \(\{\sum_{i=0}^{n-2} e_iv_{i+1}, \sum_{i=0}^{m-2} e_iv_i; m-1, q\}\)-minihyper. Many
classification theorems for minihypers give sufficient conditions for a minihyper
\(X\) to be such a union. See, e.g., [406], [407], [361], [673].

The Griesmer bound on the length of an \([n, m, d]_q\) code says that \(n \geq \sum_{i=0}^{m-1} \left\lfloor \frac{d}{q^i} \right\rfloor\).
Suppose \(1 \leq d \leq q^{m-1}\). Then one can uniquely write
\(d = q^{m-1} - \sum_{i=0}^{m-2} e_i q^i\) with \(0 \leq e_i \leq q - 1\) for all \(i\). HAMADA [404, 405] showed that the \([n, m, d]_q\) codes
with equality in the Griesmer bound are precisely the codes that correspond to
\(PV \setminus X\), where \(X\) is a \(\{\sum_{i=0}^{n-2} e_iv_{i+1}, \sum_{i=0}^{m-2} e_iv_i; m-1, q\}\)-minihyper.

\(^{3}\)Iliya Bouyukliev, pers. comm.

\(^{3}\)The word ‘minihyper’ is supposed to suggest ‘with prescribed minimal size for hyperplane
intersections’. Early publications also used ‘min-hyper’.
7.1. DIFFERENCE SETS

7.1.11 Sporadic two-weight codes

Most known examples of projective two-weight codes arise from well-known geometric objects, and come in infinite families. Below a table with some sporadic two-weight codes and corresponding graphs.

<table>
<thead>
<tr>
<th>q</th>
<th>m</th>
<th>n</th>
<th>w1</th>
<th>w2−w1</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>73</td>
<td>32</td>
<td>8</td>
<td>Fiedler & Klin [326]; [496]</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>219</td>
<td>96</td>
<td>16</td>
<td>Delsarte dual of previous</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>198</td>
<td>96</td>
<td>16</td>
<td>Kohnert [496]</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>276</td>
<td>128</td>
<td>16</td>
<td>2^{11}M_{24}, see §10.84</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>65i</td>
<td>32i</td>
<td>32</td>
<td>Kohnert [496] (12 ≤ i ≤ 31, i ≠ 19)</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>98280</td>
<td>47104</td>
<td>2048</td>
<td>Rodrigues [627], see §6.3.2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>11i</td>
<td>8i</td>
<td>8</td>
<td>Dissett [292] (7 ≤ i ≤ 14, i ≠ 8)</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>78</td>
<td>56</td>
<td>8</td>
<td>Hill [428]</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>429</td>
<td>320</td>
<td>32</td>
<td>Delsarte dual of previous</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>147</td>
<td>96</td>
<td>16</td>
<td>Delsarte dual of previous; [112]; Cossidente et al. [228]</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>210</td>
<td>144</td>
<td>16</td>
<td>Cossidente et al. [228]</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>273</td>
<td>192</td>
<td>16</td>
<td>Cossidente et al. [228]</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>525</td>
<td>384</td>
<td>16</td>
<td>Liebeck [517] 2^{12}.HJ, see §10.92</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>585</td>
<td>432</td>
<td>16</td>
<td>Chen quasi-twisted</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>39</td>
<td>32</td>
<td>4</td>
<td>De Lange [510]</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>273</td>
<td>224</td>
<td>16</td>
<td>Delsarte dual of previous</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>78</td>
<td>72</td>
<td>4</td>
<td>De Resmini & Migliori [284]</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>dual of the ternary Golay code</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>55</td>
<td>36</td>
<td>9</td>
<td>Delsarte dual of previous</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>56</td>
<td>36</td>
<td>9</td>
<td>Games graph (see §10.75), Hill cap [427]</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>84</td>
<td>54</td>
<td>9</td>
<td>Gulliver [369]; [540]</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>98</td>
<td>63</td>
<td>9</td>
<td>Gulliver [369]; [540]</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>154</td>
<td>99</td>
<td>9</td>
<td>Van Eupen [310]; [370]</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>82i</td>
<td>54i</td>
<td>27</td>
<td>Kohnert [496] (8 ≤ i ≤ 12)</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>41i</td>
<td>27i</td>
<td>27</td>
<td>Kohnert [496] (26 ≤ i ≤ 39)</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1435</td>
<td>945</td>
<td>27</td>
<td>De Lange [510]</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>5022</td>
<td>4922</td>
<td>81</td>
<td>Schmidt & White [637]</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>32760</td>
<td>21627</td>
<td>243</td>
<td>3^{12}.Suz.2, see §10.100</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>35</td>
<td>30</td>
<td>3</td>
<td>De Resmini [283]</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>42</td>
<td>36</td>
<td>3</td>
<td>Penttila & Royle [616]</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>3287</td>
<td>252</td>
<td>9</td>
<td>De Lange [510]</td>
</tr>
<tr>
<td>81</td>
<td>3</td>
<td>3285</td>
<td>3240</td>
<td>9</td>
<td>Lane-Harvard & Penttila [509]</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>39</td>
<td>30</td>
<td>5</td>
<td>Dissett [292]; [103]</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1890</td>
<td>1500</td>
<td>25</td>
<td>Liebeck [517] 5^6.4.HJ, see §10.95</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>21i</td>
<td>20i</td>
<td>5</td>
<td>Lane-Harvard & Penttila [509] (i = 10-12,15)</td>
</tr>
<tr>
<td>125</td>
<td>3</td>
<td>829</td>
<td>820</td>
<td>5</td>
<td>Batten & Dover [53]</td>
</tr>
<tr>
<td>125</td>
<td>3</td>
<td>7461</td>
<td>7400</td>
<td>25</td>
<td>Delsarte dual of previous</td>
</tr>
<tr>
<td>343</td>
<td>3</td>
<td>3189</td>
<td>3178</td>
<td>7</td>
<td>Batten & Dover [53]</td>
</tr>
<tr>
<td>343</td>
<td>3</td>
<td>28701</td>
<td>28616</td>
<td>49</td>
<td>Delsarte dual of previous</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>595</td>
<td>546</td>
<td>13</td>
<td>Chen quasi-twisted</td>
</tr>
</tbody>
</table>

Table 7.3: Sporadic two-weight codes and graphs
7.2 Cyclic codes

An \([n, k]_q\) code is a linear code of length \(n\) and dimension \(k\) over the field \(\mathbb{F}_q\). Its size is \(q^k\). This code is cyclic if it is invariant under the map \((c_1, c_2, \ldots, c_n) \mapsto (c_n, c_1, \ldots, c_{n-1})\) that cyclically permutes the coordinate positions. Let \(x\) be a variable, and represent the codeword \(c = (c_1, c_2, \ldots, c_n)\) by the polynomial \(c(x) = \sum c_i x^{i-1}\). The code \(C\) is cyclic precisely when \(\{c(x) \mid c \in C\}\) is an ideal in the ring \(R = \mathbb{F}_q[x]/(x^n - 1)\).

In this ring every ideal is generated by a single element, so every cyclic code has the representation \(g(x)R\) for some generator polynomial \(g(x)\). W.l.o.g., \(g(x)\) divides \((x^n - 1)\) if and only if \(c(x)h(x) = 0\) in \(R\), and \(h(x)\) is called the check polynomial of \(C\). It has degree \(k\).

The code \(C\) is called irreducible when its check polynomial is irreducible, that is, when the ideal of the code is minimal nonzero.

7.2.1 Trace representation of an irreducible cyclic code

Let \(C\) be irreducible. Let \(F_0 = \mathbb{F}_q\) and \(F = \mathbb{F}_{q^k}\). Let \(\text{tr}: F \to F_0\) be the trace. Let \(\alpha \in F\) be a root of \(h(x)\). Then \(C\) can be represented as \(C = \{c(\xi) \mid \xi \in F\}\), where \(c(\xi) = (c_0(\xi), \ldots, c_{n-1}(\xi))\) and \(c_i(\xi) = \text{tr}(\xi^i\alpha)\).

Indeed, this latter code is linear and cyclic, and if \(h(x) = \sum_i h_i x^i\) then the coefficient of \(x^i\) in \(c(\xi)h(x)\) is \(\sum c_j h_{i-j} = \text{tr}(\xi^{i-j} h(a)) = 0\). Thus, the check polynomial of the code divides \(h(x)\), and hence equals \(h(x)\).

If \(\alpha^t = 1\) for some \(t < n\), then the code words in \(C\) are periodic with period \(t\). We shall assume that this is not the case, so that \(\alpha\) is a primitive \(n\)-th root of unity. It follows that \(\gcd(q, n) = 1\), and that \(k\) is the order of \(q \mod n\) (since \(h(x) = \prod_{i=0}^{n-1} (x - \alpha^i)\)).

Let \(\beta = \alpha^{-1}\). The code \(C\) here is one as in §7.1.2 corresponding to the (multi)set \(X = \{\beta^i \mid 0 \leq i < n-1\}\). It is projective when there are no repeated points, i.e., when \(\beta^i \notin F_0\) for \(1 \leq i < n - 1\), i.e., when \(\gcd(q - 1, n) = 1\). Now \(n = \frac{q-1}{q-1}\) and \(X\) is the orbit of a suitable power of the Singer cycle on \(\text{PG}(k-1, q)\). In this situation, \(C\) is an irreducible cyclic two-weight code if and only if \(X\) is a two-character projective set.

7.2.2 Wolfmann’s theorem

Wolfmann [742] shows that every two-weight projective cyclic code is either irreducible or the direct sum of two one-weight irreducible cyclic codes, where the latter case can occur only for \(q > 2\). For examples of the latter possibility, see [713], [714].

7.2.3 Irreducible cyclic two-weight codes

In the case of a vector space that is a field \(F\), one conjectures that one knows all examples of difference sets that are subgroups of the multiplicative group \(F^*\) containing the multiplicative group of the base field.

Conjecture 7.2.1 (Schmidt & White [637], Conj. 4.4; cf. [340], Conj. 1.2)

Let \(F\) be a finite field of order \(q = p^f\). Suppose \(1 < e \mid (q-1)/(p-1)\) and let \(D\) be the subgroup of \(F^*\) of index \(e\). If the Cayley graph on \(F\) with difference set \(D\) is strongly regular, then one of the following holds:
7.3. CYCLOTOMY

(i) (subfield case) \(D \) is the multiplicative group of a subfield of \(F \).

(ii) (semiprimitive case) There exists a positive integer \(l \) such that \(p^l \equiv -1 \pmod{e} \).

(iii) (exceptional case) \(|F| = p^l \), and \((e, p, f)\) takes one of the following eleven values: \((11, 3, 5), (19, 5, 9), (35, 3, 12), (37, 7, 9), (43, 11, 7), (67, 17, 33), (107, 3, 53), (133, 5, 18), (163, 41, 81), (323, 3, 144), (499, 5, 249)\).

In each of the mentioned cases the graph is strongly regular. See also below. Since \(F^* \) has a partition into cosets of \(D \), the point set of the projective space \(PF \) is partitioned into isomorphic copies of the two-intersection set \(X = \{ (d) \mid d \in D \} \).

7.3 Cyclotomy

More generally, the difference set \(D \) can be a union of cosets of a subgroup of \(F^* \), for some finite field \(F \). Let \(F = \mathbb{F}_q \) where \(q = p^l \), \(p \) is prime, and let \(e \mid q - 1 \), say \(q = em + 1 \). Let \(K \subseteq \mathbb{F}_q^* \) be the subgroup of the \(e \)-th powers (so that \(|K| = m\)). Let \(\alpha \) be a primitive element of \(\mathbb{F}_q \). For \(J \subseteq \{0, 1, \ldots, e - 1\} \) put \(u := |J| \) and \(D := D_J := \{ \alpha^i \mu \mid j \in J \} = \{ \alpha^{ie+j} \mid j \in J, 0 \leq i < m \} \).

Define a graph \(\Gamma = \Gamma_J \) with vertex set \(\mathbb{F}_q \) and edges \((x, y)\) whenever \(y - x \in D \). Note that \(\Gamma \) will be undirected if \(q \) is even or \(e|(q - 1)/2 \).

As before, the eigenvalues of \(\Gamma \) are the sums \(\sum_{d \in D} \chi(d) \) for the characters \(\chi \) of \(F \). Their explicit determination requires some theory of Gauss sums. Let us write \(A\chi = \theta(\chi) \chi \). Clearly, \(\theta(1) = mu \), the valency of \(\Gamma \). Now assume \(\chi \neq 1 \). Then \(\chi = \chi_g \) for some \(g \), where

\[
\chi_g(\alpha^j) = \exp\left(\frac{2\pi i}{p} \text{tr}(\alpha^{ij+g})\right)
\]

and \(\text{tr}: \mathbb{F}_q \to \mathbb{F}_p \) is the trace function. If \(\mu \) is any multiplicative character of order \(e \) (say, \(\mu(\alpha^j) = \zeta^i \)), where \(\zeta = \exp(\frac{2\pi i}{e}) \), then

\[
\sum_{i=0}^{e-1} \mu^i(x) = \begin{cases}
 e & \text{if } \mu(x) = 1 \\
 0 & \text{otherwise}.
\end{cases}
\]

Hence,

\[
\theta(\chi_g) = \sum_{d \in D} \chi_g(d) = \sum_{j \in J} \sum_{\mu} \chi_{j+g}(y) = \frac{1}{e} \sum_{j \in J} \sum_{x \in \mathbb{F}_q^*} \chi_{j+g}(x) \sum_{i=0}^{e-1} \mu^i(x) =
\]

\[
= \frac{1}{e} \sum_{j \in J} (-1 + \sum_{i=1}^{e-1} \chi_{j+g}(x) \mu^i(x)) = \frac{1}{e} \sum_{j \in J} (-1 + \sum_{i=1}^{e-1} \mu^{-i}(\alpha^{ij+g})G_i)
\]

where \(G_i \) is the Gauss sum \(\sum_{x \neq 0} \chi_0(x) \mu^i(x) \).

In a few cases these sums can be evaluated.

Proposition 7.3.1 (Stickelberger and Davenport & Hasse; see [553])
Suppose $e > 2$ and p is semiprimitive mod e, i.e., there exists an l such that $p^l \equiv -1 \pmod{e}$. Choose l minimal and write $f = 2lt$. Then

$$G_i = (-1)^{t+1}\epsilon i t \sqrt{q},$$

where

$$\epsilon = \begin{cases}
-1 & \text{if } e \text{ is even and } (p^l + 1)/e \text{ is odd} \\
+1 & \text{otherwise}.
\end{cases}$$

Under the hypotheses of this proposition, we have

$$\sum_{i=1}^{e-1} \mu^{-1}(\alpha^{i+n})G_i = \sum_{i=1}^{e-1} \zeta^{i-1}(\alpha^{i+n})(-1)^{t+1}\epsilon i t \sqrt{q} = \begin{cases}
(-1)^{t+1}\sqrt{q} & \text{if } r \neq 1, \\
(-1)^{t+1}\sqrt{q}(e-1) & \text{if } r = 1,
\end{cases}$$

where $r = r_{g,j} = \zeta^{-j-g}e^t$ (so that $r^e = \epsilon r^t = 1$), and hence

$$\theta(\chi_{g}) = \frac{u}{e}(-1 + (-1)^t \sqrt{q}) + (-1)^{t+1} \sqrt{q} : \#\{j \in J \mid r_{g,j} = 1\}.$$

If we abbreviate the cardinality in this formula with $\#$: then if $e^t = 1$ then $\# = 1$ if $g \in -J \pmod{e}$, and $\# = 0$ otherwise. If $e^t = -1$ (then e is even and p is odd) then $\# = 1$ if $g \in \frac{1}{e} - J \pmod{e}$, and $\# = 0$ otherwise. We proved:

Theorem 7.3.2 ([54], [146]) Let $q = p^f$, p prime, $f = 2lt$ and $e | p^l + 1 | q - 1$. Let $u = |J|$, $1 \leq u \leq e - 1$. Then the graphs Γ_J are strongly regular with eigenvalues

\[k = \frac{u-1}{e} \quad \text{with multiplicity } 1, \]

\[\frac{u}{e}(-1 + (-1)^t \sqrt{q}) \quad \text{with multiplicity } q - 1 - k, \]

\[\frac{u}{e}(-1 + (-1)^t \sqrt{q}) + (-1)^{t+1} \sqrt{q} \quad \text{with multiplicity } k. \]

The above construction can be generalized.

7.3.1 The Van Lint-Schrijver graphs

Van Lint & Schrijver [524] use the above setup in case e is an odd prime, and p primitive mod e (so that $l = (e-1)/2$ and $f = (e-1)t$), and notice that the group G consisting of the maps $x \mapsto ax^{b^t} + b$, where $a \in K$ and $b \in F$ and $i \geq 0$ acts as a rank 3 group on F. Thus one obtains rank 3 graphs for $u = 1$, and strongly regular graphs for arbitrary u.

7.3.2 The Hill graph

The cap of size 78 in \mathbb{F}_q^6 found by Hill [428] corresponds to a strongly regular graph with parameters $(4096, 234, 2, 14)$. It is obtained from the above setup for $q = 2^{12}$, $e = 35$, and $J = \{0, 7\}$.

7.3.3 The De Lange graphs

De Lange [510] found that one gets strongly regular graphs in the following three cases (that are not semiprimitive).

<table>
<thead>
<tr>
<th>p</th>
<th>f</th>
<th>e</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>20</td>
<td>${0, 1, 4, 8, 11, 12, 16}$</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>16</td>
<td>${0, 1, 2, 8, 10, 11, 13}$</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>45</td>
<td>${0, 5, 10}$</td>
</tr>
</tbody>
</table>

This latter graph can be viewed as a graph with vertex set \mathbb{F}_q^6 for $q = 16$ such that each vertex has a unique neighbor in each of the $q^2 + q + 1 = 273$ directions.
7.3.4 Generalizations

The examples given by De Lange and by Ikuta & Munemasa [453, 454] ($p = 2, f = 20, e = 75, J = \{0, 3, 6, 9, 12\}$ and $p = 2, f = 21, e = 49, J = \{0, 1, 2, 3, 4, 5, 6\}$) and the sporadic cases of the Schmidt-White Conjecture 7.2.1 were generalized by Feng & Xiang [322], Ge, Xiang & Yuan [340], Momihara [568], Wu [745], Momihara & Xiang [570], and Momihara [569], who find several further infinite families of strongly regular graphs. The first two papers use results on Gauss sums for the case when p does not contain -1 but has index 2 or 4 in $\mathbb{Z}/(\mathbb{Z}/2\mathbb{Z})^*$. Momihara [568] uses relative Gauss sums. Wu [745] treats the case of higher even index. Momihara [569] generalizes [44] (but has a typo in the stated values for λ, μ; for example, the sporadic graph found on the last page has parameters $(v, k, \lambda, \mu) = (q^2, r(q+1), -q+r(r+3), r(r+1))$, where $q = 7^7$ and $r = 35(q - 1)/58$.

For more on Gauss sums, see the monograph [62].

7.3.5 Amorphic association schemes

An association scheme $(X, \{R_0, \ldots, R_d\})$ with d classes is called amorphic if every fusion $(X, \{S_0, \ldots, S_l\})$ (where $R_0 = S_0$ is the identity relation, the S_i partition $X \times X$, and each S_i is the union of some R_j) is again an association scheme. In an amorphic association scheme all relations are strongly regular graphs. The setting of Theorem 7.3.2 yields amorphic association schemes with e classes. For a survey, see Van Dam & Muzychuk [253].

7.3.6 Self-complementary graphs and Peisert graphs

A graph is called self-complementary when it is isomorphic to its complement. For example, the path P_4 (with 4 vertices and 3 edges) is self-complementary. Mathon [548] found all self-complementary strongly regular graphs on at most 49 vertices. For earlier work, see Rosenberg [631].

A graph is called symmetric when its group is transitive on its vertices and edges. Of course a self-complementary symmetric graph is strongly regular. Peisert [613] classified the self-complementary symmetric graphs. These turn out to be (i) the Paley graphs, (ii) the graphs Γ_{J} constructed above for $q = p^m$, where $p \equiv 3 \pmod{4}$, $e = 4$, and $J = \{0, 1\}$ so that $u = 2, l = 1$, and (iii) one graph on 23^2 vertices. We call these the Paley graphs of order q, the Peisert graphs of order q, and the sporadic Peisert graph. For (i) and (iii), see §7.4.4 and §10.70. In case (ii), the full automorphism group has size $f(q(q - 1))/4$ for $q = p^l$, $q \neq 3^2, 7^2, 3^4$ and is 2, 3, 6 times as large in the three exceptional cases.

7.4 One-dimensional affine rank 3 groups

Let q be a prime power, say $q = p^r$, where p is prime. Consider the 1-dimensional semilinear group $G = \Gamma L(1, q)$ acting on the nonzero elements of F_q. It consists of the maps $t_{a, \sigma} : x \mapsto ax^\sigma$, where $a \neq 0$ and $\sigma = p^l$.

Foulser & Kallaher ([330], §3) determined which subgroups H of G have precisely two orbits. We need some preparation.
7.4.1 Divisibility

For a prime \(p \), let \(p^a \| x \) mean that \(p^a \mid x \) and \(p^{a+1} \nmid x \).

Lemma 7.4.1 Let \(x, s, t, a \) be integers with \(x > 1, s, t > 0 \) and \(a \geq 0 \). Let \(u \) be an odd prime such that \(u \mid x^a - 1 \) and \(u \nmid t \). Then \(u^a \mid (x^{sta} - 1)/(x^a - 1) \).

Proof. Since
\[
\frac{x^{sta} - 1}{x^a - 1} = \frac{x^{sta} - 1}{x^{stu} - 1} \cdots \frac{x^{stu} - 1}{x^{s} - 1}
\]
it suffices to consider the case \(a = 1, t = 1 \) and the case \(a = 0 \). Write \(x^a = ku + 1 \). Then
\[
(x^{s} - 1)/(x^a - 1) = ((1 + ku)^s - 1)/(ku) = \sum_{i=1}^{\infty} (i)(ku)^{i-1},
\]
and this is congruent \(u \) (mod \(u^2 \)) for \(e = u \), and congruent \(t \) (mod \(u \)) for \(e = t \). \(\Box \)

For \(u = 2 \) one has \(((1 + 2k)^2 - 1)/(2k) = 2 + 2k \), which has additional factors 2 when \(k \) is odd.

Lemma 7.4.2 Let \(x, s, t, a \) be integers with \(x > 1 \) and \(s, t, a > 0 \). If \(x \) and \(t \) are odd and \(2^{s+1} \| x^s + 1 \), then \(2^{s+1} \| ((x^{st} - 1)/(x^a - 1)) \).

Lemma 7.4.3 Let \(x > 1 \) and \(s, m > 0 \) be integers such that each prime divisor of \(m \) divides \(x^a - 1 \). Then \(m \mid (x^{ms} - 1)/(x^a - 1) \).

We shall write \(\text{ord}_m x \) for the order of \(x \) in the multiplicative group (of order \(\phi(m) \)) of residues mod \(m \), coprime with \(m \).

7.4.2 Subgroups of \(\Gamma L(1, q) \) with two orbits

Let \(q = p^r \), where \(p \) is prime, and let \(H \) be a subgroup of \(\Gamma L(1, q) \). It acts on \(\mathbb{F}_q^* \).

In this section we determine in what cases this action has precisely two orbits. All results are due to FOULSER & KALLAHER [330].

Lemma 7.4.4 Let \(H \) be a subgroup of \(\Gamma L(1, q) \). Then \(H = \langle t_{b,0} \rangle \) for suitable \(b \), or \(H = \langle t_{b,0}, t_{c,s} \rangle \) for suitable \(b, c, s \), where \(s \mid r \) and \(c^{(q-1)/(p^r-1)} \in \langle b \rangle \).

Proof. The subgroup of all elements \(t_{a,0} \) in \(H \) is cyclic and has a generator \(t_{b,0} \). If this was not all of \(H \), then \(H/(t_{b,0}) \) is cyclic again, and has a generator \(t_{c,s} \) with \(s \mid r \). Since \(t_{c,s}^i = t_{c,si} \), where \(j = 1 + p^s + p^{2s} + \cdots + p^{(i-1)s} \), it follows for \(i = r/s \) that \(c^{(q-1)/(p^r-1)} \in \langle b \rangle \). \(\Box \)

Theorem 7.4.5 \(H = \langle t_{b,0} \rangle \) has two orbits if and only if \(q \) is odd and \(H \) consists precisely of the elements \(t_{a,0} \) with \(a \) a square in \(\mathbb{F}_q^* \).

Proof. Let \(b \) have multiplicative order \(m \). Then \(m \mid (q - 1) \), and \(\langle t_{b,0} \rangle \) has \(d \) orbits, where \(d = (q - 1)/m \). \(\Box \)

Let \(b \) have order \(m \) and put \(d = (q - 1)/m \). Choose a primitive element \(\omega \in \mathbb{F}_q^* \) with \(b = \omega^d \). Let \(e = \omega^d \).
Theorem 7.4.6 \(H = \langle t_{b,0}, t_{c,s} \rangle \) (where \(s \mid r \) and \(d \mid e(q-1)/(p^s-1) \)) has two orbits of different lengths \(n_1, n_2 \), where \(n_1 < n_2, n_1 + n_2 = q - 1 \), if and only if

1. \(n_1 = m_1m, \) where \((1) \) the prime divisors of \(m_1 \) divide \(p^s - 1 \), and \((2) \) \(v := (q-1)/n_1 \) is an odd prime, and \(p^{m_1} \) is a primitive root mod \(v \), and
2. \(\gcd(e, m_1) = 1 \), and
3. \(m_1 s(v-1) \not| r \).

Proof. Let \(P_0, \ldots, P_{d-1} \) be the orbits (of size \(m \)) each of \(\langle t_{b,0} \rangle \). Then \(t_{c,s} \) permutes the \(P_i \). The group \(H \) will have two orbits of lengths \(n_1, n_2 \) precisely when \(\langle t_{c,s} \rangle \) has two orbits on \(\{ F_0, \ldots, P_{d-1} \} \) of lengths \(m_1, m_2 \), where \(n_1 = m_1 m, n_2 = m_2 m \).

Recall that \(t_{c,s}^i = t_{c,s}^j \), where \(j = (p^s-1)/(p^s-1) \). The element \(t_{c,s}^i \) fixes \(P_k \) (where \(\omega^k \in P_k \)) if and only if \(d \) \(\not| \) \(e j + k(p^s-1) \). Let \(g = \gcd(d, p^s-1) \). There are fixed \(P_k \) only when \(g \mid e j \), and if this is the case there are precisely \(g \) fixed sets \(P_k \).

For \(i = m_1 \) the element \(t_{c,s}^i \) fixes precisely \(m_1 \) of the \(P_k \), and we find \(m_1 = \gcd(d, p^{m_1} - 1) \mid e j \) = \(e(p^s-1)/(p^s-1) \). In particular, \(m_1 \mid d \).

(1) For \(i < m_1 \) the element \(t_{c,s}^i \) fixes no \(P_k \), so \(\gcd(d, p^s-1) \not| \) \(e(p^s-1)/(p^s-1) \). Let \(k_1 \) (resp. \(k_2 \)) be the products of the prime powers \(u^e \) in \(m_1 \) where \(u \) does (resp. does not) divide \(p^s-1 \). Then \(m_1 = k_1 k_2 \), and \(k_1 \mid (p^s-1)/(p^s-1) \) by Lemma 7.4.3. In order to show (1) we have to show that \(m_1 = k_1 \). If not, then \(k_1 < m_1 \) and we can use the nondivisibility for \(i = k_1 \). Since \(k_1 \mid m_1 \), we can write \(\gcd(d, p^{k_1} - 1) = k_1 k_3 \), where \(k_3 \mid k_2 \) since \(\gcd(d, p^{k_1} - 1) \mid \gcd(d, p^{m_1} - 1) = m_1 = k_1 k_2 \). It follows that the primes in \(k_3 \) are not in \(p^s - 1 \), so that \(k_3 \mid (p^{k_1} - 1)/(p^s-1) \), contradicting the nondivisibility.

(2) Since \(v = (q-1)/n_1 = d/m_1 \), this is an integer, and \(m_2 = (v-1)m_1 \), so \(v > 2 \). The element \(t_{c,s}^{m_1} \) fixes precisely \(m_1 \) of the \(P_k \) for \(1 \leq i \leq 2 \), but fixes them all for \(i = v - 1 \). It follows that \(\gcd(d, p^{m_1} - 1) = m_1 \) for \(1 \leq i \leq 2 \), and \(\gcd(d, p^{v-1}m_1 - 1) = d \). If \(\gcd(m_1, v) = 1 \), this says that \(\ord_{p^s-1} = v - 1 \), so that \(v - 1 \leq \phi(v) \), and \(v \) is prime, as desired. Let \(u \) be a prime factor of \(\gcd(m_1, v) \), so that \(d \) contains more factors \(u \) than \(m_1 \). Then \(u(p-1) - 1 \) by (1), and if \(u \not= 2 \) then by Lemma 7.4.1 \((v-1)m_1 \) contains more factors \(u \) than \(m_1 \), so that \(u \mid v - 1 \), a contradiction. Hence \(u = 2 \). Since \(p^{m_1} - 1 \) contains more factors \(2 \) than \(p^{m_1} - 1 \), we have \(v = 3 \), contradicting \(u \mid v \).

From \(\ord_{p^s-1} = v - 1 \) it follows immediately that \(\gcd(m_1 s, v - 1) = 1 \), so that \(m_1, s \) and \(d \) are all odd. We saw that \(\gcd(m_1, v) = 1 \).

(3) Let \(u \) be a prime factor of \(\gcd(m_1, e) \) and \(i = m_1/u \). Then \(i \) is odd, and all prime factors of \(i \) divide \(p^s - 1 \). By Lemma 7.4.3, \(\gcd(d, p^{(v-1)i} - 1) = m_1 = ui \mid (p^s - 1)/(p^{s-1}) \), contradicting nondivisibility for \(i \).

(4) The orbit size \(m_2 = m_1(v-1) \) divides the order of \(t_{c,s} \) in its action on the \(P_k \), which is \(r/s \).

That proved the necessity of (0)–(4). Conversely, assume (0)–(4). We investigate the number of fixed sets \(P_k \) under the action of \(t_{c,s}^i \) for different \(i \).

First, look at \(i = m_1 \) with \(1 \leq w < v - 1 \). By (1) and Lemma 7.4.3, \(m_1 \mid (p^{m_1} - 1)/(p^s - 1) \), and by (2) it is \(p^s - 1 \), and since \(d = m_1 \) it follows that \(\gcd(d, p^s - 1) = m_1 \). It follows that for \(i \) the element \(t_{c,s}^i \) fixes precisely \(m_1 \) of the sets \(P_k \).

Next, look at \(i = m_1(v-1) \). We have \(\gcd(d, p^s - 1) = d \mid (p^s - 1)/(p^s - 1) \) so the element \(t_{c,s}^i \) fixes all sets \(P_k \).
Finally, consider the case $m_1 \mid i$. Let u be a prime with $u^a \mid m_1$ and $u^b \mid i$ with $b < a$. Then u is odd since, as we saw, (2) implies that m_1 is odd; also, by (3), $u \nmid e$. Now $u^{b+1} \mid \gcd(d, p^{a_1} - 1)$ and $u^b \mid e(p^{a_1} - 1)/(p^b - 1)$ so that there are no fixed sets P_k for these i.

Since $d = m_1 + (v - 1)m_1$, it follows that $t_{e,s}$ has precisely two orbits (of lengths m_1 and $(v - 1)m_1$) on \{P_0, \ldots, P_{d-1}\}.

That settled the case of two orbits of different lengths. Next consider that of two orbits of equal length. As before, let b have order m and put $d = (q - 1)/m$.

Choose a primitive element $\omega \in \mathbb{F}_q^*$ with $b = \omega^a$. Let $c = \omega^e$.

Theorem 7.4.7 $H = \langle t_{b,0}, t_{e,s} \rangle$ (where \mid r \text{ and } d \mid e(q - 1)/(p^b - 1)$ has exactly two orbits of the same length $(q - 1)/2$ if and only if (0) $(q - 1)/2 = m_1 m$, (1) the prime divisors of $2m_1$ divide $p^s - 1$, (2) no odd prime divisor of m_1 divides e, (3) $m_1 \mid r$, (4) one of the following cases applies: (i) m_1 is even, $p^s \equiv 3 \pmod{8}$, and e is odd, (ii) $m_1 \equiv 2 \pmod{4}$, $p^s \equiv 7 \pmod{8}$, and e is odd, (iii) m_1 is even, $p^s \equiv 1 \pmod{4}$, and $e \equiv 2 \pmod{4}$, (iv) m_1 is odd and e is even.

Proof. As before, let P_0, \ldots, P_{d-1} be the orbits (of size m) of \{t_{b,0}\}. The group H will have two orbits of equal length $(q - 1)/2$ precisely when \{t_{e,s}\} has two orbits on \{P_0, \ldots, P_{d-1}\} of equal length $m_1 = d/2$, where $(q - 1)/2 = m_1 m$.

Recall that $t_{e,s} = t_{e,s}^j$ where $j = (p^{a_1} - 1)/(p^b - 1)$. The element $t_{e,s}$ fixes P_k if and only if $d | ej + k(p^b - 1)$.

Let $g = \gcd(d, p^{a_1} - 1)$. There are fixed P_k only when $g | ej$, and if this is the case there are precisely g fixed sets P_k.

For $i = m_1$ all P_k are fixed, so $d \mid p^{a_1} - 1$ and $d \mid e(p^{a_1} - 1)/(p^b - 1)$. We shall use twice below that if u is an odd divisor of m_1, then all factors 2 in d are in $e(p^{a_1}/u^{(a_1/u)}) - 1)/(p^b - 1)$, since $(p^{a_1} - 1)/(p^{a_1}/u^{(a_1/u)}) - 1$ is odd.

(1) Since $q - 1$ is even, p is odd. Let k_1 (resp. k_2) be the products of the prime powers u^b in m_1 where u does (resp. does not) divide $p^b - 1$. Then $m_1 = k_1 k_2$, and $k_1 | (p^{b_1} - 1)/(p^b - 1)$ by Lemma 7.4.3. Since $2 k_1 | d$ and $2 k_1 | p^{b_1} - 1$, we can write $\gcd(d, p^{b_1} - 1) = 2 k_1 k_3$ where $k_3 | k_2$ since $\gcd(d, p^{b_1} - 1) \mid \gcd(d, p^{m_1} - 1) = 2 m_1 = 2 k_2 k_3$. It follows that the primes in k_3 are not in $p^b - 1$, so that $\gcd(d, p^{b_1} - 1) = 2 k_3 | e(p^{b_1} - 1)/(p^b - 1)$, since k_3 is odd. This shows that for $i = k_1$ the element $t_{e,s}^j$ has fixed points, and therefore $k_1 = m_1$.

(2) Let u be an odd prime factor of $\gcd(m_1, e)$. By part (1), $2u | p^b - 1$. Let $i = m_1/u$. By Lemma 7.4.3, $i | (p^b - 1)/(p^b - 1)$, so that $d = 2ui | p^b - 1$. Then $\gcd(d, p^b - 1) = 2ui | e(p^b - 1)/(p^b - 1)$ contradicting nondivisibility.

(3) The orbit size m_1 divides the order of $t_{e,s}$ in its action on the P_k, which is r/s.

(4) Since $d | e(p^{a_1} - 1)/(p^b - 1)$ and d is even, e must be even if m_1 is odd (case (iv)). Let m_1 be even. Write $2^a | m_1$ with $a \geq 1$, so that $2^{a+1} | d$. Let $2^{a+1} | (p^{a+1} + 1)$ and $2 | e$ and $2^{b+1} | (p^b - 1)$. Then $b + h \geq 2$ since $8 (p^2 - 1)$. Since $\gcd(d, p^{b+1}) - 1 \mid e(p^{b+1} - 1)/(p^b - 1)$, the LHS has a single factor 2 more than the RHS. If $a \geq 2$, then $2^{a-1+b+c} | e(p^{b+1} - 1)/(p^b - 1)$, and $\gcd(d, p^{b+1}) - 1 \mid d$ (since $p^{b+1} - 1$ is divisible by $m_1/2 = d/4$ and by $2^{a-1+b+c}$, so $a + b + c = a + 1$, and we have case (i) or (iii). If $a = 1$, so that $m_1/2$ is odd, then $c + 1 = \min(2, h)$. Now if $b = 0$ then $c = 1$, case (iii). If $b = 1$ then $c = 0$, case (i). If $b \geq 2$, we have case (ii).

That proved the necessity of (0)--(4). Conversely, assume (0)--(4). By (1), p is odd. We investigate the number of fixed sets P_k under the action of $t_{e,s}^i$ for different i.

First, look at $i = m_1$. We want to show that all P_k are fixed, that is, that (a) $\gcd(d, p^{m_1 s} - 1) = d$ and (b) $d|e(p^{m_1 s} - 1)/(p^s - 1)$. By (1) and Lemma 7.4.3 we have $m_1|(p^{m_1 s} - 1)/(p^s - 1)$. Since $d = 2m_1$ and p is odd, this implies (a). For (b) we only have to check the powers of 2. If e is even, then it provides the needed extra factor 2. Otherwise, by (4), m_1 is even and $4|p^s + 1$, and we are done by Lemma 7.4.2.

Next, look at $i = m_1/u$ where u is prime. We want to show that no P_k is fixed, that is, that $\gcd(d, p^{i s} - 1) \nmid e(p^{i s} - 1)/(p^s - 1)$. If u is odd, then this nondivisibility follows from (1) and (2) and Lemma 7.4.1. If $u = 2$, nondivisibility follows from (4). It follows that the orbit of each P_k has size m_1.

7.4.3 One-dimensional affine rank 3 groups

Let $q = p^r$ be a prime power, where p is prime. Consider the group $G = \text{AGL}(1, q)$ consisting of the semilinear maps $x \mapsto ax^\sigma + b$ on F_q. Let T be the subgroup of size q consisting of the translations $x \mapsto x + b$. The previous section provides a classification of the rank 3 subgroups of G that contain T.

The graphs from Theorem 7.4.5 are the Paley graphs, discussed further below in §7.4.4. The (rank 3) Van Lint-Schrijver graphs from §7.3.1 are the special case of Theorem 7.4.6 where $s = 1$, $e = 0$, $m_1 = 1$. The Peisert graphs from §7.3.6 are the special case of Theorem 7.4.7 where $s = 1$, $e = 1$, $m_1 = 2$, $d = 4$.

Muzychuk [581] determined all graphs Γ with vertex set F_q such that $G \cap \text{Aut}\Gamma$ acts as a rank 3 group on Γ, and finds that these are the Paley graphs, the Van Lint-Schrijver graphs (and complements), and the Peisert graphs.

7.4.4 Paley graphs

Construction

The Paley graph of order q has as vertex set the finite field F_q of order q, where $q \equiv 1 \pmod 4$, and two vertices are adjacent when their difference is a square in the field.

Parameters

The Paley graph $P(q)$ of order $q = 4t + 1$ is strongly regular with parameters $(v, k, \lambda, \mu) = (4t + 1, 2t, t - 1, t)$. It has eigenvalues k and $(-1 \pm \sqrt{q})/2$ with multiplicities 1 and $(q - 1)/2$ (twice).

Automorphism group

Let $q = p^r$ where p is prime. The full group of automorphisms of $P(q)$ consists of the maps $x \mapsto ax^\sigma + b$ where $a, b \in F_q$, a a nonzero square, and $\sigma = p^i$ with $0 \leq i < e$ (Carlitz [186]). It has order $e(q - 1)/2$.

The Paley graph $P(q)$ is self-complementary. The map $x \mapsto ax$, where a is a nonsquare, maps $P(q)$ to its complement.

The subgraph Π of $P(q)$ induced on the neighbors of 0 has full automorphism group consisting of the maps $x \mapsto ax^{\pm \sigma}$ where a is a nonzero square and $\sigma = p^i$ with $0 \leq i < e$ (Muzychuk & Kovács [582]). It has order $e(q - 1)$ for $q > 9$. For
\(q = 5 \) and \(q = 9 \) the group is only half as large because in the first case \(x \mapsto x^{-1} \) is the identity, while in the second case \(x \mapsto x^{-1} \) is the field automorphism \(x \mapsto x^3 \).

When \(q = p \) is prime, the Paley graph has a regular cyclic group of automorphisms. There are no other such primitive strongly regular graphs ([489], [108]). See also [109].

Independence and chromatic numbers

Since the Paley graphs are self-complementary, bounds for cliques are equivalent to bounds for cocliques.

The Hoffman upper bound for the size of cliques and cocliques is \(\sqrt{q} \). If \(q \) is a square then the subfield of size \(\sqrt{q} \) is a clique of this size, and Blokhuis [72] showed that every clique or coclique of size \(\sqrt{q} \) is the affine image of a subfield. The translates of this subfield form a partition into cliques (hence a partition into cocliques for the complementary graph). One finds that if \(q \) is a square, then the independence number \(\alpha \) and the chromatic number \(\chi \) are given by

\[
\alpha = \chi = \sqrt{q}.
\]

If \(q \) is prime, say \(q = p \), the best upper bound known is \(\alpha \leq \frac{1}{2}(\sqrt{2p-1} + 1) \) ([413], see also [290]). Equality holds for \(p = 5, 13, 41 \). For nonsquare prime powers \(q = p^{2e+1} \) a similar bound (a bit more than \(\sqrt{q/2} \)) was proved in [194].

Concerning lower bounds, one has \(\alpha > \left(\frac{1}{2} + o(1)\right) \log_2 q \) ([209]). For infinitely many primes \(q \) the smallest quadratic nonresidue is \(\Omega(\log \log \log q) \) ([362]), and this is a lower bound for \(\alpha \).

James Shearer [645] computed the independence numbers of the Paley graphs of order \(p \), \(p \) a prime, \(p < 7000 \). Geoffrey Exoo [313] extended that table beyond order 16000. Below we present a small table. The upper bounds on \(\chi \) come from an actual coloring, the lower bounds from \(\chi \geq \lceil v/\alpha \rceil \). The chromatic numbers for \(q = 125, 173 \), and \(q \geq 197 \) are due to G. Exoo. For \(q < 16000 \), the values of \(\alpha \) grow roughly like \(\frac{1}{10}(\log q)^2 \).

<table>
<thead>
<tr>
<th>(q)</th>
<th>5</th>
<th>9</th>
<th>13</th>
<th>17</th>
<th>25</th>
<th>29</th>
<th>37</th>
<th>41</th>
<th>49</th>
<th>53</th>
<th>61</th>
<th>73</th>
<th>81</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>(\chi)</td>
<td>101</td>
<td>109</td>
<td>113</td>
<td>121</td>
<td>125</td>
<td>137</td>
<td>149</td>
<td>157</td>
<td>169</td>
<td>173</td>
<td>181</td>
<td>193</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\chi)</td>
<td>229</td>
<td>233</td>
<td>241</td>
<td>257</td>
<td>269</td>
<td>277</td>
<td>281</td>
<td>293</td>
<td>313</td>
<td>317</td>
<td>14797</td>
<td>15461</td>
<td>14797</td>
<td>15461</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>27</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi)</td>
<td>26 or 27</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>34</td>
<td>35</td>
<td>41</td>
<td>37</td>
<td>40</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.4: Independence and chromatic numbers of small Paley graphs

\(p \)-rank

Let \(q = p^e \). We have \(\text{rk}_p (A + \frac{1}{2} I - bJ) = (\frac{p+1}{2})^e \) for all \(b \). See also §9.3.
Locally Paley graphs
For \(q = 5 \), the Paley graph is a pentagon, and the unique connected locally pentagon graph is the icosahedron. For \(q = 9 \) the Paley graph is the \(3 \times 3 \) grid, and there are precisely two connected locally \(3 \times 3 \) graphs, namely the Johnson graph \((\binom{6}{3})\) on 20 vertices, and the complement of the \(4 \times 4 \) grid on 16 vertices ([123], p. 258). For all \(q \neq 9 \) there is a unique connected locally \(P(q) \) graph, namely the Taylor extension of \(P(q) \). This graph is distance-transitive, with intersection array \(\{q, (q - 1)/2, 1; 1, (q - 1)/2, q\} \) (an antipodal 2-cover of the complete graph \(K_{q+1} \)) and with full automorphism group \(2 \times PSL(2, q) \), cf. [123], p. 15 and p. 228.

That these are all locally Paley graphs was shown for \(13 \leq q \leq 41 \) in [160], and for \(q > 41 \) in [119] under a hypothesis that was proved in [582].

Ramsey numbers
The Ramsey number \(R(m,n) \) is the minimum number of vertices \(v_0 \) such that any graph of size \(v \geq v_0 \) contains a clique of size \(m \) or a coclique of size \(n \). It follows that if \(P(q) \) has independence number \(\alpha \), then \(R(\alpha + 1, \alpha + 1) > q \) and (using the above locally Paley graphs) \(R(\alpha + 2, \alpha + 2) > 2q + 2 \). Using \(q = 5, 17, 101, 281 \) one finds \(R(3, 3) \geq 6, R(4, 4) \geq 18, R(6, 6) \geq 102, R(7, 7) \geq 205, R(8, 8) \geq 282, R(9, 9) \geq 565 \), and these are the sharpest bounds known today. See also [644].

Quasi-randomness
The Paley graphs \(P(q) \) are fully deterministic, but exhibit the behavior one expects from random graphs. This is caused by the large eigenvalue gap: the other eigenvalues are much smaller in absolute value than the valency. CHUNG, GRAHAM & WILSON [196] discuss a number of equivalent properties, each implying quasi-random behavior, where the Paley graphs satisfy these properties. See also [69], [84] and §8.17.2.

Name
JONES [467] has an extensive historical discussion about the naming of these graphs.

7.4.5 Power residue difference sets
Consider the graph with as vertex set the finite field \(\mathbb{F}_q \), where two vertices are adjacent when their difference is an \(e \)-th power. W.l.o.g. \(e | (q - 1) \), and in order to get an undirected graph we require that \(q \) is even or \(e | (q - 1)/2 \). Of course we get the Paley graphs for \(e = 2 \), so assume \(e > 2 \).

Below we give a small table of the cases with \(q \leq 2^{10} \) where this yields a connected strongly regular graph.

All of these are of the shape \(q = r^{2t} \), where \(r \) is a prime power, and \(e | r + 1 \), special cases of Theorem 7.3.2, with the single exception of \((q, e) = (243, 11)\). In particular, in all cases here except \((q, e) = (243, 11)\) one can take \(u \) disjoint copies of these graphs and get strongly regular graphs of valency \(u e \) for \(1 \leq u \leq e - 1 \), or take \(e \) disjoint copies and get \(K_q \).

Other examples exist, like \((q, e) = (3^{12}, 35)\). See also Conjecture 7.2.1.
CHAPTER 7. CYCLOTOMIC CONSTRUCTIONS

7.5 Icosahedrals

7.5.1 Orbits of A_5 on the projective line and plane

For $\tau = \frac{1}{2}(1 + \sqrt{5})$, consider the set $S = \{(0, \pm 1, \pm \tau), (\pm \tau, 0, \pm 1), (\pm 1, \pm \tau, 0)\}$ in \mathbb{R}^3. All inner products (x, y) for $y \neq \pm x$ equal $\pm \tau$, and we see that S is the set of 12 vertices of an icosahedron. Its isometry group $2 \times A_5$ has a matrix representation with entries in $\mathbb{Z}[\tau, \frac{1}{2}]$.

Let q be a prime power. The group $L_2(q)$ has subgroups A_5 if and only if $q \equiv 0, 1, 4 \pmod{5}$. Indeed, this is necessary, since $|A_5| = 60$ must divide $|L_2(q)|$, and suffices, since for these q the field \mathbb{F}_q contains an element τ satisfying $\tau^2 = \tau + 1$ and the above construction produces a 6-set in $\text{PG}(2, q)$ stabilized by a subgroup of A_5 of $O_3(q) \simeq L_2(q)$ if q is odd. Finally, $L_2(4) \simeq L_2(5) \simeq A_5$.

Such a 6-set in $\text{PG}(2, q)$ stabilized by A_5 is called an icosahedral.

Let q be odd. Then the plane $\text{PG}(2, q)$ is partitioned into the $q+1$ points of a conic, $\frac{q+1}{2}q(q+1)$ exterior points, and $\frac{q-1}{2}q(q-1)$ interior points. Consider the action of $A_5 < O_3(q)$. There are unique A_5-orbits of sizes 6, 10, and 15, and at most one orbit of sizes 12 and 20. The following table gives the conditions on q for each possible quadratic character of the points in these orbits.

<table>
<thead>
<tr>
<th>orbitsize</th>
<th>isotropic</th>
<th>exterior</th>
<th>interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0 (mod 5)</td>
<td>1 (mod 5)</td>
<td>- (mod 5)</td>
</tr>
<tr>
<td>10</td>
<td>3 (mod 6)</td>
<td>1 (mod 6)</td>
<td>- (mod 6)</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>1 (mod 4)</td>
<td>- (mod 4)</td>
</tr>
<tr>
<td>12</td>
<td>1 (mod 10)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>1 (mod 6)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The remaining orbits have sizes 30 or 60. For $q = 5, 9, 11, 19, 29, 59$, the group A_5 is transitive on the conic. For $q = 25, 31, 41, 49, 71, 79, 89$, the group A_5 has two orbits on the conic (of sizes $6 + 20, 12 + 20, 12 + 30, 20 + 30, 12 + 60, 20 + 60, 30 + 60$, respectively). It follows that in these cases one finds a rank 3 graph on q^2 vertices with one of these orbits at infinity.

For $q = 16, 64, 125$ the group A_5 has orbits of sizes 5 + 12, 5 + 60, 6 + 60 + 60 on the conic, where in the last case these are fused to 6 + 120 in S_5. Again this leads to rank 3 graphs.

See also §10.89D and Theorem 11.4.3.
7.6. BENT FUNCTIONS

7.5.2 Orbits of S_4 on the projective line

One can similarly look at S_4-orbits on the projective line $\text{PG}(1, q)$. The group $L_2(q)$ contains (two conjugacy classes of) subgroups S_4 precisely when $q \equiv \pm 1$ (mod 8). The group $\text{PGL}_2(q)$ contains (a single conjugacy class of) subgroups S_4 precisely when q is not a power of 2. The orbit sizes of S_4 on $\text{PG}(1, q)$ are uniquely determined by the fact that their sum is $q + 1$ and the sizes are among 4, 6, 8, 12, 24, where only 24 may be repeated and 4, 8 do not occur together. It follows that 4 occurs for $q \equiv 3, 9$ (mod 24), 6 occurs for $q \equiv 1$ (mod 4), 8 occurs for $q \equiv 1$ (mod 6), and 12 occurs for $q \equiv 1, 11, 17, 19$ (mod 24).

The group S_4 is transitive for $q = 3, 5, 7, 11, 23$. It has two orbits (with sizes determined by the above) for $q = 9, 13, 17, 19, 27, 29, 31, 47$. It follows that in these cases one finds a rank 3 graph on q^2 vertices with one of these orbits at infinity. For $q = 7, 23$ the single S_4-orbit splits into two A_4-orbits. Again that leads to rank 3 graphs. See also Theorem 11.4.4.

7.6 Bent functions

Bent functions are maximally nonlinear Boolean functions. They have applications e.g. in coding theory and cryptography.

Given $F: \mathbb{Z}_2^m \to \mathbb{R}$, let its Hadamard transform be the map $F^*: \mathbb{Z}_2^m \to \mathbb{R}$ defined by $F^*(w) = \sum_x (-1)^{(x,w)}F(x)$, where $(x, w) = \sum_x x_i w_i$. Then $F^{**} = 2^m F$. Given $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$, let its Walsh transform be F^*, where F is defined by $F(x) = (-1)^{f(x)}$.

A function $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ is called a bent function when the equation $f(x+a) - f(x) = b$ has 2^{m-1} solutions x for all nonzero a and all b. For $F(x) = (-1)^{f(x)}$ this means that $\sum_x F(x)F(x+a) = 0$ for all nonzero a.

Proposition 7.6.1 Equivalent are

(i) f is a bent function,
(ii) $|F^*(w)| = 2^m/2$ for all w,
(iii) the matrix $(F(x+y))_{x,y}$ is a Hadamard matrix.

Proof. That (i) \Leftrightarrow (iii) is clear from the definitions. We prove (i) \Leftrightarrow (ii). If $\sum_x F(x)F(x+a) = 0$ for $a \neq 0$, then $F^*(w)^2 = \sum_{x,y} (-1)^{(x+y,w)}F(x)F(y) = \sum_{x,a} (-1)^{(a,w)}F(x)F(x+a) = \sum_x F(x)^2 = 2^m$. Conversely, if $|F^*(w)| = 2^{m/2}$ for all w, then $2^m \sum_x F(x)F(x+a) = \sum_{x,w} F^*(v)F^*(w)(-1)^{(a,w)}(-1)^{(v+w,x)} = 2^m \sum_w (-1)^{(a,w)}F^*(w)^2 = 2^m \sum_w (-1)^{(a,w)} = 0$ if $a \neq 0$. \[\square\]

It follows that m is even. For $m = 2, 4, 6, 8, 10$ the number of bent functions is 2, 8, 896, 5425430528, 9927058926593347036575861242880 (according to OEIS [661] (A004491); the last number is from Langevin & Leander [512]).

Let $V = \mathbb{F}_2^n$ be the n-dimensional vector space over \mathbb{F}_2. The first order Reed-Muller code $RM(1, m)$ is the code C (with vectors indexed by V) generated by the all-one vector 1 together with the characteristic vectors of the hyperplanes in V. Now C has length 2^n, dimension $m + 1$, and minimum weight 2^{m-1}. The bent functions are the vectors at maximal distance from C. A bent function has distance $2^{m-1} \pm 2^{m/2-1}$ from each vector in C.
Given a function $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$, let $D = D_f = \{ x \in \mathbb{Z}_2^m \mid f(x) = 1 \}$. Let $\Gamma = \Gamma_D$ be the graph on \mathbb{Z}_2^m defined by the difference set D, so that $u \sim v$ when $v - u \in D$, i.e., when $f(v - u) = 1$. (Then Γ has loops if $f(0) = 1$.)

Proposition 7.6.2 (cf. [60], [61]) The spectrum of Γ consists of $|D|$ and the numbers $-\frac{1}{2} F^*(a)$ for $a \neq 0$. Suppose $f(0) = 0$. The graph Γ is strongly regular with $\lambda = \mu$ if and only if f is a bent function, and in that case has parameters $v = 2^m$, $k = 2^{m-1} + \varepsilon 2^{m/2-1}$, $\lambda = \mu = 2^{m-2} + \varepsilon 2^{m/2-1}$, and eigenvalues $r, s = \pm 2^{m/2-1}$ and multiplicities $f, g = 2^{m-1} \mp 2^{m/2-1} - \frac{1}{2}(1 \pm \varepsilon)$, where $\varepsilon \in \{\pm 1\}$.

Proof. For $\chi(d) = (-1)^{(a,d)}$ we find $\sum_{d \in D} \chi(d) = \frac{1}{2} \sum_a (-1)^{(a,x)}(1 - F(x)) = -\frac{1}{2} F^*(a)$ if $a \neq 0$. The two nontrivial eigenvalues of a strongly regular graph have the same absolute value precisely when $\lambda = \mu$. □

Of course the parameters here are those of $\overline{VO}_m^\varepsilon(2)$. The above large numbers show that there are many nonisomorphic examples.

There is a large literature, with many generalizations.
Chapter 8

Combinatorial constructions

This chapter collects constructions related to some combinatorial setting, where the starting point is not a group. It discusses e.g. Hadamard and conference matrices, Latin squares and various designs, partial geometries, two-graphs, and spherical designs.

8.1 Regular Hadamard matrices with constant diagonal

A Hadamard matrix is a matrix \(H \) of order \(n \) with entries \(\pm 1 \) such that \(HH^\top = nI \). It is called symmetric when \(H = H^\top \). It is called regular when all row sums are equal. If \(J \) denotes the all-1 matrix of order \(n \), then all row sums are \(a \) if and only if \(HJ = aJ \). (It follows that \(JH = aJ \) and \(a^2 = n \).) The matrix \(H = (h_{ij}) \) has constant diagonal when \(h_{ii} = e \) for all \(i \) and some fixed \(e \in \{\pm 1\} \). Abbreviate the phrase ‘regular symmetric Hadamard matrix with constant diagonal’ with RSHCD.

Let \(H \) be a RSHCD with parameters \(n, a, e \). Then \(a^2 = n \) so that \(a = \pm \sqrt{n} \). The matrix \(-H\) is a RSHCD with parameters \(n, -a, -e \), so that there are the two essentially distinct cases \(ae > 0 \) and \(ae < 0 \). Put \(ae = \varepsilon \sqrt{n} \) with \(\varepsilon \in \{\pm 1\} \), and call \(H \) of type \(\varepsilon \). If \(n > 1 \), then \(4|n \), so \(2|a \), say \(a = 2t \). Then \(A = \frac{1}{2}(J-eH) \) is the adjacency matrix of a strongly regular graph (complete for \((n, \varepsilon) = (4, -1)\)) with parameters

\[
\begin{align*}
v &= 4t^2, & k &= 2t^2 - \varepsilon t, & \lambda &= \mu = t^2 - \varepsilon t, \\
r &= t, & s &= -t, & f &= 2t^2 - t - (1 - \varepsilon)/2, & g &= 2t^2 + t - (1 + \varepsilon)/2.
\end{align*}
\]

And \(J - I - A = \frac{1}{2}(J + eH - 2I) \) is the adjacency matrix of the complementary strongly regular graph with parameters

\[
\begin{align*}
v &= 4t^2, & k &= 2t^2 + \varepsilon t - 1, & \lambda &= t^2 + \varepsilon t - 2, & \mu &= t^2 + \varepsilon t, \\
r &= t - 1, & s &= -t - 1, & f &= 2t^2 + t - (1 + \varepsilon)/2, & g &= 2t^2 - t - (1 - \varepsilon)/2.
\end{align*}
\]

Conversely, graphs with these parameters yield RSHCDs.

We see that \(A \) is the incidence matrix of a square \((4t^2, 2t^2 \pm t, t^2 \pm t)\)-design (and moreover is symmetric with zero diagonal). Designs with these parameters are known as Menon designs.
In [497] it is shown that the sum of the absolute values of the eigenvalues (the ‘energy’) of a graph on \(n \) vertices is at most \(n(\sqrt{n} + 1)/2 \), with equality precisely in the case of a graph corresponding to a RSHCD of negative type. See also [379].

8.1.1 Examples

Constructions for RSHCDs were discussed in [719] and [137]. However, not all details given there are correct, so we resurvey this area.

Let \(R \) be the set of pairs \((n, \varepsilon)\) for which an RSHCD of order \(n \) and type \(\varepsilon \) exists.

Section 8D of Brouwer & Van Lint [137] is about RSHCDs. It is the first place that kept track of the sign \(\varepsilon \) involved. It contains the recursive construction

\[
(m, \delta), (n, \varepsilon) \in R \Rightarrow (mn, \delta \varepsilon) \in R
\]

and six direct constructions:

(i) \((4, \pm 1), (36, \pm 1) \in R\).

(ii) If there exists a Hadamard matrix of order \(m \), then \((m^2, 1) \in R\) ([355], Theorem 4.4).

(iii) If both \(a - 1 \) and \(a + 1 \) are odd prime powers, and \(4|a \), then \((a^2, 1) \in R\) ([355], Theorem 4.3).

(iv) If \(a + 1 \) is a prime power, and there exists a symmetric conference matrix of order \(a \), then \((a^2, 1) \in R\) ([720], Corollary 17).

(v) If there is a set of \(t - 2 \) mutually orthogonal latin squares of order \(2t \), then \((4t^2, 1) \in R\).

(vi) Suppose we have a Steiner system \(S(2, K, V) \) with \(V = K(2K - 1) \). If we form the block graph, and add an isolated point, we get a graph in the switching class of a regular two-graph. The corresponding Hadamard matrix is symmetric with constant diagonal, but not regular. If this Steiner system is invariant under a regular abelian group of automorphisms (which necessarily has orbits on the blocks of sizes \(V, V \), and \(2K - 1 \)), then by switching with respect to a block orbit of size \(V \) we obtain a strongly regular graph with parameters

\[
v = 4K^2, \ k = K(2K - 1), \ \lambda = \mu = K(K - 1)
\]

showing that \((4K^2, 1) \in R\). Steiner systems \(S(2, K, K(2K - 1)) \) are known for \(K = 3, 5, 6, 7 \) or \(2^t \), but only for \(K = 2, 3, 5, 7 \) are systems known that have a regular abelian group of automorphisms. Thus we find \((196, 1) \in R\). The required switching set also exists when the design is resolvable: take the union of \(K \) parallel classes. Resolvable designs are known for \(K = 3 \) or \(2^t \). ([100], Theorem 2.2.)

See also Bose & Shrikhande [99], Goethals & Seidel [355], §4, and Wallis [719], §§5.3.

More recent constructions:
8.2 Conference matrices and conference graphs

Conference matrices

A conference matrix of order \(n \) is an \(n \times n \) matrix \(C \) with diagonal entries 0 and off-diagonal entries \(\pm 1 \) such that \(C^\top C = (n-1)I \). This property does not change if we multiply some rows or columns by \(-1\). Let a normalized conference matrix be such a matrix where the off-diagonal entries of the first row and column are all \(+1 \). Let \(S \) be the matrix obtained from a normalized conference matrix by deleting the first row and column. It is called the core of \(C \).
Theorem 8.2.1 (Goethals & Seidel [353]) If \(n > 1 \) then \(n \) is even. If \(n \equiv 2 \) (mod 4), then \(S = S^\top \). If \(n \equiv 0 \) (mod 4), then \(S = -S^\top \).

Proof. Since \(C^\top C = (n-1)I \) also \(CC^\top = (n-1)I \), and rows are mutually orthogonal. Rows 1 and 2 of \(C \) agree in \((n-2)/2 \) positions, so \(n \) is even, say \(n = 2m \). Normalize \(C \), and compare rows 2 and 3 in positions 4 up to \(n \). Let \(n_{\varepsilon\eta} \) be the number of these positions where row 2 has entry \(\varepsilon \) and row 3 \(\eta \), where \(\varepsilon, \eta \in \{+,-\} \). If \(C_{23} = 1 = -C_{32} \), then the orthogonality of rows 1 and 2 gives \(n_{+-} + n_{++} = m - 2 \); the orthogonality of rows 1 and 3 gives \(n_{--} + n_{++} = m - 2 \); and the orthogonality of rows 2 and 3 gives \(n_{--} + n_{++} = m - 2 \). Combining these three equations yields \(2n_{--} = m - 2 \), so that \(n \equiv 0 \) (mod 4).

Similarly, if \(C_{23} = C_{32} \), say \(C_{23} = C_{32} = 1 \), then \(n_{+-} + n_{++} = m - 2 \) and \(n_{--} + n_{++} = m - 1 \) and \(n_{--} + n_{++} = m - 2 \) so that \(2n_{--} = m - 1 \) and \(n \equiv 2 \) (mod 4).

Proposition 8.2.2 Let \(C = \begin{pmatrix} 0 & 1 \\ \pm 1 & S \end{pmatrix} \) be a conference matrix of order \(n + 1 \). Then \(S\otimes S + I\otimes J - J\otimes I \) is the core of a conference matrix of order \(n^2 + 1 \).

Proof. That \(C \) is a conference matrix of order \(n + 1 \), is expressed by \(SS^\top = nI - J, SJ = JS = 0, S^\top = \pm S \).

Conference graphs

Strongly regular graphs with ‘half case’ parameters \((v, k, \lambda, \mu) = (4t + 1, 2t, t - 1, t)\) are also known as conference graphs. If \(S \) is the Seidel matrix of such a graph (of order \(v \)), then bordering it with a first column and top row of 1’s, with 0 in the top left position, yields a symmetric conference matrix of order \(n = v + 1 \), and conversely, starting with a symmetric conference matrix and normalizing yields the Seidel matrix \(S \) of a strongly regular graph with ‘half case’ parameters.

Theorem 8.2.3 (Belevitch [57], see also Van Lint & Seidel [525])

If \((v, k, \lambda, \mu) = (4t + 1, 2t, t - 1, t)\) are the parameters of a strongly regular graph, then \(v \) is the sum of two squares.

For example, there is no strongly regular graph with parameters \((21, 10, 4, 5)\) because 21 is not the sum of two squares. Similarly, \(v = 33 \) is ruled out. Of course for all prime powers \(v = 4t + 1 \) one has the Paley graphs (and for \(v > 17 \) also further examples). The smallest example of a non-prime power \(v \) was given by Mathon [544], who constructed a family of examples including \(v = 45 \). An example for the next smallest case, \(v = 65 \), was constructed by Gritsenko [366]. The smallest open case is now \(v = 85 \). That is, it is unknown whether there exists a symmetric conference matrix of order 86. For a recent survey, see [37].

Switching

Given a conference matrix of order \(2m + 2 \), Proposition 8.2.2 yields conference graphs of order \((2m + 1)^2 \). We can apply Proposition 1.1.4 and switch w.r.t. the union of \(m \) pairwise disjoint \((2m + 1)\)-cliques and get strongly regular graphs with parameters \((v, k, \lambda, \mu) = ((2m + 1)^2 + 1, m(2m + 1), m^2 - 1, m^2)\). For example, we find graphs with parameters \((226, 105, 48, 49)\).
8.3 Symmetric designs

8.3.1 Generalities

A square design, or symmetric design, is a 2-(v, k, λ) design with equally many points as blocks. Thus, it has v blocks, and k blocks on each point, and λ(v−1) = k(k−1).

A necessary condition for existence is

Theorem 8.3.1 (Bruck, Chowla & Ryser [150, 195]) Suppose a symmetric 2-(v, k, λ) design exists. Then if v is even, k − λ is a square. If v is odd, then the equation \(X^2 = (k-λ)Y^2 + (-1)^{(v−1)/2}λZ^2\) has a nontrivial solution.

This theorem is the consequence of the matrix equation \(A^T A = (k-λ)I + λJ\) for the point-block incidence matrix A. The first part is easy, since \(k+λ(v-1) = k^2\), and \((\det A)^2 = (k + λ(v - 1))(k - λ)^{v-1}\) is a square. For the second part, see, e.g., [398], Theorem 10.3.1.

The adjacency matrix A of a strongly regular graph with \(μ = λ\) is the point-block incidence matrix of a symmetric 2-(v, k, λ) design. If \(μ = λ + 2\), then \(A + I\) is the point-block incidence matrix of a symmetric 2-(v, k + 1, λ + 2) design. Conversely, given such a design with a polarity where no (or all) points are absolute, we find a strongly regular graph again.

The Bruck-Chowla-Ryser theorem is really a result on rational matrices M satisfying \(M^T M = aI + bJ\). Now for a strongly regular graph with parameters \((v, k, λ, μ)\) if one puts \(M = 2A + (μ-λ)I\), then \(M^2 = ((μ-λ)^2 - 4(μ-k))I + 4μJ\), and one finds Theorem 8.2.3 again.

8.3.2 The McFarland difference sets

Let G be an abelian group, and D a subset such that \(|D ∩ (D + g)| = λ\) for all nonzero \(g ∈ G\). Then the design with point set G and set of blocks \(\{D + g \mid g ∈ G\}\) is a symmetric 2-(v, k, λ) design, where \(v = |G|\) and \(k = |D|\). One says that D has *multiplier* −1 when it is fixed under \(d ↦ → -d\). In that case the incidence matrix \(A = (A_{gh})\) indexed by points g and blocks \(D + h\) is symmetric. Now if \(0 \notin D\), then A is the adjacency matrix of a strongly regular graph with parameters \((v, k, λ, μ)\), and if \(0 ∈ D\), then \(A - I\) is the adjacency matrix of a strongly regular graph with parameters \((v, k - 1, λ - 2, μ)\).

Difference sets with multiplier −1 are rare, and McFarland conjectures that the only possible parameters are \((v, k, λ) = (4m^2, 2m^2 ± m, m^2 ± m)\) (so-called Hadamard difference sets) and \((v, k, λ) = (4000, 775, 150)\). In McFarland [554] examples with these latter parameters are constructed. From these one finds strongly regular graphs with the following parameters.

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4000</td>
<td>774</td>
<td>148</td>
<td>150</td>
</tr>
<tr>
<td>b</td>
<td>4000</td>
<td>775</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>c</td>
<td>4000</td>
<td>1935</td>
<td>910</td>
<td>960</td>
</tr>
<tr>
<td>d</td>
<td>4000</td>
<td>1984</td>
<td>1008</td>
<td>960</td>
</tr>
<tr>
<td>e</td>
<td>3999</td>
<td>1950</td>
<td>925</td>
<td>975</td>
</tr>
</tbody>
</table>

The McFarland construction is as follows. Let \(V\) be an \((s+1)\)-dimensional vector space over \(F_q\), let \(N = \frac{q^{s+1}-1}{q-1}\) be the number of hyperplanes in \(V\), and let \(K\) be any group of order
8.4 Latin squares

8.4.1 Generalities

A Latin square of order n is an $n \times n$ array, such that each of the n rows and n columns is a permutation of the same n-set. Two Latin squares A and B of the same order n are called orthogonal when the n^2 pairs of symbols (A_{ij}, B_{ij}) are distinct (and hence take all possible values). A set of m MOLS (mutually orthogonal Latin squares) of order n is a set of m Latin squares of order n, pairwise orthogonal.

$$
\begin{array}{ccc}
1234 & 1234 & 1234 \\
2143 & 3412 & 4321 \\
3412 & 4321 & 2143 \\
4321 & 2143 & 3412 \\
\end{array}
$$

Table 8.1: Three MOLS of order 4

A transversal design $TD(k; n)$ is a partial linear space with kn points and $k + n^2$ lines, with k lines (called groups) of size n forming a partition of the point set, and n^2 lines (called blocks) of size k, each meeting every group in a single point.

Lemma 8.4.1 A set of m MOLS of order n is equivalent to a $TD(m + 2; n)$.

Proof. Given a set of m MOLS A_h of order n ($1 \leq h \leq m$), let the $m + 2$ groups be indexed by $\{1, \ldots, m, r, c\}$, each containing a copy of the symbol set $\{1, \ldots, n\}$. Let the r^2 blocks correspond to the n^2 positions ij. Let the block belonging to ij contain the point $(A_h)_{ij}$ in group h, and points i, j in groups r, c. One checks that this gives a 1-1 correspondence.

Lemma 8.4.2 A set of m MOLS of order $n > 1$ does not exist for $m \geq n$. A set of $n - 1$ MOLS of order n is equivalent to a projective plane of order n together with a designated point.

Proof. Consider the corresponding $TD(m + 2; n)$. If P is a point outside a block B, then P is on n blocks, $m + 1$ of which meet B. Hence $m + 1 \leq n$. If $n = m + 1$ then any two blocks meet, and we obtain a projective plane of order n by adding a `point at infinity' to each group.

Let $N(n)$ be the maximum number of mutually orthogonal Latin squares of order n for $n \geq 2$. We see that $N(n) \leq n - 1$, and that $N(q) = q - 1$ for prime powers q. It was shown by Tarry [676] that $N(6) = 1$. Euler [309] conjectured that there do not exist two MOLS of order n for any $n \equiv 2 \pmod{4}$, but this was disproved by Bose & Shrikhande [98], and
together with Parker they proved that \(N(n) > 1 \) for \(n > 6 \) ([101]). It is known that \(N(12) \geq 5 \) ([466]) and \(N(14) \geq 4 \) ([700]). For a table with lower bounds on \(N(n) \), see [1]. Here a small table with lower bounds on \(N(n) \) for \(n < 100 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>22</td>
<td>7</td>
<td>24</td>
<td>4</td>
<td>26</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>30</td>
<td>31</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>36</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>7</td>
<td>40</td>
<td>5</td>
<td>42</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>46</td>
<td>10</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>52</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>60</td>
<td>5</td>
<td>8</td>
<td>63</td>
<td>7</td>
<td>5</td>
<td>66</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>70</td>
<td>6</td>
<td>70</td>
<td>7</td>
<td>72</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>78</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>80</td>
<td>8</td>
<td>82</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>88</td>
</tr>
<tr>
<td>90</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>96</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

There is some similarity with the problem of constructing sets of mutually unbiased bases (MUBs)\(^1\). If \(n \) factors as \(\prod q_i \) where the \(q_i \) are prime powers, and \(k = \min q_i + 1 \), then there exists a TD\((k;n)\) and also a set of \(k \) MUBs in \(\mathbb{C}^n \). The maximum number of mutually unbiased bases in \(\mathbb{C}^n \) is not larger than \(n + 1 \), just like \(k \leq n + 1 \) for a TD\((k;n)\) ([744]). See also [667].

A net of degree \(k \) and order \(n \) is a partial linear space with \(n^2 \) points and \(kn \) lines, each of size \(n \), where the lines are partitioned into \(k \) parallel classes.

Lemma 8.4.3 A net of degree \(k \) and order \(n \) is equivalent to a TD\((k;n)\).

Proof. The points and blocks and groups of the transversal design correspond to the lines and points and parallel classes of the net. \(\square \)

Yet another equivalent structure is that of an orthogonal array. An \(OA_l(n, q, t) \) is an \(n \times N \) array, where \(N = \lambda q^l \), with symbols in an alphabet of size \(q \), such that for any \(t \) rows each possible column occurs precisely \(\lambda \) times. One drops \(\lambda \) when \(\lambda = 1 \), and \(t \) when \(t = 2 \). An \(OA(n, q) \) is equivalent to a TD\((q;n)\).

8.4.2 Latin square graphs

Given a transversal design TD\((m;n)\) with \(2 \leq m \leq n \), we construct a graph known as a *Latin square graph* \(LS_m(n) \) by taking its blocks as vertices, where two blocks are adjacent when they meet. This graph is strongly regular with parameters \((v, k, \lambda, \mu) = (n^2, m(n-1), (m-1)(m-2) + n - 2, m(m-1)) \) and spectrum \(k^{\lambda} \left(n - m \right)^{\mu} \). When it has these parameters but is not necessarily derived from a transversal design. Such graphs are also called *pseudo Latin square graphs*. We say that a strongly regular graph has *Latin square parameters* \(LS_m(n) \) when it has these parameters but is not necessarily derived from a transversal design. Such graphs are also called *pseudo Latin square graphs*. We say that a strongly regular graph has *negative Latin square parameters* \(NL_m(n) \) when it has parameters \(LS_{m-n}(-n) \) (that is, \(v = n^2, k = m(n+1), \lambda = m(m+3) - n, \mu = m(m+1), r = m, s = m - n, f = (n+1)(n-1-m), g = m(n+1) \)).

The complementary graph of a graph with parameters \(LS_m(n) \) (and \(m < n \)) has parameters \(LS_{n-m+1}(n) \).

The graph \(LS_2(n) \) is the \(n \times n \) grid. It is uniquely determined by its parameters for \(n \neq 4 \). For \(2 < m < n - 1 \) there are many other graphs with the same parameters, for example because there are many nonisomorphic Latin squares and sets of mutually orthogonal Latin squares. But also other graphs with the same parameters exist.

\(^1\)Two bases \(\{u_i \mid 1 \leq i \leq n\} \) and \(\{v_j \mid 1 \leq j \leq n\} \) of \(\mathbb{C}^n \) are called *mutually unbiased* if \(u_i^*v_j = \frac{1}{\sqrt{n}} \) for all \(i, j \).
Cliques

Latin square graphs $LS_m(n)$ have maximal cliques of size n, meeting the Hoffman bound. If $n > (m - 1)^2$, then each edge lies in a unique clique of size n. For smaller n this needs not be true.

For example, in the $LS_3(4)$ derived from the addition table of \mathbb{F}_4, each edge lies in two 4-cliques. More generally, let q be a prime power and consider in $\text{PG}(3, q)$ the lines and points disjoint from a fixed line L. This is a $TD(m; n)$ for $m = q + 1$ and $n = q^2$ and in the corresponding graph $LS_m(n)$ each edge $\{M, N\}$ lies in two n-cliques, one consisting of the lines missing L on the point $M \cap N$, the other of the lines missing L in the plane $\langle M, N \rangle$.

If $n = m$ these graphs are complete multipartite graphs $K_{n \times n}$ with n^n cliques of size n, n^{n-2} on each edge.

There do exist two MOLS of order 10, and one finds graphs with parameters $LS_4(10)$ and maximal cliques of size 10. The Hall-Janko graph (cf. §10.32) also has parameters $LS_4(10)$ but maximal cliques of size 4, hence is not a Latin square graph.

Switching

The block graph of a $TD(m; n)$ with $n = 2m - 1$ satisfies $k = 2\mu$, and we can apply Proposition 1.1.4. If there are $\frac{1}{2}(n - 1)$ parallel classes (sets of n pairwise disjoint blocks), and in particular, if a $TD(m+1; n)$ exists, then switching yields a strongly regular graph with parameters $(n^2+1, \frac{1}{2}n(n-1), \frac{1}{4}(n-3)(n+1), \frac{1}{2}(n-1)^2)$. In particular this applies to odd prime powers n.

8.4.3 Transversal 3-designs

A transversal design $TD(k; n)$ is pairwise balanced: two points from different groups determine a unique block. When q is a power of 2, there exist triplewise balanced designs $3TD(q+2; q)$ with $q + 2$ groups of size q, and q^3 blocks each meeting all groups in a single point, such that three points from different groups determine a unique block. Now there are q^3 blocks, each point is on q^2 blocks, each pair of points from different groups is on q blocks.

An equivalent object is an $(n, M, d) = (q+2, q^3, q)$ MDS-code, with q^3 code words of length $q + 2$ and mutual distance at least q. One sees that all distances are q or $q + 2$. A construction as linear code is found by labeling the positions with $F_q \cup \{\sigma, \tau\}$ and the code words with triples $(x, y, z) \in F_q^3$, where word (x, y, z) has entry $x + ya + za^2$ at position $a \in F_q$, and entries y and z at positions σ and τ, respectively.

The block graph Γ (where blocks are adjacent when they have nonempty intersection) is strongly regular with parameters $v = q^3$, $k = \frac{1}{2}(q + 2)(q^2 - 1)$, $\lambda = \frac{1}{2}(q^3 + 5q^2 - 2q - 8)$, $\mu = \frac{1}{2}q(q+1)(q+2)$, $r = \frac{1}{2}(q - 2)(q+1)$, $s = -\frac{1}{2}q - 1$.

This is the Delsarte dual of the graph (with $v = q^3$, $k = (q - 1)(q + 2)$) obtained from a hyperoval at infinity.

The second subconstituent of Γ is strongly regular with parameters $v = \frac{1}{2}q(q-1)^2$, $k = \frac{1}{2}(q-2)(q+2)(q+1)$, $\lambda = \frac{1}{2}q^2(q+5) - 2 - 2$, $\mu = \frac{1}{2}q(q+1)(q+2)$, $r = \frac{1}{2}(q-4)(q+1)$, $s = -\frac{1}{2}q - 1$. For example, for $q = 8$ one finds $(v, k, \lambda, \mu) = (196, 135, 94, 90)$.

See also Huang, Huang & Lin [444].
8.5 Quasi-symmetric designs

A quasi-symmetric design is a 2-design such that the size of the intersection of two distinct blocks takes two values. Consider a quasi-symmetric 2-(v, k, λ) design, with block intersection numbers x, y, and assume that 1 < k < v. The number of blocks on each point is r = λ(v − 1)/(k − 1) and the total number of blocks is b = vr/k. Let N be the point-block incidence matrix. Let A be the 0-1 matrix indexed by the blocks with (B, C)-entry 1 precisely when |B ∩ C| = x. Then NN^T = rI + λ(J − I) and N^T N = kI + xA + y(J − I − A).

Now A is the adjacency matrix of a strongly regular graph. Indeed, NN^T has two different eigenvalues r − λ and kr, so N^T N has three eigenvalues 0, r − λ and rk, and also A = 1/(x − y)(N^T N − (k − y)I − yJ) has three eigenvalues, namely K = (x−y)(k−(k−1)y)/x−y, R = r−λ−k/(x−y) and S = k−y with multiplicities 1, v − 1, and b − v, respectively.

We find a strongly regular graph with parameters (V, K, Λ, M) and eigenvalues R, S with multiplicities F, G where V = b and K, R, S are as above (for x > y) so that F = v − 1 and G = b − v. The values of Λ, M follow from R + S = Λ − M and RS = M − K.

For example, the Steiner system S(4, 7, 23) has b = 253, r = 77, λ = 21. It has block intersection sizes y = 1 and x = 3. The graph on the blocks, adjacent when they meet in 3 points, is strongly regular with parameters (V, K, Λ, M) = (253, 140, 87, 65) with spectrum 140^1 25^22 (-3)^230 (cf. §10.56).

Complement

The complementary design (found by replacing each block by its complement) is a quasi-symmetric 2-(v, v−k, b−2r+λ) design with block intersection numbers v − 2k + x, v − 2k + y and the same graph.

History

Quasi-symmetric designs were introduced by Goethals & Seidel [354], [355].

8.5.1 The Calderbank-Cowen inequality

The following result allows one to express the number of blocks b of a quasi-symmetric 2-design in terms of the parameters v, k, x, y.

Proposition 8.5.1 (Calderbank [167]) Every 1-(v, k, r) design with b blocks, and two block intersection numbers x, y, satisfies

\[1 - \frac{1}{b} \leq \frac{k(v-k)}{v(v-1)} \left(\frac{(v-1)(2k-x-y) - k(v-k)}{(k-x)(k-y)} \right) \]

with equality if and only if the design is a 2-design. □

8.5.2 Neumaier’s inequality

Let Γ be the strongly regular graph on the blocks of a quasi-symmetric 2-(v, k, λ) design (X, ℒ) with block intersection numbers x, y, where blocks are adjacent if they meet in x points. Let r = λ(v − 1)/(k − 1) be the replication number (number of blocks on any point).
Proposition 8.5.2 (Neumaier [589]) The sets of all blocks $S(x)$ containing a fixed point x are regular sets in Γ of size r, degree $d = \frac{(\lambda - 1)(k - 1) - (r - 1)(y - 1)}{x - y}$ and nexus $e = \frac{\lambda k - ry}{x - y}$.

Proof. Clearly, $|S(x)| = r$. For $B \in S(x)$, with d_B neighbors in $S(x)$, count the number of pairs (y, C) with $y \neq x$ and $C \neq B$ and $x, y \in C$ and $y \in B$. This number is $(k - 1)(\lambda - 1)$ and also $d_B(x - 1) + (r - d_B - 1)(y - 1)$ so that $d = d_B$ does not depend on B and has the stated value. Similarly, for $B \notin S(x)$, with e_B neighbors in $S(x)$, we find $k\lambda = e_Bx + (r - e_B)y$, so that e_B does not depend on B and has the stated value. □

Proposition 8.5.3 (Neumaier [589]) The parameters of (X, \mathcal{B}) satisfy

$$B(B - A) \leq AC,$$

where

$$A = (v - 1)(v - 2), \quad B = r(k - 1)(k - 2)$$

$$C = rd(x - 1)(x - 2) + r(r - 1 - d)(y - 1)(y - 2).$$

Equality holds if and only if (X, \mathcal{B}) is a 3-design.

Proof. For distinct points x, y, z, let λ_{xyz} denote the number of blocks containing these three points. Fix x and sum over all ordered pairs y, z with x, y, z distinct. One obtains $\sum 1 = A$, $\sum \lambda_{xyz} = B$, $\sum \lambda_{xyz}(\lambda_{xyz} - 1) = C$. Now $0 \leq \sum (\lambda_{xyz} - \frac{A}{N})^2 = C + B - \frac{B^2}{A}$.

For example, there is no 2-(24, 6, 10) design with $x = 2, y = 0$.

An equivalent inequality was given by Calderbank as a consequence of the linear programming bound in the Johnson scheme.

Proposition 8.5.4 (Calderbank [167]) Let $x' = k - x$ and $y' = k - y$. Then

$$(v - 1)(v - 2)x'y' - k(v - k)(v - 2)(x' + y') + k(v - k)(k(v - k) - 1) \geq 0,$$

with equality if and only if the design is a 3-design. □

An equivalent inequality was derived by Hobart as a consequence of inequalities for coherent configurations.

Proposition 8.5.5 (Hobart [430]) The parameters of a quasisymmetric design (and its strongly regular intersection-x graph) satisfy

$$\frac{v - 2}{v} \left(1 + \frac{R^3}{K^2} - \frac{(R + 1)^3}{(b - K - 1)^2} \right) - \frac{(v - 2k)^2 \lambda}{k^2(k - 1)(v - k)} \geq 0.$$ □
8.5. QUASI-SYMMETRIC DESIGNS

8.5.3 No triangular graph

Proposition 8.5.6 (i) A quasi-symmetric design with $b = v(v - 1)/2$ and $1 < k < v - 1$ is either the trivial $2-(v, 2, 1)$ design or its complementary $2-(v, v - 2, \binom{v-2}{2})$ design, or the unique $4-(23, 7, 1)$ design.

(ii) In particular, if also $2 < k < v - 2$, then Γ is not a triangular graph.

Proof. The triangular graph $T(m)$ has multiplicities $F = m - 1$ and $G = m(m - 3)/2$, so that $v = m$ and $b = m(m - 1)/2$, and $b = v(v - 1)/2$. By [182] (1.52), if $4 \leq k \leq v - 2$, then a quasi-symmetric 2-design with $b = v(v - 1)/2$ is a 4-design, and by ibid. (1.54) this can happen only for 4-$\overline{2}$$(23, 7, 1)$ and for $v = 2 - 2$. But the block graph of the former is not triangular. \qed

For example, there is no quasi-symmetric 2-$\overline{2}$$(27, 7, 21)$ design with $x = 3$, $y = 1$ and no 2-$\overline{2}$$(59, 27, 351)$ with $x = 15$, $y = 11$. COSTER & HAEmers [236] give conditions for Γ to be the complement of the triangular graph.

8.5.4 Examples

A. Steiner 2-designs

In a Steiner 2-design $S(2, m, u)$ two blocks meet in at most one point, so that we have the above situation with $x = 1$ and $y = 0$. By [182] (1.52), if $4 \leq k \leq v - 2$, then a quasi-symmetric 2-design with $b = v(v - 1)/2$ is a 4-design, and by ibid. (1.54) this can happen only for 4-$\overline{2}$$(23, 7, 1)$ and for $v = 2 - 2$. But the block graph of the former is not triangular. \qed

For example, there is no quasi-symmetric 2-$\overline{2}$$(27, 7, 21)$ design with $x = 3$, $y = 1$ and no 2-$\overline{2}$$(59, 27, 351)$ with $x = 15$, $y = 11$. COSTER & HAEmers [236] give conditions for Γ to be the complement of the triangular graph.

B. Strongly resolvable 2-designs

A resolution of a 2-(v, k, λ) design with b blocks, r on each point, is a partition of the set of blocks into classes that are 1-designs. The number of classes of a resolution is at most $b - v + 1$. When equality holds, each class has the same size m, and there are constants x, y such that blocks in different classes meet in x points, and blocks from the same class meet in y points (HUGHES & PIPER [446]). Such designs are called strongly resolvable. One has $x = \frac{k^2}{v}$ and $y = x - \frac{x(\lambda - 1)}{m} + m(b - v + 1) = b$.

For example, the lines in $\text{PG}(3, q)$, adjacent when they meet, form a strongly regular graph with parameters $v = (q^2 + 1)(q^2 + q + 1)$, $k = q(q + 1)^2$, $\lambda = 2q^2 + q - 1$, $u = (q + 1)^3$, $r = q^2 - 1$, $s = -q - 1$.

Infinite families of known Steiner 2-designs include the following.

(a) For block size $k = 3, 4, 5$, Steiner systems $S(2, k, v)$ exist if and only if $v \equiv 1$ or $k (\text{mod } k - 1)$. For larger block size there are only partial results (cf. [2]).

(b) For each prime power q there exist systems $S(2, q, q^n)$ (for example, the affine space $\text{AG}(n, q)$), $S(2, q + 1, q^d + \cdots + 1)$ (for example, the projective space $\text{PG}(d, q)$), and $S(2, q + 1, q^2 + 1)$ (for example, the Hermitian unitals in $\text{PG}(2, q^2)$).

(c) For q a power of 2, and $a | q$ there exist systems $S(2, a, qa - q + a)$ derived from Denniston’s maximal arcs (subsets of size $qa - q + a$ of $\text{PG}(2, q)$ such that the projective lines meet it in either 0 or a points).
C. Residuals of biplanes

Let \((X, \mathcal{B})\) be a symmetric 2-\((v, k, \lambda)\) design, and fix \(B_0 \in \mathcal{B}\). The derived design of \((X, \mathcal{B})\) at \(B_0\) is the 2-\((k, \lambda, \lambda - 1)\) design \(\{B \in \mathcal{B} \mid B \neq B_0\}\). The residual design of \((X, \mathcal{B})\) at \(B_0\) is the 2-\((v - k, k - \lambda, \lambda)\)-design \(\{B \in \mathcal{B} \mid B \neq B_0\}\). For example, the residual of \(\text{PG}(2, n)\) is \(\text{AG}(2, n)\).

A biplane is a symmetric 2-\((v, k, \lambda)\) design with \(\lambda = 2\). A biplane has \(v = 1 + \binom{k}{2}\). Biplanes are known for \(k = 2, 3, 4, 5, 6, 9, 11, 13\) ([12], [19], [450], [483]).

The residual of a biplane is a 2-\((\binom{k-1}{2}, k-2, 2)\) design with block intersection numbers 1 and 2, hence is quasi-symmetric. By Hall & Connor [399], any such design can be extended to a biplane.

D. Quasi-symmetric designs from 5-designs

In §6.2.1 we made quasi-symmetric designs with parameters 2-\((21, 6, 4)\), 2-\((22, 6, 5)\) (with \(x = 2\), \(y = 0\)), and 2-\((21, 7, 12)\), 2-\((22, 7, 16)\), 2-\((23, 7, 21)\) (with \(x = 3\), \(y = 1\)) from the Steiner system S\((5, 8, 24)\) (with intersection numbers 0, 2, 4).

Tonchev [703] observed that one can also start from a 5-\((48,12,8)\) design (with intersection numbers 0, 2, 4, 6) and shorten three times to obtain a quasi-symmetric 2-\((45, 9, 8)\) design with intersection numbers 1, 3.

E. Codimension 2 subspaces of projective spaces

Let \(V\) be a vector space of dimension \(n\) over \(\mathbb{F}_q\). Any two subspaces of dimension \(n - 2\) meet in either an \((n - 4)\)- or an \((n - 3)\)-space.

For example, the planes in \(\text{PG}(4, 2)\) give a quasi-symmetric 2-\((31,7,7)\) design with \(x = 3\), \(y = 1\).

F. Designs with the symmetric difference property

Kantor [477] says that a design has the symmetric difference property when the symmetric difference \(B \Delta C \Delta D\) of any three blocks is either a block or the complement of a block. He shows that a symmetric design with the symmetric difference property has parameters 2-\((2^{m}, 2^{2m-1} + \epsilon 2^{m-1}, 2^{2m-2} + \epsilon 2^{m-3})\), where the complement of a design with \(\epsilon = 1\) has \(\epsilon = -1\).

An example of such designs is given by the tensor product of \(m\) copies of the Hadamard matrix \(J_I - 2I_4\) of order 4, if one interprets this matrix as the point-block incidence matrix with \(\epsilon = -\epsilon\) denoting incidence (nonincidence). Let \(V\) be a 2\(m\)-dimensional vector space over \(\mathbb{F}_2\), and \(Q\) a nondegenerate quadratic form with maximal (minimal) Witt index for \(\epsilon = 1\) (\(\epsilon = -1\)). Let \(B\) be the set of singular vectors of \(Q\). This same design can also be constructed by taking \(V\) as the point set, and the translates \(B + v\) \((v \in V)\) as blocks. Its group of automorphisms is \(2^{2m}\text{Sp}(2m, 2)\).

The derived and residuals of these designs are quasi-symmetric (Cameron). For example, from 2-\((64, 28, 12)\) one obtains quasi-symmetric 2-\((28,12,11)\) and 2-\((36,16,12)\) designs. Quasi-symmetry follows from the symmetric difference

2These are not to be confused with the derived/residual of a \(t\)-design, which are \((t - 1)\)-designs; in \(t\)-design terminology, the designs here are the dual of the derived/residual of the dual.
property: given three blocks B, C, D where $|B \cap C \cap D| = a$ one finds that $|B \Delta C \Delta D| = 12 + 4a$ so that $a \in \{4, 6\}$.

8.5.5 Classification

Neumaier [589] defines the block graph of a quasi-symmetric design with intersection numbers x, y where $x > y$, as the graph with the blocks as vertices, adjacent when they meet in x points. He shows:

Proposition 8.5.7

(i) A quasi-symmetric design with disconnected block graph is a multiple (union of identical copies) of a symmetric design.

(ii) A quasi-symmetric design with complete multipartite block graph is a strongly resolvable design.

(iii) A quasi-symmetric design with intersection numbers $0, 1$ is a Steiner 2-design.

(iv) A quasi-symmetric design with intersection numbers $1, 2$ is the residual of a biplane, or the $2\cdot(5,3,3)$ design. □

8.5.6 Table

We give a small table with exceptional parameter sets, i.e., parameter sets of quasi-symmetric designs satisfying Neumaier’s inequality and Proposition 8.5.3, and not in one of the classes of Proposition 8.5.7. Since the complement of a quasi-symmetric design is quasi-symmetric again, we can restrict ourselves to the cases with $k \leq v/2$. The table covers the parameters with $v \leq 100$. Column ex(istence): = graph does not exist, – design does not exist, + design exists, ! design is unique, 5 there are 5 nonisomorphic such designs.

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>y</th>
<th>x</th>
<th>V</th>
<th>K</th>
<th>A</th>
<th>M</th>
<th>R</th>
<th>S</th>
<th>ex</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>57</td>
<td>42</td>
<td>31</td>
<td>30</td>
<td>4</td>
<td>-3</td>
<td>=</td>
<td>[732]</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>76</td>
<td>45</td>
<td>28</td>
<td>24</td>
<td>7</td>
<td>-3</td>
<td>=</td>
<td>[89]</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td>95</td>
<td>54</td>
<td>33</td>
<td>27</td>
<td>9</td>
<td>-3</td>
<td>=</td>
<td>[21]</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>18</td>
<td>4</td>
<td>6</td>
<td>76</td>
<td>35</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td>-3</td>
<td>=</td>
<td>[20]</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>56</td>
<td>45</td>
<td>36</td>
<td>36</td>
<td>3</td>
<td>-3</td>
<td>!</td>
<td>Ex. D</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>120</td>
<td>77</td>
<td>52</td>
<td>44</td>
<td>11</td>
<td>-3</td>
<td>!</td>
<td>Ex. D</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td>105</td>
<td>52</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>-3</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>70</td>
<td>27</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>-3</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>77</td>
<td>60</td>
<td>47</td>
<td>45</td>
<td>5</td>
<td>-3</td>
<td>!</td>
<td>Ex. D</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>176</td>
<td>105</td>
<td>68</td>
<td>54</td>
<td>17</td>
<td>-3</td>
<td>!</td>
<td>Ex. D</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>99</td>
<td>42</td>
<td>21</td>
<td>15</td>
<td>9</td>
<td>-3</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>21</td>
<td>1</td>
<td>3</td>
<td>253</td>
<td>140</td>
<td>87</td>
<td>65</td>
<td>25</td>
<td>-3</td>
<td>!</td>
<td>Ex. D</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>69</td>
<td>20</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>-4</td>
<td>–</td>
<td>[121]</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>288</td>
<td>105</td>
<td>52</td>
<td>30</td>
<td>25</td>
<td>-3</td>
<td>–</td>
<td>[702]</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>63</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>-4</td>
<td>+</td>
<td>Ex. F</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>232</td>
<td>77</td>
<td>36</td>
<td>20</td>
<td>19</td>
<td>-3</td>
<td>–</td>
<td>[166]</td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>155</td>
<td>42</td>
<td>17</td>
<td>9</td>
<td>11</td>
<td>-3</td>
<td>5</td>
<td>Ex. E, [703]</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>88</td>
<td>60</td>
<td>41</td>
<td>40</td>
<td>5</td>
<td>-4</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>33</td>
<td>15</td>
<td>35</td>
<td>6</td>
<td>9</td>
<td>176</td>
<td>45</td>
<td>18</td>
<td>9</td>
<td>12</td>
<td>-4</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>85</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>-3</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>35</td>
<td>14</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>85</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>-3</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>16</td>
<td>12</td>
<td>6</td>
<td>8</td>
<td>63</td>
<td>30</td>
<td>13</td>
<td>15</td>
<td>3</td>
<td>-5</td>
<td>+</td>
<td>Ex. F</td>
</tr>
<tr>
<td>37</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>148</td>
<td>84</td>
<td>50</td>
<td>44</td>
<td>10</td>
<td>-4</td>
<td>–</td>
<td>[415]</td>
</tr>
<tr>
<td>39</td>
<td>12</td>
<td>22</td>
<td>3</td>
<td>6</td>
<td>247</td>
<td>54</td>
<td>21</td>
<td>9</td>
<td>15</td>
<td>-3</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>205</td>
<td>96</td>
<td>50</td>
<td>40</td>
<td>14</td>
<td>-4</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>17</td>
<td>34</td>
<td>5</td>
<td>8</td>
<td>205</td>
<td>136</td>
<td>93</td>
<td>84</td>
<td>13</td>
<td>-4</td>
<td>–</td>
<td>[166]</td>
</tr>
</tbody>
</table>

continued...
200
v
41
42
42
43
43
45
45
45
45
46
46
49
49
49
51
51
52
55
55
55
56
56
56
56
56
56
57
57
57
57
57
57
57
60
60
61
61
63
63
63
64
65
66
69
69
70
70
71
71
71
72
72
72
73
73
73
75
76
76
76

CHAPTER 8. COMBINATORIAL CONSTRUCTIONS
k
20
18
21
16
18
9
15
18
21
16
16
9
13
16
15
21
16
15
15
16
12
15
16
16
20
21
9
12
15
21
21
24
27
15
30
21
25
15
18
24
24
20
30
18
33
10
30
14
31
35
18
32
36
10
28
32
27
16
26
30

λ
57
51
60
40
51
8
42
34
70
8
72
6
13
45
7
14
20
7
63
40
9
42
6
18
19
24
3
11
30
10
25
23
117
14
58
21
160
35
17
92
46
19
29
30
176
6
58
39
93
136
34
124
140
15
126
124
117
12
52
116

y
8
6
9
4
6
1
3
6
9
4
4
1
1
4
3
6
4
3
3
4
0
3
4
4
5
6
1
0
3
7
6
9
12
3
14
6
9
3
3
8
8
5
12
3
15
0
10
2
11
15
3
12
16
1
10
12
9
1
6
10

x
11
9
12
7
9
3
6
9
13
6
7
3
4
7
5
9
7
5
6
8
3
6
6
8
8
9
3
3
6
9
9
12
17
6
18
9
13
7
6
12
12
8
15
6
21
2
14
5
15
19
6
16
20
4
16
16
15
4
10
14

V
246
287
246
301
301
220
396
220
330
69
621
196
196
441
85
85
221
99
891
495
210
616
77
231
154
176
133
266
456
76
190
133
532
236
236
183
976
651
217
651
336
208
143
460
782
322
322
1065
497
568
568
639
568
876
876
657
925
285
456
760

K
140
160
119
192
150
84
260
84
63
48
320
60
156
176
54
70
64
48
320
78
176
205
16
30
105
105
24
220
140
21
105
44
81
55
55
70
300
90
150
182
80
75
72
255
99
225
225
266
310
315
279
350
279
105
105
328
108
220
325
345

Λ
85
96
64
128
83
38
178
38
24
32
184
23
125
85
33
57
24
22
148
29
148
90
0
9
72
64
5
183
58
2
60
15
30
18
18
29
128
33
105
73
28
30
36
150
36
160
160
103
201
186
150
205
150
38
38
179
39
171
236
176

M
72
80
51
112
66
28
156
28
9
36
144
16
120
60
36
60
16
24
96
9
144
57
4
3
70
60
4
176
36
7
55
14
9
11
11
25
76
9
100
42
16
25
36
130
9
150
150
54
180
160
124
175
124
9
9
148
9
165
220
140

R
17
20
17
20
21
14
26
14
18
2
44
11
9
29
3
2
12
4
56
23
8
37
2
9
7
9
5
11
26
2
10
6
24
11
11
9
56
27
10
35
16
10
6
25
30
15
15
53
26
31
31
35
31
32
32
36
33
11
21
41

S
−4
−4
−4
−4
−4
−4
−4
−4
−3
−6
−4
−4
−4
−4
−6
−5
−4
−6
−4
−3
−4
−4
−6
−3
−5
−5
−4
−4
−4
−7
−5
−5
−3
−4
−4
−5
−4
−3
−5
−4
−4
−5
−6
−5
−3
−5
−5
−4
−5
−5
−5
−5
−5
−3
−3
−5
−3
−5
−5
−5

ex
ref
?
?
?
?
−
[166]
! Ex. D, [703], [414]
?
?
?
?
?
+
[445]
?
?
−
[165]
−
[166]
−
[166]
?
?
?
−
[578]
−
[166]
+
[704], [577]
+
[501]
?
−
[166]
?
−
[578]
?
=
[378]
?
−
[166]
−
[166]
?
−
[168]
?
?
+
Ex. E
?
?
+
[80], [472]
?
+
[105]
?
−
[165]
−
[168]
?
?
?
?
?
?
?
?
?
?
?
−
[166]
?
?
continued...


8.5 QUASI-SYMMETRIC DESIGNS

8.5.7 Parameter conditions from coding theory

We give some of the necessary conditions used to rule out certain parameter sets for quasi-symmetric designs. Notation is as above.

Lemma 8.5.8 (i) $k = y \pmod{x - y}$ and $r = \lambda \pmod{x - y}$.

(ii) If a set Z of size w meets all blocks in an even number of points, then $w(w - 1)\lambda - wr = 0 \pmod{8}$.

(iii) If a set Z of size w meets all blocks in an odd number of points, then $w(w - 1)\lambda + wr - b = 0 \pmod{8}$.

Proof. (i) This follows directly since $R - S = \frac{\lambda}{x - y}$ and $S = \frac{w - y}{x - y}$ are integral.

(ii), (iii): Let Z meet n_i blocks in i points. Then $\sum n_i = b$, and $\sum in_i = wr$, and $\sum \left(\begin{array}{c} w \\ i \end{array}\right) n_i = \binom{w}{\lambda}$. Now (ii) follows from $8 \mid \sum i(i - 2)n_i = w(w - 1)\lambda - wr$ and (iii) from $8 \mid \sum (i - 1)(i + 1)n_i = w(w - 1)\lambda + wr - b$. □
A binary code is called doubly even when all code words have a weight divisible by 4. A doubly even binary code is self-orthogonal. We need the following well-known result.

Proposition 8.5.9 ([343], [538]) Let C be a doubly even binary code.

(i) If C has parameters $[v, v/2]$, then $v \equiv 0 \pmod{8}$.

(ii) If C has parameters $[v, (v-1)/2]$, then $v \equiv \pm 1 \pmod{8}$. \hfill \Box

Proposition 8.5.10 (Calderbank [165]) Suppose $r \not\equiv \lambda \pmod{4}$.

(i) If $x = y = 0 \pmod{2}$, then $k = 0 \pmod{4}$ and $v \equiv \pm 1 \pmod{8}$.

(ii) If $x = y = 1 \pmod{2}$, then $k = v \pmod{4}$ and $v \equiv \pm 1 \pmod{8}$.

Proof. (i) Let C be the binary code spanned by the characteristic vectors of the blocks. Then C is self-orthogonal since k is even by part (i) of the lemma. Let C' be a maximal self-orthogonal code containing C. Apply Lemma 8.5.8 (ii) with Z the support of a code word in C'. If $w = 2 \pmod{4}$, then $r = \lambda \pmod{4}$ which was excluded. Hence C' is doubly even, and $k = 0 \pmod{4}$. If C' is self-dual then its length v is divisible by 8, contradicting $r(k-1) = \lambda(v-1)$ and $r \not\equiv \lambda \pmod{4}$. Hence C' has dimension $(v-1)/2$ and $v \equiv \pm 1 \pmod{8}$.

(ii) By part (i) of the lemma, $k = 1 \pmod{2}$. If v is even, then by $r(k-1) = \lambda(v-1)$ and $r = \lambda \pmod{2}$ it follows that $\lambda = 0 \pmod{4}$ and $r = 2 \pmod{4}$. Let Z be the complement of a block. Then Z meets all blocks evenly, and by part (ii) of the lemma $|Z| = 0 \pmod{4}$. Hence $k = v \pmod{4}$ and v is odd. Let C_1 be the binary code spanned by the blocks, extended by a parity check. It is self-orthogonal, and contained in a self-dual $[v+1, (v+1)/2]$ code. Shorten that latter code again to obtain a self-orthogonal $[v, (v-1)/2]$ code. Again by part (ii) of the lemma, this code is doubly even, which shows that $v \equiv \pm 1 \pmod{8}$. \hfill \Box

For example, there is no quasi-symmetric 2-(21, 8, 14) design with intersection numbers 2, 4, and no quasi-symmetric 2-(21, 9, 12) design with intersection numbers 3, 5.

Proposition 8.5.11 (Calderbank & Frankl [168]) Suppose $k = 2 \pmod{4}$ and $x = y = 0 \pmod{2}$. Then $w(w-1)\lambda + wr - b = 0 \pmod{8}$ has a solution w.

Proof. Let C be the binary code spanned by the characteristic vectors of the blocks. Then C is self-orthogonal, but not doubly even. Let K be the doubly even kernel of C. Then K is generated by the sums of two blocks, and has codimension 1 in C. Let $z \in K^\perp \setminus C^\perp$. Then z (viewed as a set of points) meets each block in an odd number of points. Now apply Lemma 8.5.8 (iii). \hfill \Box

For example, there is no 2-(70, 10, 6) design with intersection numbers 0, 2. Here $b = 2 \pmod{8}$ and $r = \lambda = 6 \pmod{8}$ but $6w(w-1) + 6w + 6 = 6(w^2 + 1) \not\equiv 0 \pmod{8}$.

In Calderbank [166] conditions are given for the case where x, y are congruent modulo an odd prime p. In Bagchi [30] and in Blokhuis & Calderbank [78] conditions are given obtained by use of the Smith normal form.
8.5.8 Haemers cocliques

Let a Haemers coclique C in a strongly regular graph Γ be a coclique that has equality both in the Hoffman and in the Cvetković bound. We repeat Proposition 1.1.8, adding some detail.

Proposition 8.5.12 (Haemers [376], Theorem 2.1.7; see also [132], 9.4.1 (iii))

Let Γ be a strongly regular graph with point set X and eigenvalues k, r, s with multiplicities $1, f, g$ (where $k > r > s$), and let C be a coclique in Γ with $|C| = 1 + \frac{k-1}{r+1} = g$. Then the graph Γ' induced on $X \setminus C$ is strongly regular with eigenvalues $k' = k + s$, $r' = r$, $s' = r + s$ and multiplicities $1, f - g + 1, g - 1$, respectively.

The restriction $1 + \frac{k-1}{r+1} = g$ enables one to express the parameters in two variables, say r, m, where $m = -s$. We find

$$k = \frac{m(m+r)}{r+1}, \quad \mu = \frac{m(m-r^2)}{r+1}, \quad \lambda = \frac{(m-1)(m-r^2-r)}{r+1}, \quad g = \frac{m^2+rm-r^2-r}{m-r^2}.$$

For the graph Γ' we find

$$k' = \frac{m(m-1)}{r+1}, \quad \mu' = \frac{(m-r^2)(m-r-1)}{r+1}, \quad \lambda' = \frac{(m-r-2)(m-r-r^2)}{r+1}.$$

In this situation one finds a quasisymmetric design $(C, X \setminus C)$ where a block $x \in X \setminus C$ is incident with a point $c \in C$ when $c \sim x$. The number of points is $|C| = g$, the block size is m, and the intersection numbers are $\lambda - \lambda' = m - r^2 - r$ and $\mu - \mu' = m - r^2$. In particular, the coding theory restrictions for quasisymmetric designs apply.

These same parameter values were derived by Shrikhande [647] under slightly different hypotheses.

If C_1, C_2 are two Haemers cocliques in Γ, then $|C_1 \cap C_2| = \frac{m(m-1)}{m-r^2}$. Indeed, one finds a symmetric design $(C_1 \setminus C_2, C_2 \setminus C_1)$ with block size m and block intersection number $m - r^2$ and using $\lambda(v-1) = r(k-1)$ in this situation yields $|C_1 \cap C_2| = \frac{m^2-r^2}{m-r^2}$, and $|C_1 \cap C_2|$ follows.

The Hoffman bound for cocliques in Γ' is $\frac{m^2-r^2}{m-r^2}$ which equals $|C_1 \setminus C_2|$, so any point of $X \setminus C_2$ outside $C_1 \setminus C_2$ is adjacent to $m - r$ vertices of $C_1 \setminus C_2$, and hence to r vertices of $C_1 \cap C_2$.

If C_1, C_2, C_3 are three Haemers cocliques in Γ, then $|C_1 \cap C_2 \cap C_3| = \frac{m^2-r^2}{m-r^2}$. Indeed, this follows from $m \cdot |C_1 \cap C_2 \setminus C_3| = r \cdot |C_3 \setminus (C_1 \cup C_2)|$.

ADM et al. [5] discuss this situation, and observe (the above, and also) that Γ has at most $g + 1$ Haemers cocliques. Indeed, the characteristic functions of these cocliques are linearly independent (their Gram matrix is nonsingular) and live in $W + \{1\}$, where W is the s-eigenspace (cf. the proof of Proposition 1.1.3), which has dimension $g + 1$.

Krein graphs without triangles

Consider strongly regular graphs Σ without triangles and with $\varphi_2^\Sigma = 0$. All parameters can be expressed in terms of a single variable, say r. Let us use capitals for the parameters of Σ. We find $V = r^2(r+3)^2$, $K = r^3 + 3r^2 + r$, $\Lambda = 0$, $M = r^2 + r$, $R = r$, $S = -r^2 - 2r$, $F = (r^2 + 2r - 1)(r^2 + 3r + 1)$, $G = r(r^2 + 3r + 1)$. (That is, we have Smith graphs with parameters $N_L, (r^2 + 3r)$.) Since $\varphi_2^\Sigma = 0$, Theorem 1.3.11 implies that each second subconstituent $\Gamma = \Sigma_2(v)$ of Σ is strongly regular, and one finds that Γ has parameters $v = (r^2 + 2r - 1)(r^2 + 3r + 1)$, $k = r^3 + 2r^2$, $\lambda = 0$, $\mu = r^2$, $r = r$, $s = -r^2 - r$.
f = (r^2 + r - 1)(r^2 + 3r + 1), g = (r + 1)(r^2 + 2r - 1) = K - 1. We see that Γ has parameters as above (with \(m = r^2 + r \)), and the sets \(\Sigma(\gamma) \setminus \{x\} \) for \(y \sim x \) form a system of \(g + 1 \) Haemers cocliques in Γ, so that these are the only ones. For \(r = 1 \) the graph Σ is the complement of the Clebsch graph, for \(r = 2 \) the Higman-Sims graph, and no such graph exists for \(r = 3 \). Nothing is known for \(r > 3 \).

Unitary two-graphs

Taylor [677] constructed unitary two-graphs (cf. §8.10.1) that after suitably switching yield a strongly regular graph with parameters \(v = q^3 + 1, k = \frac{1}{3}q(q^2 + 1), r = \frac{1}{2}(q - 1), s = -\frac{1}{2}(q^2 + 1) \). A graph with these parameters contains at most one Haemers coclique when \(q > 3 \) since the intersection of two would have nonintegral size \(\frac{(q - 1)^2}{2} \). For \(q = 3 \) these are the parameters of \(T(8) \) which does have \(g + 1 = 8 \) Haemers cocliques.

8.6 Partial geometries

A partial geometry \(pg(K, R, T) \) is a partial linear space \((X, L) \) such that each line has \(K \) points, each point is on \(R \) lines, and given a point \(x \) outside a line \(L \), there are precisely \(T \) lines on \(x \) meeting \(L \). (In the literature one also meets the notation \(pg(s, t, \alpha) \), where \(K = s + 1, R = t + 1, T = \alpha \).) We shall assume that \(K, R > 1 \) and \(T > 0 \).

The dual of a \(pg(K, R, T) \) is a \(pg(R, K, T) \).

The collinearity graph Γ of a \(pg(K, R, T) \) is strongly regular (or complete) with parameters

\[
\begin{align*}
 v &= K + K(K - 1)(R - 1)/T, \\
 k &= R(K - 1), \\
 \lambda &= (R - 1)(T - 1) + K - 2, \\
 \mu &= RT, \\
 r &= K - T - 1, \\
 s &= -R, \\
 f &= \frac{K(K - 1)R(R - 1)}{T(K + R - T - 1)}, \\
 g &= \frac{(K - 1)(K - T)(T + (K - 1)(R - 1))}{T(K + R - T - 1)}.
\end{align*}
\]

The lines form maximal cliques in Γ meeting the Hoffman bound: \(K = 1 + k/(-s) \). Conversely, if a strongly regular graph possesses a collection \(C \) of cliques meeting the Hoffman bound such that each edge is in a unique such clique, then \((X, C) \) is a partial geometry.

Clearly \(1 \leq T \leq \min(K, R) \).

If \(T = 1 \), the partial geometry is a generalized quadrangle \(GQ(s, t) \), where \(K = s + 1, R = t + 1 \).

If \(T = K \), the partial geometry is a 2-(\(v, K, 1 \)) design, that is, a Steiner system \(S(2, K, v) \), and Γ is a clique.

If \(T = K - 1 \), the partial geometry is a transversal design \(TD(K; R) \), and Γ is complete \(K \)-partite on \(KR \) vertices.

If \(T = R \), the partial geometry is a dual design, and the collinearity graph Γ is the block intersection graph of the design, see §8.5.4A.
If $T = R - 1$, the partial geometry is a dual transversal design (i.e., a net), and Γ is a Latin square graph, see §8.4.2.

A strongly regular graph with the same parameters as the collinearity graph of a $pg(K, R, T)$ is called pseudo-geometric. Theorem 8.6.3 below gives a sufficient condition for a pseudo-geometric graph to be geometric. A very simple criterion is the following.

Proposition 8.6.1 Let Γ be a pseudo-geometric graph with the parameters of a $pg(K, R, T)$. If \mathcal{C} is a collection of K-cliques of Γ such that each edge of Γ is in precisely one member of \mathcal{C}, then $(\mathcal{V}_\Gamma, \mathcal{C})$ is a $pg(K, R, T)$.

Proof. The Hoffman bound for cliques is K, so by Proposition 1.1.7(ii) each vertex outside any $C \in \mathcal{C}$ is collinear with T vertices inside. \qed

Proposition 8.6.2 ([178], Th. 7.6) For a partial geometry $pg(K, R, T)$ one has

\[(R - 1)(K - 2T) \leq (K - 2)(K - T)^2 \quad \text{and} \quad (K - 1)(R - 2T) \leq (R - 2)(R - T)^2.\]

Proof. Apply the second Krein inequality to $pg(K, R, T)$ and its dual. \qed

We already made the same observation (in §2.2.10) in the special case of generalized quadrangles of order (s, t) (the case $K = s + 1$, $R = t + 1$, $T = 1$) where $t \leq s^2$ or $s = 1$, and $s \leq t^2$ or $t = 1$. One may check that the first Krein inequality does not yield nontrivial information here.

History

Partial geometries were introduced by Bose [92].

8.6.1 Examples

We give some examples of partial geometries $pg(K, R, T)$ with $1 < T < \min(K - 1, R - 1)$.

(i) Thas [682] observed that if K is a maximal n-arc in $PG(2, q)$ (i.e., a subset such that each line meets it in either 0 or n points), then $|K| = 1 + (q + 1)(n - 1)$, and the complement of K is a $pg(q + 1 - n, q + 1 - \frac{2}{n}, q + 1 - n - \frac{2}{n})$ if we take the n-secants as lines. Maximal arcs are known whenever q is a power of 2, and $n|q$ (Denniston [281]).

(ii) De Clerck, Dye & Thas [268] constructed partial geometries $pg(2^{2n-1}, 2^{2n-1} + 1, 2^{2n-2})$. Consider a $4n$-dimensional vector space V with nondegenerate hyperbolic quadric Q. Let Σ be a spread (partition of Q into maximal totally singular subspaces). Take as points the nonsingular 1-spaces (points), and as lines the $2n$-spaces that meet Q in an element of Σ, with natural incidence. Different constructions for (the dual of) the $n = 2$ example of this series had earlier been given by Cohen [203], and by Haemers & Van Lint [382]. For the isomorphism of these three constructions, see [479], [701]. For nonisomorphic partial geometries with the same parameters, see [552]. Some of these were generalized to infinite families in [266].

(iii) Van Lint & Schrijver [524] construct a $pg(6, 6, 2)$. Consider the ternary code $C = (1)$ of length 6. Partition the 36 cosets into three sets A_i,
of size 3^4, where $A_i = \{ u + C \mid \sum u_h = i \}$ for $i \in \mathbb{F}_3$. Let A_i be the set of points, and A_j the set of lines, for arbitrary distinct i, j, where incidence is having Hamming distance 1. This yields $pg(6, 6, 2)$, in fact a system of three linked such designs ([181]).

(iv) HAEMERS [377] constructs a $pg(5, 18, 2)$ with group A_7 by taking as points the 175 edges of the Hoffman-Singleton graph Γ, adjacent when they are disjoint and together in a pentagon, and as lines a selection of the Petersen graphs in Γ. See §10.19.

(v) Consider a 6-dimensional vector space V over \mathbb{F}_3, and let $H = PV$ be its hyperplane at infinity. Let L be a set of 21 pairwise disjoint lines in H with the property that every hyperplane of H meets their union in either 21 or 30 points. Such a set was constructed by Mathon. Let V be the set of points, and take all translates of the 2-spaces $L \in L$ as lines. This yields a $pg(9, 21, 2)$. (See [267], [39].)

(vi) Thas [684] constructs a $pg(27, 28, 18)$. From a spread in a hyperbolic quadric in $PG(4h+3, 3)$ one obtains a $pg(3^{2h+1}, 3^{2h+1}+1, 2 \cdot 3^{2h})$. Such a spread is known only for $(h = 0$ and) $h = 1$.

(vii) Mathon [549] and Kuijken [505] construct $pg\left(q, \frac{1}{2}(q^2 + 1), \frac{1}{2}(q - 1)\right)$ whenever q is a power of 3. The collinearity graph is the descendant (on q^3 vertices) of Taylor’s unitary 2-graph, cf. §8.10.1.

8.6.2 Enumeration

There are precisely 2 nonisomorphic $pg(5, 7, 3)$ (MATHON [546]).

8.6.3 Nonexistence

There are some sporadic nonexistence results.

<table>
<thead>
<tr>
<th>$s + 1$</th>
<th>$t + 1$</th>
<th>α</th>
<th>nonexistence reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>De Clerck [265]</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>2</td>
<td>Östergård & Soicher [598]</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>4</td>
<td>Lam, Thiel, Swiercz & McKay [507]</td>
</tr>
</tbody>
</table>

8.6.4 The claw bound

Let Γ be a strongly regular graph with the usual parameters. We derive a bound on r given μ and s by showing that if r is sufficiently large then Γ is the collinearity graph of a partial geometry, and then using standard inequalities for its dual.

It turns out to be convenient to use the variables $m = -s$ and $n = r - s$.

Theorem 8.6.3 Let Γ be a primitive strongly regular graph with integral eigenvalues $r = n - m$ and $s = -m$. Let $f(m, \mu) = \frac{1}{2}m(m - 1)(\mu + 1) + m - 1$. Then

(i) (BRUCK [148]) If $\mu = m(m - 1)$ and $n > f(m, \mu)$ then Γ is the collinearity graph of a partial geometry $pg(K, R, T)$ with $T = R - 1$, that is, a Latin square graph $LS_m(n)$.

(ii) (Bose [92]) If $\mu = m^2$ and $n > f(m, \mu)$ then Γ is the collinearity graph of a partial geometry $pg(K, R, T)$ with $T = R$, that is, the block graph of a $2-(mn + m - n, m, 1)$ design.

(iii) (‘Claw bound’, Neumaier [587]) If $\mu \neq m(m-1)$ and $\mu \neq m^2$ then $n \leq f(m, \mu)$.

In other words: If $r + 1 > \frac{1}{2}s(s+1)(\mu+1)$ then $\mu = s(s+1)$ or $\mu = s^2$.

For example, for $m = 3$ it follows that a graph with the parameters of a Latin square graph $LS_3(n)$ is actually such a graph for $n > 23$, and that a graph with the parameters of the block graph of a Steiner triple system $S(2, 3, u)$ is actually such a graph for $n > 32$, that is, for $u = 2n + 3 > 67$. In [56] examples are given of strongly regular graphs with parameters $(70, 27, 12, 9)$ and $(100, 27, 10, 6)$ that are not the block graph of an $S(2, 3, 21)$ or a Latin square graph $LS_3(10)$.

This theorem is proved below (as Theorem 8.6.15).

Strongly regular graphs with given smallest eigenvalue

A direct consequence of the claw bound and the μ-bound is

Theorem 8.6.4 (Sims, cf. [623], p. 99) The strongly regular graphs with integral smallest eigenvalue $s = -m$, where $m \geq 2$, are

(i) complete multipartite graphs with classes of size m,

(ii) Latin square graphs $LS_m(n)$,

(iii) block graphs of Steiner systems $2-(mn + m - n, m, 1)$,

(iv) finitely many further graphs. □

Completing sets of MOLS

As we saw earlier, necessary for a set of $m - 2$ MOLS of order n to exist is $m \leq n + 1$, and if equality holds one has a projective plane of order n. The deficiency of a set of MOLS is $\delta = n - m + 1$, the number of MOLS missing to have a projective plane. The complementary graph of a Latin square graph $LS_m(n)$ has parameters $LS_\delta(n)$. The above result by Bruck says that if $n > f(\delta)$ (where f is a fixed polynomial of degree 4), then this complementary graph is itself a Latin square graph, and one can combine the two to get a full set of MOLS, and hence a projective plane. Metsch [562] improved Bruck’s bound, and has a polynomial f of degree 3.

Pseudo-generalized quadrangles

The collinearity graph of a generalized quadrangle $GQ(s, t)$ is strongly regular with parameters $(v, k, \lambda, \mu) = (s+1)(st+1), s(t+1), s-1, t+1)$. Let us call a graph pseudo-GQ if it has these same parameters. For example, the Cameron graph is a pseudo-$GQ(10, 2)$. For such graphs, the Krein condition yields $t \leq s^2$. The claw bound implies $s \leq \frac{1}{2}(t+1)(t+2)$. Guo, Koolen, Markowsky & Park [372] improve this to $s \leq \frac{1}{2}(t+1)^2$. This rules out, e.g., $(v, k, \lambda, \mu) = (12825, 280, 55, 5)$, a pseudo-$GQ(56, 4)$.
8.6.5 Claws and cliques

The results announced above are proved using the Bruck-Bose-Laskar claw-and-clique method ([148, 92, 94]). Let an s-claw be an induced $K_{1,s}$ subgraph. Suppose we can show that each j-claw can be extended to a $(j+1)$-claw in at least M ways for $j < m$, but that no $(m+1)$-claw exists. It follows that the M points that can be added to an $(m-1)$-claw are mutually adjacent. In this way one finds the large cliques that are going to be the lines of a partial geometry.

Let Γ be a connected strongly regular graph with parameters (v,k,λ,μ) and integral eigenvalues μ,k,s with $s < 0$. All parameters can be expressed in terms of the variables μ, m, and n, where $m = -s$ and $n = r - s$. We have $\lambda = \mu + n - 2m$ and $k = \mu + m(n - m)$.

An s-claw (a,S) is a vertex a together with an independent set S of neighbors of a, where $s = |S|$. (Note that s is no longer used to denote the negative eigenvalue $-m$ of Γ.)

A grand clique is a maximal clique C with $|C| > 1 + \frac{1}{2}(\lambda + \mu) = \frac{1}{2}n + \mu + 1 - m$. (The precise definition of ‘grand clique’ varies in the literature. We follow Neumaier [588].)

Lemma 8.6.5 Each edge of Γ lies in at most one grand clique.

Proof. If the distinct maximal cliques C_1 and C_2 have an edge uv in common, then $C_1 \cup C_2 \leq 2 + \lambda$ and $C_1 \cap C_2 \leq \mu$, so that $|C_1| + |C_2| \leq 2 + \lambda + \mu$, and C_1, C_2 cannot both be grand cliques.

Lemma 8.6.6 Any clique C contains at most $\frac{k}{m} + 1 = n + 1 - m + \frac{\mu}{m}$ vertices, with equality if and only if every vertex outside C is adjacent to the same number of vertices of C, and then that number is $\frac{\mu}{m}$.

(This follows by quadratic counting or by eigenvalue interlacing. It is the Delsarte-Hoffman bound, cf. §1.1.14.)

Lemma 8.6.7 (i) If Γ contains a grand clique C, then $n > 2(m-1)\frac{\mu}{m}$.

(ii) In the collinearity graph of a partial geometry with $n > 2(m-1)\frac{\mu}{m}$, the grand cliques are exactly the lines.

Proof. (i) $\frac{1}{2}n + \mu + 1 - m < |C| \leq n + 1 - m + \frac{\mu}{m}$.

(ii) In a partial geometry lines have size $n + 1 - m + \frac{\mu}{m}$ hence are grand cliques by the proof of (i). Conversely, if C is a grand clique, it has at least two points, so meets some line in at least an edge, but that line is a grand clique, and the edge is in at most one grand clique, so the line coincides with C. □

Lemma 8.6.8 (a) If Γ has an $(m+1)$-claw, then $n \leq \frac{1}{2}m(m-1)(\mu+1) + m - 1$.

(b) Let $1 \leq s \leq m - 1$. Then every s-claw is contained in at least M $(s+1)$-claws, where $M = n - 1 - (m - 2)(\mu + 1 - m)$.

(c) If Γ has a maximal s-claw with $s \leq m$, then $m \leq \mu$.

(d) If (a,S) is a maximal m-claw, then there are at least $m(n-2) - (m-2)\mu$ other m-claws (a,S') such that $|S \cap S'| = m - 1$.
Proof. Let \((a, S)\) be an \(s\)-claw, and let \(T\) be the set of neighbors of \(a\) not in \(S\). For \(x \in T\), let \(a_x\) be the number of neighbors of \(x\) in \(S\). Then

\[
\sum_{x \in T} 1 = |T| = k - s = \mu + m(n - m) - s,
\]
\[
\sum_{x \in T} a_x = s\lambda = s(\mu + n - 2m),
\]
\[
\sum_{x \in T} a_x(a_x - 1) \leq s(s - 1)(\mu - 1).
\]

Now the four parts of the lemma follow: (a) Take \(s = m + 1\). The desired conclusion follows from \(0 \leq \sum_{x \in T}(a_x - 1)(a_x - 2) \leq m(m - 1)(\mu + 2m - 2 - 2n).

(b) Take \(s \leq m - 1\). The number of \(x \in T\) nonadjacent to all vertices in \(S\) is at least \(\sum_{x \in T}(1 - a_x) = \mu + m(n - m) - s(\mu + n - 2m + 1) \geq n - 1 - (m - 2)(\mu + 1 - m).

(c) Take \(s \leq m\). Now \((m - 1)(m - \mu) \leq \sum_{x \in T}(1 - a_x) \leq 0.

(d) Take \(s = m\). Since \(a_x > 0\) for all \(x \in T\), the number of \(x \in T\) adjacent to precisely one vertex in \(S\) is at least \(\sum_{x \in T}(2 - a_x) = m(n - 2) - (m - 2)\mu\). □

Lemma 8.6.9 If \(\Gamma\) does not have \((m + 1)\)-claws, and \(n > 2(m - 1)(\mu + 1 - m)\), then each edge is in exactly one grand clique.

Proof. Since \(1 \leq m \leq \mu\), so that \(2(m - 1)(\mu + 1 - m) \geq 1 + (m - 2)(\mu + 1 - m)\), each edge \(xy\) of \(\Gamma\) can be extended to an \(m\)-claw by Lemma 8.6.8 (b). Given the \(m\)-claw \((x, S)\) on the edge \(xy\), the \((m - 1)\)-claw \((x, S\setminus y)\) can be extended to an \(m\)-claw in at least \(M\) ways and we find a clique of size \(M + 1 = n - (m - 2)(\mu + 1 - m)\) on the edge \(xy\). By the hypothesis, this is contained in a grand clique. □

Lemma 8.6.10 If \(\Gamma\) does not have \((m + 1)\)-claws, and \(n > 2(m - 1)(\mu + 1 - m)\), then each vertex lies in exactly \(m\) grand cliques.

Proof. Let \((a, S)\) be an \(m\)-claw, and for \(y \in S\), let \(C_y\) be the grand clique containing the clique \(\{a\} \cup \{z \mid z \sim a\}\), \((a, (S \setminus y) \cup \{z\})\) is an \(m\)-claw. The \(C_y\) have pairwise intersection \(\{a\}\) and by Lemma 8.6.8 (d) cover at least \(m(n - 1) - (m - 2)\mu\) vertices. The vertex \(a\) has \(k = \mu + m(n - m)\) neighbors, so at most \(k - (m(n - 1) - (m - 2)\mu) = (m - 1)(\mu - m)\) are not in any \(C_y\). If \(C\) is another grand clique containing \(a\), then \(\frac{1}{2}n + \mu - m + 1 < |C| \leq (m - 1)(\mu - m) + 1\), a contradiction. □

Lemma 8.6.11 Let \(\Sigma\) be a set of cliques such that each point is in exactly \(m\) members of \(\Sigma\), and each edge is in some member of \(\Sigma\). Then the vertices and members of \(\Sigma\) are the points and lines of a partial geometry \(pg(K, R, T)\) with parameters \(R = m\), \(K = \frac{\mu}{m} + n + 1 - m\), \(T = \frac{\mu}{m}\).

Proof. By Lemma 8.6.6, \(K\) is an upper bound for the size of a clique. Since \(k = m(K - 1)\), all members of \(\Sigma\) have size \(K\), and the statement follows from the ‘equality’ part of Lemma 8.6.6. □

Lemma 8.6.12 If \(\Gamma\) does not have \((m + 1)\)-claws, and \(n > 2(m - 1)(\mu + 1 - m)\), then \(\Gamma\) is the collinearity graph of a partial geometry \(pg(K, R, T)\) with parameters as above. □
Proposition 8.6.13 A strongly regular graph is the collinearity graph of a generalized quadrangle if and only if \(\mu = m \) and there are no \((m + 1)\)-claws.

Proof. A generalized quadrangle is a partial geometry \(pg(K, R, T) \) with \(T = 1 \), and the stated conditions are satisfied. Conversely, let \(\Gamma \) be a strongly regular graph with \(\mu = m \) and without \((m + 1)\)-claws. Then \(k = \mu + m(n - m) = \mu(\lambda + 1) \). Since there are no \((m + 1)\)-claws, and the neighbors of a given point form a regular graph of valency \(\lambda \), it follows that \(\Gamma(x) \simeq mK_{\lambda + 1} \) for each vertex \(x \). Now apply Lemma 8.6.11. \(\square \)

Lemma 8.6.14 If \(\Gamma \) does not have \((m + 1)\)-claws, then either

(a) \(\mu = m^2 \), or
(b) \(\mu = m(m - 1) \), or
(c) \(\mu = m, n \leq m(m - 1) \), or
(d) \(n \leq 2(m - 1)(\mu + 1 - m) \).

Proof. If (d) does not hold, then \(\Gamma \) is the collinearity graph of a \(pg(K, R, T) \) by Lemma 8.6.12. We have \(m = R \) and \(\mu = RT \), and \(n > 2(m - 1)(\mu + 1 - m) \) can be rewritten \(K - T - 1 + R > 2(R - 1)(RT + 1 - R) \).

If \(T = 1 \), then \(\mu = m \), and \(n \leq m(m - 1) \) is the inequality \((K - 1)^2 \leq (R - 1)^2 \) that follows from the Krein conditions (cf. §2.2.10) if \(R - 1 > 1 \). For \(R = m = 2 \), this case is part of (b).

If \(T = R - 1 \), then \(\mu = m(m - 1) \).

If \(T = R \), then \(\mu = m^2 \).

Now suppose that \(1 < T < R - 1 \).

If \(R \geq 3T \), then the Krein condition \((K - 1)(R - 2T) \leq (R - 2)(R - T)^2 \) (Lemma 8.6.2) for the line graph yields the contradiction

\[
(R - 2)(R - T)^2 \geq 2R(R - 1)(T - 1)(2T - 2R) \geq R(R - 1)(T - 1)(R - T).
\]

Finally, if \(R < 3T \), then the absolute bound for the line graph yields a contradiction. Indeed, this line graph has \(v = R + \frac{R(R - 1)(K - 1)}{2} > 2R^2(R - 1)^2(T - 1) \)

and \(q = \frac{(R - 1)(R - T)(T + (R - 1)(K - 1))}{2(T + R - 1)} < \frac{(R - 1)^2(R - T)}{2} \). Now \(v \leq \frac{1}{2}q(g + 3) \) implies

\[
4R^2(T - 1) \leq (R - T)((R - 1)(R - T) + 3T) \leq (R - 1)^2(R - T + 3T).
\]

Since \(R < 3T \), also \(6RT(T - 1) \leq (R - 1)^2(R - T + 3T) \). For \(R \leq 3T - 1 \) this yields a contradiction. \(\square \)

We prove Theorem 8.6.3, restated here.

Theorem 8.6.15 Let \(\Gamma \) be a strongly regular graph with integral smallest eigenvalue \(-m \), where \(m \geq 2 \). Let \(f(m, \mu) = \frac{1}{2}m(m - 1)(\mu + 1) + m - 1 \), and suppose that \(n > f(m, \mu) \).

(i) If \(\mu = m(m - 1) \), then \(\Gamma \) is the collinearity graph of a partial geometry \(pg(K, R, T) \) with \(T = R - 1 \), that is, is the line graph of a transversal 2-design with \(\lambda = 1 \).

(ii) If \(\mu = m^2 \), then \(\Gamma \) is the collinearity graph of a partial geometry \(pg(K, R, T) \) with \(T = R \), that is, is the line graph of a 2-design with \(\lambda = 1 \).

(iii) Otherwise \(n \leq 2(m - 1)(\mu + 1 - m) \).

Proof. If \(\Gamma \) contains an \((m + 1)\)-claw, then \(n \leq f(m, \mu) \) by Lemma 8.6.8 (a), contrary to our assumption. If we are not in case (iii), then \(\Gamma \) is the collinearity
collinearity graph is strongly regular with parameters h and $n > f(m, \mu)$.

The final case (iii) is eliminated by the following proposition.

Proposition 8.6.16 No strongly regular graph Γ has parameters satisfying

$$\frac{1}{2}m(m-1)(\mu+1) + m - 1 < n \leq 2(m-1)(\mu+1-m).$$

Proof. The inequality immediately implies $\frac{1}{2}m < 2$, i.e., $m = 2$ or $m = 3$. A somewhat messy computation using the absolute bound and divisibility conditions eliminates $m = 2, 3$.

8.7 Semipartial geometries

Debroey & Thas [272] introduced the concept of *semipartial geometry*, generalizing that of partial geometry. A semipartial geometry $\text{spg}(s+1, t+1, \lambda, \mu)$ is a partial linear space (X, \mathcal{L}) such that (i) each line has $s+1$ points, (ii) each point is on $t+1$ lines, (iii) given a point x outside a line L, there are either 0 or α lines on x meeting L, and (iv) any two noncollinear points x, y are both collinear with μ points.

Because of (iv), the collinearity graph of a semipartial geometry is strongly regular (with valency $k = s(t+1)$, and $\lambda = s+1 + (\alpha-1)t$, and $\mu = \mu$). A semipartial geometry with $\alpha = 1$ is called a *partial quadrangle* (Cameron [171]).

De Clerck & Thas [270] further generalized the concept of semipartial geometries, and defined $(0, \alpha)$-geometries as connected partial linear spaces such that all lines have $s+1$ points, and given a point x outside a line L, there are either 0 or α lines on x meeting L. One loses the strong regularity of the collinearity graph, but gains good inductive properties.

8.7.1 Examples of partial quadrangles

Below we give some examples of partial quadrangles (i.e., of semipartial geometries with $\alpha = 1$). Let a $pq(s+1, t+1, \mu)$ be a $\text{spg}(s+1, t+1, 1, \mu)$. The collinearity graph is strongly regular with parameters $(v, k, \lambda, \mu) = (1+s(t+1) + s^{t(t+1)}/\mu, s(t+1), s-1, \mu)$.

(i) Any strongly regular graph with $\lambda = 0$ gives a $pq(2, k, \mu)$ of which the lines are the edges of the graph.

(ii) Any generalized quadrangle $\text{GQ}(s, t)$ is a $pq(s+1, t+1, t+1)$.

(iii) Let (X, \mathcal{L}) be a $\text{GQ}(s, s^2)$. Deleting x^\perp for some fixed point x yields a $pq(s, s^2 + 1, s^2 - s)$ with s^4 points.

(iv) (This is case $a = 1$ of example (viii) in §8.7.2.)

Let V be an $(n+1)$-dimensional vector space over \mathbb{F}_q, H a hyperplane in PV, and S a cap in H, that is, a subset such that each line meets it in 0, 1, or 2 points. Let X be the set of points of PV not in H, and let \mathcal{L} be the collection of lines in PV and not in H that meet S. If each point of $H \setminus S$ is on the same number h of 2-secants of S, then (X, \mathcal{L}) is a $pq(q, |S|, 2h)$ with q^n points. It is a generalized quadrangle precisely if $2h = |S|$, that is, if S allows no tangents (and then S is necessarily a hyperoval in a plane).
CHAPTER 8. COMBINATORIAL CONSTRUCTIONS

We have seen (§7.1.1) that the construction ‘join two vectors when the line they determine hits a fixed set S at infinity’ yields a strongly regular graph if and only if S is a two-character set. It follows that S here is a two-character set. A two-character set yields a partial quadrangle only if it is a cap. See also Theorem 7.1.1.

The strongly regular graph defined by S as a two-character set, or equivalently, the collinearity graph of the partial quadrangle defined by S as a cap, is rank 3 if the stabilizer of S in the automorphism group of H acts transitively on both S and $H \setminus S$. In the above examples, this is the case for the first line if $e = 2$ (see §10.24), and for the second line if S is either the quadric $Q_4^-(q)$ (the graph is $VO_4^-(q)$) or the Suzuki-Tits ovoid (see §2.5.5; the graph is $VSz(q)$, see §3.3.1).

(v) Debroey et al. [41] (for the generalization) and Penttila et al. [272] show that when q is odd, there exists a hemisystem in the $U_4(q)$ generalized quadrangle, that is, a hemisystem of points in the dual $GQ(q, q^2)$. By Proposition 2.7.9 this point set induces a $pg(\frac{1}{2}(q+1), q^2+1, \frac{1}{2}(q-1)^2)$. Further hemisystems in the $U_4(q)$ generalized quadrangle were constructed by Bamberg et al. [41] (for $q \leq 11$) and by Bamberg et al. [44].

(vi) Bamberg et al. [40] generalize the previous example and construct hemisystems (with the same parameters) in flock generalized quadrangles $GQ(q^2, q)$.

8.7.2 Examples of semipartial geometries

Below we give some further examples of semipartial geometries. Many are due to Debröey & Thas [272]. For a survey, see De Clerck & Van Maldeghem [271].

(i) Any partial geometry $pg(K, R, T)$ is a semipartial geometry $spg(K, R, T, RT)$.

(ii) For a Moore graph (strongly regular with $\lambda = 0$, $\mu = 1$), one can take the point neighborhoods as lines. In this way a Moore graph Γ with parameters $(k^2 + 1, k, 0, 1)$ yields an $spg(k, k, k-1, (k-1)^2)$ of which the collinearity graph is T.

(iii) Let $\binom{X}{i}$ be the collection of all i-subsets of an m-set X. Then $(\binom{X}{2}, \binom{X}{3})$ is an $spg(3, m-2, 2, 4)$ of which the collinearity graph is $T(m)$.

(iv) Let $\binom{V}{i}$ be the collection of all i-subspaces of an m-dimensional vector space V. Then $(\binom{V}{2}, \binom{V}{3})$ is an $spg(\frac{1}{2}, m-2, q+1, (q+1)^2)$ of which the collinearity graph is the Grassmann graph $G_q(m, 2)$.

(v) Let V be a $2n$-dimensional vector space over F_q provided with a non-degenerate symplectic form. Let X be the collection of projective points and \mathcal{L} the collection of hyperbolic lines. Then (X, \mathcal{L}) is an $spg(q+1, q^{2n-2}, q, (q-1)q^{2n-2})$ of which the collinearity graph is the complement of the symplectic graph $Sp(2n, q)$.

| q | n | $|S|$ | v | k | λ | μ | collinearity graph |
|-----|-----|------|----|----|---------|------|------------------|
| 2^m | 3 | $2^m + 2$ | 2^{2m} | GQ$(2^m - 1, 2^m + 1)$ |
| q | 4 | $q^2 + 1$ | q^4 | e.g. $VO_4^-(q)$, $VSz(q)$, see §3.3.1 |
| 3 | 5 | 11 | 243 | 22 | 1 | 2 | Berlekamp-Van Lint-Seidel graph |
| 3 | 6 | 56 | 729 | 112 | 1 | 20 | Games graph |
| 4 | 6 | 78 | 4096 | 234 | 2 | 14 | Hill graph |
(vi) Let \(V \) be a \(2n \)-dimensional vector space over \(\mathbb{F}_2 \) provided with a non-degenerate quadratic form of type \(\varepsilon = \pm 1 \). Let \(X \) be the collection of nonsingular projective points and \(\mathcal{L} \) the collection of elliptic lines. Then \((X, \mathcal{L})\) is an \(spq(3, 2n-3-\varepsilon 2^{n-2}, 2, 2n-3-\varepsilon 2^{n-1}) \) of which the collinearity graph is the complement of the graph from §3.1.2 (Wilbrink [733]).

(vii) Let \(V \) be an \((n+2)\)-dimensional vector space over \(\mathbb{F}_q \), and \(W \) an \(n \)-dimensional subspace. Let \(X \) be the collection of 2-spaces (lines) of \(V \) missing \(W \) and \(\mathcal{L} \) the collection of 3-spaces (planes) of \(V \) meeting \(W \) in a single 1-space (point). Then \((X, \mathcal{L})\) is an \(spq(q^2, [\frac{n}{2}], q, q(q+1)) \) of which the collinearity graph is the bilinear forms graph \(H_q(2, n) \) from §3.4.1.

(viii) Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F}_q \), \(H \) its hyperplane at infinity (a \(PG(n-1, q) \), and \(S \) a subset of \(H \) such that every line in \(H \) meets \(S \) in either 0, 1 or \(a+1 \) points, for some fixed \(a \), and such that every point of \(H \) not in \(S \) is on the same number \(h \) of \((a+1)\)-secants. Let \(\mathcal{L} \) be the collection of lines in \(V \) of which the direction is element of \(S \). Then \((V, \mathcal{L})\) is an \(spq(q, |S|, a, a(a+1)h) \) with \(q^a \) points.

We have seen (§7.1.1) that the construction ‘join two vectors when the line they determine hits a fixed set \(S \) at infinity’ yields a strongly regular graph if and only if \(S \) is a two-character set. It follows that \(S \) here is a two-character set (with an additional condition on the sizes of line intersections).

For example, if \(n = 3 \), then \(S \) could be a Baer subplane of \(H \), where \(|S| = q + \sqrt{q} + 1 \) and \(a = \sqrt{q} \), or a unital, where \(S = q\sqrt{q} + 1 \) and \(a = \sqrt{q} \). In the first case the collinearity graph is the bilinear forms graph \(H_{\sqrt{q}}(2, 3) \). In the second case it is the case \(m = 3, \varepsilon = -1 \) and \(q \rightarrow \sqrt{q} \) of the graph from §3.3.1.

(ix) Let \(V \) be a 6-dimensional vector space over \(\mathbb{F}_q \) provided with a non-degenerate elliptic quadric \(Q \). Let \(p \) be a nonsingular point. Let \(X \) be the set of hyperbolic lines (2-spaces) on \(p \), and let \(\mathcal{L} \) be the set of planes (3-spaces) on \(p \) that meet \(Q \) in two intersecting lines. Then \((X, \mathcal{L})\) is an \(spq(q, q^2+1, 2, 2q(q-1)) \) (Metz [567]). The collinearity graph is the graph \(NO_q^e(q) \), see §3.1.4.

8.8 Zara graphs

A Zara graph (with parameters \(m, e \)) is a finite graph \(\Gamma \) such that (Z1) every maximal clique has cardinality \(m \), and (Z2) for each maximal clique \(M \) each vertex outside is adjacent to precisely \(e \) vertices of \(M \). These graphs were first studied by Zara [747]. A structure theory was developed by Blokhuis, Kloks & Wilbrink [81].

Examples of Zara graphs are the polar spaces, the graphs \(L_2(m) \) and \(T(2n) \), the folded Johnson graph \(J(8, 4) \) and its complement, and the McLaughlin graph. Also the graph on the nonsingular points of a vector space of dimension \(2n \) over \(\mathbb{F}_2 \) provided with a hyperbolic quadratic form, adjacent when orthogonal. (Here \(m = 2^{n-1} \) and \(e = 2^{n-2} \).) Also the graph on a vector space of dimension \(2n \) over \(\mathbb{F}_q \) provided with a hyperbolic quadratic form \(Q \), with \(x \sim y \) when \(Q(y - x) = 0 \). (Here \(m = q^n, e = q^{n-1} \).) Also the graph on the norm 1 vectors in a vector space of dimension 6 over \(\mathbb{F}_3 \) provided with a nondegenerate symmetric bilinear form, adjacent when orthogonal. (Here \(m = 6, e = 2 \).)

Easy ways to get new Zara graphs out of old ones:
Let \(\text{Proposition 8.9.1} \) of graph called \(C \times a \) clique, hence is contained in the radical of nonadjacent vertices. Then \(\mu \) the graph \(| \) is \(\{ x \} \) at distance two the subgraph \(\text{cliques}, \) then the Zara graph \(S \) if \((Z_2) \) but not \((Z_1) \) in the definition of Zara graphs are reduced Zara graphs are strongly regular. Also that reduced graphs satisfying (22) but not (Z1) in the definition of Zara graphs are \(m \times m' \) grids. Also that if \(S \) is a singular subspace of a coconnected Zara graph (that is, a set of the form \(S = C_{-1} \) for some clique \(C \), or, equivalently, an intersection of maximal cliques), then the Zara graph \(S_- \) \(S \) is coconnected.

For characterizations and related material, see [73], [83], [617], [747], [748].

8.9 Terwilliger graphs

Terwilliger [681] developed a structure theory for a certain class of graphs called Terwilliger graphs. For regular connected Terwilliger graphs, the reduced graphs are strongly regular. There are only few examples.

A **Terwilliger graph** is a non-complete graph \(\Gamma \) such that for any two vertices \(x, y \) at distance two the subgraph \(\Gamma(x) \cap \Gamma(y) \) is complete of the same size \(\mu \).

If \(\Gamma \) is a connected Terwilliger graph for a given \(\mu \), then its local graphs \(\Gamma(x) \) are Terwilliger graphs for \(\mu' = \mu - 1 \).

For arbitrary \(\Gamma \), and \(x \in V(\Gamma) \), let \(x^* = \{ y : x^* = y^* \} \). The graph \(\Gamma \) is called **reduced** when all \(x^* \) are single vertices. We shall write \(\Gamma^* \) for the reduced graph of \(\Gamma \), that has as vertices the classes \(x^* \), where \(x^* \) is adjacent to \(y^* \) when \(x \sim y \). (Now \(\Gamma^* \) is reduced, and \(\Gamma \) is a clique extension of \(\Gamma^* \).) The **radical** of \(\Gamma \) is \(\{ x : x^* = V(\Gamma) \} \).

Proposition 8.9.1 Let \(\Gamma \) be a regular connected Terwilliger graph. Suppose that \(|\Gamma_3(x) \cap \Gamma(y)| = |\Gamma(x) \cap \Gamma_3(y)| \) whenever \(d(x,y) = 2 \). Then, for all \(p \in V(\Gamma) \), the graph \(\Delta := p^* \setminus p^* \) is a coconnected regular Terwilliger graph with \(\mu_\Delta = \mu - |p^*| \). If \(\mu_\Delta = 0 \), then \(\Delta \) is a union of cliques. Otherwise, it has diameter 2.

Proof. \(\Gamma \) is regular and connected and not a clique, so \(p^* \) is not a clique, and hence \(\Delta \) is nonempty and not a clique. It follows that \(\Delta \) is a Terwilliger graph with \(\mu_\Delta = \mu - |p^*| \). Let \(\Delta_0 \) be a component of \(\Delta \) containing a pair \(x, y \) of nonadjacent vertices. Then \(\Delta \setminus \Delta_0 \) is contained in \(x^* \cap y^* \), hence is a clique, hence is contained in the radical of \(\Delta \), hence is empty. It follows that \(\Delta \) is coconnected. We show that \(\Delta \) is regular. It suffices to show that nonadjacent vertices \(x, y \) of \(\Delta \) have the same valency in \(\Delta \). For each subset \(E \) of \(x^* \cap y^* \), and for \(\{ s, t \} = \{ x, y \} \) define \(E_{st} := \{ z \in \Gamma(s) \cap \Gamma(t) \cap \{ x, y, z \}^* = E \} \). Then \(|\Gamma(s)| = |\Gamma(s) \cap \Gamma_3(t)| = \mu + \sum_{E} |E_{st}| \) and \(|\Delta(s)| = \mu_\Delta + \sum_{E \cap \Delta \in \Delta_{st}} |E_{st}| \).

Each vertex \(u \) of \(E_{st} \) has \(|E| \) neighbors in \(E \), and \(\mu - |E| \) neighbors in \(E_{st} \), so
\[|E_1^+| (\mu - |E|) = |E_2^+| (\mu - |E|) \] and for \(|E| < \mu\) it follows that \(|E_1^+| = |E_2^+|\). Since \(|\Gamma(x)| = |\Gamma(y)|\), it follows that \(|E_1^+| = |E_2^+|\) also holds for \(E = x^+ \cap y^+\), and hence \(|\Delta(x)| = |\Delta(y)|\). \(\square\)

Proposition 8.9.2 Let \(\Gamma\) be a regular connected Terwilliger graph of diameter 2. Then all vertex equivalence classes \(x^* (x \in V\Gamma)\) have the same cardinality, and \(\Gamma^*\) is a strongly regular Terwilliger graph.

Proof. For \(p \in V\Gamma\), let \(k_p\) be the valency of \(p^+ \setminus p^*\). If \(p \sim q\) and \(p^* \neq q^*\), then \(k_p = |\{p,q\}^+| - |p^*| - 1\), so that \(\kappa := k_p + |p^*|\) is independent of the choice of \(p\). Counting edges between \(p^+ \setminus p^*\) and \(\Gamma_2(p)\) we find \(|p^+ \setminus p^*| (k - \kappa) = (v - |p^*|)|\mu, so that \((k + 1 - |p^*|)(k - \kappa + \mu) = (v - |p^*|)|\mu since \(|p^+| = k + 1\). This equation determines \(|p^*|\) uniquely, because \(k > \kappa\). \(\square\)

A graph \(\Gamma\) is called edge-regular with parameters \((v,k,\lambda)\) when it has \(v\) vertices, is regular of valency \(k\), and each edge is in \(\lambda\) triangles. A graph \(\Gamma\) is called amply regular with parameters \((v,k,\lambda,\mu)\) when it is edge-regular with parameters \((v,k,\lambda)\), and any two vertices at distance 2 are joined by \(\mu\) paths of length 2. Every strongly regular graph and every distance-regular graph is amply regular. Let a singular line of a graph \(\Gamma\) be a set of the form \(\{x,y\}^{1,}\), where \(x \sim y\). Singular lines are complete subgraphs. If \(\Gamma\) is edge-regular then two singular lines have at most one point in common (cf. [123], 1.14.1).

Proposition 8.9.3 Let \(\Gamma\) be a reduced amply regular Terwilliger graph with parameters \((v,k,\lambda,\mu)\), where \(\mu > 1\). Then, for any \(p \in V\Gamma\) the reduced graph \(\Gamma(p)^*\) is strongly regular with parameters \(v^* = k/s, k^* = (\lambda - s + 1)/s, \mu^* = (\mu - 1)/s, \lambda^* = ((\lambda - s + 1)(\lambda - 2s + 1) - (\mu - 1)(k - \lambda - 1))/(s(\lambda - s + 1))\), where \(s\) is the size of the equivalence classes of \(\Gamma(p)\). Here \(s\) is independent of the choice of \(p\). The singular lines of \(\Gamma\) have size \(s + 1\), and every vertex is in \(k/s\) singular lines. In particular, \(\mu = s + 1\) or \(\mu \geq s^2 + s + 1\). Also \(s \leq \lambda^* + 1\).

Proof. We can apply the previous proposition since \(\Gamma(p)\) has diameter 2. Let \(s = s_p\) be the common cardinality of the vertex equivalence classes in the graph \(\Gamma(p)\). For distinct \(p,q,r\), the vertex \(r\) belongs to \(q^*\) in \(\Gamma(p)\) when \(p,q,r\) are contained in the singular line \(\{p,q\}^{1,}\). But then \(r\) belongs to \(p^*\) in \(\Gamma(q)\). It follows that \(s_p\) is independent of \(p\). The formulae for \(v^*, k^*, \lambda^*\), \(\mu^*\) follow by simple counting. Starting from \(\Gamma\), and repeatedly taking local graphs, we eventually arrive at a graph with \(\mu = 1\). A graph with \(\mu^* = 1\) has lines of size \(\lambda^* + 2\), so \(s \leq \lambda^* + 1\). \(\square\)

With \(\mu = 1\) the known examples are the pentagon, the Petersen graph, and the Hoffman-Singleton graph. The smallest open parameter set is \((400,21,2,1)\). (See also [93].) Collins [210] gives parameter conditions for strongly regular Terwilliger graphs with \(\mu = 2\), and in particular shows that an example must have \(v > 5.8 \times 10^{15}\).

8.10 Regular two-graphs

A two-graph \(\Delta = (X,\Delta)\) is a set \(X\) provided with a collection \(\Delta\) of triples called coherent, such that each 4-subset of \(X\) contains an even number of coherent
triples. The relation between a two-graph and a switching class of graphs was given in §1.1.12. The two-graph is called regular of degree a when every pair from X is in precisely a coherent triples. Now each descendant is strongly regular with $a = k = 2\rho$ and $v + 1 = |X| = 3k - 2\lambda$. If these descendants have spectrum $h^1 r^f s^g$, and the switching class of Ω contains a strongly regular graph Γ, then Γ has spectrum either $(k - r)^1 r^{f+1} s^g$ or $(k - s)^1 r^f s^{g+1}$.

Conversely, the switching class of a strongly regular graph with parameters (v, k, λ, μ) belongs to a regular two-graph if and only if $v = |X| = 2(2k - \lambda - \mu)$. If this is the case, then it has degree $a = 2(k - \mu)$, and the descendants are strongly regular with parameters $(v - 1, 2(k - \mu), k + \lambda - 2\mu, k - \mu)$.

The spectrum of a two-graph is the spectrum of the Seidel matrix S of any (and then all) graph(s) in its switching class. A two-graph with $v > 1$ is regular if and only if it has precisely two distinct eigenvalues. If the eigenvalues of a regular two-graph are ρ_1, ρ_2, then $v = 1 - \rho_1 \rho_2$ and $a = -\frac{1}{2}(\rho_1 + 1)(\rho_2 + 1)$. (Both are immediate from $(S - \rho_1 I)(S - \rho_2 I) = 0$.)

8.10.1 Examples

Trivial two-graphs

The two-graph (X, Δ) with $\Delta = \emptyset$ is represented by the edgeless graph with adjacency matrix $A = 0$, Seidel matrix $S = J - I$ and spectrum $(-1)^v$. Here $a = 0$.

The two-graph (X, Δ) with $\Delta = \binom{X}{3}$, the set of all triples in X, is represented by the complete graph K_n with adjacency matrix $A = J - I$, Seidel matrix $S = -(J - I)$ and spectrum $1^{v-1}(1 - v)^1$. Here $a = v - 2$.

Unitary two-graphs

Let V be a 3-dimensional vector space over $F = \mathbb{F}_{q^2}$, where q is odd, provided with a Hermitian form h. Let U be the corresponding unital. Then $|U| = q^3 + 1$. One obtains a regular two-graph with $a = \frac{1}{2}(q - 1)(q^2 + 1)$ on the set U by taking the triples $\{(x), (y), (z)\}$ in U for which $h(x, y)h(y, z)h(z, x)$ is a nonsquare in F if $q \equiv 1 \pmod{4}$, and is a square if $q \equiv 3 \pmod{4}$. The spectrum of this two-graph is q^2 with multiplicity $q^2 - q + 1$, and $-q$ with multiplicity $q(q^2 - q + 1)$.

Proof. The condition on the quadratic character of $h(x, y)h(y, z)h(z, x)$ does not depend on the choice of the vectors x, y, z in their spans, and does not depend on the order of x, y, z. The product of these triple products for the four 3-subsets of a 4-set is a square, so the triple product is a nonsquare for an even number of triples. This shows that we have a two-graph.

Now let us compute a. Since $U_3(q)$ acts 2-transitively on U, we may fix two points $(x), (y)$ and count the number of coherent triples containing them. The trace $tr_s = s + \pi$ of $s \in F^*$ vanishes when $s^{q+1} = -1$. Such an s is a square precisely when $(q + 1)/2$ is even. Thus, the condition on $h(x, y)h(y, z)h(z, x)$ is that it has the same quadratic character as s where $tr_s = 0, s \neq 0$. Take the Hermitian form h defined by $h(x, y) = \overline{x}y_1 + \overline{y}x_2 + \overline{x}y_1$. Take $x = (1, 0, 0)$ and $y = (0, 0, 1)$. Let $z = (s, t, 1)$. It is isotropic when $s + \pi + t1 = 0$, and $h(x, y)h(y, z)h(z, x) = s$. If $t = 0, s \neq 0$, i.e., if $z \in (x, y)$, $z \neq y$, then all $q - 1$ choices for s yield a coherent triple. If $t \neq 0$ then $tr_s \neq 0$ gives $\frac{1}{4}(q^2 - 1) - (q - 1)$ choices for s with the desired quadratic character, and $q + 1$ choices for t given s, so that $a = (q - 1) + \frac{1}{4}(q - 1)^2(q + 1)$.

This two-graph is due to Taylor [677].
The descendants \(\Omega^*_w\) of this two-graph are strongly regular with parameters \((v, k, \lambda, \mu)\) and spectrum \(k^3 r^f s^g\), where

\[
\begin{align*}
v &= q^3, & r &= \frac{1}{2} (q - 1), \\
k &= \frac{1}{2} (q - 1)(q^2 + 1), & s &= -\frac{1}{2} (q^2 + 1), \\
\lambda &= \frac{1}{4} (q - 1)^3 - 1, & f &= (q - 1)(q^2 + 1) \\
\mu &= \frac{1}{4} (q - 1)(q^2 + 1), & g &= q(q - 1).
\end{align*}
\]

This graph is pseudo-geometric with the parameters of \(pq(K, R, T)\) where \(K = q, R = \frac{1}{2} (q^2 + 1)\) and \(T = \frac{1}{2} (q - 1)\). Speight [665] showed that \(\mathcal{G}(2, 7)\) is geometric for \(q = 3\) (one gets \(\mathcal{G}(2, 4)\)), but not for \(q = 5, 7\). Mathon [549] and Kuiken [560] showed that it is geometric whenever \(q\) is a power of 3.

We saw that collinear triples of the unital are members of the two-graph, so that after switching the set \(L \setminus \{w\}\) has become a clique, for each line \(L\) passing through \(w\). Thus, the graph \(\Omega^*_w\) has a partition into cliques of size \(q\) (achieving the Hoffman bound) and any point outside such a clique has exactly \(\frac{1}{2}(q - 1)\) neighbors in it. Consequently, if we take the union of any \(\frac{1}{2}(q^2 + 1)\) of these cliques, we get a regular subgraph of degree \(\frac{1}{2}(q - 1)(q^2 + 3)\), and adding the point \(w\) again and switching yields a strongly regular graph with parameters

\[
\begin{align*}
v &= q^3 + 1, & r &= \frac{1}{2} (q - 1), \\
k &= \frac{1}{2} q(q^2 + 1), & s &= -\frac{1}{2} (q^2 + 1), \\
\lambda &= \frac{1}{4} (q - 1)(q^2 + 3), & f &= (q - 1)(q^2 + 1) \\
\mu &= \frac{1}{4} (q + 1)(q^2 + 1), & g &= q^2 - q + 1.
\end{align*}
\]

The other possible valency for strongly regular graphs in the switching class of this regular two-graph is \(\frac{1}{2}(q - 1)q^2\). For \(q = 5\) there is such a graph (with parameters \((v, k, \lambda, \mu) = (126, 50, 13, 24)\) and spectrum \(50^1 2^{105} (-13)^{20}\)). For \(q \equiv 3\) (mod 8) there is no such graph ([380]).

The regular two-graph on 276 points

Consider the graph \(\Gamma\) on the \(23 + 253 = 276\) symbols and blocks of the Steiner system \(S(4, 7, 23)\), where the symbols form a coclique, a symbol is adjacent to the 77 blocks containing it, and two blocks are adjacent when they meet in precisely 1 point. This graph \(\Gamma\) belongs to the switching class of a regular two-graph \(\Omega\) on 276 points. The degree of \(\Omega\) is 112. Its spectrum is \(55^{23} (-5)^{253}\). The automorphism group of \(\Omega\) is \(\text{Co}_3\), acting 2-transitively. Uniqueness was proved by Goethals & Seidel [356].

The descendants \(\Omega^*_w\) of \(\Omega\) are McLaughlin graphs with parameters \((v, k, \lambda, \mu) = (275, 112, 30, 56)\) and spectrum \(112^1 2^{252} (-28)^{22}\). (See §10.61.)

The switching class of \(\Omega\) contains (many, see [593]) strongly regular graphs with parameters \((v, k, \lambda, \mu) = (276, 140, 58, 84)\) and spectrum \(140^1 2^{252} (-28)^{23}\). The parameter set \((v, k, \lambda, \mu) = (276, 110, 28, 54)\) with spectrum \(110^1 2^{263} (-28)^{22}\) is ruled out by the absolute bound (and also by the Krein conditions).
The regular two-graph on 176 points

There is a regular two-graph on 176 vertices, with spectrum $35^2 22^2 (-5)^{154}$ and $a = 72$. Related strongly regular graphs have parameters (i) $(v, k, \lambda, \mu) = (175, 72, 20, 36)$ or (ii) $(176, 70, 18, 34)$ or (iii) $(176, 90, 38, 54)$. Examples of each are known. (i) Graph on the edges of the Hoffman-Singleton graph (\S10.19), (ii) M_{22} graph on 176 vertices (\S10.51), (iii) Graph constructed by Haemers from $(i) + K_1$ by switching with respect to the union of 18 pairwise disjoint 5-cliques.) It is unknown whether the two-graph is unique. (But graph (ii) is unique.)

The regular two-graph on 126 points

There is a regular two-graph on 126 vertices, with spectrum $25^2 21^2 (-5)^{105}$ and $a = 52$. Related strongly regular graphs have parameters (i) $(v, k, \lambda, \mu) = (125, 52, 15, 26)$ or (ii) $(126, 50, 13, 24)$ or (iii) $(126, 65, 28, 39)$. Examples of each are known. (i), (iii): see above under Unitary two-graphs, (ii) Goethals graph, \S10.42.) It is unknown whether the two-graph is unique. (But graph (ii) is unique [222].)

8.10.2 Enumeration

Small regular two-graphs have been classified. The table below gives the numbers of nonisomorphic nontrivial regular two-graphs with eigenvalue -3 or -5 or with $v \leq 50$.

<table>
<thead>
<tr>
<th>v</th>
<th>6</th>
<th>10</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_1, ρ_2</td>
<td>$\pm\sqrt{5}$</td>
<td>± 3</td>
<td>$\pm \sqrt{13}$</td>
<td>-3.5</td>
<td>$\pm \sqrt{17}$</td>
<td>± 5</td>
<td>-3.9</td>
<td>$\pm \sqrt{25}$</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

ρ_1, ρ_2 | -5.7 | $\pm \sqrt{37}$ | $\pm \sqrt{41}$ | $\pm \sqrt{45}$ | ± 7 | -5.25 | -5.35 | -5.55 |
| # | 227 | ≥ 191 | ≥ 18 | ≥ 97 | ≥ 54 | ≥ 1 | ≥ 1 | 1 |

For $v < 30$, see BUSSEMAKER et al. [161]. The case $v = 30$ was settled by SPENCE [669] (and independently by Bussemaker). The regular two-graphs on 36 vertices were enumerated by McKAy & SPENCE [556]. Nonexistence of nontrivial regular two-graphs on 76 or 96 vertices was shown by AZARLJA & MARC [20, 21].

8.10.3 Completely regular two-graphs

Let (X, Δ) be a two-graph. A subset C of X is called a clique when each triple from C is coherent. If C is a clique, and $x \notin C$, then x determines a partition $\{C_x, C'_x\}$ of C into two possibly empty parts such that a triple xyz with $y, z \in C$ is coherent precisely when y and z belong to the same part of the partition.

Proposition 8.10.1 (TAYLOR [677]) Let C be a nonempty clique of the regular two-graph Ω with eigenvalues ρ_1, ρ_2, where $\rho_2 < 0$ and ρ_2 has multiplicity m. Then

(i) $|C| \leq 1 - \rho_2$, with equality if and only if $|C_x| = |C'_x|$ for each $x \notin C$,

(ii) $|C| \leq m$.

8.10. REGULAR TWO-GRAPHS

Proof. See [677], Propositions 5.2 and 5.3, or [132], Proposition 10.3.4. □

In a regular two-graph each pair is in \(a_2 = a\) coherent triples, that is, in \(a_2\) 3-cliques, and each coherent triple is in \(a_3\) 4-cliques, where \(a_3\) is the number of common neighbors of two adjacent vertices in any descendant, so that \(a_3 = -\frac{1}{4}(p_1 + 3)(p_2 + 3) + 1\).

A completely regular two-graph is a two-graph in which there are constants \(a_i\) such that each \(i\)-clique with \(i \leq -p_2\) is contained in precisely \(a_i\left(i + 1\right)\)-cliques, where \(a_i > 0\). Neumaier [589] introduced this concept and gave parameter restrictions strong enough to leave only a finite list of feasible parameters. There are five examples, and two open cases. See Table 8.3 below.

<table>
<thead>
<tr>
<th>#</th>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(v)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>existence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-3</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unique</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>-3</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unique</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-3</td>
<td>28</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unique</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>-5</td>
<td>36</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>unique [83]</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>-5</td>
<td>96</td>
<td>40</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>none [83]</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>-5</td>
<td>126</td>
<td>52</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>none [589]</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>-5</td>
<td>276</td>
<td>112</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>unique [356]</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>-7</td>
<td>148</td>
<td>66</td>
<td>25</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>none [589]</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
<td>-7</td>
<td>288</td>
<td>126</td>
<td>45</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>none [73]</td>
</tr>
<tr>
<td>10</td>
<td>161</td>
<td>-7</td>
<td>1128</td>
<td>486</td>
<td>165</td>
<td>36</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>11</td>
<td>71</td>
<td>-9</td>
<td>640</td>
<td>288</td>
<td>112</td>
<td>36</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>none [83]</td>
</tr>
<tr>
<td>12</td>
<td>351</td>
<td>-9</td>
<td>3160</td>
<td>1408</td>
<td>532</td>
<td>156</td>
<td>30</td>
<td>4</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>253</td>
<td>-11</td>
<td>2784</td>
<td>1270</td>
<td>513</td>
<td>176</td>
<td>49</td>
<td>12</td>
<td>5</td>
<td>none [589]</td>
</tr>
</tbody>
</table>

Table 8.3: Parameters of completely regular two-graphs

Blokhuis & Wilbrink [83] observed that a descendant of a completely regular two-graph is a Zara graph with \(m = -p_2\) and \(e = (m - 1)/2\). In the cases with \(v = 10, 16, 28\) that Zara graph is a generalized quadrangle \(\text{GQ}(2, t)\) with \(t = 1, 2, 4\). In the case with \(v = 36\) that Zara graph is locally \(4 \times 4\) and hence the folded Johnson graph \(\overline{J}(8, 4)\) ([74]).

8.10.4 Covers and quotients

Taylor graphs

A distance-regular antipodal double cover of a complete graph \(K_n\) is called a Taylor graph. Such graphs have intersection array \(\{k, \mu, 1; 1, \mu, k\}\) and are equivalent to regular 2-graphs on \(n = k + 1\) vertices. (Taylor & Levingston [679]).

Let \(X\) be an \(n\)-set, and fix \(\infty \in X\). The regular 2-graph \((X, \Delta)\) corresponds to the graph \(\Gamma\) with vertex set \(\{x^+, x^- \mid x \in X\}\) and (for \(x \neq y\) edges \(x^+ y^\mu\) where \(\varepsilon = \eta\) if \(\infty \in \{x, y\}\) or \(\infty, x, y \in \Delta\), and \(\varepsilon = -\eta\) otherwise. Note that the isomorphism type of \(\Gamma\) does not depend on the choice of \(\infty\). Conversely,
given \(\Gamma \) we find \(\Delta \) as the image of the set of triangles in \(\Gamma \) under the map \(x^\varepsilon \mapsto x \). For a detailed discussion, see [123], §1.5.

The local graphs of \(\Gamma \) are the descendants of \((X, \Delta)\), and hence strongly regular.

Krein covers

\[
\begin{array}{cccccc}
1 & k & 1 & (t-1)\mu & \mu & \mu & k-\mu-1 \\
\lambda & \lambda & \lambda & (t-1) & 1 & k & (t-1) \\
\end{array}
\]

\[v = t(k+1)\]

More generally one can look at distance-regular antipodal \(t \)-covers of \(K_n \). Here \(v = tn, n = k+1, k-1-\lambda = (t-1)\mu \). These graphs have intersection array \(\{k,(t-1)\mu,1;1,\mu,k\} \) and spectrum \(k^1 \theta \mu (-k/\theta)^{q} \) where \(\theta \) and \(-k/\theta \) are the solutions of \(\theta^2 + (\mu-\lambda)\theta - k = 0 \) with \(\theta > 0 \), and \(f = (t-1)k(k+1)/(k+\theta^2) \), \(g = \theta^2(t-1)(k+1)/(k+\theta^2) \). The Krein condition \(q_{33}^3 \geq 0 \) gives the inequality \(k \leq \theta^3 \) when \(t > 2 \).

Godsil [345] shows that when equality holds, the local graphs are strongly regular, with parameters \((v_0, k_0, \lambda_0, \mu_0)\) and spectrum \(\kappa_0^3 \mu_0^s \), where

\[
\begin{align*}
v_0 &= k = \theta^3, \\
k_0 &= (\theta - 1)\left(\frac{(\theta+1)^2}{t} - \theta\right), \\
\lambda_0 &= \frac{(\theta+1)^3}{t^2} - \frac{3(\theta+1)^2}{t} + 3\theta, \\
\mu_0 &= \frac{(\theta+1)^3}{t^2} - \frac{(\theta+1)(2\theta+1)}{t} + \theta,
\end{align*}
\]

\[
\begin{align*}
v_0 &= k = \theta^3, \\
r_0 &= \theta - \frac{\theta + 1}{t}, \\
s_0 &= -\frac{\lambda}{\theta - 1} = \theta - \frac{(\theta+1)^2}{t}, \\
f_0 &= (\theta - 1)((\theta+1)^2 - t\theta), \\
g_0 &= (t-1)(\theta - 1).
\end{align*}
\]

It follows that in this situation \(t \mid (\theta+1) \), with equality when the local graph is a union of cliques.

Godsil also observed that given a distance-regular antipodal \(t \)-cover \(\Gamma \) of \(K_n \) and a group \(G \) preserving the fibers, acting fixpoint-freely, the quotient graph \(\Gamma/G \) is a distance-regular antipodal \((t/g)\)-cover of \(K_n \), where \(g = |G| \), with the same eigenvalues as \(\Gamma \). If \(\Gamma \) satisfies \(k = \theta^3 \), then so does \(\Gamma/G \).

A case where this happens is that of a generalized quadrangle \(GQ(q, q^2) \) with spread. The collinearity graph \(\Gamma \) of that generalized quadrangle minus the lines of the spread is a distance-regular antipodal \((q+1)\)-cover of \(K_n \), where \(n = q^3+1 \), with eigenvalues \(k = q^3, \theta = q, -1, \) and \(-q^2 \) ([123], Theorem 12.5.2). There is a cyclic group \(G \) of order \(q+1 \) acting on the fibers. It follows that for each \(t \mid (q+1) \) the local graph of \(\Gamma/G \) is strongly regular with the above parameters (with \(\theta = q \)). For example, with \((q, t) = (5, 3) \) or \((8, 3) \) we find strongly regular graphs with parameters \((v, k, \lambda, \mu) = (125, 28, 3, 7) \) or \((512, 133, 24, 38) \). For \(t = 2 \) we find the descendants of Taylor’s 2-graph again.

8.11 Pseudocyclic association schemes

A \(d \)-class association scheme \((X, \mathcal{R})\) is called pseudocyclic when all nontrivial multiplicities are equal, i.e., when \(m_1 = \cdots = m_d \).
8.12. TENSOR PRODUCTS OF SKEW SCHEMES

Proposition 8.11.1 (Mathon [543]; Hollmann [439], p. 84; cf. [123], 2.2.7) A d-class association scheme is pseudocyclic if and only if for some constant m we have \(n_i = m (1 \leq i \leq d) \) and \(\sum_i p^h_{ii} = m - 1 (1 \leq h \leq d) \). □

Given two association schemes \((X, \mathcal{R}) \) and \((X', \mathcal{R}') \), one can take the direct product (tensor product) in the obvious way. It has point set \(X \times X' \) and relations \(R_{ij} = \{(xx', yy') \mid (x, y) \in R_i, (x', y') \in R'_j\} \) with eigenvalues \(\mu \nu \) where \(\mu \) (resp. \(\nu \)) runs through the eigenvalues of \(R_i \) (resp. \(R'_j \)).

Proposition 8.11.2 (cf. Fujisaki [331]) Let \((X, \mathcal{R}) \) be a pseudocyclic association scheme with \(d \) classes on \(n = dm + 1 \) points. In the direct product of \((X, \mathcal{R}) \) with itself the three relations \(R = \bigcup_{j=1}^d R_{jj} \) and \(R' = R \cup \bigcup_{j=1}^d R_{j0} \) and \(R'' = R' \cup \bigcup_{j=1}^d R_{0j} \) define strongly regular graphs with Latin square parameters \(L_{S_{t}(n)} \), with \(t = m, m + 1, m + 2 \), respectively.

Proof. The eigenvalues of \(R \) are \(\sum_{j=1}^d P_{ij} P_{j'i} \) for \(0 \leq i, i' \leq d \). Using Proposition 1.3.2 we see that this equals \(dm^2 \) if \(i = i' = 0 \), \(n - m \) if \(i = i' \neq 0 \), and \(-m \) if \(i \neq i' \). The eigenvalues of \(R' \) are \(\sum_{j=1}^d (P_{ij} P_{j'i} + P_{j'i}) \) which equals \(dm(m + 1) \) if \(i = i' = 0 \), \(n - m - 1 \) if \(i = 0, i' \neq 0 \), and \(-m - 1 \) if \(i \neq 0 \). The eigenvalues of \(R'' \) are \(\sum_{j=1}^d (P_{ij} P_{j'i} + P_{j'i} + P_{j'i}) \) which equals \(dm(m + 2) \) if \(i = i' = 0 \), \(n - m - 2 \) if \(i = 0, i' \neq 0 \) or \(i' = 0, i \neq 0 \), and \(-m - 2 \) if \(i, i' \neq 0 \). □

Examples of pseudocyclic \(d \)-class schemes are the cyclotomic schemes on \(\mathbb{F}_q \).

Let \(K \) be a subgroup of \(\mathbb{F}_q^* \) of index \(d \) with \(-1 \in K \). Let \(a \) be a primitive element. Let \((x, y) \in R_i \) when \(y - x \in a^{-1}K \) (1 \(\leq i \leq d \)).

Not many examples are known for non-primepower \(|X| \). Mathon [543] and Hollmann [440] found the two pseudocyclic 3-class association schemes on 28 points. Hollmann [439] constructed a 3-class example on 496 points. These generalize to examples with \((d, m) = (q - 1, q + 1) \) for \(q = 2^e \), and \((d, m) = (\lfloor \frac{1}{2} q - 1 \rfloor/e, e(q + 1)) \) for \(q = 2^e \), \(e \) prime. See [123] p. 390 and [441].

8.12 Tensor products of skew schemes

In §1.3 we defined symmetric association schemes. More generally one can look at association schemes that are not necessarily symmetric. One drops the condition that the relations \(R_i \) are symmetric, and requires instead that for each \(i \) the converse of the relation \(R_i \) is also one of the relations \(R_j \).

In the special case of a 2-class association scheme that is not symmetric, there are three relations: identity and \(R \) and the converse of \(R \), so that the Bose-Mesner algebra is generated by three matrices \(I, A, A^\top \) with \(I + A + A^\top = J \). The relation \(R \) describes a tournament (a directed complete graph). If the number of points is \(v \), then \(AJ = JA = kJ \) where \(v = 2k + 1 \), and the algebra is automatically commutative. One finds \(AA^\top = (m - 1)I + mJ \) and \(k = 2m - 1 \) and \(v = 4m - 1 \). Let \(S = A - A^\top \). Then \(S = -S^\top \), and the matrix \(C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) of order \(v + 1 \) is a conference matrix. (Equivalently, \(H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) is a skew Hadamard matrix.) Conversely, each conference matrix (or skew Hadamard matrix) of order \(4m \) yields a skew 2-class association scheme (cf. Theorem 8.2.1).

The tensor product of two association schemes \((X, \mathcal{R}) \) and \((Y, \mathcal{S}) \), symmetric or not, is the association scheme \((X \times Y, \mathcal{R} \otimes \mathcal{S}) \) where the points \((x, y) \) and \((x', y') \)}
are in relation \(T_{(i,j)} \) when \((x,x') \in R_i \) and \((y,y') \in S_j \). The symmetrization of a not necessarily symmetric association scheme \((X,\mathcal{R})\), is the symmetric association scheme \((X,\mathcal{R}')\) where \(\mathcal{R}' = \{ R \cup R^\top \mid R \in \mathcal{R} \}\).

Theorem 8.12.1 (Pasechnik [600]) Let \(H, H'\) be skew-symmetric Hadamard matrices of order \(4m\). The symmetrization of the tensor product of the two corresponding association schemes is an amorphic 4-class association scheme on \((4m - 1)^2\) points, with valencies \(n_0 = 1, n_1 = n_2 = 4m - 2, n_3 = n_4 = 8m^2 - 8m + 2\). The relations \(R_3\) and \(R_4\) define strongly regular graphs with Latin square parameters \(LS_{2m-1}(4m - 1)\).

For example, one finds graphs with parameters \((v,k,\lambda,\mu) = (225,98,43,42)\).

The graphs here satisfy the 4-vertex condition (cf. §8.16.1) if and only if \(m = 1\), hence are not rank 3 for \(m > 1\).

8.13 Cospectral graphs

Seidel switching gives classes of graphs with the same Seidel spectrum. One also has switching-type constructions that preserve the ordinary spectrum. In many cases these can be used to show that a strongly regular graph is not determined uniquely by its parameters.

8.13.1 Godsil-McKay switching

Let \(\Gamma\) be a graph with vertex set \(X\), and let \(\{C_1, \ldots, C_t, D\}\) be a partition of \(X\) such that \(\{C_1, \ldots, C_t\}\) is an equitable partition of \(X \setminus D\) (that is, any two vertices in \(C_i\) have the same number of neighbors in \(C_j\) for all \(i,j\)), and for every \(x \in D\) and every \(i \in \{1, \ldots, t\}\) the vertex \(x\) has either 0, \(\frac{1}{2}|C_i|\) or \(|C_i|\) neighbors in \(C_i\). Construct a new graph \(\Gamma'\) by interchanging adjacency and nonadjacency between \(x \in D\) and the vertices in \(C_i\) whenever \(x\) has \(\frac{1}{2}|C_i|\) neighbors in \(C_i\). Then \(\Gamma\) and \(\Gamma'\) are cospectral (Godsil & McKay [348]).

For discussion and examples, see [132], §§1.8.3, 14.2.3. For example, GM-switching (for \(t = 1\)) with respect to a diagonal turns the \(4 \times 4\) grid into the Shrikhande graph. Munemasa [576] shows that the Van Dam-Koolen graphs arise by GM-switching from Grassmann graphs. See also [3], [447], [52].

8.13.2 Wang-Qiu-Hu switching

Let \(\Gamma\) be a graph with vertex set \(X\), and let \(\{C_1, C_2, D\}\) be a partition of \(X\), where the subgraphs induced on \(C_1, C_2,\) and \(C_1 \cup C_2\) are regular, and \(C_1\) and \(C_2\) have the same size and degree. Suppose that each \(x \in D\) either has the same number of neighbors in \(C_1\) and \(C_2\), or satisfies \(\Gamma(x) \cap (C_1 \cup C_2) \in \{C_1, C_2\}\). Construct a new graph \(\Gamma'\) by interchanging adjacency and nonadjacency between \(x \in D\) and \(C_1 \cup C_2\) when \(\Gamma(x) \cap (C_1 \cup C_2) \in \{C_1, C_2\}\). Then \(\Gamma\) and \(\Gamma'\) are cospectral (Wang, Qu & Hu [721]).

One may check that GM-switching with \(t = 1\), \(|C_1| = 4\) is equivalent to WQH-switching with \(|C_1| = 2\). Ihringer & Munemasa [452] construct new strongly regular graphs by applying WQH-switching to polar graphs.
8.14 Equiangular sets of lines

Let x_i (1 ≤ i ≤ n) be unit vectors in \mathbb{R}^d or \mathbb{C}^d. The set of lines $\{\langle x_i \rangle \mid 1 ≤ i ≤ n\}$ is called equiangular when there is a constant α such that for any two distinct i, j one has $|x_i^* x_j| = \alpha$. (Here $x^* = {x^\top}$ denotes the conjugate transpose of x.) In \mathbb{R}^d this says that the cosine of the angle between any two of these lines is α.

The size of a set of equiangular lines is bounded as a function of d.

Proposition 8.14.1 (See [132], §10.6.2.)

(i) ('Absolute bound') A set of equiangular lines in \mathbb{R}^d has size at most $\frac{1}{2}d(d + 1)$.

(ii) A set of equiangular lines in \mathbb{C}^d has size at most d^2.

(iii) ('Special bound') If $\{x_i \mid 1 ≤ i ≤ n\}$ is a set of unit vectors such that $|x_i^* x_j| ≤ \alpha$ for any two distinct indices i, j, and $\alpha^2 d < 1$, then $n ≤ \frac{d(1 - \alpha^2)}{1 - \alpha d}$. □

Part (i) is due to M. Gerzon\(^3\) (see [514]).

Part (ii) is due to Delsarte, Goethals & Seidel [279]. Complex systems of lines with equality in (ii) are known as SICPOVMs ('symmetric informationally complete positive operator-valued measures'). Examples are known for $1 ≤ d ≤ 21$ and many further values of d. It is conjectured (Zauner [749], p. 61) that they exist for all d. An example for $d = 3$ are the 9 vectors in \mathbb{C}^3 given by the cyclic shifts of $\frac{1}{\sqrt{3}}(0, 1, -a)$ where $a^3 = 1$. A nice example for $d = 8$ was given by Hoggar [437, 438].

Complex systems of lines with equality in (iii) are known as equiangular tight frames (ETFs). Equivalently, an equiangular tight frame is a $d \times n$ matrix F of which the columns are equiangular unit vectors, and the rows are mutually orthogonal, all with the same length a, so that $FF^* = aI$. Now $a = \alpha$ (See also [132], §10.6.2.)

In the real case, equality in (iii) leads to strongly regular graphs. If $G = F^\top F = (x_i^\top x_j)$ is the Gram matrix of the set of vectors, so that $G = I + \alpha S$ for a matrix S that has zero diagonal and off-diagonal entries ±1, then S is the Seidel adjacency matrix of a graph in the switching class of a regular 2-graph with eigenvalues $n - d$ and $1 - \alpha$ with multiplicities d and $n - d$, respectively. This graph will be strongly regular precisely when 1 is eigenvector of G, so that $G1 = 0$ or $G1 = \frac{d}{n}1$. The former happens if and only if $F1 = 0$. The latter if and only if 1^\top lies in the row space of F.

Indeed, if $F^\top y = 1$, then $G1 = F^\top FF^\top y = \frac{d}{n}1$.

This leads to a number of constructions.

(i) (Goethals & Seidel [355]) If there exists a Steiner system $S(2, k, v)$ (with $b = \frac{v(v-1)}{k(k-1)}$ blocks, and $r = \frac{k-1}{v-1}$ blocks on each point), and a Hadamard matrix H of order $r + 1$, then there exists an equiangular tight frame F with $d = b$ and $n = v(r + 1)$ and $\alpha = \frac{1}{r}$, obtained by substituting rows of H for the 1's in the block-point incidence matrix of the design (and dividing by \sqrt{r}), taking r distinct rows for the r 1's in a single column.

\(^3\)Michael Gerzon was an audio pioneer from Oxford. He was interested in the question of equiangular lines in connection with the problem of sending many signals through a small number of channels with minimal crosstalk. [FJC]
If H is normalized to have top row $\mathbf{1}^T$, and the remaining rows are used in the substitution process, then $F\mathbf{1} = 0$, and we find a strongly regular graph with $V = v(r+1)$ vertices, and eigenvalues $K = \frac{(v+1)(r+1)}{2} - 1$, $R = \frac{r-1}{2}$, and $S = -\frac{v+k}{2}$.

(ii) (Fickus et al. [324]) If there exists a Steiner system $S(2,k,v)$ with a parallel class, and a Hadamard matrix H of order $r+1$, then there exists a strongly regular graph with $V = v(r+1)$ vertices, and eigenvalues $K = \frac{(v-k+1)(r+1)}{2} - 1$, $R = \frac{r-1}{2}$, and $S = -\frac{v+k}{2}$.

Here we use the parallel class, combined with an all-1 row of H to see that $\mathbf{1}^T$ lies in the row space of F.

(iii) See also [325].

The asymptotic behavior of $N_\alpha(d)$, the maximum number of vectors in \mathbb{R}^d with pairwise inner products $\pm \alpha$, for fixed α and large d was determined in [465].

8.15 Spherical designs

A finite nonempty subset X of the unit sphere Ω in the Euclidean space \mathbb{R}^m is called a spherical t-design if for each polynomial $F = F(x_1, \ldots, x_m)$ of degree at most t the average of F over Ω equals the average over the set X, i.e.,

$$\frac{1}{|X|} \sum_{x \in X} F(x) = \frac{1}{\text{vol} \Omega} \int_{\Omega} F(x) dx.$$

Spherical designs were introduced by Delsarte, Goethals & Seidel [278]. Many of the results stated below can be found here.

A polynomial F is called harmonic when $\sum_i \frac{\partial^2 F}{\partial x_i^2} = 0$. Let $\text{Hom}(k)$ be the space of homogeneous polynomials of degree k, and $\text{Harm}(k)$ be the subspace of harmonic polynomials. Then $\dim \text{Hom}(k) = \binom{k+m-1}{m-1}$ and $\dim \text{Harm}(k) = \binom{k+m-1}{m-1} - \binom{k+m-3}{m-1}$.

Proposition 8.15.1 ([278], [716]) For a finite nonempty subset X of the unit sphere in \mathbb{R}^m, the following are equivalent.

(i) X is a spherical t-design,

(ii) $\sum_{x \in X} F(x) = 0$ for all $F \in \text{Harm}(k)$ and any k with $1 \leq k \leq t$,

(iii) for any $y \in \mathbb{R}^m$,

$$\frac{1}{|X|} \sum_{x \in X} \langle x, y \rangle^k = \left\{ \begin{array}{ll} \frac{1 \cdot 3 \cdot \cdots \cdot (k-1)}{m(m+1) \cdots (m+k-2)} \langle y, y \rangle^{k/2} & \text{if } k \text{ is even}, \ 0 & \text{if } k \text{ is odd} \end{array} \right.$$

if $0 \leq k \leq t$.

For example, from the (distance-regular) collinearity graph of the dual polar space $U_6(2)$ one gets (by taking the columns of the idempotent E_3) a set of 891 vectors in \mathbb{R}^{22} with inner products $1, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{8}$ with frequencies 1, 42, 336, 512. Using (iii) one sees that this is a spherical 5-design.

For a survey, see Bannai & Bannai [46].
8.15. SPHERICAL DESIGNS

8.15.1 Tight spherical designs

The set X is said to have degree s when the inner product between two distinct elements of X takes precisely s values. Put $n = |X|$. If X has degree s, we have the upper bound

$$n \leq \binom{m + s - 1}{s} + \binom{m + s - 2}{s - 1}, \quad \text{or} \quad n \leq 2 \binom{m + s - 2}{s - 1},$$

with the sharper inequality if X is antipodal. If X is a spherical t-design, we have the lower bound

$$n \geq \binom{m + e - 1}{e} + \binom{m + e - 2}{e - 1}, \quad \text{or} \quad n \geq 2 \binom{m + e - 1}{e}$$

for $t = 2e$ and $t = 2e + 1$, respectively. In case of equality, the spherical t-design is called tight. For example, the set of $2\binom{m}{2}$ shortest vectors of the Leech lattice in \mathbb{R}^{24} is an antipodal spherical 11-design of degree 6 (with inner products $-1, -\frac{1}{2}, -\frac{1}{2}, 0, 1, \frac{1}{2}$) and has equality in both upper and lower bound.

A spherical 2e-design is tight if and only if it has degree e. A spherical $(2e+1)$-design is tight if and only if it has degree $e+1$ and is antipodal.

<table>
<thead>
<tr>
<th>t</th>
<th>m</th>
<th>N</th>
<th>inner products</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m</td>
<td>2</td>
<td>-1</td>
<td>pair of vectors $\pm e$</td>
</tr>
<tr>
<td>2</td>
<td>$m + 1$</td>
<td>6</td>
<td>$-\frac{1}{3}$</td>
<td>simplex</td>
</tr>
<tr>
<td>3</td>
<td>$2m$</td>
<td>27</td>
<td>$-1, 0$</td>
<td>cross polytope ($\pm e_i, i = 1, \ldots, m$)</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>275</td>
<td>$-\frac{1}{3}, \frac{1}{3}$</td>
<td>Schl"{a}fli graph</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>56</td>
<td>$-1, \pm \frac{1}{3}$</td>
<td>McLaughlin graph</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>275</td>
<td>$-1, \pm \frac{1}{3}$</td>
<td>icosahedron</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>552</td>
<td>$-1, \pm \frac{1}{3}$</td>
<td>276 equiangular lines</td>
</tr>
<tr>
<td>8</td>
<td>240</td>
<td>$1, 0$</td>
<td>roots of E_8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>600</td>
<td>$-1, \pm \frac{1}{3}, 0$</td>
<td>2300 equiangular lines (invariant under $2 \times CO_2$)</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>196560</td>
<td>$-1, \pm \frac{1}{3}, \pm \frac{1}{2}, 0$</td>
<td>shortest vectors in the Leech lattice</td>
</tr>
</tbody>
</table>

Table 8.4: Tight spherical t-designs of size N in \mathbb{R}^m

For $t \neq 4, 5, 7$ all examples of tight spherical t-designs are known. For $m = 2$, the tight spherical t-designs are the regular $(t+1)$-gons. No tight spherical t-designs exist in \mathbb{R}^m with $m \geq 3$ for $t = 2e \geq 6$ or $t = 2e + 1 \geq 9$, except in case $m = 24, t = 11$ ([BANNAI & DAMERELL [47], [48]]). Uniqueness of the examples with $(t, m) = (5, 7), (7, 8), (7, 23), (11, 24)$ was shown in BANNAI & SLOANE [50].

There is a 1-1 correspondence between tight spherical 4-designs and tight spherical 5-designs: any example X of the latter (of size N in \mathbb{R}^m) has degree 3 and inner products $-1, -a, a$, and shifting and scaling the set $\{x \in X \mid (x, x_0) = a\}$ for some fixed $x_0 \in X$ yields a tight spherical 4-design (of size $\frac{3}{2}N - 1$ in \mathbb{R}^{m-1}). This procedure can be reversed. Tight spherical 4-designs are obtained from strongly regular graphs with equality in the absolute bound, see Proposition 8.15.2 below.

Any tight spherical 5-design in \mathbb{R}^m with $m > 3$ lives in dimension $m = (2h + 1)^2 - 2$ for some integer h. Examples are known for $h = 1$ and there are none for $h = 3, 4$. Any tight spherical 7-design in \mathbb{R}^m has $m = 3h^2 - 4$ for some integer h. Examples are known for $h = 2, 3$ and there are none for $h = 4, 5$. These and further nonexistence results are due to BANNAI, MUNEASA & VENKOV [49] and NEHE & VENKOV [586].

If X is a spherical t-design of degree s, and $t \geq 2s - 2$, then X, with the inner products as relations, is an s-class association scheme ([DELSARTE, GOETHALS & SEIDEL [278], Thm. 7.4]).
8.15.2 Spherical designs from association schemes

Given a d-class association scheme (X, \mathcal{R}) with primitive idempotent E of rank m (with $EJ = 0$), one can represent the point $x \in X$ by the vector $\bar{x} \in \mathbb{R}^m$ given by column x of E. Now $(\bar{x}, \bar{y}) = e_{\bar{x}}^\top E J e_{\bar{y}} = E_{xy}$. It follows that \bar{X} has degree at most d. (See also §1.3.5.)

If (X, \mathcal{R}) is primitive (no union of relations is a nontrivial equivalence relation), then the map $x \mapsto \bar{x}$ is injective.

In particular, if (X, \mathcal{R}) is a primitive strongly regular graph on v vertices, then \bar{X} has degree (at most) 2, and it follows that $v \leq \frac{1}{2} m (m + 3)$ if m is the multiplicity of an eigenvalue other than k. This is the absolute bound, see §1.3.7.

For the McLaughlin graph we have equality: $v = 275$, $g = 22$.

Since $\text{tr} E = m$, the scaled vectors $c \bar{x}$, where $c = \sqrt{|X|}/m$, lie on the unit sphere. Since $\sum_{x \in X} \bar{x} = 0$, and $\sum_{x \in X} \langle \bar{x}, y \rangle^2 = y^\top E y = \langle y, y \rangle$ for arbitrary $y \in \mathbb{R}^m$, we always get a spherical 2-design.

Proposition 8.15.2 Let Γ be a primitive strongly regular graph, and let \bar{X} be the spherical design formed by the columns of a primitive idempotent E of rank $m > 1$. Then

(i) \bar{X} is always a spherical 2-design,

(ii) \bar{X} is a spherical 3-design if and only if $q^\prime_{iv} = 0$, where $E = E_i$,

(iii) \bar{X} is a spherical 4-design if and only if $v = \frac{1}{2} m (m + 3)$,

(iv) \bar{X} is never a spherical 5-design.

We see that the absolute bound holds with equality if and only if \bar{X} is a tight spherical 4-design. See also [346], [46], [132] (Chapter 10).

8.15.3 Bounds on the number of K_4’s

Bondarenko et al. [89], [88] derive lower bounds for the number of K_4 subgraphs of a strongly regular graph by looking not only at the images \bar{x} of the vertices but also at the images $\bar{x} + \bar{y}$ of the edges xy. As a corollary they show nonexistence for strongly regular graphs with parameters $(v, k, \lambda, \mu) = (76, 30, 8, 14), (460, 153, 32, 60), (5929, 1482, 275, 402), (6205, 858, 47, 130)$.

8.16 Higher regularity conditions

8.16.1 The t-vertex condition

Hestenes & Higman [419] introduced the t-vertex condition. A graph Γ is said to satisfy the t-vertex condition, when for all triples (T, x_0, y_0) of a t-vertex graph T with two distinct distinguished vertices x_0, y_0, and all pairs of distinct vertices x, y of Γ, where $x \sim y$ if and only if $x_0 \sim y_0$, the number $n(x, y)$ of isomorphic copies of T in Γ, where the isomorphism maps x_0 to x and y_0 to y, does not depend on the choice of the pair x, y.

Clearly, a rank 3 graph satisfies the t-vertex condition for all t. If the graph Γ satisfies the t-vertex condition, where Γ has v vertices and $3 \leq t \leq v$, then Γ also satisfies the $(t - 1)$-vertex condition. A graph Γ satisfies the 3-vertex condition if and only if it is strongly regular (or complete or empty).
Details on the parameters of graphs satisfying the 4-vertex condition (partly due to the no longer accessible [657]) are given in [419]. In particular, one has the simplified criterion for the 4-vertex condition:

Proposition 8.16.1 (Sims [657]) A strongly regular graph Γ with parameters (v, k, λ, μ) satisfies the 4-vertex condition, with parameters (α, β), if and only if the number of edges in $\Gamma(x) \cap \Gamma(y)$ is α (resp. β) whenever the vertices x, y are adjacent (resp. nonadjacent). In this case, $k((\lambda^2 - \alpha) = \beta(v - k - 1)$.

It immediately follows that the collinearity graph of a generalized quadrangle satisfies the 4-vertex condition (with $\alpha = (\lambda^2)$ and $\beta = 0$).

Reichard [625] shows that the collinearity graph of a generalized quadrangle satisfies the 5-vertex condition (but not necessarily the 6-vertex condition) and that the collinearity graph of a generalized quadrangle $GQ(s, s^2)$ satisfies the 7-vertex condition (but not necessarily the 8-vertex condition).

One conjectures that graphs that satisfy the t-vertex condition for sufficiently large t must be rank 3.

Higman [421] and Kaski et al. [485] show that the block graph of a Steiner triple system satisfies the 4-vertex condition precisely for $PG(n, 2)$ and $AG(2, 3)$.

For two infinite series of graphs satisfying the 5-vertex condition, see [459], [134], [460], [624].

Below a table with parameters of small rank 4 graphs satisfying the 4-vertex condition.

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>α</th>
<th>β</th>
<th>group</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>55</td>
<td>22</td>
<td>20</td>
<td>87</td>
<td>90</td>
<td>M_{12}</td>
<td>§10.46</td>
</tr>
<tr>
<td>280</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>Hj_2</td>
<td>§10.32</td>
</tr>
<tr>
<td>300</td>
<td>104</td>
<td>28</td>
<td>40</td>
<td>78</td>
<td>160</td>
<td>$PGO_2(5)$</td>
<td>§3.1.4, NO$^-$ (5)</td>
</tr>
<tr>
<td>325</td>
<td>144</td>
<td>68</td>
<td>60</td>
<td>1153</td>
<td>900</td>
<td>$PGO_3(5)$</td>
<td>§3.1.4, NO$^+$ (5)</td>
</tr>
<tr>
<td>312</td>
<td>196</td>
<td>60</td>
<td>84</td>
<td>420</td>
<td>840</td>
<td>$2^8 F_4(8)$</td>
<td>§8.4.3</td>
</tr>
<tr>
<td>729</td>
<td>112</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>$3^6:2 L_3(4).2$</td>
<td>§10.75</td>
</tr>
<tr>
<td>1120</td>
<td>729</td>
<td>468</td>
<td>486</td>
<td>69408</td>
<td>74358</td>
<td>$PSp_6(3).2$</td>
<td>§3.2.4</td>
</tr>
<tr>
<td>1849</td>
<td>462</td>
<td>131</td>
<td>110</td>
<td>2980</td>
<td>1845</td>
<td>$43^7:(42 \times D_{22})$</td>
<td>§7.4.5, $e = 4$</td>
</tr>
</tbody>
</table>

Brouwer, Ihringer & Kantor (2021, unpublished) showed for several infinite series of strongly regular graphs that they satisfy the 4-vertex condition, and also provided a prolific construction of such graphs (with the parameters of the symplectic polar graphs).

8.16.2 t-Isoregularity

A graph is said to be t-tuple regular (Cameron & Van Lint [182], pp. 112–113) when for any set S of vertices with $|S| \leq t$ the size of S^\perp (the set of all vertices adjacent to each vertex in S) depends on the isomorphism type of S only. Elsewhere, this same concept is called t-isoregularity.

A graph Γ is t-isoregular if and only if its complement $\overline{\Gamma}$ is.

For $t = 1$ we find the regular graphs. For $t = 2$ we find the graphs that are strongly regular or complete or edgeless. For $t = 3$ we find the graphs that are strongly regular with strongly regular subconstituents, or complete, or edgeless. For $t = 4$ we find the graphs aK_m and their complements $K_{3 \times m}$, 3×3, and the graphs with equality in the absolute bound. For $t = 5$ we find the graphs aK_m and their complements $K_{a \times m}$, the pentagon, and 3×3. (See Buczak [153], Cameron [172] (Note added in proof), and [182] (8.21).) This result is independently due to Ya. Yu. Gol’fand. See also [624], [625].
8.17 Asymptotics

8.17.1 Graph isomorphism

The problem of testing whether two graphs are isomorphic is of both theoretical and practical importance. On the practical side McKay’s nauty works well (and improvements exist). See [555]. On the theoretical side it is unknown whether a polynomial-time algorithm exists. Babai has claimed a quasipolynomial-time algorithm, retracted the claim after Helfgott pointed out a flaw, and repaired his proof again, a few days later. Babai & Helfgott currently claim an algorithm that runs in time $\exp(O(\log v)^{3})$ for graphs on v vertices. This result is so far unpublished. See [25], [26], [416]. For graphs of bounded valency, and for graphs with bounded eigenvalue multiplicity, graph isomorphism can be decided in polynomial time (Luks [527], Babai, Grigor’ev & Mount [27]).

For the graph isomorphism problem, the most difficult cases are graphs that are very similar without being isomorphic, and strongly regular graphs with the same parameters are good test cases. They have the same spectrum, and vertices or pairs of adjacent or nonadjacent vertices cannot be distinguished by counting neighbors or common neighbors. There is literature about isomorphism testing in this special case. See [22], [671], [23], [24]. Since quantum computation may be more powerful than classical computation, people have been searching for efficient quantum algorithms for the isomorphism problem. One type of attempt is getting an invariant from quantum walks. For example, [306] defines an invariant (the spectrum of a certain matrix of order vk in case of a regular graph of valency k on v vertices) and conjectures that it distinguishes nonisomorphic strongly regular graphs. Godsil, Guo & Myklebust [347] give a counterexample, and show that it does not distinguish two strongly regular graphs with parameters $(756, 130, 4, 26)$, the collinearity graphs of two different generalized quadrangles $\mathbf{GQ}(5, 25)$.

8.17.2 Pseudo-randomness

Pyber [622] proves that large connected strongly regular graphs other than the complete multipartite graphs or block graphs of Steiner 2-designs or Latin square graphs have a big eigenvalue gap, that is, that $\max(|r|, |s|)$ is much smaller than k. It follows that these graphs are highly pseudo-random. And, for example, are Hamiltonian.

A graph Γ is called pseudo-random when it sufficiently resembles a random graph, say, a graph on v vertices where edges are chosen independently with some probability p.

A first precise definition was given by Thomason [698, 699], who introduced the concept of jumbled graph. A graph is (p, α)-jumbled when for every k-subset H of its vertex set the number of edges contained in H satisfies $|e(H)| = p(|H|) \leq \alpha h$.

Chung, Graham & Wilson [196] consider weak pseudo-randomness for a series of graphs with increasing number of vertices v, while p is fixed, and show the equivalence of many properties, one of which is $e(H) = p(|H|) + o(v^2)$ for each subset H.

Let a (v, k, M)-graph be a regular graph of valency k on v vertices, with eigenvalues $\theta_1 \geq \cdots \geq \theta_v$, where $|\theta_i| \leq M$ for $i > 1$. If M is much smaller than k, such graphs have good randomness properties. For example, if S, T are two subsets of the vertex set of sizes s, t, respectively, and $e(S, T)$ ordered edges xy have $x \in S$, $y \in T$, then $|e(S, T) - \frac{s}{v} t| \leq M^2 st(1 - \frac{s}{v})(1 - \frac{t}{v})$. (See [132], 4.3.2.)

A survey of pseudo-random graphs is given by Krivelevich & Sudakov [504].

Let Γ be a primitive strongly regular graph with parameters (v, k, λ, μ) and spectrum $k1^r \cdot f^1 s^g$, where $r > 0 > s$. Let $m := -s$, and $M := \max(r, m)$.

Lemma 8.17.1 $M < k^{1/2} v^{1/4}$.
8.17. ASYMPTOTICS

Proposition 8.17.4 If Γ is not a Latin square graph or the block graph of a Steiner 2-design, then $\frac{r}{k} < v^{-1/10}$.

Proof. In the half case, $v = 4t + 1$, $k = 2t$, and $r = \frac{1}{2}(-1 + \sqrt{v})$, and the conclusion holds. So, we may assume that r, s are integral, and $s \leq -2$. If $k > v^{7/10}$, the conclusion follows from the lemma. Since $k = rm + \mu$, we have $k > rm$, and if $m > v^{1/10}$, the conclusion follows. By the Claw Bound (Theorem 8.6.3), we have $r \leq \frac{1}{2}s(s+1)(\mu+1) - 1$. If $m \geq \mu$, then $\sqrt{v-1} \leq k = rm + \mu \leq \frac{1}{2}m^2(m-1)(\mu+1) - m + \mu < \frac{1}{2}m^4$ so that $m > v^{1/8}$, and we are done.

Remains the case $k \leq v^{7/10}$, $m \leq v^{1/10}$, $m < \mu$. Then $v \geq v^{2/10} + v \geq 8k$. Now we have $k = rm + \mu \leq \frac{1}{2}m^2(m-1)(\mu+1) - m + \mu < \frac{1}{2}(m^3 + 2) \mu$. Since $\mu = \frac{k(k-\lambda-1)}{v-k} < \frac{k^2}{v-\mu}$, this yields $k \leq \frac{1}{2}(m^3 + 2) \frac{k^2}{v-\mu}$, so that $2(\sqrt{v}) \leq \frac{m^3 + 2}{m^3}(km^3) \leq 10 \frac{v}{8}$, a contradiction.

Theorem 8.17.5 Let Γ be a primitive strongly regular graph. If Γ is not a Latin square graph or the block graph of a Steiner 2-design, then $M/k < 2v^{-1/10}$.

Let us call the graphs of the theorem, just here, general, and mention two applications.

BROUWER [118] showed that the toughness t of a connected non-complete regular graph satisfies $t > k/M - 2$. So general strongly regular graphs are very tough.

KRIVELEVICH & SUDAKOV [503] showed that a (v, k, M)-graph is Hamiltonian if v is sufficiently large and $M/k \leq \frac{(\log \log v)^2}{10000 \log v (\log \log \log v)}$. So large general strongly regular graphs are Hamiltonian.

The above estimates and results were due to Pyber. Other bounds are due to SPIELMAN [671] and BABAI & WILMES [28]. For example, the latter show that

$$\lambda + 1 < \max \{ 4\sqrt{2v}, \frac{6}{\sqrt{13} - 1}\sqrt{k(\mu - 1)} \}$$

for edge-regular graphs where v, k, λ have the usual meaning, and μ is an upper bound for the number of common neighbors of two vertices at distance 2.
8.18 Conditions in case $\mu = 1$ or $\mu = 2$

In a strongly regular graph with $\mu = 1$, the local graphs are unions of cliques, so that the graph is the collinearity graph of a partial linear space with lines of size $\lambda + 1$. The number of lines on each point is $k/(\lambda + 1)$. The total number of lines is $vk/(\lambda + 1)(\lambda + 2)$. In particular, these numbers are integers.

For example, there is no strongly regular graph with parameters $(v, k, \lambda, \mu) = (209, 16, 3, 1)$ or $(726, 29, 4, 1)$.

If $\mu = 2$, then in the local graph two vertices at distance 2 have a unique common neighbor, so that the local graph is the collinearity graph of a partial linear space. This yields a lower bound on k.

Theorem 8.18.1 (Brouwer & Neumaier [139]) A connected partial linear space with girth at least 5 and more than one line (lines possibly of varying size) in which every point has λ neighbors, contains $k \geq \frac{1}{2} \lambda(\lambda + 3)$ points.

This can be applied to the connected components of the local graph. If $(\lambda + 1) \nmid k$ then not every component can be a single line, and there must be a big component. For example, there are no strongly regular graphs with parameters $(v, k, \lambda, \mu) = (456, 35, 10, 2)$ and $(2745, 56, 7, 1)$, and for $\mu = 2$ that the graph is either a grid graph or satisfies $k \geq \frac{1}{2} \lambda(\lambda + 3)$.

8.19 Coloring

We sketch what is known about the chromatic number $\chi(\Gamma)$ of strongly regular graphs Γ. Eigenvalue methods provide lower bounds. For more detail, see [132], §3.6, and [323]. Explicit constructions provide upper bounds.

Proposition 8.19.1 (Hoffman [434]) If the graph Γ is not edgeless, and has largest eigenvalue θ_{max} and smallest eigenvalue θ_{min}, then $\chi(\Gamma) \geq 1 - \theta_{\text{max}}/\theta_{\text{min}}$.

When equality holds, the coloring is called a Hoffman coloring. Since clearly $\chi(\Gamma) \geq |V(\Gamma)|/\alpha(\Gamma)$, where $\alpha(\Gamma)$ is the independence number of Γ, a Hoffman coloring of a regular graph is a partition of its vertex set into cocliques reaching the Hoffman bound. Haemers & Tonchev [385] investigate strongly regular graphs with a Hoffman coloring, and give a table with the examples on at most 100 vertices. Their smallest open case was settled in [163].

Proposition 8.19.2 (Haemers [376], 2.2.2) If the graph Γ on v vertices has eigenvalues $\theta_1 \geq \theta_2 \geq \cdots \geq \theta_v$, and $\theta_2 > 0$, and θ_v has multiplicity m, then $\chi(\Gamma) \geq \min(m, 1 - \theta_v/\theta_2)$.

Corollary 8.19.3 If the strongly regular graph Γ with distinct eigenvalues $k > r > s$ is not the pentagon and not complete multipartite, then $\chi(\Gamma) \geq 1 - s/r$.

HAEMERS [376] determined all primitive strongly regular graphs with chromatic number at most 4. There are three examples with $\chi(\Gamma) = 3$:

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>pentagon</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>$L_2(3)$</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>Petersen graph</td>
</tr>
</tbody>
</table>

and 18 examples with $\chi(\Gamma) = 4$:

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>$T(6)$</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>complement of the Clebsch graph</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>$L_2(4)$</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>Shrikhande graph</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>$L_2(4)$</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>Hoffman-Singleton graph</td>
</tr>
<tr>
<td>56</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>Gewirtz graph</td>
</tr>
<tr>
<td>64</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>11 incidence graphs of triples of linked designs.</td>
</tr>
</tbody>
</table>

Here the graphs with parameters $(64,18,2,6)$ are derived from the systems of three linked $2-(16,6,2)$ designs.

Linked designs A system of linked designs (CAMERON [170]) is a particular type of coherent configuration (or of Buekenhout-Tits geometry). One has sets of objects X_0, \ldots, X_{r-1} and incidence relations between X_i and X_j for $i \neq j$, such that (i) each pair (X_i, X_j) with $i \neq j$ determines a square (a.k.a symmetric, or projective) 2-design, and (ii) for any three sets X_i, X_j, X_k the number of $x \in X_i$ incident with both $y \in X_j$ and $z \in X_k$ depends only on whether y and z are incident. Such a system is called a system of $r-1$ linked designs (where one arbitrarily chooses one set X_0 as the point set, and views the remaining X_i as the sets of blocks for $r-1$ designs).

Cameron describes systems of linked designs derived from $Sp(2m, q)$, where $q = 2^n$, and systems (due to Goethals) derived from Kerdock codes, and the construction of systems of linked $2-(16,6,2)$ designs from the Steiner system $S(5, 8, 24)$. Mathon [545] analyzes the case of linked $2-(16,6,2)$ designs and finds that there are 3 pairs, 12 triples, and unique 4-, 5-, 6-, and 7-sets of such designs. The 12 nonisomorphic triples lead to 11 nonisomorphic 4-colorable strongly regular graphs with parameters $(64,18,2,6)$. See also [385], [250] (§5.4), [405], [612].

FIALA & HAEMERS [323] show that a strongly regular Γ with $\chi(\Gamma) = 5$ has one of 43 parameter sets, and completely settle 34 of these 43 cases.

Edge coloring

The edge-chromatic number of strongly regular graphs is studied in CIOABĂ, GUO & HAEMERS [200]. By Vizing's theorem the edge chromatic number of a graph is either the maximum degree, or one more, and the corresponding graphs are called of Vizing class 1 and 2, respectively. A regular graph of valency k is of Vizing class 1 when it has an edge coloring with k colors, that is, when it has a 1-factorization. Such a graph necessarily has an even number of vertices. These authors conjecture that every connected strongly regular graph with an even number of vertices is of Vizing class 1, except for the Petersen graph. This is true if the valency is at most 18, and for several infinite families of graphs.
8.20 Graphs that are locally strongly regular

Let Δ be a fixed graph. A graph Γ is called \textit{locally} Δ when the induced subgraph on each vertex neighborhood $\Gamma(x)$ is isomorphic to Δ. Let \mathcal{D} be a class of graphs. A graph Γ is called \textit{locally} \mathcal{D} when each vertex neighborhood $\Gamma(x)$ is isomorphic to a member of \mathcal{D}. We met this concept earlier, and saw that a Fischer graph is locally Fischer, and looked, e.g., at locally cotriangular graphs.

Weetman [722] showed that if Δ is regular of degree > 1 and has girth at least 6 then there exist infinite graphs Γ that are locally Δ. The typical example is the triangulation of the plane that is locally a hexagon.

Conversely, Weetman [723] shows that in many cases if Δ is strongly regular, the diameter of Γ is bounded.

\textbf{Theorem 8.20.1} (Weetman [723]) Let Δ be strongly regular with parameters (v, k, λ, μ). If (i) $v \leq 2k + 1$, or (ii) $\mu > \lambda$, or (iii) Δ is the collinearity graph of a partial geometry, then any locally Δ graph has diameter at most $k + 1$.

Weetman conjectures that any graph that is locally strongly regular (with $\mu > 0$) is finite. It is true that any graph that is locally Δ, where Δ is strongly regular on at most 195 vertices (with $\mu > 0$), is finite ([117]).

8.21 Dropping regularity

A frequently rediscovered result says what happens if we drop the regularity condition from the definition of strongly regular graph.

\textbf{Proposition 8.21.1} (Bose & Dowling [93]) Let Γ be a graph, not complete, not edgeless, such that any two adjacent (resp. nonadjacent) vertices have λ (resp. μ) common neighbors. Then either Γ is strongly regular, or $\mu = 0$ and Γ is the disjoint union of complete subgraphs of sizes 1 or $\lambda + 2$, or $\mu = 1$ and Γ is the union of complete subgraphs of size $\lambda + 2$ with a single common vertex.

The particular case $\lambda = \mu = 1$ of this proposition in known as the \textit{friendship problem}. See also [412].

8.22 Directed strongly regular graphs

A directed strongly regular graph (dsrg) is a $(0,1)$-matrix A with zero diagonal such that the linear span of I, J and A is closed under matrix multiplication. This concept was defined by Duval [298], and most of the theory is due to him. The matrix A is the adjacency matrix of a directed graph without loops, so that xy is an edge when $A_{xy} = 1$.

One defines (integral) parameters (v, k, t, λ, μ) by: v is the number of vertices, k is the constant indegree and outdegree (that is, $AJ = JA = kJ$), and $A^2 = tI + \lambda A + \mu (J - I - A)$. If we regard an undirected edge as the combination of two oppositely directed edges, then t is the number of undirected edges on each vertex.

These dsrg’s come in complementary pairs: together with A also $J - I - A$ satisfies the definition. If the first one has parameters (v, k, t, λ, μ) then its complement has parameters $(v, v - k - 1, v - 2k - 1 + t, v - 2k - 2 + \mu, v - 2k + \lambda)$.

For a given set of parameters, dsrg’s also come in pairs: together with A also its transpose A^T satisfies the definition. (One arises from the other by reversing all arrows.) The corresponding dsrg’s may or may not be isomorphic.

If the graph is undirected ($A = A^T$), then we have a strongly regular graph (and $t = k$). Let us assume that the graph is not undirected, that is, that A is not symmetric. Then $t < k < v – 1$.

Spectrum

Since the case $A = J – I$ was excluded, the algebra spanned by I, A and J is 3-dimensional. It follows that A has precisely 3 distinct eigenvalues, say k, r, s, with multiplicities 1, f and g, respectively.

The eigenvalues r, s different from k are roots of $x^2 + (\mu – \nu)x + \mu – t = 0$ so are algebraic integers. We distinguish two cases, depending on whether $f = g$.

Proposition 8.22.1 A directed strongly regular graph with $f \neq g$ has integral eigenvalues k, r, s with $r \geq 0$ and $s < 0$, and satisfies $\mu \leq t$ and $t \neq 0$.

Proof. If $f \neq g$, we can solve r, s from $r + s = \lambda – \mu$ and $fr + gs = –k$ to find that r and s are rational numbers, and therefore integers.

At least one of r, s is negative since $\text{tr } A = 0$. But $J – I – A$ has eigenvalues $v – 1 – k$, $–1 – s$, $–1 – r$, and also has a negative eigenvalue, so we may assume that $r \geq 0$ and $s < 0$. In particular, $r \neq s$, some linear combination of A, I and J is a projection, and A is diagonalizable. Moreover, $rs \leq 0$, so $\mu \leq t$, and hence $t \neq 0$. \(\square\)

Proposition 8.22.2 Directed strongly regular graphs with $t = 0$ are equivalent to Hadamard matrices of order 4μ that have 1’s on the diagonal and are skew-symmetric off-diagonal.

Proof. Suppose H is a Hadamard matrix as described. By suitably multiplying rows and columns by $–1$, we may assume that H has an all-1 top row. Let B be the matrix obtained by deleting the first row and column from H. From $HH^T = 4\mu I$, we find $BJ = J$ and $B + B^T = 2I$ and $BB^T = 4\mu I – J$. Now let $A = \frac{1}{2}(J – B)$. Then A is a $(0,1)$-matrix with zero diagonal satisfying $A + A^T = J – I$ and $AJ = JA = \frac{1}{2}J$ and $A^2 + A = \mu(J – I)$, so that this is a directed strongly regular graph with parameters $(v, k, t, \lambda, \mu) = (4\mu – 1, 2\mu – 1, 0, \mu – 1, \mu)$.

Conversely, let a directed strongly regular graphs satisfy $t = 0$. By the above, $f = g = (v – 1)/2$. From $(\lambda – \mu)(v – 1)/2 = –k$ it follows that $k = (v – 1)/2$ and $\mu = \lambda + 1$. From $k^2 = t + \lambda k + \mu(v – 1 – k)$ we see $k = 2\mu – 1$. The graph is a tournament: $A^T = J – I – A$, and bordering the $(1, –1)$ matrix $J – 2A$ first with a first column of all $–1$’s and then with a top row of all 1’s we find a Hadamard matrix H as desired. \(\square\)

In the below we exclude the case $t = 0$.

The 2-dimensional case

An important subclass is that where already the linear span of A and J is closed under matrix multiplication. This happens when $t = \mu$, and then $A^2 = (\lambda – \mu)A + \mu J$ so that the eigenvalues of A are k, $\lambda – \mu$, and 0. Conversely, when A has eigenvalue 0, we are in this case. Put $d = \mu – \lambda$. Then the multiplicities of the eigenvalues k, $–d$, 0 are 1, k/d and $v – 1 – k/d$, respectively.
The 1-dimensional case

If \(A \) is a 0-1 matrix, then \(B = J - 2A \) is a \(\pm 1 \) matrix, and it is possible that the 1-space generated by \(B \) is closed under matrix multiplication. This happens when \(t = \mu \) and \(\frac{1}{2}v = 2k - \lambda - \mu \), and then \(k - \mu \in \{\lambda, \mu\} \). Conversely, if \(B \) is a \(\pm 1 \) matrix with constant row sums and 1’s on the diagonal such that \(B^2 \) is a multiple of \(B \), then \(A = (J - B)/2 \) is the adjacency matrix of a dsrg in this subcase. Note that the set of such \(\pm 1 \) matrices \(B \) is closed under taking tensor products.

Combinatorial parameter conditions

We already saw that \(0 < \mu \leq t \). (If \(\mu = 0 \) then \(A = J - I \), which was excluded.) Also, that \(0 \leq \lambda < t < k < v \). (Indeed, \(\lambda < t \), since \(\lambda + 1 - t = (r+1)(s+1) \leq 0 \).

Duval gave one more condition. We have \(-2(k-t-1) \leq \mu - \lambda \leq 2(k-t)\). (Indeed, consider a directed edge from \(x \) to \(y \). Paths of length 2 from \(x \) to \(y \) contribute to \(\lambda \), paths in the opposite direction to \(\mu \). Thus, the difference between \(\mu \) and \(\lambda \) is counted by the at most 2\((k-t)\) paths that cannot be reversed. The other inequality follows similarly, or by applying the first to the complementary graph.)

No Abelian Cayley graphs

From the spectrum we can draw one more useful conclusion (Klin et al. [493]). Let us write \(A = A_s + A_d \) where \(A_s \) is the symmetric 0-1 matrix (with row sums \(t \)) describing adjacency via an undirected edge, and \(A_d \) is the 0-1 matrix describing the remaining, directed, edges (with row sums \(k-t \)). Since \(A_d \) has a nonzero real eigenvalue, namely \(k-t \), and its square has trace zero, \(A_d \) must also have non-real eigenvalues. On the other hand, both \(A \) and \(A_s \) only have real eigenvalues. It follows that \(A \) and \(A_s \) cannot be diagonalized simultaneously, so that \(A_d \) and \(A_s \) do not commute. But then these matrices do not describe differences in the same Abelian group. Thus, a directed strongly regular graph cannot be a Cayley graph of an Abelian group.

Examples

There are many constructions, and we just give a few random examples.

(i) If there exists a dsrg \(A \) with parameters \((v, k, t, \lambda, \mu)\), and \(t = \mu \), then for any \(m \geq 1 \) there is also a dsrg with parameters \((mv, mk, mt, m\lambda, m\mu)\), obtained by taking \(A \otimes J \), where \(J \) is of order \(m \) ([298]).

(ii) Let \(m \geq 1 \) be an integer. Then there exists a dsrg with parameters \((v, k, t, \lambda, \mu) = (4m + 2, 2m, m - 1, m)\) found by taking the vertices \(x_i \) and \(y_i \) \((0 \leq i \leq 2m, \text{indices mod } 2m + 1)\), and directed edges \(x_i \rightarrow x_{i+j}, y_{i+j}, y_i \rightarrow x_{i-j}, y_{i-j} \) where \(1 \leq j \leq m \) ([493]).

(iii) Let \(\mu, k \) be positive integers such that \(\mu |(k-1)\). Then there exists a dsrg with parameters \((v, k, t, \lambda, \mu) = ((k^2 - 1)/\mu, k, \mu + 1, \mu, \mu)\) found by taking as vertices the integers mod \(v \) and letting \(x \rightarrow y \) be an edge when \(x+ky = 1, 2, ..., k \) (mod \(v \)) ([470]).

(iv) If there exists a strongly regular graph with parameters \((v, k, \lambda, \mu)\) where \(\mu = \lambda + 1 \), then there is a dsrg with parameters \((v', k', \lambda', \mu') = (vk, (v - k - 1)k, (v - k - 1)(k - \mu), (v - k - 2)(k - \mu), (v - k - 1)(k - \mu))\). Construction: take the edges of the srg, and let \(xy \rightarrow uv \) when \(u \) is at distance 2 from \(y \). For example, the Petersen graph produces a dsrg\((30, 18, 12, 10, 12)\).

Further constructions abound. Surveys can be found elsewhere.
Chapter 9

\(p \)-Ranks

Let \(M \) be an integral matrix. The \(p \)-rank of \(M \), denoted \(\text{rk}_p M \), is the rank of \(M \) over the field \(\mathbb{F}_p \).

Designs or graphs with the same parameters can sometimes be distinguished by considering the \(p \)-rank of associated matrices. For example, there are three nonisomorphic 2-(16,6,2) designs, with point-block incidence matrices of 2-rank 6, 7 and 8, respectively.

Tight bounds on the occurrence of certain configurations are sometimes obtained by computing a rank in some suitable field, since \(p \)-ranks of integral matrices may be smaller than their ranks over \(\mathbb{R} \). For example, the Blokhuis-Moorhouse theorem (Theorem 2.6.2) gives good bounds on the size of partial ovoids in an orthogonal polar space.

9.1 Points and hyperplanes of a projective space

The following result was found independently by Goethals & Delsarte [352] and by MacWilliams & Mann [533]. A nicer proof was given by Smith [662].

Theorem 9.1.1 Let \(A \) be the 0-1 incidence matrix of points and hyperplanes of \(\text{PG}(d,q) \), where \(q = p^e \). Then \(\text{rk}_p A = \binom{d+p-1}{d}^e + 1 \).

We already encountered the special case of \(\text{PG}(2,4) \) in Theorem 6.2.2.

More generally, Hamada [402, 403] determined the \(p \)-rank of the incidence matrix of points and \(i \)-subspaces in \(\text{PG}(d,q) \).

See also Assmus & Key [17] and [145], §4.

9.2 Graphs

On the 2-rank

Let \(A \) be a symmetric integral matrix with zero diagonal. Then \(\text{rk}_2 A \) is even.

The diagonal of a symmetric \((0,1) \)-matrix \(A \) (written as row vector) is element of its \(\mathbb{F}_2 \)-rowspan \(\langle A \rangle_2 \).
Adding a multiple of J

Let M be an integral matrix of order v with row sums k. Given a field F, let $\text{rk}_F(M)$ be the rank of M over F, that is the dimension of the row space $\langle M \rangle_F$. Consider $\text{rk}_F(M + bJ)$ for integral b. Since J has rank 1, all matrices $M + bJ$ differ in rank by at most 1, so either all have the same rank r, or two ranks $r, r+1$ occur, and in the latter case rank $r+1$ occurs whenever $1 \in \langle M + bJ \rangle_F$.

If $1 \not\in \langle M \rangle$ and $1 \in \langle M + bJ \rangle$ for some $b \neq 0$, then $1 \in \langle M + bJ \rangle$ for all $b \neq 0$. Thus, either $\text{rk}_F(M + bJ)$ is independent of b, or there is precisely one value of b (in F) for which this rank is lower.

Now let $F = \mathbb{F}_p$. The matrix $M + bJ$ has row sums $k + bv$.

If $p \nmid v$, then $1 \in \langle M + bJ \rangle_p$ when $k + bv \not\equiv 0 \pmod{p}$. On the other hand, if $k + bv \equiv 0 \pmod{p}$, then all rows have zero row sum \pmod{p} while 1 has not, so that $1 \not\in \langle M + bJ \rangle_p$. Thus, we are in the second case, where the smaller p-rank occurs for $b = -k/v$ only.

If $p \mid v$ and $p \nmid k$, then all row sums are nonzero \pmod{p} for all b, and we are in the former case: the rank is independent of b, and $\langle M + bJ \rangle_p$ always contains 1.

Finally, if $p|v$ and also $p|k$, then further inspection is required.

9.3 Strongly regular graphs

For strongly regular graphs the interesting primes p are those with $p|\langle r - s \rangle$. All other ranks are already determined by the parameters.

Let Γ be a strongly regular graph with adjacency matrix A, and assume that A has integral eigenvalues k, r, s with multiplicities $1, f, g$, respectively. We investigate the p-rank of a linear combination of A, I and J.

The following proposition shows that only the case $p|\langle r - s \rangle$ is interesting. More detail is given in [126]. See also [132], Ch. 13.

Proposition 9.3.1 Let $M = A + bJ + cI$ where b, c are integers. Then M has eigenvalues $\theta_0 = k + bv + c, \theta_1 = r + c, \theta_2 = s + c$, with multiplicities $m_0 = 1, m_1 = f, m_2 = g$, respectively.

(i) If none of the θ_i vanishes \pmod{p}, then $\text{rk}_p M = v$.

(ii) If precisely one θ_i vanishes \pmod{p}, then M has p-rank $v - m_i$.

Put $c := \mu + b^2v + 2bk + b(\mu - \lambda)$.

(iii) If $\theta_0 \equiv \theta_1 \equiv 0 \pmod{p}, \theta_2 \not\equiv 0 \pmod{p}$, then $\text{rk}_p M = g$ if and only if $p|c$, and $\text{rk}_p M = g + 1$ otherwise.

(iii)' If $\theta_0 \equiv \theta_2 \equiv 0 \pmod{p}, \theta_1 \not\equiv 0 \pmod{p}$, then $\text{rk}_p M = f$ if and only if $p|c$, and $\text{rk}_p M = f + 1$ otherwise.

(iv) In particular, if $k \equiv r \equiv 0 \pmod{p}$ and $s \equiv 0 \pmod{p}$, then $\text{rk}_p A = g$.

And if $k \equiv s \equiv 0 \pmod{p}$ and $r \not\equiv 0 \pmod{p}$, then $\text{rk}_p A = f$.

(v) If $\theta_1 \equiv \theta_2 \equiv 0 \pmod{p}$, then $\text{rk}_p M \leq \min(f + 1, g + 1)$.

Proof. See [132], §13.7.

Idempotents

If $p|\langle r - s \rangle$ then Proposition 9.3.1 only says that $\text{rk}_p M \leq \min(f + 1, g + 1)$. Looking at the idempotents sometimes improves this bound by 1: We have
9.3. STRONGLY REGULAR GRAPHS

$E_1 = \frac{1}{v} (A - sI - \frac{k-s}{v} J)$ and $E_2 = \frac{1}{v} (A - rI - \frac{k-r}{v} J)$. Thus, if $k - s$ and v are divisible by the same power of p (so that $\frac{k-s}{v}$ can be interpreted in \mathbb{F}_p), then $\text{rk}_p(A - sI - \frac{k-s}{v} J) \leq \text{rk} E_1 = f$, and, similarly, if $k - r$ and v are divisible by the same power of p then $\text{rk}_p(A - rI - \frac{k-r}{v} J) \leq \text{rk} E_2 = g$.

For $M = A + bJ + cI$ and $p|(r+c)$, $p|(s+c)$ we have $M E_1 = JE_1 = 0$ (over \mathbb{F}_p) so that $\text{rk}_p(M, I) \leq g + 1$, and hence $\text{rk}_p M \leq g$ (and similarly $\text{rk}_p M \leq f$) in case $1 \not\in (M)$.

The half case

If r, s are nonintegral, we are in the half case, with $(v, k, \lambda, \mu) = (4t+1, 2t, t-1, t)$ and $r, s = (-1 \pm \sqrt{v})/2$. The analog of Proposition 9.3.1 for this case is

Proposition 9.3.2 Let $M = A + cI$ where c is an integer. Then M has eigenvalues $\theta_1 = k + c$, $\theta_2 = k/2(-1 \pm \sqrt{v}) + c$, with multiplicities $m_0 = 1$ and $m_1 = m_2 = (v-1)/2$, so that $\theta_1, \theta_2 = c^2 - c - \mu$. Let p be a prime.

(i) If $p \not\mid \theta_1, \theta_2$, then $\text{rk}_p M = v$.

(ii) If $p \not\mid \theta_1, \theta_2$ but $p|\theta_0$, then $\text{rk}_p M = v - 1$.

Now suppose that $p|(c^2 - c - \mu)$. If $p = 2$, this does not happen when μ is odd, and happens for all c when μ is even. If $p > 2$, then $p|(c^2 - c - \mu)$ is equivalent to $(2c-1)^2 \equiv v \pmod{p}$, and there are 0, 1 or 2 solutions for c (mod p), depending on whether v is a nonsquare, zero or a square (mod p).

(iii) If $p \equiv 0 \pmod{p}$, then $p|c(c-1)$, and $\text{rk}_p A = (v-1)/2$ and $\text{rk}_p(A + I) = (v+1)/2$.

(iv) If v is a nonzero square (mod p) and $v \not\equiv 1 \pmod{p}$, then $\text{rk}_p M = (v+1)/2$ for the two values of c satisfying $(2c-1)^2 \equiv v \pmod{p}$.

Proof. See [126], §4.

This proposition covers all cases except where $p|v$ where p is odd. In that case we only know $\text{rk}_p M \leq (v+1)/2$, with equality in case $p|v$ (Proposition 9.3.5). For Paley and Peisert graphs the precise values are given in Propositions 9.3.3 and 9.3.4.

Table

In the table below we give for a few strongly regular graphs for each prime p dividing $r-s$ the p-rank of $A - sI$ and the unique b_0 such that $\text{rk}_p(A - sI - bJ) = \text{rk}_p(A - sI - bJ) - 1$ for all $\not\equiv b_0 \pmod{p}$, or ‘-’ in case $\text{rk}_p(A - sI - bJ)$ is independent of b.

(When $p \nmid v$ we are in the former case, and $b_0 = (k-s)/v$ follows from the parameters. When $p|v$ and $p \nmid \mu$, we are in the latter case.)

Since $\overline{A} = J - I - A$ for the complementary graph, the table line for the complement would have the same minimal p-rank, and $b_0 = 1 - b_0$.

This table extends that in [126].

<table>
<thead>
<tr>
<th>Name</th>
<th>ref</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r</th>
<th>s</th>
<th>$p\text{rk}_p(A - sI)$</th>
<th>b_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 3, Paley(9)</td>
<td>§1.1.8</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>${ -2 }$</td>
<td>3</td>
</tr>
<tr>
<td>$T(5)$</td>
<td>§1.1.7</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>${ -2 }$</td>
<td>3</td>
</tr>
<tr>
<td>$T(6)$</td>
<td>§1.1.7</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>${ -2 }$</td>
<td>2</td>
</tr>
<tr>
<td>Folded 5-cube</td>
<td>§1.10.7</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>${ -3 }$</td>
<td>2</td>
</tr>
<tr>
<td>4 × 4</td>
<td>§1.1.8</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>${ -2 }$</td>
<td>2</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Name</th>
<th>ref</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r/log²</th>
<th>s²</th>
<th>p</th>
<th>rKₚ(A - sI)</th>
<th>b₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)</td>
<td>§1.1.7</td>
<td>21</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3²</td>
<td>(-2)¹⁵</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>5 x 5</td>
<td>§1.1.8</td>
<td>25</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>3³</td>
<td>(-2)¹⁶</td>
<td>5</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Paley(25)</td>
<td>§1.1.9</td>
<td>25</td>
<td>12</td>
<td>5</td>
<td>6</td>
<td>2¹²</td>
<td>(-3)¹³</td>
<td>5</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Schlafli</td>
<td>§10.10</td>
<td>27</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>4⁶</td>
<td>(-2)²⁰</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>T(8)</td>
<td>§1.1.7</td>
<td>28</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>4⁴</td>
<td>(-2)²⁰</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3 Chang graphs</td>
<td>§10.11</td>
<td>28</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>4⁴</td>
<td>(-2)²⁰</td>
<td>2</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>T(8, 4)</td>
<td>§10.13</td>
<td>35</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>2²⁰</td>
<td>(-4)¹⁴</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6 x 6</td>
<td>§1.1.8</td>
<td>36</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>4¹⁰</td>
<td>(-2)²⁵</td>
<td>2</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>G₉(2)</td>
<td>§10.14</td>
<td>36</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>2²¹</td>
<td>(-4)¹⁴</td>
<td>2</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>T(9)</td>
<td>§1.1.7</td>
<td>36</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>5⁸</td>
<td>(-2)²⁷</td>
<td>7</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>NO₅(2)</td>
<td>§10.15</td>
<td>36</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>3¹⁵</td>
<td>(-3)²⁰</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Sp₄(3)</td>
<td>§10.16</td>
<td>40</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>2⁴⁴</td>
<td>(-4)¹⁵</td>
<td>2</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>O₅(3)</td>
<td>§10.16</td>
<td>40</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>2⁴⁴</td>
<td>(-4)¹⁵</td>
<td>2</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>U₄(2)</td>
<td>§10.17</td>
<td>45</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>3²⁰</td>
<td>(-3)²⁴</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>T(10)</td>
<td>§1.1.7</td>
<td>45</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>6⁶</td>
<td>(-2)³⁵</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Paley(49)</td>
<td>§1.1.9</td>
<td>49</td>
<td>24</td>
<td>11</td>
<td>12</td>
<td>3²⁴</td>
<td>(-4)²⁴</td>
<td>7</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Hoffman-Singleton</td>
<td>§10.19</td>
<td>50</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2²⁸</td>
<td>(-3)²¹</td>
<td>5</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>Gewirtz</td>
<td>§10.20</td>
<td>56</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>2¹⁵</td>
<td>(-4)²⁰</td>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>S₆(2)</td>
<td>§10.21</td>
<td>63</td>
<td>30</td>
<td>13</td>
<td>15</td>
<td>3³⁵</td>
<td>(-5)²⁷</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>GQ(3, 5)</td>
<td>§10.24</td>
<td>64</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>2⁴⁵</td>
<td>(-6)¹⁸</td>
<td>2</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>NO₅(2)</td>
<td>§10.25</td>
<td>64</td>
<td>27</td>
<td>10</td>
<td>12</td>
<td>3²⁶</td>
<td>(-5)²⁷</td>
<td>2</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Halved folded 8-cube</td>
<td>§10.26</td>
<td>64</td>
<td>28</td>
<td>12</td>
<td>12</td>
<td>4²⁸</td>
<td>(-4)³⁵</td>
<td>2</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>M₂₂</td>
<td>§10.27</td>
<td>77</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>2⁵⁵</td>
<td>(-6)²¹</td>
<td>2</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Brouwer-Haemers</td>
<td>§10.28</td>
<td>81</td>
<td>20</td>
<td>1</td>
<td>6</td>
<td>2⁶⁰</td>
<td>(-7)²⁰</td>
<td>3</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Paley(81)</td>
<td>§1.1.9</td>
<td>81</td>
<td>40</td>
<td>19</td>
<td>20</td>
<td>4⁶⁰</td>
<td>(-5)⁴⁰</td>
<td>3</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Higman-Sims</td>
<td>§10.31</td>
<td>100</td>
<td>22</td>
<td>0</td>
<td>6</td>
<td>2⁷⁷</td>
<td>(-8)²²</td>
<td>2</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>Hall-Janko</td>
<td>§10.32</td>
<td>100</td>
<td>36</td>
<td>14</td>
<td>12</td>
<td>6³⁸</td>
<td>(-4)⁶³</td>
<td>2</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>Flags of PG(2, 4)</td>
<td>§10.33</td>
<td>105</td>
<td>32</td>
<td>4</td>
<td>12</td>
<td>2⁸⁴</td>
<td>(-10)²⁰</td>
<td>2</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>GQ(3, 9)</td>
<td>§10.34</td>
<td>112</td>
<td>30</td>
<td>2</td>
<td>10</td>
<td>2⁵⁰</td>
<td>(-10)²¹</td>
<td>2</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>NO₅(3)</td>
<td>§10.35</td>
<td>117</td>
<td>36</td>
<td>15</td>
<td>9</td>
<td>9²⁶</td>
<td>(-3)⁹⁰</td>
<td>2</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>001... in S(5, 8, 24)</td>
<td>§10.37</td>
<td>120</td>
<td>42</td>
<td>8</td>
<td>18</td>
<td>2⁵⁰</td>
<td>(-12)²⁰</td>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>NO₅(2)</td>
<td>§10.39</td>
<td>120</td>
<td>56</td>
<td>28</td>
<td>24</td>
<td>8³⁵</td>
<td>(-4)⁸⁴</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>S₁₀</td>
<td>§10.40</td>
<td>126</td>
<td>25</td>
<td>8</td>
<td>4</td>
<td>3⁷⁵</td>
<td>(-3)⁹⁰</td>
<td>2</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>NO₅(3)</td>
<td>§10.41</td>
<td>126</td>
<td>45</td>
<td>12</td>
<td>18</td>
<td>3⁹⁰</td>
<td>(-9)³⁵</td>
<td>2</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Goethals</td>
<td>§10.42</td>
<td>126</td>
<td>50</td>
<td>13</td>
<td>24</td>
<td>2¹⁰⁵</td>
<td>(-13)²⁰</td>
<td>3</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>Q₅(2)</td>
<td>§10.43</td>
<td>135</td>
<td>70</td>
<td>37</td>
<td>35</td>
<td>7⁵⁰</td>
<td>(-5)⁸⁴</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Faradžev-Klin-Muzychuk</td>
<td>§10.45</td>
<td>144</td>
<td>39</td>
<td>6</td>
<td>12</td>
<td>3¹⁰⁴</td>
<td>(-9)³⁹</td>
<td>2</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>Sp₄(5)</td>
<td>156 30 4 6 4⁹⁰</td>
<td>66</td>
<td>5</td>
<td>36</td>
<td>1</td>
<td>350</td>
<td>(-6)⁶⁵</td>
<td>2</td>
<td>66</td>
<td>-</td>
</tr>
<tr>
<td>2nd sub McL</td>
<td>§10.48</td>
<td>162</td>
<td>56</td>
<td>10</td>
<td>24</td>
<td>2¹⁴⁰</td>
<td>(-16)²³</td>
<td>2</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
| continued...
9.3. STRONGLY REGULAR GRAPHS

<table>
<thead>
<tr>
<th>Name</th>
<th>ref</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>rg</th>
<th>p</th>
<th>$rk_p(A - sI)$</th>
<th>b_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges of Ho-Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$01...$ in $S(5, 8, 24)$</td>
<td>§10.51</td>
<td>176</td>
<td>70</td>
<td>18</td>
<td>34</td>
<td>2^{13}</td>
<td>3</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>A switched version of the previous graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameron</td>
<td>§10.54</td>
<td>231</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>9^5</td>
<td>3</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>Berlekamp-VanLint-Seidel</td>
<td>§10.55</td>
<td>243</td>
<td>22</td>
<td>3</td>
<td>2</td>
<td>4^{132}</td>
<td>3</td>
<td>67</td>
<td>$-$</td>
</tr>
<tr>
<td>Delsarte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S(4, 7, 23)$</td>
<td>§10.56</td>
<td>253</td>
<td>110</td>
<td>37</td>
<td>60</td>
<td>2^{220}</td>
<td>3</td>
<td>22</td>
<td>$-$</td>
</tr>
<tr>
<td>VO$_2^-$</td>
<td>§10.59</td>
<td>256</td>
<td>119</td>
<td>54</td>
<td>56</td>
<td>7^{136}</td>
<td>3</td>
<td>10</td>
<td>$-$</td>
</tr>
<tr>
<td>VO$_2^*$</td>
<td>§10.60</td>
<td>256</td>
<td>120</td>
<td>56</td>
<td>56</td>
<td>8^{120}</td>
<td>3</td>
<td>10</td>
<td>$-$</td>
</tr>
<tr>
<td>McLaughlin</td>
<td>§10.62</td>
<td>275</td>
<td>112</td>
<td>30</td>
<td>56</td>
<td>2^{252}</td>
<td>2</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>A switched version of the previous graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plus isolated point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathon-Rosa</td>
<td>§10.64</td>
<td>276</td>
<td>140</td>
<td>58</td>
<td>84</td>
<td>2^{252}</td>
<td>2</td>
<td>24</td>
<td>$-$</td>
</tr>
<tr>
<td>G$_2(4)$</td>
<td>§10.65</td>
<td>280</td>
<td>117</td>
<td>44</td>
<td>52</td>
<td>5^{195}</td>
<td>2</td>
<td>68</td>
<td>$-$</td>
</tr>
<tr>
<td>NO$_2^{-}$</td>
<td>§10.66</td>
<td>351</td>
<td>126</td>
<td>45</td>
<td>45</td>
<td>9^{168}</td>
<td>2</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>G$_2(3)$</td>
<td>§10.67</td>
<td>416</td>
<td>160</td>
<td>36</td>
<td>20</td>
<td>2^{65}</td>
<td>2</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>$P(23^2)$, $P^+(23^2)$, $P^{-}(23^2)$</td>
<td>§10.70</td>
<td>529</td>
<td>264</td>
<td>131</td>
<td>132</td>
<td>11^{264}</td>
<td>23</td>
<td>144</td>
<td>$-$</td>
</tr>
<tr>
<td>$U_6(2)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_6(2)$ on 1408</td>
<td>§10.81</td>
<td>1408</td>
<td>567</td>
<td>246</td>
<td>216</td>
<td>39^{252}</td>
<td>2</td>
<td>22</td>
<td>$-$</td>
</tr>
<tr>
<td>Suz</td>
<td>§10.83</td>
<td>1782</td>
<td>416</td>
<td>100</td>
<td>96</td>
<td>20^{780}</td>
<td>2</td>
<td>638</td>
<td>0</td>
</tr>
<tr>
<td>3^{13} M_{24}, $k = 276$</td>
<td>§10.84</td>
<td>2048</td>
<td>276</td>
<td>44</td>
<td>36</td>
<td>29^{759}</td>
<td>2</td>
<td>112</td>
<td>$-$</td>
</tr>
<tr>
<td>2^{11} M_{24}, $k = 759$</td>
<td>§10.85</td>
<td>2048</td>
<td>759</td>
<td>310</td>
<td>264</td>
<td>55^{276}</td>
<td>2</td>
<td>24</td>
<td>$-$</td>
</tr>
<tr>
<td>Co$_2$</td>
<td>§10.88</td>
<td>2100</td>
<td>891</td>
<td>378</td>
<td>324</td>
<td>63^{275}</td>
<td>2</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Fi$_{122}$</td>
<td>§10.90</td>
<td>3510</td>
<td>693</td>
<td>180</td>
<td>126</td>
<td>63^{429}</td>
<td>2</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>Ru</td>
<td>§10.91</td>
<td>4060</td>
<td>1755</td>
<td>730</td>
<td>780</td>
<td>15^{276}</td>
<td>2</td>
<td>351</td>
<td>0</td>
</tr>
<tr>
<td>Fi$_{122}$ on 14080</td>
<td>§10.94</td>
<td>14080</td>
<td>3159</td>
<td>918</td>
<td>648</td>
<td>279^{429}</td>
<td>2</td>
<td>352</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 9.1: p-ranks of some strongly regular graphs

Some graph families

Lattice graphs

For $n \times n$ the interesting primes are those dividing n. For $p | n$ we have $rk_p(A + 2I - bJ) = 2n - 2$ for all b.

Triangular graphs

For $T(n)$ the interesting primes are those dividing $n - 2$. For $p | (n - 2)$, p odd, $n \geq 3$ we have $rk_p(A + 2I - bJ) = n$ if $b \neq 2$, and $rk_p(A + 2I - 2J) = n - 1$.

For \(p = 2, n \) even, \(n \geq 2 \) we have \(\text{rk}_2(A) = n - 2 \) and \(\text{rk}_2(A + J) = n - 1 \).

p-rank of Paley and Peisert graphs

Proposition 9.3.3 (Brouwer & van Eijl [126]) Let \(q = p^e \) where \(p \) is prime and \(q \equiv 1 \pmod{4} \), and let \(A \) be the adjacency matrix of \(P(q) \), the Paley graph of order \(q \). Then

\[
\text{rk}_p(2A + I) = \left(\frac{p + 1}{2}\right)^e.
\]

Proposition 9.3.4 (Weng, Qiu, Wang & Xiang [725]) Let \(q = p^e \) where \(p \) is prime, \(p \equiv 3 \pmod{4} \) and \(e = 2t \) is even. Let \(A \) be the adjacency matrix of \(P^*(q) \), the Peisert graph of order \(q \). Then

\[
\text{rk}_p(2A + I) = 2(3^t - 1)(\frac{p+1}{4})^{2t}.
\]

(For \(e > 4 \) this \(p \)-rank is smaller than that of the previous proposition, so in that sense \(P^*(q) \) is nicer than \(P(q) \).)

More generally, [126] gives the \(p \)-ranks of arbitrary strongly regular graph with ‘half case’ parameters for all \(p \) not dividing \(v \), but only \(\text{rk}_p(2A + I) \leq (v + 1)/2 \) when \(p \mid v \). Equality holds if \(p \mid |v| \) (that is, \(p \mid v, p^2 \mid v \)).

Proposition 9.3.5 (Peeters [611]) Let \(A \) be the adjacency matrix of a strongly regular graph with ‘half case’ parameters \((v, k, \lambda, \mu) = (4t + 1, 2t, t - 1, t)\). If \(p \) is prime, and \(p \mid |v| \), then \(\text{rk}_p(2A + I) = (v + 1)/2 \).

Symplectic graphs

For \(\text{Sp}(n, q), n = 2m \) we have \(r, s = -1 \pm q^{m-1} \), so the interesting primes are 2 and \(p \), where \(q = p^e \). For the \(p \)-rank: \(\text{rk}_p(A + I - J) = \text{rk}_p(A + I - bJ) - 1 \) for \(b \neq 1 \pmod{p} \), that is \(b_0 = 1 \). And \(\text{rk}_p(A + I) = (p + n - 2)q + 1 \) since \(A + I \) is just the point-hyperplane incidence matrix of \(\text{PG}(n - 1, q) \).

In particular, for \(\text{Sp}(n, 2) \) we have \(\text{rk}_2(A + I) = n + 1 \) and \(\text{rk}_2(J - I - A) = n \). Peeters [611] showed that the corresponding graphs are characterized by their parameters and 2-rank. Abiad & Haemers [3] constructed graphs with the same parameters and varying 2-rank. Godsil & Royle [351] show that any graph \(\Gamma \) of which the adjacency matrix has 2-rank 2m and does not have zero rows or repeated rows, can be embedded in the noncollinearity graph \(\Sigma \) of \(\text{Sp}(n, 2) \). Since \(\chi(\Sigma) = 2^m + 1 \) (by the existence of symplectic spreads) it follows that \(\chi(\Gamma) \leq 2^m + 1 \).

For the 2-rank, if \(p \) is odd: \(\text{rk}_2(A) = \text{rk}_2(J - A) \) (one sees \(1 \in \langle A \rangle \)) since \(1 \) is the sum of the rows indexed by \(x \in L \) for a t.i. line \(L \). If \(n = 4 \), then \(\text{rk}_2(A) = \text{rk}_2(J - A) = \frac{1}{2}q(q^2 + 1) + 1 \) ([333]).

Generalized quadrangles and orthogonal polar spaces

In Bagchi, Brouwer & Wilbrink [33] it is shown that \(\text{rk}_2(A) = q^3 - q^2 + q + 1 \) for the collinearity graph of any \(\text{GQ}(q, q^2) \) with odd \(q \). Also, that \(\text{rk}_2(A) = q^2 + 1 \) for the \(O_3(q) \) generalized quadrangle with odd \(q \). More generally, for orthogonal polar spaces with odd \(q \) we have the 2-ranks given in the table below.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\text{rk}_2(A))</th>
<th>(\text{rk}_2(J - A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td>(q^{2m-1})</td>
<td>(q(q^{m-2} - 1) + \varepsilon q^{m-1})</td>
</tr>
<tr>
<td>odd</td>
<td>(q^{2m-1} - 1)</td>
<td>(q(q^{m-2} - 1) + \varepsilon(q^{m-1} - 1))</td>
</tr>
</tbody>
</table>
Intersecting flats

$S\nu$ [658] determines the p-rank of the 0-1 matrix M with rows and columns indexed by the c-flats and d-flats in a vector space of dimension $n + 1$ over \mathbb{F}_q, where $q = p^e$, with 1-entry when they intersect nontrivially. Let $N = J - M$ be the disjointness matrix. Since $M\mathbf{1} = \mathbf{1} \pmod{p}$ and $N\mathbf{1} = 0 \pmod{p}$, we see $\text{rk}_p M = 1 + \text{rk}_p N$.

The formula for $\text{rk}_p N$ is nicest when $c + d = n + 1$. In that case $\text{rk}_p N = (\sum_{i \geq 0} (-1)^i \binom{n+1}{i} \binom{n+c(p+1)-1}{e})^e$. For example, for lines in $\text{PG}(3, q)$, adjacent when disjoint, one finds $\text{rk}_p A = \left(\frac{1}{2}p(2p^2 + 1)\right)^e$.

Binary codes

The binary codes spanned by the rows of A or $A + I$, where A is the adjacency matrix of a strongly regular graph, were investigated in [383]. (The dimension of these codes is $\text{rk}_2 A$, which was studied in the above. In loc. cit. in some cases also the weight enumerators are given.) See also [513].

9.4 Smith normal form

Let us write $M \sim N$ for integral matrices M, N, not necessarily square, if there are integral square invertible matrices P, Q such that $N = PMQ$. Then \sim is an equivalence relation. Let M be an integral matrix. The Smith normal form of M is a diagonal matrix $S(M)$ with $S(M) \sim M$ such that the diagonal entries $s_i := S(M)_{ii}$ satisfy $s_i | s_{i+1}$ for all i. These entries are uniquely determined up to sign, and satisfy $s_i = d_i/d_{i-1}$ for all i, where d_i is the g.c.d. of all minors of order i of M (so that $d_0 = 1$). The s_i are called elementary divisors or invariant factors. The p-rank $\text{rk}_p(M)$ equals the number of s_i not divisible by p, and the \mathbb{Q}-rank $\text{rk}(M)$ equals the number of nonzero s_i. In particular, $\text{rk}_p(M) \leq \text{rk}(M)$. If M is square of order n, then $\prod_i s_i = \det(S(M)) = \pm \det M$. If $p^e | \det M$, then $\text{rk}_p M \geq n - e$.

Let $\langle M \rangle$ denote the row space of M over \mathbb{Z}. By the fundamental theorem for finitely generated abelian groups, the group $\mathbb{Z}^n/\langle M \rangle$ is isomorphic to a direct sum $\mathbb{Z}_{s_1} \oplus \cdots \oplus \mathbb{Z}_{s_m} \oplus \mathbb{Z}^t$ for certain s_1, \ldots, s_m, s, where $s_1 | \cdots | s_m$. Since $\mathbb{Z}^n/\langle M \rangle \simeq \mathbb{Z}^n/\langle S(M) \rangle$, we see that $\text{diag}(s_1, \ldots, s_m, 0^t)$ is the Smith normal form of M, when M has r rows and $n = m + s$ columns, and $t = \min(r, n) - m$.

The Laplacian matrix L of a graph equals $D - A$, where D is the diagonal matrix of vertex degrees, and A is the ordinary adjacency matrix. Thus, for a regular graph $L = kI - A$. The Laplacian is positive semidefinite, and the multiplicity of its eigenvalue 0 equals the number of connected components of the graph. For a connected graph one has $\mathbb{Z}^n/\langle L \rangle \simeq \mathbb{Z}_{s_1} \oplus \cdots \oplus \mathbb{Z}_{s_{n-1}} \oplus \mathbb{Z}$ with a single \mathbb{Z} summand. Now the group $\mathbb{Z}_{s_1} \oplus \cdots \oplus \mathbb{Z}_{s_{n-1}}$ is called the sandpile group or critical group of the graph. The product $s_1 s_2 \cdots s_{n-1}$ equals the number of spanning trees of the graph.

In the above, \mathbb{Z}_s denotes $\mathbb{Z}/s\mathbb{Z}$. In an expression $S(M) = \text{diag}(1^a, \ldots)$ the 1’s are written, but summands \mathbb{Z}/\mathbb{Z} are invisible in a direct sum.
SNF and spectrum

Some detail about Smith normal form and spectrum can be found in [132], §13.8. We quote two results.

Proposition 9.4.1 Let A be an integral square matrix with integral eigenvalue a of (geometric) multiplicity m. Then the number of invariant factors of A divisible by a is at least m.

Proposition 9.4.2 Let A be the adjacency matrix of a strongly regular graph with v vertices and eigenvalues k, r, s, $k > r > s$. Let p be prime, and suppose that $p \nmid v, p^r || k, p^s || r, p^t || s$, where $a \geq b + c$. Let e_i be the number of invariant factors s_j of A such that $p^i || s_j$. Then $e_i = 0$ for $\min(b, c) < i < \max(b, c)$ and for $b + c < i < a$ and for $i > a$. Moreover, $e_{b+c-i} = e_i$ for $0 \leq i < \min(b, c)$.

Diagonal form

Sometimes a diagonal form of a matrix is almost as good as the Smith normal form. If D is a diagonal matrix, and $M \sim D$, then $S(M)$ is obtained by factoring the diagonal entries of D into prime powers, sorting the result for each separate prime, and multiplying again. So if $D = \text{diag}(4, 6, 8, 10)$, we find $S(M) = S(D) = \text{diag}(2^2, 2^1, 2^2, 2^1, 2^1)$.

Wilson [737] proved the beautiful result that the $\binom{v}{1} \times \binom{v}{t}$ matrix W_{tk}, the 0-1 inclusion matrix of t-subsets against k-subsets of a fixed v-set, has (for $t \leq \min(k, v-k)$) the diagonal form consisting of the entries $\binom{k-i}{t-1}$ with multiplicity $\binom{v-t}{i} - \binom{v-t-i}{i}$ ($0 \leq i \leq t$), where $\binom{v-t}{1} = 0$. As an immediate corollary one finds the p-rank of W_{tk}.

A diagonal form for many related matrices is given by

Theorem 9.4.3 (Wilson [738]) Let X be a v-set. Let M be an integral matrix whose $\binom{v}{i}$ rows are indexed by the t-subsets of X and which has the property that the set of column vectors of M is invariant under the action of the symmetric group S_v acting on the t-subsets of X. Further assume that for each column c of M there is a t-set S such that $c_S \neq 0$ implies $S \cap T = \emptyset$. Let d_i, be the g.c.d. of all entries of $W_{it}M$, $i = 0, \ldots, t$. Then a diagonal form for M is given by the diagonal entries d_i, with multiplicity $\binom{v-t}{i} - \binom{v-t-i}{i}$, $i = 0, 1, \ldots, t$.

Let us say that a graph has the ‘miraculous SNF property’ when it has integral eigenvalues θ_i ($0 \leq i \leq v-1$) and $\text{diag}(\theta_0, \ldots, \theta_{v-1})$ is a diagonal form for its adjacency matrix. For example, the Petersen graph has spectrum $3^1 1^5 (-2)^4$, and $S(A) = \text{diag}(1^1, 2^3, 6)$.

Corollary 9.4.4 The Kneser graph $K(v, t)$ (with the t-subsets of a fixed v-set as vertices, adjacent when they are disjoint) has the miraculous SNF property.

One finds the diagonal form consisting of the numbers $\binom{v-t}{t-i}$ with multiplicities $\binom{v}{i} - \binom{v-t-i}{i}$ ($0 \leq i \leq t$). The spectrum consists of the numbers $(-1)^i \binom{v-t-i}{t-1}$ with those same multiplicities.

In particular this gives the Smith normal form for the graphs $\overline{P(n)}$.
9.4. SMITH NORMAL FORM

Some graph families

Complete graphs

The complete graph K_n has adjacency matrix $J_n - I_n$ (where the subscript indicates the size). We have $S(J_n + cI_n) = \text{diag}(1, c^{n-2}, c(c+n))$ for integral c. More generally, $S(bJ_n + cI_n) = \text{diag}(g, c^{n-2}, (b(n+c)/g)$ where $g = \gcd(b,c)$ and exponents denote multiplicities. See [126].

Lattice graphs

Let A be the adjacency matrix of the $n \times n$ grid graph. Then

$$S(A) = \text{diag}(1^{2n-2}, 2^{(n-2)^2}, (2n-4)^{2n-3}, 2(n-1)(n-2)).$$

More generally,

$$A + (c+2)I \sim \text{diag}(J_n, (J_n + cI_n)^{n-2}, (n+c)(2J_n + cI_n),$$

so that for example $S(A + 2I) = \text{diag}(1^{2n-2}, 2n, 0^{(n-1)^2})$ and $S(A - (n-2)I) = \text{diag}(1^{2n-2}, n(2n-2)^2, 0^{2n-3}).$

The Shrikhande graph is cospectral with the 4×4 grid graph (both have spectrum $6^1 2^0 (-2)^5$). Some of the Smith normal forms distinguish them.

<table>
<thead>
<tr>
<th>name</th>
<th>$S(A)$</th>
<th>$S(A + 2I)$</th>
<th>$S(A - 2I)$</th>
<th>$\text{rk}_2 A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrikhande</td>
<td>$\text{diag}(1^6, 8^4, 12)$</td>
<td>$\text{diag}(1^6, 8^4, 0^6)$</td>
<td>$\text{diag}(1^6, 4^4, 0^6)$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$\text{diag}(1^6, 2^4, 4^2, 12)$</td>
<td>$\text{diag}(1^6, 2^4, 0^6)$</td>
<td>$\text{diag}(1^6, 2^4, 2^2, 8^1, 0^6)$</td>
<td>6</td>
</tr>
</tbody>
</table>

See [126].

Triangular graphs

Let A be the adjacency matrix of the triangular graph $T(n)$, $n \geq 2$. Then

$$S(A) = \begin{cases}
\text{diag}(1^{n-2}, 2^{\frac{1}{2}(n-2)(n-3)}, (2n-8)^{n-2}, (n-2)(n-4)) & \text{if } n \text{ is even} \\
\text{diag}(1^{n-1}, 2^{\frac{1}{2}(n-1)(n-4)}, (2n-8)^{n-2}, 2(n-2)(n-4)) & \text{if } n \text{ is odd} \\
\text{diag}(1^2, 2^2) & \text{for } n = 3
\end{cases}$$

and

$$S(A + 2I) = \begin{cases}
\text{diag}(1^{n-2}, 2^{2n}, 0^{\frac{1}{2}n(n-3)}) & \text{if } n \text{ is even, } n \geq 4 \\
\text{diag}(1^{n-1}, 4^{n}, 0^{\frac{1}{2}n(n-3)}) & \text{if } n \text{ is odd}.
\end{cases}$$

(Compare the spectrum $(2n-4)^1 (n-4)^{n-1} (-2)^{\frac{1}{2}n(n-3)}$ of A.)

The three Chang graphs are cospectral with $T(8)$ (with spectrum $12^1 4^7 (-2)^{20}$).

<table>
<thead>
<tr>
<th>name</th>
<th>$S(A)$</th>
<th>$S(A + 2I)$</th>
<th>$S(A - 4I)$</th>
<th>$\text{rk}_2 A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(8)$</td>
<td>$\text{diag}(1^6, 2^{12}, 8^6, 24)$</td>
<td>$\text{diag}(1^6, 2^{12}, 0^{20})$</td>
<td>$\text{diag}(1^6, 2^{12}, 6^3, 0^7)$</td>
<td>6</td>
</tr>
<tr>
<td>Chang</td>
<td>$\text{diag}(1^6, 2^{12}, 8^6, 24)$</td>
<td>$\text{diag}(1^6, 0^{20})$</td>
<td>$\text{diag}(1^6, 6^3, 24^4, 0^7)$</td>
<td>8</td>
</tr>
</tbody>
</table>

See [126]. The Smith normal form of the Laplacian of $T(n)$ was computed in [297]. Values like $S(A)$ do not follow from Theorem 9.4.3 since the condition on the support of the columns is not satisfied. Wilson & Wong [739] develop a more general theory in which the value of $S(A)$ for the triangular graph follows.

Paley graphs

Consider Paley(q), where $q = 4t + 1$ is a prime power. Chandler, Sin & Xiang [190] showed that its adjacency matrix A satisfies $S(A) = (1^{2t}, t^{2t}, 2t)$. They also determined $S(L)$, where $L = 2I - A$ is the Laplacian of this graph.
CHAPTER 9. P-RANKS

Peisert graphs

Sin [659] showed for the Peisert graphs $P^*(q)$ of order q, where $q = 4t + 1$ is a prime power, that $S(A) = (1^{2t}, i^{2t}, 2t)$, the same as for the Paley graphs. There is also information about $S(L)$, where $L = 2tI - A$. Here Paley(q) and $P^*(q)$ may have different behavior. For example, for Paley(81) one has

$$Z^81/(L) \simeq Z \oplus Z_{20}^{40} \oplus (Z_{4}^{16} \oplus Z_{9}^{18} \oplus Z_{27}^{16} \oplus Z_{61}^{14}),$$

while $P^*(81)$ has

$$Z_{81}^8/(L) \simeq Z \oplus Z_{20}^{40} \oplus (Z_{4}^{20} \oplus Z_{9}^{10} \oplus Z_{27}^{20} \oplus Z_{61}^{14}),$$

where Z_s abbreviates Z/sZ. On the other hand, if $q = p^2$ where $p \equiv 3 \pmod{4}$, then for Paley(q) and $P^*(q)$ all matrices $A + bJ + cL$ have the same spectrum and Smith normal form.

For $q = 23^3$, the three graphs Paley(q), $P^*(q)$, and the sporadic Peisert graph $P^{**}(q)$ all have the same $S(A)$, and the same $S(L) = (0^1, 1^{144}, 23^{120}, 3036^{122}, 69828^{142})$, where 3036 = 11 · 12 · 23 and 69828 = 11 · 12 · 23^2, that is, $Z^3/(L) \simeq Z \oplus Z_{11}^{12} \oplus (Z_{23}^{12} \oplus Z_{23}^{12})$.

In all cases, the p'-part of $Z^q/(L)$ is Z_{2t} for $q = 4t + 1$.

Van Lint-Schrijver graphs

Recall from §7.3.1 the definition of the Van Lint-Schrijver graphs $\Gamma_{p,e,t}$. Let p be prime, and e an odd prime such that p is primitive mod e. Let $t \geq 1$. Put $q = p^{(e-1)t}$. Then $\Gamma_{p,e,t}$ is the Cayley graph with vertex set F_q and the set of nonzero e-th powers as difference set D. PANTANGI [614] determined $S(L)$. If $e = 3$ and $p \equiv 2 \pmod{3}$, then $rk_p(L) = (2^{t+1} - 2)((p + 1)/3)^{2t}$.

Skew lines

Consider the graph on the lines of $\text{PG}(3,q)$, adjacent when they are skew. This graph is strongly regular with eigenvalues $q^3, -q^2$ and q, so all elementary divisors will be powers of p (where $q = p^e$). The Smith normal form was determined in [125]. For example, for $q = 2$: $S(A) = (1^6, 2^{14}, 4^8, 8^6, 16)$. For the graph on the lines in $\text{PG}(n - 1, q)$, see [296].
Chapter 10

Individual graph descriptions

We describe the sporadic rank 3 graphs, and further interesting graphs that have special properties not shared by the other graphs in the infinite families to which they belong. Part of the information given here was obtained using the computer algebra system GAP [333] and its package GRAPE [666] (with Nauty [555]).

10.1 The pentagon

There is a unique strongly regular graph on 5 vertices. It has parameters \((v, k, \lambda, \mu) = (5, 2, 0, 1)\) and eigenvalues \(2\) (with multiplicity 1) and \((-1 \pm \sqrt{5})/2\) (with multiplicity 2 each). The full automorphism group is \(D_{10}\) with point stabilizer 2.

This is the pentagon, the Paley graph of order 5. It is self-complementary.

Regular two-graph

The disjoint union \(K_1 + C_5\) of a single point and a pentagon is a graph in the switching class of a regular two-graph \((X, \Delta)\) (cf. p. 8 and p. 215). If the underlying set is \(X = \{0, 1, 2, 3, 4, 5\}\), then the set of triples \(\Delta\) can be taken to be (omitting commas and parentheses) 012, 023, 034, 045, 015, 124, 235, 134, 245, 135, which is up to isomorphism the unique 2-(6, 3, 2) design. Every 4-set contains 2 coherent triples. The pentagon is the descendant of \((X, \Delta)\) (at any vertex).

Locally pentagon graphs

The unique connected locally pentagon graph is the icosahedron. Up to isomorphism, there are three connected locally icosahedron graphs, namely the point graph of the 600-cell on 120 vertices, and quotients on 60 and 40 vertices ([77]).
10.2 The 3×3 grid

There is a unique primitive strongly regular graph on 9 vertices. It has parameters $(v, k, \lambda, \mu) = (9, 4, 1, 2)$ and spectrum $4^1 1^4 (-2)^4$ (with exponents denoting multiplicities). The full automorphism group is $(S_3 \times S_3).2$ with point stabilizer D_8.

This graph is the Paley graph of order 9. It is the 3×3 grid, the line graph of $K_{3,3}$. It is the collinearity graph of the unique generalized quadrangle $GQ(2, 1)$, the hyperbolic polar space $O^+_3(2)$. It is also the affine graph $VO^+_2(3)$.

It is self-complementary, like any Paley graph.

There are precisely two connected locally 3×3 grid graphs, on 16 and 20 vertices, namely 4×4 and $J(6, 3)$.

The imprimitive strongly regular graphs on 9 vertices are $3K_3$ with parameters $(9, 2, 1, 0)$ and spectrum $2^3 (-1)^6$, and its complement $K_3 \times 3$ with parameters $(9, 6, 3, 6)$ and spectrum $6^1 0^6 (-3)^2$.

10.3 The Petersen graph

There is a unique strongly regular graph with parameters $(v, k, \lambda, \mu) = (10, 3, 0, 1)$. Its spectrum is $3^1 1^5 (-2)^4$. The full group of automorphisms is S_5 acting rank 3 with point stabilizer $2 \times S_3$.

This graph was found by the Danish mathematician Julius Petersen (1839–1910), who constructed this graph in [618] as the smallest counterexample against the claim that a connected bridgeless cubic graph has an edge coloring with three colors.

This graph is the complement of the triangular graph $T(5)$, and not sporadic, but it plays a role in the construction of many sporadic graphs.

Cocliques

The largest cocliques have size 4. There are 5 of them, corresponding to the 5 symbols of $T(5)$. The complement of a 4-coclique is a subgraph $3K_2$. It follows that the chromatic number is 3. The edge-chromatic number is 4.

Cycles

There are 12 pentagons, 10 hexagons, 0 heptagons, 15 octagons, 20 nonagons and 0 decagons. The binary code spanned by the (edges of the) cycles is a $[15, 6, 5]$-code. The 64 code words are the zero word, the $12 + 10 + 15 + 20 = 57$ cycles, and the 6 unions of two disjoint pentagons.
10.4. \((13, 6, 2, 3)\)—PALEY(13) 247

Decomposition of \(K_{10}\)

An old question is whether \(K_{10}\) can be decomposed into three edge-disjoint copies of the Petersen graph. From the spectrum one sees that the answer is No: the result of removing two edge-disjoint copies of the Petersen graph from \(K_{10}\) is connected and bipartite (cf. [132], 1.5.1).

Locally Petersen graphs

Hall [388] showed that there are precisely three connected locally Petersen graphs, namely (i) \(\overline{T(7)}\) on 21 vertices, and (ii) a triple cover, on 63 vertices, distance-regular with intersection array \(\{10, 6, 4, 1; 1, 2, 6, 10\}\) and group \(3 \cdot S_7\), and (iii) a graph on 65 vertices, distance-regular with intersection array \(\{10, 6, 4; 1, 2, 5\}\) with group \(PSL(2,25)\) (the commuting graph of the class of nontrivial field automorphisms). This last graph is the local graph of \(NO_5^{-1}(5)\), see §10.64.

10.4 The Paley graph on 13 vertices

\[
\begin{array}{c}
1 \\
6 \\
1 \\
6 \\
3 \\
3 \\
2
\end{array}
\]

There is a unique strongly regular graph on 13 vertices, namely the Paley graph. It is the graph on \(F_{13}\) where two vertices are joined when their difference is a nonzero square, see §7.4.4. For unicity, see [643].

The parameters are \((v, k, \lambda, \mu) = (13, 6, 2, 3)\), and the spectrum \(6 (\pm \sqrt{13})^6\). As all Paley graphs, this graph is self-complementary. The full group of automorphisms is \(13; 6\), acting rank 3.

This graph is locally a hexagon, so it is a quotient of a tiling of the plane. (The Hoffman bound for cliques is \(\sqrt{13}\), so the local graph does not have triangles.)

\[
\begin{array}{c}
10.5 \quad \text{GQ}(2,2)
\end{array}
\]

\[
\begin{array}{c}
1 \\
6 \\
1 \\
6 \\
3 \\
3 \\
8
\end{array}
\]

There is a unique strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (15, 6, 1, 3)\). Its spectrum is \(6^1 \ 1^9 \ (-3)^5\). The full group of automorphisms is \(S_6\) acting rank 3 with point stabilizer \(2 \times S_4\).
This graph is the collinearity graph of the unique generalized quadrangle $GQ(2, 2)$ with 15 points and 15 lines of size 3, drawn below. It is the symplectic polar graph $Sp(4, 2)$.

Complement

The complementary graph is the triangular graph $T(6)$ with parameters $(v, k, \lambda, \mu) = (15, 8, 4, 4)$ and spectrum $8^1, 2^5, (-2)^9$. We see that Γ has 20 maximal 3-cocliques, and 6 maximal 5-cocliques (ovoids), each vertex in two of those. Since $GQ(2, 2)$ is self-dual, there are also 6 spreads (1-factorizations of K_6), any line in two.

Regular sets

The graph Γ has 91 regular sets, of four types. We give the degree d and nexus e of the smallest part.

<table>
<thead>
<tr>
<th>Type</th>
<th>H</th>
<th>Index</th>
<th>Orbitlengths</th>
<th>Sizes</th>
<th>Degree</th>
<th>Nexus</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>S_5</td>
<td>6</td>
<td>5, 10</td>
<td>5, 10</td>
<td>0</td>
<td>3</td>
<td>ovoid, K_5</td>
</tr>
<tr>
<td>b</td>
<td>$S_4 \times 2$</td>
<td>15</td>
<td>3, 12</td>
<td>3, 12</td>
<td>2</td>
<td>1</td>
<td>line, K_3</td>
</tr>
<tr>
<td>c</td>
<td>$(S_3 \times S_3) \cdot 2$</td>
<td>10</td>
<td>6, 9</td>
<td>6, 9</td>
<td>3</td>
<td>2</td>
<td>$K_{3,3}$</td>
</tr>
<tr>
<td>d</td>
<td>$S_3 \times 2$</td>
<td>60</td>
<td>6, 3, 6</td>
<td>6, 9</td>
<td>3</td>
<td>2</td>
<td>$K_2 \times K_3$</td>
</tr>
</tbody>
</table>

Types (b), (d), (c) belong to 1, 2, 3 pairwise disjoint lines. Type (c) also belongs to an orthogonal pair of hyperbolic lines.

10.6 The Shrikhande graph

Up to isomorphism, there are precisely two strongly regular graphs with parameters $(v, k, \lambda, \mu) = (16, 6, 2, 2)$, namely the Hamming graph $H(2, 4)$, that is, the 4×4 grid, the direct product of two 4-cliques, and the Shrikhande graph. These graphs have spectrum $6^1, 2^6(-2)^9$.
Construction

The Shrikhande graph arises from the 4×4 grid by switching w.r.t. a diagonal. The Shrikhande graph is the Cayley graph for the group 4^2 with difference set $\{\pm(0,1), \pm(1,0), \pm(1,1)\}$. It is locally a hexagon, and hence a quotient of the hexagonal tiling of the plane.

\[
\begin{array}{cccc}
22 & 23 & 20 & 21 \\
32 & 33 & 30 & 31 \\
02 & 03 & 00 & 01 \\
12 & 13 & 10 & 11 \\
22 & 23 & 20 & 21 \\
\end{array}
\]

There are precisely two Latin squares of order 4, namely the addition tables of F_4 and of the cyclic group of order 4. The corresponding Latin square graphs are the complements of $H(2,4)$ and the Shrikhande graph, respectively.

Group

The full group is $(4 \times 4) : D_{12}$ of order 192 with point stabilizer D_{12}. It is sharply transitive on ordered triangles. It acts rank 4: two vertices can be identical, adjacent, or nonadjacent where the two common neighbors form an edge or a nonedge.

Designs

As mentioned earlier (p. 191), strongly regular graphs with $\lambda = \mu$ coexist with symmetric (i.e., square) 2-(v,k,λ) designs together with a polarity without absolute points. In the present case, there are three nonisomorphic symmetric 2-$(16,6,2)$ designs (HUSAIN [450]). Two of these do not possess a suitable polarity. The third has two nonequivalent polarities without absolute points, giving rise to the two strongly regular graphs with parameters $(16,6,2,2)$ (HAEMERS [373]).

Cliques and cocliques

The Shrikhande graph has independence number 4 and chromatic number 4. Its complement has independence number 3 and chromatic number 6. Both the lattice graph $H(2,4)$ and its complement have independence number and chromatic number 4.

2-Ranks and Smith normal form

The Shrikhande graph and $H(2,4)$ have the same p-ranks, but differ somewhat in Smith normal form. If A is the adjacency matrix of $H(2,4)$, and B that of the Shrikhande graph, and $S(M)$ denotes the Smith normal form of the matrix M, then $S(A) = S(B) = \text{diag}(1^6, 2^4, 4^3, 12)$, $S(A+2I) = \text{diag}(1^6, 8^4, 0^8)$, $S(A-2I) = \text{diag}(1^6, 4^4, 0^8)$ while $S(B+2I) = \text{diag}(1^6, 2^4, 0^8)$, $S(B-2I) =$
diag(1^6, 2^1, 4^2, 8^1, 0^0) (see [126]). It follows that \(\text{rk}_2(A) = \text{rk}_2(B) = 6 \). Also \(\text{rk}_2(A + J) = \text{rk}_2(B + J) = 6 \).

Bipartite double

Both \(H(2, 4) \) and the Shrikhande graph are \((0, 2)\)-graphs, and have the folded 6-cube as bipartite double.

\[
\begin{array}{cccccccc}
1 & 6 & 1 & 6 & 5 & 2 & 15 & 4 & 6 & 10 & v = 32
\end{array}
\]

Locally Shrikhande graphs

Makhnev & Paduchikh [537] show that there are precisely two connected locally Shrikhande graphs, one on 80 vertices and a quotient on 40 vertices.

Dyck graph

There is a unique cubic symmetric (i.e., both vertex- and edge-transitive) connected graph on 32 vertices known as the *Dyck graph* ([299, 490]). It is the graph that has as vertices the triangles in the Shrikhande graph, adjacent when they share an edge. This graph is bipartite, with spectrum \((\pm 3)^1 (\pm \sqrt{5})^6 (\pm 1)^9 \), and is uniquely determined by its spectrum. It has girth 6 and diameter 5 and full group of order 192. The two components of the distance-2 graph are copies of the Shrikhande graph. It has an embedding in a genus 3 surface as a cubic map with twelve octagonal faces.

10.7 The Clebsch graph

\[
\begin{array}{cccccccc}
1 & 10 & 1 & 10 & 3 & 6 & 5 & 4 & v = 16
\end{array}
\]

The *Clebsch graph* is the unique strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (16, 10, 6, 6)\). Its spectrum is \(10^1 \ 2^5 \ (-2)^{10} \). The full group of automorphisms is \(2^4 : S_5 \) acting rank 3, with point stabilizer \(S_5 \).

Construction

The Clebsch graph is the halved 5-cube, that is, the vertices are the binary vectors of length 5 and even weight, joined when the Hamming distance is 2.

The Clebsch graph is the local graph of the Schl"{a}fli graph (§10.10).

Complement

\[
\begin{array}{cccccccc}
1 & 5 & 1 & 5 & 4 & 2 & 10 & 3 & v = 16
\end{array}
\]
The complement of the Clebsch graph is the folded 5-cube. That is, its vertices are the 16 cosets of \{00000, 11111\}, adjacent when the Hamming distance is 1. It is the graph obtained by identifying antipodes in the 5-cube.

It has parameters \((v, k, \lambda, \mu) = (16, 5, 0, 2)\). Its spectrum is \(5^1 1^{10} (-3)^5\).

The complement of the Clebsch graph is also the graph on \(F_{16}\) where two vertices are adjacent when their difference is a cube. It follows that \(K_{16}\) is the edge-disjoint union of three copies of the complement of the Clebsch graph.

The complement of the Clebsch graph is also the graph \(VO(2)\).

To the second subconstituent is the Petersen graph.

Clique and cocliques

The Clebsch graph has independence number 2 and chromatic number 8. The complement of the Clebsch graph has independence number 5 and chromatic number 4.

Regular sets

All regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut} \Gamma\) with two orbits on the vertex set. We give degree \(d\), nexus \(e\), and structure for the smallest orbit in \(\Gamma\), the complement of the Clebsch graph.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(D_8 \times S_3)</td>
<td>40</td>
<td>4, 12</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b)</td>
<td>(2^2 \times S_4)</td>
<td>20</td>
<td>8, 8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(c)</td>
<td>(D_{16})</td>
<td>120</td>
<td>8, 8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(d)</td>
<td>(2^{3+2}:3:2)</td>
<td>10</td>
<td>8, 8</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

The Wagner graph is the 8-gon with diagonals.

Ramsey number

Let \(R(3, 3, 3)\) be the smallest number \(N\) of vertices such that for any assignment of three colors to the edges of \(K_N\) there is a monochromatic triangle. The above decomposition shows that \(R(3, 3, 3) > 16\). Greenwood & Gleason [365] proved that \(R(3, 3, 3) = 17\). See also p. 183.

Xor-magic graphs

A connected graph on \(2^n\) vertices is called xor-magic ([656]) if the vertices can be labeled with distinct \(n\)-bit numbers such that the label of each vertex is the bitwise XOR of the labels of the adjacent vertices. The complement of the Clebsch graph is xor-magic since it is the graph with vertices in \(F_4^2\), adjacent when the difference has weight 3 or 4, and the sum of the five neighbors of \(x\) is \(x\) again. Also the Dyck graph is xor-magic.

Name

This graph was given this name by Seidel [642] in his paper classifying the strongly regular graphs with smallest eigenvalue \(-2\) (for which the Seidel matrix \(S = J - I - 2A\) has eigenvalue 3):

\[
\text{In terms of polytopes, the 16 vertices and 80 adjacencies of the graph } \{V, A\} \text{ can be identified with the 16 vertices and 80 edges of the polytope } h\gamma_5, \text{ also denoted}
\]
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

by 121 (Coxeter, Regular polytopes, 2nd ed., pp. 158, 201). This remark is due to H. S. M. Coxeter, who also points out the relation of this polytope to the 16 lines (and 80 pairs of skew lines) on Clebsch's quartic surface (cf. Clebsch (1868)). Therefore, \{V, A\} will be called the Clebsch graph.

The paper referred to is Clebsch [201]. Later some confusion has arisen, and some authors use the name ‘Clebsch graph’ for the complement of \(\Gamma\).

10.8 The Paley graph on 17 vertices

There is a unique strongly regular graph on 17 vertices, namely the Paley graph. It is the graph on \(F_{17}\) where two vertices are joined when their difference is a nonzero square, see §7.4.4. For unicity, see [643].

The parameters are \((v, k, \lambda, \mu) = (17, 8, 3, 4)\), and the spectrum \(8 \left(\pm \frac{1 \pm \sqrt{17}}{2}\right)^8\).

As all Paley graphs, this graph is self-complementary. The full group of automorphisms is \(17:8\), acting rank 3.

There is a unique orbit of maximal cliques, namely that of the triangles. It follows that the Ramsey number \(R(4, 4)\) is at least 18. In fact \(R(4, 4) = 18\).

Since the graph is self-complementary, we only need to check that there is no \(K_4\). Since the group is edge-transitive we only need to check that there is no \(K_4\) on the edge 0–1. The squares mod 17 are \(\pm 1, \pm 2, \pm 4, \pm 8\) so the three common neighbors of 0 and 1 are 2, 9, 16 and these are mutually nonadjacent.

The local graph of \(\Gamma\) is the Wagner graph (the octagon with diagonals).

Sinkovic [660] shows that this graph has no weight matrix for which the Cvetković bound would be tight: every weight matrix for this graph has at least 4 positive and at least 4 negative eigenvalues.

10.9 The Paulus-Rozenfel’d graphs

There are 4 regular two-graphs on 26 vertices. The corresponding switching classes of graphs contain 10 isomorphism classes of strongly regular graphs with parameters \((26, 10, 3, 4)\) and spectrum \(10^1 2^{13} (-3)^{12}\).

Switching a point isolated yields 15 isomorphism classes of strongly regular graphs with parameters \((25, 12, 5, 6)\) and spectrum \(12^1 2^{12} (-3)^{12}\). These graphs were found independently by Paulus [606], who was unable to do a complete search, and by Rozenfel’d [632], who did an exhaustive search.
Construction

A Steiner triple system $STS(13)$ has 26 blocks (triples) and the graph on the triples, adjacent when disjoint, is strongly regular with parameters $(26, 10, 3, 4)$.

A Latin square $LS(5)$ of order 5 yields a Latin square graph $LS_3(5)$ with parameters $(25, 12, 5, 6)$ ($§8.4.2$).

The two nonisomorphic $STS(13)$ and the two nonisomorphic $LS(5)$ yield graphs in four distinct regular two-graphs of order 26 (for $LS(5)$: after adding an isolated point). These are the four regular two-graphs of order 26.

Let A_i ($1 \leq i \leq 10$) be the 10 graphs of order 26, and B_j ($1 \leq j \leq 15$) the 15 graphs of order 25. The four regular two-graphs of order 26 contain the indicated A_i, and have the indicated 26 descendants B_j, where j^e means that B_j occurs e times.

<table>
<thead>
<tr>
<th>name</th>
<th>groupsize</th>
<th>graphs</th>
<th>descendants</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>A_{1-5}</td>
<td>$1^6 2^6 3^3 4^3 5^3 6^3 7^1 8^1$</td>
</tr>
<tr>
<td>B</td>
<td>72</td>
<td>A_{6-7}</td>
<td>$9^{12}10^{12}11^1 12^1$</td>
</tr>
<tr>
<td>C</td>
<td>39</td>
<td>A_{8-9}</td>
<td>$13^{13}14^{13}$</td>
</tr>
<tr>
<td>D</td>
<td>15600</td>
<td>A_{10}</td>
<td>15^{26}</td>
</tr>
</tbody>
</table>

Cliques and cocliques

We give the counts of maximal cliques and cocliques of various sizes, and other statistics in Tables 10.1 and 10.2 below. For the graphs of order 25 the Hoffman bound for cliques and cocliques is 5. For the graphs of order 26 the Hoffman bound for cocliques is 6.

<table>
<thead>
<tr>
<th>name</th>
<th>groupsize</th>
<th>orbitsizes</th>
<th>max cliques</th>
<th>max cocliques</th>
<th>$\chi(\Gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1^{26}</td>
<td>3^{130}</td>
<td>$4^{115} 5^{76} 6^1$</td>
<td>6</td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td>$1^6 2^{10}$</td>
<td>3^{130}</td>
<td>$4^{116} 5^{76} 6^1$</td>
<td>6</td>
</tr>
<tr>
<td>A_3</td>
<td>2</td>
<td>$1^6 2^{10}$</td>
<td>$3^{122} 4^2$</td>
<td>$4^{100} 5^{81} 6^1$</td>
<td>6</td>
</tr>
<tr>
<td>A_4</td>
<td>6</td>
<td>$1^2 3^4 6^2$</td>
<td>$3^{122} 4^2$</td>
<td>$4^{104} 5^{81} 6^1$</td>
<td>6</td>
</tr>
<tr>
<td>A_5</td>
<td>6</td>
<td>$1^2 3^4 6^2$</td>
<td>$3^{98} 4^8$</td>
<td>$4^{164} 5^{24} 6^{13}$</td>
<td>6</td>
</tr>
<tr>
<td>A_6</td>
<td>4</td>
<td>$1^2 2^4 4^4$</td>
<td>$3^{99} 4^{10}$</td>
<td>$4^{136} 5^{70} 6^3$</td>
<td>5</td>
</tr>
<tr>
<td>A_7</td>
<td>6</td>
<td>$1^3 2^1 3^3 6^2$</td>
<td>$3^{82} 4^{12}$</td>
<td>$4^{124} 5^{75} 6^3$</td>
<td>5</td>
</tr>
<tr>
<td>A_8</td>
<td>3</td>
<td>$1^2 3^8$</td>
<td>$3^{126} 4^1$</td>
<td>$4^{39} 5^{81} 6^1$</td>
<td>6</td>
</tr>
<tr>
<td>A_9</td>
<td>39</td>
<td>13^2</td>
<td>$3^{78} 4^{13}$</td>
<td>$4^{104} 5^{39} 6^{13}$</td>
<td>6</td>
</tr>
<tr>
<td>A_{10}</td>
<td>120</td>
<td>$6^1 20^1$</td>
<td>$3^{90} 4^{10}$</td>
<td>$4^{210} 5^{12} 6^{13}$</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 10.1: Strongly regular graphs with parameters $(26, 10, 3, 4)$

Here A_9 is the complement of the block graph of the cyclic $STS(13)$. The other $STS(13)$ yields A_5.

The coclique counts for B_j in Table 10.2 are the clique counts for its complement. The graph B_{15} is the only self-complementary one. It is the Paley graph of order 25, and $LS_3(5)$ for the cyclic $LS(5)$. The other $LS(5)$ is B_{12}.

For further detail, see [606], [726], [226]. Note that different authors use a different numbering of these graphs. Explicit matrices with the present numbering are given in [120].
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

<table>
<thead>
<tr>
<th>name</th>
<th>complement</th>
<th>group size</th>
<th>orbit sizes</th>
<th>max cliques</th>
<th>$\chi(\Gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>B_2</td>
<td>1</td>
<td>1^{25}</td>
<td>$3^7 \cdot 4^3 \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_2</td>
<td>B_1</td>
<td>1</td>
<td>1^{25}</td>
<td>$3^5 \cdot 4^7 \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_3</td>
<td>B_4</td>
<td>2</td>
<td>$1^5 \cdot 2^{10}$</td>
<td>$3^8 \cdot 4^2 \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_4</td>
<td>B_3</td>
<td>2</td>
<td>$1^5 \cdot 2^{10}$</td>
<td>$3^8 \cdot 4^2 \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_5</td>
<td>B_6</td>
<td>2</td>
<td>$1^5 \cdot 2^{10}$</td>
<td>$3^4 \cdot 4^2 \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_6</td>
<td>B_7</td>
<td>2</td>
<td>$1^5 \cdot 2^{10}$</td>
<td>$3^4 \cdot 4^2 \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_7</td>
<td>B_8</td>
<td>6</td>
<td>$3^1 \cdot 3^4 \cdot 6^2$</td>
<td>$3^{14} \cdot 4^{68} \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_8</td>
<td>B_7</td>
<td>6</td>
<td>$3^1 \cdot 3^4 \cdot 6^2$</td>
<td>$3^{14} \cdot 4^{68} \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_9</td>
<td>B_{10}</td>
<td>6</td>
<td>$2^1 \cdot 3^2 \cdot 6^2$</td>
<td>$3^{54} \cdot 4^{58} \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_{10}</td>
<td>B_9</td>
<td>6</td>
<td>$2^1 \cdot 3^2 \cdot 6^2$</td>
<td>$3^{54} \cdot 4^{58} \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_{11}</td>
<td>B_{12}</td>
<td>72</td>
<td>$3^1 \cdot 12^2$</td>
<td>$3^{36} \cdot 4^{64} \cdot 5^3$</td>
<td>5</td>
</tr>
<tr>
<td>B_{12}</td>
<td>B_{11}</td>
<td>72</td>
<td>$3^1 \cdot 12^2$</td>
<td>$3^{36} \cdot 4^{64} \cdot 5^3$</td>
<td>5</td>
</tr>
<tr>
<td>B_{13}</td>
<td>B_{14}</td>
<td>3</td>
<td>$3^1 \cdot 3^4 \cdot 6^2$</td>
<td>$3^{14} \cdot 4^{68} \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_{14}</td>
<td>B_{13}</td>
<td>3</td>
<td>$3^1 \cdot 3^4 \cdot 6^2$</td>
<td>$3^{14} \cdot 4^{68} \cdot 5^3$</td>
<td>6</td>
</tr>
<tr>
<td>B_{15}</td>
<td>B_{15}</td>
<td>600</td>
<td>transitive</td>
<td>$3^{100} \cdot 5^{15}$</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 10.2: Strongly regular graphs with parameters (25,12,5,6)

p-ranks

The p-ranks of the graphs involved only depend on the regular two-graph they belong to. The seven graphs A_i and ten graphs B_j belonging to two-graphs A or C have adjacency matrices A satisfying $rk_5(A - 2I + 2J) = 12$. The two graphs A_i and four graphs B_j belonging to two-graph B have $rk_5(A - 2I + 2J) = 11$. The graphs A_{10} and B_{15} belonging to two-graph D have $rk_5(A - 2I + 2J) = 9$. For all graphs B_j the value of $rk_5(A - 2I + bJ)$ is independent of b. For all graphs A_i the value of $rk_5(A - 2I + bJ)$ is one larger for $b \neq 2$. (Peeters [610])

10.10 The Schlafli graph

![Schlafli graph diagram](image)

$v = 27$

The Schlafli graph is the unique strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (27,16,10,8)$. Its spectrum is $16^1 \cdot 4^6 \cdot (-2)^{20}$. The full group of automorphisms is $W(E_6) = U_4(2).2 = O_6^-(2).2 = O_5(3).2$ acting rank 3, with point stabilizer $2^4 : S_5$.

It is the $E_{6,1}(1)$ graph, the local graph of the $E_{7,1}$ (Gosset) graph. Its local graph is the Clebsch graph.

Aside: the Gosset graph

![Gosset graph diagram](image)

$v = 56$
The Gosset graph is the unique distance-regular graph with intersection array \{27, 10, 1; 1, 10, 27\}. It is distance-transitive, an antipodal double cover of \(K_{28}\).

This graph can be constructed as follows. The vertices are the pairs from the 8-sets \{1, 2, \ldots, 8\} and \{1', 2', \ldots, 8'\}. Two pairs from the same set are adjacent if they intersect in precisely one element; two pairs \{a, b\} and \{c', d'\} from different sets are adjacent if \(a, b\) and \(c, d\) are disjoint.

The local structure of the Gosset graph at the vertex \{7', 8'\} yields a construction of the Schläfli graph: the vertices are the pairs from the set \{1, 2, \ldots, 6\} together with the 'double sixes' 1, 2, \ldots, 6 (each element of which corresponds to the vertex \{a', 7'\} of the Gosset graph) and 1', 2', \ldots, 6' (each element of which corresponds to the vertex \{a', 8'\} of the Gosset graph); pairs are adjacent if they intersect in a unique element, vertices from the same 6-set are always adjacent, vertices \(a\) and \(b'\) from different 6-sets are adjacent if and only if \(a = b\), and finally a vertex \(a\) or \(a'\) is adjacent to a pair \{b, c\} if and only if \(a \not\in\{b, c\}\).

The complement \(\Gamma\) of \(\Gamma\) is strongly regular with parameters \((v, k, \lambda, \mu) = (27, 10, 1, 5)\). Its spectrum is \(10^1 1^{10} (-5)^6\). It is the collinearity graph of the geometry of isotropic points and totally isotropic lines in the \(O_6^-(2)\) geometry, the unique \(GQ(2, 4)\). It is also the graph on the totally isotropic lines in the \(U_4(2)\) geometry, adjacent when they meet.

This graph was given this name by Seidel [642] in his paper classifying the strongly regular graphs with smallest eigenvalue \(-2\) (for which the Seidel matrix \(S = J - I - 2A\) has eigenvalue 3):

\[
\text{We shall refer to this graph as the Schläfli graph after its earliest describer (cf. Coxeter [238, p. 211]).}
\]

Coxeter refers to SCHLÄFLI [636]. Schläfli does not construct a graph, but discusses the 27 lines on a cubic surface, earlier found by CAYLEY [188] and SALMON [634].
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

The 27 lines on a cubic surface
A generic nonsingular cubic surface in 3-dimensional projective space contains 27 lines. The graph on these 27 lines, adjacent when they meet, is the complement of Γ.

For example, the surface $X^3 + Y^3 + Z^3 + W^3 = 0$ in complex 3-dimensional projective space contains the 27 lines like $\langle (1, -a, 0, 0), (0, 0, 1, -b) \rangle$ where $a^3 = b^3 = 1$. (The values a, b can each be chosen in 3 ways, and the coordinate split $XY|ZW$ can be chosen in 3 ways, 27 choices altogether.)

Each of these 27 lines intersects 10 others, and these 10 intersect in pairs, so that each of the 27 lines is in 5 coplanar triples and there are 45 coplanar triples (that is, 45 triple tangent planes) altogether. These lines and planes form the points and lines of the generalized quadrangle $GQ(2, 4)$.

Clique, coclique and chromatic number
The maximal cliques in Γ have size 5 or 6, a single orbit of each, with stabilizers $2 \times S_5$ and S_6, respectively. The maximal cocliques in Γ have size 3. The chromatic number of Γ is 9, and there are two essentially different ways to color Γ with 9 colors ([144]). The chromatic number of Γ is 6.

In terms of $GQ(2, 4)$, the 5- and 6-cliques are the sets $x^+ \cap y^+$ and $(x^+ \setminus y^+) \cup \{y\}$ where x and y are noncollinear, and \perp denotes collinearity. The 3-cocliques are the lines of $GQ(2, 4)$.

Double sixes
The graph Γ has 36 subgraphs $K_2 \times K_6$ (‘double sixes’) forming a single orbit. The stabilizer of one is $S_6 \times 2$ with vertex orbit sizes 12 + 15. The orbits of size 15 are the subsets that carry a sub-$GQ(2, 2)$ of $GQ(2, 4)$. In the representation as $O^-_6(2)$ these correspond to the nonisotropic points.

Apartment of E_6

The Schlafli graph Γ is the collinearity graph of the thin geometry (apartment) of type E_6. The objects of types 1–6 are the 27 vertices, 72 6-cliques, 216 edges, 720 triangles, 216 maximal 5-cliques and 27 subgraphs of the form $\Gamma_2(x)$.

Local characterizations
The Gosset graph is the unique graph that is locally Schlafli. It is the Taylor extension $T\Gamma$ of Γ. By BUEKENHOUT & HUBAUT [156], there are precisely two graphs that are locally the complement of the Schlafli graph, namely $VO^-_6(2)$ (see §10.25) and $T\Gamma$.
Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{1+4}:3^2:2^2$</td>
<td>45</td>
<td>3, 24</td>
<td>0</td>
<td>2</td>
<td>3-coclique</td>
</tr>
<tr>
<td>$2 \times (S_3 \wr 2)$</td>
<td>360</td>
<td>6, 9+12</td>
<td>2</td>
<td>4</td>
<td>$2K_3$</td>
</tr>
<tr>
<td>$S_3 \times (S_3 \wr 2)$</td>
<td>120</td>
<td>9, 18</td>
<td>4</td>
<td>6</td>
<td>3×3</td>
</tr>
<tr>
<td>$2 \times S_6$</td>
<td>36</td>
<td>12, 15</td>
<td>6</td>
<td>8</td>
<td>2×6</td>
</tr>
</tbody>
</table>

In case (b), the group has three orbits.

More generally, the union of t pairwise disjoint 3-cocliques (lines of $GQ(2, 4)$) is a regular set in Γ of size $3t$, with degree $d = 2(t - 1)$ and nexus $e = 2t$. Since $GQ(2, 4)$ admits a spread, all values of t with $1 \leq t \leq 8$ are admissible. Every regular set is the union of pairwise disjoint subgraphs $3K_1$ or $2K_3$.

Shannon capacity

For a graph Γ and an integer k, let $\Gamma^\otimes k$ denote the graph of which the vertices are k-tuples of vertices of Γ, where two distinct vertices (x_1, \ldots, x_k) and (y_1, \ldots, y_k) are adjacent when for all i we have either $x_i = y_i$ or $x_i \sim y_i$. This is the graph with adjacency matrix $(A + I)^\otimes k - I$ where A is the adjacency matrix of Γ, and $\otimes k$ denotes k-th tensor power.

Let $\alpha(\Gamma)$ be the independence number of a graph Γ. The Shannon capacity $\Theta(\Gamma)$ of Γ is defined as

$$\Theta(\Gamma) = \sup_k \sqrt[k]{\alpha(\Gamma^\otimes k)} = \lim_{k \to \infty} \sqrt[k]{\alpha(\Gamma^\otimes k)}.$$

Computation of $\Theta(\Gamma)$ is very difficult, even for graphs as simple as the heptagon.

Lovász [526] gave an easily computable upper bound $\theta(\Gamma)$ for $\Theta(\Gamma)$ and used this to show that the pentagon has Shannon capacity $\sqrt{5}$. He asked: (i) Is it true that $\theta = \Theta'$? (ii) Is it true that $\Theta(\Gamma \boxtimes \Delta) = \Theta(\Gamma)\Theta(\Delta)'$? (iii) Is it true that $\Theta(\Gamma)\Theta(\Gamma) \geq |V\Gamma|$?

Haemers [375] answered thrice No: Let Γ be the Schläfli graph. Then $\alpha(\Gamma) = \Theta(\Gamma) = \theta(\Gamma) = 3$ and $6 = \alpha(\Gamma) \leq \Theta(\Gamma) \leq 7 < 9 = \theta(\Gamma)$ and $\Theta(\Gamma)\Theta(\Gamma) \leq 21 < 27 = |V\Gamma| \leq \Theta(\Gamma \boxtimes \Gamma)$. See also [374] and [132], §3.7.

10.11 $T(8)$ and the Chang graphs

![Graph T(8)](image)

Up to isomorphism, there are precisely four strongly regular graphs with parameters $(v, k, \lambda, \mu) = (28, 12, 6, 4)$. They have spectrum $12^1 4^7 (-2)^{20}$. The classification is due to Chang [191, 192].

One is the triangular graph $T(8)$, that is, the Johnson graph $J(8, 2)$. The remaining three are called the Chang graphs. The three Chang graphs can be obtained by Seidel switching from $T(8)$ (the line graph of K_8). Namely, switch
w.r.t. a set of edges that induces the following subgraph of K_8: (a) 4 pairwise disjoint edges, (b) $C_4 + C_5$, (c) an 8-cycle C_8.

The triangular graph $T(8)$ does not contain 3-claws, but the three Chang graphs do ([76]).

2-Ranks and Smith normal form

The Chang graphs can be distinguished from $T(8)$ by their p-ranks: If A is the adjacency matrix of $T(8)$ and B that of one of the Chang graphs, and $S(M)$ denotes the Smith normal form of the matrix M, then $S(A) = \text{diag}(1^6, 2^{15}, 8^6, 24^1)$ (and $S(A + 2I) = \text{diag}(1^8, 2^2, 6^{13}, 0^7)$), while $S(B) = \text{diag}(1^8, 2^{12}, 8^7, 24^1)$ (and $S(B + 2I) = \text{diag}(1^8, 0^{20})$, $S(B - 4I) = \text{diag}(1^8, 6^{12}, 24^1, 0^7)$), so that A and B have different 2-ranks 6 and 8 ([126]).

Cliques and cocliques

We give the counts of maximal cliques and cocliques of various sizes, and other statistics.

| name groupsize max cliques max cocliques $\theta(\Gamma)$ $\chi(\Gamma)$ |
|------------------|----------------|----------------|------------|-------------|
| $T(8)$ 40320 356, 75 4105 6 7 |
| Chang1 384 432, 224, 68 3128, 473 7 7 |
| Chang2 360 475, 530, 63 3160, 465 8 7 |
| Chang3 96 448, 548 3160, 465 6 7 |

Here $\chi(\Gamma)$ is the chromatic number of Γ, and $\theta(\Gamma)$ is the clique covering number, the chromatic number of the complementary graph.

Connectivity

One may investigate how large a disconnecting set of a strongly regular graph must be if it does not contain a complete vertex neighborhood. Usually the answer is $2k - \lambda - 2$, the size of an edge neighborhood, but in $T(n)$ there are triangles with neighborhood of size $3n - 9$ while $2k - \lambda - 2 = 3n - 8$. It can be shown that the Chang graphs do not show this exceptional behavior ([198]).

10.12 The strongly regular graphs on 29 vertices

Up to isomorphism, there are precisely 41 strongly regular graphs with parameters $(v, k, \lambda, \mu) = (29, 14, 6, 7)$. Their spectrum is $14 \left(\frac{-1 \pm \sqrt{29}}{2}\right)^{14}$. These graphs are descendants of the precisely six regular 2-graphs on 30 vertices.

The graphs and 2-graphs were found by Arlazarov et al. and others. Later, Bussemaker and Spence independently did an exhaustive search and found that there are no further examples. See [10], [161], [669].

One of these graphs is the Paley graph $Paley(29)$. This is the only one that is self-complementary. The remaining 40 fall into 20 complementary pairs. The
Paley graph has a group of order $29 \cdot 14 = 406$. The remaining graphs have groups of order $1 \ (18 \times), \ 2 \ (10 \times), \ 3 \ (10 \times), \ and \ 6 \ (2 \times)$.

The Paley graph has maximum clique and coclique sizes 4. There is one other graph with maximum clique size 4 (and the complementary graph has maximum coclique size 4). All others have maximum clique and coclique sizes 5. All graphs have chromatic number 7, except for the two without 5-cocliques; these have chromatic number 8.

10.13 The S_8 graph on 35 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (35, 16, 6, 8)$. Its spectrum is $16^1 \ 2^{10} \ (-4)^{14}$. The full group of automorphisms is S_8, acting rank 3 with point stabilizer $S_4 \wr 2$.

Construction

This graph is the antipodal quotient of the Johnson graph $J(8, 4)$. Vertices are the $4 + 4$ splits of a fixed 8-set Ω, adjacent when the common refinement has shape $3 + 1 + 1 + 3$. Equivalently, take the 3-subsets of a 7-set, adjacent when they meet in 0 or 2 elements.

This graph is also the graph on the 35 lines in $PG(3, 2)$, adjacent when disjoint. This graph is also the graph on the isotropic points of the $O_6^+(2)$ geometry, adjacent when nonorthogonal.

Complement

The complementary graph $\bar{\Gamma}$ has parameters $(v, k, \lambda, \mu) = (35, 18, 9, 9)$ and spectrum $18^1 \ 3^{14} \ (-3)^{20}$. It is the graph on the triples from a 7-set, adjacent when they have precisely one element in common, or on the lines of $PG(3, 2)$, adjacent when intersecting, or on the isotropic points of the $O_6^+(2)$ polar space, adjacent when collinear.

Cliques, cocliques and chromatic number

The 56 maximal cliques have size 5 and form a single orbit. (These are the 56 splits of Ω with a fixed triple on one side. In the $PG(3, 2)$ setting these 5-cliques are the spreads. In the $O_6^+(2)$ setting they are the ovoids.) The stabilizer of a maximal clique is $S_3 \times S_5$.

The 30 maximal cocliques have size 7 and form a single orbit. (These are the 30 $STS(7)$’s on a fixed 7-set. In the $PG(3, 2)$ setting these are the sets of 7 lines on a point or 7 lines in a plane. In the $O_6^+(2)$ setting these are the maximal totally isotropic subspaces.) The stabilizer of a maximal coclique is $AGL_3(2) = 2^3 : L_3(2)$.
The chromatic numbers are $\chi(\Gamma) = 6$ and $\chi(\tilde{\Gamma}) = 7$. In the $\text{PG}(3, 2)$ setting, a coloring of $\tilde{\Gamma}$ with seven colors is called a packing, a partition of the set of 35 lines into 7 spreads. Up to isomorphism, there is a unique such packing.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>subgraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2^3 : L_3(2)$</td>
<td>30</td>
<td>7, 28</td>
<td>0</td>
<td>4</td>
<td>K_7</td>
</tr>
<tr>
<td>b</td>
<td>$L_3(2) : 2$</td>
<td>120</td>
<td>14, 21</td>
<td>4</td>
<td>8</td>
<td>${4, 3, 2; 1, 2, 4}$</td>
</tr>
<tr>
<td>c</td>
<td>$S_5 \times S_3$</td>
<td>56</td>
<td>5, 30</td>
<td>4</td>
<td>2</td>
<td>K_5</td>
</tr>
<tr>
<td>d</td>
<td>$S_5 \times S_2$</td>
<td>168</td>
<td>10, 20+5</td>
<td>6</td>
<td>4</td>
<td>$T(5)$</td>
</tr>
<tr>
<td>e</td>
<td>$S_3 \times (S_2 \wr 2)$</td>
<td>840</td>
<td>4+6, 1+12+12</td>
<td>6</td>
<td>4</td>
<td>$T(6)$</td>
</tr>
<tr>
<td>f</td>
<td>$S_6 \times S_2$</td>
<td>28</td>
<td>15, 20</td>
<td>8</td>
<td>6</td>
<td>$T(6)$</td>
</tr>
</tbody>
</table>

In case (b), the 14-set of triples is a 2-(7,3,2) design. There are four such designs ([585]), and this is the unique such design without repeated blocks. The induced graph is the nonincidence graph of the Fano plane $\text{PG}(2, 2)$. This 14-set is the union of two 7-cocliques (as under (a)).

Case (d) is that of ten triples in a fixed 5-set. Here the group has 3 orbits.

Case (e) has the unions of two disjoint 5-cliques. Here the group has 5 orbits.

The union of t pairwise disjoint 5-cliques is a regular set of size $5t$, degree $2t+2$ and nexus $2t$. Since $\chi(\tilde{\Gamma}) = 7$, all values of t with $1 \leq t \leq 6$ are admissible. For $t = 1, 2$ this gives cases (c) and (e).

Case (f) is the union of examples of (c) and (d). In the $\text{PG}(3, 2)$ setting, case (f) corresponds to a linear line complex, or to the set of totally isotropic lines of the $\text{Sp}_4(2)$ geometry.

Any further regular sets have size 15 or 20.

10.14 The $G_2(2)$ graph on 36 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (36, 14, 4, 6)$. Its spectrum is $14^1 2^{21} (-4)^{14}$. The full group of automorphisms is $G_2(2) = U_3(3).2$ acting rank 3 with point stabilizer $L_2(7).2$.

This graph is not determined by its parameters alone: there are precisely 180 nonisomorphic strongly regular graphs with parameters $(36, 14, 4, 6)$ (Spence [669], McKay & Spence [556]).

2-Ranks

The adjacency matrices of Γ and its complement both have 2-rank 8.

Peeters [611] showed that both Γ and its complement are uniquely determined by their strongly regular graph parameters and 2-rank.
Local graph and Suzuki tower

The local graph is the point-line nonincidence graph of the Fano plane.

\[v = 14 \]

Starting from the Suzuki graph (on 1782 points) and repeatedly taking local graphs, one finds the \(G_2(4) \) graph on 416 vertices, the Hall-Janko graph on 100 vertices, the present graph \(\Gamma \), and the point-line nonincidence graph \(\Delta \) of the Fano plane. Conversely, there are precisely three connected graphs that are locally \(\Delta \) (on 36, 48, and 108 vertices, see [128]), the Hall-Janko graph is the unique graph that is locally \(\Gamma \), the \(G_2(4) \) graph is the unique graph that is locally the Hall-Janko graph, and the Suzuki graph and its triple cover are the only graphs that are locally the \(G_2(4) \) graph (Pasechnik [601]).

Construction: subhexagons of the \(G_2(2) \) generalized hexagon

The classical \(G_2(2) \) generalized hexagon has 36 sub-\(\text{GH}(1, 2) \)'s. Join two of these when they have 4 points in common.

Construction: partitions into bases

As we have seen, the dual of the split Cayley hexagon \(G_2(2) \) can be seen in \(\text{PG}(2, 9) \) provided with a nondegenerate Hermitian form. The set of 63 nonisotropic points has precisely 36 partitions into 21 bases, twelve on any given basis. Each partition meets 1, 14, 21 partitions in 21, 3, 9 bases, respectively. Our graph is the graph on these 36 partitions where two are adjacent when they meet in 3 bases.

Construction: \(1 + 14 + 21 \)

Take a vertex \(\infty \), let its 14 neighbors be the 7 points and 7 lines of the Fano plane, where a point is adjacent to a line when they are not incident, and let the 21 nonneighbors of \(\infty \) be the 21 flags of the Fano plane, where two flags are adjacent when they have no element in common, but the point of one is on the line of the other (so that the subgraph on these 21 is the distance-2 graph of the generalized hexagon that is the flag graph of the Fano plane),

and finally the flag \((p, L)\) is adjacent to the three points on \(L \) and the three lines on \(p \). This is our graph.

\(K_{4,4} \) subgraphs

There are 63 \(K_{4,4} \) subgraphs, forming a single orbit. The stabilizer of one is \(4^2 : D_{12} \) with vertex orbit sizes 8 + 12 + 16. In the representation inside the generalized hexagon, these are the lines of the generalized hexagon. In the representation in \(\text{PG}(2, 9) \) with Hermitian form, these are the orthogonal bases.
Partitions into triangles

Let us call two disjoint or equal triangles \(S, T\) in \(\Gamma\) ‘parallel’ when \(\{S, T\}\) is a regular partition of the subgraph induced on \(S \cup T\). Then each triangle in \(\Gamma\) determines a unique partition of \(V\) into 12 mutually parallel triangles. There are 28 of these partitions, forming a single orbit. In the representation in \(\text{PG}(2, 9)\) with Hermitian form, these are the isotropic points.

Clique, coclique and chromatic number

The maximal cliques have size 3 (since the local graph is bipartite) and form a single orbit under \(\text{Aut} \, \Gamma\). Since \(\Gamma\) has partitions into 12 triangles, the complementary graph has chromatic number 12. The maximal cocliques fall into two orbits: there are 72 7-cocliques (namely the parts of the bipartitions of the 36 local graphs) and 126 maximal 4-cocliques (namely the parts of the bipartitions of the 63 \(K_{4,4}\)'s). The chromatic number is 6.

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut} \, \Gamma\) with two orbits on the vertex set. We give degree \(d\) and nexus \(e\) for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(3^{2+1}.4)</td>
<td>112</td>
<td>18, 18</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>b</td>
<td>(4S_4.2)</td>
<td>63</td>
<td>12, 24</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>(3^{2+1}.D_8)</td>
<td>56</td>
<td>18, 18</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

In case (b) the graph induced on the orbit of size 12 is the 2-coclique extension of \(2 \times 3\).

Semiplane

The graph \(\Gamma\) is locally bipartite. Construct a graph on 72 vertices \((x, M)\) where \(x\) is a vertex of \(\Gamma\) and \(M\) one bipartite half of the neighbors of \(x\). Call \((x, M)\) and \((y, N)\) adjacent when \(x \in N\) and \(y \in M\). The resulting graph is a bipartite \((0,2)\)-graph (i.e., the incidence graph of a semiplane) of diameter 5 and valency 7. Each vertex has distance 5 to a unique other point. Interchanging antipodes is not an automorphism, but identifying antipodes yields the graph \(\Gamma\) again. This graph has automorphism group \(U_3(3).2\) with point stabilizer \(L_2(7)\). The orbit sizes are \(1 + 7 + 21 + 7 + 7 + 21 + 7 + 1\), with diagram

\[v = 72.\]
Cospectral graphs

McKay & Spence [556] found that there are 180 strongly regular graphs with parameters \((v, k, \lambda, \mu) = (36, 14, 4, 6)\). Klin, Meszka, Reichard & Rosa [492] found that four of these satisfy the 4-vertex condition, namely the above rank 3 one and three with groups of orders 64, 32, and 24. These three are the smallest non-rank 3 graphs satisfying the 4-vertex condition.

10.15 \(NO^{-}_{6}(2)\)

There is a unique rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) = (36, 15, 6, 6)\). Its spectrum is \(15\, 1, 3, 15\, (−3)^{20}\). The full group of automorphisms is \(O_5(3) : 2\) acting rank 3 with point stabilizer \(2 \times S_6\). A construction (as \(NO^{-}_{6}(2)\)) was given in §3.1.2. Another construction (as \(NO^{-}_{6}(2)\)) was given in §3.1.4.

Maximal cliques have size 4, a single orbit. Maximal cocliques have sizes 3 and 5, a single orbit each.

Regular sets

Examples of regular sets are obtained from subgroups \(H\) of \(Aut\ \Gamma\) with two orbits on the vertex set. We give degree \(d\), nexus \(e\), and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d, e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2 (</td>
<td>A_4 \times A_4</td>
<td>, 2^2</td>
<td>45</td>
</tr>
<tr>
<td>b</td>
<td>(2^4 : S_5)</td>
<td>27</td>
<td>16, 20, 5, 8</td>
<td>folded 5-cube</td>
</tr>
<tr>
<td>c</td>
<td>(S_4 \wr S_3)</td>
<td>40</td>
<td>9, 27, 6, 3</td>
<td>(K_{3,3,3})</td>
</tr>
<tr>
<td>d</td>
<td>(3^{2+1} : D_8)</td>
<td>240</td>
<td>18, 18, 9, 6</td>
<td></td>
</tr>
</tbody>
</table>

Altogether, the numbers of regular sets are as follows.

\[
\begin{array}{cccccc}
(\(d, e\)) & (1, 4) & (3, 6) & (5, 8) & (6, 3) & (9, 6) \\
\# & 135 & 1485 & 3099 & 40 & 240 \\
\end{array}
\]

The regular sets with \((d, e) = (1, 4)\) are subgraphs \(4K_2\). In the \(NO^{-}_{6}(2)\) representation these arise as the nonsingular parts of ovoids in the \(Sp_4(2)\) geometry on \(p^+/p\) for singular points \(p\). The above 45 regular sets with \((d, e) = (3, 6)\) are subgraphs \(3K_4\) that arise as the nonsingular part of the union of three t.i. planes on a fixed t.s. line. There are 1440 further regular sets with \((d, e) = (3, 6)\). The regular sets with \((d, e) = (6, 3)\) are subgraphs \(K_{3,3,3}\) that arise as unions of three pairwise orthogonal elliptic lines. In the \(NO^{-}_{6}(3)\) representation, these subgraphs arise as the perps of a singular point. Each t.s. line yields a partition of \(V\Gamma\) into four \(K_{3,3,3}\)’s.

Locally \(GQ(2, 2)\) graphs

Consider the \(Sp(6, 2)\) polar graph \(\Sigma\). It is strongly regular with parameters \((v, k, \lambda, \mu) = (63, 30, 13, 15)\), see §10.21. There are three graphs that are locally \(GQ(2, 2)\), on 28, 32 and 36 vertices ([156]). They can be obtained from \(\Sigma\) by removing a hyperbolic quadric, a hyperplane, and an elliptic quadric, respectively. The first is \(T(8)\). The second has diameter 3, and is the Taylor extension of the \(GQ(2, 2)\) graph. The third is our present graph \(\Gamma\). See also [142].
10.16 The $O_5(3)$ graphs on 40 vertices

There are exactly two rank 3 strongly regular graphs with parameters $(v, k, \lambda, \mu) = (40, 12, 2, 4)$. Their spectrum is $12^2 2^{24} (-4)^{15}$. Both have full group of automorphisms $O_5(3).2$. The point stabilizers are $3^3 : (S_4 \times 2)$ and $3_1^{1+2} : 2S_4$.

There are precisely two generalized quadrangles $GQ(3, 3)$, duals to each other ([607]). One is that on the isotropic points, the other that on the totally isotropic lines of the $O_5(3)$ geometry, cf. §2.6.1. The latter is isomorphic to the generalized quadrangle on the points of the $Sp_4(3)$ geometry.

Our graphs are the collinearity graphs of these generalized quadrangles. Let these graphs be Γ and Δ, where Γ is the $O_5(3)$ graph, and Δ the dual $O_5(3)$ graph or $Sp_4(3)$ graph.

Construction inside the $U_4(2)$ geometry

The graph Δ is the graph $NU_4(2)$ on the nonisotropic points of the $U_4(2)$ geometry, adjacent when orthogonal with respect to the Hermitian form (i.e., when joined by a secant line).

In this setting, Γ is the graph on the Hermitian bases, adjacent when intersecting nontrivially.

As we saw (§3.1.6), the graph $NU_n(2)$ is locally $NU_{n-1}(2)$. Pasechnik [603] showed that $NU_5(2)$ is the unique graph that is locally $GQ(3, 3)$.

Construction inside the unique $GQ(2, 4)$

The vertex set of Δ consists of the Hermitian spreads of the unique $GQ(2, 4)$, adjacent when sharing exactly three lines (nonadjacent spreads then share exactly one line). These three lines necessarily form a regulus of a 3×3 grid, a subquadrangle of order $(2, 1)$ of $GQ(2, 4)$.

The vertex set of Γ consists of the partitions of the point set of $GQ(2, 4)$ into three 3×3 grids, adjacent when they have exactly 9 lines in common (each grid of the first partition shares exactly one line with each grid of the second partition; the 9 lines form a Hermitian spread).

Cliques, cocliques and chromatic number

The maximal cliques in both cases have size 4, the lines of the generalized quadrangle. The maximal cocliques in Γ have sizes 5, 8 and 10, those in Δ have sizes 4 and 7, a single orbit in all cases. The 10-cocliques in Γ are ovoids. The chromatic numbers are $\chi(\Gamma) = 5$, $\chi(\Delta) = 6$, $\chi(\overline{\Gamma}) = 11$, $\chi(\overline{\Delta}) = 10$.

Regular sets

Examples of regular sets in Γ and Δ are obtained from subgroups H of their automorphism groups with two orbits on the vertex set. We give degree d, nexus e, and i^m, where n_i is the number of lines meeting the smallest orbit in i points, and structure for the smallest orbit.
For $\Gamma = \Gamma(O_5(3))$:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>line stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2 \times S_5$</td>
<td>36</td>
<td>10, 30</td>
<td>0</td>
<td>4</td>
<td>1^{10}</td>
</tr>
<tr>
<td>b</td>
<td>$3^1:5:2$</td>
<td>324</td>
<td>20, 20</td>
<td>4</td>
<td>8</td>
<td>2^{40}</td>
</tr>
<tr>
<td>c</td>
<td>$3^1:2S_4$</td>
<td>40</td>
<td>4, 36</td>
<td>3</td>
<td>1</td>
<td>$4^1 1^{12} 0^{27}$</td>
</tr>
<tr>
<td>d</td>
<td>$2(A_4 \times A_4).2^2$</td>
<td>45</td>
<td>16, 24</td>
<td>6</td>
<td>4</td>
<td>$4^8 1^{32}$</td>
</tr>
</tbody>
</table>

Case (a): ovoid, the perp of a minus point.

Case (b): a hemisystem of points of the $O_5(3)$ generalized quadrangle, i.e., a set of points intersecting each line in half of its points. Here, it is not the union of two ovoids. Both halves are conjugate. An explicit construction runs as follows: in the $GQ(2,4)$ pick a point x and order the lines through x arbitrarily in a cyclic way (say, L_i, $i \mod 5$). Then, referring to the $GQ(2,4)$ construction of Γ, the hemisystem of points consists of all partitions of the point set of $GQ(2,4)$ into those 3×3 grids one of which contains two consecutive lines L_i, L_{i+1} through x.

Case (c): 4 isotropic points on a fixed t.i. line.

Case (d): 4×4 grid, the perp of a plus point.

The union of any number of pairwise disjoint t.i. lines is a regular set (and so is its complement). Maximal sets of disjoint lines have 4 or 7 elements (exactly the sizes of the maximal cocliques of the dual $O_5(3)$ graph), hence there are regular sets of size $4t$ with $(d,e) = (2 + t, t)$, for all $t \in \{1, 2, \ldots, 9\}$.

For $\Delta = \Gamma(\text{Sp}_4(3))$:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>line stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2 \times A_5$</td>
<td>432</td>
<td>20, 20</td>
<td>4</td>
<td>8</td>
<td>2^{40}</td>
</tr>
<tr>
<td>b</td>
<td>$3^3:(S_4 \times 2)$</td>
<td>40</td>
<td>4, 36</td>
<td>3</td>
<td>1</td>
<td>$4^1 1^{12} 0^{27}$</td>
</tr>
<tr>
<td>c</td>
<td>$2(A_4 \times A_4).2^2$</td>
<td>45</td>
<td>8, 32</td>
<td>4</td>
<td>2</td>
<td>$2^{16} 0^{24}$</td>
</tr>
<tr>
<td>d</td>
<td>$S_4 \times D_8$</td>
<td>270</td>
<td>16, 24</td>
<td>6</td>
<td>4</td>
<td>$4^4 2^{24} 0^{12}$</td>
</tr>
<tr>
<td>e</td>
<td>$2 \times S_5$</td>
<td>216</td>
<td>20, 20</td>
<td>7</td>
<td>5</td>
<td>$4/0^{14} 2/2^{10} 1/3^{20}$</td>
</tr>
</tbody>
</table>

Case (a): a hemisystem of points of the $\text{Sp}_4(3)$ generalized quadrangle, i.e., a set of points intersecting each line in half of its points. (Cf. [42], [43], [227].) Both halves are conjugate.

These are the only regular sets with $d - e = s$.

Case (b): the 4 points on a fixed t.i. line.

Case (c): the 8 points of a $K_{4,4}$ (i.e., $L \cup L^\perp$ for a hyperbolic line L).

All other regular sets with $(d,e) = (4,2)$ are unions of two t.i. lines.

Case (d): In the $O_5(3)$ geometry, 16 t.i. lines each of them on a point of a fixed conic of t.i. points spanning a plane which is the perp of an elliptic line (i.e., a line containing only nonisotropic points).

All regular sets with $(d,e) = (6,4)$ do contain a (symplectic) t.i. line.

Case (e): In the $U_4(2)$ setting, consider a subquadrangle $GQ(2,2)$ of the $U_4(2)$ generalized quadrangle and an ovoid O in $GQ(2,2)$ (on which S_5 acts). The nonisotropic points on the lines of $PG(3,4)$ joining two points of O form a regular set.

All other regular sets with $(d,e) = (7,5)$ do contain a (symplectic) t.i. line.

The union of any number of pairwise disjoint (symplectic) t.i. lines is a regular set (and so is its complement). Hence there are regular sets of size $4t$ with $(d,e) = (2 + t, t)$, for all $t \in \{1, 2, \ldots, 9\}$.

CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

Graph on the $20 + 20$ splits

Above we saw that $\Gamma(\text{Sp}_4(3))$ has 216 splits into two regular 20-sets with degree 7 and nexus 5. The group $O_5(3).2$ acts on these 216 with permutation rank 7 and subdegrees $1 + 5 + 20 + 30 + 40 + 60 + 60$. The suborbit of size 40 defines a strongly regular graph with parameters $(v, k, \lambda, \mu) = (216, 40, 4, 8)$ and spectrum $40^1 \ 14^2 \ 140^1 \ (-8)^{75}$. The full group of automorphisms is $O_5(3).2$ acting rank 7 with point stabilizer $2 \times S_5$. This graph was discovered by Crnković et al. [243]. See also [242].

2-Ranks

<table>
<thead>
<tr>
<th>graph</th>
<th>$rk_2(A)$</th>
<th>$rk_2(J - A)$</th>
<th>$rk_3(A + I)$</th>
<th>$rk_3(J - I - A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Δ</td>
<td>16</td>
<td>16</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Peeters [611] showed that given their strongly regular graph parameters, the four graphs $\Gamma, \Gamma, \Delta, \Delta$ are uniquely determined by the values 10, 10, 11, 10 of $rk_2(A)$, $rk_2(A + I)$, $rk_2(A + I)$, and $rk_2(A)$, respectively.

10.17 The $U_4(2)$ graph on 45 vertices

It was shown by Coolsaet, Degraer & Spence [223] that up to isomorphism there are precisely 78 strongly regular graphs with parameters $(v, k, \lambda, \mu) = (45, 12, 3, 3)$. Their spectrum is $12^1 \ 3^{20} \ (-3)^{24}$.

There is a unique rank 3 strongly regular graph Γ with these parameters. It is $\Gamma(U_4(2))$, the collinearity graph of the unique $GQ(4, 2)$, the dual of $GQ(2, 4)$ discussed in §10.10. It is also $NO_5^+(-3)$. Its full group of automorphisms is $O_5(3):2$ with point stabilizer $((2^4 + 2^3)^2:2)$.2.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a $3_{+}^{1+2}:2S_4$</td>
<td>40</td>
<td>9, 36</td>
<td>0</td>
<td>3</td>
<td>$9K_1$, ovoid</td>
</tr>
<tr>
<td>b $3^{3}: (S_4 \times 2)$</td>
<td>40</td>
<td>18, 27</td>
<td>3</td>
<td>6</td>
<td>$3K_{3,3}$</td>
</tr>
<tr>
<td>c $2^4:S_5$</td>
<td>27</td>
<td>5, 40</td>
<td>4</td>
<td>1</td>
<td>K_5, line</td>
</tr>
<tr>
<td>d $2 \times S_5$</td>
<td>36</td>
<td>15, 30</td>
<td>6</td>
<td>3</td>
<td>$GQ(2, 2)$</td>
</tr>
</tbody>
</table>

The union of at most five pairwise disjoint lines, or the complement thereof, gives examples with (degree, nexus) $= (3 + t, t)$, for $1 \leq t \leq 8$.
There are exactly two rank 3 strongly regular graphs with parameters \((v, k, \lambda, \mu) = (49, 24, 11, 12)\). Their spectrum is \(24^1 3^2 (-4)^{24}\). The first, let us call it \(\Gamma_1\), is the Paley graph, with full group of automorphisms \(7^2: 24: 2\) and point stabilizer \(24: 2\). The second, let us call it \(\Gamma_2\), is the Peisert graph, with full group of automorphisms \(7^2: (3 \times \text{SL}_2(3))\) and point stabilizer \(3 \times \text{SL}_2(3)\). Both graphs are self-complementary.

The maximal cliques of \(\Gamma_1\) have sizes 5 and 7, a single orbit of each type. The maximal cliques of \(\Gamma_2\) have sizes 4 and 7, a single orbit of each type. Both \(\Gamma_1\) and \(\Gamma_2\) have chromatic number 7, that is, there are partitions into 7-cliques and partitions into 7-cocliques. Any disjoint union of 7-cliques (7-cocliques) is a regular set with \((d, e) = (6, 3)\) (resp. \((0, 4)\)).

Construction

Let \(V\) be a vector space, and \(H = PV\) its hyperplane at infinity. Pick a subset \(X\) of \(H\). The graph \(\Gamma\) with vertex set \(V\), where \(v \sim w\) when \((w - v) \in X\) is strongly regular when the hyperplanes of \(H\) meet \(X\) in two different cardinalities (see §7.1.1). In the special case where \(\dim V = 2\), hyperplanes are single points, and every choice of \(X\) (other than \(\emptyset\) or \(H\)) will give a strongly regular graph. One finds nets with parameters \(v = q^2\), \(k = (q - 1)n\), \(r = q - n\), \(s = -n\), \(\mu = n(n - 1)\), \(\lambda = q + n(n - 3)\), if the underlying field is \(F_q\) and \(|X| = n\). These graphs are Latin square graphs \(L_{Sn}(q)\) (see §8.4.2). They will be rank 3 when the stabilizer of \(X\) in \(\text{PGL}_2(q)\) acting on \(H\) has the two orbits \(X\) and \(H \setminus X\).

In the special case \(q = 7\), \(n = 4\), the group \(\text{PGL}_2(q)\) has two orbits (of sizes 42 and 28) on the set \(\binom{H}{4}\) of 4-sets in \(H\). Picking \(X\) in the first orbit gives the Paley graph \(\Gamma_1\). Picking \(X\) in the second orbit gives \(\Gamma_2\). The stabilizers of \(X\) in these cases are \(D_8\) and \(A_4\), both with orbit lengths 4 + 4 on \(H\).

Further self-complementary graphs

Mathon [548] found all self-complementary strongly regular graphs on at most 49 vertices. With \(v = 49\) there are apart from \(\Gamma_1\) and \(\Gamma_2\) three further examples.

10.19 The Hoffman-Singleton graph

There is a unique strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (50, 7, 0, 1)\). Its spectrum is \(7^1 2^{28} (-3)^{21}\). The full group of automorphisms is \(\text{U}_3(5).2\) acting rank 3 with point stabilizer \(S_7\).
This graph was found (and shown unique) by Hoffman & Singleton [436] as example of a Moore graph, that is a graph of diameter \(d \) and girth \(g \) where \(g = 2d + 1 \).

Moore graphs are regular. Apart from the odd polygons only three Moore graphs are known, namely the pentagon, the Petersen graph, and the Hoffman-Singleton graph. Any further Moore graph must be strongly regular with parameters \((v, k, \lambda, \mu) = (3250, 57, 0, 1)\). If there is such a graph, its group of automorphisms has order at most 375 ([532]). See also [132], §11.5.1.

Construction: \(5 \times 5 + 5 \times 5\)

Take five pentagons \(P_h\) and five pentagrams \(Q_i\), so that vertex \(j\) of \(P_h\) is adjacent to vertices \(j - 1, j + 1\) of \(P_h\) and vertex \(j\) of \(Q_i\) is adjacent to vertices \(j - 2, j + 2\) of \(Q_i\). Now join vertex \(j\) of \(P_h\) to vertex \(hi + j\) of \(Q_i\). (All indices mod 5.)

Construction: \(15 + 35\)

Use the identification of the 35 lines in \(PG(3,2)\) with the 35 triples in a 7-set where intersecting lines belong to triples meeting in precisely one element (Proposition 6.2.9). Take as vertices the 15 points and 35 lines of \(PG(3,2)\), let the points form a coclique, let a point be adjacent to a line when they are incident, and let two lines be adjacent when the corresponding triples are disjoint.

Construction: \(20 + 30\)

Take as vertices the 20 ternary vectors of weight 1 and the 30 ternary vectors of length 10 and weight 4 obtained by taking in the extended ternary Golay code all vectors of weight six starting 11... or 12... and deleting the first two coordinates. Join two weight 1 vectors when they have distance 1; join a weight 1 and a weight 4 vector when they have distance 3; join two weight 4 vectors when they have distance 8. This yields the Hoffman-Singleton graph, and shows that it has a partition into a subgraph \(10K_2\) and two 15-cocliques.

Construction: inside the Higman-Sims graph

In the Steiner system \(S(4,7,23)\), fix a symbol \(a\). Construct the Higman-Sims graph (§10.31) on \(1 + 22 + 77\) points by taking a point \(\infty\), the 22 symbols distinct from \(a\) and the 77 blocks containing \(a\), where blocks are adjacent when they meet in \(\{a\}\) only. Now let \(B\) be a block of \(S(4,7,23)\) not containing \(a\). It induces a partition \((1 + 7 + 42) + (15 + 35)\) of the \(1 + 22 + 77\) (the 42 blocks are those meeting \(B\) in one point, the 35 those meeting \(B\) in three points), and both \(1 + 7 + 42\) and \(15 + 35\) induce a Hoffman-Singleton graph.

Edges

Since \(\lambda = 0\), the maximal cliques have size 2 and are the edges. There are 175 of these, forming a single orbit. The stabilizer of one is \(A_6.2^2\) with vertex orbit sizes \(2 + 12 + 36\) and edge orbit sizes \(1 + 12 + 72 + 90\). The subgraph of \(\Gamma\) induced on the 36 vertices nonadjacent to a fixed edge is the Sylvester graph, the unique distance-regular graph with intersection array \(\{5, 4, 2; 1, 1, 4\}\).
The line graph $L(\Gamma)$ is the unique distance-regular graph with intersection array
\[
\{12, 6, 5; 1, 1, 4\}.
\]

The graph on the edges, adjacent when they have distance 2 in the line graph, is strongly regular with parameters $(v, k, \lambda, \mu) = (175, 72, 20, 36)$.

If a regular graph has adjacency matrix A, and $v \times e$ vertex-edge incidence matrix N, and the line graph has adjacency matrix L, then $NN^\top = A + kI$ and $N^\top N = L + 2I$. The spectrum of L follows since NN^\top and $N^\top N$ have the same nonzero eigenvalues. So, in the present case, L has spectrum $72^1 21^{153} (-18)^{21}$.

This last graph is the collinearity graph of a partial geometry $pg(5, 18, 2)$, see §8.6.1(iv). The collinearity graph of its dual, a $pg(18, 5, 2)$, is strongly regular with parameters $(v, k, \lambda, \mu) = (630, 85, 20, 10)$.

Cocliques

The largest cocliques have size 15, and there are 100 of them, forming a single orbit. The stabilizer of one is A_7, with vertex orbit sizes $15 + 35$.

The complement of a 15-coclique induces the Odd graph O_4, the unique distance-regular graph with intersection array $\{4, 3, 3; 1, 1, 2\}$, the graph on the triples in a 7-set, adjacent when disjoint. It has full group S_7, with point stabilizer $S_3 \times S_4$.

The group is twice as large as that induced by $\text{Aut } \Gamma$ since this graph can be extended to a Hoffman-Singleton graph in two ways; both occur in the Higman-Sims graph.

A fixed 15-coclique meets 7, 35, 42, 15, 1 15-cocliques in 0, 3, 5, 8, 15 points, respectively. Meeting in 0, 5, or 15 points is an equivalence relation with two classes of size 50. The graph on the 50 15-cocliques in one equivalence class, where two 15-cocliques are adjacent when they are disjoint, is again the Hoffman-Singleton graph. The graph on the 100 15-cocliques, where two 15-cocliques are adjacent when they meet in 0 or 8 points, is the Higman-Sims graph. We see that the Higman-Sims graph has splits into two Hoffman-Singleton graphs.

Heawood and Coxeter subgraphs

Let C and D be two 15-cocliques that meet in 8 points. The stabilizer of $\{C, D\}$ has orbit sizes $8 + 14 + 28$. The induced subgraph on the orbit of size 14 is the Heawood graph, the point-line incidence graph of the Fano plane, the unique distance-regular graph with intersection array $\{3, 2, 2; 1, 1, 3\}$. The
induced subgraph on the orbit of size 28 is the Coxeter graph, the graph that Coxeter calls ‘My Graph’, the unique distance-regular graph with intersection array \(\{3, 2, 2, 1; 1, 1, 1, 2\}\). Both have full group \(L_3(2)\).

Splits

There are 1260 pentagons, forming a single orbit. For a fixed pentagon, the 25 adjacent vertices induce \(5C_5\), and the complement of this \(5C_5\) also induces a \(5C_5\). It follows that \(\Gamma\) has 126 splits into two \(5C_5\) subgraphs.

For each such split, the union of a pentagon from one side and a pentagon from the other side induces a Petersen graph. Splits and Petersen graphs form the points and blocks of a unital \(S(2, 6, 126)\) in \(PG(2, 25)\), explaining the structure of \(\text{Aut } \Gamma\) (Benson \\& Losey [58]).

Chromatic number

The Hoffman-Singleton graph has chromatic number 4 and edge-chromatic number 7 (that is, its line graph has chromatic number 7). Its complement has chromatic number 25.

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut } \Gamma\) with two orbits on the vertex set. We give degree \(d\), nexus \(e\), and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index (\text{orbitlengths})</th>
<th>(d)</th>
<th>(e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (A_7)</td>
<td>100</td>
<td>15, 35</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>b (M_{10})</td>
<td>350</td>
<td>20, 30</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>c (5^{2+1}:\langle 4 \times 2 \rangle)</td>
<td>252</td>
<td>25, 25</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>d (2S_{5};2)</td>
<td>525</td>
<td>10, 40</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

In case (a) the subgraph induced on the orbit of size 35 is the Odd graph \(O_7\), the graph of disjoint triples in a 7-set. In case (b) the subgraph induced on the orbit of size 30 is Tutte’s 8-cage, the incidence graph of \(GQ(2, 2)\). In case (d) the subgraph induced on the orbit of size 40 is the unique \((6, 5)\)-cage.

No further regular sets occur for \((d, e) \neq (4, 2)\). For each regular set \(R\) with \((d, e) = (4, 2)\) and hence \(|R| = 20\), the complementary regular set has size 30 with \((d, e) = (5, 3)\), and is a \((5, 5)\)-cage, see below. There are two types: the 12600 sets \(R\) that are the disjoint union of two Petersen subgraphs, and the 2625 sets \(R\) where \(\text{VI } \Gamma \setminus R\) is a Meringer cage.

Paths and Cycles

The group \(G = \text{Aut } \Gamma\) is transitive on ordered induced paths of length at most five. It has three orbits on ordered induced paths of length 6 (with 7 vertices). In particular, the group is 3-arc transitive (transitive on ordered paths of length 3). This group is transitive on induced 5-cycles, 6-cycles, and 7-cycles. It has two orbits on induced 8-cycles. Each hexagon is contained in a unique Petersen subgraph.
Cages

The Hoffman-Singleton graph Γ is the $(7,5)$-cage, that is, the unique smallest graph of valency 7 and girth 5. Of course every subgraph has girth at least 5. The unique $(6,5)$-cage has 40 vertices, and is found by removing the vertices of a Petersen subgraph from Γ. The $(5,5)$-cages have 30 vertices. There are four nonisomorphic examples ([750], [558]), two of which can be found inside Γ. Also $(3,6)$-cages (the incidence graph of the Fano plane) and $(3,8)$-cages (the incidence graph of $GQ(2,2)$) are found in Γ. See also [123], pp. 206–210, and [314].

About the $(5,5)$-cages

There is some confusion concerning naming and properties of the $(5,5)$-cages, the main problem being that nobody knows what graph is called the Robertson-Wegner graph. The four $(5,5)$-cages have groups of orders 20, 30, 96, and 120. The cage with group of order 96 was discovered by Yang & Zhang [750] and rediscovered by Meringer [558]. The survey [743] knew about the remaining three. Its Figure 6 displays the cage with group of order 30, with reference ‘R. M. Foster (unpublished)’. The cage with group of order 20 was discovered by Robertson [626] (upper left corner of Figure 1.1C), later mentioned in Wegner [724] (who refers to [626]), and is Figure 5 in [743]. It is the RobertsonWegnerGraph in Mathematica. The cage with group of order 120 was given in Robertson [626] (Figure 1.1D), and is called the Robertson-Wegner graph by many authors; it is Figure 4 in [743], and the WongGraph in Mathematica.

| $|G|$ | orbit sizes | spectrum | name |
|-----|-------------|----------|------|
| a | 20 | $5+5+10$ | $(-3)^4 (-2.71)^2 (-2.47)^2 (-1.78)^2$ | Robertson-Wegner graph |
| | | (−1)^4 0.78^2 1.12^2 1.47^2 1.71^2 2^6 5^3 | |
| b | 30 | $15+15$ | $(-2.71)^4 (-1.71)^4 (-1)^4 1.12^4$ | Foster cage |
| | | (−1±\sqrt{2})^2 1.71^4 2^4 (±\sqrt{3})^4 5^4 | |
| c | 96 | $6+24$ | $(-3)^3 (-2)^4 0^4 (-1±\sqrt{3})^4$ | Yang-Zhang cage / Meringer cage |
| | | (−1±\sqrt{5})^4 1.71^4 2^4 (±\sqrt{3})^4 2^9 5^4 | |
| d | 120 | $10+20$ | $(-1)^2 1^5 (−1±\sqrt{5})^8 (±\sqrt{5})^3 5^4$ | Robertson cage |

Case (a) is obtained from the Hoffman-Singleton graph Γ by removing two Petersen subgraphs, and as we saw in the discussion of regular sets, also case (c) is contained in Γ. Cases (b) and (d) cannot be contained in Γ because their eigenvalue $\sqrt{5}$ would contradict interlacing. In cases (a) and (d), the group size and orbit sizes were given incorrectly in [123]. A nice description of graph (d), showing its full group $A_5 \times 2$, is the following. Take the 20 vertices of the dodecahedron, and the 10 4-subsets of the dodecahedron that have all internal distances 3; the adjacencies are the obvious ones: the dodecahedron is an induced subgraph of valency 3, each 4-subset is adjacent to its 4 elements and to the antipodal 4-subset.

Locally Hoffman-Singleton graphs

No locally Hoffman-Singleton graphs are known. Such a graph cannot be distance-transitive or flag-transitive ([Van Bon [85]]) and must have diameter at most 6. See also [337].

Decomposition of K_{50}

We saw that K_{10} can be split into three edge-disjoint Clebsch graphs, and K_{10} cannot be split into three edge-disjoint Petersen graphs. It is unknown whether K_{50} can be split into seven edge-disjoint Hoffman-Singleton graphs. However, it is possible to pack six edge-disjoint Hoffman-Singleton graphs into K_{50} ([531]).
10.20 The Gewirtz graph

There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (56, 10, 0, 2)$. Its spectrum is $10^1 2^{35} (-4)^{20}$. The full group of automorphisms is $G = L_3(4).2^2$ (of order $2^9 3^2 5 7$) acting rank 3, with point stabilizer $A_6.2^2$.

Construction

This is the graph on the $77 - 21 = 56$ blocks of the (unique) Steiner system $S(3, 6, 22)$ not containing a fixed symbol, adjacent when they are disjoint. It is also the subgraph of the Higman-Sims graph induced on the set of vertices at distance 2 from an edge (and this construction shows the full group).

From the first construction we deduce the following explicit construction. Vertices are the hyperovals of a $\text{PSL}_3(4)$-orbit in $\text{PG}(2, 4)$, adjacent if disjoint. Since the lines not meeting a given hyperoval form a dual hyperoval, we can see each vertex of Γ as a pair (hyperoval, dual hyperoval), which explains the doubling of the automorphism group compared to the point stabilizer of $S(3, 6, 22)$. These extra automorphisms are dualities of $\text{PG}(2, 4)$.

Uniqueness

Uniqueness is due to Gewirtz [342]. For shorter uniqueness proofs, and further properties, see [131].

Clique and cocliques

The maximal cliques are the 280 edges.

Maximal cocliques have sizes 7, 9, 10, 11, 12, 13 or 16. The table below gives the number of cocliques of each given size.

<table>
<thead>
<tr>
<th>size</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>240</td>
</tr>
<tr>
<td>9</td>
<td>2520</td>
</tr>
<tr>
<td>10</td>
<td>43960</td>
</tr>
<tr>
<td>11</td>
<td>20160</td>
</tr>
<tr>
<td>12</td>
<td>5460</td>
</tr>
<tr>
<td>13</td>
<td>1680</td>
</tr>
<tr>
<td>16</td>
<td>42</td>
</tr>
</tbody>
</table>

The maximum cocliques have size 16, reaching the Hoffman bound. They form a single orbit. The stabilizer of one in G is $2^4 S_5$, with vertex orbit sizes $16 + 40$. If Γ is seen as the subgraph induced on the vertices at distance 2 from an edge xy in the Higman-Sims graph Δ, these 42 16-cocliques are the intersections $VI \cap \Delta(z)$ of VI with the point neighborhoods of the 42 neighbors z of the edge xy in Δ. In the $\text{PG}(2, 4)$-setting, these 42 cocliques are the 21 sets of hyperovals sharing a common point and the 21 sets of hyperovals avoiding a common line of $\text{PG}(2, 4)$.

Chromatic number

Γ has chromatic number 4. Its complement has chromatic number 28.
Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>Case</th>
<th>H</th>
<th>Index</th>
<th>Orbit Lengths</th>
<th>d</th>
<th>e</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2^4:S_5$</td>
<td>42</td>
<td>16, 40</td>
<td>0</td>
<td>4</td>
<td>16-coclique</td>
</tr>
<tr>
<td>b</td>
<td>M_{10}</td>
<td>112</td>
<td>20, 36</td>
<td>1</td>
<td>5</td>
<td>$10K_2$</td>
</tr>
<tr>
<td>c</td>
<td>$2^{2+4}.3.2^2$</td>
<td>105</td>
<td>24, 32</td>
<td>2</td>
<td>6</td>
<td>$6C_4$</td>
</tr>
<tr>
<td>d</td>
<td>$L_2(7)$</td>
<td>480</td>
<td>28, 28</td>
<td>3</td>
<td>7</td>
<td>${3, 2, 2, 1; 1, 1, 1, 2}$</td>
</tr>
<tr>
<td>e</td>
<td>$2 \times L_2(7):2$</td>
<td>120</td>
<td>14, 42</td>
<td>4</td>
<td>2</td>
<td>${4, 3, 2; 1, 2, 4}$</td>
</tr>
</tbody>
</table>

In case (b), the subgraph induced on the 36-set is the Sylvester graph.
Each quadrangle is contained in a unique subgraph $6C_4$.

Case (d) is that of splits into two Coxeter graphs. These splits can be seen inside the Higman-Sims graph. It has splits into two Hoffman-Singleton graphs. Choosing an edge that meets both sides we find that the subgraph of the Higman-Sims graph far away from that edge is split into two Coxeter graphs.

Case (e) has the co-Heawood graph, the bipartite nonincidence graph of the Fano plane.

There are no further examples of regular sets with $d - e = s$.

Biplane

If A is the adjacency matrix of Γ, then $A + I$ is the point-block incidence matrix of a biplane $2-(56,11,2)$ (due to HALL, LANE & WALES [400]). Up to isomorphism, there are five biplanes with these parameters ([483]).

Hill cap

The Gewirtz graph is an induced subgraph of the $O^-_6(3)$ graph on 112 vertices (see below), and hence can be seen as a set of points in $\text{PG}(5,3)$, a subset of an elliptic quadric. Viewed in this way, it is a cap, a set of points no three of which are collinear, and in fact is the unique largest possible cap in $\text{PG}(5,3)$. (Note that lines meet the quadric in at most two points, unless they are contained in the quadric. Hence three collinear points determine a triangle in the graph, but the Gewirtz graph does not have triangles.) It follows that the vertex set of Γ, viewed as subgraph of the $O^-_6(3)$ graph, defines a hemisystem of points of the $O^-_6(3)$ generalized quadrangle.

10.21 $\text{Sp}_6(2)$

There is a unique rank 3 strongly regular graph with parameters $(v, k, \lambda, \mu) = (63, 30, 13, 15)$. Its spectrum is $30^1 335 (-5)^{27}$. The full group of automorphisms is $\text{Sp}_6(2)$ acting rank 3 with point stabilizer $2^5:S_6$. It is the collinearity graph of the polar space $\text{Sp}_6(2)$, cf. §2.5.
The maximal cliques have size 7 and form a single orbit. They are the totally isotropic planes. The maximal cocliques have size 3, 5 or 7, a single orbit each. Those of size 3 are the hyperbolic lines. Those of size 5 are elliptic quadrics in the perp of a hyperbolic line. Those of size 7 are the 7-cocliques in the $T(8)$ subgraphs (see below). The chromatic numbers of this graph and its complement are $\chi(\Gamma) = 11$ and $\chi(\overline{\Gamma}) = 9$.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_5(3) : 2$</td>
<td>28</td>
<td>27, 36</td>
<td>10</td>
<td>15</td>
<td>$GQ(2,4)$</td>
</tr>
<tr>
<td>$2^6 : L_3(2)$</td>
<td>135</td>
<td>7, 56</td>
<td>6</td>
<td>3</td>
<td>K_7</td>
</tr>
<tr>
<td>S_8</td>
<td>36</td>
<td>28, 35</td>
<td>15</td>
<td>12</td>
<td>$T(8)$</td>
</tr>
</tbody>
</table>

These are all regular sets with $(d,e) = (6,3)$, but there are many further regular sets with $(d,e) = (10,15), (9,6), (12,9), (15,12)$. For example, partial spreads provide examples with $d - e = 3$. No other pairs (d,e) occur.

Cospectral graphs

Ihringer [451] finds 13505292 different graphs cospectral with Γ by applying GM-switching (§8.13.1) to it at most five times in succession. No doubt there are many further graphs with these parameters.

10.22 The $G_2(2)$ graph on 63 vertices

There are precisely two generalized hexagons of order 2, duals of each other (cf. p.108). The distance 1-or-2 graph of each of these is strongly regular, with parameters $(v,k,\lambda,\mu) = (63,30,13,15)$ (cf. Proposition 1.3.12). In this way we obtain two graphs. The rank 3 one was discussed above. Here we look at the other one, which is rank 4. Its full group of automorphisms is $G_2(2)$, with point stabilizer $4 \cdot S_4 : 2$ with orbits of sizes $1 + 6 + 24 + 32$ (and it is the only strongly regular graph with these parameters of which the full group acts rank 4).

Construction

This graph Γ is the graph $NU_4(3)$: the vertices are the nonisotropic points in $PG(2,9)$ provided with a nondegenerate hermitian form, adjacent when joined by a secant. Its complement is the graph on VT where vertices are adjacent when joined by a tangent. If Δ_1 is the graph on VT where vertices are adjacent when orthogonal, then Δ_1 is the collinearity graph of a generalized hexagon of order 2, and $\Gamma = \Delta_1 \cup \Delta_2$, where Δ_2 is the distance-2 graph of Δ_1. This Δ_2 is the 2nd subconstituent of the Hall-Janko graph on 100 vertices.

Cliques, cocliques and chromatic number

The maximal cliques have size 4 or 7, a single orbit of each. The 63 maximal 7-cliques C_x each consist of a vertex x and the six orthogonal vertices. The
maximal cocliques have size 5 or 9, a single orbit of each. The 28 maximal 9-cocliques are the tangents. The chromatic numbers of this graph and its complement are \(\chi(\Gamma) = 11 \) and \(\chi(\overline{\Gamma}) = 9 \). A partition into nine 7-cliques is given by the nine sets \(C_x \) where \(x \) runs over the vertices on a fixed tangent.

Regular sets

Examples of regular sets in \(\Gamma \) are obtained from subgroups \(H \) of \(G = \text{Aut} \Gamma \) with two orbits on the vertex set. We give degree \(d \), nexus \(e \), and structure for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(2^4.3^2)</td>
<td>28</td>
<td>9, 54</td>
<td>0</td>
<td>5</td>
<td>9-coclique</td>
</tr>
<tr>
<td>b</td>
<td>(L_3(2) : 2)</td>
<td>36</td>
<td>21, 42</td>
<td>12</td>
<td>9</td>
<td>(\text{GH}(2, 1)_{1,2})</td>
</tr>
</tbody>
</table>

Subgraphs of type (b) are the distance 1-or-2 graphs of sub-\(\text{GH}(2, 1) \)'s in the \(\text{GH}(2, 2) \), that is, are subgraphs of \(\Gamma \) induced by the point set of a \(\text{GH}(2, 1) \).

10.23 The block graph of the smallest Ree unital

Above in §10.21 and §10.22 we described the two strongly regular graphs with parameters \((v, k, \lambda, \mu) = (63, 30, 13, 15)\) and a group of automorphisms acting primitively. There are many further strongly regular graphs with these parameters, most of them ugly. Maybe the nicest one is the complement of the block graph of the smallest Ree unital, described below.

Given any Steiner system \(S(2, m, u) \), the block graph is the graph on the blocks, adjacent when they meet. This graph is strongly regular, with parameters given in §8.5.4A. In the particular case of a \(S(2, 4, 28) \) this block graph has parameters \((63, 32, 16, 16)\), so that the adjacency matrices are square 2-(63,32,16) designs. (There are many further such designs.)

Let \(q = 3^{2m+1}, m \geq 0 \). The Ree unital of order \(q \) (Lüneburg [528]) is a unital \((S(2, q + 1, q^3 + 1)\) design) on which the Ree group \(2 \Gamma_2(q) \) of order \((q - 1)q^3(q^3 + 1)\) acts 2-transitively. It is not embedded (in \(\text{PG}(2, q^2) \)).

A unital of order 3 is a Steiner system \(S(2, 4, 28) \). The two examples of such Steiner systems with a doubly transitive group are the Hermitian unital and the Ree unital. The 4466 examples with a nontrivial group were given in [498]. The \(2 + 4 + 4 + 8 = 18 \) examples embedded in a projective plane of order 9 (there are four: the Desarguesian, Hall, dual Hall, and Hughes planes) were found in [616]. The 6 resolvable \(S(2, 4, 28) \) (and 7 nonisomorphic resolutions) were found in [484]. The 68806 examples with a blocking set were found in [7].

The Ree unital of order 3 can be embedded as a \((0, 4)\)-set (a maximal arc) in \(\text{PG}(2, 8) \). We find that it has 45 spreads (falling into two orbits, of sizes 9 + 36), corresponding to the 45 exterior points, and 10 resolutions (falling into two orbits, of sizes 1 + 9), corresponding to the 10 exterior lines. The graph \(\Gamma \) on the blocks, adjacent when they are disjoint is the graph on the involutions of \(L_2(8) \), adjacent when the product has order 2 or 7. The graph \(\Gamma \) has maximal cliques of sizes 4, 5 and 7. Those of size 7 are the spreads. It has maximal cocliques of sizes 5 and 9. Those of size 9 are the sets of 9 blocks on a given point. The full group of automorphisms is \(\text{PFl}_2(8) \) seen in its natural action on the fixed exterior line \(L \). Its action on \(\Gamma \) is imprimitive: the 9 spreads determined by the points of \(L \) form a system of imprimitivity.
10.24 GQ(3,5) and the hexacode

Haemers & Spence [384] showed that there are exactly 167 strongly regular graphs with parameters \((v,k,\lambda,\mu) = (64, 18, 2, 6)\). The spectrum is \(18^{1} 2^{45} (-6)^{18}\). Precisely one of these is rank 3, let us call it \(\Gamma\). Its full group of automorphisms is \(2^6 : 3S_6\) with point stabilizer \(3S_6\). This is the collinearity graph of the unique GQ(3,5).

Construction

Take the 64 words of the hexacode, and join two words when their distance is 6. Or take the points of \(AG(3,4)\), and join two points when the joining line hits the \(PG(2,4)\) plane at infinity in a fixed hyperoval (cf. §3.4.6).

Clique, coclique and chromatic number

The maximal cliques of \(\Gamma\) are the 96 lines of GQ(3,5). They have size 4 and meet the Hoffman bound. There are 24 cocliques of size 16, meeting the Hoffman bound. These correspond to the planes in \(AG(3,4)\) hitting the plane at infinity in an external line of the hyperoval. The chromatic numbers are \(\chi(\Gamma) = 4\) and \(\chi(\overline{\Gamma}) = 16\).

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut} \Gamma\) with two orbits on the vertex set. We give degree \(d\), nexus \(e\), and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^4 : (A_5 : S_3))</td>
<td>24</td>
<td>16, 48</td>
<td>0</td>
<td>6</td>
<td>(16)-coclique</td>
</tr>
<tr>
<td>(2^5 : S_5)</td>
<td>36</td>
<td>32, 32</td>
<td>6</td>
<td>12</td>
<td>(2K_{16})</td>
</tr>
<tr>
<td>((2^{4+2} : 3) : 2)</td>
<td>360</td>
<td>32, 32</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

These are all regular sets with \(d - e = s\).

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^2 : (3 : S_5))</td>
<td>96</td>
<td>4, 60</td>
<td>3</td>
<td>1</td>
<td>(K_4)</td>
</tr>
<tr>
<td>(2^4 : (3S_4 : 2))</td>
<td>60</td>
<td>16, 48</td>
<td>6</td>
<td>4</td>
<td>(4 \times 4)</td>
</tr>
<tr>
<td>([2^4,3])</td>
<td>180</td>
<td>16, 48</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(S_4 \times D_8)</td>
<td>720</td>
<td>16, 48</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(A_5 : D_8)</td>
<td>288</td>
<td>24, 40</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>([2^4,3])</td>
<td>90</td>
<td>32, 32</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>([2^6,3])</td>
<td>720</td>
<td>32, 32</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>((D_8 \times D_8) : 2)</td>
<td>1080</td>
<td>32, 32</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>(4^2 : 4)</td>
<td>2160</td>
<td>32, 32</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Case (d) is that of a line of the GQ. Case (e) is that of a plane with a secant at infinity. Case (i) is that of two planes with a common secant at infinity. Every union of \(t\) pairwise disjoint lines is a regular set with \((d, e) = (t + 2, t)\).
2-Ranks
Peeters [611] showed that Γ is the unique strongly regular graph with its parameters and satisfying $rk_2(A) = 14$. Similarly, $\overline{\Gamma}$ is the unique strongly regular graph with its parameters and satisfying $rk_2(A + I) = 14$.

Dual

\[
\begin{array}{cccccc}
1 & 20 & 1 & 20 & 15 & 75 \\
4 & & & 4 & & 16 \\
v = 96
\end{array}
\]

The dual generalized quadrangle $GQ(5,3)$ has 96 points and 64 lines, and the same automorphism group, acting rank 4. The collinearity graph Δ has parameters $(v,k,\lambda,\mu) = (96,20,4,4)$ and spectrum $20^2 4^{35} (-4)^{50}$. Maximal cliques have size 6 (they are the lines). Maximal cocliques have sizes 10–14 and 16. There are 5 orbits of ovoids (16-cocliques) corresponding to the 5 orbits of spreads in $GQ(3,5)$. The chromatic numbers are $\chi(\Delta) = 6$ and $\chi(\overline{\Delta}) = 16$.

10.25 $VO^{-}_6(2)$

\[
\begin{array}{cccccc}
1 & 27 & 1 & 27 & 12 & 36 \\
10 & & & 12 & & 16 \\
v = 64
\end{array}
\]

There is a unique rank 3 strongly regular graph with parameters $(v,k,\lambda,\mu) = (64,27,10,12)$. Its spectrum is $27^1 3^{36} (-5)^{27}$. The full group of automorphisms is $2^6 : (O^-_6(2) : 2)$ acting rank 3 with point stabilizer $O_3(3) : 2$. A construction (as $VO^-_6(2)$) was given in §3.3.1.

The local graph is the complement of the Schläfi graph, the collinearity graph of $GQ(2,4)$. The graph induced on the second subconstituent is $NO^-_6(2)$, strongly regular with parameters $(v,k,\lambda,\mu) = (36,15,6,6)$ (see §10.15). The vertices of the first subconstituent not adjacent to a fixed vertex of the second subconstituent form a sub-$GQ(2,2)$ of $GQ(2,4)$.

Maximal cliques have size 4, and form a single orbit. Maximal cocliques have sizes 4 or 6, a single orbit each. For the chromatic numbers of the graph Γ and its complement, we have $\chi(\Gamma) = 11$, $\chi(\overline{\Gamma}) = 16$.

From the local structure as given in §3.6 it is clear that Γ does not contain $K_5 - e$ (K_5 minus an edge) and $\overline{\Gamma}$ does not contain $K_7 - e$, giving a lower bound $R(K_5 - e, K_7 - e) \geq 65$ for the corresponding Ramsey number. In fact $R(K_5 - e, K_7 - e) = 65 ([516], [712])$.

Ihringer [451] found 8613977 graphs cospectral with Γ by applying GM-switching.

10.26 The halved folded 8-cube and $VO^+_6(2)$

\[
\begin{array}{cccccc}
1 & 28 & 1 & 28 & 12 & 35 \\
12 & & & 12 & & 16 \\
v = 64
\end{array}
\]

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (64,28,12,12)$. Its spectrum is $28^1 4^{28} (-4)^{35}$. The full group of automorphisms is $2^6 : S_8$ acting rank 3 with point stabilizer S_8. It can be constructed as the halved folded 8-cube.
The complementary graph Γ has parameters $(v, k, \lambda, \mu) = (64, 35, 18, 20)$ and spectrum $35^1 35^{18} (-5)^{28}$. A construction (as $VO_8^+(2)$) was given in §3.3.1.

The local graph is the triangular graph $T(8)$. The graph induced on the 2nd subconstituent is strongly regular with parameters $(v, k, \lambda, \mu) = (35, 16, 6, 8)$, the complement of $O_8^+(2)$ (see also §10.13).

Maximal cliques have sizes 4 or 8, a single orbit each. Maximal cocliques have size 8, a single orbit. For the chromatic numbers of the graph Γ and its complement, we have $\chi(\Gamma) = \chi(\bar{\Gamma}) = 8$.

Regular sets

Represent the vertices by vectors of even weight in F_8^2, identifying two vectors when they differ by 1. For $i = 2, 4$ consider the split with an odd/even weight in the first i bits. This yields examples (l) and (e) below. For $i = 3$, normalize by taking even weight in the first i bits, and split into weight 0/2. This is example (j). The $[8, 4, 4]$ Hamming code modulo 1 yields example (a). The set of 8 unit vectors (shifted over an odd weight vector) yields example (i).

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>Graph</th>
<th>H</th>
<th>d</th>
<th>e</th>
<th>Orbitlengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_8</td>
<td>$2^3 : (2^3 : L_3(2))$</td>
<td>240</td>
<td>8, 56</td>
<td>0, 4</td>
</tr>
<tr>
<td>b</td>
<td>$[2^{14}, 3]$</td>
<td>420</td>
<td>16, 48</td>
<td>4, 8</td>
</tr>
<tr>
<td>c</td>
<td>$[2^{17}, 3]$</td>
<td>6720</td>
<td>16, 48</td>
<td>4, 8</td>
</tr>
<tr>
<td>d</td>
<td>$A_5 : D_8$</td>
<td>5376</td>
<td>24, 40</td>
<td>8, 12</td>
</tr>
<tr>
<td>e</td>
<td>$2^5 \times (S_4 \wr 2)$</td>
<td>70</td>
<td>32, 32</td>
<td>12, 16</td>
</tr>
<tr>
<td>f</td>
<td>$[2^{9}, 3]$</td>
<td>1680</td>
<td>32, 32</td>
<td>12, 16</td>
</tr>
<tr>
<td>g</td>
<td>$[2^{9}]$</td>
<td>5040</td>
<td>32, 32</td>
<td>12, 16</td>
</tr>
<tr>
<td>h</td>
<td>$[2^{9}, 3]$</td>
<td>13440</td>
<td>32, 32</td>
<td>12, 16</td>
</tr>
<tr>
<td>i</td>
<td>S_8</td>
<td>64</td>
<td>8, 56</td>
<td>7, 3</td>
</tr>
<tr>
<td>j</td>
<td>$S_3 \times (2^4 : S_5)$</td>
<td>224</td>
<td>16, 48</td>
<td>10, 6</td>
</tr>
<tr>
<td>k</td>
<td>$2 \times (((A_4 \times A_4) : 2) : 2)$</td>
<td>1120</td>
<td>16, 48</td>
<td>10, 6</td>
</tr>
<tr>
<td>l</td>
<td>$2 \times (2^5 : S_6)$</td>
<td>56</td>
<td>32, 32</td>
<td>16, 12</td>
</tr>
<tr>
<td>m</td>
<td>$[2^{10}, 3]$</td>
<td>840</td>
<td>32, 32</td>
<td>16, 12</td>
</tr>
<tr>
<td>n</td>
<td>$[2^{9}, 3]$</td>
<td>1680</td>
<td>32, 32</td>
<td>16, 12</td>
</tr>
<tr>
<td>o</td>
<td>$[2^{9}, 3]$</td>
<td>13440</td>
<td>32, 32</td>
<td>16, 12</td>
</tr>
</tbody>
</table>

This is complete for $(d, e) = (7, 3), (10, 6)$, not for $(d, e) = (13, 9), (16, 12)$. Apart from these, there are no further examples with $d - e = r$.

Cospectral graphs

Ihringer [451] found 110633960 graphs cospectral with Γ by applying GM-switching.

10.27 The M_{22} graph on 77 vertices

![M22 Graph](https://example.com/m22_graph.png)

$v = 77$
There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (77, 16, 0, 4)$. Its spectrum is $16^1 2^{25} (-6)^{21}$. The full group of automorphisms is $M_{22}.2$ acting rank 3 with point stabilizer $2^4 : S_6$.

The existence of this graph is folklore. An early description (using an explicit list of 77 blocks) was given in Mesner [560], pp. 75–83. Uniqueness is due to Brouwer [111].

Γ is the second subconstituent of the Higman-Sims graph (§10.31).

Construction

Take the 77 blocks of $S(3, 6, 22)$ as vertices, where two blocks are adjacent when they are disjoint.

(Since $S(3,6,22)$ has two block intersection numbers, 0 and 2, this is a special case of the construction of a strongly regular graph from a quasi-symmetric design.)

Cliques and cocliques

Since $\lambda = 0$, the maximal cliques have size 2 and are the edges. The largest cocliques have size 21. There are 22 of those, corresponding to the 22 points of $S(3, 6, 22)$. On the 56 vertices outside a 21-coclique, Γ induces the Gewirtz graph.

Maximal cocliques have sizes 7, 10, 11, 13, 14, 16 or 21. The table below gives the number of cocliques of each given size.

<table>
<thead>
<tr>
<th>size</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>330</td>
</tr>
<tr>
<td>10</td>
<td>216832</td>
</tr>
<tr>
<td>11</td>
<td>149184</td>
</tr>
<tr>
<td>13</td>
<td>43120</td>
</tr>
<tr>
<td>14</td>
<td>330</td>
</tr>
<tr>
<td>16</td>
<td>1309</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

The smallest maximal cocliques have size 7 and stabilizer $2 \times 2^4 : L_3(2)$. In the Steiner system $S(5, 8, 24)$, let a and b be two fixed symbols, such that our $S(3, 6, 22)$ is the derived design at $\{a, b\}$. There are 330 octads that contain neither a nor b, and each induces a $7 + 56 + 14$ partition of V_Γ, corresponding to intersection size 0, 2, 4. The parts of sizes 7 and 14 are maximal cocliques.

Chromatic number

The chromatic number of Γ is 5. That of $\overline{\Gamma}$ is 39.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$L_3(4):2$</td>
<td>22</td>
<td>21, 56</td>
<td>0</td>
<td>6</td>
<td>21-coclique</td>
</tr>
<tr>
<td>b</td>
<td>A_7</td>
<td>352</td>
<td>35, 42</td>
<td>4</td>
<td>10</td>
<td>${4, 3, 3; 1, 1, 2}$</td>
</tr>
<tr>
<td>c</td>
<td>$L_2(11):2$</td>
<td>672</td>
<td>22, 55</td>
<td>6</td>
<td>4</td>
<td>${6, 5, 3; 1, 3, 6}$</td>
</tr>
</tbody>
</table>

In case (b) the induced subgraph on the short orbit is the Odd graph O_4.

In case (c) the induced subgraph on the short orbit is the incidence graph of the unique 2-(11,6,3) design, the complement of the 2-(11,5,2) biplane.

There are no further regular sets with $d - e = s$.

10.27. $(77, 16, 0, 4)$
10.28 The Brouwer-Haemers graph

There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (81, 20, 1, 6)$. Its spectrum is $20^{1860} (-7)^{20}$. The full group of automorphisms is $3^4 : ((2 \times S_6).2)$ acting rank 3 with point stabilizer $(2 \times S_6).2$.

This graph was known already to Mesner [560]. Brouwer & Haemers [130] showed uniqueness, and gave seven different descriptions of this graph. Uniqueness is also an easy corollary of Ivanov & Shpectorov [458] (see Theorem 3.4.1).

Construction: fourth power difference set

Take the finite field \mathbb{F}_{81}, where two elements are adjacent when they differ by a fourth power. (This construction shows the affine group $\text{AGL}(1, 81)$ of order $3^4 \cdot 80 \cdot 4$, acting rank 4.)

Construction: affine orthogonal graph

This is the affine orthogonal graph $\text{VO}^{-4}(3)$, cf. §3.3.1. (This construction shows the full group: we have $O^{-4}(3) \simeq A_6$, which has index 2 in $\text{PGO}^{-4}(3) \simeq S_6$, which has index 2 in $\text{GO}^{-4}(3) \simeq 2 \times S_6$, which again has index 2 in the group preserving the form up to a constant.)

A nice symmetric representation is found by taking $1^+/1$ in \mathbb{F}_{6}^3 provided with the ‘sum of squares’, i.e., weight, quadratic form, where two vertices are adjacent when their difference has weight 3. And instead of taking 1^+ (i.e., sum 0), we can also take sum 1, or sum 2.

Equivalently, take the points of $\text{AG}(4, 3)$, adjacent when the joining line hits a fixed elliptic quadric in the hyperplane at infinity.

Construction: Hermitian forms graph

This graph is the Hermitian forms graph on \mathbb{F}_9^3, cf. §3.4.4.

Construction: from the ternary Golay code

This graph is the coset graph of the truncated ternary Golay code.

Construction: in the $O_6^{-}(3)$ graph

This graph is the 2nd subconstituent of the $O_6^{-}(3)$ graph on 112 vertices, the collinearity graph of the unique $\text{GQ}(3, 9)$, cf. §10.34.

Cliques, cocliques and chromatic number

Since $\lambda = 1$, maximal cliques have size 3, and there are 270 lines of size 3, ten on each point. The group acts rank 5 on the lines, distinguishing the relations (i) identity, (ii) meeting, (iii) disjoint with three transversals, (iv) disjoint with
two transversals, (v) disjoint without transversals, with subdegrees 1, 27, 18, 216, 8. The union (i)+(v) is an equivalence relation, partitioning the lines into 30 sets of size 9 that are concurrent in $GQ(3,9)$. It follows that Γ has a unique embedding into $GQ(3,9)$.

Sizes and counts of maximal cocliques:

<table>
<thead>
<tr>
<th>size</th>
<th>6</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>324</td>
<td>6845</td>
<td>338580</td>
<td>87480</td>
<td>21060</td>
<td>324</td>
</tr>
</tbody>
</table>

The 15-cocliques form a single orbit, with stabilizer S_6. This stabilizer has three vertex orbits, of sizes 15 + 60 + 6, where such orbits of size 6 are the maximal 6-cocliques. Such cocliques are most easily seen in the representation as ternary vectors of length 6 with sum 1, modulo 1. Each vertex has a unique representative of weight 1, 2, or 3, and there are 6 + 15 + 60 such vectors.

This graph has chromatic number 7 (E. van Dam). Its complement has chromatic number 27 (that is, there are spreads of lines).

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$3^4+4.2^2$</td>
<td>30</td>
<td>27, 54</td>
<td>2</td>
<td>9</td>
<td>$9K_3$</td>
</tr>
<tr>
<td>b</td>
<td>M_{10}</td>
<td>324</td>
<td>36, 45</td>
<td>5</td>
<td>12</td>
<td>${5,4,2;1,1,4}$</td>
</tr>
<tr>
<td>c</td>
<td>$3^2.(4 \times 2).2^3$</td>
<td>405</td>
<td>9, 72</td>
<td>4</td>
<td>2</td>
<td>$K_3 \times K_3$</td>
</tr>
<tr>
<td>d</td>
<td>$2 \times (3^2.2^2.3).2^2$</td>
<td>90</td>
<td>27, 54</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

In case (a) the short orbit corresponds to the vertices adjacent to a fixed vertex of the first subconstituent in the $O^-_6(3)$ construction.

In case (b) the induced subgraph on the short orbit is Sylvester’s double six graph.

In case (c) the 9 points are the points of a 4×4 grid noncollinear to a fixed point ∞, where Γ is the 2nd subconstituent (w.r.t. ∞) of $GQ(3,9)$.

In case (d), in the $AG(4,3)$ construction: the 27 points are those of $AG(3,3)$, adjacent when the joining line hits a fixed conic at infinity.

There are no further regular sets with $d - e = s$.

Second subconstituent

The second subconstituent Δ of Γ has spectrum $14^1 2^{40} (-4)^{10} (-6)^9$. The automorphism group of Δ is $(2^2 \times S_6).2$, twice as large as the point stabilizer of the automorphism group of Γ. This graph is uniquely determined by its spectrum ([79]).
10.29 \(VNO_4^{-}(3) \) and the Van Lint-Schrijver partial geometry

There is a unique edge-transitive graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (81, 30, 9, 12)\). Its spectrum is \(30^1 50^1 (-6)^{30}\). The full group of automorphisms is \(3^1 : (2 \times S_6)\) acting rank 4 with point stabilizer \(2 \times S_6\).

We met this graph as \(VNO_4^{-}(3) \). The sporadic part is that it is also the collinearity graph of a partial geometry \(pg(6, 6, 2)\), see §8.6.1. The partial geometry has full group \(3^1 : S_6\) ([181]).

Projective two-weight codes

As a special case of the Delsarte correspondence (§7.1.2) we find a 1-1-1 correspondence between subsets \(X\) of \(PG(3, 3)\) such that each plane meets it in either 3 or 6 points, and projective \([n, k, d]_q = [15, 4, 9]_3\) codes with weights 9 and 12, and strongly regular graphs with the parameters of \(\Gamma\) defined on \(F_4^3\) by a difference set \(D\) of size 30 with \(D = -D\).

There are precisely two such graphs, namely \(\Gamma\), and a graph \(\Delta\) with group \(3^1 : (2 \times (3^2 : 4))\) acting rank 6. There are precisely three \([15, 4, 9]_3\) codes, namely two projective codes (with weight enumerator \(1 + 50X^9 + 30X^{12}\)) and a single non-projective one (with weight enumerator \(1 + 52X^9 + 26X^{12} + 2X^{15}\)) ([408], [103], [311]).

Cliques and cocliques

Maximal cliques in \(\Gamma\) have sizes 3 and 6, a single orbit of each. The orbit of 6-cliques (of size 162) splits into two orbits of size 81 under a subgroup of index 2 in \(\text{Aut } \Gamma\), and vertices together with one such orbit form a \(pg(6, 6, 2)\).

Maximal cocliques in \(\Gamma\) have sizes 7, 9, and 11. Maximal cliques in \(\Delta\) have sizes 3 and 4. Maximal cocliques in \(\Delta\) have sizes 6–9.

Cospectral graphs

Krčadinac [499] constructed a different \(pg(6, 6, 2)\), with full automorphism group \(3^1 : (3^2 : 4)\). Its collinearity graph has the same full group, and has 108 6-cliques. Both \(pg(6, 6, 2)\) geometries are self-dual.

Almost simultaneously, Crnković, Švob & Tonchev [245], looking for graphs invariant under a subgroup of the group of the known examples (namely \(\Gamma\) and \(\Delta\) above), found twelve further graphs cospectral with \(\Gamma\), one of which is the Krčadinac example. Ihringer [451] found 3770759 examples using WQH-switching (§8.13.2).
10.30 The rank 3 conference graphs on 81 vertices

There are exactly two rank 3 strongly regular graphs with parameters \((v, k, \lambda, \mu) = (81, 40, 19, 20)\). Their spectrum is \(40^1, 40(-5)^{40}\). The first, let us call it \(\Gamma_1\), is the Paley graph, with full group of automorphisms \(3^4 : 40 : 4\) and point stabilizer \(40 : 4\). The second, let us call it \(\Gamma_2\), is the Peisert graph, with full group of automorphisms \(3^4 : (\text{SL}_2(5) : 2^2)\) and point stabilizer \(\text{SL}_2(5) : 2^2\). Both graphs are self-complementary. The maximal cliques of \(\Gamma_1\) and \(\Gamma_2\) have sizes 5 and 9. The orbit sizes are:

<table>
<thead>
<tr>
<th>(\Gamma_1)</th>
<th>9</th>
<th>5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>45</td>
<td>648</td>
<td>3240</td>
<td>6480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Gamma_2)</th>
<th>9</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>90</td>
<td>3240</td>
</tr>
</tbody>
</table>

Both \(\Gamma_1\) and \(\Gamma_2\) have chromatic number 9, that is, there are partitions into 9-cliques and partitions into 9-cocliques.

Construction

The graph \(\Gamma_1\) is the Paley graph: the vertex set is \(\mathbb{F}_{81}\) and two vertices are adjacent when their difference is a square. The graph \(\Gamma_2\) is unusual in that it is not determined by a set of directions in \(\text{AG}(2, 9)\) (see Theorem 11.4.3). Instead, for both graphs the vertex set can be taken to be \(\mathbb{F}_4^3\), where two vertices are adjacent when the line joining them hits the \(\text{PG}(3, 3)\) at infinity in a suitable set of size 20 obtained as the union of two disjoint elliptic quadrics.

Any 10-cap in \(\text{PG}(3, 3)\) is an elliptic quadric (ovoid), preserved by \(\text{PGO}_+^−(3) \cong \text{A}_6.2^2\). Up to collineation there are three pairs of disjoint elliptic quadrics, and the union of such a pair is a 20-set that meets all planes in either 5 or 8 points. Two of the examples give rise to our graphs \(\Gamma_1\) and \(\Gamma_2\). The third example gives a rank 5 graph \(\Gamma_3\). The three cases can be distinguished by counting common tangents to the two ovoids (0, 20, and 16, respectively), or lines contained in the union (5, 10, and 9, respectively), or by the number of ways to split the 20-set into two ovoids (1, 6, and 2, respectively) or by the group stabilizing the 20-set \(20 : 4, 2 \times S_5, \text{and } 4^2 : 2 : 2\), respectively). These three examples (of two disjoint ovoids) occur in two partitions of \(\text{PG}(3, 3)\) into four ovoids, of which one is a pencil. See also [302], [152].

Further examples

HURKENS & SEIDEL [449] construct 26 distinct conference matrices of order 82, which give rise to 175 distinct strongly regular graphs with parameters \((v, k, \lambda, \mu) = (81, 40, 19, 20)\).

10.31 The Higman-Sims graph

There is a unique strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (100, 22, 0, 6)\). Its spectrum is \(22^1, 277 (−8)^{22}\). The full group of automorphisms is \(\text{HS}.2\) acting rank 3 with point stabilizer \(M_{22}.2\).
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

This graph was found by Higman & Sims [425], and uniqueness was proved by Gewirtz [341]. Earlier, this graph had been constructed, and uniqueness was shown, by Mesner [559, 560]. (Mesner was interested in the graph, and did not determine the group of automorphisms. Higman and Sims used the graph to construct a new sporadic group.)

Construction: \(1 + 22 + 77 \)

Take a symbol \(\infty \), the 22 points, and the 77 blocks of \(S(3, 6, 22) \) as the \(1 + 22 + 77 = 100 \) vertices. Let \(\infty \) be adjacent to the points, let a point be adjacent to the blocks containing it, and let two blocks be adjacent when they are disjoint.

Construction: \(50 + 50 \)

The Higman-Sims graph is the graph with as vertices the 100 15-cocliques of the Hoffman-Singleton graph, adjacent when they meet in 0 or 8 points.

Or, equivalently, the Higman-Sims graph is the graph with as vertices the 50 vertices of the Hoffman-Singleton graph, and the 50 15-cocliques in one class, with obvious adjacencies.

Leech lattice construction

Fix the two Leech lattice vectors \(v_1 = \frac{1}{\sqrt{8}}(5111 \ldots 1) \) and \(v_2 = \frac{1}{\sqrt{8}}(1511 \ldots 1) \).

Take the 100 norm 4 vectors with inner product 3 with both, adjacent when their inner product is 1. The \(1 + 22 + 77 \) vertices have the shapes \(\frac{1}{\sqrt{8}}(4400 \ldots 0) \), \(\frac{1}{\sqrt{8}}(1121(-3)) \) and \(\frac{1}{\sqrt{8}}(2201626) \).

Properties

Since \(\lambda = 0 \), the maximal cliques have size 2 and are the edges. The largest cocliques have size 22 and are the point neighborhoods. The chromatic number is 6. The chromatic number of \(\Gamma \) is 50.

Regular sets

Examples of regular sets in \(\Gamma \) are obtained from subgroups \(H \) of \(G = \text{Aut} \Gamma \) with two orbits on the vertex set. We give degree \(d \) and nexus \(e \) for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(U_3(5))</td>
<td>704</td>
<td>50, 50</td>
<td>7</td>
</tr>
<tr>
<td>b</td>
<td>(2^{1+6} : S_5)</td>
<td>5775</td>
<td>20, 80</td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>(S_8 \times 2)</td>
<td>1100</td>
<td>30, 70</td>
<td>8</td>
</tr>
<tr>
<td>d</td>
<td>((2 \times A_6.2^2) : 2)</td>
<td>15400</td>
<td>40, 60</td>
<td>10</td>
</tr>
<tr>
<td>e</td>
<td>(5^2.5:(4 \times 2) : 2)</td>
<td>44352</td>
<td>50, 50</td>
<td>12</td>
</tr>
</tbody>
</table>

Case (a) corresponds to the split \(50+50 \) above; the induced subgraph on an orbit is the Hoffman-Singleton graph.

In case (b) the subgraph induced on the short orbit is the 2-coclique extension of the Petersen graph.

In case (c) the subgraph induced on the short orbit is the point-plane nonincidence graph of \(\text{PG}(3, 2) \). The subgraph induced on the long orbit is
the graph on the 4-subsets of an 8-set, adjacent when they meet in a single element.

There are no further regular sets with \(d - e = s\).

Cayley graph

The group \(\text{HS}.2\) has (nonabelian) subgroups \(5^2 : 4\) and \(5 \times (5 : 4)\) of order 100 that act regularly on the vertices of \(\Gamma\). Thus, \(\Gamma\) is a Cayley graph.

Spin model

In knot theory, one studies knots embedded in \(\mathbb{R}^3\), with projections in \(\mathbb{R}^2\) provided with over/under indications. Two knots are equivalent if and only if the projections can be connected by a series of Reidemeister moves. In order to distinguish inequivalent knots, one uses objects that are invariant under Reidemeister moves, such as the Kauffman polynomial ([486]). A new invariant using the formalism of statistical mechanics was defined by Jones [468]. Jaeger [462] translated the requirements of these ‘spin models’ into association scheme terms, and discovered that a new knot invariant can be defined using the Higman-Sims graph.

10.32 The Hall-Janko graph

There is a unique rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) = (100, 36, 14, 12)\). Its spectrum is \(36^1 6^{36} (-4)^{63}\). The full group of automorphisms is \(\text{HJ}.2\) acting rank 3 with point stabilizer \(G_2(2) = U_3(3).2\). The existence of the group and the rank 3 permutation representation was established by Hall & Wales [401].

This graph is not determined by its parameters alone: the Latin square graphs \(LS_4(10)\) (constructed from a pair of orthogonal Latin squares of order 10) have the same parameters, but cannot be isomorphic. This graph is the unique connected graph that is locally the \(G_2(2)\) graph on 36 vertices (Pasechnik [601]).

Construction: \(1 + 36 + 63\)

In the projective plane \(\text{PG}(2, 9)\) provided with a nondegenerate Hermitian form, one has a unital with 28 points, and 63 nonisotropic points. The plane has \(63 \cdot 6 \cdot 1/6 = 63\) orthogonal bases, and the 63 points and 63 bases are the points and lines of the dual of the classical \(\text{GH}(2, 2)\). Any apartment (hexagon) in this \(\text{GH}(2, 2)\) determines a unique sub-\(\text{GH}(2, 1)\) (with 14 lines and 21 points) and we find 36 \(\text{GH}(2, 1)\)'s in this way. These either coincide, or meet in a line and the lines meeting it (4 lines and 9 points in common), or meet in two intersecting lines (2 lines and 5 points in common), and these intersections occur with frequencies 1, 14, 21.
The graph Γ is obtained by taking a symbol ∞, the 36 $\text{GH}(2,1)$’s and the 63 points of the $\text{GH}(2,2)$ as vertices, where ∞ is adjacent to the $\text{GH}(2,1)$’s, two $\text{GH}(2,1)$’s are adjacent when they have 4 lines in common, a $\text{GH}(2,1)$ is adjacent to a point when it contains that point, and two points are adjacent when they have distance 2 in the $\text{GH}(2,2)$ (i.e., when they are not orthogonal and the joining line is not a tangent).

Construction: 10 + 90

Construct the graph Γ using two ingredients: the Foster graph F on 90 vertices, and the Moebius plane $S(3,4,10)$. The Foster graph is the unique distance-regular graph with intersection array $\{3,2,2,2,1,1,1,1,2,2,2,3\}$, has group $3.A_6.2^2$, and is an antipodal 3-cover of the unique distance-regular graph with intersection array $\{3,2,2,2;1,1,3\}$ on 30 vertices, the incidence graph of $GQ(2,2)$, and also the graph on the 30 circles (blocks) of $S(3,4,10)$, adjacent when disjoint. Let π be the folding map.

The 100 vertices of Γ are the 90 vertices of F and the 10 points of the point set X of $S(3,4,10)$. The set X is a 10-coclique in Γ, two vertices of F are adjacent in Γ when they have distance 3, 6, 7 or 8 in F, and the point x in X is adjacent to y in F when x is in the block $\pi(y)$.

Construction: Cohen-Tits near octagon

The group $\text{HJ}.2$ is the full automorphism group of the Cohen-Tits near octagon Δ of order $(2,4)$, see §10.68. Moreover, Δ contains subgeometries isomorphic to the dual of the split Cayley hexagon $G_2(2)$. The vertices of the graph Γ are the dual split Cayley hexagons of order $(2,2)$ contained in Δ as a subgeometry, adjacent when they intersect in a subhexagon of order $(2,1)$ (and not adjacent when they intersect in the seven points equal or collinear to a given point). See [289].

Cliques and cocliques

All maximal cliques in Γ have size 4, since the local graphs have maximal cliques of size 3. The chromatic number of Γ is 25. Maximum cocliques in Γ have size 10, reaching the Hoffman bound. The chromatic number of Γ is 10.

Maximal cocliques have sizes 4, 6, 7, 10 and fall into five orbits (there are two orbits of maximal 7-cocliques). The group is transitive on 2-cocliques (nonedges) but has two orbits on 3-cocliques. Below we give for each coclique C how many triples from C belong to these two orbits (called A and B).

<table>
<thead>
<tr>
<th>size</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1575</td>
<td>100800</td>
<td>25200</td>
<td>3600</td>
<td>280</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>18</td>
<td>32</td>
<td>28</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
The maximal cocliques of size 4 are the $100 \cdot 63/4 = 1575$ sets consisting of a vertex and a line in the $GH(2, 2)$ far from that vertex. The maximal cocliques of size 7 in the 2nd orbit are the $2 \cdot 100 \cdot 36/2$ halves of the Heawood graph on the common neighbors of two adjacent vertices.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$3A_6, 2^4$</td>
<td>280</td>
<td>10, 90</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>$(A_4 \times A_5) : 2$</td>
<td>840</td>
<td>40, 60</td>
<td>12</td>
</tr>
<tr>
<td>c</td>
<td>$5^2 : D_{12}$</td>
<td>4032</td>
<td>50, 50</td>
<td>16</td>
</tr>
<tr>
<td>d</td>
<td>$2^{1+4}S_5$</td>
<td>315</td>
<td>20, 80</td>
<td>12</td>
</tr>
</tbody>
</table>

Case (a) corresponds to a coclique of size 10. The union of t such disjoint cocliques (or the complement of the union of $(10 - t)$ disjoint such cocliques) is again a regular set of size $10t$ with $(\text{degree}, \text{nexus}) = (4(t - 1), 4t)$. Since the vertex set can be partitioned into ten cocliques of size 10, this occurs for all t with $1 \leq t \leq 9$.

HJ on 280 points

Γ has 280 10-cocliques, called *decads*, on which HJ acts as a rank 4 group with valencies (subdegrees) $n_0 = 1$, $n_1 = 36$, $n_2 = 108$, $n_3 = 135$. Decads in relations R_1 or R_2 are disjoint. Decads in relation R_3 meet in 2 points. The union of two decads in relation R_1 induces in Γ the extended bipartite double of the Petersen graph, of diameter 3. The union of two decads in relation R_2 induces in Γ a graph of valency 4 and diameter 4.

The intersection matrices of the association scheme are

$$
(p^i_{0j}) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
(p^i_{1j}) = \begin{pmatrix}
0 & 36 & 0 & 0 \\
1 & 8 & 12 & 15 \\
0 & 4 & 12 & 20 \\
0 & 4 & 16 & 16
\end{pmatrix},
$$

and

$$
(p^2_{0j}) = \begin{pmatrix}
0 & 0 & 108 & 0 \\
0 & 12 & 36 & 60 \\
1 & 12 & 40 & 55 \\
0 & 16 & 44 & 48
\end{pmatrix},
(p^2_{1j}) = \begin{pmatrix}
0 & 0 & 0 & 135 \\
0 & 15 & 60 & 60 \\
0 & 20 & 55 & 60 \\
1 & 16 & 48 & 70
\end{pmatrix},
$$

and the eigenmatrices are

$$
P = \begin{pmatrix}
1 & 36 & 108 & 135 \\
1 & -4 & -12 & -15 \\
1 & 8 & -4 & -5 \\
1 & -4 & 8 & -5
\end{pmatrix}
$$

and

$$
Q = \begin{pmatrix}
1 & 63 & 90 & 126 \\
1 & -7 & 20 & -14 \\
1 & -7 & -10 & 22 \\
1 & 7 & -10 & -14
\end{pmatrix},
$$

Let D be the set of decads. Then (D, R_1) is strongly regular with parameters $(v, k, \lambda, \mu) = (280, 36, 8, 4)$ and spectrum $36^1 8^{90} (-4)^{189}$.

And (D, R_3) is strongly regular with parameters $(v, k, \lambda, \mu) = (280, 135, 70, 60)$ and spectrum $135^1 15^{63} (-5)^{216}$.
Both graphs have full group $HJ.2$, acting rank 4, with point stabilizer $3.A_6.2^2$. The former graph satisfies the 4-vertex condition. Its μ-graphs are 4-cycles. Each edge is contained in a unique K_4. The latter graph belongs to a regular two-graph. It has a descendant with parameters $(v, k, \lambda, \mu) = (279, 150, 85, 75)$. See also [29], [457].

Partitions into decades

$V\Gamma$ has $1008 + 12096$ partitions into 10 decads, falling into two orbits. Let us call those in the orbit of size 1008 *nice*, the others *ugly*. The stabilizer of a nice partition is $(A_5 \times D_{10}).2$, transitive on the 10 vertices, with orbit sizes $10 + 120 + 150$ on the 280 decads. The stabilizer of an ugly partition is $5^2 : 4$, transitive on the 100 vertices, with orbit sizes $10 + 10 + 10 + 50 + 50 + 50 + 100$ on the 280 decads. It stabilizes three ugly partitions, and the union of such a triple has stabilizer $5^2 : (4 \times S_3)$, transitive on the 100 vertices, with orbit sizes $30 + 100 + 150$ on the 280 decads. There are 2016 such triples, forming a single orbit.

Fix a partition Π of $V\Gamma$ into ten decads, and construct a new graph Δ by turning the elements of Π into cliques. Then Δ is strongly regular with parameters $(v, k, \lambda, \mu) = (100, 45, 20, 20)$ and spectrum $45^1 5^{45} (-5)^{54}$.

The two choices for Π yield nonisomorphic graphs. See also [29] and [471].

The adjacency matrix for these graphs is the point-block incidence matrix for a square 2-(100,45,20) design.

Cayley graph

We saw that $HJ.2$ has a (nonabelian) subgroup $5^2 : 4$ of order 100 that acts regularly on the vertices of Γ. Thus, Γ is a Cayley graph.

Splits

$V\Gamma$ has splits into two halves, where each half is in three different ways the union of five decads. There are 2016 of these splits, forming a single orbit. The stabilizer of one is $5^2 : (4 \times S_3)$, transitive on the 100 vertices.

The Jørgensen-Klin graph

Jørgensen & Klin [471] constructed a strongly regular graph with parameters $(v, k, \lambda, \mu) = (100, 44, 18, 20)$ and spectrum $44^1 4^{55} (-6)^{44}$.
Graphs with these parameters can be constructed as follows. Start with a 50 + 50 split \(\{ S, T \} \) of \(V \), and refine it to a partition \(\Pi \) of \(V \) into ten decades. Construct a strongly regular graph \(\Delta \) with parameters \((100, 45, 20, 20)\) as above, by turning the elements of \(\Pi \) into cliques. Next, switch with respect to \(S \), which induces a regular subgraph of degree 25 in \(\Delta \). The result is a strongly regular graph with parameters \((100, 55, 30, 30)\). The complementary graph has parameters \((100, 44, 18, 20)\).

10.33 The 105 flags of \(\text{PG}(2,4) \)

There is a unique strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (105, 32, 4, 12)\). Its spectrum is \(32 1^2 84 (−10)^{20} \). Construction is due to Goethals & Seidel [355], uniqueness to Coolsaet [221]. The full group is \(\text{Aut} \, L_3(4) \) acting rank 4 with orbit sizes \(1 + 32 + (8 + 64) \).

Construction

Take the 105 point-line flags of \(\text{PG}(2,4) \), and let \((p, L) \sim (q, M) \) when \(p \neq q \), \(L \neq M \) and \(p \) on \(M \) or \(q \) on \(L \). This is the distance-2 graph of the unique \(\text{GH}(4,1) \).

This is the second constituent of the second constituent of the McLaughlin graph, see §10.48.

Cliques and cocliques

The graph is locally bipartite, so maximal cliques have size 3. The chromatic number of \(\Gamma \) is 35. Maximal cocliques have sizes 5, 8, 9, 11, 14, 20. The chromatic number of \(\Gamma \) is 6.

There is a unique orbit (of size 42) of cocliques of size 20. An example is the collection of flags \((q, M) \) with \(q \) on a fixed line \(L \), and \(M \neq L \). There is a unique orbit (of size 42) of maximal cocliques of size 5. An example is the collection of flags \((p, L) \) with \(p \) on a fixed line \(L \).

Regular sets

Examples of regular sets in \(\Gamma \) are obtained from subgroups \(H \) of \(G = \text{Aut} \, \Gamma \) with two orbits on the vertex set. We give degree \(d \) and nexus \(e \) for the smallest orbit.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(H)</th>
<th>(\text{index})</th>
<th>(\text{orbitlengths})</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_6 \times \mathbb{Z}_2 \times \mathbb{Z}_2</td>
<td>168</td>
<td>45, 60</td>
<td>8</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>7.6 \times S_3</td>
<td>960</td>
<td>42, 63</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

Case (a) is the set of flags of \(\text{PG}(2,4) \) whose point does not belong to a fixed hyperoval and whose line intersects the same hyperoval in exactly two points. The induced graph is the distance 2 graph of the unique \(\text{GO}(2,1) \).

For case (b), consider a Singer cycle \(g \) (an automorphism of \(\text{PG}(2,4) \) of order 21, acting cyclically on the points and lines). Then \(g^4 \) has three orbits,
partitioning the point set of $\text{PG}(2,4)$ into three Fano planes. Each line L hits one of these Fano planes, say π_L, in 3 points (and the other two in a single point). The flag (P, L) belongs to the orbit of size 63 when P lies in $L \cap \pi_L$.

There are no further examples of regular sets with $d - e = s$.

Triple cover

There is a unique distance-regular (but not distance-transitive) graph with intersection array $\{32, 27, 8, 1; 1, 4, 27, 32\}$, an antipodal 3-cover of Γ. It was constructed in Soicher [664], and uniqueness is due to Soicher [665].

10.34 The $O^-_6(3)$ graph on 112 vertices

There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (112, 30, 2, 10)$. Its spectrum is $30^1 \cdot 2^{20} \cdot (-10)^{21}$. The full group of automorphisms is $U_4(3).D_8$ (of order $2^{10} \cdot 3^6 \cdot 5 \cdot 7$) acting rank 3 with point stabilizer $3^1: ((2 \times A_6).2^2)$.

Construction

Let $V = F_3^6$, provided with a nondegenerate quadratic form of non-maximal Witt index. The graph Γ is the graph on the points of the corresponding elliptic quadric in PV, adjacent when collinear, i.e., when orthogonal. This graph is the collinearity graph of a generalized quadrangle $\text{GQ}(3, 9)$. The group is the group $\text{PGO}^-_6(3)$.

Uniqueness

Cameron, Goethals & Seidel [178] showed that any strongly regular graph with the parameters of Γ must be the collinearity graph of a $\text{GQ}(3, 9)$. Dixmier & Zara [293, 294] showed the uniqueness of the generalized quadrangle with parameters $\text{GQ}(3, 9)$.

Hemisystems, Gewirtz subgraphs and splits

A hemisystem of points in $\text{GQ}(3, 9)$ is a subset of the point set that meets every line in half of its points, i.e., in 2 points. Segre [640] found that there are 648 hemisystems, 324 complementary pairs, forming a single orbit. The hemisystems are precisely the Gewirtz subgraphs.

A fixed hemisystem meets any hemisystem in 0, 16, 20, 24, 28, 32, 36, 40 or 56 points (with frequencies 1, 42, 56, 105, 240, 105, 56, 42, 1, respectively). Meeting in 20, 32 or 56 points is an equivalence relation with four equivalence classes ($O^-_6(3)$ orbits).
The graph Γ is the first subconstituent of the McLaughlin graph Λ (§10.61). The full automorphism group of Γ is four times as large as the vertex stabilizer in Λ because only hemisystems of a single equivalence class occur as μ-graphs in Λ.

Cocliques

Maximal cocliques have sizes 7, 10, 11, 12, 13, 16. We give the counts. In case there is just a single orbit of m-cocliques, we give the stabilizer S and the orbits of the stabilizer on that m-coclique.

<table>
<thead>
<tr>
<th>size</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>5184</td>
<td>766584</td>
<td>3447360</td>
<td>816480</td>
<td>181440</td>
<td>2268</td>
</tr>
<tr>
<td>S</td>
<td>S_7</td>
<td>$2^2 \times D_8$</td>
<td>$S_3 \times S_4$</td>
<td>$2^4 : S_6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orbits</td>
<td>tra</td>
<td>4^3</td>
<td>$1 + 12$</td>
<td>tra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The maximal 7-cocliques form a single orbit with stabilizer S_7. They can be seen by viewing the orthogonal geometry as elliptic hyperplane in the $O_7^-(3)$ geometry. That latter geometry can be described using the form $\sum_{i=1}^7 X_i^2$, and the point 1 is elliptic. In Γ^- we see $112 = 7 + 35 + 70$ points (7: 11111110; 35: 11110000; 70: 1112220), where the 7-set is a maximal coclique and the 35-set induces the Odd graph O_3, the unique distance-regular graph with intersection array $\{4, 3, 3; 1, 1, 2\}$.

The maximal 16-cocliques form a single orbit with stabilizer $2^4 : S_6$. They can be seen by choosing the quadratic form to be $Q(x) = \sum_{i=1}^6 X_i^2$. The set of 32 isotropic points without zero coordinate induces the unique distance-regular graph with intersection array $\{10, 9, 4; 1, 6, 10\}$, the distance-3 graph of the folded 6-cube. This graph is bipartite and the two parts of its bipartition are 16-cocliques.

Cliques and chromatic number

The maximal cliques are the lines of $GQ(3,9)$ and have size 4. The chromatic number of Γ is 8. That of Γ^- is 28. (That is, $GQ(3,9)$ has spreads.)

Regular sets

Easy examples of regular sets are arbitrary unions of pairwise disjoint lines of $GQ(3,9)$ (and since there exist spreads this yields regular sets of size 4t with (degree, nexus)$= (t + 2, t)$ for $0 < t < 28$). Further (transitive) examples of regular sets in Γ are obtained from subgroups H of $G = Aut \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

a	$L_3(4)_2$	648	56, 56	10, 20
b	$3^{1+4} \cdot 2^{1+4} \cdot D_{12}$	280	4, 108	3, 1
c	$4(S_4 \times S_4)_2^2$	2835	16, 96	6, 4
d	$7 : (3 \times D_8)$	155520	28, 84	9, 7
e	$2^3 : S_6$	1134	32, 80	10, 8
f	$2 \times U_3(2)_2$	252	40, 72	12, 10
g	$4^2(2 \times S_4)_2$	8505	48, 64	14, 12
h	$2 \times L_3(2)_2$	38880	56, 56	16, 14

Case (a) corresponds to a hemisystem of points of $GQ(3,9)$.
Case (b) corresponds to a single line of $GQ(3, 9)$.

Case (c) corresponds to a 4×4 grid, also the union of four disjoint lines.

Case (f) corresponds to a sub-$GQ(3, 3)$ of $GQ(3, 9)$ (which does not correspond to a union of disjoint lines since this subquadrangle does not admit spreads).

Case (g): a Hermitian spread of $GQ(3, 9)$ can be structured as a linear space by defining blocks as the reguli of 4×4 grid. This linear space is then isomorphic to the unital consisting of the isotropic points of the $U_3(3)$ geometry, where blocks are the intersections with secant lines in the corresponding projective plane $PG(2, 9)$. A Hermitian base in $PG(3, 9)$ defines three secants which contain in total twelve points of the unital. These correspond to twelve disjoint lines of $GQ(3, 9)$ (as part of the Hermitian spread). Their union gives the 48 points of the smallest orbit of case (g).

There are no further examples of regular sets with $d - e = s$.

Dual generalized quadrangle

\[\begin{array}{cccccc}
1 & 36 & 1 & 36 & 27 & 4 \\
8 & & 32 & & & \\
\end{array} \]

\[v = 280 \]

The collinearity graph of the dual generalized quadrangle $GQ(9, 3)$ is the unique rank 3 strongly regular with parameters $(v, k, \lambda, \mu) = (280, 36, 8, 4)$. Its spectrum is $36^1 \ 8^{90} \ (-4)^{139}$. The full group of automorphisms is $U_4(3), D_4$ acting rank 3 with point stabilizer $3_4^{-1}+4, 2_4^{-1}+4, D_{12}$. This graph Δ is not uniquely determined by its parameters alone, we saw a graph with the same parameters and full group HJ_2, acting rank 4.

The maximal cliques have size 10 and form a single orbit, they are the lines of the generalized quadrangle. The largest cocliques have size 28 and are the ovoids. In Corollary 2.7.4 we saw that $\chi(\Delta) = 10$.

Examples of regular sets in Δ are obtained from subgroups H of $G = Aut \Delta$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index orbitlengths</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$U_3(3) : D_8$</td>
<td>540 28, 252</td>
<td>0 4</td>
</tr>
<tr>
<td>b</td>
<td>$3^4 : (2 \times A_6), 2^2$</td>
<td>112 10, 270</td>
<td>9 1</td>
</tr>
<tr>
<td>c</td>
<td>$2 \times O_5(3), 2$</td>
<td>126 40, 240</td>
<td>12 4</td>
</tr>
<tr>
<td>d</td>
<td>S_7</td>
<td>1296 70, 210</td>
<td>15 7</td>
</tr>
<tr>
<td>e</td>
<td>$2^4 : A_6 : 2^2$</td>
<td>567 120, 160</td>
<td>20 12</td>
</tr>
</tbody>
</table>

Case (a) corresponds to a Hermitian ovoid of $GQ(9, 3)$ (the Hermitian spread of $GQ(3, 9)$ mentioned in case (g) for Γ).

Case (b) corresponds to a single line of $GQ(9, 3)$.

Case (c) corresponds to a subquadrangle $GQ(3, 3)$ of $GQ(9, 3)$.

Case (d) corresponds to a maximal coclique of size 7 in Γ and hence to the union of seven pairwise disjoint lines of $GQ(9, 3)$.

Case (e) corresponds to a maximal coclique of size 16 in Γ and hence to the (complement of the) union of sixteen pairwise disjoint lines of $GQ(9, 3)$.

In general, the (complement of the) union of pairwise disjoint lines is always a regular set of size $10t$, for some $t \in \{1, 2, \ldots, 27\}$, and (degree, nexus) = $(t + 8, t)$.
There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (117, 36, 15, 9)$. Its spectrum is $36^4 \cdot 2^{20} (-3)^{90}$. The full group of automorphisms is $\PGO_6^+(3) = \Le_4(3) : 2$ with point stabilizer $2 \times \Omega_5(3) : 2$.

Construction

This is the graph on one orbit of nonisotropic points in the $\Omega_6^+(3)$ geometry, adjacent when orthogonal, i.e., when joined by an elliptic line, cf. §3.1.3. This is also the graph on the antiflags of $\PG(2, 3)$, two antiflags (x, L) and (y, M) adjacent if either $x \in M$ and $y \in L$, or $\{x, y\} \cap (L \cup M) = \emptyset$, $L \neq M$, and $L \cap M \notin xy$.

Local graph

The local graph is $NO_6^+(2)$, strongly regular with parameters $(v, k, \lambda, \mu) = (36, 15, 6, 6)$, see §10.15. This is the graph on the orbit of nonisotropic points in the $\Omega_5(3)$ geometry that have perps that are elliptic hyperplanes, adjacent when orthogonal, cf. §3.1.4. Its full automorphism group is $\Omega_5(3) : 2$, acting rank 3 with point stabilizer $2 \times S_6$. The graph Γ is uniquely determined by its local graph (HALL & SHULT [395], Theorem 3).

Cliques, cocliques and chromatic number

The maximal cliques in Γ have size 5 and form a single orbit. They have stabilizer $2 \times (2^4 : S_5)$. For the quadratic form $q(x) = x_1x_2 + x_3^2 + x_4^2 + x_5^2 + x_6^2$, a 5-clique is given by $\{e_1 + e_2, e_3, e_4, e_5, e_6\}$.

Maximal cocliques have sizes 5, 6, 7 and 9. There are two orbits of 9-cocliques, reaching the Hoffman bound. One type is that of the sets $C(L)$ of vertices contained in L^-, where L is a totally isotropic line. See §3.1.3.

Γ has chromatic number 13. A partition of the vertex set into 13 sets $C(L)$ is obtained by taking the 13 lines L in a totally isotropic plane.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \Aut \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$3^{1+4} : (254 \times 2)$</td>
<td>520</td>
<td>9, 108</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>$3^4 \cdot 2(A_4 \times A_4), 2^2$</td>
<td>130</td>
<td>36, 81</td>
<td>9</td>
</tr>
<tr>
<td>c</td>
<td>$2 \times (\Omega_5(3) : 2)$</td>
<td>117</td>
<td>45, 72</td>
<td>12</td>
</tr>
<tr>
<td>d</td>
<td>$A_6, 2^2$</td>
<td>8424</td>
<td>45, 72</td>
<td>12</td>
</tr>
</tbody>
</table>

Case (a) is that of the 9-cocliques of type $C(L)$ where L is a totally isotropic line.
In case (b) the partition is induced by an isotropic point z. (For 81 vertices x the line xz is hyperbolic, for 36 it is a tangent.)

In case (c) the partition is induced by a nonisotropic point of the other kind.

In case (d) the partition can be obtained by viewing $V = \mathbb{F}_9^3$ as \mathbb{F}_3^9 and picking the quadratic form $\text{tr} \ q(x)$ on V, where $q(x)$ is a nondegenerate quadratic form on \mathbb{F}_3^9 that takes a nonsquare value for the 36 interior points of the corresponding conic in $\text{PG}(2, 9)$. The 117 points with $\text{tr} q(x) = 1$ split into 72 with $q(x)$ a square and 45 with $q(x)$ a nonsquare.

There are no regular sets with $d - e = r$.

10.36 The $O^-_8(2)$ graph on 119 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (119, 54, 21, 27)$. Its spectrum is $54^1 3^8 4^2 (-9)^34$. The full group of automorphisms is $O^-_8(2) : 2$ acting rank 3 with point stabilizer $2^6 : O^-_6(2) : 2$.

Cliques and cocliques

Maximal cliques have size 7 and form a single orbit. They are the totally isotropic subspaces. Maximal cocliques have sizes 5 and 7, a single orbit each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$L_3(16) : 4$</td>
<td>24192</td>
<td>51, 68</td>
<td>18</td>
</tr>
<tr>
<td>b</td>
<td>$[2^9] : (S_3 \times L_3(2))$</td>
<td>765</td>
<td>7, 112</td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>$S_8 \times S_8$</td>
<td>1632</td>
<td>35, 84</td>
<td>18</td>
</tr>
<tr>
<td>d</td>
<td>$2 \times O_7(2)$</td>
<td>136</td>
<td>56, 63</td>
<td>27</td>
</tr>
</tbody>
</table>

10.37 The $L_3(4).2^2$ graph on 120 vertices

There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (120, 42, 8, 18)$. Its spectrum is $42^1 2^7 9^2 (-12)^{20}$. The full group of automorphisms is $L(3, 4).2^2$ acting rank 4, with point stabilizer $2 \times (L(3, 2) : 2)$. Existence is due to Goethals & Seidel [354]. Uniqueness is due to Degraer & Coolsaet [274].

Maximum cliques have size 3. Maximum cocliques have size 16. The graph and its complement have chromatic numbers $\chi(\Gamma) = 8$ and $\chi(\overline{\Gamma}) = 40$.

10.38. (120, 51, 18, 24)

Construction

Take the 120 heptads in $S(4, 7, 23)$ that miss two given symbols, adjacent when they meet in a single point. (See §8.5.4D.) This graph is an induced subgraph of the M_{22} graph on 176 vertices (§10.51).

Equivalently, look at the Fano subplanes of $\text{PG}(2, 4)$. The number of common points of two Fano subplanes $(0, 1, 2, 3, 4$ or 7) equals the number of common lines. Having an odd number of points in common is an equivalence relation with three classes of size 120. Our graph is the graph on the Fano subplanes in one class, adjacent when they have a single point (or, equivalently, a single line) in common. We see that the group of the graph is twice that what is inherited from M_{22} (namely $\text{PΣL}_3(4)$), since also a polarity of $\text{PG}(2, 4)$ acts.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^4 : S_5$</td>
<td>42</td>
<td>40, 80</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>A_6</td>
<td>224</td>
<td>60, 60</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>$A_6.2^2$</td>
<td>56</td>
<td>30, 90</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

Case (a) is the split determined by one of the 21 symbols (points of $\text{PG}(2, 4)$) or one of the 21 lines of $\text{PG}(2, 4)$. The graph induced on the 40-orbit is the complement of a 16-coclique in the Gewirtz graph.

Case (b) is the split determined by the intersection size (1 or 3) with one of the 112 heptads that contains precisely one of the two given symbols. This graph is subgraph of the M_{22} graph on 176 vertices in two different ways, and in each such embedding the 56 exterior vertices determine such a split.

There are no further regular sets with $d - e = s$.

In case (c) the 30 vertices induce the bipartite nonincidence graph of points and lines of $GQ(2, 2)$.

10.38 $NO_5^*(4)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (120, 51, 18, 24)$. Its spectrum is $51^1 ~ 3^5^5 ~ (-9)^3^4$. The full group of automorphisms is $O_5(4) : 2$ acting rank 3, with point stabilizer $L_2(16) : 4$.

This is $NO_5^*(4)$, cf. §3.1.4. Maximal cliques have size 4 (2 orbits). Maximal cocliques have sizes 6 (3 orbits), 7 or 8 (1 orbit each).

Construction in $PG(2, 16)$

The group $\text{PΣL}_2(16)$ acts on the 120 exterior lines of a hyperoval in $\text{PG}(2, 16)$, giving a 3-class association scheme with valencies 1, 17, 34, 68. Merging relations R_1 and R_2 yields the graph Γ (which has a much larger group).
Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2^9 : (3 \times S_5)$</td>
<td>85</td>
<td>24, 96</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>b</td>
<td>$2^6 : [2^2 : 3^2]$</td>
<td>850</td>
<td>48, 72</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>c</td>
<td>$A_5 \times S_5$</td>
<td>272</td>
<td>60, 60</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>d</td>
<td>$2 \times A_5$</td>
<td>16320</td>
<td>60, 60</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>e</td>
<td>$5^2 : ((4 \times 2) : 2)$</td>
<td>4896</td>
<td>20, 100</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>f</td>
<td>$2 \times ((2^4 : 5) : 4) : 2$</td>
<td>1530</td>
<td>40, 80</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>g</td>
<td>$(A_5 \times A_5) : 2$</td>
<td>272</td>
<td>60, 60</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>h</td>
<td>S_6</td>
<td>2720</td>
<td>60, 60</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>i</td>
<td>$2^2 \times A_5$</td>
<td>8160</td>
<td>60, 60</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>j</td>
<td>$(5 : 4) \times S_3$</td>
<td>16320</td>
<td>60, 60</td>
<td>27</td>
<td>24</td>
</tr>
</tbody>
</table>

10.39 \(NO_8^+(2) \)

There is a unique rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) = (120, 56, 28, 24)\). Its spectrum is $56^1 \ 8^{35} \ (-4)^{84}$. The full group of automorphisms is $O_8^+(2) : 2$ acting rank 3, with point stabilizer $Sp(6,2) \times 2$.

Construction: nonisotropic points in the $O_8^+(2)$ geometry

The $O_8^+(2)$ geometry has 255 projective points, 135 isotropic, 120 nonisotropic. Γ is the graph on the nonisotropic points, adjacent when not orthogonal, that is, when the connecting line is an elliptic line. (Cf. §3.1.2.)

Construction: split Cayley hexagons on $O_7(2)$

The graph Γ is the graph on the 120 standard representations of the split Cayley hexagon $G_2(2)$ on $O_7(2)$, adjacent when having exactly nine lines in common (the nine lines of a Hermitian spread in both). (Cf. §4.8.) This provides a rank 3 representation of Γ with automorphism group $Sp_6(2)$ and point stabilizer $G_2(2) \cong U_3(3) : 2$.

Construction: the E_8 root system

Let Φ be the root system of type E_8. It has 240 vectors, and spans 120 lines in \mathbb{R}^8. The graph Γ is the graph on these 120 lines, where lines are adjacent when not orthogonal. The root system graph of E_8 (with vertex set Φ, where two roots are adjacent when their angle is $\pi/4$) is a double cover of Γ.
Construction: from the local graph

The local graph of Γ is the Gosset graph (see §10.10) with 28 extra edges joining vertices at original distance 3. The graph induced on the vertices at distance 2 from a fixed vertex in Γ is a quotient of the $E_{7,1}(1)$ graph. This yields the following combinatorial description of Γ.

Label a vertex ∞ and consider three copies of an 8-set, say $W = \{1, 2, \ldots, 8\}$, $W' = \{1', 2', \ldots, 8'\}$ and $W'' = \{1'', 2'', \ldots, 8''\}$. Then the other 119 vertices are the unordered pairs from these three sets together with the $4/4$ splits of W''. Two pairs from the same set are adjacent if they share exactly one element. Two $4/4$ splits are adjacent if the individual subsets intersect in an odd number of elements. Let $a, b, c, d \in \{1, 2, \ldots, 8\}$. Then the pairs $\{a, b\}$ and $\{c', d'\}$ are adjacent if $|\{a, b\} \cap \{c, d\}| \in \{0, 2\}$, while $\{a, b\}$ or $\{a', b'\}$ are adjacent to $\{c'', d''\}$ if $|\{a, b\} \cap \{c, d\}| = 1$. Further, $\{a, b\}$ or $\{a', b'\}$ are adjacent to a $4/4$ splitting if a and b are contained in the same subset of the splitting, while $\{c'', d''\}$ is adjacent to a $4/4$ split if c and d are in distinct subsets of the splitting. Finally, ∞ is adjacent to all pairs of W and W'.

In this construction, $W \cup W''$ is a regular set of size 56, with degree 24 and nexus 28, see case (h) below under Regular sets.

The above construction is a direct consequence of the following construction of the root system graph of E_8.

The Gosset graph (see §10.10) contains 126 $K_{6 \times 2}$ subgraphs. Using the construction in §10.10, 56 of these subgraphs are given by the pairs containing a fixed element $a \in \{1, 2, \ldots, 8\}$, but not a fixed element $b \in \{1, 2, \ldots, 8\} \setminus \{a\}$, or containing the element b' and not a', and the 70 others are given by the pairs of a 4-set $\{a, b, c, d\} \subset \{1, 2, \ldots, 8\}$ together with the pairs of the 4-set $\{1', 2', \ldots, 8'\} \setminus \{a', b', c', d'\}$. Calling two $K_{6 \times 2}$ subgraphs adjacent if they intersect in a 6-clique, we obtain a graph with 126 vertices, isomorphic to the $E_{7,1}(1)$ graph.

Then the root system graph $\Gamma(E_8)$ of E_8 has the following combinatorial construction: Let Γ'_1 and Γ'_2 be two copies of the Gosset graph Γ' (where we denote the vertices of Γ'_1 and Γ'_2 corresponding to the vertex $v \in \Gamma''$ by v_1 and v_2, respectively). Let Γ''' be the $E_{7,1}(1)$ graph with vertices identified with $K_{6 \times 2}$ subgraphs of Γ'. Let ∞_1 and ∞_2 be two 1-vertex graphs. Then $\Gamma(E_8)$ is the union of these two 1-vertex graphs, the copies Γ'_1 and Γ'_2 of the Gosset graph, and the $E_{7,1}(1)$ graph Γ'''. For the extra edges: ∞_1 is adjacent to every vertex of $\Gamma'_i, i = 1, 2$; every vertex v_1 of Γ'_i is adjacent to the corresponding vertex v_2 of Γ'_2; a vertex v_1 of Γ'_i is adjacent to a vertex v'' of Γ''' if v is a vertex of v'' (recall that v'' is a subgraph of Γ').

Cliquies, cocliques and chromatic number

Maximal cliques have sizes 3, 7, 8, a single orbit of each type. In terms of E_8, those of size 3 are the triples of coplanar lines, while the 7-cliques and 8-cliques are the objects of types 3 and 2 in the E_8 geometry. (Cf. [123], Theorem 10.2.10.) In the E_8 geometry, geodesic hexagons (i.e., hexagons with the property that the distance between its points is the same whether measured in the hexagon
or the geometry) correspond to maximal cliques of size 3 (after identification of opposite points in the hexagon). The objects of type 1 are the $K_{7 \times 2}$ subgraphs. Each maximal K_7 lies in a unique $K_1 + K_7$ and is contained in precisely two $K_{7 \times 2}$ subgraphs. Nonmaximal cliques have sizes 0–7, a single orbit of each size.

In terms of $O_8^+(2)$, the maximal cliques of size 3 are the elliptic lines.

In F_4, consider the quadratic form $Q(x) = \sum_{i<j} x_i x_j$. We have $Q(x) = (\text{wt}(x))^2$ and $B(x,y) = \text{wt}(x) \text{wt}(y) - \sum x_i y_i$. The nonisotropic points are the $28 + 56 + 28 + 8 = 120$ points x with $\text{wt}(x) \equiv 2, 3 \pmod{4}$, and the 8 points of weight 7 form an 8-clique.

The maximal cocliques have size 8, reaching the Hoffman bound. They form a single orbit. The chromatic number is 15.

Let π be a totally isotropic plane. Then π^\perp / π is a hyperbolic line. Its two isotropic points correspond to the two maximal isotropic subspaces on π, one of each kind. The third point corresponds to a 4-space of which the 8 nonisotropic points form an 8-coclique. The 15 planes in a totally isotropic 4-space yield 15 pairwise disjoint 8-cocliques.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$[2^{10}] : L_3(2)$</td>
<td>2025</td>
<td>8, 112</td>
<td>0, 4</td>
</tr>
<tr>
<td>b</td>
<td>$S_5 \wr S_4$</td>
<td>11200</td>
<td>12, 108</td>
<td>2, 6</td>
</tr>
<tr>
<td>c</td>
<td>$S_5 \wr 2$</td>
<td>12096</td>
<td>20, 100</td>
<td>6, 10</td>
</tr>
<tr>
<td>d</td>
<td>$[2^{10}] : (S_4 \times S_3 \times S_3)$</td>
<td>1575</td>
<td>24, 96</td>
<td>8, 12</td>
</tr>
<tr>
<td>e</td>
<td>S_9</td>
<td>960</td>
<td>36, 84</td>
<td>14, 18</td>
</tr>
<tr>
<td>f</td>
<td>$(2^5 : A_5) : 2^2$</td>
<td>45360</td>
<td>40, 80</td>
<td>16, 20</td>
</tr>
<tr>
<td>g</td>
<td>$(A_4 \times A_4) : [2^2]$</td>
<td>75600</td>
<td>48, 72</td>
<td>20, 24</td>
</tr>
<tr>
<td>h</td>
<td>$2^6 : S_8$</td>
<td>135</td>
<td>56, 64</td>
<td>24, 28</td>
</tr>
<tr>
<td>i</td>
<td>$S_5 \times S_3$</td>
<td>483840</td>
<td>60, 60</td>
<td>26, 30</td>
</tr>
<tr>
<td>j</td>
<td>$(A_5 \times A_5) : 2$</td>
<td>483840</td>
<td>60, 60</td>
<td>32, 28</td>
</tr>
</tbody>
</table>

Case (a): These are the 8-cocliques, discussed above.
Case (b): In F_4^8, let $q(x) = \text{wt}(x)$. If we represent F_4 by $\{000, 011, 101, 110\}$, then the weight of a single digit is $x_1 x_2 + x_1 x_3 + x_2 x_3$, that is, is a binary quadratic form, and we see that F_4^8 with $q(x)$ is an $O_8^+(2)$ geometry, the orthogonal sum of four elliptic lines. The nonisotropic points are the 12 vectors of weight 1 and the 108 of weight 3. The subgraph induced on the 12-set is $4K_3$.
Case (c): View $V = F_2^8$ as the orthogonal direct sum of two F_2^4 provided with elliptic quadric. The graph induced on the 20 is $2T(5)$.
Case (d): These are the splits induced by the totally isotropic lines: each t.i. line is orthogonal to 24 nonisotropic points. The subgraph induced on the 24-set is $2K_{4,4,4}$.
Case (e): Take the quadratic form $\sum_{i<j} x_i x_j$ on the hyperplane 1^\perp in a 9-dimensional vector space over F_2. The nonisotropic points are the 36 vectors
of weight 2 and the 84 vectors of weight 6. The subgraph induced on the 36-set
is the triangular graph $T(9)$.

Case (f): The subgraph induced on the 40-set here is an antipodal double
cover of $K_{5 \times 4}$ of diameter 3.

Case (h): These are the splits induced by the isotropic points: each isotropic
point is orthogonal to 56 nonisotropic points. The subgraph induced on the 56-set
is the 2-coclique extension of the triangular graph $T(8)$. The subgraph
induced on the 64-set is strongly regular with parameters $(64, 28, 12, 12)$, the
complement of $VO_6^+(2)$ (see §3.3.1).

Case (j): Consider the quadratic form $Q(x) = x_1x_2 + x_3x_4$ on F_4^4. Then $\text{tr} \ Q$
is a nondegenerate hyperbolic quadric on F_2^8. The 135 isotropic points have
$\text{tr} \ Q(x) = 0$, that is, $Q(x) \in \{0, 1\}$ (namely, 75 with $Q(x) = 0$ and 60 with
$Q(x) = 1$). The 120 nonisotropic points have $Q(x) \in \{\omega, \omega^2\}$ and are split into
two 60-sets according to the value of Q.

Cases (i), (j): In case (j) the two halves are interchanged by an automor-
phism, so that the group preserving the split is twice as large. In case (i) the
two halves are nonisomorphic.

Cayley graph

This graph is a Cayley graph for S_5.

Complement

$$
\begin{array}{cccc}
1 & 63 & 1 & 63 \\
30 & 32 & 36 & 56 \\
27 & v = 120
\end{array}
$$

The complementary graph $\overline{\Gamma}$ of the graph described above is a Fischer
graph. It is strongly regular with parameters $(v, k, \lambda, \mu) = (120, 63, 30, 36)$. Its
spectrum is $63^1 \ 3^4^4 \ (-9)^{35}$. Its local graph is the $Sp_6(2)$ graph, see §10.21.

An alternative construction of $\overline{\Gamma}$ is given by considering all projective lines
$PG(1, 8)$ on a 9-set in one of the two A_9-orbits, adjacent when sharing a Sylow
2-subgroup (that is, a translation group). This provides a rank 3 representation
of $\overline{\Gamma}$ (and hence also of Γ) with automorphism group A_9 and point stabilizer
$\text{Aut} \ PG(1, 8) \cong \text{PGL}_2(8)$.

A cospectral rank 4 graph

The distance 1-or-3 graph of the Johnson graph $J(10, 3)$ is a rank 4 strongly
regular graph with parameters $(v, k, \lambda, \mu) = (120, 56, 28, 24)$ and full group of
automorphisms S_{10} with point stabilizer $S_7 \times S_3$. The suborbit sizes are $1 +
21 + 35 + 63$. It is cospectral with the above $NO_8^+(2)$ graph.

10.40 The S_{10} graph on 126 vertices

$$
\begin{array}{cccc}
1 & 25 & 1 & 25 \\
8 & 16 & 4 & 100 \\
21 & v = 126
\end{array}
$$
There is a unique rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) = (126, 25, 8, 4)\). Its spectrum is \(25^1 7^{35} (-3)^{90}\). The full group of automorphisms is \(S_{10}\), with point stabilizer \(S_5 \wr 2\). This graph is locally \(5 \times 5\).

Construction

Take the \(5+5\) splits of a fixed 10-set, adjacent when the common refinement has shape \(4 + 1 + 1 + 4\). Equivalently, take the 4-subsets of a 9-set, adjacent when they meet in 0 or 3 elements. This is the antipodal quotient of the Johnson graph \(J(10, 5)\).

Clique and cocliques

Maximal cliques have size 6 and form a single orbit. They consist of the splits containing a fixed 4-set. Maximal cocliques have sizes 7–12, with unique orbits of maximal cocliques of sizes 7, 8, and 12.

Take the representation of the graph \(\Gamma\) by 4-subsets of a 9-set. A maximal 7-clique is obtained by adjoining a fixed element to the 7 lines of the Fano plane.

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut } \Gamma\) with two orbits on the vertex set. We give degree \(d\) and nexus \(e\) for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(M_{10}:2)</td>
<td>2520</td>
<td>36, 90</td>
<td>5</td>
</tr>
<tr>
<td>(b)</td>
<td>(3^2 : Q_8 : 3 : 2)</td>
<td>8400</td>
<td>54, 72</td>
<td>9</td>
</tr>
<tr>
<td>(c)</td>
<td>(S_7 \times S_3)</td>
<td>120</td>
<td>21, 105</td>
<td>10</td>
</tr>
<tr>
<td>(d)</td>
<td>(S_8 \times S_2)</td>
<td>45</td>
<td>56, 70</td>
<td>15</td>
</tr>
</tbody>
</table>

10.41 \(NO_6^−(3)\)

There is a unique rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) = (126, 45, 12, 18)\). Its spectrum is \(45^1 3^{90} (-9)^{35}\). The full group of automorphisms is \(U_4(3):2^{12}_2\) acting rank 3 with point stabilizer \(2 \times (O_5(3):2)\).

This is the graph \(NO_6^−(3)\), the graph on one class of nonisotropic points in the \(O_6^−(3)\) geometry, adjacent when orthogonal.

The maximal cliques all have size 6 and form a single orbit. (They are the orthonormal bases.) The vertex set has a partition into maximal cliques, so that \(\chi(\overline{\Gamma}) = 21\). The maximal cocliques have sizes 9 (two orbits) or 10, 11, 15 (a single orbit each).

The local graph is strongly regular with parameters \((v, k, \lambda, \mu) = (45, 12, 3, 3)\). It is the collinearity graph of the unique \(GQ(4, 2)\).

This graph \(\Gamma\) is the local graph of \(NO_7^−(3)\), cf. §10.66, and that latter graph is the unique connected locally \(\Gamma\) graph (PASECHNIK [599]).

This graph is the \(\mu\)-graph of the \(F_{122}\) graph, cf. §10.90.
Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2^5 : S_6$</td>
<td>567</td>
<td>30, 96</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>$3^{1+} 4S_4 : 2$</td>
<td>280</td>
<td>18, 108</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>S_7</td>
<td>2592</td>
<td>21, 105</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>d</td>
<td>S_7</td>
<td>2592</td>
<td>21, 105</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>e</td>
<td>$2^5 : S_6$</td>
<td>567</td>
<td>30, 96</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>f</td>
<td>$2 \times (O_5(3) : 2)$</td>
<td>126</td>
<td>36, 90</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>g</td>
<td>$A_6 : 2^2$</td>
<td>9072</td>
<td>36, 90</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>h</td>
<td>$2 \times (L_3(2) : 2)$</td>
<td>19440</td>
<td>42, 84</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>i</td>
<td>$3^4 : (2 \times S_6)$</td>
<td>112</td>
<td>45, 81</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

In case (c) the graph on the small orbit is the 2-clique extension of the collinearity graph of $GQ(2,2)$.

In case (i) the graph on the small orbit is the 3-coclique extension of the collinearity graph of $GQ(2,2)$. The maximal cocliques of size 15 arise as the 3-coclique extension of an ovoid in $GQ(2,2)$. The graph induced on the large orbit is the strongly regular graph $VNO_7^7(3)$ with parameters $(v, k, \lambda, \mu) = (81, 30, 9, 12)$ (cf. §3.3.2). It is the collinearity graph of a $pg(6,6,2)$, cf. §8.6.1.

Triple cover

This graph has a distance-transitive antipodal 3-cover with diagram

constructed by Blokhuis & Brouwer (cf. [123], p. 399). JURIŠIĆ & KOOLEN [473] showed that this cover is the unique distance-regular graph with these parameters.

10.42 The Goethals graph on 126 vertices

There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (126, 50, 13, 24)$. Its spectrum is $50^1 \ 2^{105} \ (-13)^{20}$. The full group of automorphisms is S_7 acting rank 7, with point stabilizer $2 \times 5:4$. Existence is due to Goethals (cf. [380]). Uniqueness is due to COOLSAET & DEGRAER [222].

Maximum cliques have size 4. Maximum cocliques have size 12.

Construction

As we saw above (§10.19), the graph on the edges of the Hoffman-Singleton graph H, adjacent when they have distance 2 in the line graph $L(H)$, is strongly
regular with parameters \((v, k, \lambda, \mu) = (175, 72, 20, 36)\). Take for \(\Gamma\) the induced subgraph of this latter graph on the set of 126 edges at distance 2 from a fixed vertex of \(H\). For a proof, see [137]. For a construction via switching in the Hermitian 2-graph on 126 points, see [380].

10.43 The \(\Omega_8^+(2)\) graph on 135 vertices

There is a unique rank 3 strongly regular graph with parameters \((v, k, \lambda, \mu) = (135, 70, 37, 35)\). Its spectrum is \(70^1 \, 50^5 \, (−5)^{84}\). The full group of automorphisms is \(\Omega_8^+(2) : 2\) acting rank 3, with point stabilizer \(2^6 : S_8\). This is the hyperbolic orthogonal graph \(\Gamma(\Omega_8^+(2))\).

Construction: isotropic points in the \(\Omega_8^+(2)\) geometry

The \(\Omega_8^+(2)\) geometry has 255 projective points, 135 isotropic, 120 nonisotropic. \(\Gamma\) is the graph on the isotropic points, adjacent when orthogonal.

Cliquets, cocliquets and chromatic number

All maximal cliquets have size 15. They are the maximal totally isotropic subspaces of the geometry. Maximal cocliquets have size 5 or 9, each orbit of each size, with cocliquets stabilized by \(S_5 \times S_5\) and \(S_9\), respectively. The cocliquets of size 9 are the ovoids.

The maximal cocliquets of size 5 arise as follows. Let \(V = V_1 \perp V_2\) where each \(V_i\) is a 4-space with elliptic quadratic form. Then each \(V_i\) has 5 isotropic points, and \(V\) has 135 = 5 + 5 + 25 + 100 isotropic points (of shapes \(0i\) and \(i0\) and \(ij\) and \(mn\), where \(i, j\) denote isotropic points and \(m, n\) nonisotropic points). We see subgraphs \(K_5 \times 5\) and \(5 \times 5\).

The chromatic number of \(\Gamma\) is 9. The chromatic number of \(\Gamma\) lies in 16–18.

The chromatic number of \(\Gamma\) is larger than 15: \(\Gamma\) does not have a partition into 15 ovoids. Indeed, the maximum number of pairwise disjoint ovoids is 12. Every set of 12 pairwise disjoint ovoids leaves a copy of the complement of the Schlafli graph, which has chromatic number 6, so that \(\chi(\Gamma) \leq 18\).

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut}\, \Gamma\) with two orbits on the vertex set. We give degree \(d\) and nexus \(e\) for the smallest orbit.
Case (a): Take the quadratic form $\sum_{i<j} x_i x_j$ on the hyperplane 1^\perp in a 9-dimensional vector space over \mathbb{F}_2. The isotropic points are the 126 vectors of weight 4 and the 9 vectors of weight 8. The 9 vectors of weight 8 form an ovoid in the $O_9^+(2)$ polar space.

Case (b): Consider the geometry as the orthogonal direct sum of an elliptic line and a $O_6^−(2)$ geometry. The 27-set induces $\Gamma(O_6^−(2))$.

Case (c): In \mathbb{F}_4^4, let $q(x) = \text{wt}(x)$. As before, we see that \mathbb{F}_4^4 with $q(x)$ is an $O_8^+(2)$ geometry, the orthogonal sum of four elliptic lines. The isotropic points are the 54 vectors of weight 2 and the 81 of weight 4.

Case (d): These are the splits induced by the nonisotropic points: each nonisotropic point is orthogonal to 63 isotropic points.

Case (e): These are the maximal totally isotropic subspaces.

Case (h): Consider the quadratic form $Q(x) = x_1 x_2 + x_3 x_4$ on \mathbb{F}_4^4. Then $\text{tr} Q$ is a nondegenerate hyperbolic quadric on \mathbb{F}_8^2. The 135 isotropic points have $\text{tr} Q(x) = 0$, that is, $Q(x) \in \{0,1\}$, namely, 75 with $Q(x) = 0$ and 60 with $Q(x) = 1$.

10.44 $NO_8^−(2)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (136,63,30,28)$. Its spectrum is $63^1 \ 7^1 \ (-5)^{84}$. The full group of automorphisms is $O_8^+(2):2$ acting rank 3 with point stabilizer $2 \times O_7^-(2)$.

Maximal cliques have size 8, a single orbit. Maximal cocliques have sizes 3 and 7, a single orbit each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_5 \times A_5$</td>
<td>24192</td>
<td>60, 75</td>
<td>35, 28</td>
</tr>
<tr>
<td>$L_2(16):2$</td>
<td>48384</td>
<td>68, 68</td>
<td>35, 28</td>
</tr>
<tr>
<td>$O_7^-(2)$</td>
<td>2120</td>
<td>63, 72</td>
<td>30, 35</td>
</tr>
<tr>
<td>$2^6:O_5^+(3):2$</td>
<td>119</td>
<td>64, 72</td>
<td>27, 32</td>
</tr>
<tr>
<td>$2^6:A_8$</td>
<td>270</td>
<td>15, 120</td>
<td>14, 7</td>
</tr>
<tr>
<td>$S_6 \times S_3$</td>
<td>80640</td>
<td>45, 90</td>
<td>28, 21</td>
</tr>
<tr>
<td>$S_3 \wr S_4$</td>
<td>11200</td>
<td>54, 81</td>
<td>25, 30</td>
</tr>
<tr>
<td>$O_7^+(2)$</td>
<td>120</td>
<td>63, 72</td>
<td>30, 35</td>
</tr>
<tr>
<td>$S_5 \times S_3$</td>
<td>1071</td>
<td>40, 96</td>
<td>15, 20</td>
</tr>
<tr>
<td>$L_3(2) \times S_3$</td>
<td>765</td>
<td>24, 112</td>
<td>7, 12</td>
</tr>
<tr>
<td>$2^9:(L_3(2) \times S_3)$</td>
<td>2903040</td>
<td>68, 68</td>
<td>29, 34</td>
</tr>
<tr>
<td>$L_2(16):2$</td>
<td>48384</td>
<td>68, 68</td>
<td>35, 28</td>
</tr>
<tr>
<td>$S_9 \times O_9^+(2):2$</td>
<td>1120</td>
<td>27, 108</td>
<td>10, 15</td>
</tr>
<tr>
<td>S_9</td>
<td>960</td>
<td>9, 126</td>
<td>0, 5</td>
</tr>
<tr>
<td>$2^6:O_5^+(3):2$</td>
<td>119</td>
<td>64, 72</td>
<td>27, 32</td>
</tr>
<tr>
<td>$O_7^-(2)$</td>
<td>120</td>
<td>63, 72</td>
<td>30, 35</td>
</tr>
<tr>
<td>$S_5 \wr S_3$</td>
<td>1071</td>
<td>40, 96</td>
<td>15, 20</td>
</tr>
<tr>
<td>$L_3(2) \times S_3$</td>
<td>765</td>
<td>24, 112</td>
<td>7, 12</td>
</tr>
<tr>
<td>$2^9:(L_3(2) \times S_3)$</td>
<td>2903040</td>
<td>68, 68</td>
<td>29, 34</td>
</tr>
<tr>
<td>$O_7^+(2)$</td>
<td>120</td>
<td>63, 72</td>
<td>30, 35</td>
</tr>
<tr>
<td>$S_9 \times O_9^+(2):2$</td>
<td>1120</td>
<td>54, 81</td>
<td>25, 30</td>
</tr>
<tr>
<td>S_9</td>
<td>960</td>
<td>9, 126</td>
<td>0, 5</td>
</tr>
<tr>
<td>$2^6:O_5^+(3):2$</td>
<td>119</td>
<td>64, 72</td>
<td>27, 32</td>
</tr>
<tr>
<td>$O_7^-(2)$</td>
<td>120</td>
<td>63, 72</td>
<td>30, 35</td>
</tr>
<tr>
<td>$S_5 \wr S_3$</td>
<td>1071</td>
<td>40, 96</td>
<td>15, 20</td>
</tr>
<tr>
<td>$L_3(2) \times S_3$</td>
<td>765</td>
<td>24, 112</td>
<td>7, 12</td>
</tr>
<tr>
<td>$2^9:(L_3(2) \times S_3)$</td>
<td>2903040</td>
<td>68, 68</td>
<td>29, 34</td>
</tr>
</tbody>
</table>

10.44. (136, 63, 30, 28) 303
10.45 The $L_3(3)$ graph on 144 vertices

There is a strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (144, 39, 6, 12)$, with full automorphism group $L_3(3):2$, acting rank 6, with point stabilizer $13:6$. Its spectrum is $39 1 39 104 (-9)^{39}$. This graph was discovered by Faradžev, Klin & Muzychuk [315].

Construction — Singer cycles and imaginary triangles

We need 144 objects on which $G = \text{PGL}_3(3)$ acts, and an adjacency relation. One choice for the objects is that of the 144 subgroups of order 13 in $\text{PGL}_3(3)$. The normalizer $N = N_G(C)$ of such a subgroup C has order 39. Acting by conjugation, it has orbits of lengths $11 13 5 39 2$ on the 144 objects, and precisely one of the two orbits of size 39 is suitable as set of neighbors of C.

Let q be the power of a prime, and $r = q^m$. Then \mathbb{F}_q can be regarded as an m-dimensional vector space over \mathbb{F}_q, and multiplication by a constant is a linear transformation. One sees that $\text{PG}(m-1, q)$ admits Singer cycles, linear transformations of order $q^m - 1$ that act regularly on the points and hyperplanes.

Now let $m = 3$, and fix a $\text{PG}(2, q)$ subplane π_0 of the projective plane $\pi = \text{PG}(2, q^3)$. The group $\text{PGL}_3(q)$ has three orbits on the points of π, namely that of the $q^2 + q + 1$ points of π_0, that of the $q(q^2 - 1)(q^2 + q + 1)$ points of $\pi \setminus \pi_0$ on a line of π_0, and that of the $q^3(q^2 - 1)(q - 1)$ remaining points. The field automorphism $x \mapsto x^q$ that fixes π_0 partitions these remaining points into $\frac{q^3(q^2 - 1)(q - 1)}{q^2 - 1}$ triples, known as imaginary triangles. The subgroup of $\text{PGL}_3(q)$ pointwise fixing an imaginary triangle is generated by a Singer cycle.

For $q = 3$, the 144 imaginary triangles can be taken as the vertices of Γ.

Maximal cliques and cocliques

The graph induced on the common neighbors of two adjacent vertices is $2K_1 + 2K_2$. Consequently, the maximal cliques have sizes 3 and 4. Maximal cocliques have sizes 9–16 and 18. There is a single orbit of 9-cocliques and a single orbit of 18-cocliques.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$3^2 : 8$</td>
<td>156</td>
<td>72, 72</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>b</td>
<td>$(3^2 : 3) : D_8$</td>
<td>52</td>
<td>36, 108</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>c</td>
<td>$(3^2 : Q_8) : 3$</td>
<td>52</td>
<td>72, 72</td>
<td>21</td>
<td>18</td>
</tr>
</tbody>
</table>

This graph is a Cayley graph: the (nonabelian) group $AFL(1, 9)$ of order 144 acts regularly on Γ.
10.46 Three $M_{12}.2$ graphs on 144 vertices

The *Leonard graph* is the unique distance-regular graph with intersection array \(\{12, 11, 10, 7, 2, 5, 12\} \). Existence is due to Leonard [515], uniqueness to Brouwer [115]. The full group of automorphisms is $M_{12}.2$ and has two orbits on the vertex set. The two halved graphs are nonisomorphic strongly regular graphs with parameters \((v, k, \lambda, \mu) = (144, 66, 30, 30)\), and full group $M_{12}.2$, known as the two halved Leonard graphs.

The group $M_{12}.2$ has two distinct primitive permutation representations on 144 points, both rank 4 with suborbit sizes $1 + 22 + 55 + 66$, and the two graphs of valency 66 are the halved Leonard graphs. For the first of these two representations, also the other two suborbits define strongly regular graphs, and we find graphs with parameters \((v, k, \lambda, \mu) = (144, 22, 10, 2), (144, 55, 22, 20)\). The former is the 12×12 grid, the latter has full group $M_{12}.2$.

For more detail, see [123], §11.4F and [621], pp. 48, 49.

10.47 The $O_5(5)$ graphs on 156 vertices

There are exactly two rank 3 strongly regular graphs with parameters \((v, k, \lambda, \mu) = (156, 30, 4, 6)\). Their spectrum is $30^1 \ 4^{80} \ (-6)^{65}$. Both have full group of automorphisms $O_5(5).2$. The point stabilizers are $5^3: (S_5 \times 4)$ and $5^4: 45_5$.

These two graphs, let us call them Γ and Δ, are the collinearity graphs of the two known generalized quadrangles $GQ(5, 5)$. One is that on the isotropic points, the other, its dual, that on the totally isotropic lines of the $O_5(5)$ geometry, cf. §2.6.1. The latter is isomorphic to the generalized quadrangle on the points of the $Sp_4(5)$ geometry.

Maximal cliques and cocliques

In both graphs, the maximal cliques are the lines (of size 6). In Γ maximal cocliques have sizes $13–20, 22, 24, 26$ (with a single orbit for sizes $19, 20, 24, 26$). Those of size 26 are the ovoids, and any two ovoids meet in 1, 6 or 26 points. The chromatic number is $\chi(\Gamma) = 7$. In Δ maximal cocliques have sizes $6, 11, 12, 14–18$, with a single orbit for size 6.
Regular sets

Examples of regular sets in Γ and Δ are obtained from subgroups H of their automorphism groups with two orbits on the vertex set. We give degree d, nexus e, and i, where n_i is the number of lines meeting the smallest orbit in i points.

For $\Gamma = \Gamma(O_5(5))$:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>line stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$2 \times (O_4(5) : 2)$</td>
<td>300</td>
<td>26, 130</td>
<td>0</td>
<td>6</td>
<td>1^{156}</td>
</tr>
<tr>
<td>b</td>
<td>$5_1^2 \cdot 4S_5$</td>
<td>156</td>
<td>6, 150</td>
<td>5</td>
<td>1</td>
<td>6^1 1^{30} 0^{125}</td>
</tr>
<tr>
<td>c</td>
<td>$2.(A_5 \times A_5)^2$</td>
<td>325</td>
<td>36, 120</td>
<td>10</td>
<td>6</td>
<td>6^{12} 1^{144}</td>
</tr>
</tbody>
</table>

These sets are ovoids, lines, and hyperbolic quadrics, respectively.

For $\Delta = \Gamma(Sp_4(5))$:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>line stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$5^2 : (S_5 \times 4)$</td>
<td>156</td>
<td>6, 150</td>
<td>5</td>
<td>1</td>
<td>6^1 1^{30} 0^{125}</td>
</tr>
<tr>
<td>b</td>
<td>$2.(A_5 \times A_5)^2$</td>
<td>325</td>
<td>12, 144</td>
<td>6</td>
<td>2</td>
<td>2^{36} 0^{120}</td>
</tr>
<tr>
<td>c</td>
<td>$S_5 \times S_3 \times 2$</td>
<td>6500</td>
<td>36, 120</td>
<td>10</td>
<td>6</td>
<td>6^6 2^{30} 0^{60}</td>
</tr>
<tr>
<td>d</td>
<td>S_6</td>
<td>13000</td>
<td>36, 120</td>
<td>10</td>
<td>6</td>
<td>6^6 2^{30} 0^{60}</td>
</tr>
<tr>
<td>e</td>
<td>$2^4 : S_5$</td>
<td>4875</td>
<td>60, 96</td>
<td>14</td>
<td>10</td>
<td>6^{20} 2^{120} 0^{16}</td>
</tr>
</tbody>
</table>

Case (a): these are the lines, and induce K_6.

Case (b): these are the unions $L \cup L^\perp$ for hyperbolic lines L, and induce $K_6,6$.

The maximal 6-cocliques are precisely the hyperbolic lines.

Cases (c), (d): A BLT (Bader-Lunardon-Has) set in the $O_5(q)$ generalized quadrangle, where q is odd, is a set S of $q+1$ points, no two collinear, such that every point outside S is collinear with 0 or 2 points of S. In the dual $Sp_4(q)$ generalized quadrangle this becomes a set of $q+1$ pairwise disjoint lines L_i such that every other line meets either 0 or 2 of them. The union $X = \bigcup L_i$ of this set of lines is a regular $(q+1)^2$-set of degree $d = 2q$ and nexus $e = (q+1)/2$. For $q = 5$ there are up to isomorphism two examples, the linear one and the FTW (Fisher-Thas-Walker) one (§269), yielding examples (c) and (d), respectively.

Case (e): this is most easily seen in the dual $O_5(q)$ generalized quadrangle. For the quadratic form $\sum X_i^2$, there are 20, 120, 16 isotropic points of weight 2, 4, 5, respectively. These 16 form a (non-maximal) coclique.

10.48 The $U_4(3)$ graph on 162 vertices

There is a unique strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (162, 56, 10, 24)$. Its spectrum is 56^1 2^{140} $(-16)^{21}$. The full group of automorphisms is $U_4(3)(2^2)^{133}$ (of order $2^9 \cdot 3^6 \cdot 5 \cdot 7$) acting rank 3, with point stabilizer $L_3(4) : 2^2$. Uniqueness is due to CAMERON, GOETHALS & SEIDEL [178]. This graph is the second subconstituent of the McLaughlin graph. Both subconstituents of this graph are also strongly regular (§10.20, §10.33). This graph is a subgraph of the Suzuki graph (§10.83).
Construction

Γ can be constructed as $1+56+105$ by taking a point ∞, one of the three orbits of hyperovals (of size 56) in $\text{PG}(2, 4)$, and the 105 flags (p, L) of $\text{PG}(2, 4)$. Here ∞ is adjacent to the 56 hyperovals; two hyperovals are adjacent when disjoint; a hyperoval O is adjacent to a flag (p, L) when $p \not\in O$ and $L \cap O \neq \emptyset$; two flags (p, L) and (q, M) are adjacent when $p \neq q$, and $L \neq M$, and $p \in M$ or $q \in L$.

Cliques, cocliques and chromatic number

Since the local graph does not have triangles, all maximal cliques have size 3. Since Γ is the 2nd subconstituent of the McLaughlin graph, maximum cocliques have size 21. The chromatic number of Γ is 10 (Soicher). That of Γ is 54.

Splits

This graph has 112 splits into two Brouwer-Haemers graphs. (Such splits can be enumerated by searching the 21-dimensional eigenspace for eigenvectors that are 1 on the subgraph and -1 on the complement. The result is that these 112 are the only splits of Γ into two subgraphs of valency 20.) Split halves occur as intersections with point neighborhoods in a McLaughlin graph.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a $3^4: M_{10}$</td>
<td>224</td>
<td>81, 81</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>b $2^{1+4}.3^2.2^{1+3}$</td>
<td>2835</td>
<td>18, 144</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>c $2 \times U_3(3).2^2$</td>
<td>540</td>
<td>36, 126</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>d $L_3(4).2^2$</td>
<td>162</td>
<td>42, 120</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>e $3^{1+4}.4.2^4$</td>
<td>840</td>
<td>54, 108</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>f $S_3 \times (S_3 \times S_3).2$</td>
<td>30240</td>
<td>54, 108</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>g $2 \times A_6.2^2$</td>
<td>4536</td>
<td>72, 90</td>
<td>26</td>
<td>24</td>
</tr>
</tbody>
</table>

There are no further regular sets with $d - e = s$.

Triple cover

There is a unique distance-regular graph with intersection array $\{56, 45, 16, 1; 1, 8, 45, 56\}$, a triple cover of Γ. It was constructed by SOICHER [664]. It is distance-transitive with full group $3.U_4(3).2^2$ with point stabilizer $L_3(4).2^2$. Its second subconstituent is also distance-regular (but not distance-transitive), see §10.33.
10.49 The nonisotropic points of $U_5(2)$

There is a unique rank 3 strongly regular graph with parameters $(v,k,\lambda,\mu) = (176, 40, 12, 8)$. Its spectrum is $40^1 \, 8^{55} \, (-4)^{120}$. The full group of automorphisms is $P\Gamma U_5(2)$ acting rank 3 with point stabilizer $U_4(2):S_3$. This is $NU_5(2)$, the graph on the nonisotropic points in the $U_5(2)$ geometry, adjacent when orthogonal, that is, when joined by a secant. The local graph is $NU_4(2)$ (§10.16).

The maximal cliques have size 5 (a single orbit). They are the orthogonal bases. The maximal cocliques have sizes 9–13 (many orbits) and 16 (two orbits). Most maximal cocliques are messy, but there is a single nice orbit of 16-cocliques where the tangent lines induce the structure of $AG(2,4)$, namely the perps of the totally isotropic lines.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \, \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[2^3] : (A_5 \times S_3)$</td>
<td>297</td>
<td>16, 160</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>$[2^{11}, 3^4]$</td>
<td>165</td>
<td>48, 128</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

These are the sets of vertices in L^\perp and in p^\perp for t.i. lines L and points p, respectively.

10.50 A polarity of Higman’s symmetric design

In Higman [426], a square 2-(176,50,14) design is constructed that has HS as automorphism group acting 2-transitively on points and blocks. In Smith [663] the following description is given: let the points be the octads from $S(5,8,24)$ that start 10..., and the blocks the octads that start 01.... Let the point B and the block C be incident when $|B \cap C| \in \{0, 4\}$. This design has a polarity for which all points are absolute. This means that this design has a symmetric point-block incidence matrix A with 1’s on the diagonal. Now $A - I$ is the adjacency matrix of a strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (176, 49, 12, 14)$. Its spectrum is $49^1 \, 5^{98} \, (-7)^{77}$. The full automorphism group of Γ is S_8 with vertex orbits of sizes 8 and 168 ([110]).

10.51 The M_{22} graph on 176 vertices

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{22}</td>
<td>105</td>
<td>18, 34</td>
<td>168</td>
<td>176</td>
</tr>
</tbody>
</table>

$v = 176$
There is a unique strongly regular graph with parameters \((v, k, \lambda, \mu) = (176, 70, 18, 34)\). Its spectrum is \(70^1 1^2 154^{21} (-18)^{21}\). The full group of automorphisms is \(M_{22}\) acting rank 3 with point stabilizer \(A_7\). Uniqueness is due to Degraer & Coolsaet [274].

Construction

The Steiner system \(S(4, 7, 23)\) has 253 blocks, 77 on each point. The residual design is a quasi-symmetric 3-(22,7,4) design, with 176 blocks, and block intersection numbers 1 and 3. Call two blocks adjacent when they meet in 1 point.

This graph is an induced subgraph of the \(M_{23}\) graph (§10.56) and of the McLaughlin graph (§10.61).

Cliques and cocliques

All 9240 maximal cliques have size 4. The group \(G\) is transitive on \(i\)-cliques for \(0 \leq i \leq 4\). Each triangle is contained in a unique 4-clique.

Maximal cocliques have sizes 7–13, 15, 16. We describe the three orbits of 16-cocliques. Let \(\Omega\) be a 24-set, and fix an \(S(5, 8, 24)\) on \(\Omega\). Fix \(\alpha, \beta \in \Omega\), and view the 176 vertices as the octads containing \(\alpha\) and missing \(\beta\). There are three orbits of 16-cocliques: the 231 sets of vertices containing two fixed elements \(\gamma, \delta \in \Omega \setminus \{\alpha, \beta\}\), the 462 sets of vertices containing a fixed element \(\gamma \in \Omega \setminus \{\alpha, \beta\}\) and disjoint from a fixed octad \(B\) on \(\{\alpha, \beta, \gamma\}\), and the 1155 sets of vertices missing two fixed elements \(\gamma, \delta \in \Omega \setminus \{\alpha, \beta\}\) and meeting a fixed octad \(B\) on \(\{\alpha, \beta, \gamma, \delta\}\) in 4 points.

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut} \Gamma\) with two orbits on the vertex set. We give degree \(d\) and nexus \(e\) for the smallest orbit.

<table>
<thead>
<tr>
<th>(H) index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_3(4))</td>
<td>22</td>
<td>56, 120</td>
<td>10</td>
</tr>
<tr>
<td>(2^4 : A_6)</td>
<td>77</td>
<td>80, 96</td>
<td>22</td>
</tr>
</tbody>
</table>

There are no further regular sets with \(d - e = s\).

10.52 The nonisotropic points of \(U_3(4)\)

There is a unique rank 4 strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (208, 75, 30, 25)\). Its spectrum is \(75^1 10^6 4^4 (-5)^{143}\). The full automorphism group is \(PGU_3(4)\), acting rank 4 with point stabilizer \((D_{10} \times A_5) : 2\) and suborbit sizes \(1 + 12 + 75 + 120\). It is the block graph of a unital \(S(2, 5, 65)\) in \(PQ(2, 16)\). Equivalently, it is the graph on the nonisotropic points in that projective plane, adjacent when joined by a tangent. Maximal cliques have size 6 or 16 (reaching the Hoffman bound). Maximal cocliques have sizes 5 (a single orbit), 7–9, and 13 (three orbits, reaching the Hoffman bound).
At least 1778 nonisomorphic systems $S(2, 5, 65)$ are known, and these have nonisomorphic block graphs, all with the above parameters. Apart from the hermitian unital all have small groups (of size at most 1200). Of these, 42 are embeddable in some projective plane of order 16 (and 13 different planes occur). For some examples, see [672], [500], [368].

10.53 A rank 16 representation of S_7

\[
\begin{array}{cccccc}
1 & 99 & 1 & 99 & 48 & 54 \\
2 & 50 & 45 & 110 & 54 & 110 \\
\end{array}
\]

$v = 210$

Klin et al. [494] showed as application of the computer algebra package COCO that the rank 16 scheme of S_7 on the cosets of $A_4 \times 2$ has a subscheme that is a strongly regular graph with parameters $(v, k, \lambda, \mu) = (210, 99, 48, 45)$. Its spectrum is $99^1 9^{77} (-6)^{132}$. The full automorphism group is S_7, acting rank 16 with point stabilizer $A_4 \times 2$. Maximal cliques have sizes 5–8 and 10. Maximal cocliques have sizes 5–9 and 12 (reaching the Hoffman bound).

10.54 The Cameron graph

\[
\begin{array}{cccccc}
1 & 30 & 1 & 30 & 9 & 9 \\
2 & 20 & 3 & 200 & 27 & 27 \\
\end{array}
\]

$v = 231$

There is a rank 4 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (231, 30, 9, 3)$. Its spectrum is $30^1 9^{55} (-3)^{175}$. It is the unique strongly regular graph with these parameters that is a gamma space with lines of size 3. The full automorphism group is $M_{22}'.2$, acting rank 4 with point stabilizer $2^5:S_5$. Construction is due to Cameron (cf. [178], Example 7.8), uniqueness to Brouwer [113].

Construction

Consider a Steiner system $S(3, 6, 22)$ on the 22-set S. Let the vertices of Γ be the 231 pairs of symbols from S, where two vertices are adjacent when the pairs are disjoint and contained in a common block.

Gamma space

This graph is the collinearity graph of a partial linear space with lines of size 3, namely the triples of pairs that partition a block of the Steiner system. This geometry is a gamma space: given a line L, each point outside L is collinear to 0, 1, or 3 points of L. It has Fano subplanes, 10 on each point and 2 on each line. The 15 lines and 10 planes on a fixed point form the edges and vertices of the Petersen graph. We see a $GQ(2, 2)$ subgeometry on each block.

Cliques and cocliques

The maximal cliques in Γ all have size 7 and form a single orbit with clique stabilizer $2 \times 2^3 : L_3(2)$. They are the Fano subplanes of the gamma space.
Examples of cocliques of size 21, which is the Hoffman bound, are given by the sets of pairs containing a fixed symbol.

Triple cover

This graph has a triple cover on 693 vertices with full group $3.M_{22}.2$.

10.55 The Berlekamp-Van Lint-Seidel graph

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (243, 22, 1, 2)$. Its spectrum is $22^1 \ 4^{152} (-5)^{110}$. The full group of automorphisms is $3^5 : (2 \times M_{11})$ acting rank 3 with point stabilizer $2 \times M_{11}$. This graph was constructed in *BERLEKAMP, VAN LINT & SEIDEL* [59] (with one construction per author). For example, it is the coset graph of the perfect ternary Golay code.

Dual

The Delsarte dual (cf. §7.1.3) Δ of Γ is a rank 3 strongly regular graph with parameters $(v, k, \lambda, \mu) = (243, 110, 37, 60)$ and spectrum $110^1 \ 2^{220} (-25)^{22}$.

Koolen-Riebeek graph

The complement of Γ (on 243 vertices with valency 220) is the halved graph of the bipartite Koolen-Riebeek graph (distance-regular with intersection array \{45, 44, 36, 5; 1, 9, 40, 45\}) constructed in [136].

Generalization

More generally, one may look at strongly regular graphs with $\lambda = 1$ and $\mu = 2$. Such a graph must have $(2r + 1) | 63$, so that $r \in \{1, 3, 4, 10, 31\}$ and v is one of 9, 99, 243, 6273, 494019. The only known examples have $v = 9$ or $v = 243$.

10.56 The M_{23} graph

There is a unique rank 3 strongly regular graph with parameters $(v, k, \lambda, \mu) = (253, 112, 36, 60)$. Its spectrum is $112^1 \ 2^{230} (-26)^2$. The full group of automorphisms is $G = M_{23}$ acting rank 3 with point stabilizer $2^4.A_7$.

Construction

Take the blocks of the Steiner system $S(4, 7, 23)$ as vertices, and call them adjacent when they meet in 1 point.
Cliqus and cocliques

All 212520 maximal cliques have size 4. The group G is transitive on i-cliques for $0 \leq i \leq 4$. Each triangle is contained in 5 4-cliques.

Maximal cocliques have sizes 8, 10–17, 21.

There is a unique orbit of 21-cocliques, consisting of the 253 sets of 21 blocks containing a fixed pair of symbols.

There is a unique orbit of 8-cocliques. (It can be seen from the description of the extended binary Golay code C using two Hamming codes (see §6.1.2). In the notation used there, take $x = 1$ and $a = b + 1$, to see the existence of code words $(b, b + 1, 0)$ for all $b \in H$. Take the 8 vectors b starting with 1.)

Splits 77+176

The 77 blocks on any given point induce the graph with parameters $(v, k, \lambda, \mu) = (77, 16, 0, 4)$, see §10.27. The remaining 176 blocks induce the graph with parameters $(v, k, \lambda, \mu) = (176, 70, 18, 34)$ described in §10.51.

Apart from these, there are no further regular sets with $d - e = s$.

Cayley graph

M_{23} has a (nonabelian) subgroup $23 : 11$ of order 253 that acts regularly on the vertices of Γ. Thus, Γ is a Cayley graph.

10.57 $2^8.S_{10}$ and $2^8.(A_8 \times S_3)$

There are exactly two rank 3 strongly regular graphs with parameters $(v, k, \lambda, \mu) = (256, 45, 16, 6)$. Their spectrum is $45^1 \, 13^{45} \, (-3)^{210}$.

The first, let us call it Γ_1, has full group of automorphisms $2^8 : S_{10}$ and point stabilizer S_{10}. It is the graph on $\mathbf{1}^+ / \langle 1 \rangle$ in 2^{10}, where two vectors are adjacent when they differ in two places, a bipartite half of the folded 10-cube. Its local graph is the triangular graph $T(10)$.

The second, let us call it Γ_2, has full group of automorphisms $2^8 : (A_8 \times S_3)$. It is the graph $H_2(4, 2)$ (§3.4.1). Already $2^5 : (A_7 \times 3)$ acts rank 3 on Γ_2.

Maximal cliques in Γ_1 have sizes 4 or 10, a single orbit of each type. Maximal cliques in Γ_2 have sizes 4 or 16, a single orbit of each type.

10.58 $2^8.L_2(17)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (256, 102, 38, 42)$. Its spectrum is $102^1 \, 6^{153} \, (-10)^{102}$. The full group of automorphisms is $2^8 : L_2(17)$ acting rank 3 with point stabilizer $L_2(17)$. Maximal
cliques have sizes 4, 5 and 8, a unique orbit of each type. Maximal cocliques have sizes 7–13, 16 and 18, with unique orbits for sizes 12, 13, 16, 18. The vertex set of Γ has a partition into 8-cliques, so $\chi(\Gamma) = 32$.

A *semibiplane* is a connected bipartite graph such that any two vertices have 0 or 2 common neighbors. The graph Γ is the halved graph of a semibiplane of valency 18 with full group of automorphisms $2^9 : L_2(17)$ acting rank 6 with point stabilizer $L_2(17)$. A strongly regular graph with the parameters of Γ can be obtained from the Van Lint-Schrijver construction (apply Theorem 7.3.2 with $(p,q,e,f,l,t,u) = (2,2^8,5,8,2,2,2)$), but that graph is not rank 3.

10.59 $VO^-_8(2)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (256,119,54,56)$. Its spectrum is $119^1 7^{136} (-9)^{119}$. The full group of automorphisms is $2^9 : SO^-_8(2)$ acting rank 3 with point stabilizer $SO^-_8(2)$.

The maximal cliques have size 8, a single orbit. The maximal cocliques have sizes 4 and 8, a single orbit of each. The chromatic number of Γ is $\chi(\Gamma) = 16$.

10.60 $VO^+_8(2)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (256,120,56,56)$. Its spectrum is $120^1 8^{120} (-8)^{135}$. The full group of automorphisms is $2^8 : SO^+_8(2)$ acting rank 3 with point stabilizer $SO^+_8(2)$. Its local graph is the $O^+_8(2)$ graph on 120 vertices, see §10.39.

The maximal cliques have sizes 4, 8 and 9, a single orbit of each. The maximal cocliques have size 16, a single orbit. The chromatic number of Γ is $\chi(\Gamma) = 16$.

Complement

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (256,135,70,63)$. Its spectrum is $135^1 70^{120} (-72)^{64}$. The full group of automorphisms is $2^9 : SO^-_8(2)$ acting rank 3 with point stabilizer $SO^-_8(2)$.

The chromatic number of Γ is $\chi(\Gamma) = 16$.
The complement of Γ is $VO_{8}^{+}(2)$, see §3.3.1. Its local graph is the $O_{8}^{+}(2)$ graph on 135 vertices, see §10.43.

Rank 3 action of $2^{8}: A_{9}$

The polar space $O_{8}^{+}(2)$ has an ovoid (see §2.6.7) on which the group A_{9} acts transitively. This can be seen by taking the quadratic form $\sum_{i<j} x_{i}x_{j}$ on the hyperplane 1^\perp in a 9-dimensional vector space over F_{2} (see also Case (e) of the regular sets in §10.39). The ovoid consisting of the base points (points with exactly one nonzero coordinate) qualifies.

Applying triality we obtain a spread S of the polar space $O_{8}^{+}(2)$ (that is, a partition of the point set into nine solids) on which A_{9} acts in the natural way. The stabilizer in A_{9} of a solid $\Sigma \in S$ is $A_{8} \simeq PSL_{4}(2)$, acting naturally on Σ. Hence A_{9} acts transitively on the point set of $O_{8}^{+}(2)$. Moreover, it also acts transitively on the nonisotropic points. Hence $2^{8}: A_{9} \leq 2^{8}: O_{8}^{+}(2)$ also acts rank 3 on Γ.

The nonisotropic points are the 36 vectors of weight 2 and the 84 vectors of weight 6. The subgraph induced on the 36-set is the triangular graph $T(9)$.

10.61 The McLaughlin graph

There is a unique strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (275, 112, 30, 56)$. Its spectrum is $112^1 22^2 252 (-28)^{22}$. The full group of automorphisms is $G = McC.2$ acting rank 3 with point stabilizer $U_{4}(3):2$. This graph was constructed in McLAUGHLIN [557]. Uniqueness is due to GOETHALS & SEIDEL [356].

Construction: $22 + 77 + 176$

Take the Steiner system $S(4,7,23)$ with $1 + 22$ points and $253 = 77 + 176$ blocks, where the first 77 are those containing the first point. Use p,B,C to denote one of the 22, 77, 176 objects, and let \sim denote adjacency. Make the 22 points a coclique, let $p \sim B$ when $p \notin B$, let $B \sim B'$ when B,B' meet in 1 point, let $p \sim C$ when $p \in C$, let $B \sim C$ when B,C meet in 3 points, let $C \sim C'$ when C,C' meet in 1 point. This yields Γ.

We see the M_{22} graphs on 77 and 176 vertices as subgraphs.
Leech lattice construction

This same $22 + 77 + 176$ construction is visible in the Leech lattice. Fix the two Leech lattice vectors $v_1 = \frac{1}{\sqrt{8}}(511 \ldots 1)$ and $v_2 = \frac{1}{\sqrt{8}}(440 \ldots 0)$. Take the 275 norm 4 vectors x with $(x, v_1) = 3$ and $(x, v_2) = 1$, adjacent when their inner product is 1. The $22 + 77 + 176$ vertices have the shapes $\frac{1}{\sqrt{8}}(11121(-3))$, $\frac{1}{\sqrt{8}}(3(-1)16(-1)^6)$ and $\frac{1}{\sqrt{8}}(202^7015)$.

Construction: $50 + 50 + 175$

The graph Γ has a regular partition into two Hoffman-Singleton graphs and a copy of the graph on the edges of that graph, adjacent when they are disjoint and lie in the same pentagon. Each part is strongly regular. The stabilizer of the partition is $U_3(5):2$, where the outer 2 interchanges the two parts of size 50. (See also below under Regular Sets.)

Conversely, Γ can be constructed in this setup: let the objects be the 100 15-cocliques and the 175 edges of the Hoffman-Singleton graph. Let two edges be adjacent when they are disjoint and lie in a pentagon. Let two 15-cocliques be adjacent when they meet in 0 or 3 points. Let an edge xy be adjacent to the 15-coclique C when $x, y \notin C$. This yields Γ. See also [455].

Construction: $1 + 112 + 162$

Let Γ_1 be the collinearity graph of the unique $GQ(3,9)$. It contains 648 hemisystems of points, i.e., subgraphs isomorphic to the Gewirtz graph, falling into four equivalence classes ($Q_5(3)$ orbits, see §10.34). Let Γ_2 be the graph on one equivalence class, two hemisystems being adjacent when their intersection has size 20. Let ∞ be a new vertex. Then Γ is the union of $\{\infty\}$, Γ_1 and Γ_2, with the following additional edges: ∞ is joined to every vertex of Γ_1 and a vertex v_1 of Γ_1 is adjacent to the vertex v_2 of Γ_2 if the hemisystem v_2 contains the point v_1. This construction is due to Cossidente & Penttila [234].

Local graph

Γ is locally the collinearity graph of the unique $GQ(3,9)$, see §10.34. It is the unique such graph, by Pasechnik [605].

Cliques and cocliques

All 15400 maximal cliques have size 5. The group G is transitive on i-cliques for $0 \leq i \leq 5$. Since in the local graph each edge is contained in a unique 4-clique,
here each triangle is contained in a unique 5-clique. The stabilizer of a 5-clique is transitive on the 270 vertices outside.

Maximal cocliques have sizes 7, 10, 11, 13, 16, 22. There are 4050 22-cocliques, forming a single orbit. The stabilizer of one is M_{22}, and has orbits of sizes $22 + 77 + 176$, giving rise to the above construction. The group G is transitive on 3-cocliques. Each 3-coclique is contained in eight 22-cocliques.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3_+^{1+4} : 4S_5$</td>
<td>15400</td>
<td>5, 270</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>$2.S_8$</td>
<td>22275</td>
<td>35, 240</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>$U_3(5) : 2$</td>
<td>7128</td>
<td>100, 175</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>$5_+^{1+2} : 24 : 2$</td>
<td>299376</td>
<td>125, 150</td>
<td>52</td>
<td>50</td>
</tr>
</tbody>
</table>

In case (b) the graph induced on the orbit of size 35 is the Odd graph O_4.

In case (c) the graph induced on the orbit of size 175 is the (rank 4) graph on the edges of the Hoffman-Singleton graph, adjacent when disjoint and in the same pentagon, strongly regular with parameters $(v, k, \lambda, \mu) = (175, 72, 20, 36)$ and spectrum $72^1 2^{153} (-18)^{21}$.

In case (d) the graph induced on the orbit of size 125 is the (rank 5) graph obtained from Taylor’s unitary two-graph for $q = 5$ by switching a point isolated (cf. §8.10.1), strongly regular with parameters $(v, k, \lambda, \mu) = (125, 52, 15, 26)$ and spectrum $52^1 2^{104} (-13)^{20}$.

There are no regular sets with $d - e = s$.

Chromatic number

This graph has chromatic number 15 or 16 (Soicher). There is a partition of $V\Gamma$ into 55 5-cliques, so that $\chi(\Gamma) = 55 ([385])$.

No partial geometry

The parameters of this graph are those of the collinearity graph of a putative $pg(5, 28, 2)$ partial geometry. However, Östergård & Soicher [598] showed that there is no such partial geometry.

Uniqueness and two-graph

Goethals & Seidel [356] showed the uniqueness (up to complementation) of the (nontrivial) regular two-graph Ω on 276 vertices (cf. §8.10.1). Its automorphism group is Conway’s group \mathfrak{M}_3, acting 2-transitively. Our graph Γ is the descendant of Ω at an arbitrary vertex (obtained by switching that vertex isolated). Conversely, Ω is the two-graph that has $K_1 + \Gamma$ in its switching class.

The two-graph Ω also has (many, see [593]) strongly regular graphs in its switching class, with parameters $(v, k, \lambda, \mu) = (276, 140, 68, 84)$ and spectrum $140^1 2^{252} (-28)^{21}$.
10.62. \((280, 117, 44, 52)\)—THE MATHON-ROSA GRAPH

There is a strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (280, 117, 44, 52)\). Its spectrum is \(117^1 5^{195} (-13)^{84}\). The full group of automorphisms is \(S_9\) acting rank 5 with point stabilizer \(S_3 \wr S_3\). This graph was discovered by Mathon & Rosa [550] (and also by Ivanov, Klin & Faradžev [457]).

Construction

The group \(S_9\) acts transitively on the set of 280 partitions of a 9-set into three 3-sets. The point stabilizer is \(S_3 \wr S_3\), with orbit sizes 1, 27, 36, 54, 162. Two partitions are in one of these relations when their common refinement has 3, 5, 9, 6, 7 parts, respectively. The orbit of size 162 defines \(\Gamma\).

The eigenmatrix of the 4-class association scheme, with the relations in the given order, is

\[
P = \begin{pmatrix}
1 & 27 & 36 & 54 & 162 \\
1 & 11 & -12 & 6 & -6 \\
1 & 6 & 8 & -9 & -6 \\
1 & -3 & 2 & 6 & -6 \\
1 & -3 & -4 & -6 & 12
\end{pmatrix}.
\]

The multiplicities are, in the order of the rows of \(P\): 1, 27, 48, 120, 84.

Maximal cliques and cocliques

The largest cliques have size 10. The largest cocliques have size 28. Both meet the Hoffman bound. Maximal cliques have sizes 5–8 and 10. Maximal cocliques have sizes 8–14, 16, and 28.

The set of all partitions containing a fixed triple is a 10-clique (and there are other 10-cliques as well). Up to isomorphism there is a unique 28-coclique. The group \(P\Gamma L_2(8)\) acts 2-transitively on the set of 28 subgroups of order 3 contained in \(P\Gamma L_2(8)\). Each such subgroup determines a partition \(3^3\), and this set of 28 partitions is a coclique in \(\Gamma\).

Regular sets

Examples of regular sets in \(\Gamma\) are obtained from subgroups \(H\) of \(G = \text{Aut} \Gamma\) with two orbits on the vertex set. We give degree \(d\) and nexus \(e\) for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (L_2(8) : 3)</td>
<td>240</td>
<td>28, 252</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>(b) (2^5 \times L_3(2))</td>
<td>270</td>
<td>112, 168</td>
<td>39</td>
<td>52</td>
</tr>
<tr>
<td>(c) (2 \times S_7)</td>
<td>36</td>
<td>70, 210</td>
<td>33</td>
<td>28</td>
</tr>
</tbody>
</table>

Godsil & Meagher [349] starts asking for the largest cocliques in \((X, R_2)\). The Delsarte clique bound is \(1 + 36/12 = 4\) and hence the coclique bound is \(280/4 = 70\). An example
meeting the clique bound is the set of parallel classes in $AG(2,3)$. Examples meeting the coclique bound are the sets of partitions for which two given elements belong to the same part of the partition (this is case (c) here). Godsil & Newman [350] show that there are no further examples.

10.63 The lines of $U_5(2)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (297, 40, 7, 5)$. Its spectrum is $40^1 7^{120} (-5)^{176}$. The full group of automorphisms is $PGU_5(2)$ acting rank 3 with point stabilizer $2^{4+4} : (3 \times A_5) : 2$. This is the graph on the totally isotropic lines in the $U_5(2)$ geometry, adjacent when they meet. This graph carries the structure of a $GQ(8,4)$.

The maximal cliques have size 9 (a single orbit). These are the sets of 9 t.i. lines on an isotropic point. They reach the Hoffman bound. The largest co-cliques have size 29. (In particular, the $U_5(2)$ geometry does not have spreads.)

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = Aut \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbit lengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{11}.3^1$</td>
<td>165</td>
<td>9, 288</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>$U_4(2) : S_3$</td>
<td>176</td>
<td>27, 270</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>$3^4 : (2 \times S_5)$</td>
<td>1408</td>
<td>135, 162</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>

These are the sets of vertices on a given isotropic point, in the perp of a given nonisotropic point (i.e., in a $U_4(2)$ subspace), and in the perp of one point of a given orthogonal base.

10.64 $NO_5^-(5)$ and $NO_5^-(5)$

There are unique rank 4 strongly regular graphs Γ and Δ, with parameters $(v, k, \lambda, \mu) = (300, 65, 10, 15)$ and $(300, 104, 28, 40)$, and spectra $65^1 5^{105} (-10)^{104}$ and $104^1 2^{234} (-16)^{165}$, respectively. Their full group is $G = PGO_5(5)$, with point stabilizer $2 \times P\Sigma L(2,25)$, giving a 4-class association scheme of which Γ and Δ are two relations. The graphs Γ and Δ are $NO_5^-(5)$ and $NO_5^-(5)$, see §3.1.5 and §3.1.4, respectively.
The association scheme is that on the (nonisotropic) minus-points of $O_5(5)$. The non-identity relations are being joined by a secant (Γ), being joined by a tangent (Δ), and being joined by an exterior line. Here the line xy is a secant precisely when x, y are orthogonal.

The local graph Σ of Γ is distance-regular with intersection array $\{10, 6, 4; 1, 2, 5\}$ and is locally Petersen.

Maximal cliques in Γ have size 4 (a single orbit), in Δ size 5 (two orbits). Maximal cocliques in Γ have sizes 11–28, 30 (a single orbit for sizes 27, 28, 30). Maximal cocliques in Δ have sizes 10–15, 17, 18, 20 (one orbit for sizes 18, 20).

The graph Δ satisfies the 4-vertex condition.

Regular sets

Examples of regular sets in Γ and Δ are obtained from subgroups H of G with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d_{Γ}</th>
<th>e_{Γ}</th>
<th>d_{Δ}</th>
<th>e_{Δ}</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$5^4 : (4 \times S_5)$</td>
<td>156</td>
<td>50, 250</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>20</td>
<td>isotropic point</td>
</tr>
<tr>
<td>b</td>
<td>2340</td>
<td>100, 200</td>
<td>25</td>
<td>20</td>
<td>24</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3120</td>
<td>150, 150</td>
<td>35</td>
<td>30</td>
<td>44</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A t.i. line L determines a partition of the vertex set into 6 parts of size 50 as in case (a). A pair or triple on L determines splits as in (b) or (c).

10.65 $NO_{5}^{\perp}(5)$ and $NO_{5}^{\perp}(5)$

There are unique rank 4 strongly regular graphs Γ and Δ, with parameters $(v, k, \lambda, \mu) = (325, 60, 15, 10)$ and $(325, 144, 68, 60)$, and spectra $60^1 10^{104} (-5)^{220}$ and $144^1 14^{90} (-6)^{234}$, respectively. Their full group is $G = \text{PGO}_5(5)$, with point stabilizer $2 \cdot (A_5 \times A_5).2$, giving a 4-class association scheme of which Γ and Δ are two relations. The graphs Γ and Δ are $NO_{5}^{\perp}(5)$ and $NO_{5}^{\perp}(5)$, see §3.1.5 and §3.1.4, respectively.

The association scheme is that on the (nonisotropic) plus-points of $O_5(5)$. The non-identity relations are being joined by a secant (Γ), being joined by a tangent (Δ), and being joined by an exterior line. Here the line xy is a secant precisely when x, y are orthogonal.

Maximal cliques in Γ have size 5 (a single orbit), in Δ size 7, 15, or 25 (one orbit each). Maximal cocliques in Γ have sizes 9 (1 orbit), 11–21, and 25 (reaching the Hoffman bound, 7 orbits). Maximal cocliques in Δ have sizes 7–10 and 13 (two orbits).

The graph Δ satisfies the 4-vertex condition.
Regular sets

Examples of regular sets in Γ and Δ are obtained from subgroups H of G with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d_Γ</th>
<th>e_Γ</th>
<th>d_Δ</th>
<th>e_Δ</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5^{1+2}_{1,2} : 4S_5$</td>
<td>156</td>
<td>25, 300</td>
<td>0</td>
<td>5</td>
<td>24</td>
<td>10</td>
<td>t.i. line</td>
</tr>
<tr>
<td>$5^{1} : (4 \times S_5)$</td>
<td>156</td>
<td>75, 250</td>
<td>10</td>
<td>15</td>
<td>44</td>
<td>30</td>
<td>isotropic point</td>
</tr>
</tbody>
</table>

Case (a) are the 25-cliques $L^+ \setminus L$ in Δ, where L is a t.i. line.

10.66 $NO^-_{7^{-}}(3)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (351,126,45,45)$. Its spectrum is $126^1 9^{168} (-9)^{182}$. The full group of automorphisms is $O_7(3) : 2$ acting rank 3 with point stabilizer $2.U_4(3) : 2^2$.

Construction

This is the graph $NO^-_{7^{-}}(3)$, the graph on the ‘minus’ nonisotropic points in the $O_7(3)$ geometry—the points that have perps that are elliptic hyperplanes—adjacent when orthogonal, cf. §3.1.4.

Other rank 3 representation

Γ is also the graph on the Hermitian spreads of the generalized hexagon $G_2(3)$, adjacent when sharing four lines (necessarily the four lines of a regulus on the underlying quadric $O_7(3)$, or equivalently, four lines at distance one from two give opposite points in $G_2(3)$). This shows the rank 3 representation of Γ with automorphism group $G_2(3)$ and point-stabilizer $U_3(3) : 3 \simeq G_2(2)$.

Maximal cliques and cocliques

The maximal cliques all have size 7 and form a single orbit. (They are the orthonormal bases.) The maximal cocliques have sizes 9 (two orbits) or 10, 13, 15 (a single orbit each).

Sub- and supergraphs

The local graph is strongly regular with parameters $(v,k,\lambda,\mu) = (126,45,12,18)$. It is $NO^-_{6}(3)$ and rank 3, cf. §3.1.3.

This graph is the local graph of $NO^-_{6}(3)$, cf. §10.78, and that latter graph is the unique connected locally Γ graph (Pasechnik [599]).

This graph is a subgraph of the Fi_{22} graph, cf. §10.90.

This graph is the μ-graph of the Fi_{23} graph, cf. §10.96.
Regular sets

Below a few examples of regular sets in \(\Gamma \) obtained from subgroups \(H \) of \(\text{Aut} \, \Gamma \) with two orbits on the vertex set. We give degree \(d \) and nexus \(e \) for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(L_2(13))</td>
<td>8398080</td>
<td>78, 273</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>b</td>
<td>(2 \times (L_4(3) : 2))</td>
<td>378</td>
<td>117, 234</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>c</td>
<td>(3_+^{1+6} : (2S_4 \times S_4))</td>
<td>3640</td>
<td>27, 324</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>d</td>
<td>(O_7(2))</td>
<td>6318</td>
<td>63, 288</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>e</td>
<td>(3^5 : (2 \times (O_5(3) : 2)))</td>
<td>364</td>
<td>108, 243</td>
<td>45</td>
<td>36</td>
</tr>
</tbody>
</table>

Example (b) induces \(NO^+_7(3) \) on the orbit of size 117. That orbit consists of the vertices in \(y^+ \), for a ‘plus’ nonisotropic point \(y \).

Example (c) induces the 9-coclique extension of \(NO^-_3(3) \), that is \(K_{9,9,9} \), on the orbit of size 27. That orbit consists of the vertices in \(L^+ \), for a t.i. line \(L \).

Example (e) induces the 3-coclique extension of \(NO^-_5(3) \) on the orbit of size 108. That orbit consists of the vertices in \(x^+ \), for an isotropic point \(x \).

10.67. \(NO^+_7(3) \)

There is a unique rank 3 strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (378, 117, 36, 36) \). Its spectrum is \(117^1 \ 9^{182} \ (-9)^{195} \). The full group of automorphisms is \(O_7(3) : 2 \) acting rank 3 with point stabilizer \(2 \times (L_4(3) : 2) \).

This is the graph \(NO^+_7(3) \), the graph on the ‘plus’ nonisotropic points in the \(O_7(3) \) geometry—the points that have perps that are hyperbolic hyperplanes—adjacent when orthogonal, cf. §3.1.4. It is also the graph on the subhexagons of order \((1,3)\) of the split Cayley hexagon \(G_2(3) \), adjacent if they share exactly 4 lines (and no points). The group \(G_2(3) \) acts rank 4.

The maximal cliques all have size 6 and form a single orbit. The maximal cocliques have sizes 9–15, 21 and 27 (reaching the Hoffman bound), with a single orbit for size 21 and two orbits for size 27.

The local graph is strongly regular with parameters \((v, k, \lambda, \mu) = (117, 36, 15, 9) \). It is \(NO^+_7(3) \) and rank 3, cf. §10.35 and §3.1.3.

This graph is the local graph of \(NO^-_7(3) \), cf. §10.79, and that latter graph is the unique connected locally \(\Gamma \) graph (Pasechnik [599]).

Regular sets

Below a few examples of regular sets in \(\Gamma \) obtained from subgroups \(H \) of \(\text{Aut} \, \Gamma \) with two orbits on the vertex set. We give degree \(d \) and nexus \(e \) for the smallest orbit.
Chapter 10. Individual Graph Descriptions

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3^{3+3}:GL_3(3)$</td>
<td>1120</td>
<td>27, 351</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>$3^{1+6}:(2S_4 \times S_4)$</td>
<td>3640</td>
<td>54, 324</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>$3^5:(2 \times (O_5(3):2))$</td>
<td>364</td>
<td>135, 243</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>$L_3(3):2$</td>
<td>816480</td>
<td>144, 234</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>$(2, U_4(3)):2^2$</td>
<td>351</td>
<td>126, 252</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td>S_8</td>
<td>227448</td>
<td>168, 210</td>
<td>57</td>
<td>48</td>
</tr>
</tbody>
</table>

Example (a) induces a 27-coclique on the orbit of size 27. That orbit consists of the vertices in π^\perp, for a t.i. plane π.

Example (b) induces the 9-coclique extension of $NO_3^{+}(3)$, that is $3K_{9,9}$, on the orbit of size 54. That orbit consists of the vertices in L^\perp, for a t.i. line L.

Example (c) induces the 3-coclique extension of $NO_3^{+}(3)$ on the orbit of size 135. That orbit consists of the vertices in x^\perp, for an isotropic point x.

Example (e) can be seen as the split between weight 2 and weight 5 vectors for the quadratic form $\sum_{i=1}^{7}x_i^2$.

Example (f) induces $NO_5^-(3)$ on the orbit of size 126. That orbit consists of the vertices in y^\perp, for a ‘minus’ nonisotropic point y.

10.68 The $G_2(4)$ graph on 416 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (416, 100, 36, 20)$. Its spectrum is $100^1 20^65 (-4)^{350}$. The full group of automorphisms is $G_2(4).2$ acting rank 3 with point stabilizer HJ.2.

This graph is a member of the Suzuki tower: it is the local graph of the Suzuki graph described below, and its local graph is the Hall-Janko graph.

Construction: PG(2, 16)

Consider the projective plane $\text{PG}(2,16)$ provided with a nondegenerate Hermitian form. It has 273 points, 65 isotropic and 208 nonisotropic. There are $416 = 208 \cdot 12 \cdot 1/6$ orthogonal bases. These are the vertices of Γ. The group $U_3(4):4$ of semilinear transformations preserving the form acts transitively on the 416 bases, with rank 5. The suborbit sizes are 1, 15, 100, 150, 150. The graph Γ is obtained by taking the suborbit of size 100 for adjacency.

These suborbits can be described geometrically as follows: Given one basis $\{a, b, c\}$, the suborbit of size 15 consists of the bases that have an element in common with $\{a, b, c\}$. The first suborbit of size 150 consists of the bases that are disjoint from $\{a, b, c\}$ but contain a point orthogonal to one of a, b, c. Associated with a basis $\{a, b, c\}$ is the triangle consisting of the 15 isotropic points on the three lines ab, ac, and bc. The suborbits of sizes 1, 15, 100, 150, 150 correspond to bases with triangles having 15, 5, 3, 2, 5 points in common, respectively. Thus, Γ can be described as the graph on the 416 triangles, adjacent when they have 3 points in common ([241]).
Cliques and cocliques

Maximal cliques have size 5 (since the local graph has maximal cliques of size 4). The smallest clique cover has size 84. Maximal cocliques have size 16, which is the Hoffman bound. The chromatic number is $\chi(\Gamma) = 26$.

Suzuki μ-graphs

The group G acts imprimitively on the set of 65520 nonedges of Γ, it preserves a partition into 1365 sets of 48 nonedges. Each such set induces a subgraph of size 96 isomorphic to the disjoint union of three copies of the 2-coclique extension of the Clebsch graph. The stabilizer in G of such a subgraph is $2^{21+8} : (3 \times A_5) : 2$.

If Γ is viewed as the neighborhood of a vertex x in the Suzuki graph Σ, then these 1365 subgraphs of size 96 are the sets of common neighbors of x and y, where y is a nonneighbor of x in Σ.

That these graphs are disconnected can be seen in the triple cover $\tilde{\Sigma}$ of Σ. It plays a role in the construction of Jenrich’s Borsuk example described below.

Jenrich [463] showed that the subgraph on the 320 vertices outside such a μ-graph can be extended by a 16-coclique to construct a strongly regular graph with parameters $(v, k, \lambda, \mu) = (336, 80, 28, 16)$.

Cohen-Tits near octagon

There is a unique distance-regular graph Δ with intersection array \{10, 8, 8, 2; 1, 1, 4, 5}. It was constructed in Cohen [202], and uniqueness (given the intersection array) was proved in Cohen & Tits [205]. (See also [123], §13.6 and [68].) It has spectrum $10^1 5^{36} 3^{90} (-2)^{160} (-5)^{28}$. This graph is the collinearity graph of a near polygon with lines of size 3 which we shall call the Cohen-Tits near octagon. The second subconstituent of Γ is the distance-2 graph of Δ. The 63-sets that are the intersection of $V\Delta$ with a vertex neighborhood in Γ, induce a generalized hexagon $GH(2,2)$ in Δ, isomorphic to the dual split Cayley hexagon $G_2(2)$.

Construction: $G_2(4)$

By [289], the Cohen-Tits near octagon admits an embedding in the dual, say Ω, of the split Cayley hexagon $G_2(4)$. Now Γ is the graph on all copies of this near octagon embedded in Ω, adjacent when the intersection contains a copy of the dual split Cayley hexagon $G_2(2)$. This shows the rank 3 action of $G_2(4)$ on Γ.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = Aut \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

<table>
<thead>
<tr>
<th>H index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.L_3(4) : 2^2</td>
<td>2080</td>
<td>56, 360</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>2^{2+8} : (3 \times A_5) : 2</td>
<td>1365</td>
<td>96, 320</td>
<td>20</td>
</tr>
<tr>
<td>c</td>
<td>2^{1+6} : (A_5 \times 3) : 2</td>
<td>1365</td>
<td>160, 256</td>
<td>36</td>
</tr>
</tbody>
</table>

Objects of types (b) and (c), incident when the 96-set is contained in the 160-set, are the points and lines of the dual split Cayley hexagon \(G_2(4) \).

Borsuk conjecture

In 1933 Borsuk [91] asked whether each bounded set in \(\mathbb{R}^n \) with nonzero diameter can be divided into \(n+1 \) parts, each of smaller diameter. In 1993 Kahn & Kalai [475] showed that this is false for \(n = 1325 \) and \(n > 2014 \).

Various authors brought the smallest counterexample dimension down. In 2013 Bondarenko [87] observed that the Euclidean representation of the present graph \(\Gamma \) in its \(\theta \)-eigenspace for \(\theta = 20 \) yields 416 unit vectors in \(\mathbb{R}^{65} \) with mutual inner products \(\frac{1}{7} \) (for adjacent vertices) and \(-\frac{1}{17} \) (for nonadjacent vertices). The diameter of this set is the distance between the images of two nonadjacent vertices, so that a partition into parts of smaller diameter must correspond to a partition of \(V \Gamma \) into cliques. But \(\Gamma \) has clique number 5, so one needs at least (in fact: precisely) \(\left\lceil \frac{416}{5} \right\rceil = 84 \) parts. The argument is general:

Given a strongly regular graph \(\Gamma \) with \(v \) vertices, where the 2nd largest eigenvalue has multiplicity \(f \), one finds \(v \) unit vectors in \(\mathbb{R}^f \) such that this set of vectors cannot be partitioned into fewer parts of smaller diameter than the clique covering number of \(\Gamma \), that is, the chromatic number of its complement.

Today the counterexample with smallest dimension is that found by Jenrich [464] who observed that Bondarenko’s 65-dimensional example contains a 64-dimensional example. It is a two-distance set of 352 points. Indeed, let \(M \) be a Suzuki \(\mu \)-graph in \(\Gamma \), with connected components \(M_i, i = 1, 2, 3 \). The vector \(u \) that is 1 on \(M_1 \), -1 on \(M_2 \), and 0 elsewhere, lies in the 65-dimensional \(\theta \)-eigenspace, and is orthogonal to the vectors representing vertices outside \(M_1 \cup M_2 \). We find 352 unit vectors in the 64-space \(u^\perp \), and a partition of this set into parts of smaller diameter needs at least 71 parts.

10.69 The \(O^-_{10}(2) \) graph on 495 vertices

There is a unique rank 3 strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (495, 238, 109, 119)\). Its spectrum is \(238^{1} \ 7^{40} \ (-17)^{154} \). The full group of automorphisms is \(O^-_{10}(2) : 2 \) acting rank 3 with point stabilizer \(2^8:O^-_8(2) : 2 \).

This is the graph on the points of an \(O^-_{10}(2) \) geometry, adjacent when collinear. The graph induced on the nonneighbors of a point is \(VO^-_{8}(2) \) (§10.59).

Construction

In \(F_2^{12} \), consider the quadratic form \(Q(x) = \sum_{i<j} x_i x_j \). We have \(Q(x) = \left(\frac{\text{wt}(x)}{2} \right) \) and \(B(x, y) = \text{wt}(x) \text{wt}(y) - \sum_i x_i y_i \). The space \(1^\perp / \langle 1 \rangle \) is a 10-dimensional elliptic orthogonal space. The isotropic points are the 495 = \(\binom{12}{4} \) cosets with a weight 4 representative. Two 4-sets are adjacent when they meet in 0 or 2 points. Thus, this is the distance 2-or-4 graph of the Johnson graph \(J(12, 4) \).
Cliques and cocliques

Maximal cliques have size 15 and form a single orbit. They are the maximal totally singular subspaces. Maximal cocliques have sizes 5 and 9, a single orbit each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \ \Gamma$ with two orbits on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>264</td>
<td>5245</td>
<td>15</td>
<td>480</td>
<td>t.s. solid</td>
</tr>
<tr>
<td>b</td>
<td>$3^2 \times (2 \times 2^3 : S_3)$</td>
<td>53616640</td>
<td>90</td>
<td>405</td>
<td>$O_7(2) \ wr 5$</td>
</tr>
<tr>
<td>c</td>
<td>$S_3 \times O_7(2) : 2$</td>
<td>23936</td>
<td>135</td>
<td>360</td>
<td>elliptic line</td>
</tr>
<tr>
<td>d</td>
<td>S_7</td>
<td>1253376</td>
<td>165</td>
<td>330</td>
<td>$J(11,3)_2$</td>
</tr>
<tr>
<td>e</td>
<td>$L_2(11) : S_3$</td>
<td>12634030080</td>
<td>165</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>$PSp_8(2) \times 2$</td>
<td>528</td>
<td>240</td>
<td>255</td>
<td>nonsg. pt</td>
</tr>
</tbody>
</table>

10.70 The rank 3 conference graphs on 529 vertices

There are exactly three rank 3 strongly regular graphs with parameters $(v,k,\lambda,\mu) = (529, 264, 131, 132)$ namely the Paley graph $P(q)$, the Peisert graph $P^*(q)$ and the sporadic Peisert graph $P^{**}(q)$, where $q = 23^2$. Their spectrum is $264^1 \ 11^{264} (-12)^{264}$. Each has $rk_{23}(2A + I + bJ) = 144$ for all b.

Each of these graphs is self-complementary. Each has chromatic number 23, so that there are partitions into 23-cliques and partitions into 23-cocliques. The groups of automorphisms are $23^2 : S$ where S is the point stabilizer given in the table below. This table also gives for each graph and each m the number of orbits of maximal m-cliques.

<table>
<thead>
<tr>
<th>graph</th>
<th>name</th>
<th>S</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>Paley</td>
<td>264 : 2</td>
<td>-</td>
<td>85</td>
<td>108</td>
<td>80</td>
<td>7</td>
<td>9</td>
<td>-</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Γ_2</td>
<td>Peisert</td>
<td>$11 \times (3 : Q_8)$</td>
<td>1</td>
<td>222</td>
<td>442</td>
<td>186</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Γ_3</td>
<td>sporadic</td>
<td>$11 \times S_{L_2(3)}$</td>
<td>3</td>
<td>362</td>
<td>448</td>
<td>87</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction

Each of these three graphs is a Cayley graph for the additive group of $F = F_{529}$. For Γ_1 the difference set D consists of the squares in F. For Γ_2, $D = K \cup \omega K$ where K is the subgroup (of size 132) of fourth powers and ω is a primitive element of F. For Γ_3, $D = \bigcup_{i \in I} \omega^i L$ where L is the subgroup (of size 66) of eighth powers and $I = \{0,1,3,5\}$.

These graphs are self-complementary: for Γ_1 the map $d \mapsto \omega d$ interchanges D and its complement, for Γ_2 and Γ_3 the map $d \mapsto \omega^{-1} d^{23}$ works. For edge-transitivity:
for Γ_1 one can multiply by a square, for Γ_2 one can multiply by a fourth power and apply $d \mapsto \omega^{d^3}$. Finally, for Γ_3 one can multiply by an eighth power and apply the \mathbb{F}_{23}-linear transformation that maps 1 to ω and ω to -1.

10.71 The $U_4(2)$ graphs on 540 vertices

![Graph](image)

Crnković, Rukavina & Švob [243] constructed two nonisomorphic strongly regular graphs with parameters $(v, k, \lambda, \mu) = (540, 187, 58, 68)$. The spectrum is $187^1 7^{174} (-17)^{165}$. The full groups of automorphisms are $2 \times (U_4(2) : 2)$ and $2 \times U_4(2)$. These groups act transitively, with ranks 13 and 17. In both cases, adjacency is defined by the union of 7 suborbits. In both cases, maximum cliques have size 12, meeting the Hoffman bound. In both cases, maximum cocliques have size 20.

10.72 The Aut($Sz(8)$) graph on 560 vertices

![Graph](image)

There is a strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (560, 208, 72, 80)$. Its spectrum is $208^1 8^{364} (-16)^{195}$. The full group of automorphisms is Aut($Sz(8)$) acting rank 7 with point stabilizer $13 : 12$ and suborbit sizes 1, 39, 52, 78, 156. The graph Γ is obtained by taking the union of the suborbit of size 52 and one of the two suborbits of size 156. This graph was discovered by Faradžev, Klin & Muzychuk [315].

Maximal cliques and cocliques

The maximal cliques have sizes 4–8. Those of sizes 4 and 8 form single orbits. The maximal cocliques have sizes 9–18 and 21. Those of size 21 form a single orbit.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{3+3} : (7 : 3)$</td>
<td>65</td>
<td>112, 448</td>
<td>48</td>
<td>40</td>
</tr>
</tbody>
</table>

10.73 The rank 3 graphs on 625 vertices

There are precisely seven rank 3 strongly regular graphs on $v = 625$ vertices. The parameters are as follows.
We discuss the cases of valency 144 or 240 more in detail below.

A. Valency 144

There are precisely two rank 3 strongly regular graphs with parameters \((v, k, \lambda, \mu) = (625, 144, 43, 30)\). Their spectrum is

\[
144 \quad 1 \quad 480 \quad (-6) \quad 480
\]

Both graphs are found on \(\mathbb{F}_4^5\) by taking the union of the six lines of a dual BLT set at infinity: the first graph from the linear set, the second from the FTW set. See §10.47.

Let us call the second graph \(\Gamma\). Its full group of automorphisms is

\[
5^4 : (2^4 : S_6)
\]

with point stabilizer \(4^4 \cdot S_6\). It is due to Liebeck [517].

Clique and cocliques

The maximal cliques in \(\Gamma\) have sizes 6 or 25, a single orbit of each. The maximal cliques of size 25 reach the Hoffman bound and are planes in the underlying vector space \(\mathbb{F}_4^5\). Maximum cocliques have size 25 and reach the Hoffman bound.

Both planes and non-planes occur.

B. Valency 240

There is a unique rank 3 strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (625, 240, 95, 90)\). Its spectrum is

\[
240 \quad 1 \quad 384 \quad (-10) \quad 384
\]

The full group of automorphisms is \(5^4 \cdot (2^4 : S_6)\) acting rank 3 with point stabilizer \(4^4 \cdot S_6\). Existence and uniqueness is due to Liebeck [517] (using earlier work by Foulser).

It is found on \(\mathbb{F}_4^5\) by taking a regular set of \(\Gamma(\text{Sp}_4(5))\) of size 60 at infinity. See §10.47.

Construction

Let \(V = \mathbb{F}_4^5\) and let \(H\) be the group generated by the four matrices

\[
\begin{pmatrix}
1 & \ldots & . & . & 1 & \ldots & 4 & \ldots & . & . & 4
\end{pmatrix}, \quad
\begin{pmatrix}
. & 4 & \ldots & . & . & 4 & \ldots & . & . & 4 & .
\end{pmatrix}, \quad
\begin{pmatrix}
. & 4 & \ldots & . & . & 4 & \ldots & . & . & 4 & .
\end{pmatrix}, \quad
\begin{pmatrix}
. & . & 1 & \ldots & . & . & 1 & \ldots & . & . & 1 & \ldots & .
\end{pmatrix}, \quad
\begin{pmatrix}
. & . & 1 & \ldots & . & . & 1 & \ldots & . & . & 1 & \ldots & .
\end{pmatrix}
\]

10.73. (625, 144, 43, 30)
CHAPTER 10. INDIVIDUAL GRAPH DESCRIBTIONS

Then H has order 32, and $H/\langle -I \rangle$ is elementary abelian of order 2^4. This group $H/\langle -I \rangle$ has 15 orbits of size 4 and 6 orbits of size 16 on PV (which is $\text{PG}(3,5)$, with 156 points). The union X of the 15 orbits of size 4 is a two-character set: each plane of PV meets it in either 10 or 15 points. The graph Γ arises by joining two vectors $u,v \in V$ when $\langle v-u \rangle \in X$.

The set X is covered by 60 lines which, via the Klein correspondence, correspond in F_{25}, provided with the quadratic form $Q(x) = x_1^2 + \cdots + x_6^2$, to the points of shape (000001), where $2^4:S_6$ acts on the coordinates by permuting them and changing an even number of signs. The same set X is covered by the subset of 20 lines having a zero as last coordinate, and the corresponding group $2^4:S_5$ acts transitively on X and is a subgroup of the symplectic group $\text{Sp}_4(5)$ acting on the perp of (000001). Hence X is also a regular set (a 10-tight set) of $\text{Sp}_4(5)$, see Case (e) in the second table of §10.47

Clique and cocliques

The maximal cliques in Γ have sizes 6, 8, 9, 17, 25 and those of sizes 9, 17, 25 each form a single orbit. The maximal cocliques in Γ have sizes 6, 8, 9, 17, 25 and those of sizes 9, 17, 25 each form a single orbit. The 750 cliques and 2400 cocliques of size 25 reach the Hoffman bound and are planes in the underlying vector space F_{25}^6; at infinity they have a line corresponding to a point of shape (000001) and (011111), respectively. Affine solids containing either type of affine planes are examples of regular sets of size 125 with degree 60 and 40, and nexus 45 and 50, respectively.

Cospectral graphs

There are many cospectral graphs, two of which are rank 4. One of these is $\text{VNO}^+_4(5)$ (see §3.3.2). The other is derived from the group generated by $x \mapsto x^{-1}$ and $x \mapsto ax^2$ on $F_{25} \cup \{ \infty \}$, where a is primitive in F_{25}^\times. It has orbits of sizes 2, 8, 16 on $\text{PG}(1,25)$ and gives rise to a partition of the complete graph on F_{25}^2 into three strongly regular graphs of valencies 48, 192, 384.

10.74 The $\text{U}_6(2)$ graph on 693 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (693,180,51,45)$. Its spectrum is $180^1 \ 15^{252} \ (-9)^{440}$. The full group of automorphisms is $U_6(2).S_3$ acting rank 3 with point stabilizer $2^3:S_3$ acting rank 3 and point stabilizer $2^{12}.(U_4(2) \times 3):2$. It is the collinearity graph of the $U_6(2)$ polar space ($\S 2.7$).

Maximal cliques have size 21, and are the maximal t.i. subspaces.

The smallest maximal cocliques have size 7 (a single orbit, with stabilizer $2 \times S_7$).

These can be seen by viewing $U_6(2)$ as $1^+ \times U_5(2)$ defined by the form $\sum_{i=1}^{7} x_i^2$ in F_4^7. It contains the maximal coclique $\{(1-c_i) | 1 \leq i \leq 7 \}$.

The largest maximal cocliques have size 27 (a single orbit, with stabilizer $[3]^6 : 2^3$). In particular, $U_6(2)$ does not contain an ovoid.
Regular sets

Examples of regular sets in \(\Gamma \) are obtained from subgroups \(H \) of \(G = \text{Aut} \Gamma \) with two orbits on the vertex set. We give degree \(d \) and nexus \(e \) for the smallest orbit.

<table>
<thead>
<tr>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>((U_5(2) \times 3) : 2)</td>
<td>672</td>
<td>165, 528</td>
<td>36</td>
<td>45</td>
<td>noniso. pt</td>
</tr>
<tr>
<td>(2^9 : L_3(4) : S_3)</td>
<td>891</td>
<td>21, 672</td>
<td>20</td>
<td>5</td>
<td>t.i. plane</td>
</tr>
<tr>
<td>(O_7(2) \times 2)</td>
<td>19008</td>
<td>63, 630</td>
<td>30</td>
<td>15</td>
<td>(\text{Sp}_6(2))</td>
</tr>
<tr>
<td>(U_4(3) : 2^2)</td>
<td>4224</td>
<td>126, 567</td>
<td>45</td>
<td>30</td>
<td>(NO_6^-(3))</td>
</tr>
<tr>
<td>(M_{22} : 2)</td>
<td>62208</td>
<td>231, 462</td>
<td>70</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

The action of \(M_{22} : 2 \) is rank 4 on the 231 pairs of a 22-set. The graph of valency 70 is the union of the triangular graph \(T(22) \) (valency 40) and the Cameron graph (valency 30). This situation arises in the \(\text{Fi}_{22} \) graph (§10.90), as the neighborhood of a point far from a 22-clique.

10.75 The Games graph

There is a unique strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (729, 112, 1, 20)\). Its spectrum is \(112^4 \cdot 616^1 \cdot 23 \). The full group of automorphisms is \(3^6 \cdot 2^2 \cdot L_3(4) \cdot 2 \) acting rank 4 with point stabilizer \(2 \cdot L_3(4) \cdot 2 \). Existence is due to Games [332]. Uniqueness to Bondarenko & Radchenko [90].

Construction

There is a unique 56-cap in PG\((5, 3)\) (that is, a set of 56 points, no three on a line) known as the Hill cap, see Hill [427, 429]. Take as vertices the points of \(AG(6, 3) \), adjacent when the connecting line hits the Hill cap at infinity.

Calderbank & Kantor [169] give the following explicit construction. Let \(e_\infty, e_0, e_1, e_2, e_3, e_4 \) be a basis of \(\mathbb{F}_3 \). A group \(2^3 : L_2(5) \) acts: the elements of \(2^3 \) are diagonal transformations \(\text{diag}(\pm 1, \ldots, \pm 1) \) of determinant 1, and \(L_2(5) \) acts by permuting the coordinates. Under this group the orbit of \(\langle (111100) \rangle \) has size 40, and that of \(\langle (111111) \rangle \) has size 16 in PG\((5, 3)\). The union of these two orbits is the Hill cap. It is contained in the elliptic quadric \(\sum x_i^2 = 0 \).

The stabilizer of a vertex \(x \) has orbit lengths \(1 + 112 + 112 + 504 \), where the second orbit of size 112 consists of the vertices \(z \) such that the line \(\langle x, z \rangle \) hits the elliptic quadric outside the Hill cap.

Since \(\lambda = 1 \), this graph satisfies the 4-vertex condition.

The regular sets in \(\Gamma \) that arise as the smallest orbit of a subgroup of \(\text{Aut} \Gamma \) with two orbits on the vertex set are sets with size \(u \), degree \(d \), and nexus \(e \), where \((u, d, e) = (81, 16, 12), (243, 22, 45), (243, 40, 36) \).
The graph $VO_6^-(3)$ is the unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (729, 224, 61, 72)$. Its spectrum is $224^1 \ 8^{504} \ (-19)^{224}$. The full group of automorphisms is $G = 3^6: 2.U_4(3): D_8$ acting rank 3 with point stabilizer $2.U_4(3): D_8$. The group G has subgroups $3^6: U_4(3): 4$ and $H = 3^6: 2.L_3(4): 2$ that also act rank 3.

The group H is not isomorphic to the automorphism group of the Games graph, but has a subgroup $3^6: 2.L_3(4)$ for which the edges of Γ split into the edge-disjoint union of two copies of the Games graph.

The maximal cliques in Γ have sizes 9 (a single orbit, stabilized by $3^2 < 3^6$). The maximal cocliques in Γ have sizes 7 (a single orbit, with stabilizer S_7), 9–19, 22, and 27 (a single orbit, with stabilizer $GO_5(3)$).

In the representation of Γ on the affine hyperplane $\sum x_i = 1$ in \mathbb{F}_7^9, with $u \sim v$ when $Q(v - u) = 0$ for $Q(x) = \sum x_i^2$, the set of unit vectors is a maximal 7-coclique.

Among the regular sets in Γ that arise as an orbit of a subgroup of $\text{Aut} \ \Gamma$ with two orbits on the vertex set are sets with size u, degree d, and nexus e, where $e = d + 19$ and $(u, d) = (81, 8), (243, 62), (324, 89)$, and where $e = d - 8$ and $(u, d) = (81, 32), (243, 80)$.

Let the tensor product of two graphs with adjacency matrices A and B be the graph with adjacency matrix $A \otimes B$. Then Γ contains regular sets with $(u, d, e) = (81, 32, 24)$ that induce $K_3 \otimes \Sigma$ where Σ is the Schl"{a}fli graph, and each 27-coclique is contained in a unique such regular set.

10.77 The rank 3 graphs on 961 vertices

There are precisely five rank 3 strongly regular graphs on $v = 961$ vertices. The parameters are as follows.

<table>
<thead>
<tr>
<th></th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>ρ_f</th>
<th>ρ_g</th>
<th>group</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>961</td>
<td>60</td>
<td>29</td>
<td>2</td>
<td>2^96^0</td>
<td>$(-2)^{960}$</td>
<td>$S_3 \times 2$</td>
<td>31×31</td>
</tr>
<tr>
<td>b</td>
<td>961</td>
<td>240</td>
<td>71</td>
<td>56</td>
<td>2^{2240}</td>
<td>$(-8)^{720}$</td>
<td>$31^2: 30.S_4$</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>961</td>
<td>360</td>
<td>139</td>
<td>132</td>
<td>19^{360}</td>
<td>$(-12)^{600}$</td>
<td>$31^2: 30:A_5$</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>961</td>
<td>480</td>
<td>239</td>
<td>240</td>
<td>15^{480}</td>
<td>$(-16)^{480}$</td>
<td>$31^2: 240: 2$ Peisert</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>961</td>
<td>480</td>
<td>239</td>
<td>240</td>
<td>15^{480}</td>
<td>$(-16)^{480}$</td>
<td>$31^2: 480: 2$ Peisert</td>
<td></td>
</tr>
</tbody>
</table>

In cases (b)–(e) the group has shape $G = 31^2: S$ with $Z(S) \simeq 30$.

Case (b) is from an action of S_4 on $PG(1, 31)$ with orbits of sizes 8, 24.

Case (c) is from an action of A_5 on $PG(1, 31)$ with orbits of sizes 12, 20.

Cf. §7.5.

The graph on \mathbb{F}_{961} where two elements are adjacent when they differ by a 4th power, is strongly regular with parameters $(v, k, \lambda, \mu) = (961, 240, 71, 56)$ and has a rank 4 group.

10.78 $NO_8^+(3)$

The graph $NO_8^+(3)$ is the unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (1080, 724, 126, 108)$. Its spectrum is $724^1 \ 126^{351} \ 108^{224} \ 243^{728}$. The full group of automorphisms is $G = 3^8: 2.O_8(3): S_8$ acting rank 3 with point stabilizer $2.O_8(3): S_8$. The group G has subgroups $3^8: O_8(3): 4$ and $H = 3^8: 2.O_8(3): 2$ that also act rank 3.

The group H is not isomorphic to the automorphism group of the Games graph, but has a subgroup $3^8: 2.O_8(3)$ for which the edges of Γ split into the edge-disjoint union of two copies of the Games graph.

The maximal cliques in Γ have sizes 8 (a single orbit, stabilized by $3^2 < 3^8$). The maximal cocliques in Γ have sizes 7 (a single orbit, with stabilizer S_7), 9–19, 22, and 27 (a single orbit, with stabilizer $GO_7(3)$).

In the representation of Γ on the affine hyperplane $\sum x_i = 1$ in \mathbb{F}_8^9, with $u \sim v$ when $Q(v - u) = 0$ for $Q(x) = \sum x_i^2$, the set of unit vectors is a maximal 7-coclique.

Among the regular sets in Γ that arise as an orbit of a subgroup of $\text{Aut} \ \Gamma$ with two orbits on the vertex set are sets with size u, degree d, and nexus e, where $e = d + 19$ and $(u, d) = (81, 8), (243, 62), (324, 89)$, and where $e = d - 8$ and $(u, d) = (81, 32), (243, 80)$.

Let the tensor product of two graphs with adjacency matrices A and B be the graph with adjacency matrix $A \otimes B$. Then Γ contains regular sets with $(u, d, e) = (81, 32, 24)$ that induce $K_3 \otimes \Sigma$ where Σ is the Schl"{a}fli graph, and each 27-coclique is contained in a unique such regular set.
There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (1080, 351, 126, 108)$. Its spectrum is $351^{1} 27^{260} (-9)^{819}$. The full group of automorphisms is $\text{PGO}_{8}^{+}(3) = \text{O}_{8}^{+}(3) : 2^2$ acting rank 3 with point stabilizer $2 \times (\text{O}_{7}(3) : 2)$. The local graph is the $\text{NO}_{7}^{-\perp}(3)$ graph described in §10.66.

Construction: nonisotropic points in the $\text{O}_{8}^{+}(3)$ geometry

This is the graph on one orbit of nonisotropic points in the $\text{O}_{8}^{+}(3)$ geometry, adjacent when orthogonal, i.e., when joined by an elliptic line, cf. §3.1.3.

Construction: split Cayley hexagons on $\text{O}_{7}(3)$

There are 2160 standard representations of $\text{G}_2(3)$ on the $\text{O}_{7}(3)$ polar space. The group $\text{SO}_{7}(3)$ acts transitively on that set, but its index 2 subgroup $\text{O}_{7}(3)$ acts with two orbits of length 1080. Then Γ is the graph on either of these orbits, two representations being adjacent when their line sets share exactly 28 lines (the 28 lines of a Hermitian spread in both), cf. §4.8.

Cliques, cocliques and chromatic number

The maximal cliques in Γ have size 8 and form a single orbit. They have stabilizer $\langle 2^8 : A_8 \rangle : 2^2$. For the quadratic form $q(x) = \sum x_i^2$, an 8-clique is given by $\{e_i | 1 \leq i \leq 8\}$.

Maximal cocliques have sizes 9–15, 18, 21 and 27. There are two orbits of 27-cocliques, reaching the Hoffman bound. One type is that of the sets $C(\pi)$ of vertices contained in π^\perp, where π is a totally isotropic plane. See §3.1.3.

Γ has chromatic number 40. A partition of the vertex set into 40 sets $C(\pi)$ is obtained by taking the 40 planes π in a totally isotropic solid.

Regular sets

Below a few examples of regular sets in Γ obtained from subgroups H of $\text{Aut}\Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a $([3^6] : 2) : (3^4 : \text{GL}_3(3))$</td>
<td>44800</td>
<td>27, 1053</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>b $[2^{10} \cdot 3^{12}]$</td>
<td>36400</td>
<td>108, 972</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>c $[2^8 \cdot 3^8]$</td>
<td>11793600</td>
<td>216, 864</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>d $3^6 : (2 \times (\text{PSL}_4(3) : 2))$</td>
<td>1120</td>
<td>351, 729</td>
<td>108</td>
<td>117</td>
</tr>
<tr>
<td>e $2 \times (\text{O}_7(3) : 2)$</td>
<td>1080</td>
<td>378, 702</td>
<td>117</td>
<td>126</td>
</tr>
<tr>
<td>f $[2^7 \cdot 3^8]$</td>
<td>23587200</td>
<td>432, 648</td>
<td>135</td>
<td>144</td>
</tr>
<tr>
<td>g $3 : ((3^4 : S_5) \times S_3)$</td>
<td>113218560</td>
<td>540, 540</td>
<td>171</td>
<td>180</td>
</tr>
<tr>
<td>h $\text{O}_8^+(2) : 2$</td>
<td>56862</td>
<td>120, 960</td>
<td>63</td>
<td>36</td>
</tr>
<tr>
<td>i S_9</td>
<td>54587520</td>
<td>240, 840</td>
<td>99</td>
<td>72</td>
</tr>
<tr>
<td>j $(2 \cdot \text{PSL}_3(4)) : 2^2$</td>
<td>122821920</td>
<td>240, 840</td>
<td>99</td>
<td>72</td>
</tr>
<tr>
<td>k $(A_9 : S_6) : 2^2$</td>
<td>19105632</td>
<td>360, 720</td>
<td>135</td>
<td>108</td>
</tr>
<tr>
<td>l $3 : (S_9 \times S_3)$</td>
<td>1528450560</td>
<td>360, 720</td>
<td>135</td>
<td>108</td>
</tr>
</tbody>
</table>

Example (a) induces a 27-coclique on the orbit of size 27. That orbit consists of the vertices in π^\perp, for a t.s. plane π.
Example (b) induces $3K_{4 \times 9}$ on the orbit of size 108. That orbit consists of the vertices in L^\perp, for a t.s. line L.

Example (d) induces the 3-coclique extension of $NO_6^+ (3)$ on the orbit of size 351. That orbit consists of the vertices in x^\perp, for a singular point x.

Example (e) induces the rank 3 graph $NO_7^+ (3)$ (with parameters $(378, 117, 36, 36)$) on the orbit of size 378. That orbit consists of the vertices in y^\perp for a nonsingular non-vertex point y.

Example (h) induces the rank 3 graph $NO_8^+ (2)$ (see §10.39) on the orbit of size 120.

$10.79 \ NO_8^- (3)$

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (1107, 378, 117, 135)$. Its spectrum is $378^1 9^{319} (-27)^{287}$. The full group of automorphisms is $PGO_8^- (3) = O_8^- (3) : 2$ acting rank 3 with point stabilizer $2 \times (O_7(3) : 2)$. The local graph is the $NO_7^- (3)$ graph described in §10.67.

Construction: nonisotropic points in the $O_8^- (3)$ geometry

This is the graph on one orbit of nonisotropic points in the $O_8^- (3)$ geometry, adjacent when orthogonal, i.e., when joined by an elliptic line, cf. §3.1.3.

Cliques and cocliques

The maximal cliques in Γ have size 7 and form a single orbit. They have stabilizer $2 \times (2^6 : S_7)$. For the quadratic form $q(x) = \sum_{i=1}^7 x_i^2 + 2x_8^2$, a 7-clique is given by $\{e_i \mid 1 \leq i \leq 7\}$.

Maximal cocliques have sizes 13–21, 23, 27, 30, 33 and 45 (with unique orbits for sizes 20, 21, 23, 30, 33, 45). A 45-coclique is found from a 5-coclique (ovoid) in L^\perp/L where L is a t.s. line. The cocliques of sizes 27, 30, 33, 45 are found from cocliques of size 9, 10, 11, 15 in $x^\perp/(x)$.

$10.80 \ The \ dodecad \ graph$

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (1288, 792, 476, 504)$. Its spectrum is $792^1 8^{1035} (-36)^{252}$. Its complement has parameters $(v, k, \lambda, \mu) = (1288, 495, 206, 180)$ and spectrum $495^1 35^{252} (-9)^{1035}$. The full group of automorphisms is M_{24} acting rank 3 with point stabilizer $M_{12} : 2$. This graph is the local graph of the $2^{11}M_{24}$ graph of valency 1288 on 2048 vertices.
10.81. $(1408, 567, 246, 216)$

Construction

Let C be the extended binary Golay code. It has 2576 words of weight 12 (dodecads), so 1288 complementary pairs of dodecads. Given one dodecad, there are 1, 495, 1584, 495, 1 dodecads at distance 0, 8, 12, 16, 24, respectively. Given one complementary pair of dodecads, there are 1, 495, 792 such pairs at distance 0, 8, 12, respectively. The graph Γ is obtained if we call two dodecad pairs adjacent if they have distance 12.

Cliques and cocliques

Maximum cliques have size 23 (since the $2^{11}.M_{24}$ graph of valency 1288 on 2048 vertices has maximum cliques of size 24).

Maximal cocliques have sizes 9–14, 16, 24. There is a unique orbit of 24-cocliques (of size 26565 = $759 \cdot 35$). Given an octad B and a partition $\{S,T\}$ of B into two 4-sets, one finds a 24-coclique by taking all dodecad pairs that meet B precisely in $\{S,T\}$.

10.81 The Conway graph on 1408 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (1408, 567, 246, 216)$. Its spectrum is $567^1 39^{252} (-9)^{1155}$. The full group of automorphisms is $U_6(2)$, acting rank 3 with point stabilizer $U_4(3).2^2$. The local graph is the distance 1-or-2 graph of the Aschbacher near hexagon, cf. [14], [122].

Construction

This is the graph on the lines on a fixed point in the Fi_{22} Fischer space, adjacent when they span a dual affine plane. It follows that the complementary graph is the collinearity graph of a partial linear space with lines of size 4.

Cliques and cocliques

Maximal cliques have sizes 8, 10–14, 16, 17, 22, 28, 32. There is a unique orbit of 32-cliques. An example is obtained by taking a vertex x and a point neighborhood p^\perp (of size $1 + 30$) in the near hexagon of which $\Gamma(x)$ is the distance 1-or-2 graph. Maximal cocliques have sizes 4, 8, 9, 11.
Supergraphs

This graph is the 2nd subconstituent of the Conway graph on 2300 vertices, (§10.88). It occurs as subgraph in the F_{22} graph on 14080 vertices (§10.94).

10.82 The Tits graph on 1600 vertices

There is a rank 4 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (1600,351,94,72)$ that has as full group of automorphisms the simple Tits group $\mathbb{F}_{4}(2)'$ with point stabilizer $L_{3}(3):2$ and suborbit lengths $1 + 351 + 312 + 936$. Its spectrum is $351^{1} 1^{31} 351^{(-9)^{1248}}$. This graph was found by Saouter [635]. It is a subgraph of the F_{22} graph on 14080 vertices.

Maximal cliques in Γ have sizes 6 (2 orbits), 7, 8 (2 orbits), 10, 12, 16. The independence number $\alpha(\Gamma)$ satisfies $37 \leq \alpha(\Gamma) \leq 40$.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $\mathrm{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>a</th>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{9}:5:4$</td>
<td>1755</td>
<td>320, 1280</td>
<td>95</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Generalized octagon

The 1755 subgraphs of size 320 and valency 95 found above are the points of a generalized octagon $\mathrm{GO}(2,4)$ (see p. 346). Two such 320-sets have distance 0, 1, 2, 3, 4 in this $\mathrm{GO}(2,4)$ when they have 320, 192, 96, 64, 60 vertices in common. The lines of $\mathrm{GO}(2,4)$ are triples of points on a common 192-set.

10.83 The Suzuki graph

There is a unique rank 3 strongly regular graph Σ with parameters $(v,k,\lambda,\mu) = (1782,416,100,96)$. Its spectrum is $416^{1} 20^{780} (-16)^{1001}$. The full group of automorphisms is $\mathrm{Suz}2$ acting rank 3 with point stabilizer $G_{2}(4).2$.

This is the largest member of the Suzuki tower: the local graph is the $G_{2}(4)$ graph on 416 vertices (§10.68), the local graph of that is the Hall-Janko graph on 100 vertices (§10.32), and the local graph of that is the $G_{2}(2)$ graph on 36 vertices (§10.14). All are rank 3 strongly regular graphs.

For a combinatorial construction, see [133].
Clique

Maximal cliques have size 6 (since the local graph has maximal cliques of size 5) and form a single orbit. The stabilizer is a nonmaximal $S_6 \times S_3$.

Each 6-clique K_6 determines a unique subgraph $3K_6$ stabilized by $S_6 \times S_3$. Each $3K_6$ determines a unique graph on 36 vertices of valency 20, union of two copies of $3K_6$, stabilized by $S_6 \times S_3 :: (S_3 \times S_3)$. Each $3K_6$ determines a unique graph on 36 vertices of valency 20, union of two copies of $3K_6$, stabilized by $A_6 :: (S_3 \times S_3)$. Each such graph determines a unique graph on 72 vertices of valency 26, union of two of the preceding, stabilized by a maximal subgroup of shape $((3^2 : 8) \times A_6)_2$ with vertex orbit sizes 72 + 270 + 1440.

Coclique

There is a single orbit of cocliques of size 66, reaching the Hoffman bound, see [133].

The stabilizer of one is $U_4(4) : 4$ with vertex orbit sizes 1 + 65 + 416 + 1300. The 1716 points outside a 66-coclique all have 16 neighbors inside, and we find a 3-(66,16,21) design.

The smallest maximal cocliques have size 6 and form a single orbit stabilized by $A_6 :: (S_3 \times S_3)$. Each vertex of the 1024-orbit has five neighbors in the $K_5 \times 4$, forming a clique. Each vertex of the 640-orbit has three neighbors in the $K_5 \times 4$, forming a coclique.

Nonedges and $K_{5 \times 4}$ subgraphs

The stabilizer of a nonedge is $S_4 :: (S_5 \times S_5)$ with orbit sizes 2 + 20 + 96 + 640 + 1024. The 96-orbit is the μ-graph. The graph induced on the 42-orbit is $K_{5 \times 4}$, pointwise stabilized by a subgroup S_4. Each vertex of the 1024-orbit has five neighbors in the $K_{5 \times 4}$, forming a clique. Each vertex of the 640-orbit has three neighbors in the $K_{5 \times 4}$, forming a coclique.

$K_{6,6}$ subgraphs

There is a single orbit of $K_{6,6}$ subgraphs. The stabilizer of one is $A_6 : 2_2 \times A_5$.2 with vertex orbit sizes 12 + 150 + 720 + 900.

Nonincidence graphs of $PG(2, 4)$

The stabilizer of a 4-clique is $L_3(2) : 2 \times S_4$. It is nonmaximal, contained in a maximal subgroup of shape $(A_4 \times L_3(4) : 2)_2$ with orbit sizes 42 + 480 + 1260. The graph induced on the 42-orbit is the diameter 3 bipartite point-line nonincidence graph of $PG(2, 4)$. Each vertex of the 480-orbit is adjacent to 14 vertices of A, and these induce the diameter 3 bipartite point-line nonincidence graph of $PG(2, 4)$. The pointwise stabilizer of A is A_4 of order 12.

Second subconstituent

$$
\begin{array}{cccccccc}
1 & 20 & 1 & 20 & 3 & 16 & 1 & 320 & 5 & 1024
\end{array}
$$

As we saw in §1.3.12, the distance 1-or-2 graph of the collinearity graph of a generalized hexagon of order s is strongly regular. For $s = 4$ this yields a strongly regular graph with parameters $(v, k, \lambda, \mu) = (1365, 340, 85, 85)$. Let Γ be the 2nd subconstituent of Σ. Then Γ is the distance-2 graph of the $GH(4, 4)$ of which the distance 1-or-2 graph has automorphism group $G_2(4, 2)$. The distance 1-or-2 graph of the dual $GH(4, 4)$ is the $Sp(4, 4)$ strongly regular graph.

Regular sets

Examples of regular sets in Σ are obtained from subgroups H of $G = \text{Aut} \Sigma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$U_3(4):4$</td>
<td>3592512</td>
<td>1 + 65, 416 + 1300</td>
</tr>
<tr>
<td>b</td>
<td>$M_{12}:2 \times 2$</td>
<td>2358720</td>
<td>792, 990</td>
</tr>
<tr>
<td>c</td>
<td>$2^{1+6}U_4(2):2$</td>
<td>135135</td>
<td>54, 1728</td>
</tr>
<tr>
<td>d</td>
<td>$3_2U_4(3).(2^2)_{133}$</td>
<td>22880</td>
<td>162, 1620</td>
</tr>
<tr>
<td>e</td>
<td>$3_2^2.(2(S_4 \times D_8))$</td>
<td>3203200</td>
<td>324, 1458</td>
</tr>
</tbody>
</table>

In case (a) the group H has 4 orbits. In case (c) the subgraph induced on the short orbit is the 2-coclique extension of the Schläfli graph (§10.10). In case (d) the subgraph induced on the short orbit is the $U_4(3)$ graph on 162 vertices (§10.48). Here H is the normalizer of a 3A element with 162 fixed points; this element permutes the nonfixed points in 540 triangles. In particular the long orbit is partitioned into triples of points with the same neighbors in the short orbit.

Triple cover

Soicher [664] showed that Σ has a distance-transitive triple cover $\tilde{\Sigma}$ with diagram

![Diagram](image)
on 5346 vertices. Pasechnik [601] showed that Σ and $\tilde{\Sigma}$ are the only two locally Γ graphs, if Γ is the $G_2(4)$ graph on 416 vertices.

10.84 $2^{11}.M_{24}$ on 2048 vertices with valency 276

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (2048, 276, 44, 36)$. Its spectrum is $276^1 20750 (-12)^{1288}$. The full group of automorphisms is $2^{11}.M_{24}$ acting rank 3 with point stabilizer M_{24}.

Construction

Let C be the extended binary Golay code. Take the 2048 cosets of C in the 23-space of even weight vectors of length 24, and call two cosets adjacent when they have distance 2.

This is the Delsarte dual of the valency 759 graph below.

Cliques

The local graph of Γ is the triangular graph $T(24)$. The maximal cliques fall into two orbits, that of cliques of size 24, which is the Hoffman bound, and that of maximal cliques of size 4. For example, the 24 cosets C and $C + e_1 + e_i$ ($2 \leq i \leq 24$) form a clique.
Cocliques
The independence number $\alpha(\Gamma)$ satisfies $72 \leq \alpha(\Gamma) \leq 84$.

Since Γ is the distance 1-or-2 graph of the coset graph of the perfect binary Golay code C, a coclique D is equivalent to a binary code of word length 23, size $|D| \cdot 2^{12}$ and minimum distance 3 that is a union of cosets of C. Four nonequivalent examples with $|D| = 72$ were found by Mogilnykh [754], Krotov, Jenrich [751] and Brouwer.

Regular sets
Among the regular sets in Γ that arise as an orbit of a subgroup of $\text{Aut} \Gamma$ with two orbits on the vertex set are sets with size u, degree d, and nexus e, where $e = d + 12$ and $(u, d) = (256, 24), (512, 60), (1024, 132)$, and where $e = d - 20$ and $(u, d) = (24, 23), (128, 36), (256, 52), (512, 84), (768, 116), (1024, 148)$.

10.85 $2^{11}.M_{24}$ on 2048 vertices with valency 759

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (2048, 759, 310, 264)$. Its spectrum is $759^1 55^{276} (-9)^{1771}$. Its complement $\bar{\Gamma}$ has parameters $(2048, 1288, 792, 840)$ and spectrum $1288^1 8^{1771} (-56)^{276}$. The full group of automorphisms is $2^{11}.M_{24}$ acting rank 3 with point stabilizer M_{24}. (Note that this $2^{11}.M_{24}$ is not isomorphic to the $2^{11}.M_{24}$ encountered for the valency 276 graph above.) This graph was found by Goethals & Seidel [355].

Construction
Let C be the extended binary Golay code. Take the 2048 cosets of $\{0, 1\}$ in C, and call two cosets adjacent when they have distance 8.

This graph is the Delsarte dual of the valency 276 graph above.

Subconstituents
The local graph of Γ is the distance 1-or-2 graph of the near polygon on the blocks of $S(5, 8, 24)$ (cf. §6.2.3). See also Cuypers [247].

The 2nd subconstituent of Γ is the complement of the dodecad graph (§10.80).

Cliques
The maximal cliques fall into 19 orbits, with maximal cliques having sizes 12, 13, 14, 16, 17, 22, 32. There are unique orbits of 32-cliques and 22-cliques. The stabilizer of a 32-clique is $2^{5+4}.A_8$ and has orbit lengths 32, 896, 1120. The maximal 31-cliques in the local graph are the point neighborhoods in the local near polygon. The stabilizer of a 22-clique is $M_{24}.S_3$ and has orbit lengths 1, 21, 168, 210, 280, 360, 1008. The maximal 21-cliques in the local graph corresponding to the fixed point are the sets of octads on a given triple of symbols.
Cocliques and 5-designs

The maximum-size cocliques were determined in Horiguchi et al. [442]. These have size 24, which is the Hoffman bound, and fall into two orbits. (If we arbitrarily pick representatives from the 24 cosets in a 24-coclique containing the zero coset, and replace 0’s by −1’s, we get a Hadamard matrix of order 24 that spans the code C. Up to equivalence, there are two such Hadamard matrices.) The stabilizers of the two 24-cocliques in \(M_{24} \) are \(PSL_2(23) \) and \(2 \times PGL_2(11) \), respectively, both acting transitively on the coclique.

Since the Hoffman bound holds with equality, each point outside a 24-coclique \(X \) is adjacent to 9 points inside. It is shown in loc. cit. that in both cases the 2024 blocks obtained in this way form a 5-(24,9,6) design. These two 5-designs are the supports of the words of minimum weight of the ternary quadratic residue codes (see [18]) and Pless symmetry codes (see [620]), both with parameters \([24,12,9]_3\). In the former case the group acts transitively on the set of blocks. In the latter case there are three orbits, of sizes \(2^{11} + 4^{10} + 13 \cdot 2^{10} \).

Construction: 24 + 2024

In both 5-(24,9,6) designs, any block meets \(n_i \) blocks in \(i \) points, with \((n_i)_{0 \leq i \leq 9} = (25, 0, 540, 480, 648, 270, 60, 0, 0, 1)\). If we start with one of these two designs \((X,\mathcal{B})\), and call two blocks adjacent when they meet in 3 or 5 points and a point adjacent to a block when it is in the block, we obtain the graph \(\Gamma \) again.

Regular sets

Among the regular sets in \(\Gamma \) that arise as an orbit of a subgroup of \(\text{Aut} \Gamma \) with two orbits on the vertex set are sets with size \(u \), degree \(d \), and nexus \(e \), where \(e = d + 9 \) and \((u,d) = (24,0), (128,39), (256,87), (288,99), (512,183), (768,279), (1024,375)\), and where \(e = d - 55 \) and \((u,d) = (256,143), (512,231), (1024,407)\).

10.86 The rank 3 graphs on 2209 vertices

There are precisely five rank 3 strongly regular graphs on \(v = 2209 \) vertices. The parameters are as follows.

<table>
<thead>
<tr>
<th></th>
<th>v</th>
<th>k</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(r^f)</th>
<th>s^g</th>
<th>group</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2209</td>
<td>92</td>
<td>45</td>
<td>2</td>
<td>45^2</td>
<td>(−2)^{2116}</td>
<td>S_{47} wr 2</td>
<td>47 × 47</td>
</tr>
<tr>
<td>b</td>
<td>2209</td>
<td>736</td>
<td>255</td>
<td>240</td>
<td>31^{736}</td>
<td>(−16)^{1472}</td>
<td>47^2 : 736 ; 2 cubes</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>2009</td>
<td>1104</td>
<td>551</td>
<td>552</td>
<td>23^{1104}</td>
<td>(−24)^{1104}</td>
<td>47^2 : 46.5_4</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>2009</td>
<td>1104</td>
<td>551</td>
<td>552</td>
<td>23^{1104}</td>
<td>(−24)^{1104}</td>
<td>47^2 : 552 ; 2 Peisert</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>2009</td>
<td>1104</td>
<td>551</td>
<td>552</td>
<td>23^{1104}</td>
<td>(−24)^{1104}</td>
<td>47^2 : 1104 : 2 Paley</td>
<td></td>
</tr>
</tbody>
</table>

In cases (b)–(e) the group has shape \(G = 47^2 : S \) with \(Z(S) \simeq 46 \).

Graph (c) has half-case parameters, but is not self-complementary.

Cases (c), (d), (e) correspond to an action of \(S_4, D_{24} \) and \(D_{48} \) on \(PG(1,47) \) with two orbits of size 24.

10.87 \(D_{5,5}(2) \)
There is a unique rank 3 strongly regular graph $Γ$ with parameters $(v, k, λ, µ) = (2300, 891, 378, 324)$. Its spectrum is $891^1 \ 55^{186} (-5)^{2108}$. The full group of automorphisms is $O^+_{10}(2)$ acting rank 3 with point stabilizer $2^{10} : L_2(2)$.

This graph is the graph $D_{5,5}(2)$ of the t.s. 5-spaces of one kind in the polar geometry $O^+_{10}(2)$, cf. §3.2.3. The local graph is the 2-clique extension of the Grassmann graph $A_{4,2}(2)$ (a.k.a. $J_2(5, 2)$) of the lines in $PG(4, 2)$. The $µ$-graphs are Grassmann graphs $A_{3,2}(2)$ (a.k.a. $J_2(4, 2)$) of the lines in $PG(3, 2)$, adjacent when intersecting, cf. §10.13.

The maximal cliques have sizes 15 or 31 (one orbit each) and are the shadows of objects of types 2 or 4. There are maximal cocliques of size 33. It is not known whether $Γ$ contains larger cocliques. The Hoffman bound is 36.

The set of vertices containing any fixed point is a regular set of size 135, degree 70 and nexus 15 stabilized by $2^8 : O^+_{8}(2)$. A regular set of size 945, degree 160 and nexus 105 is stabilized by a subgroup S_{10}.

10.88 The Conway graph on 2300 vertices

There is a unique rank 3 strongly regular graph $Γ$ with parameters $(v, k, λ, µ) = (2300, 891, 378, 324)$. Its spectrum is $891^1 \ 55^{186} (-5)^{2108}$. The full group of automorphisms is Co_2 acting rank 3 with point stabilizer $O^+_{10}(2) : 2$.

Construction in the Leech lattice

Let $Λ$ be the Leech lattice as defined before. Fix $z = \frac{1}{\sqrt{8}} (4^2 \cdot 0^{22})$ and look at all pairs x, y of lattice vectors of norm 4 with $x + y = z$. Omitting the $\frac{1}{\sqrt{8}}$, these are 44 pairs $(40 (\pm 4)0^{21}), (04 (\pm 4)0^{21})$, 1024 pairs $(31 (\pm 1)22), (13 (\mp 1)22)$, and $77 \cdot 32 / 2 = 1232$ pairs $(22 (\pm 2)0^{16}), (22 (\mp 2)0^{16})$, altogether 2300 pairs. Call two pairs adjacent when the inner product of (arbitrarily chosen) representatives is even. This yields $Γ$.

1st subconstituent

The 1st subconstituent of $Γ$ is the distance 1-or-2 graph of the near polygon that is the dual polar space for $U_6(2)$.

2nd subconstituent

The 2nd subconstituent of $Γ$ is the Conway graph on 1408 vertices, cf. §10.81.
Climates and coclimates

Maximal cliques have sizes 11, 14, 16, 23, 28, 44. There are unique orbits of \(m \)-coclimates for \(m = 11, 28, 44 \). A 44-clique can be seen in the Leech lattice description as the set of pairs containing the vectors \(\frac{1}{\sqrt{8}} (40 (\pm 4) 0 21) \). In the 1st subconstituent one sees a 43-clique as a point neighborhood \(p \perp \) in the \(U_6(2) \) polar graph.

Maximal coclimates have sizes 5, 9, 10, 12. Since the 2nd subconstituent is a rank 3 graph, \(G \) is transitive on 3-coclimates.

Line system and norm 3 vectors

The above construction in \(\Lambda \) was centered at \(\frac{1}{2} z \). Shifting by \(-\frac{1}{2} z \) yields a set \(\Sigma \) of 4600 vectors of norm 3 with mutual inner products \(3, 1, 0, -1 \). The system is tetrahedrally closed: if \(u, v, w \in \Sigma \) have mutual inner products \(-1 \), then \(x = -u - v - w \in \Sigma \) and \(u, v, w, x \) have mutual inner products \(-1 \). The graph \(\tilde{\Gamma} \) on these 4600 vectors, adjacent when the inner product is \(-1 \), is a double cover of \(\Gamma \). This graph is locally the above near polygon on 891 vertices, and in the local graph distances 0, 1, 2, 3 correspond to inner product 3, \(-1 \), 1, 0. That explains why \(\tilde{\Gamma} \) is locally a near polygon, and \(\Gamma \) is locally the distance 1-or-2 graph of this near polygon.

See also Cuypers [247].

\[10.89\] The rank 3 graphs on 2401 vertices

There are precisely ten rank 3 strongly regular graphs on \(v = 2401 \) vertices. The parameters are as follows.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(r')</th>
<th>(s'^\theta)</th>
<th>group</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>96</td>
<td>47</td>
<td>2</td>
<td>47^{56}</td>
<td>((-2)^{204})</td>
<td>(S_{10} \wr 2)</td>
</tr>
<tr>
<td>b</td>
<td>240</td>
<td>59</td>
<td>20</td>
<td>44^{240}</td>
<td>((-5)^{2160})</td>
<td>(7^4 : 6.O_5(3))</td>
</tr>
<tr>
<td>c</td>
<td>300</td>
<td>5</td>
<td>42</td>
<td>6^{2100}</td>
<td>((-43)^{300})</td>
<td>(7^4 : 6.PF_{12}(49))</td>
</tr>
<tr>
<td>d</td>
<td>384</td>
<td>89</td>
<td>56</td>
<td>41^{184}</td>
<td>((-8)^{2016})</td>
<td>(7^4 : (GL_2(7) \circ GL_2(7)) : 2)</td>
</tr>
<tr>
<td>e</td>
<td>480</td>
<td>119</td>
<td>90</td>
<td>39^{480}</td>
<td>((-10)^{1920})</td>
<td>(7^4 : 480 : 4)</td>
</tr>
<tr>
<td>f</td>
<td>480</td>
<td>119</td>
<td>90</td>
<td>39^{480}</td>
<td>((-10)^{1920})</td>
<td>(7^4 : 6 \cdot (2^4 \cdot 5))</td>
</tr>
<tr>
<td>g</td>
<td>720</td>
<td>229</td>
<td>210</td>
<td>34^{220}</td>
<td>((-15)^{1680})</td>
<td>(7^4 : 6 \cdot 5)</td>
</tr>
<tr>
<td>h</td>
<td>960</td>
<td>389</td>
<td>380</td>
<td>29^{960}</td>
<td>((-20)^{1440})</td>
<td>(7^4 : 48 \cdot 5^2)</td>
</tr>
<tr>
<td>i</td>
<td>1200</td>
<td>599</td>
<td>600</td>
<td>24^{1200}</td>
<td>((-25)^{1200})</td>
<td>(7^4 : 1200 : 4)</td>
</tr>
<tr>
<td>j</td>
<td>1200</td>
<td>599</td>
<td>600</td>
<td>24^{1200}</td>
<td>((-25)^{1200})</td>
<td>(7^4 : 600 : 4)</td>
</tr>
</tbody>
</table>

We discuss the cases b, f, g and h more in detail below.

A. Valency 240

There is a unique rank 3 strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (2401, 240, 59, 20) \). Its spectrum is \(240^1 \cdot 44^{240} \cdot (-5)^{2160} \). The full group of automorphisms is \(G = \mathbb{Z}^4 : S \) acting rank 3 with point stabilizer \(S = 6.O_5(3) \).

For a construction, see p. 144.
Cliques and cocliques

Maximal cliques in Γ have sizes 7–9, a single orbit for each size. Maximum cocliques have size 49, attaining the Hoffman bound. Among these are planes in the underlying $\text{AG}(4,7)$. It follows that $\chi(\Gamma) = 49$.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7^4 : (3 \times 2.S_4)$</td>
<td>52920</td>
<td>49, 2352</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>$7^2 : (3 \times \text{SL}_2(3)) \times 7.6$</td>
<td>2520</td>
<td>343, 2058</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>$3 \times (7^3 : (2 \times (3^{2+1} : Q_8 : 3)))$</td>
<td>280</td>
<td>343, 2058</td>
<td>72</td>
<td>28</td>
</tr>
</tbody>
</table>

Case (a): these are the affine planes which are maximum cocliques.

Case (b): these are the affine solids with at infinity a plane that intersects the copolar space $H\text{Sp}_4(3)$ in exactly five points (see p. 144).

Case (c): these are the affine solids with at infinity a plane that intersects the copolar space $H\text{Sp}_4(3)$ in the twelve points of a dual affine plane $\text{AG}(2,3)^*$ (see p. 144).

B. Valency 480

There are precisely two rank 3 strongly regular graphs with parameters $(v, k, \lambda, \mu) = (2401, 480, 119, 90)$. Their spectrum is $480^1 \lambda 39^{480} (-10)^{1920}$.

The first is the Van Lint-Schrijver graph on \mathbb{F}_{2401} where two vertices are adjacent when their difference is a fifth power. See §7.3.1. The full group is $7^4 : 480 : 4$.

Let us call the second graph Γ. Its full group of automorphisms is $G = 7^4 : S$ with point stabilizer $S = 6.(2^4 : S_5)$.

Construction

The projective space $\text{PG}(3,7)$ has a unique spread with full automorphism group of order 1920 (namely $2^4 : S_5$). This group has two orbits on the spread, of sizes 10 + 40, and on the space, of sizes 80 + 320. Construct Γ by taking \mathbb{F}_4^2 as vertex set and joining two vertices when the connecting line meets the orbit of size 80 at infinity.

A classification of all spreads of $\text{PG}(3,7)$ was given by Mathon & Royle [551] and by Charnes & Dempwolff [193]. The translation plane corresponding to our spread was found by Mason & Ostrom [541]. A nice description of the spread was given by Mason & Shult [542]. Via the Klein correspondence it corresponds to the ovoid in \mathbb{F}_7^5 provided with the quadratic form $Q(x) = x_1^2 + \cdots + x_5^2 - x_6^2$ given by the 10 + 40 points of shapes $(00001; 1)$ or $(00022; 1)$, where the $2^4 : S_5$ acts on the first five coordinates by permuting them or changing an even number of signs.
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

Clique and coclique

Maximal cliques in Γ have sizes 6, 8, 9, 17, 49, a single orbit for the last three sizes. Maximum cocliques have size 49, attaining the Hoffman bound. Among these are planes in the underlying $\mathbb{AG}(4,7)$. It follows that $\chi(\Gamma) = \chi(\bar{\Gamma}) = 49$.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times (7^2: (3 \times 2.S_4))$</td>
<td>1960</td>
<td>49, 2352</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>$7^2: (3 \times 2.S_4)$</td>
<td>3920</td>
<td>49, 2352</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>$7^2: (3 \times Q_{16})$</td>
<td>11760</td>
<td>49, 2352</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>$7^2: 6: D_{12}$</td>
<td>7840</td>
<td>49, 588, 1764</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>$7^3: 6^2$</td>
<td>2240</td>
<td>343, 2058</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>$7^2: (3 \times (Q_8: 2.S_4))$</td>
<td>490</td>
<td>49, 2352</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>$7^3: (6 \times \text{SL}_2(3))$</td>
<td>560</td>
<td>343, 2058</td>
<td>102</td>
<td>63</td>
</tr>
</tbody>
</table>

Cases (a), (b) and (c): These are the affine planes which are maximum cocliques; the lines at infinity of these planes correspond to the points of shapes $(0,0,0,2,2;1)$, $(0,3,3,3,3;1)$ and $(0,0,2,3,3;1)$, respectively.

Case (d): These are the affine solids containing a maximum coclique.

Case (e): These are the affine planes which are the maximum cliques; they have a line at infinity corresponding to a point of shape $(0,0,0,0,1;1)$.

Case (f): These are the affine solids containing a maximum clique.

The fourth line of the table shows another type of maximum cocliques: affine planes with at infinity a line corresponding to a point of shape $(1,1,1,3,3;0)$. Their stabilizer has three orbits on the vertex set.

C. Valency 720

There is a unique rank 3 strongly regular graph Γ with parameters $(v,k,\lambda,\mu) = (2401,720,229,210)$. Its spectrum is $720^1 34^{720} (-15)^{1680}$. The full group of automorphisms is $G = 7^4 : S$ acting rank 3 with point stabilizer $S = 6.S_7$.

Construction

A construction is found by taking $1^\perp / (1)$ in \mathbb{F}^7_7 provided with the quadratic form $q(x) = \sum x_i^2$. The isotropic vectors of shape $(1,2,4,0,0,0,0)$ define 70 points of the $\mathcal{O}_3(7)$ generalized quadrangle which, under (inverse) Klein correspondence, correspond to a set \mathcal{L} of 70 lines of the $Sp_4(7)$ generalized quadrangle with the property that every point of the quadrangle is contained in 0 or 2 such lines. Let \mathcal{P}_i be the set of points contained in exactly i members of \mathcal{L}, $i = 0,2$. With the point set \mathcal{P}_0 at infinity of \mathbb{F}^7_7, we find Γ.

The point set \mathcal{P}_2 is doubly covered by the members of \mathcal{L}. It is also 6-fold covered by the members of a set \mathcal{L}' of 210 nonsingular lines, forming a single orbit under the action of S_7, and which can be found as follows. The eight
points (1-spaces) of \mathbb{F}_7^3 obtained by applying the symmetric group S_4 on the first four coordinates of the vector $(1, 2, 4, 0, 0, 0, 0)$ correspond under inverse Klein correspondence to the eight lines of a regulus in $\mathbb{P}G(3, 7)$. The opposite regulus contains exactly two singular lines (corresponding to $(0, 0, 0, 1, 2, 4)$ and $(0, 0, 0, 1, 4, 2)$); the other six lines consist of points of \mathcal{P}_2 only and are nonsingular with respect to the $\text{Sp}_4(7)$ geometry. Letting S_7 act, we obtain $6 \cdot \binom{4}{1} = 210$ nonsingular lines covering \mathcal{P}_2.

The sets \mathcal{P}_0 and \mathcal{P}_2 are complementary (exceptional) two-character sets of $\mathbb{P}G(3, 7)$; planes intersect \mathcal{P}_0 in either 15 (the perp of a point in \mathcal{P}_2) or 22 (the perp of a point in \mathcal{P}_0) points.

Clique and coclique

Maximal cliques in Γ have sizes 6–10, 12, 17, a single orbit for sizes 6, 12, 17. Maximum cocliques have size 49, attaining the Hoffman bound. There are two orbits. These cocliques are the planes in the underlying $\text{AG}(4, 7)$ with a member of \mathcal{L} (first orbit) or \mathcal{L}' (second orbit) at infinity. It follows that $\chi(\Gamma) = 49$.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut } \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$3 \times (7^2 : (3 \times 2.S_4))$</td>
<td>3430</td>
<td>49, 2352</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>$7^2 : (3 \times 2.S_4)$</td>
<td>10290</td>
<td>49, 2352</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>$7^3 : (3 \times 6 \times S_4)$</td>
<td>1960</td>
<td>343, 2058</td>
<td>90</td>
</tr>
<tr>
<td>d</td>
<td>$7^{2+2} : 6^2$</td>
<td>840</td>
<td>343, 2058</td>
<td>132</td>
</tr>
</tbody>
</table>

Cases (a), (b): these are the affine planes with a member of \mathcal{L} (resp. \mathcal{L}') at infinity.

Cases (c), (d): these are the affine solids with the perp of a point in \mathcal{P}_2 (resp. \mathcal{P}_0) at infinity.

D. Valency 960

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (2401, 960, 389, 380)$. Its spectrum is $960^1, 29^{960} (-20)^{1440}$. The full group of automorphisms is $G = 7^4 : S$ acting rank 3 with point stabilizer $S = 48.S_5$.

Construction

The group $\text{PSL}_2(49)$ has a maximal subgroup A_5 with orbit lengths 20 + 30 on $\mathbb{P}G(1, 49)$ (cf. §7.5). In $\text{PSL}_2(49)$ the stabilizer of this partition is S_5. Take F_4^2 with the orbit of length 20 at infinity.
Cliques and cocliques

Maximal cliques in Γ have sizes 7–20, 22, 49, a single orbit for sizes 18–20, 22, and two orbits for size 49. Maximum cocliques have size 49. There are two orbits. The (co)cliques of size 49 are lines and Baer subplanes of $AG(2, 49)$, and attain the Hoffman bound. It follows that $\chi(\Gamma) = \chi(\Gamma) = 49$.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = Aut \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times (7^2 : (3 \times QD_{42}))$</td>
<td>1470</td>
<td>49, 2352</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>$7^3 : (6 \times 2^4)$</td>
<td>1680</td>
<td>343, 2058</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>$3 \times (7^2 : (3 \times QD_{42}))$</td>
<td>980</td>
<td>49, 2352</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td>$7^2 : (3 \times 2.S_4)$</td>
<td>1960</td>
<td>49, 2352</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td>$7^1 : 6^2$</td>
<td>1120</td>
<td>343, 2058</td>
<td>162</td>
<td>133</td>
</tr>
</tbody>
</table>

Case (a): these are the maximum cocliques that are affine lines of $AG(2, 49)$.
Cases (c), (d): these are the maximum cliques corresponding to the affine lines and the affine Baer subplanes of $AG(2, 49)$, respectively.

For (b) and (e), view F_{29}^3 as F_7^3. The orbit of A_5 of length 20 becomes a set S of 20 lines (partial spread) at infinity of an $AG(4, 7)$. Then (b) are the affine solids of $AG(4, 7)$ with at infinity a plane that does not contain any member of S, whereas (e) are the affine solids of $AG(4, 7)$ with at infinity a plane that contains a unique member of S.

10.90 The Fi_{22} graph

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (3510, 693, 180, 126)$. Its spectrum is $693^1 63^{129} (-9)^{3080}$. The full group of automorphisms is $G = Fi_{22}.2$ acting rank 3 with point stabilizer $2.U_6(2).2$.

The local graph is the polar graph for $U_6(2)$ (§10.74). It follows from PASECHNIK [602] and DE BRUYN [261] that Γ is the unique connected graph that is locally the polar graph for $U_6(2)$.

The μ-graphs of Γ are $NO_6^\mu (3)$ graphs (see §10.41).

Cliques

The group G is transitive on triangles. Maximal cliques all have size 22, and form a single orbit. The stabilizer in G of a maximal clique M is $2^{10}.M_{22}.2$ with three orbits of sizes 22, 2464, 1024. Each vertex in the second orbit has 6 neighbors in M and each such 6-set occurs 32 times in this way. These 6-sets form the Steiner system $S(3, 6, 22)$. Diagram:
The subgraph induced on the 1024 vertices nonadjacent to \(M \) is distance-transitive with intersection array \(\{231, 160, 6; 1, 48, 210\} \), the distance-2 graph of the coset graph of the truncated Golay code (cf. [123], §11.3F).

Cocliques

The smallest maximal cocliques have size 9 and come in two kinds. The first kind consists of the affine subplanes \(AG(2, 3) \) of the Fischer space. Each such 9-coclique is contained in a unique \(K_{9,9,9} \) stabilized by a maximal subgroup \(3_+^{1+6} \cdot 2^{3+4} : 3^2 \cdot 2^2 \) of \(G \). The second kind consists of the 9-cocliques each contained in a unique subgraph \(T(10) \) stabilized by a maximal subgroup \(S_{10} \).

Enright [307] gives a construction of \(F_3^{22} \) in terms of this \(S_{10} \).

For the independence number of \(\Gamma \) we have \(33 \leq \alpha(\Gamma) \leq 45 \).

Regular sets

Examples of regular sets in \(\Gamma \) are obtained from subgroups \(H \) of \(G = \text{Aut} \Gamma \) with two orbits on the vertex set. We give degree \(d \) and nexus \(e \) for the smallest orbit.

<table>
<thead>
<tr>
<th></th>
<th>(H)</th>
<th>index</th>
<th>orbitlengths</th>
<th>(d)</th>
<th>(e)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(O_7^+(2) : (S_3 \times 2))</td>
<td>61776</td>
<td>360, 3150</td>
<td>63</td>
<td>72</td>
<td>(3NO_7^+(2))</td>
</tr>
<tr>
<td>b</td>
<td>(O_7(3))</td>
<td>28160</td>
<td>351, 3159</td>
<td>126</td>
<td>63</td>
<td>(NO_7^{−\perp}(3))</td>
</tr>
</tbody>
</table>

Under (a), the graph induced on the orbit of size 360 is the disjoint union of three copies of \(NO_7^+(2) \).

10.91 The Rudvalis graph

There is a unique rank 3 strongly regular graph \(\Gamma \) with parameters \((v, k, \lambda, \mu) = (4060, 1755, 730, 780) \). Its spectrum is \(1755^1 \cdot 15^{3276} \cdot (-65)^{783} \). The full group of automorphisms is \(\text{Ru} \) acting rank 3 with point stabilizer \(^2F_4(2) \). Construction of graph and group is due to Conway & Wales [218], after Rudvalis provided evidence for the existence of both.
Construction

Coolaet [220] gave a construction starting with the Hoffman-Singleton graph Σ. Let Σ have adjacency matrix A. Then A has spectrum $7^1 \ 2^{28} \ (-3)^{21}$, and $E = \frac{1}{27}(A - 7I)(A + 3I) = \frac{1}{3}(5A + 15I - J)$ is the projection on the 28-dimensional eigenspace of A. Let e_x be the unit vector corresponding to vertex x of Σ, and define $T = E \sum_{x \in T}e_x$ for any set T of vertices of Σ. One has $(\bar{x}, \bar{y}) = E_{xy}$, which is $\frac{16}{27}, \frac{4}{27}, \frac{1}{27}$ when $x = y, x \sim y,$ and $x \not\sim y$, respectively. This works over any field of characteristic different from 5. Look at this representation over F_2. Then $(\bar{x}, \bar{y}) = 0$ if $x = y$ or $x \sim y$, and $(\bar{x}, \bar{y}) = 1$ if $x \not\sim y$. Let the 175 + 1260 + 2625 = 4060 vertices of Γ be the 175 edges, the 1260 pentagons, and the 2625 hexads of Σ, where a hexad is the complement of a 4-coclique inside a Petersen subgraph. Two distinct vertices S,T of Γ are adjacent when $(\bar{S}, \bar{T}) = 0$. This yields the Rudvalis graph.

Local graph

The $2_{F_2}(2)$ generalized octagon has the above diagram. The local graph of the Rudvalis graph is the distance 1-or-2-or-3 graph of this generalized octagon.

A generalized octagon $GO(s,t)$ (with lines of size $s+1$ and $t+1$ lines on each point), has eigenmatrix

$$P = \begin{pmatrix} 1 & s(t+1) & s^2t(t+1) & s^3t^2(t+1) & s^4t^3 \\ 1 & s - 1 + \sqrt{2st} & (s-1)\sqrt{2st} + st - s & -s\sqrt{2st} + s^2t - st & -s^3t \\ 1 & s - 1 - \sqrt{2st} & -(s-1)\sqrt{2st} + st - s & s\sqrt{2st} + s^2t - st & -s^3t \\ 1 & -t - 1 & t^2 + t & -t^2 - t^3 & t^3 \end{pmatrix}$$

so that its distance-4 matrix has fewer eigenvalues than the distance-1 matrix, and the latter cannot be a polynomial in the former. In particular, in our case $GO(2,4)$ the distance 1-or-2-or-3 graph has spectrum $730^1 \ 15^{1026} \ (-17)^{650} \ (-65)^{78}$. Does it determine the generalized octagon? The answer is yes, as one sees combinatorially (or from the group). There are 2925 27-cliques, corresponding to the 2925 lines of the generalized octagon.

Cliques

The largest cliques in Γ have size 28, and there are 424125 of them, forming a single orbit. The stabilizer of one is $2^{3+8} : L_3(2)$ with vertex orbit sizes 28 + 448 + 3584. An example is found by picking a vertex ∞, and in its local generalized octagon a line and the 24 points adjacent to it. The stabilizer of a 28-clique is transitive on the 28 vertices. Each vertex outside a 28-clique is adjacent to 12 vertices inside.

Cocliques

The largest cocliques in Γ have size 28, and there are 24128000 of them, forming a single orbit. The stabilizer of one is $U_3(3)$ with vertex orbit sizes 28 + 63 + 189 + 756 + 1008 + 2016. The stabilizer of the orbit of size 2016 is a maximal subgroup $(2^6 : U_3(3)) : 2$ of Ru with orbit sizes 252 + 1792 + 2016.
µ-graphs

Let x, y be nonadjacent vertices and let M be the set of common neighbors. Then $|M| = \mu = 780$. Consider M as a subset of the generalized octagon on the neighbors of x. Every line meets M in 0 or 2 points, so M is a hyperplane complement, where the hyperplane has 975 points and 975 lines, 3 points/line and 3 lines/point. In the Rudvalis graph, these µ-graphs are disconnected, and have two connected components of size 390 each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \, \Gamma$ with two orbits on the vertex set. Also the three orbits of subgroups $(2^6 : U_3(3)) : 2$ are regular sets. We give degree d and nexus e for the smallest orbit.

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a $(2^2 \times \Sz(8)) : 3$</td>
<td>417600</td>
<td>1820, 2240</td>
<td>795</td>
<td>780</td>
</tr>
<tr>
<td>b $(2^6 : U_3(3)) : 2$</td>
<td>188500</td>
<td>252, 1792+2016</td>
<td>123</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1792, 252+2016</td>
<td>783</td>
<td>768</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2016, 252+1792</td>
<td>879</td>
<td>864</td>
</tr>
</tbody>
</table>

10.92 $2^{12}.\text{HJ}.S_3$ on 4096 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (4096, 1575, 614, 600)$. Its spectrum is $1575^{1} 39^{1575} (-25)^{2520}$. The full group of automorphisms is $2^{12} : (3 \times \text{HJ}) : 2$ with point stabilizer $(3 \times \text{HJ}) : 2$.

It arises because HJ, acting on PV for $V = F_4^6$ via $\text{HJ} < G_2(4) < \text{P}Sp_6(4)$, has orbits of sizes 525 and 840 on the 1365 points ([517]), giving two-character sets.

Construction

The dual Ω of the Cohen-Tits near octagon is a geometry with 525 points and 315 lines. It is fully embedded in the generalized hexagon $G_2(4)$, which has an embedding in the polar space $\text{Sp}_6(4)$, which in turn is embedded in the projective space $PG(5, 4)$. The automorphism group $\text{HJ} : 2$ of Ω acts transitively on Ω and on its complement in $G_2(4)$. Let V be a 6-dimensional vector space over F_4 with $PV = PG(5, 4)$. Then Γ is the graph on the vectors of V, adjacent when their difference belongs to Ω.

As a set of 525 points, Ω is a two-character set of $PG(5, 4)$. Taking perps with respect to the symplectic form associated to $\text{Sp}_6(4)$, the perp of a point in Ω intersects Ω in 141 points and the perp of a point outside Ω has 125 points in common with Ω.

Maximal cliques and cocliques

The maximal cliques in Γ have sizes 7–14, 16, 18, 20, 24, 25, 64 with unique orbits for sizes 20, 24, 25, 64. The Hoffman bound is 64, and 64-cliques have
stabilizer $2^6 : G_2(2)$. These arise as vector spaces over \mathbb{F}_2 in V whose 1-spaces (viewed as vector lines over \mathbb{F}_4) belong to a fixed subhexagon of Ω isomorphic to the split Cayley hexagon $G_2(2)$ (Ω has 100 such subhexagons, which can be taken as the vertices of the Hall-Janko graph on 100 vertices, see §10.32).

Maximum cocliques have size 40 and fall into three orbits with stabilizers of orders 30, 50, and 150.

Regular sets

Among the regular sets in Γ that arise as an orbit of a subgroup of $\text{Aut} \, \Gamma$ with two orbits on the vertex set are sets with size u, degree d, and nexus e, where $e = d + 18$ and $(u, d) = (81, 0)$, $(2187, 468)$, and where $e = d - 39$ and $(u, d) = (64, 63)$, $(256, 135)$, $(1024, 423)$, $(1536, 615)$, $(1792, 711)$, $(2048, 807)$.

10.93 The $3^8 \cdot 2^{1+6} . O_6^- (2).2$ graph on 6561 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (6561, 1440, 351, 306)$. Its spectrum is $1440^1 \cdot 1440^1 \cdot 351^1 \cdot 306^1 \cdot 5120^1 \cdot 1134^1$. The full group is $3^8 : 2^{1+6} . O_6^- (2).2$, acting rank 3 with point stabilizer $2^{1+6} . O_6^- (2).2$.

For a construction, see p. 144.

Maximum cliques have size 81 (a single orbit); they are subspaces $AG(3, 4)$. Maximum cocliques have size 81.

Regular sets

Among the regular sets in Γ that arise as an orbit of a subgroup of $\text{Aut} \, \Gamma$ with two orbits on the vertex set are sets with size u, degree d, and nexus e, where $e = d + 25$ and $(u, d) = (256, 75)$, $(512, 175)$, $(1024, 375)$, $(1536, 575)$, $(2048, 775)$, and where $e = d - 39$ and $(u, d) = (64, 63)$, $(256, 135)$, $(1024, 423)$, $(1536, 615)$, $(1792, 711)$, $(2048, 807)$.
10.94 The Fi_{22} graph on 14080 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (14080, 3159, 918, 648)$. Its spectrum is $3159^1 279^{429} (-9)^{13650}$. The full group of automorphisms is $G = \text{Fi}_{22}$ acting rank 3 with point stabilizer $O_7(3)$. (The group G has two conjugacy classes of subgroups of index 14080 isomorphic to $O_7(3)$, merged in Fi_{22}. One of these has orbits of sizes 1, 3159, and 10920 on its own conjugacy class, and 364, 1080, and 12636 on the other.)

Construction

This is the graph on the lines on a fixed point in the Fi_{23} Fischer space, adjacent when they span a dual affine plane. It follows that the complementary graph is the collinearity graph of a partial linear space with lines of size 4.

The Rudvalis-Hunt design

Rudvalis and Hunt (cf. [183] or [621], p. 112) observed that the design of which the points are the subgroups in one conjugacy class of subgroups $O_7(3)$ and the blocks the subgroups in the other conjugacy class, incident when one lies in an orbit of size 364 or 1080 of the other, is a square $2-(14080,1444,148)$ design. See also [280].

Maximal cliques and cocliques

The largest cliques have size 64. They form a single orbit, and the stabilizer of one is a maximal subgroup $2^6 : \text{Sp}_6(2)$ with orbits of lengths 64, 5376, and 8640. Maximal cliques have sizes 10–14, 16, 18, 20, 22, 25, 28, 64.

The largest cocliques have size 40, reaching the Hoffman bound. There are several nonequivalent examples. One is invariant under a group $3^{3+3} : L_3(3)$.

1408-vertex subgraphs

Γ has 3510 subgraphs isomorphic to the Conway graph on 1408 vertices (§10.81). Each is fixed by a Fischer transposition. The stabilizer of one in G is a nonsplit extension $2.U_6(2)$. Each vertex outside such a subgraph has 288 neighbors inside. Distinct such subgraphs meet in 112 or 256 vertices. The graph with these 3510 subgraphs as vertices, adjacent when they have 256 vertices in common, is the Fi_{22} graph.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of $G = \text{Aut} \, \Gamma$ with two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.
CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

<table>
<thead>
<tr>
<th>H</th>
<th>index</th>
<th>orbitlengths</th>
<th>d</th>
<th>e</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>2$F_4(2)'$</td>
<td>3592512</td>
<td>1600, 12480</td>
<td>351</td>
<td>360</td>
<td>Tits, §10.82</td>
</tr>
<tr>
<td>$O^+_8(2):S_3$</td>
<td>61776</td>
<td>2880, 11200</td>
<td>639</td>
<td>648</td>
<td></td>
</tr>
<tr>
<td>2.$PSU_6(2)$</td>
<td>3510</td>
<td>1408, 12672</td>
<td>567</td>
<td>288</td>
<td>Conway, §10.81</td>
</tr>
<tr>
<td>$2^{10}:M_{22}$</td>
<td>142155</td>
<td>2816, 11264</td>
<td>855</td>
<td>576</td>
<td></td>
</tr>
</tbody>
</table>

10.95 The $5^6.4.HJ.2$ graph on 15625 vertices

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (15625, 7560, 3655, 3660)$. Its spectrum is $7560^1 60^{8064} (-65)^{7560}$. The full group of automorphisms is $5^6:(2.HJ):4$.

It arises because HJ, acting on PV for $V = \mathbb{P}_5$ via $2.HJ < Sp_6(5)$, has orbits of sizes 1890 and 2016 on the 3906 points ([517]), giving two-character sets.

10.96 The Fi_{23} graph

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (31671, 3510, 693, 351)$. Its spectrum is $3510^1 351^{782} (-9)^{30888}$. The full group of automorphisms is $G = Fi_{23}$ acting rank 3 with point stabilizer $2.Fi_{22}$.

The local graph is the Fi_{22} graph, and Γ is the unique connected locally Fi_{22} graph ([Pasechnik [602]]. The μ-graphs are $NO_7^{-1}(3)$ graphs (see §10.66).

Clique

The group G is transitive on triangles and 4-cliques. Maximal cliques all have size 23, and form a single orbit. The stabilizer in G of a maximal clique M is a nonsplit extension $2^{11}.M_{23}$ with three orbits of sizes 23, 8096, 23552. Each vertex in the second orbit has 7 neighbors in M and each such 7-set occurs 32 times in this way. These 7-sets form the Steiner system $S(4, 7, 23)$. Each vertex in the third orbit has a unique neighbor in M. Diagram:

Regular sets

Given two nonadjacent vertices x, y in the Fi_{24} graph Δ, we see a split of $\Gamma = \Delta(y)$ into the μ-graph $\Delta(x) \cap \Delta(y)$, and the rest. This yields a regular partition fixed by $O^+_8(3):S_3$:
10.97. \((137632, 28431, 6030, 5832)\)

The \(\mu\)-graph is disconnected, with three components of size 1080. For a construction of \(\text{Fi}_{23}\) via this partition, see WILSON [735], p. 243.

10.97 The \(\text{Fi}_{23}\) graph on 137632 vertices

There is a unique rank 3 strongly regular graph \(\Gamma\) with parameters \((v, k, \lambda, \mu) = (137632, 28431, 6030, 5832)\). Its spectrum is \(28431^1 279^{350888} (-81)^{106743}\). The full group of automorphisms is \(G = \text{Fi}_{23}\) acting rank 3 with point stabilizer \(O^+_8(3) : S_3\).

Construction

This is the graph on the lines on a fixed point in the \(\text{Fi}_{24}\) Fischer space, adjacent when they span a dual affine plane. It follows that the complementary graph is the collinearity graph of a partial linear space with lines of size 4.

Maximal cliques

The largest cliques have size 136. They form a single orbit, and the stabilizer of one is a maximal subgroup \(\text{Sp}(8,2)\) with orbits of lengths 136, 45696, and 91800.

14080-vertex subgraphs

\(\Gamma\) has 31671 subgraphs isomorphic to the \(\text{Fi}_{22}\) graph on 14080 vertices (§10.94). Each is fixed by a Fischer transposition. The stabilizer of one in \(G\) is a nonsplit extension \(2\text{Fi}_{22}\). Each vertex outside such a subgraph has 2880 neighbors inside. Distinct such subgraphs meet in 1408 or 1444 vertices. The graph with these 31671 subgraphs as vertices, adjacent when they have 1408 vertices in common, is the \(\text{Fi}_{23}\) graph.

The first subconstituent

The first subconstituent of \(\Gamma\) has full group of automorphisms \(O^+_8(3) : S_3\) acting rank 4 with suborbit sizes \(1 + 2880 + 3150 + 22400\). The graphs induced by the suborbits of sizes 2880 and 3150 are strongly regular with parameters \((v, k, \lambda, \mu) = (28431, 2880, 324, 288)\) and \((28431, 3150, 621, 315)\), both with the same full group, as was found in [244].
This latter graph is a subgraph of the Fi_{23} graph, see p. 350. The valency 2880 and 3150 graphs have clique numbers 9 and 21, respectively.

10.98 The $E_6(2)$ graph

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (139503, 4590, 621, 135)$. Its spectrum is $4590^1 495^{14232} \left(-9 \right)^{137020}$.

The local graphs are 2-clique extensions of the strongly regular $D_{5,5}(2)$ graph with parameters $(2295, 310, 85, 35)$ (see §2.2.12).

The μ-graphs are strongly regular $O_8^+(2)$ graphs with parameters $(135, 70, 37, 35)$ (see §10.43).

Maximal cliques have sizes 31 and 63. (If the vertices are the objects of type 1 in the E_6 geometry, then these maximal cliques are the objects of types 5 and 2, respectively.)

There are maximal cocliques of size $256 \left(= 1+51+204 \right)$, union of three orbits of the normalizer of an element of order 17). It is not known whether Γ contains larger cocliques. The Hoffman bound is 273.

The maximal subgroup $F_4(2)$ has two orbits, of lengths 69615 and 69888. The smallest orbit has degree $d = 2286$ and nexus $e = 2295$, see also §4.9.2.

The maximal subgroup $(7 \times 3D_4(2)) : 3$ has two orbits, of lengths 17199 and 122304. The smallest orbit has degree $d = 558$ and nexus $e = 567$, see also §4.9.2.

10.99 The Fi_{24} graph

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (306936, 31671, 3510, 3240)$. Its spectrum is $31671^1 351^{157477} \left(-81 \right)^{249458}$.

The full group of automorphisms is $G = \text{Fi}_{24}$ acting rank 3 with point stabilizer $2 \times \text{Fi}_{23}$.
The local graph is the Fi_{23} graph. The μ-graphs are disconnected, with three connected components, each carrying a copy of the $NO_8^+(3)$ graph with parameters $(v, k, \lambda, \mu) = (1080, 351, 126, 108)$ (§10.78).

Clique

The group G is transitive on i-cliques for $i \leq 5$. Maximal cliques all have size 24, and form a single orbit. The stabilizer in G of a maximal clique M is a nonsplit extension $2^{12} \cdot M_{24}$ with three orbits of sizes 24, 24828, 282624. Each vertex in the second orbit has 8 neighbors in M and each such 8-set occurs 32 times in this way. These 8-sets form the Steiner system $S(5, 8, 24)$. Diagram:

Triple cover

This graph Γ has a distance-transitive antipodal 3-cover 3Γ with diagram

There is a unique rank 3 strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (531441, 65520, 8559, 8010)$. Its spectrum is $65520^1, 63965520^1, (-90)^{465920}$. The full group of automorphisms is $G = 3^{12} \cdot 2.Suz$.2 acting rank 3 with point stabilizer $2.Suz$.2. See also §6.3.3.

The Suz graph on 531441 vertices

There are unique rank 3 strongly regular graphs with parameters $(v, k, \lambda, \mu) = (531441, 65520, 8559, 8010)$. Its spectrum is $65520^1, 63965520^1, (-90)^{465920}$. The full group of automorphisms is $G = 3^{12} \cdot 2.Suz$.2 acting rank 3 with point stabilizer $2.Suz$.2. See also §6.3.3.

Cliques

The largest cliques have size 81 and form a single orbit. The stabilizer of one is a group of shape $3^3 : ((2^{11+6}.O_5(3)) : 2)$ with orbit sizes $81 + 116640 + 414720$, acting 2-transitively on the 81-clique. Points outside have either 8 or 17 neighbors inside an 81-clique. These 81-cliques are subspaces of the socle $V = F_3^{12}$ of G, so that $\chi(V) = 3^8$.
Chapter 11

Classification of rank 3 graphs

The classification of rank 3 graphs is due to Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl and others. The result is described in the following pages. We give all pairs (Γ, G), with Γ a strongly regular graph and G a group of automorphisms of Γ acting rank 3. Two such pairs (Γ, G) and (Γ', G') are called equivalent if there is an isomorphism $\alpha: \Gamma \to \Gamma'$ such that $G'\alpha = \alpha G$.

11.1 Primitive rank 3 permutation groups

The O'Nan-Scott theorem (cf. [518]) immediately implies

Theorem 11.1.1 Let Γ be a primitive strongly regular graph with parameters (v, k, λ, μ), and G a primitive rank 3 permutation group acting as a group of automorphisms of Γ. Then we have one of the following cases.

(i) $T \rtimes T \leq G \leq T_0 \wr 2$, where T_0 is a 2-transitive group of degree v_0, the socle T of T_0 is simple and $v = v_0^2$.

(ii) The socle L of G is simple.

(iii) G is an affine group, that is, G has a regular elementary abelian normal subgroup and v is a power of a prime.

Hence, the classification must handle these three cases.

For (i), see the classification of doubly transitive groups (Theorem 11.2.1 below). The graphs here are the lattice graphs.

For (ii), if L is alternating, see BANNAI [45] (Theorem 11.3.1 below). If L is classical, see KANTOR & LIEBLER [481] (Theorems 11.3.2, 11.3.3 below). If L is exceptional, see LIEBECK & SAXL [520] (Theorem 11.3.4 below). For sporadic L the list was determined by Brouwer, Soicher and Wilson and given in [520] (Theorem 11.3.5 below).

For (iii), see LIEBECK [517] (Theorem 11.4.1 below).

11.2 Wreath product

This case depends on the classification of doubly transitive groups. We follow COHEN & ZANTEMA [206].
Theorem 11.2.1 Let G be a doubly transitive permutation group on a finite set Ω. Then we have one of the cases in Table 11.1.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
G & $|\Omega|$ & restrictions \\
\hline
S_n, A_n & n & n symbols of $PG(n - 1, q)$, $n \geq 2$ \\
$PSL_n(q) \leq G \leq PGL_n(q)$ & $\frac{n^2-1}{n-1}$ & points of $PG(n - 1, q)$, $n \geq 2$ \\
$PSU_2(q) \leq G \leq PSU_2(q)$ & $q^2 + 1$ & points of a Hermitian unital \\
$\Gamma_2(q) \leq G \leq \text{Aut}(\Gamma_2(q))$ & $q^3 + 1$ & points of a Ree unital \\
$\Gamma_2(q) \leq G \leq \text{Aut}(\Gamma_2(q))$ & $q^2 + 1$ & points of a Suzuki unital \\
$Sp_{2m}(2) \leq G \leq G_2(q)$ & $2^{-m+1}(2^{m+1} + 1)$ & nondegenerate quadrics, $m \geq 3$ \\
\hline
$SL_2(q) \leq G \leq \Gamma L_2(q)$ & q^2 & $d \geq 1$ \\
$Sp_2(q) \leq G$ & q^2 & $d \geq 2$ \\
$G_2(q) \leq G$ & q^2 & $q = 2^n$ \\
$2^{1+2} \leq G$ & q^2 & $q = 3, 5, 7, 11, 23$ \\
$2^{1+4} \leq G$ & 3^4 & \\
$G_0 \simeq S_5(5) \leq SL_2(5)$ & q^2 & $q = 9, 11, 19, 29, 59$ \\
$G_0 \simeq A_6 \leq Sp_4(2)$ & q^2 & \\
$G_0 \simeq A_7 \leq Sp_4(2)$ & q^2 & \\
$G_0 \simeq SL_2(13)$ & 3^6 & $SL_2(13) \leq Sp_6(3)$ \\
\hline
\end{tabular}
\caption{The doubly transitive permutation groups G acting on a set Ω. In the second part of the table, Ω is elementary abelian, and $0 \in \Omega \leq G$. Here $G_0^{(\infty)}$ is the last term of the commutator series of G_0.}
\end{table}

For the first part of this table (G without regular normal subgroup), see [173], [476]. For the second part, see [417], [418]. For the application to rank 3 groups, only the first part is used.\(^1\) The only rank 3 graphs this describes are the grids (lattice graphs) $n \times n$ (with full automorphism group $S_n \wr 2$). For a given $n \times n$ lattice graph Γ and doubly transitive group T_0 of degree n with nonabelian simple socle T, a group G with $T \times T \triangleleft G \leq T_0$ acts as a rank 3 automorphism group on Γ if and only if G contains an element (not necessarily of order 2) that interchanges the two partitions of VT in maximal cliques (the two ‘directions’ of the lattice).

11.3 Simple socle

11.3.1 Alternating socle

Theorem 11.3.1 (Bannai [45])

Let G be either S_n or A_n, and let H be a maximal subgroup of G, such that the permutation representation of G on the cosets of H is rank 3. Then we have one of

(i) H is the stabilizer of a pair of symbols (of index $\binom{n}{2}$). The corresponding graph is the triangular graph $T(n)$ (or its complement). Parameters are $v = n$.

\(^1\)The lattice graphs with doubly transitive groups of affine type acting are contained in (iii), see (2) of Theorem 11.4.1.
\(11.3. \text{SIMPLE SOCLE}\)

\(n(n - 1)/2, k = 2(n - 2), \lambda = n - 2, \mu = 4, r = n - 4, s = -2, f = n - 1, g = n(n - 3)/2.\)

(ii) \(n = 6\) and \(H\) is the stabilizer of a partition of the 6 symbols into three pairs. The graph is \(T(6)\), with \((v, k, \lambda, \mu) = (15, 6, 1, 3)\).

(iii) \(n = 8\) and \(H\) is the stabilizer of a partition of the 8 symbols into two 4-sets. Parameters are \((v, k, \lambda, \mu) = (35, 16, 6, 8)\).

(iv) \(n = 10\) and \(H\) is the stabilizer of a partition of the 10 symbols into two 5-sets. Parameters are \((v, k, \lambda, \mu) = (126, 25, 8, 4)\).

(v) \(n = 4\) and \(G = \mathbb{A}_4\) and \(H = 2^4\). The graph is \(K_3\).

(vi) \(n = 9\) and \(G = \mathbb{A}_9\) and \(H\) is \(\text{PGL}_2(8)\) (two classes). Parameters are \((v, k, \lambda, \mu) = (120, 56, 28, 24)\).

The graph from case (vi) is the graph \(NO_7^+ \times (2)\).

For the triangular graphs, see §1.1.7. Case (ii) is equivalent to Case (i) for \(n = 6\). For the graphs from cases (iii), (iv), (vi), see §10.13, §10.40, §10.39.

\(11.3.2 \text{CLASSICAL SIMPLE SOCLE}\)

Theorem 11.3.2 (Kantor & Liebler [481]):

Let \(M\) be one of the groups \(\text{Sp}_{2m-2}(q)\), \(\Omega^\pm_{2m}(q)\), \(\Omega_{2m-1}(q)\) or \(\text{SU}_m(q)\) for \(m \geq 3\) and let \(q\) be a prime power. Let \(M \leq G\) with \(G/Z(G) \leq \text{Aut}(M/Z(G))\).

Assume that \(G\) acts as a primitive rank 3 permutation group on the set \(X\) of cosets of a subgroup \(K\) of \(G\). Then at least one of the following holds up to conjugacy under \(\text{Aut}(M/Z(M))\).

(i) \(X\) is an \(M\)-orbit of singular (or isotropic) points.

(ii) \(X\) is an \(M\)-orbit of maximal totally singular (or isotropic) subspaces and \(M\) is one of \(\text{Sp}_{4}(q)\), \(\text{SU}_{4}(q)\), \(\Omega_{8}^{-}(q)\), \(\Omega_{8}^{+}(q)\), or \(\Omega_{10}^{-}(q)\).

(iii) \(X\) is any \(M\)-orbit of nonsingular points and \(M\) is one of \(\text{SU}_{2}(2)\), \(\Omega_{2}(2)\), \(\Omega_{2}^{-}(3)\) or \(\Omega_{2}^{+}(3)\).

(iv) \(X\) is either orbit of nonsingular hyperplanes for \(M = \Omega_{2m-1}(4)\) or \(M = \Omega_{2m-1}(8)\), where in the latter case \(G = \Omega_{2m-1}(8)\).

(v) \(M = \text{SU}_{3}(3)\) and \(K \cap M = \text{PSL}_{3}(2)\).

(vii) \(M = \text{SU}_{3}(5)\) and \(K \cap M = 3.A_{7}\).

(viii) \(M = \text{SU}_{4}(3)\) and \(K \cap M = 4.PS_{L}_{3}(4)\).

(ix) \(M = \text{Sp}_{6}(2)\) and \(K = G_{2}(2)\).

(x) \(M = \Omega_{7}(3)\) and \(K \cap M = G_{2}(3)\).

\(11.3.3 \text{THEOREM 11.3.3 (KANTOR & LIEBLER [481]):}\)

Let \(M = \text{PSL}_{n}(q)\) \(\leq G \leq \text{Aut} M\). Assume that \(G\) acts as a primitive rank 3 permutation group on the set \(X\) of cosets of a subgroup \(K\) of \(G\). Then at least one of the following occurs up to conjugacy under \(\text{Aut} M\).
(i) \(X \) is the set of lines for \(M \), \(n \geq 4 \).
(ii) \(M = \text{PSL}_2(4) \simeq \text{PSL}_2(5), |X| = \binom{n}{2} \), or
\[M = \text{PSL}_2(9) \simeq A_6, |X| = \binom{6}{2}, \text{ or} \]
\[M = \text{PSL}_2(2) \simeq A_8, |X| = \binom{8}{2}, \text{ or} \]
\[G = \text{PGL}_2(8), |X| = \binom{8}{2}. \]
(iii) \(M = \text{PSL}_3(4), M \cap K \simeq A_6. \)
(iv) \(M = \text{PSL}_4(3), M \cap K = \text{PSp}_4(3). \)

The graphs here are (i) those of §3.5.1, (ii) the triangular graphs \(T(m) \), \(m = 6, 8, 9 \), (iii) the Gewirtz graph (§10.20), (iv) the \(NO_q^+(3) \) graph (§10.35).

11.3.3 Exceptional simple socle

Theorem 11.3.4 (Liebeck & Saxl [520])

Let \(G \) be a finite primitive rank 3 permutation group of degree \(v \). Assume that the socle \(L \) of \(G \) is a simple group of exceptional Lie type, and let \(H \) be the stabilizer in \(L \) of a point. Then either \(L = \text{E}_6(q), H \) is a parabolic \(\text{D}_5(q), \) and \(v = \frac{q^{2n}-1}{q-1} \binom{q}{2}, k = q(q^3+1)\frac{q^6-1}{q-1}, f = q(q^4+1)(q^6+q^3+1), g = q^2(q^6+1)(q^4+1)\frac{q^2-1}{q-1} \) (see Proposition 4.9.1; two classes), or \(L, H \) and the parameters of \(\Gamma \) are as in Table 11.2 below. The comment ‘two classes’ means that there are two classes of such rank 3 representations of \(L \), interchanged by a graph automorphism.

<table>
<thead>
<tr>
<th>(v)</th>
<th>(k, l)</th>
<th>(L)</th>
<th>(H)</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>351</td>
<td>126, 224</td>
<td>(\text{G}_2(3))</td>
<td>(U_3(3).2)</td>
<td>(\text{NO}_7^+(3), \text{§10.66})</td>
</tr>
<tr>
<td>416</td>
<td>100, 315</td>
<td>(\text{G}_2(4))</td>
<td>(\text{HJ})</td>
<td>(\text{§10.68})</td>
</tr>
<tr>
<td>2016</td>
<td>975, 1040</td>
<td>(\text{G}_2(4))</td>
<td>(U_3(4).2)</td>
<td>(\text{NO}_7^+(4), \text{§3.1.4})</td>
</tr>
<tr>
<td>130816</td>
<td>32319, 98496</td>
<td>(\text{G}_2(8))</td>
<td>(\text{SO}_3(8).2)</td>
<td>(\text{NO}_7^+(8), \text{§3.1.4})</td>
</tr>
<tr>
<td>(G = \text{G}_2(8).3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11.2: Rank 3 graphs with exceptional simple socle. Here \(l = v - k - 1 \).

In the cases of \(\text{G}_2(q) \) of degree \(q^3(q^3-1)/2 \) the full automorphism group of the graph contains \(G_7(q) \). (See also [519].) Hence the corresponding strongly regular graphs are contained in the classes (iii) and (iv) of Theorem 11.3.2. See also §3.1.4 for a construction of these graphs exhibiting the rank 3 action of \(\text{G}_2(3), \text{G}_2(4) \) and \(\text{G}_2(8).3 \).

11.3.4 Sporadic simple socle

The list of rank 3 representations of the sporadic simple groups other than \(\text{BM} \) had been determined by Brouwer, and Soicher and R. A. Wilson checked that there are no further examples. The proof is by inspection of the Atlas [215].

Theorem 11.3.5 Let \(G \) be a finite primitive rank 3 permutation group of degree \(v \). Assume that the socle \(L \) of \(G \) is a sporadic simple group, and let \(H \) be the stabilizer in \(L \) of a point. Then we have one of the cases in Table 11.3 below.

We see two graphs for \(M_{23} \) on 253 vertices with the same permutation character but nonisomorphic permutation representations.
11.4. THE AFFINE CASE

If G acts 4-transitively on a set Ω, then G will act as a rank 3 group on the set $\binom{\Omega}{2}$ of unordered pairs from Ω. The corresponding graphs are triangular graphs $T(m)$, where $m = |\Omega|$. These graphs have $\binom{m}{2}$ vertices, and full automorphism group S_m (if $m > 4$).

For sporadic G this happens with M_{11}, M_{12}, M_{23} and M_{24} acting on 11, 12, 23 and 24 points, respectively. The corresponding graphs have 55, 66, 253 and 276 vertices, respectively.

11.4 The affine case

The affine case was finished by Liebeck after substantial earlier work by Foulser and Kallaher.

Theorem 11.4.1 (Liebeck [517])

Let G be a finite primitive affine permutation group of rank 3 and of degree $v = p^d$, with socle V, where $V \simeq (Z_p)^d$ for some prime p, and let G_0 be the stabilizer of the zero vector in V. Then G_0 belongs to one of the following classes (and, conversely, each of the possibilities listed below does give rise to a rank 3 affine group).

(A) Infinite classes. These are:

(1) $G_0 \leq \Gamma L_1(p^d)$. This case is handled in Foulser & Kallaher [330], §3. (See Theorem 11.4.2 below.)

(2) G_0 imprimitive: G_0 stabilizes a pair $\{V_1, V_2\}$ of subspaces of V, where $V = V_1 \oplus V_2$ and $\dim V_1 = \dim V_2$; moreover, $(G_0)_{V_i}$ is transitive on $V_i \setminus \{0\}$ for $i = 1, 2$ (and hence G_0 is determined by Hering [418]; see Table 11.1 above).
(3) Tensor product case: for some \(a, q \) with \(q^a = p^d \), consider \(V \) as a vector space \(V_a(q) \) of dimension \(a \) over \(\mathbb{F}_q \); then \(G_0 \) stabilizes a decomposition of \(V_a(q) \) as a tensor product \(V_1 \otimes V_2 \) where \(\dim_{\mathbb{F}_q} V_1 = 2 \); moreover, \(G_0^V \triangleright SL(V_2) \), or \(G_0^V = A_7 < SL(2) \) (and \(p = q = 2, d = a = 8 \), or \(\dim_{\mathbb{F}_q} V_2 \leq 3 \).

(4) \(G_0 \triangleright SL_a(q) \) and \(p^d = q^{2a} \).

(5) \(G_0 \triangleright SL_2(q) \) and \(p^d = q^6 \).

(6) \(G_0 \triangleright SU_a(q) \) and \(p^d = q^{2a} \).

(7) \(G_0 \triangleright \Omega^2_{2a}(q) \) and \(p^d = q^a \) (and if \(q \) is odd, \(G_0 \) contains an automorphism interchanging the two orbits of \(\Omega^2_{2a}(q) \) on nonsingular 1-spaces).

(8) \(G_0 \triangleright SL_3(q) \) and \(p^d = q^{10} \) (from the action of \(SL_3(q) \) on the exterior square of \(V_3(q) \)).

(9) \(G_0/Z(G_0) \triangleright \Omega_7(q), Z(2,q−1) \) and \(p^d = q^8 \) (from the action of \(B_3(q) \) on a spin module).

(10) \(G_0/Z(G_0) \triangleright P\Omega^1_{16}(q) \) and \(p^d = q^{16} \) (from the action of \(D_5(q) \) on a spin module).

(11) \(G_0 \triangleright Sz(q) \), \(q = 2^{2m+1} \), and \(p^d = q^4 \) (from the embedding \(Sz(q) < Sp_4(q) \)).

(B) ‘Extraspecial’ classes. Here \(G_0 \leq N_{\text{Gl}_d(p)}(R) \) where \(R \) is an \(r \)-group, irreducible on \(V \). Either \(r = 3 \) and \(R \simeq 3^{1+2} \) (extraspecial of order 27) or \(r = 2 \) and \(|R/Z(R)| = 2^{2m} \) with \(m = 1 \) or \(2 \). If \(r = 2 \), then either \(|Z(R)| = 2 \) and \(R \) is one of the two extraspecial groups \(R_2^m \), \(R_3^2 \) of order \(2^{1+2m} \), or \(|Z(R)| = 4 \), when we write \(R = R_4^m \). The possibilities are listed in Table 11.5. (Note that this includes all the soluble rank 3 groups from Foulser [329].)

(C) ‘Exceptional classes’. Here the socle \(L \) of \(G_0/Z(G_0) \) is simple, and the possibilities are listed in Table 11.6.

In part (B) the groups are \(R_1^m = 2^{1+2m} \), \(R_2^m = 2^{1+2m} \), and \(R_3^m = Z_4 \circ 2^{1+2m} \).

Table 11.4: Infinite classes

<table>
<thead>
<tr>
<th>Case</th>
<th>(v = p^a)</th>
<th>(k, l)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A2)</td>
<td>(p^m)</td>
<td>(2p^m - 1, (p^m - 1)^2)</td>
<td>(L_2(p^m))</td>
</tr>
<tr>
<td>(A3)</td>
<td>(q^m)</td>
<td>((q + 1)(q^{m-1} - 1), q(q^{m-1} - 1)(q^{m-1} - 1))</td>
<td>(H_3(2, m)), §3.4.1</td>
</tr>
<tr>
<td>(A4)</td>
<td>(q^a)</td>
<td>((q + 1)(q^{a-1} - 1), q(q^{a-1} - 1)(q^{a-1} - 1))</td>
<td>Baer subspace, §3.4.5</td>
</tr>
<tr>
<td>(A5)</td>
<td>(q^8)</td>
<td>(q(q - 1)(q^{2-1} - 1), q(q^2 - 1)(q^2))</td>
<td>cube root subspace, §3.4.5</td>
</tr>
<tr>
<td>(A6)</td>
<td>(q^a)</td>
<td>((q^a - c)(q^{a-1} - c), q^a(q^a - 1)(q^a - c))</td>
<td>(c = (-1)^m)</td>
</tr>
<tr>
<td>(A7)</td>
<td>(q^2)</td>
<td>((q^c - e)(q^{c-1} - e), q^c(q^c - 1)(q^c - e))</td>
<td>(V_0^4(q)), §3.3.1</td>
</tr>
<tr>
<td>(A8)</td>
<td>(q^{10})</td>
<td>((q^c - e)(q^{c-1} - e), q^{c+1}(q^c - 1)(q^c - 1))</td>
<td>§3.4.2</td>
</tr>
<tr>
<td>(A9)</td>
<td>(q^8)</td>
<td>((q^c - 1)(q^c + 1), q^c(q^c - 1)(q^c))</td>
<td>(V_0^4(q)), §3.3.1</td>
</tr>
<tr>
<td>(A10)</td>
<td>(q^{10})</td>
<td>((q^c - 1)(q^c + 1), q^c(q^c - 1)(q^c - 1))</td>
<td>(V_0^4(q)), §3.3.3</td>
</tr>
<tr>
<td>(A11)</td>
<td>(q^4)</td>
<td>((q^c + 1)(q^c), q^c(q^c + 1)(q^c))</td>
<td>(V_0^4(q)), §3.7.1(iv)</td>
</tr>
</tbody>
</table>

Table 11.5: Extraspecial classes

Case (A1) above is in more detail:
11.4. THE AFFINE CASE

<table>
<thead>
<tr>
<th>L</th>
<th>$v = p^r$</th>
<th>k,t</th>
<th>embedding of L</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_5</td>
<td>3^4 or 7^2 or m^2</td>
<td>see Thm. 11.4.3</td>
<td>$A_5 < PSL_2(p^r)$</td>
<td>§10.30, §10.89D</td>
</tr>
<tr>
<td>A_6</td>
<td>$64 = 2^6$</td>
<td>18.45</td>
<td>$A_6 < PSL_2(4)$</td>
<td>§10.24</td>
</tr>
<tr>
<td>M_{11}</td>
<td>$243 = 3^5$</td>
<td>22.22</td>
<td>$M_{11} < PSL_3(3)$</td>
<td>§10.55</td>
</tr>
<tr>
<td>M_{12}</td>
<td>$243 = 3^5$</td>
<td>110.132</td>
<td>$M_{11} < PSL_3(3)$</td>
<td>§10.55</td>
</tr>
<tr>
<td>A_7</td>
<td>$256 = 2^8$</td>
<td>45.210</td>
<td>$A_7 < PSL_4(4)$</td>
<td>§10.57</td>
</tr>
<tr>
<td>A_{10}</td>
<td>$256 = 2^8$</td>
<td>45.210</td>
<td>$A_{10} < Sp_2(2)$</td>
<td>§10.57</td>
</tr>
<tr>
<td>$PSL_2(17)$</td>
<td>$256 = 2^8$</td>
<td>102.153</td>
<td>$PSL_2(17) < Sp_2(2)$</td>
<td>§10.58</td>
</tr>
<tr>
<td>A_9</td>
<td>$256 = 2^8$</td>
<td>120.135</td>
<td>$A_9 < G_2(2)$</td>
<td>§10.60</td>
</tr>
<tr>
<td>A_7</td>
<td>$625 = 5^4$</td>
<td>144.480</td>
<td>$A_7 < PSp_3(5)$</td>
<td>§10.73A</td>
</tr>
<tr>
<td>$PSL_3(4)$</td>
<td>$729 = 3^6$</td>
<td>224.504</td>
<td>$PSL_3(4) < PSp_3(3)$</td>
<td>§10.76</td>
</tr>
<tr>
<td>M_{24}</td>
<td>$2048 = 2^{11}$</td>
<td>276.1771</td>
<td>$M_{24} < PSL_1(2)$</td>
<td>§10.84</td>
</tr>
<tr>
<td>M_{24}</td>
<td>$2048 = 2^{11}$</td>
<td>759.1288</td>
<td>$M_{24} < PSL_1(2)$</td>
<td>§10.85</td>
</tr>
<tr>
<td>$PSU_3(2)$</td>
<td>$2401 = 7^4$</td>
<td>240.2160</td>
<td>$PSU_3(2) < PSL_3(7)$</td>
<td>§10.89A</td>
</tr>
<tr>
<td>A_7</td>
<td>$2401 = 7^4$</td>
<td>720.1680</td>
<td>$A_7 < PSp_3(7)$</td>
<td>§10.89C</td>
</tr>
<tr>
<td>HJ</td>
<td>$4096 = 2^{12}$</td>
<td>1575.2520</td>
<td>$HJ < G_2(4)$</td>
<td>§10.92</td>
</tr>
<tr>
<td>HJ</td>
<td>$15625 = 5^{10}$</td>
<td>7560.8064</td>
<td>$HJ < PSp_3(5)$</td>
<td>§10.95</td>
</tr>
<tr>
<td>$G_2(4), Suz$</td>
<td>$531441 = 3^{12}$</td>
<td>65520.465920</td>
<td>$G_2(4) < Suz < PSp_{12}(3)$</td>
<td>§6.3.3, §10.100</td>
</tr>
</tbody>
</table>

Table 11.6: Exceptional classes

Theorem 11.4.2 (Foulser & Kallaher [330], §3) Let $q = p^r$ be a prime power. Let $G = AΓL(1,q)$, the group consisting of the semilinear maps $x \mapsto ax + b$ on \mathbb{F}_q. Let T be the subgroup of size q consisting of the translations $x \mapsto x + b$. Let $G_0 = ΓL_1(q)$, so that $G = G_0T$. Let H be a subgroup of G_0. Then HT acts as a rank 3 group on \mathbb{F}_q precisely when H has two orbits on \mathbb{F}_q^*. The possible H are found in Theorem 7.4.5 (the case where $H < GL_1(q)$), Theorem 7.4.6 (the case where H has two orbits of different sizes), and Theorem 7.4.7 (the case where H has two orbits of equal size).

The graphs here were determined by Muzychuk [581], and are the Paley, Peisert and Van Lint-Schrijver graphs.

The case of A_5 in Case (C) above was described in [330], Theorem 5.3.

Theorem 11.4.3 (Foulser & Kallaher [330]; see also §7.5) Let $q = p^r$ be a prime power. Let TH be a rank 3 collineation group of the Desarguesian affine plane $AG(2,q)$, where T is the translation group of order q^2 and $H \cap PSL(2,q) \cong A_5$, where H is the image of H under the homomorphism that maps $ΓL_2(q)$ onto $PΓL_2(q)$. Then either $p^r = 3^2$, or H has two orbits on $l_∞$ of lengths a and b, and (p^r,a,b) is one of $(2^5,5,12)$, $(5^2,6,20)$, $(31,12,20)$, $(41,12,30)$, $(7^2,20,30)$, $(2^6,5,60)$, $(71,12,60)$, $(79,20,60)$, $(89,30,60)$, $(5^3,6,120)$. If $p^r = 3^2$, then H is transitive on (the 10 points of) $l_∞$, but H has two orbits of size 40 on the nonzero vectors.

The graphs here have $v = q^2$ and $k = (q - 1)a$, $l = (q - 1)b$.

In [330] also the possibility $(p^r,a,b) = (119,60,60)$ was listed, but, as Liebeck noted, the authors overlooked there that 119 is not a prime power. The cases $(p^r,a,b) = (16,5,12)$, $(25,6,20)$, $(64,5,60)$, and $(125,6,120)$ are not listed in Table 11.6 because $A_5 \cong L_2(4) \cong L_2(5)$, so that these occur under the cases (A4) and (A5) of Theorem 11.4.1.

Table 14 of [517] gives subdegrees 105, 150 for the case $L = A_6$ in Case (C), but Table 12 of [159] corrects that to 120, 135.

The solvable primitive permutation groups of low rank were determined in Foulser [329]. In particular:

Theorem 11.4.4 (Foulser [329])
Let G be a maximal solvable primitive permutation group of degree v. Then G_0 is a semilinear group on a vector space V over a field F_{q^m}. Suppose G has rank 3, and let k, l be the lengths of the nontrivial orbits of G_0. Then we have one of the following cases.

(i) G is a collineation group of affine lines.

(ii) G is vector space primitive and has an irreducible minimal non-abelian subgroup N which is a q-group for some prime q, such that $|N/Z(N)| = q^a$ for some a, and one of the following cases applies.

(a) $q^a = 3$, $p^m = 4$, $v = 2^6$, $|G_0| = 2^4 \cdot 3^4$, and $(k, l) = (27, 36)$.

(b) $q^a = 2$, $v = p^{2m}$, $|G_0| = 24m(p^m - 1)$, and (p^m, k, l) occurs among $(3^2, 32, 48)$, $(13, 72, 96)$, $(17, 144, 216)$, $(3^3, 104, 624)$, $(29, 168, 672)$, $(31, 240, 720)$, $(47, 1104, 1104)$.

(c) $q^a = 4$, $p^m = 3$, $v = 3^4$, $|G_0| = 2^8 \cdot 3^2$, and $(k, l) = (32, 48)$.

(d) $q^a = 4$, $p^m = 7$, $v = 7^4$, $|G_0| = 2^7 \cdot 3 \cdot 5$, and $(k, l) = (480, 1920)$.

(iii) G is imprimitive and there exists a decomposition $V = V_1 \oplus V_2$ of V into minimal imprimitivity subspaces for G_0, and $G_0|V_i$ is transitive on the nonzero elements of V_i ($i = 1, 2$) (hence $G_0|V_i$ is determined by Huppert’s theorem). Moreover, the nontrivial orbits of G_0 are $V_1 \cup V_2 \setminus \{0\}$ and $V \setminus (V_1 \cup V_2)$.

Some of the groups mentioned contain proper rank 3 subgroups. Moreover, there exist two cases in which exceptional doubly transitive groups have proper rank 3 subgroups. Here G is as in (ii), $q^a = 2$, $v = p^{2m} = 2k+1$, and $(p^m, |G_0|)$ is either $(7, 2^3 \cdot 3^2)$ or $(23, 2^7 \cdot 3 \cdot 11)$.

For the cases in (ii)(b), and those of the last sentence, see §7.5.2.

11.5 Rank 3 parameter index

Below we index the parameters of the rank 3 graphs found above not as part of an infinite family, and refer to the theorem or table where they occur.

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^g</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>17</td>
<td>(−3)3</td>
<td>Thm. 11.3.1</td>
</tr>
<tr>
<td>35</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>220</td>
<td>(−4)14</td>
<td>Thm. 11.3.1</td>
</tr>
<tr>
<td>36</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>221</td>
<td>(−4)14</td>
<td>Thm. 11.3.2 (v)</td>
</tr>
<tr>
<td>55</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>228</td>
<td>(−3)21</td>
<td>Thm. 11.3.2 (vi)</td>
</tr>
<tr>
<td>36</td>
<td>21</td>
<td>28</td>
<td>114</td>
<td>(−8)10</td>
<td>Table 11.3</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>235</td>
<td>(−4)20</td>
<td>Thm. 11.3.3 (iii)</td>
</tr>
<tr>
<td>45</td>
<td>36</td>
<td>36</td>
<td>220</td>
<td>(−3)25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>225</td>
<td>(−6)18</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>64</td>
<td>27</td>
<td>10</td>
<td>12</td>
<td>326</td>
<td>(−5)27</td>
<td>Thm. 11.4.4, Table 11.5</td>
</tr>
<tr>
<td>36</td>
<td>20</td>
<td>20</td>
<td>427</td>
<td>(−4)36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued...
11.5. RANK 3 PARAMETER INDEX

<table>
<thead>
<tr>
<th>(v)</th>
<th>(k)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(r^f)</th>
<th>(s^g)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>84</td>
<td>(-2)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>45</td>
<td>28</td>
<td>36</td>
<td>4</td>
<td>224</td>
<td>(-2)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>77</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>(-6)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>60</td>
<td>47</td>
<td>45</td>
<td>5</td>
<td>37</td>
<td>(-3)</td>
<td>Table 11.5</td>
</tr>
<tr>
<td>81</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>716</td>
<td>(-2)</td>
<td>Table 11.5</td>
</tr>
<tr>
<td>56</td>
<td>49</td>
<td>56</td>
<td>1</td>
<td>64</td>
<td>(-3)</td>
<td>Table 11.5</td>
</tr>
<tr>
<td>32</td>
<td>13</td>
<td>12</td>
<td>5</td>
<td>32</td>
<td>(-3)</td>
<td>Thm. 11.4.4, Table 11.5</td>
</tr>
<tr>
<td>48</td>
<td>27</td>
<td>30</td>
<td>3</td>
<td>72</td>
<td>(-6)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>100</td>
<td>22</td>
<td>19</td>
<td>20</td>
<td>460</td>
<td>(-5)</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>224</td>
<td>(-2)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>77</td>
<td>60</td>
<td>56</td>
<td>7</td>
<td>224</td>
<td>(-3)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>60</td>
<td>14</td>
<td>14</td>
<td>6</td>
<td>36</td>
<td>(-4)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>63</td>
<td>38</td>
<td>42</td>
<td>3</td>
<td>73</td>
<td>(-7)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>120</td>
<td>56</td>
<td>28</td>
<td>24</td>
<td>83</td>
<td>(-9)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>63</td>
<td>30</td>
<td>36</td>
<td>3</td>
<td>84</td>
<td>(-9)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>126</td>
<td>25</td>
<td>8</td>
<td>4</td>
<td>73</td>
<td>(-3)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>100</td>
<td>78</td>
<td>84</td>
<td>2</td>
<td>200</td>
<td>(-8)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>162</td>
<td>56</td>
<td>10</td>
<td>24</td>
<td>240</td>
<td>(-16)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>105</td>
<td>72</td>
<td>60</td>
<td>15</td>
<td>21</td>
<td>(-3)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>149</td>
<td>72</td>
<td>30</td>
<td>7</td>
<td>72</td>
<td>(-6)</td>
<td>Table 11.4</td>
</tr>
<tr>
<td>96</td>
<td>53</td>
<td>56</td>
<td>5</td>
<td>75</td>
<td>(-8)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>176</td>
<td>70</td>
<td>18</td>
<td>34</td>
<td>214</td>
<td>(-16)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>105</td>
<td>68</td>
<td>54</td>
<td>17</td>
<td>21</td>
<td>(-3)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>243</td>
<td>22</td>
<td>1</td>
<td>2</td>
<td>412</td>
<td>(-5)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>220</td>
<td>199</td>
<td>200</td>
<td>1</td>
<td>213</td>
<td>(-5)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>243</td>
<td>110</td>
<td>37</td>
<td>60</td>
<td>270</td>
<td>(-25)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>132</td>
<td>81</td>
<td>60</td>
<td>24</td>
<td>13</td>
<td>(-3)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>253</td>
<td>42</td>
<td>21</td>
<td>4</td>
<td>192</td>
<td>(-2)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>253</td>
<td>112</td>
<td>36</td>
<td>60</td>
<td>220</td>
<td>(-26)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>140</td>
<td>87</td>
<td>65</td>
<td>25</td>
<td>21</td>
<td>(-3)</td>
<td>Table 11.6 (twice)</td>
</tr>
<tr>
<td>256</td>
<td>45</td>
<td>16</td>
<td>6</td>
<td>135</td>
<td>(-3)</td>
<td>Table 11.6 (twice)</td>
</tr>
<tr>
<td>210</td>
<td>170</td>
<td>182</td>
<td>2</td>
<td>210</td>
<td>(-14)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>256</td>
<td>75</td>
<td>26</td>
<td>20</td>
<td>117</td>
<td>(-5)</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>180</td>
<td>124</td>
<td>132</td>
<td>4</td>
<td>170</td>
<td>(-12)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>256</td>
<td>102</td>
<td>38</td>
<td>42</td>
<td>66</td>
<td>(-10)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>153</td>
<td>92</td>
<td>90</td>
<td>9</td>
<td>102</td>
<td>(-7)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>256</td>
<td>120</td>
<td>56</td>
<td>56</td>
<td>810</td>
<td>(-8)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>275</td>
<td>135</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>(-9)</td>
<td>Thm. 11.6</td>
</tr>
<tr>
<td>275</td>
<td>112</td>
<td>30</td>
<td>56</td>
<td>222</td>
<td>(-28)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>162</td>
<td>105</td>
<td>81</td>
<td>27</td>
<td>222</td>
<td>(-3)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>276</td>
<td>44</td>
<td>22</td>
<td>4</td>
<td>203</td>
<td>(-2)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>231</td>
<td>190</td>
<td>210</td>
<td>1</td>
<td>21</td>
<td>(-2)</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>289</td>
<td>96</td>
<td>35</td>
<td>30</td>
<td>11</td>
<td>(-6)</td>
<td>Thm. 11.4.4</td>
</tr>
<tr>
<td>192</td>
<td>125</td>
<td>132</td>
<td>5</td>
<td>102</td>
<td>(-12)</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>351</td>
<td>126</td>
<td>45</td>
<td>45</td>
<td>468</td>
<td>(-9)</td>
<td>Thm. 11.4.4</td>
</tr>
<tr>
<td>224</td>
<td>142</td>
<td>144</td>
<td>4</td>
<td>114</td>
<td>(-10)</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>361</td>
<td>144</td>
<td>59</td>
<td>56</td>
<td>111</td>
<td>(-8)</td>
<td>Table 11.4.4</td>
</tr>
<tr>
<td>216</td>
<td>127</td>
<td>132</td>
<td>7</td>
<td>216</td>
<td>(-12)</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>416</td>
<td>100</td>
<td>36</td>
<td>20</td>
<td>205</td>
<td>(-4)</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>315</td>
<td>234</td>
<td>252</td>
<td>3</td>
<td>330</td>
<td>(-2)</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>529</td>
<td>264</td>
<td>131</td>
<td>132</td>
<td>1124</td>
<td>(-12)</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>625</td>
<td>144</td>
<td>43</td>
<td>30</td>
<td>194</td>
<td>(-6)</td>
<td>Table 11.6, Thm. 11.4.3</td>
</tr>
<tr>
<td>480</td>
<td>365</td>
<td>380</td>
<td>5</td>
<td>480</td>
<td>(-20)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>625</td>
<td>240</td>
<td>95</td>
<td>90</td>
<td>15</td>
<td>(-10)</td>
<td>Table 11.5</td>
</tr>
<tr>
<td>384</td>
<td>233</td>
<td>240</td>
<td>3</td>
<td>164</td>
<td>(-16)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>729</td>
<td>104</td>
<td>31</td>
<td>12</td>
<td>2104</td>
<td>(-4)</td>
<td>Table 11.4.4</td>
</tr>
<tr>
<td>624</td>
<td>531</td>
<td>552</td>
<td>3</td>
<td>3524</td>
<td>(-24)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>729</td>
<td>224</td>
<td>61</td>
<td>72</td>
<td>1254</td>
<td>(-15)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>504</td>
<td>351</td>
<td>342</td>
<td>4</td>
<td>1824</td>
<td>(-9)</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>841</td>
<td>168</td>
<td>47</td>
<td>30</td>
<td>23168</td>
<td>(-6)</td>
<td>Thm. 11.4.4</td>
</tr>
</tbody>
</table>

continued...
Table 11.7: Parameters of rank 3 graphs

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^g</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>672</td>
<td>755</td>
<td>552</td>
<td>517</td>
<td>517</td>
<td>517</td>
<td>Thm. 11.4.4</td>
</tr>
<tr>
<td>720</td>
<td>555</td>
<td>552</td>
<td>517</td>
<td>517</td>
<td>517</td>
<td>Thm. 11.4.4</td>
</tr>
<tr>
<td>360</td>
<td>139</td>
<td>132</td>
<td>199</td>
<td>360</td>
<td>360</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>600</td>
<td>371</td>
<td>380</td>
<td>110</td>
<td>500</td>
<td>500</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>1288</td>
<td>491</td>
<td>206</td>
<td>180</td>
<td>235</td>
<td>235</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>792</td>
<td>476</td>
<td>504</td>
<td>81035</td>
<td>36.252</td>
<td>36.252</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>567</td>
<td>246</td>
<td>216</td>
<td>39</td>
<td>5352</td>
<td>5352</td>
<td>Thm. 11.3.2 (x)</td>
</tr>
<tr>
<td>840</td>
<td>488</td>
<td>520</td>
<td>80155</td>
<td>40.252</td>
<td>40.252</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>800</td>
<td>149</td>
<td>132</td>
<td>29</td>
<td>580</td>
<td>580</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>1200</td>
<td>851</td>
<td>870</td>
<td>0</td>
<td>580</td>
<td>580</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>1782</td>
<td>416</td>
<td>100</td>
<td>96</td>
<td>20</td>
<td>20</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>1365</td>
<td>1044</td>
<td>1050</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>Thm. 11.3</td>
</tr>
<tr>
<td>2016</td>
<td>975</td>
<td>462</td>
<td>480</td>
<td>15</td>
<td>15</td>
<td>Thm. 11.3</td>
</tr>
<tr>
<td>1040</td>
<td>544</td>
<td>528</td>
<td>32</td>
<td>52</td>
<td>52</td>
<td>Table 11.2</td>
</tr>
<tr>
<td>2048</td>
<td>276</td>
<td>44</td>
<td>36</td>
<td>20</td>
<td>20</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>177</td>
<td>1530</td>
<td>1540</td>
<td>11</td>
<td>28</td>
<td>28</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>2048</td>
<td>79</td>
<td>310</td>
<td>264</td>
<td>55</td>
<td>55</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>1288</td>
<td>792</td>
<td>840</td>
<td>8</td>
<td>57</td>
<td>57</td>
<td>Thm. 11.3</td>
</tr>
<tr>
<td>2209</td>
<td>1104</td>
<td>551</td>
<td>552</td>
<td>23</td>
<td>23</td>
<td>Thm. 11.4.4</td>
</tr>
<tr>
<td>3000</td>
<td>891</td>
<td>378</td>
<td>324</td>
<td>63</td>
<td>63</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>1408</td>
<td>840</td>
<td>896</td>
<td>80204</td>
<td>64</td>
<td>64</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>240</td>
<td>59</td>
<td>20</td>
<td>44</td>
<td>20</td>
<td>20</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>2160</td>
<td>1939</td>
<td>1980</td>
<td>42160</td>
<td>45</td>
<td>45</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>4201</td>
<td>480</td>
<td>119</td>
<td>90</td>
<td>39</td>
<td>39</td>
<td>Thm. 11.4.4, Table 11.5</td>
</tr>
<tr>
<td>1920</td>
<td>1529</td>
<td>1560</td>
<td>9</td>
<td>41</td>
<td>41</td>
<td>Thm. 11.4.4</td>
</tr>
<tr>
<td>2401</td>
<td>720</td>
<td>229</td>
<td>210</td>
<td>34720</td>
<td>34720</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>1680</td>
<td>1169</td>
<td>1190</td>
<td>14</td>
<td>580</td>
<td>580</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>2401</td>
<td>960</td>
<td>389</td>
<td>380</td>
<td>296</td>
<td>296</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>1440</td>
<td>859</td>
<td>870</td>
<td>19</td>
<td>544</td>
<td>544</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>3510</td>
<td>180</td>
<td>186</td>
<td>126</td>
<td>69</td>
<td>69</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>2816</td>
<td>2248</td>
<td>2304</td>
<td>80880</td>
<td>64</td>
<td>64</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>4060</td>
<td>1755</td>
<td>730</td>
<td>780</td>
<td>157276</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>2304</td>
<td>1328</td>
<td>1280</td>
<td>64</td>
<td>1276</td>
<td>1276</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>4096</td>
<td>315</td>
<td>74</td>
<td>20</td>
<td>59</td>
<td>59</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>3780</td>
<td>3484</td>
<td>3540</td>
<td>3780</td>
<td>60</td>
<td>60</td>
<td>Table 11.4</td>
</tr>
<tr>
<td>4096</td>
<td>1575</td>
<td>614</td>
<td>600</td>
<td>39175</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>2520</td>
<td>1544</td>
<td>1560</td>
<td>24</td>
<td>2520</td>
<td>2520</td>
<td>Table 11.4</td>
</tr>
<tr>
<td>5041</td>
<td>840</td>
<td>179</td>
<td>132</td>
<td>59</td>
<td>59</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>4200</td>
<td>3491</td>
<td>3540</td>
<td>11200</td>
<td>60</td>
<td>60</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>6241</td>
<td>1560</td>
<td>419</td>
<td>380</td>
<td>59560</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4680</td>
<td>3499</td>
<td>3540</td>
<td>19580</td>
<td>60</td>
<td>60</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>1561</td>
<td>1440</td>
<td>351</td>
<td>306</td>
<td>63140</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>5120</td>
<td>3985</td>
<td>4032</td>
<td>17120</td>
<td>64</td>
<td>64</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>7921</td>
<td>2640</td>
<td>899</td>
<td>870</td>
<td>59640</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5280</td>
<td>3509</td>
<td>3540</td>
<td>29280</td>
<td>60</td>
<td>60</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>14080</td>
<td>3159</td>
<td>918</td>
<td>648</td>
<td>279429</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10920</td>
<td>8408</td>
<td>8680</td>
<td>83650</td>
<td>280</td>
<td>280</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>15625</td>
<td>744</td>
<td>143</td>
<td>30</td>
<td>119744</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>14880</td>
<td>14165</td>
<td>14280</td>
<td>514880</td>
<td>120</td>
<td>120</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>15625</td>
<td>7560</td>
<td>3655</td>
<td>3660</td>
<td>60664</td>
<td>60664</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>8064</td>
<td>4163</td>
<td>4160</td>
<td>647560</td>
<td>61</td>
<td>61</td>
<td>Table 11.6</td>
</tr>
<tr>
<td>31671</td>
<td>3510</td>
<td>693</td>
<td>351</td>
<td>351782</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>28160</td>
<td>25000</td>
<td>25444</td>
<td>352782</td>
<td>352782</td>
<td>Table 11.3</td>
<td></td>
</tr>
<tr>
<td>130816</td>
<td>32319</td>
<td>7742</td>
<td>8064</td>
<td>6311247</td>
<td>385</td>
<td>385</td>
</tr>
<tr>
<td>98496</td>
<td>73420</td>
<td>73920</td>
<td>38418468</td>
<td>64</td>
<td>64</td>
<td>Thm. 11.4.3</td>
</tr>
<tr>
<td>137632</td>
<td>28431</td>
<td>6030</td>
<td>56283</td>
<td>27080888</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>109200</td>
<td>86600</td>
<td>86800</td>
<td>81108743</td>
<td>280</td>
<td>280</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>306936</td>
<td>31671</td>
<td>3510</td>
<td>3240</td>
<td>3517477</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>27528</td>
<td>246832</td>
<td>247104</td>
<td>80394548</td>
<td>57477</td>
<td>57477</td>
<td>Table 11.3</td>
</tr>
<tr>
<td>531441</td>
<td>65520</td>
<td>8559</td>
<td>8010</td>
<td>63965520</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>465920</td>
<td>40409</td>
<td>408960</td>
<td>89650920</td>
<td>640</td>
<td>640</td>
<td>Table 11.6</td>
</tr>
</tbody>
</table>
11.6 Small rank 3 graphs

Below we give the parameters of the primitive rank 3 graphs with $v \leq 1024$. The full group of automorphisms is G, the point stabilizer S. Of a complementary pair of graphs only the one with smallest k is given.

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>G</th>
<th>S</th>
<th>ref</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>D_{10}</td>
<td>2</td>
<td>§10.1</td>
<td>Paley</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>$3^2 : D_8$</td>
<td>D_8</td>
<td>§10.2</td>
<td>Paley, 3 × 3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>S_5</td>
<td>D_{12}</td>
<td>§10.3</td>
<td>$T(5)$, Petersen</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>$13 : 6$</td>
<td>6</td>
<td>§10.4</td>
<td>Paley</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>$2 \times S_5$</td>
<td>S_5</td>
<td>§10.5</td>
<td>$T(6)$, $GQ(2,2)$</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>$2^4 : S_5$</td>
<td>S_5</td>
<td>§10.2</td>
<td>Paley</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>$(S_4 \times S_4) : 2$</td>
<td>$(S_4 \times S_4) : 2$</td>
<td>§10.1</td>
<td>$VO_4^-(2)$, 4 × 4</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>$17 : 8$</td>
<td>8</td>
<td>§10.8</td>
<td>Paley</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>S_5</td>
<td>$2 \times S_5$</td>
<td>§10.11</td>
<td>$T(7)$</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>$(S_4 \times S_4) : 2$</td>
<td>$(S_4 \times S_4) : 2$</td>
<td>§10.1</td>
<td>Paley</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>5</td>
<td>6</td>
<td>$5^2 : (4 \times S_5)$</td>
<td>$4 \times S_5$</td>
<td>§10.12</td>
<td>Paley</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>$O_3(3) : 2$</td>
<td>$2^3 : S_5$</td>
<td>§10.10</td>
<td>$GQ_2(2)$, $GQ(2,4)$, Schläfli</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>4</td>
<td>6</td>
<td>S_5</td>
<td>$2 \times S_5$</td>
<td>§10.11</td>
<td>$T(8)$</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>$29 : 14$</td>
<td>14</td>
<td>§10.12</td>
<td>Paley</td>
</tr>
<tr>
<td>35</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>S_6</td>
<td>$(S_4 \times S_4) : 2$</td>
<td>§10.13</td>
<td>$T(8,4)$</td>
</tr>
<tr>
<td>36</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>$(S_5 \times S_5) : 2$</td>
<td>$(S_5 \times S_5) : 2$</td>
<td>§10.13</td>
<td>Paley</td>
</tr>
<tr>
<td>36</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>$U_3(3) : 2$</td>
<td>$L_3(2) : 2$</td>
<td>§10.14</td>
<td>Paley</td>
</tr>
<tr>
<td>36</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>S_7</td>
<td>$2 \times S_7$</td>
<td>§10.13</td>
<td>Paley</td>
</tr>
<tr>
<td>36</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>$O_3(3) : 2$</td>
<td>$2 \times S_6$</td>
<td>§10.15</td>
<td>$NO_8^-(2)$</td>
</tr>
<tr>
<td>37</td>
<td>18</td>
<td>9</td>
<td>3</td>
<td>$37 : 18$</td>
<td>18</td>
<td>§10.18</td>
<td>Paley</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>$O_3(3) : 2$</td>
<td>$3^2 : (S_5 \times 2)$</td>
<td>§10.16</td>
<td>$O_3(3)$, $GQ(3,3)$</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>$O_3(3) : 2$</td>
<td>$3^{1+2} : 2S_4$</td>
<td>§10.16</td>
<td>Paley</td>
</tr>
<tr>
<td>41</td>
<td>20</td>
<td>9</td>
<td>10</td>
<td>$41 : 20$</td>
<td>20</td>
<td>§10.17</td>
<td>Paley</td>
</tr>
<tr>
<td>45</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>S_{10}</td>
<td>$2 \times S_8$</td>
<td>§10.17</td>
<td>$U_4(2)$, $GQ(4,2)$</td>
</tr>
<tr>
<td>45</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>S_{10}</td>
<td>$2 \times S_8$</td>
<td>§10.17</td>
<td>Paley</td>
</tr>
<tr>
<td>49</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>$(S_7 \times S_7) : 2$</td>
<td>$(S_6 \times S_6) : 2$</td>
<td>§10.18</td>
<td>Paley</td>
</tr>
<tr>
<td>49</td>
<td>24</td>
<td>11</td>
<td>12</td>
<td>$7^2 : S$</td>
<td>$3 \times D_{16}$</td>
<td>§10.18</td>
<td>Paley</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>$U_3(5) : 2$</td>
<td>S_7</td>
<td>§10.19</td>
<td>Hoffman-Singleton</td>
</tr>
<tr>
<td>53</td>
<td>26</td>
<td>12</td>
<td>13</td>
<td>$53 : 26$</td>
<td>26</td>
<td>§10.19</td>
<td>Paley</td>
</tr>
<tr>
<td>55</td>
<td>17</td>
<td>9</td>
<td>4</td>
<td>S_{11}</td>
<td>$2 \times S_9$</td>
<td>§10.19</td>
<td>Paley</td>
</tr>
<tr>
<td>56</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>$L_3(4) : 2^2$</td>
<td>$A_6 : 2^2$</td>
<td>§10.20</td>
<td>Gewirtz</td>
</tr>
<tr>
<td>61</td>
<td>30</td>
<td>14</td>
<td>15</td>
<td>$61 : 30$</td>
<td>30</td>
<td>§10.20</td>
<td>Paley</td>
</tr>
<tr>
<td>63</td>
<td>30</td>
<td>13</td>
<td>15</td>
<td>$O_3(2)$</td>
<td>$2^8 : S_5$</td>
<td>§10.21</td>
<td>$Sp_8(2)$</td>
</tr>
<tr>
<td>64</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>$(S_4 \times S_4) : 2$</td>
<td>$(S_4 \times S_5) : 2$</td>
<td>§10.21</td>
<td>$Sp_8(2)$</td>
</tr>
<tr>
<td>64</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>$2^6 : S$</td>
<td>$3S_6$</td>
<td>§10.24</td>
<td>$GQ(4,5)$</td>
</tr>
<tr>
<td>64</td>
<td>21</td>
<td>8</td>
<td>6</td>
<td>$2^6 : S$</td>
<td>$L_3(2) \times S_5$</td>
<td>§3.4.1</td>
<td>$H_2(2,3)$, cubes</td>
</tr>
<tr>
<td>64</td>
<td>27</td>
<td>10</td>
<td>12</td>
<td>$2^6 : S$</td>
<td>$O_3(4) : 2$</td>
<td>§10.25</td>
<td>$VO_4^-(2)$</td>
</tr>
<tr>
<td>64</td>
<td>28</td>
<td>12</td>
<td>12</td>
<td>$2^6 : S$</td>
<td>S_8</td>
<td>§10.26</td>
<td>Paley</td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>S_{13}</td>
<td>$2 \times S_{10}$</td>
<td>§10.26</td>
<td>Paley</td>
</tr>
<tr>
<td>73</td>
<td>36</td>
<td>17</td>
<td>18</td>
<td>$73 : 36$</td>
<td>36</td>
<td>§10.27</td>
<td>Paley</td>
</tr>
<tr>
<td>77</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>$M_{22} : 2$</td>
<td>$2^6 : S_8$</td>
<td>§10.29</td>
<td>Paley</td>
</tr>
<tr>
<td>77</td>
<td>22</td>
<td>11</td>
<td>4</td>
<td>S_{13}</td>
<td>$2 \times S_{11}$</td>
<td>§10.29</td>
<td>Paley</td>
</tr>
<tr>
<td>81</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>$(S_5 \times S_5) : 2$</td>
<td>$(S_6 \times S_6) : 2$</td>
<td>§10.29</td>
<td>9×9</td>
</tr>
<tr>
<td>81</td>
<td>20</td>
<td>1</td>
<td>6</td>
<td>$3^4 : S$</td>
<td>$(2 \times S_5) : 2$</td>
<td>§10.28</td>
<td>$VO_4^-(3)$</td>
</tr>
<tr>
<td>81</td>
<td>32</td>
<td>13</td>
<td>12</td>
<td>$3^4 : S$</td>
<td>$(2^{1+2} : 3^2) : D_8$</td>
<td>§10.29</td>
<td>$VO_4^-(3)$</td>
</tr>
<tr>
<td>81</td>
<td>40</td>
<td>19</td>
<td>20</td>
<td>$3^4 : S$</td>
<td>$40 : 4$</td>
<td>§10.30</td>
<td>Paley</td>
</tr>
<tr>
<td>81</td>
<td>40</td>
<td>19</td>
<td>20</td>
<td>$3^4 : S$</td>
<td>$SL_2(5) : 2^2$</td>
<td>§10.30</td>
<td>Peisert</td>
</tr>
<tr>
<td>85</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>$O_3(4) : 2$</td>
<td>$2^6 : (A_5 : S_5)$</td>
<td>§10.30</td>
<td>$Sp_4(2)$</td>
</tr>
<tr>
<td>89</td>
<td>44</td>
<td>21</td>
<td>22</td>
<td>$89 : 44$</td>
<td>44</td>
<td>§10.31</td>
<td>Paley</td>
</tr>
<tr>
<td>91</td>
<td>24</td>
<td>12</td>
<td>4</td>
<td>S_{16}</td>
<td>$2 \times S_{12}$</td>
<td>§10.32</td>
<td>Paley</td>
</tr>
<tr>
<td>97</td>
<td>48</td>
<td>23</td>
<td>24</td>
<td>$97 : 48$</td>
<td>48</td>
<td>§10.32</td>
<td>Paley</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>8</td>
<td>2</td>
<td>$S_{10} wr 2$</td>
<td>$S_6 wr 2$</td>
<td>10 × 10</td>
<td>Paley</td>
</tr>
<tr>
<td>100</td>
<td>22</td>
<td>0</td>
<td>6</td>
<td>$HS : 2$</td>
<td>$M_{22} : 2$</td>
<td>10 × 10</td>
<td>Paley</td>
</tr>
<tr>
<td>100</td>
<td>36</td>
<td>14</td>
<td>12</td>
<td>$HJ : 2$</td>
<td>$U_3(3) : 2$</td>
<td>§10.31</td>
<td>Hall-Janko</td>
</tr>
</tbody>
</table>

continued...
Table 11.1: Classification of Rank 3 Graphs

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>G</th>
<th>S</th>
<th>ref</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>50</td>
<td>24</td>
<td>25</td>
<td>101: 50</td>
<td>58</td>
<td></td>
<td>Paley</td>
</tr>
<tr>
<td>105</td>
<td>26</td>
<td>13</td>
<td>4</td>
<td>S15</td>
<td>2 × S13</td>
<td>2</td>
<td>T(15)</td>
</tr>
<tr>
<td>109</td>
<td>54</td>
<td>26</td>
<td>27</td>
<td>109: 54</td>
<td>54</td>
<td></td>
<td>Paley</td>
</tr>
<tr>
<td>112</td>
<td>30</td>
<td>2</td>
<td>10</td>
<td>U3(3): D8</td>
<td>3 4</td>
<td></td>
<td>§10.34 Paley</td>
</tr>
<tr>
<td>113</td>
<td>56</td>
<td>27</td>
<td>28</td>
<td>113: 56</td>
<td>56</td>
<td></td>
<td>Paley</td>
</tr>
<tr>
<td>117</td>
<td>36</td>
<td>15</td>
<td>9</td>
<td>L4(3): 2</td>
<td>2 × (O3(3): 2)</td>
<td>§10.35 NO4(3)</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>54</td>
<td>21</td>
<td>27</td>
<td>G5(2): 2</td>
<td>2</td>
<td></td>
<td>§10.36 G5(2)</td>
</tr>
<tr>
<td>120</td>
<td>28</td>
<td>14</td>
<td>4</td>
<td>S16</td>
<td>2 × S14</td>
<td>2</td>
<td>T(16)</td>
</tr>
<tr>
<td>120</td>
<td>51</td>
<td>18</td>
<td>24</td>
<td>O5(3): 24</td>
<td>L4(16): 4</td>
<td>§10.38 4NO4(4)</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>56</td>
<td>28</td>
<td>24</td>
<td>O5(2): 24</td>
<td>2 × O7(2)</td>
<td>§10.39 NO4(2)</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>20</td>
<td>9</td>
<td>2</td>
<td>S11 wr 2</td>
<td>S10 wr 2</td>
<td>11 × 11</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>40</td>
<td>15</td>
<td>12</td>
<td>112: S</td>
<td>40</td>
<td>7.4.5</td>
<td>cubes</td>
</tr>
<tr>
<td>121</td>
<td>60</td>
<td>29</td>
<td>30</td>
<td>112: S</td>
<td>5 × D24</td>
<td></td>
<td>Paley</td>
</tr>
<tr>
<td>121</td>
<td>60</td>
<td>29</td>
<td>30</td>
<td>112: S</td>
<td>5 × (3: 4)</td>
<td></td>
<td>Peisert</td>
</tr>
<tr>
<td>125</td>
<td>62</td>
<td>30</td>
<td>31</td>
<td>53: S</td>
<td>2 (31: 3)</td>
<td></td>
<td>Paley</td>
</tr>
<tr>
<td>126</td>
<td>25</td>
<td>8</td>
<td>4</td>
<td>S10</td>
<td>S5</td>
<td>8</td>
<td>§10.40</td>
</tr>
<tr>
<td>126</td>
<td>45</td>
<td>12</td>
<td>18</td>
<td>U3(3): 2</td>
<td>2 × (O3(3): 2)</td>
<td>§10.41 NO47(3)</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>48</td>
<td>20</td>
<td>16</td>
<td>O2(3): 22</td>
<td>2</td>
<td></td>
<td>§10.40 O2(3)</td>
</tr>
<tr>
<td>130</td>
<td>48</td>
<td>20</td>
<td>16</td>
<td>O2(3): 22</td>
<td>2 × 24</td>
<td></td>
<td>§10.40 O2(3)</td>
</tr>
<tr>
<td>136</td>
<td>30</td>
<td>15</td>
<td>4</td>
<td>S17</td>
<td>2</td>
<td></td>
<td>§10.43 Paley</td>
</tr>
<tr>
<td>136</td>
<td>60</td>
<td>24</td>
<td>28</td>
<td>O5(4): 2</td>
<td>(A5 × A5): 2</td>
<td>NO4(4)</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>60</td>
<td>24</td>
<td>28</td>
<td>O5(4): 2</td>
<td>2 × O7(2)</td>
<td></td>
<td>NO4(4)</td>
</tr>
<tr>
<td>137</td>
<td>68</td>
<td>33</td>
<td>34</td>
<td>S13</td>
<td>68</td>
<td></td>
<td>§10.44 Paley</td>
</tr>
<tr>
<td>144</td>
<td>22</td>
<td>10</td>
<td>2</td>
<td>S12 wr 2</td>
<td>S11 wr 2</td>
<td>12</td>
<td>12 × 12</td>
</tr>
<tr>
<td>149</td>
<td>74</td>
<td>36</td>
<td>37</td>
<td>149: 74</td>
<td>74</td>
<td></td>
<td>§10.44 Paley</td>
</tr>
<tr>
<td>153</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td>S18</td>
<td>2</td>
<td></td>
<td>§10.44 Paley</td>
</tr>
<tr>
<td>155</td>
<td>42</td>
<td>17</td>
<td>9</td>
<td>L5(2)</td>
<td>27: (L3(2) × S3)</td>
<td>§10.47 J9(5, 2)</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>30</td>
<td>4</td>
<td>6</td>
<td>O5(5): 2</td>
<td>57: (4 × S5)</td>
<td>§10.47 O5(5), GQ(5, 5)</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>30</td>
<td>4</td>
<td>6</td>
<td>O5(5): 2</td>
<td>57: (4 × S5)</td>
<td>§10.47 O5(5), GQ(5, 5)</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>78</td>
<td>38</td>
<td>39</td>
<td>157: 78</td>
<td>78</td>
<td></td>
<td>§10.48 Paley</td>
</tr>
<tr>
<td>166</td>
<td>36</td>
<td>3</td>
<td>9</td>
<td>PFU5(2)</td>
<td>2(1+6): 3) × 254</td>
<td>U5(2), GQ(4, 8)</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>24</td>
<td>11</td>
<td>2</td>
<td>S13 wr 2</td>
<td>S12 wr 2</td>
<td>13</td>
<td>13 × 13</td>
</tr>
<tr>
<td>172</td>
<td>31</td>
<td>30</td>
<td>12</td>
<td>53: S</td>
<td>3 × (SL3(4): 4)</td>
<td>§7.5.2</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>84</td>
<td>41</td>
<td>42</td>
<td>132: S</td>
<td>84</td>
<td>2</td>
<td>§10.49 Paley</td>
</tr>
<tr>
<td>171</td>
<td>34</td>
<td>17</td>
<td>4</td>
<td>S19</td>
<td>2</td>
<td></td>
<td>§10.57 T(19)</td>
</tr>
<tr>
<td>173</td>
<td>86</td>
<td>42</td>
<td>43</td>
<td>173: 86</td>
<td>86</td>
<td></td>
<td>§10.57 Paley</td>
</tr>
<tr>
<td>176</td>
<td>40</td>
<td>12</td>
<td>8</td>
<td>U5(2): 2</td>
<td>U5(3): S3</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>70</td>
<td>18</td>
<td>34</td>
<td>M23</td>
<td>A7</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>90</td>
<td>40</td>
<td>45</td>
<td>181: 90</td>
<td>90</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>36</td>
<td>18</td>
<td>4</td>
<td>S30</td>
<td>2</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>96</td>
<td>47</td>
<td>48</td>
<td>193: 96</td>
<td>96</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>26</td>
<td>12</td>
<td>2</td>
<td>S14 wr 2</td>
<td>S13 wr 2</td>
<td>14</td>
<td>§10.51</td>
</tr>
<tr>
<td>197</td>
<td>98</td>
<td>49</td>
<td>49</td>
<td>197: 98</td>
<td>98</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>38</td>
<td>19</td>
<td>4</td>
<td>S21</td>
<td>2</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>28</td>
<td>13</td>
<td>2</td>
<td>S15 wr 2</td>
<td>S14 wr 2</td>
<td>15</td>
<td>§10.51</td>
</tr>
<tr>
<td>229</td>
<td>114</td>
<td>56</td>
<td>57</td>
<td>229: 114</td>
<td>114</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>40</td>
<td>20</td>
<td>4</td>
<td>S22</td>
<td>2</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>116</td>
<td>57</td>
<td>58</td>
<td>233: 116</td>
<td>116</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>120</td>
<td>59</td>
<td>60</td>
<td>241: 120</td>
<td>120</td>
<td>§10.51</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>22</td>
<td>1</td>
<td>2</td>
<td>3: S</td>
<td>2 × M3</td>
<td>§10.55</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>40</td>
<td>10</td>
<td>6</td>
<td>42: S</td>
<td>42: S</td>
<td>§10.55</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>51</td>
<td>12</td>
<td>2</td>
<td>4: S</td>
<td>(3 × SL2(16)): 4</td>
<td>V4O5(4)</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>75</td>
<td>26</td>
<td>20</td>
<td>4: S</td>
<td>(A5 × A5): D12</td>
<td>V4O5(4)</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>85</td>
<td>24</td>
<td>30</td>
<td>2: S</td>
<td>85: 8</td>
<td>§7.4.5</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>102</td>
<td>38</td>
<td>42</td>
<td>2: S</td>
<td>L2(17)</td>
<td>§10.58</td>
<td></td>
</tr>
</tbody>
</table>

continued...
11.6. SMALL RANK 3 GRAPHS

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>G</th>
<th>Σ</th>
<th>ref graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>119</td>
<td>54</td>
<td>56</td>
<td>$2^3 : S$</td>
<td>$O_8^+(2) : 2$</td>
<td>§10.59 $VO_8^+(2)$</td>
</tr>
<tr>
<td>256</td>
<td>120</td>
<td>56</td>
<td>56</td>
<td>$2^3 : S$</td>
<td>$O_8^+(2) : 2$</td>
<td>§10.60 $VO_8^+(2)$</td>
</tr>
<tr>
<td>257</td>
<td>128</td>
<td>63</td>
<td>64</td>
<td>257 : 128</td>
<td>128</td>
<td>Paley</td>
</tr>
<tr>
<td>269</td>
<td>134</td>
<td>66</td>
<td>67</td>
<td>269 : 134</td>
<td>134</td>
<td>Paley</td>
</tr>
<tr>
<td>273</td>
<td>112</td>
<td>30</td>
<td>56</td>
<td>McL : 2</td>
<td>$U_4(3) : 2$</td>
<td>§10.61 McLaughlin</td>
</tr>
<tr>
<td>276</td>
<td>44</td>
<td>22</td>
<td>4</td>
<td>S_5</td>
<td>$2 \times S_{55}$</td>
<td>T(24)</td>
</tr>
<tr>
<td>277</td>
<td>138</td>
<td>68</td>
<td>69</td>
<td>277 : 138</td>
<td>138</td>
<td>Paley</td>
</tr>
<tr>
<td>280</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>$U_4(3) : D_8$</td>
<td>$[2^3, 3^3]^7$</td>
<td>$GQ(9, 3)$</td>
</tr>
<tr>
<td>281</td>
<td>140</td>
<td>69</td>
<td>70</td>
<td>281 : 140</td>
<td>140</td>
<td>Paley</td>
</tr>
<tr>
<td>289</td>
<td>32</td>
<td>15</td>
<td>2</td>
<td>S_{17} wr 2</td>
<td>S_{16} wr 2</td>
<td>17×17</td>
</tr>
<tr>
<td>289</td>
<td>96</td>
<td>35</td>
<td>30</td>
<td>$17^2 : S$</td>
<td>96 : 2</td>
<td>§7.45 cubes</td>
</tr>
<tr>
<td>289</td>
<td>96</td>
<td>35</td>
<td>30</td>
<td>$17^2 : S$</td>
<td>8 $S_4 : 2$</td>
<td>§7.5.2</td>
</tr>
<tr>
<td>293</td>
<td>144</td>
<td>73</td>
<td>72</td>
<td>$17^2 : S$</td>
<td>144 : 2</td>
<td>Paley</td>
</tr>
<tr>
<td>293</td>
<td>146</td>
<td>72</td>
<td>73</td>
<td>293 : 146</td>
<td>146</td>
<td>Paley</td>
</tr>
<tr>
<td>297</td>
<td>40</td>
<td>7</td>
<td>5</td>
<td>$PFU_2(2)$</td>
<td>$[2^2] : (A_5 : S_5)$</td>
<td>§10.63 $U_2(2), GQ(8, 4)$</td>
</tr>
<tr>
<td>300</td>
<td>46</td>
<td>23</td>
<td>4</td>
<td>S_{30}</td>
<td>$2 \times S_{23}$</td>
<td>T(25)</td>
</tr>
<tr>
<td>313</td>
<td>156</td>
<td>77</td>
<td>78</td>
<td>313 : 156</td>
<td>156</td>
<td>Paley</td>
</tr>
<tr>
<td>317</td>
<td>158</td>
<td>78</td>
<td>79</td>
<td>317 : 158</td>
<td>158</td>
<td>Paley</td>
</tr>
<tr>
<td>324</td>
<td>34</td>
<td>16</td>
<td>2</td>
<td>S_{18} wr 2</td>
<td>S_{17} wr 2</td>
<td>18×18</td>
</tr>
<tr>
<td>325</td>
<td>48</td>
<td>24</td>
<td>4</td>
<td>S_{36}</td>
<td>$2 \times S_{24}$</td>
<td>T(26)</td>
</tr>
<tr>
<td>325</td>
<td>68</td>
<td>3</td>
<td>17</td>
<td>$U_4(4) : 4$</td>
<td>$2^6 : (L_2(16) : (3 : 4))$</td>
<td>$O_7^*(4), GQ(4, 16)$</td>
</tr>
<tr>
<td>337</td>
<td>168</td>
<td>83</td>
<td>84</td>
<td>337 : 168</td>
<td>168</td>
<td>Paley</td>
</tr>
<tr>
<td>349</td>
<td>174</td>
<td>86</td>
<td>87</td>
<td>349 : 174</td>
<td>174</td>
<td>Paley</td>
</tr>
<tr>
<td>351</td>
<td>50</td>
<td>25</td>
<td>4</td>
<td>S_{27}</td>
<td>$2 \times S_{25}$</td>
<td>T(27)</td>
</tr>
<tr>
<td>351</td>
<td>126</td>
<td>45</td>
<td>45</td>
<td>$O_7^*(3) : 2$</td>
<td>$(2U_4(3)) : 2^2$</td>
<td>§10.66 $NO_7^{\perp -}(3)$</td>
</tr>
<tr>
<td>353</td>
<td>176</td>
<td>87</td>
<td>88</td>
<td>353 : 176</td>
<td>176</td>
<td>Paley</td>
</tr>
<tr>
<td>357</td>
<td>100</td>
<td>35</td>
<td>25</td>
<td>$L_2(4) : 2^3$</td>
<td>$2^6 : (A_5 \times A_5 : D_{312})$</td>
<td>$O_7(4)$</td>
</tr>
<tr>
<td>361</td>
<td>36</td>
<td>17</td>
<td>2</td>
<td>S_{19} wr 2</td>
<td>S_{18} wr 2</td>
<td>19×19</td>
</tr>
<tr>
<td>361</td>
<td>144</td>
<td>59</td>
<td>56</td>
<td>$19^2 : S$</td>
<td>$9 \times GL_2(3)$</td>
<td>§7.5.2</td>
</tr>
<tr>
<td>361</td>
<td>180</td>
<td>89</td>
<td>90</td>
<td>$19^2 : S$</td>
<td>180 : 2</td>
<td>Paley</td>
</tr>
<tr>
<td>361</td>
<td>180</td>
<td>89</td>
<td>90</td>
<td>$19^2 : S$</td>
<td>180 : 2</td>
<td>Paley</td>
</tr>
<tr>
<td>361</td>
<td>180</td>
<td>89</td>
<td>90</td>
<td>$19^2 : S$</td>
<td>180 : 2</td>
<td>Paley</td>
</tr>
<tr>
<td>364</td>
<td>120</td>
<td>38</td>
<td>40</td>
<td>$PSp_3(3) : 2$</td>
<td>$[3^2] : (2. O_5(3) : 2)$</td>
<td>$Sp_3(3)$</td>
</tr>
<tr>
<td>373</td>
<td>186</td>
<td>92</td>
<td>93</td>
<td>$373 : 186$</td>
<td>186</td>
<td>Paley</td>
</tr>
<tr>
<td>378</td>
<td>52</td>
<td>26</td>
<td>4</td>
<td>S_{26}</td>
<td>$2 \times S_{25}$</td>
<td>T(28)</td>
</tr>
<tr>
<td>378</td>
<td>117</td>
<td>36</td>
<td>36</td>
<td>$O_7^*(3) : 2$</td>
<td>$2 \times (L_4(3) : 2)$</td>
<td>§10.67 $NO_7^{\perp -}(6)$</td>
</tr>
<tr>
<td>389</td>
<td>194</td>
<td>96</td>
<td>97</td>
<td>389 : 194</td>
<td>194</td>
<td>Paley</td>
</tr>
<tr>
<td>397</td>
<td>198</td>
<td>98</td>
<td>99</td>
<td>397 : 198</td>
<td>198</td>
<td>Paley</td>
</tr>
<tr>
<td>398</td>
<td>18</td>
<td>2</td>
<td>S_{20} wr 2</td>
<td>S_{19} wr 2</td>
<td>20×20</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>56</td>
<td>6</td>
<td>8</td>
<td>$O_7(7) : 2$</td>
<td>$7^3 : (6 \times (L_3(2) : 2))$</td>
<td>$O_7(7), GQ(7, 7)$</td>
</tr>
<tr>
<td>400</td>
<td>56</td>
<td>6</td>
<td>8</td>
<td>$O_7(7) : 2$</td>
<td>$7^3 \times GL_3(7)$</td>
<td>$Sp_7(3), GQ(7, 7)$</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
<td>99</td>
<td>100</td>
<td>401 : 200</td>
<td>200</td>
<td>Paley</td>
</tr>
<tr>
<td>400</td>
<td>54</td>
<td>27</td>
<td>4</td>
<td>S_{30}</td>
<td>$2 \times S_{27}$</td>
<td>T(29)</td>
</tr>
<tr>
<td>400</td>
<td>204</td>
<td>101</td>
<td>102</td>
<td>409 : 204</td>
<td>204</td>
<td>Paley</td>
</tr>
<tr>
<td>416</td>
<td>100</td>
<td>36</td>
<td>20</td>
<td>$G_3(4) : 2$</td>
<td>$HJ : 2$</td>
<td>§10.68</td>
</tr>
<tr>
<td>421</td>
<td>210</td>
<td>104</td>
<td>105</td>
<td>421 : 210</td>
<td>210</td>
<td>Paley</td>
</tr>
<tr>
<td>433</td>
<td>216</td>
<td>107</td>
<td>108</td>
<td>433 : 216</td>
<td>216</td>
<td>Paley</td>
</tr>
<tr>
<td>435</td>
<td>56</td>
<td>28</td>
<td>4</td>
<td>S_{30}</td>
<td>$2 \times S_{28}$</td>
<td>T(30)</td>
</tr>
<tr>
<td>441</td>
<td>41</td>
<td>20</td>
<td>2</td>
<td>S_{31} wr 2</td>
<td>S_{30} wr 2</td>
<td>21×21</td>
</tr>
<tr>
<td>449</td>
<td>222</td>
<td>111</td>
<td>112</td>
<td>433 : 449</td>
<td>224</td>
<td>Paley</td>
</tr>
<tr>
<td>457</td>
<td>228</td>
<td>113</td>
<td>114</td>
<td>457 : 228</td>
<td>228</td>
<td>Paley</td>
</tr>
<tr>
<td>461</td>
<td>230</td>
<td>114</td>
<td>115</td>
<td>461 : 230</td>
<td>230</td>
<td>Paley</td>
</tr>
<tr>
<td>465</td>
<td>58</td>
<td>20</td>
<td>4</td>
<td>S_{31}</td>
<td>$2 \times S_{29}$</td>
<td>T(31)</td>
</tr>
<tr>
<td>484</td>
<td>42</td>
<td>20</td>
<td>2</td>
<td>S_{32} wr 2</td>
<td>S_{31} wr 2</td>
<td>22×22</td>
</tr>
<tr>
<td>495</td>
<td>238</td>
<td>109</td>
<td>109</td>
<td>$O_{10}^+(2) : 2$</td>
<td>$2^9 : (O_6^+(2) : 2)$</td>
<td>§10.69 $O_{10}^+(2)$</td>
</tr>
<tr>
<td>496</td>
<td>60</td>
<td>30</td>
<td>4</td>
<td>S_{32}</td>
<td>$2 \times S_{30}$</td>
<td>T(32)</td>
</tr>
<tr>
<td>496</td>
<td>240</td>
<td>120</td>
<td>112</td>
<td>$O_{10}^+(2) : 2$</td>
<td>$2 \times O_8(2)$</td>
<td>§3.1.2 $NO_{10}^+(2)$</td>
</tr>
<tr>
<td>509</td>
<td>254</td>
<td>124</td>
<td>127</td>
<td>509 : 254</td>
<td>254</td>
<td>Paley</td>
</tr>
<tr>
<td>521</td>
<td>260</td>
<td>129</td>
<td>130</td>
<td>521 : 260</td>
<td>260</td>
<td>Paley</td>
</tr>
<tr>
<td>527</td>
<td>256</td>
<td>120</td>
<td>128</td>
<td>$O_{10}^+(4) : 2$</td>
<td>$2^6 : O_8^+(4) : 2$</td>
<td>§2.6.1 T($O_{10}^+(2)$)</td>
</tr>
<tr>
<td>528</td>
<td>62</td>
<td>31</td>
<td>4</td>
<td>S_{33}</td>
<td>$2 \times S_{31}$</td>
<td>T(33)</td>
</tr>
<tr>
<td>528</td>
<td>255</td>
<td>126</td>
<td>120</td>
<td>$O_{10}^+(4) : 2$</td>
<td>$2 \times O_8(2)$</td>
<td>§3.1.2 $NO_{10}^+(2)$</td>
</tr>
</tbody>
</table>
CHAPTER 11. CLASSIFICATION OF RANK 3 GRAPHS

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>G</th>
<th>S</th>
<th>ref</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>44</td>
<td>21</td>
<td>2</td>
<td>S_{23} wr 2</td>
<td>S_{22} wr 2</td>
<td>§7.45</td>
<td>cubes</td>
</tr>
<tr>
<td>529</td>
<td>176</td>
<td>63</td>
<td>56</td>
<td>$23^2 : S$</td>
<td>$176 : 2$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>529</td>
<td>264</td>
<td>131</td>
<td>132</td>
<td>$23^2 : S$</td>
<td>$264 : 2$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>529</td>
<td>264</td>
<td>131</td>
<td>132</td>
<td>$11 \times (3 : Q_8)$</td>
<td>$264 : 2$</td>
<td>§7.10</td>
<td>Peisert</td>
</tr>
<tr>
<td>529</td>
<td>264</td>
<td>131</td>
<td>132</td>
<td>$11 \times SL_2(3)$</td>
<td>$264 : 2$</td>
<td>§7.10</td>
<td>sporadic Peisert</td>
</tr>
<tr>
<td>541</td>
<td>270</td>
<td>134</td>
<td>135</td>
<td>$541 \cdot 270$</td>
<td>270</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>557</td>
<td>278</td>
<td>138</td>
<td>139</td>
<td>$557 \cdot 278$</td>
<td>278</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>561</td>
<td>64</td>
<td>32</td>
<td>4</td>
<td>S_{24}</td>
<td>$2 \times S_{32}$</td>
<td>T(34)</td>
<td></td>
</tr>
<tr>
<td>569</td>
<td>284</td>
<td>141</td>
<td>142</td>
<td>$569 \cdot 284$</td>
<td>284</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>576</td>
<td>46</td>
<td>22</td>
<td>2</td>
<td>S_{24} wr 2</td>
<td>$523 \cdot 2$</td>
<td>§7.10</td>
<td>cubes</td>
</tr>
<tr>
<td>577</td>
<td>288</td>
<td>143</td>
<td>144</td>
<td>$577 \cdot 288$</td>
<td>288</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>585</td>
<td>72</td>
<td>9</td>
<td>5</td>
<td>$PFO(8)_2$</td>
<td>$2^{9} : L_2(8)_2$</td>
<td>§7.45</td>
<td>cubes</td>
</tr>
<tr>
<td>585</td>
<td>289</td>
<td>147</td>
<td>148</td>
<td>$503 \cdot 296$</td>
<td>296</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>595</td>
<td>66</td>
<td>33</td>
<td>4</td>
<td>S_{35}</td>
<td>$2 \times S_{33}$</td>
<td>T(35)</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>300</td>
<td>149</td>
<td>150</td>
<td>$601 \cdot 300$</td>
<td>300</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>613</td>
<td>306</td>
<td>152</td>
<td>153</td>
<td>$613 \cdot 306$</td>
<td>306</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>617</td>
<td>308</td>
<td>153</td>
<td>154</td>
<td>$617 \cdot 308$</td>
<td>308</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>625</td>
<td>48</td>
<td>23</td>
<td>2</td>
<td>S_{24} wr 2</td>
<td>$524 \cdot 2$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>625</td>
<td>104</td>
<td>3</td>
<td>20</td>
<td>$5^3 : S$</td>
<td>$L_2(25) : (8 : 2)$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>625</td>
<td>144</td>
<td>43</td>
<td>30</td>
<td>$5^3 : S$</td>
<td>$4 \times S_{26}$ wr 2</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>625</td>
<td>144</td>
<td>43</td>
<td>30</td>
<td>$5^3 : S$</td>
<td>$4 \times S_{26}$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>625</td>
<td>208</td>
<td>63</td>
<td>72</td>
<td>$5^3 : S$</td>
<td>$208 : 4$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>625</td>
<td>240</td>
<td>90</td>
<td>90</td>
<td>$5^3 : S$</td>
<td>$4 \times S_{26}$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>632</td>
<td>312</td>
<td>155</td>
<td>156</td>
<td>$5^3 : S$</td>
<td>$312 : 4$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>630</td>
<td>68</td>
<td>34</td>
<td>4</td>
<td>S_{36}</td>
<td>$2 \times S_{34}$</td>
<td>T(36)</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>320</td>
<td>159</td>
<td>160</td>
<td>$641 \cdot 320$</td>
<td>320</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>651</td>
<td>90</td>
<td>33</td>
<td>9</td>
<td>$L_4(2)_2$</td>
<td>$2^2 : (A_8 \times S_3)$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>653</td>
<td>326</td>
<td>162</td>
<td>163</td>
<td>$653 \cdot 326$</td>
<td>326</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>661</td>
<td>330</td>
<td>164</td>
<td>165</td>
<td>$661 \cdot 330$</td>
<td>330</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>664</td>
<td>70</td>
<td>35</td>
<td>4</td>
<td>S_{37}</td>
<td>$2 \times S_{35}$</td>
<td>T(37)</td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>176</td>
<td>40</td>
<td>48</td>
<td>$U_4(2)_2 : S_3$</td>
<td>$U_4(2) : S_3$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>673</td>
<td>336</td>
<td>167</td>
<td>168</td>
<td>$673 \cdot 336$</td>
<td>336</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>676</td>
<td>50</td>
<td>24</td>
<td>2</td>
<td>S_{26} wr 2</td>
<td>S_{26} wr 2</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>677</td>
<td>338</td>
<td>168</td>
<td>169</td>
<td>$677 \cdot 338$</td>
<td>338</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
<tr>
<td>693</td>
<td>180</td>
<td>51</td>
<td>45</td>
<td>$U_4(2) \times S_3$</td>
<td>$2^{1+8} : (O_8(3) \times S_3)$</td>
<td>§7.10</td>
<td>Paley</td>
</tr>
</tbody>
</table>

continued...
11.7. SMALL RANK 4–10 STRONGLY REGULAR GRAPHS

11.7 Small rank 4–10 strongly regular graphs

Below we give the parameters of the strongly regular with \(v \leq 1024 \) with a full automorphism group acting primitively of rank 4–10.

For rank 3 graphs the group action is imprimitive if and only if the graph is imprimitive (\(aK_m \) or its complement \(K_{n\times m} \)). For \(r \geq 4 \), a primitive strongly regular graph can have an automorphism group that acts imprimitively with rank \(r \). For example, the graph on the lines of \(AG(3,q) \) has a rank 4 group with imprimitive action, preserving parallelism.

Since there are very many graphs with Latin square parameters \(LS_n(q) \) (that is, \(v = q^2, k = (q - 1)n, \lambda = q + n(n - 3), \mu = n(n - 1) \)) where \(q \) is a prime power, we omit those.

The full group of automorphisms is \(G \), the rank is ‘rk’, and ‘\#’ gives the number of nonisomorphic such graphs. Of a complementary pair of graphs only the one with smallest \(k \) is given.

<table>
<thead>
<tr>
<th>(v)</th>
<th>(k)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(#)</th>
<th>(rk)</th>
<th>(G)</th>
<th>suborbit sizes</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>40</td>
<td>20</td>
<td>210</td>
<td>4</td>
<td>1</td>
<td>(2^{5} : (2 \times S_5))</td>
<td>1, 20, 20, 30, 30, 60</td>
<td>10.22</td>
</tr>
<tr>
<td>105</td>
<td>32</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>(L_3(4).D_12)</td>
<td>1, 8, 32, 64</td>
<td>10.33</td>
</tr>
<tr>
<td>120</td>
<td>42</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>(L_3(4).2 \times 2)</td>
<td>1, 21, 42, 56</td>
<td>10.37</td>
</tr>
<tr>
<td>120</td>
<td>56</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>(S_{10})</td>
<td>1, 21, 35, 63</td>
<td>299</td>
</tr>
<tr>
<td>120</td>
<td>56</td>
<td>28</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>(S_7)</td>
<td>1, 7, 14, 14, 21, 21, 42</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>39</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>(L_3(3).2)</td>
<td>1, 13, 26, 26, 39, 39</td>
<td>10.45</td>
</tr>
<tr>
<td>144</td>
<td>55</td>
<td>22</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>(M_{12}.2)</td>
<td>1, 22, 55, 66</td>
<td>10.46</td>
</tr>
<tr>
<td>144</td>
<td>66</td>
<td>30</td>
<td>30</td>
<td>2</td>
<td>4</td>
<td>(M_{12}.2)</td>
<td>1, 22, 55, 66</td>
<td>10.46</td>
</tr>
<tr>
<td>175</td>
<td>72</td>
<td>20</td>
<td>36</td>
<td>1</td>
<td>4</td>
<td>(PSU_3(5))</td>
<td>1, 12, 72, 90</td>
<td>299</td>
</tr>
<tr>
<td>208</td>
<td>75</td>
<td>30</td>
<td>25</td>
<td>1</td>
<td>4</td>
<td>(PSU_3(4))</td>
<td>1, 12, 75, 120, 120</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>(M_{22}.2)</td>
<td>1, 30, 40, 160</td>
<td>10.54</td>
</tr>
</tbody>
</table>

Table 11.8: Small rank 3 graphs

continued...
Table 11.9: Small primitive rank 4–10 non-LS strongly regular graphs

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>$#$</th>
<th>rk</th>
<th>G</th>
<th>suborbit sizes</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>68</td>
<td>12</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>$\text{PSL}_2(16)$</td>
<td>1, 51, 102, 102</td>
<td>§10.58</td>
</tr>
<tr>
<td>256</td>
<td>102</td>
<td>38</td>
<td>42</td>
<td>1</td>
<td>4</td>
<td>$3^5: (3 \times (17 : 4))$</td>
<td>1, 51, 102, 102</td>
<td>§10.58</td>
</tr>
<tr>
<td>280</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>HJ_2</td>
<td>1, 36, 108, 135</td>
<td>p. 287</td>
</tr>
<tr>
<td>280</td>
<td>117</td>
<td>44</td>
<td>52</td>
<td>1</td>
<td>5</td>
<td>Σ_9</td>
<td>1, 27, 36, 54, 162</td>
<td>§10.62</td>
</tr>
<tr>
<td>280</td>
<td>135</td>
<td>70</td>
<td>60</td>
<td>1</td>
<td>4</td>
<td>HJ_2</td>
<td>1, 36, 108, 135</td>
<td>p. 287</td>
</tr>
<tr>
<td>300</td>
<td>65</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>$\Sigma_9(5)$</td>
<td>1, 65, 104, 130</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>300</td>
<td>104</td>
<td>28</td>
<td>40</td>
<td>1</td>
<td>4</td>
<td>$\Sigma_9(5)$</td>
<td>1, 65, 104, 130</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>325</td>
<td>60</td>
<td>15</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>$\Sigma_9(5)$</td>
<td>1, 60, 120, 144</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>325</td>
<td>144</td>
<td>68</td>
<td>60</td>
<td>1</td>
<td>4</td>
<td>$\Sigma_9(5)$</td>
<td>1, 60, 120, 144</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>330</td>
<td>63</td>
<td>24</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>Σ_11</td>
<td>1, 28, 35, 126, 140</td>
<td>p. 26</td>
</tr>
<tr>
<td>525</td>
<td>144</td>
<td>48</td>
<td>36</td>
<td>1</td>
<td>6</td>
<td>$\Sigma_9(5)$</td>
<td>1, 20, 120, 120, 144</td>
<td>$NU_3(5)$</td>
</tr>
<tr>
<td>540</td>
<td>224</td>
<td>88</td>
<td>96</td>
<td>1</td>
<td>4</td>
<td>$\text{PSU}_4(3).D_8$</td>
<td>1, 63, 224, 252</td>
<td>$NU_4(3)$</td>
</tr>
<tr>
<td>560</td>
<td>208</td>
<td>72</td>
<td>80</td>
<td>1</td>
<td>7</td>
<td>$\text{PSU}_4(3).D_8$</td>
<td>1, 39, 52, 78, 78, 156, 156</td>
<td>§10.72</td>
</tr>
<tr>
<td>625</td>
<td>208</td>
<td>63</td>
<td>72</td>
<td>1</td>
<td>4</td>
<td>$5^3: (13 : (16 : 2))$</td>
<td>1, 208, 208, 208</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>625</td>
<td>208</td>
<td>63</td>
<td>72</td>
<td>1</td>
<td>5</td>
<td>$5^4: (13 : (8 : 4))$</td>
<td>1, 104, 104, 208, 208</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>625</td>
<td>208</td>
<td>63</td>
<td>72</td>
<td>1</td>
<td>7</td>
<td>$5^3: (4, 4, 4, 4, 6)$</td>
<td>1, 16, 64, 96, 128, 128, 192</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>625</td>
<td>260</td>
<td>105</td>
<td>110</td>
<td>1</td>
<td>4</td>
<td>$5^3: 4 \Sigma_9(5)$</td>
<td>1, 104, 260, 260</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>729</td>
<td>112</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>$3^2: 2 \Sigma_3(4)$</td>
<td>1, 112, 112, 504</td>
<td>§10.75</td>
</tr>
<tr>
<td>729</td>
<td>168</td>
<td>27</td>
<td>42</td>
<td>1</td>
<td>8</td>
<td>$3^5: 2 \Sigma_5$</td>
<td>1, 40, 40, 48, 120, 120, 120</td>
<td>§10.75</td>
</tr>
<tr>
<td>729</td>
<td>224</td>
<td>61</td>
<td>72</td>
<td>1</td>
<td>7</td>
<td>$3^3: 2 \Sigma_3(4)$</td>
<td>1, 80, 90, 90, 144, 144, 180</td>
<td>$NO_6^{-3}(3)$</td>
</tr>
<tr>
<td>729</td>
<td>252</td>
<td>81</td>
<td>90</td>
<td>1</td>
<td>4</td>
<td>$3^5: 2 \Sigma_5(3)$</td>
<td>1, 224, 252, 252</td>
<td>$NO_6^{-3}(3)$</td>
</tr>
<tr>
<td>729</td>
<td>252</td>
<td>81</td>
<td>90</td>
<td>2</td>
<td>10</td>
<td>$3^3: 2 \Sigma_3(4)$</td>
<td>1, 72, 72, 80, 144, 180, 180</td>
<td>$NO_6^{-3}(3)$</td>
</tr>
<tr>
<td>729</td>
<td>252</td>
<td>81</td>
<td>90</td>
<td>2</td>
<td>10</td>
<td>$3^3: 2 \Sigma_3(4)$</td>
<td>1, 72, 72, 72, 80, 90, 90, 90</td>
<td>$NO_6^{-3}(3)$</td>
</tr>
<tr>
<td>729</td>
<td>280</td>
<td>103</td>
<td>110</td>
<td>2</td>
<td>5</td>
<td>G</td>
<td>1, 24, 192, 256, 256</td>
<td>$NO_6^{-3}(3)$</td>
</tr>
<tr>
<td>729</td>
<td>280</td>
<td>103</td>
<td>110</td>
<td>2</td>
<td>8</td>
<td>$3^3: 2 \Sigma_5$</td>
<td>1, 40, 40, 48, 120, 120, 120</td>
<td>§10.75</td>
</tr>
<tr>
<td>729</td>
<td>336</td>
<td>153</td>
<td>156</td>
<td>2</td>
<td>8</td>
<td>G</td>
<td>1, 24, 48, 48, 96, 128, 192, 192</td>
<td>§10.75</td>
</tr>
<tr>
<td>729</td>
<td>336</td>
<td>153</td>
<td>156</td>
<td>1</td>
<td>9</td>
<td>G</td>
<td>1, 24, 48, 48, 64, 96, 96, 192, 192</td>
<td>§10.75</td>
</tr>
<tr>
<td>729</td>
<td>336</td>
<td>153</td>
<td>156</td>
<td>1</td>
<td>10</td>
<td>G</td>
<td>1, 24, 32, 48, 48, 96, 96, 96, 192, 192</td>
<td>§10.75</td>
</tr>
<tr>
<td>775</td>
<td>150</td>
<td>45</td>
<td>25</td>
<td>1</td>
<td>8</td>
<td>$L_3(5)$</td>
<td>1, 30, 48, 96, 120, 120, 120</td>
<td>$NO_2^{-5}(5)$</td>
</tr>
<tr>
<td>784</td>
<td>243</td>
<td>82</td>
<td>72</td>
<td>1</td>
<td>4</td>
<td>$L_2(6)^2$</td>
<td>1, 54, 243, 486</td>
<td>§8.11</td>
</tr>
<tr>
<td>784</td>
<td>297</td>
<td>116</td>
<td>110</td>
<td>1</td>
<td>4</td>
<td>$L_2(8)^2$</td>
<td>1, 54, 243, 486</td>
<td>§8.11</td>
</tr>
<tr>
<td>1024</td>
<td>363</td>
<td>122</td>
<td>132</td>
<td>1</td>
<td>9</td>
<td>G</td>
<td>1, 22, 55, 55, 66, 110, 165, 220, 330</td>
<td>§8.11</td>
</tr>
<tr>
<td>1024</td>
<td>495</td>
<td>238</td>
<td>240</td>
<td>1</td>
<td>9</td>
<td>G</td>
<td>1, 22, 55, 55, 66, 110, 165, 220, 330</td>
<td>§8.11</td>
</tr>
</tbody>
</table>

Table 11.9: Small primitive rank 4–10 non-LS strongly regular graphs
Chapter 12

Parameter table

In this chapter we give a table with the feasible parameter sets of arbitrary strongly regular graphs on at most 512 vertices, and add comments about the known examples.

The columns are:
(i) Existence: A number indicates the precise number of nonisomorphic examples. ‘!’ when there is a unique such graph, ‘+’ when there is a known example, ‘−’ when no example exists (the reason is indicated after ‘†’), and ‘?’ otherwise.
(ii) The parameters \(v, k, \lambda, \mu\): the number of vertices, the valency, the number of common neighbors of two adjacent vertices, and the number of common neighbors of two nonadjacent vertices, respectively.
(iii) The spectrum of the adjacency matrix: \(k\) (with multiplicity 1), \(r\) (with multiplicity \(f\)), and \(s\) (with multiplicity \(g\)). Eigenvalues are integral, except when \((v, k, \lambda, \mu) = (4t + 1, 2t, t - 1, t)\) for some \(t\), in which case \(r, s = \left(-1 \pm \sqrt{v}/2\right)\), and we give an approximation.
(iv) Comments.

The symbol ‘↓’ labels a descendant of a regular 2-graph on \(v + 1\) vertices.
The symbol ‘↑’ labels a graph in the switching class of a regular 2-graph.

\[
\begin{array}{ccccccc}
\text{ex} & v & k & \lambda & \mu & r & s^g & \text{comment} \\
\hline
! & 5 & 2 & 0 & 1 & 0.62^a & 2 & \text{pentagon, Paley(5); ↓} \\
! & 9 & 4 & 1 & 2 & 1^4 & -2^a & \text{Paley(9); } 3 \times 3; \downarrow \\
! & 10 & 3 & 0 & 1 & 1^5 & -2^a & \text{Petersen graph; NO}_{-4}(2); NO_{-\perp 3}(5); \uparrow \\
6 & 3 & 4 & 1^4 & -2^5 & T(5); \uparrow \\
! & 13 & 6 & 2 & 3 & 1.30^6 & -2.30^6 & \text{NoL-Schrijver, pg. 15; ↓} \\
! & 15 & 6 & 1 & 3 & 1^9 & -3^2 & \text{NoL-Schrijver, pg. 15, Vo(2, 2); ↓} \\
8 & 4 & 4 & 2^5 & -2^9 & T(6); \downarrow \\
! & 16 & 5 & 0 & 2 & 1^10 & -3^5 & q_2^{10} = 0; \text{NoL-Schrijver, pg. 15, Vo(2, 2); ↓} \\
10 & 6 & 6 & 2^5 & -2.10^s & \text{Clebsch graph, } q_2^{10} = 0; \uparrow \\
2! & 16 & 6 & 2 & 2 & 2^6 & -2^9 & \text{NoL-Schrijver, pg. 15, Vo(2, 2); ↓} \\
9 & 4 & 6 & 1^9 & -3^6 & OA(4, 3); H_{2}(2, 2); \text{VanL-Schrijver, pg. 15; ↓} \\
! & 17 & 8 & 3 & 4 & 1.56^8 & -2.56^8 & \text{NoL-Schrijver, pg. 15, Vo(2, 2); ↓} \\
! & 21 & 10 & 3 & 6 & 1^14 & -4^6 & T(7); \uparrow \text{v} \neq a^2 + b^2 \\
10 & 5 & 4 & 3^6 & -2^14 & \uparrow \\
21 & 10 & 4 & 5 & 1.75^{10} & -2.75^{10} & \uparrow \text{v} \neq a^2 + b^2 \\
\end{array}
\]

continued...
Chapter 12. Parameter Table

<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>p^f</th>
<th>s^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>15!</td>
<td>24</td>
<td>6</td>
<td>6</td>
<td>3^{12}</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>10!</td>
<td>26</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>10!</td>
<td>26</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>180!</td>
<td>36</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>385!</td>
<td>35</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>3^{14}</td>
<td>$\leq 2^7$</td>
</tr>
<tr>
<td>3254!</td>
<td>36</td>
<td>15</td>
<td>6</td>
<td>8</td>
<td>5^{15}</td>
<td>$\leq 2^7$</td>
</tr>
<tr>
<td>28!</td>
<td>40</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>78!</td>
<td>45</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>$\leq 2^7$</td>
<td>OA(5,4); vanLint-Schrijver, §7.3.1</td>
</tr>
</tbody>
</table>

Continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>36</td>
<td>36</td>
<td>5</td>
<td>43</td>
<td>3**</td>
<td>3**</td>
<td>qs 2-(21,8,4), q22 < 0; q11 < 0; Absolute bound</td>
</tr>
<tr>
<td>33</td>
<td>22</td>
<td>15</td>
<td>9</td>
<td>4</td>
<td>2**</td>
<td>2**</td>
<td>q11 < 0; Absolute bound</td>
</tr>
<tr>
<td>57</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6**</td>
<td>6**</td>
<td>q22 < 0; Absolute bound</td>
</tr>
<tr>
<td>42</td>
<td>31</td>
<td>30</td>
<td>4**</td>
<td>3</td>
<td>2</td>
<td>2**</td>
<td>Paley(61);</td>
</tr>
<tr>
<td>57</td>
<td>24</td>
<td>11</td>
<td>5**</td>
<td>3</td>
<td>3**</td>
<td>3**</td>
<td>S(2,3,19), q11 < 0; Absolute bound</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>20</td>
<td>2**</td>
<td>2</td>
<td>6**</td>
<td>6**</td>
<td>Wilbrink-Brouwer [732]</td>
</tr>
<tr>
<td>57</td>
<td>28</td>
<td>13</td>
<td>14</td>
<td>3.27**</td>
<td>2.27**</td>
<td>2.27**</td>
<td>q22 < 0; Absolute bound</td>
</tr>
<tr>
<td>61</td>
<td>30</td>
<td>14</td>
<td>3.41**</td>
<td>4.41**</td>
<td>4.41**</td>
<td>4.41**</td>
<td>Paley(61);</td>
</tr>
<tr>
<td>63</td>
<td>22</td>
<td>11</td>
<td>1**</td>
<td>2</td>
<td>1**</td>
<td>1**</td>
<td>Paley(61);</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>20</td>
<td>2</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>S(2,3,19), q11 < 0; Absolute bound</td>
</tr>
<tr>
<td>63</td>
<td>30</td>
<td>15</td>
<td>3**</td>
<td>5**</td>
<td>5**</td>
<td>5**</td>
<td>§10.21; §10.22; §10.23; qs 2-(36,16,12); O2(2);</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>16</td>
<td>4**</td>
<td>4**</td>
<td>4**</td>
<td>4**</td>
<td>S(2,4,28); qs 2-(28,12,11); NU3(3);</td>
</tr>
<tr>
<td>64</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>6**</td>
<td>6**</td>
<td>6**</td>
<td>§10.24; Enumerated by Haemers & Spence</td>
</tr>
<tr>
<td>49</td>
<td>36</td>
<td>42</td>
<td>1**</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>OA(8,7), q22 < 0; Absolute bound</td>
</tr>
<tr>
<td>167</td>
<td>64</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; Mesner; [9, 3]** (wts 6, 8); V_{n-1}(2);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RSHCD--;</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>20</td>
<td>2</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>OA(8,5); OA(7,5); Wallis [719];</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>28</td>
<td>12</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>OA(8,4); OA(7,4) (wts 12, 16); RSHCD+;</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>18</td>
<td>2</td>
<td>3**</td>
<td>3**</td>
<td>3**</td>
<td>OA(8,5); Wallis [718]; Goethals-Seidel [355];</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_{n-1}(2);</td>
</tr>
<tr>
<td>64</td>
<td>30</td>
<td>18</td>
<td>10</td>
<td>10**</td>
<td>10**</td>
<td>10**</td>
<td>§10.26; OA(8,4); Wallis [718];</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>12</td>
<td>22</td>
<td>3**</td>
<td>3**</td>
<td>3**</td>
<td>Absolute bound, q22 < 0; Absolute bound</td>
</tr>
<tr>
<td>65</td>
<td>32</td>
<td>16</td>
<td>3.53**</td>
<td>3.53**</td>
<td>3.53**</td>
<td>3.53**</td>
<td>Gritsenko [366];</td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>4**</td>
<td>4**</td>
<td>4**</td>
<td>§10.27; Mesner; [9, 3]** (wts 4, 6); Brouwer [112];</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>28</td>
<td>36</td>
<td>1**</td>
<td>1**</td>
<td>1**</td>
<td>§10.28; Mesner; [9, 3]** (wts 4, 6); Brouwer [112];</td>
</tr>
<tr>
<td>69</td>
<td>20</td>
<td>7</td>
<td>5</td>
<td>5**</td>
<td>5**</td>
<td>5**</td>
<td>§10.29; Mesner; [9, 3]** (wts 4, 6); Brouwer [112];</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>36</td>
<td>5**</td>
<td>5**</td>
<td>5**</td>
<td>5**</td>
<td>§10.29; Mesner; [9, 3]** (wts 4, 6); Brouwer [112];</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>20</td>
<td>7</td>
<td>5</td>
<td>5**</td>
<td>5**</td>
<td>§10.29; Mesner; [9, 3]** (wts 4, 6); Brouwer [112];</td>
</tr>
<tr>
<td>75</td>
<td>32</td>
<td>10</td>
<td>16</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>42</td>
<td>25</td>
<td>21</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>76</td>
<td>21</td>
<td>2</td>
<td>7</td>
<td>7**</td>
<td>7**</td>
<td>7**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>54</td>
<td>39</td>
<td>36</td>
<td>6**</td>
<td>6**</td>
<td>6**</td>
<td>6**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>76</td>
<td>30</td>
<td>8</td>
<td>14</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>45</td>
<td>28</td>
<td>24</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>76</td>
<td>35</td>
<td>14</td>
<td>14</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
<td>24</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>! 77</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>60</td>
<td>47</td>
<td>45</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>77</td>
<td>38</td>
<td>19</td>
<td>19</td>
<td>3.89**</td>
<td>3.89**</td>
<td>3.89**</td>
<td>q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>78/</td>
<td>22</td>
<td>11</td>
<td>4</td>
<td>4**</td>
<td>4**</td>
<td>4**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>55</td>
<td>36</td>
<td>45</td>
<td>4**</td>
<td>4**</td>
<td>4**</td>
<td>4**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>! 81</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>64</td>
<td>49</td>
<td>56</td>
<td>5**</td>
<td>5**</td>
<td>5**</td>
<td>5**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
<tr>
<td>! 81</td>
<td>20</td>
<td>1</td>
<td>6</td>
<td>2**</td>
<td>2**</td>
<td>2**</td>
<td>§10.25; q22 < 0; q23 < 0; Absolute bound</td>
</tr>
</tbody>
</table>

continued...
Chapter 12. Parameter Table

<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r</th>
<th>s</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 81</td>
<td>24</td>
<td>9</td>
<td>6</td>
<td>350</td>
<td>624</td>
<td>32</td>
<td>OA(9,3); Wallis [718]; VNO$^3_7(3); [12,4,3] (wts 6,9)</td>
</tr>
<tr>
<td>56</td>
<td>37</td>
<td>42</td>
<td>256</td>
<td>374</td>
<td>33</td>
<td>18</td>
<td>OA(9,7)</td>
</tr>
<tr>
<td>+ 81</td>
<td>30</td>
<td>9</td>
<td>12</td>
<td>530</td>
<td>330</td>
<td>4</td>
<td>$\tau_{10.29}$; Messner [560]; Van Lint & Schrijver</td>
</tr>
<tr>
<td>50</td>
<td>31</td>
<td>30</td>
<td>24</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>pg(6,6,2); VNO$^3_5(3); [15,4,3] (wts 9,12)</td>
</tr>
<tr>
<td>+ 81</td>
<td>32</td>
<td>13</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>4</td>
<td>OA(9,4); H$^3(2,2)$; vanLint-Schrijver, §7.3.1;</td>
</tr>
<tr>
<td>48</td>
<td>27</td>
<td>30</td>
<td>4</td>
<td>348</td>
<td>32</td>
<td>6</td>
<td>Wallis [718]; VO$^3_7(3); [16,4,3] (wts 9,12)</td>
</tr>
<tr>
<td>81</td>
<td>40</td>
<td>13</td>
<td>26</td>
<td>172</td>
<td>14</td>
<td>8</td>
<td>OA(9,6); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>14</td>
<td>138</td>
<td>22</td>
<td>2</td>
<td>OA(9,5)</td>
<td></td>
</tr>
<tr>
<td>+ 81</td>
<td>40</td>
<td>19</td>
<td>20</td>
<td>441</td>
<td>40</td>
<td>6</td>
<td>$\tau_{10.30}$; Paley(81); OA(9,5)</td>
</tr>
<tr>
<td>+ 82</td>
<td>36</td>
<td>15</td>
<td>16</td>
<td>441</td>
<td>40</td>
<td>6</td>
<td>OA(9,5)</td>
</tr>
<tr>
<td>+ 82</td>
<td>45</td>
<td>24</td>
<td>25</td>
<td>441</td>
<td>40</td>
<td>6</td>
<td>OA(9,5)</td>
</tr>
<tr>
<td>95</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>434</td>
<td>34</td>
<td>4</td>
<td>S(2,5,41)</td>
</tr>
<tr>
<td>85</td>
<td>23</td>
<td>5</td>
<td>3</td>
<td>325</td>
<td>42</td>
<td>4</td>
<td>O$_4(4)$; S$_5(4)$; GQ(4,4)</td>
</tr>
<tr>
<td>54</td>
<td>33</td>
<td>36</td>
<td>530</td>
<td>63</td>
<td>4</td>
<td>S(2,6,51)</td>
<td></td>
</tr>
<tr>
<td>+ 82</td>
<td>40</td>
<td>21</td>
<td>21</td>
<td>4114</td>
<td>55</td>
<td>4</td>
<td>$\tau_{10.42}$</td>
</tr>
<tr>
<td>? 88</td>
<td>27</td>
<td>6</td>
<td>9</td>
<td>355</td>
<td>532</td>
<td>4</td>
<td>$\tau_{10.43}$</td>
</tr>
<tr>
<td>60</td>
<td>41</td>
<td>40</td>
<td>532</td>
<td>455</td>
<td>4</td>
<td>$\tau_{10.44}$</td>
<td></td>
</tr>
<tr>
<td>+ 89</td>
<td>44</td>
<td>21</td>
<td>22</td>
<td>42244</td>
<td>532</td>
<td>4</td>
<td>Paley(89); $\tau_{10.45}$</td>
</tr>
<tr>
<td>91</td>
<td>24</td>
<td>12</td>
<td>4</td>
<td>1033</td>
<td>532</td>
<td>4</td>
<td>T(14)</td>
</tr>
<tr>
<td>66</td>
<td>45</td>
<td>55</td>
<td>177</td>
<td>39</td>
<td>4</td>
<td>$\tau_{10.46}$</td>
<td></td>
</tr>
<tr>
<td>− 93</td>
<td>46</td>
<td>22</td>
<td>23</td>
<td>34246</td>
<td>55</td>
<td>4</td>
<td>$\tau_{10.47}$</td>
</tr>
<tr>
<td>− 95</td>
<td>40</td>
<td>12</td>
<td>20</td>
<td>275</td>
<td>54</td>
<td>4</td>
<td>$\tau_{10.48}$</td>
</tr>
<tr>
<td>54</td>
<td>33</td>
<td>27</td>
<td>919</td>
<td>73</td>
<td>4</td>
<td>$\tau_{10.49}$</td>
<td></td>
</tr>
<tr>
<td>+ 96</td>
<td>19</td>
<td>2</td>
<td>4</td>
<td>357</td>
<td>83</td>
<td>4</td>
<td>Haemers [376, (6,2,3), q = 4]; Muzychuk [580];</td>
</tr>
<tr>
<td>76</td>
<td>60</td>
<td>60</td>
<td>438</td>
<td>57</td>
<td>4</td>
<td>Brouwer-Koolen-Klin [135]; Golemac-Mandić-Vučičić [358]</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>58</td>
<td>60</td>
<td>350</td>
<td>45</td>
<td>4</td>
<td>Wallis [718]; GQ(5,3); Brouwer-Koolen-Klin</td>
<td></td>
</tr>
<tr>
<td>? 96</td>
<td>35</td>
<td>10</td>
<td>14</td>
<td>363</td>
<td>32</td>
<td>4</td>
<td>$\tau_{10.50}$</td>
</tr>
<tr>
<td>− 96</td>
<td>38</td>
<td>10</td>
<td>18</td>
<td>276</td>
<td>32</td>
<td>4</td>
<td>$\tau_{10.51}$</td>
</tr>
<tr>
<td>97</td>
<td>57</td>
<td>36</td>
<td>30</td>
<td>919</td>
<td>37</td>
<td>4</td>
<td>$\tau_{10.52}$</td>
</tr>
<tr>
<td>− 96</td>
<td>45</td>
<td>24</td>
<td>18</td>
<td>920</td>
<td>37</td>
<td>4</td>
<td>$\tau_{10.53}$</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>22</td>
<td>30</td>
<td>275</td>
<td>37</td>
<td>4</td>
<td>$\tau_{10.54}$</td>
</tr>
<tr>
<td>+ 97</td>
<td>48</td>
<td>23</td>
<td>24</td>
<td>42448</td>
<td>57</td>
<td>4</td>
<td>Paley(97); $\tau_{10.55}$</td>
</tr>
<tr>
<td>? 99</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>354</td>
<td>54</td>
<td>4</td>
<td>$\tau_{10.56}$</td>
</tr>
<tr>
<td>84</td>
<td>71</td>
<td>72</td>
<td>344</td>
<td>54</td>
<td>4</td>
<td>$\tau_{10.57}$</td>
<td></td>
</tr>
<tr>
<td>? 99</td>
<td>42</td>
<td>21</td>
<td>15</td>
<td>921</td>
<td>37</td>
<td>4</td>
<td>$\tau_{10.58}$</td>
</tr>
<tr>
<td>56</td>
<td>28</td>
<td>36</td>
<td>277</td>
<td>1021</td>
<td>37</td>
<td>4</td>
<td>$\tau_{10.59}$</td>
</tr>
<tr>
<td>+ 99</td>
<td>48</td>
<td>22</td>
<td>24</td>
<td>454</td>
<td>64</td>
<td>4</td>
<td>$\tau_{10.60}$</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>25</td>
<td>544</td>
<td>64</td>
<td>4</td>
<td>$\tau_{10.61}$</td>
<td></td>
</tr>
<tr>
<td>! 100</td>
<td>18</td>
<td>8</td>
<td>2</td>
<td>818</td>
<td>10</td>
<td>10</td>
<td>Wallman-Sims graph; q$_{12}^{24} = 0$</td>
</tr>
<tr>
<td>81</td>
<td>64</td>
<td>72</td>
<td>181</td>
<td>12</td>
<td>10</td>
<td>$\tau_{10.62}$</td>
<td></td>
</tr>
<tr>
<td>! 100</td>
<td>22</td>
<td>0</td>
<td>6</td>
<td>277</td>
<td>722</td>
<td>722</td>
<td>$\tau_{10.63}$</td>
</tr>
<tr>
<td>77</td>
<td>60</td>
<td>56</td>
<td>722</td>
<td>722</td>
<td>722</td>
<td>$\tau_{10.64}$</td>
<td></td>
</tr>
<tr>
<td>+ 100</td>
<td>27</td>
<td>10</td>
<td>6</td>
<td>727</td>
<td>727</td>
<td>727</td>
<td>$\tau_{10.65}$</td>
</tr>
<tr>
<td>72</td>
<td>50</td>
<td>56</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>$\tau_{10.66}$</td>
<td></td>
</tr>
<tr>
<td>? 100</td>
<td>33</td>
<td>8</td>
<td>12</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>OA(10,8)</td>
</tr>
<tr>
<td>66</td>
<td>44</td>
<td>42</td>
<td>633</td>
<td>666</td>
<td>666</td>
<td>$\tau_{10.68}$</td>
<td></td>
</tr>
<tr>
<td>+ 100</td>
<td>33</td>
<td>14</td>
<td>9</td>
<td>824</td>
<td>824</td>
<td>824</td>
<td>$\tau_{10.69}$</td>
</tr>
<tr>
<td>66</td>
<td>41</td>
<td>48</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>$\tau_{10.70}$</td>
<td></td>
</tr>
<tr>
<td>− 100</td>
<td>33</td>
<td>18</td>
<td>7</td>
<td>1311</td>
<td>1311</td>
<td>1311</td>
<td>$\tau_{10.71}$</td>
</tr>
<tr>
<td>66</td>
<td>39</td>
<td>52</td>
<td>188</td>
<td>188</td>
<td>188</td>
<td>$\tau_{10.72}$</td>
<td></td>
</tr>
</tbody>
</table>

† Absolute bound

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>v^f</th>
<th>s^f</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>100</td>
<td>36</td>
<td>14</td>
<td>12</td>
<td>643</td>
<td>-4^{32}</td>
<td>§10.32; Hall-Janko graph; OA(10, 4)</td>
</tr>
<tr>
<td>+</td>
<td>100</td>
<td>44</td>
<td>18</td>
<td>20</td>
<td>453</td>
<td>-6^{44}</td>
<td>Jörgensen-Klin graph [471]; RSHCD; ↑</td>
</tr>
<tr>
<td>+</td>
<td>100</td>
<td>55</td>
<td>30</td>
<td>30</td>
<td>644</td>
<td>-5^{35}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>100</td>
<td>45</td>
<td>20</td>
<td>20</td>
<td>545</td>
<td>-5^{35}</td>
<td>OA(10, 5); RSHCD; ↑</td>
</tr>
<tr>
<td>+</td>
<td>100</td>
<td>54</td>
<td>28</td>
<td>30</td>
<td>453</td>
<td>-6^{35}</td>
<td>OA(10, 6); ↑</td>
</tr>
<tr>
<td>+</td>
<td>101</td>
<td>50</td>
<td>24</td>
<td>25</td>
<td>4.520</td>
<td>-5.52^{20}</td>
<td>Paley(101); ↓</td>
</tr>
<tr>
<td>!</td>
<td>105</td>
<td>26</td>
<td>13</td>
<td>4</td>
<td>1.114</td>
<td>-2^{20}</td>
<td>T(15)</td>
</tr>
<tr>
<td>!</td>
<td>105</td>
<td>32</td>
<td>4</td>
<td>12</td>
<td>234</td>
<td>-10^{20}</td>
<td>§10.33; flags of PG(2, 4), unique by [221]</td>
</tr>
<tr>
<td>!</td>
<td>105</td>
<td>72</td>
<td>51</td>
<td>45</td>
<td>920</td>
<td>-3^{44}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>105</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>548</td>
<td>-5^{36}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>105</td>
<td>64</td>
<td>38</td>
<td>40</td>
<td>453</td>
<td>-6^{48}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>105</td>
<td>52</td>
<td>21</td>
<td>30</td>
<td>834</td>
<td>-11^{20}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>105</td>
<td>52</td>
<td>29</td>
<td>22</td>
<td>1020</td>
<td>-3^{94}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>105</td>
<td>52</td>
<td>25</td>
<td>26</td>
<td>4.622</td>
<td>-5.62^{32}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>105</td>
<td>111</td>
<td>30</td>
<td>5</td>
<td>9</td>
<td>374</td>
<td>-7^{36}</td>
</tr>
<tr>
<td>+</td>
<td>105</td>
<td>80</td>
<td>58</td>
<td>56</td>
<td>646</td>
<td>-4^{54}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>111</td>
<td>44</td>
<td>19</td>
<td>16</td>
<td>720</td>
<td>-4^{74}</td>
<td>S(2,4,37)</td>
</tr>
<tr>
<td>!</td>
<td>112</td>
<td>30</td>
<td>2</td>
<td>10</td>
<td>220</td>
<td>-10^{31}</td>
<td>§10.34; unique by [178], constituent of</td>
</tr>
<tr>
<td>?</td>
<td>112</td>
<td>81</td>
<td>60</td>
<td>54</td>
<td>921</td>
<td>-3^{90}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>112</td>
<td>36</td>
<td>10</td>
<td>12</td>
<td>433</td>
<td>-6^{48}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>116</td>
<td>56</td>
<td>27</td>
<td>28</td>
<td>4.826</td>
<td>-5.82^{26}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>115</td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>349</td>
<td>-5^{45}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>117</td>
<td>36</td>
<td>15</td>
<td>9</td>
<td>920</td>
<td>-3^{90}</td>
<td>§10.35; S(2,3,27); NO$^+_6$ (3); lines in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AG(3, 3) (ek 4); Wallis [718]</td>
</tr>
<tr>
<td>?</td>
<td>120</td>
<td>52</td>
<td>60</td>
<td>220</td>
<td>-10^{26}</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>117</td>
<td>58</td>
<td>28</td>
<td>29</td>
<td>4.918</td>
<td>-5.91^{38}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>119</td>
<td>54</td>
<td>21</td>
<td>27</td>
<td>320</td>
<td>-9^{24}</td>
<td>↑</td>
</tr>
<tr>
<td>!</td>
<td>120</td>
<td>28</td>
<td>14</td>
<td>4</td>
<td>1213</td>
<td>-2^{104}</td>
<td>T(16)</td>
</tr>
<tr>
<td>?</td>
<td>120</td>
<td>34</td>
<td>8</td>
<td>10</td>
<td>413</td>
<td>-6^{51}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>120</td>
<td>85</td>
<td>60</td>
<td>541</td>
<td>-5^{58}</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>120</td>
<td>35</td>
<td>10</td>
<td>10</td>
<td>540</td>
<td>-5^{53}</td>
<td>pg(8,5,2) does not exist (no dual)</td>
</tr>
<tr>
<td>!</td>
<td>120</td>
<td>84</td>
<td>58</td>
<td>60</td>
<td>423</td>
<td>-2^{66}</td>
<td>↑</td>
</tr>
<tr>
<td>!</td>
<td>120</td>
<td>42</td>
<td>8</td>
<td>18</td>
<td>220</td>
<td>-12^{20}</td>
<td>§10.37; Baer subplanes of PG(2, 4), unique by</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[274]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77</td>
<td>52</td>
<td>44</td>
<td>1120</td>
<td>-3^{99}</td>
<td>qs 2-21,7,12</td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>51</td>
<td>18</td>
<td>24</td>
<td>345</td>
<td>-9^{34}</td>
<td>§10.38; NO$^+_6$ (4); ↑</td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>68</td>
<td>40</td>
<td>36</td>
<td>844</td>
<td>-4^{35}</td>
<td>Fickus et al. [224]; ↑</td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>56</td>
<td>28</td>
<td>24</td>
<td>845</td>
<td>-4^{34}</td>
<td>§10.39; Wallis [718]; ↑</td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>63</td>
<td>30</td>
<td>36</td>
<td>348</td>
<td>-9^{35}</td>
<td>dist. 2 in J(10, 3); NO$^+_6$ (2); Goethals-Seidel</td>
</tr>
<tr>
<td>+</td>
<td>121</td>
<td>20</td>
<td>9</td>
<td>2</td>
<td>220</td>
<td>-2^{100}</td>
<td>↑</td>
</tr>
<tr>
<td>!</td>
<td>121</td>
<td>100</td>
<td>81</td>
<td>90</td>
<td>1100</td>
<td>-10^{30}</td>
<td>↑</td>
</tr>
<tr>
<td>!</td>
<td>121</td>
<td>30</td>
<td>11</td>
<td>6</td>
<td>310</td>
<td>-3^{30}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>121</td>
<td>90</td>
<td>65</td>
<td>72</td>
<td>220</td>
<td>-9^{30}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>121</td>
<td>36</td>
<td>7</td>
<td>12</td>
<td>344</td>
<td>-8^{36}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>121</td>
<td>40</td>
<td>15</td>
<td>12</td>
<td>710</td>
<td>-4^{30}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>121</td>
<td>80</td>
<td>51</td>
<td>56</td>
<td>380</td>
<td>-8^{30}</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>121</td>
<td>48</td>
<td>17</td>
<td>20</td>
<td>422</td>
<td>-7^{28}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>121</td>
<td>72</td>
<td>43</td>
<td>42</td>
<td>648</td>
<td>-5^{72}</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>121</td>
<td>50</td>
<td>21</td>
<td>20</td>
<td>650</td>
<td>-5^{70}</td>
<td>OA(11, 5); Pasechnik (§8.12)</td>
</tr>
<tr>
<td>!</td>
<td>121</td>
<td>70</td>
<td>39</td>
<td>42</td>
<td>470</td>
<td>-7^{50}</td>
<td>OA(11, 7)</td>
</tr>
<tr>
<td>−</td>
<td>121</td>
<td>56</td>
<td>15</td>
<td>35</td>
<td>1112</td>
<td>-2^{18}</td>
<td>↑ Absolute bound</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>Σ</th>
<th>sₚ</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>121</td>
<td>60</td>
<td>29</td>
<td>30</td>
<td>7</td>
<td>130</td>
<td>48</td>
</tr>
<tr>
<td>+</td>
<td>122</td>
<td>55</td>
<td>24</td>
<td>25</td>
<td>5</td>
<td>129</td>
<td>64</td>
</tr>
<tr>
<td>+</td>
<td>125</td>
<td>28</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>126</td>
<td>45</td>
</tr>
<tr>
<td>−</td>
<td>125</td>
<td>48</td>
<td>28</td>
<td>12</td>
<td>16</td>
<td>127</td>
<td>60</td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>52</td>
<td>15</td>
<td>26</td>
<td>2</td>
<td>128</td>
<td>55</td>
</tr>
<tr>
<td>+</td>
<td>128</td>
<td>45</td>
<td>26</td>
<td>15</td>
<td>2</td>
<td>129</td>
<td>55</td>
</tr>
<tr>
<td>+</td>
<td>130</td>
<td>48</td>
<td>20</td>
<td>16</td>
<td>8</td>
<td>131</td>
<td>52</td>
</tr>
<tr>
<td>+</td>
<td>136</td>
<td>63</td>
<td>30</td>
<td>28</td>
<td>7</td>
<td>132</td>
<td>60</td>
</tr>
<tr>
<td>−</td>
<td>136</td>
<td>45</td>
<td>12</td>
<td>18</td>
<td>3</td>
<td>133</td>
<td>52</td>
</tr>
<tr>
<td>+</td>
<td>125</td>
<td>60</td>
<td>29</td>
<td>30</td>
<td>7</td>
<td>134</td>
<td>55</td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>52</td>
<td>15</td>
<td>26</td>
<td>2</td>
<td>135</td>
<td>52</td>
</tr>
<tr>
<td>+</td>
<td>128</td>
<td>45</td>
<td>26</td>
<td>15</td>
<td>2</td>
<td>125</td>
<td>60</td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>45</td>
<td>12</td>
<td>18</td>
<td>3</td>
<td>137</td>
<td>60</td>
</tr>
<tr>
<td>+</td>
<td>128</td>
<td>45</td>
<td>26</td>
<td>15</td>
<td>2</td>
<td>138</td>
<td>52</td>
</tr>
<tr>
<td>+</td>
<td>125</td>
<td>60</td>
<td>29</td>
<td>30</td>
<td>7</td>
<td>139</td>
<td>55</td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>52</td>
<td>15</td>
<td>26</td>
<td>2</td>
<td>140</td>
<td>52</td>
</tr>
<tr>
<td>+</td>
<td>128</td>
<td>45</td>
<td>26</td>
<td>15</td>
<td>2</td>
<td>141</td>
<td>52</td>
</tr>
<tr>
<td>+</td>
<td>125</td>
<td>60</td>
<td>29</td>
<td>30</td>
<td>7</td>
<td>142</td>
<td>55</td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>52</td>
<td>15</td>
<td>26</td>
<td>2</td>
<td>143</td>
<td>52</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^t</th>
<th>s^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>72</td>
<td>35</td>
<td>36</td>
<td>5.52**</td>
<td>-6.52**</td>
<td>?</td>
</tr>
<tr>
<td>147</td>
<td>66</td>
<td>25</td>
<td>33</td>
<td>3.110</td>
<td>-11.36</td>
<td>pg(7,11,3)?; ↓?</td>
</tr>
<tr>
<td>80</td>
<td>46</td>
<td>40</td>
<td>10.36</td>
<td>-4.110</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>63</td>
<td>22</td>
<td>30</td>
<td>3.111</td>
<td>-11.36</td>
<td>?</td>
</tr>
<tr>
<td>84</td>
<td>50</td>
<td>44</td>
<td>10.36</td>
<td>-4.111</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>70</td>
<td>36</td>
<td>30</td>
<td>10.37</td>
<td>-4.110</td>
<td>?</td>
</tr>
<tr>
<td>77</td>
<td>36</td>
<td>44</td>
<td>3.110</td>
<td>-11.37</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>74</td>
<td>36</td>
<td>37</td>
<td>5.60**</td>
<td>-6.60**</td>
<td>Paley(149); ↓</td>
</tr>
<tr>
<td>153</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td>1.335</td>
<td>-2.335</td>
<td>$T(18)$</td>
</tr>
<tr>
<td>120</td>
<td>91</td>
<td>105</td>
<td>1.35</td>
<td>-1.35</td>
<td>pg(9,15,7)</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>56</td>
<td>19</td>
<td>21</td>
<td>5.45</td>
<td>-7.45</td>
<td>pg(9,7,3)?</td>
</tr>
<tr>
<td>96</td>
<td>60</td>
<td>60</td>
<td>6.86</td>
<td>-6.84</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>76</td>
<td>37</td>
<td>38</td>
<td>5.68**</td>
<td>-6.68**</td>
<td>↓?</td>
</tr>
<tr>
<td>154</td>
<td>48</td>
<td>12</td>
<td>9</td>
<td>4.36</td>
<td>-9.36</td>
<td>pg(7.8,2)?</td>
</tr>
<tr>
<td>105</td>
<td>72</td>
<td>70</td>
<td>7.55</td>
<td>-5.98</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>51</td>
<td>8</td>
<td>21</td>
<td>2.322</td>
<td>-15.21</td>
<td>↑ $q_{22}^2 < 0$</td>
</tr>
<tr>
<td>102</td>
<td>71</td>
<td>60</td>
<td>14.21</td>
<td>-4.121</td>
<td>↑ $q_{11} < 0$</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>72</td>
<td>26</td>
<td>40</td>
<td>2.322</td>
<td>-16.21</td>
<td>?</td>
</tr>
<tr>
<td>81</td>
<td>48</td>
<td>36</td>
<td>15.21</td>
<td>-3.132</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>42</td>
<td>17</td>
<td>9</td>
<td>3.105</td>
<td>-6.56</td>
<td>S(2,3,31); lines in PG(4,2)</td>
</tr>
<tr>
<td>112</td>
<td>78</td>
<td>88</td>
<td>3.124</td>
<td>-12.36</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>30</td>
<td>4</td>
<td>6</td>
<td>4.90</td>
<td>-6.95</td>
<td>$\Omega(5)$; $Sp_4(5)$; $GQ(5,5)$</td>
</tr>
<tr>
<td>125</td>
<td>100</td>
<td>100</td>
<td>5.65</td>
<td>-5.50</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>78</td>
<td>38</td>
<td>39</td>
<td>5.76**</td>
<td>-6.76**</td>
<td>Paley(157); ↓</td>
</tr>
<tr>
<td>156</td>
<td>54</td>
<td>18</td>
<td>18</td>
<td>6.75</td>
<td>-6.84</td>
<td>pg(10,6,3) does not exist (no dual)</td>
</tr>
<tr>
<td>157</td>
<td>105</td>
<td>68</td>
<td>70</td>
<td>5.84</td>
<td>-7.75</td>
<td>?</td>
</tr>
<tr>
<td>161</td>
<td>80</td>
<td>39</td>
<td>40</td>
<td>5.84**</td>
<td>-6.84**</td>
<td>↑ $v \neq a^2 + b^2$</td>
</tr>
<tr>
<td>162</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>3.105</td>
<td>-6.56</td>
<td>?</td>
</tr>
<tr>
<td>156</td>
<td>23</td>
<td>3</td>
<td>5.59</td>
<td>-5.92</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>117</td>
<td>120</td>
<td>3.92</td>
<td>-6.69</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>62</td>
<td>16</td>
<td>14</td>
<td>7.63</td>
<td>-5.98</td>
<td>?</td>
</tr>
<tr>
<td>162</td>
<td>56</td>
<td>10</td>
<td>24</td>
<td>2.40</td>
<td>-6.21</td>
<td>$\Omega(10,8); U_4(3), q_{22}^2 = 0$</td>
</tr>
<tr>
<td>105</td>
<td>72</td>
<td>60</td>
<td>15.21</td>
<td>-3.140</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>69</td>
<td>36</td>
<td>24</td>
<td>15.23</td>
<td>-3.138</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>36</td>
<td>3</td>
<td>9</td>
<td>3.120</td>
<td>-9.44</td>
<td>$U_2(2); GQ(4,8)$</td>
</tr>
<tr>
<td>128</td>
<td>100</td>
<td>96</td>
<td>8.44</td>
<td>-4.120</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>82</td>
<td>40</td>
<td>41</td>
<td>5.92**</td>
<td>-6.92**</td>
<td>↑ $v \neq a^2 + b^2$</td>
</tr>
<tr>
<td>169</td>
<td>24</td>
<td>11</td>
<td>2</td>
<td>1.174</td>
<td>-2.144</td>
<td>$\Omega(13,12)$</td>
</tr>
<tr>
<td>144</td>
<td>121</td>
<td>132</td>
<td>1.144</td>
<td>-12.24</td>
<td>$\Omega(13,13)$</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>36</td>
<td>13</td>
<td>6</td>
<td>10.36</td>
<td>-3.132</td>
<td>$\Omega(13,3)$</td>
</tr>
<tr>
<td>132</td>
<td>101</td>
<td>110</td>
<td>2.332</td>
<td>-11.36</td>
<td>$\Omega(13,11)$</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>42</td>
<td>5</td>
<td>12</td>
<td>3.266</td>
<td>-16.42</td>
<td>$\Omega(13,4)$</td>
</tr>
<tr>
<td>126</td>
<td>95</td>
<td>90</td>
<td>9.32</td>
<td>-6.426</td>
<td>$\Omega(13,10)$</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>48</td>
<td>17</td>
<td>12</td>
<td>9.48</td>
<td>-4.120</td>
<td>$\Omega(13,10)$</td>
</tr>
<tr>
<td>120</td>
<td>83</td>
<td>90</td>
<td>3.230</td>
<td>-16.48</td>
<td>$\Omega(13,10)$</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>56</td>
<td>15</td>
<td>20</td>
<td>4.112</td>
<td>-9.56</td>
<td>?</td>
</tr>
<tr>
<td>112</td>
<td>75</td>
<td>72</td>
<td>8.56</td>
<td>-5.112</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>60</td>
<td>23</td>
<td>20</td>
<td>8.60</td>
<td>-5.108</td>
<td>$\Omega(13,5)$</td>
</tr>
<tr>
<td>108</td>
<td>67</td>
<td>72</td>
<td>4.08</td>
<td>-9.60</td>
<td>$\Omega(13,9)$</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>70</td>
<td>27</td>
<td>30</td>
<td>5.88</td>
<td>-8.70</td>
<td>$\Omega(13,6)$</td>
</tr>
<tr>
<td>98</td>
<td>57</td>
<td>56</td>
<td>7.70</td>
<td>-8.70</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>72</td>
<td>31</td>
<td>30</td>
<td>7.72</td>
<td>-6.96</td>
<td>$\Omega(13,12)$</td>
</tr>
<tr>
<td>96</td>
<td>53</td>
<td>56</td>
<td>5.96</td>
<td>-8.72</td>
<td>$\Omega(13,8)$</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>84</td>
<td>41</td>
<td>42</td>
<td>6.94</td>
<td>-7.84</td>
<td>Paley(169); $\Omega(13,7)$; ↓</td>
</tr>
<tr>
<td>170</td>
<td>78</td>
<td>35</td>
<td>36</td>
<td>6.55</td>
<td>-7.84</td>
<td>$\Omega(13,7)$; ↑</td>
</tr>
<tr>
<td>91</td>
<td>48</td>
<td>49</td>
<td>6.84</td>
<td>-7.85</td>
<td>$S(2,7,85)$; ↑</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>34</td>
<td>17</td>
<td>4</td>
<td>15.18</td>
<td>-2.152</td>
<td>$T(19)$</td>
</tr>
<tr>
<td>136</td>
<td>105</td>
<td>120</td>
<td>1.52</td>
<td>-16.48</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>50</td>
<td>13</td>
<td>15</td>
<td>5.95</td>
<td>-7.75</td>
<td>?</td>
</tr>
<tr>
<td>ex</td>
<td>v</td>
<td>k</td>
<td>λ</td>
<td>µ</td>
<td>ρ^{1}</td>
<td>s^{8}</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>?</td>
<td>171</td>
<td>60</td>
<td>15</td>
<td>24</td>
<td>6^{132}</td>
<td>-16^{28}</td>
</tr>
<tr>
<td>+</td>
<td>173</td>
<td>86</td>
<td>40</td>
<td>40</td>
<td>60^{86}</td>
<td>-7.08^{86}</td>
</tr>
<tr>
<td>+</td>
<td>175</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>5^{34}</td>
<td>-5^{30}</td>
</tr>
<tr>
<td>?</td>
<td>175</td>
<td>66</td>
<td>22</td>
<td>22</td>
<td>11^{42}</td>
<td>-4^{132}</td>
</tr>
<tr>
<td>+</td>
<td>175</td>
<td>72</td>
<td>20</td>
<td>36</td>
<td>2^{153}</td>
<td>-18^{71}</td>
</tr>
<tr>
<td>?</td>
<td>102</td>
<td>65</td>
<td>51</td>
<td>1721</td>
<td>-3^{153}</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>176</td>
<td>25</td>
<td>0</td>
<td>4</td>
<td>4^{120}</td>
<td>-7^{25}</td>
</tr>
<tr>
<td>+</td>
<td>150</td>
<td>128</td>
<td>128</td>
<td>6^{55}</td>
<td>-4^{220}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>40</td>
<td>12</td>
<td>8</td>
<td>8^{55}</td>
<td>-4^{120}</td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>45</td>
<td>18</td>
<td>9</td>
<td>9^{12}</td>
<td>-3^{143}</td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>130</td>
<td>104</td>
<td>2^{143}</td>
<td>-12^{32}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14^{78}</td>
<td>-7^{77}</td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>126</td>
<td>90</td>
<td>90</td>
<td>90^{77}</td>
<td>-6^{88}</td>
</tr>
<tr>
<td>!</td>
<td>176</td>
<td>70</td>
<td>18</td>
<td>34</td>
<td>2^{154}</td>
<td>-18^{71}</td>
</tr>
<tr>
<td>!</td>
<td>105</td>
<td>68</td>
<td>54</td>
<td>15^{21}</td>
<td>-8^{10}</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>176</td>
<td>70</td>
<td>24</td>
<td>30</td>
<td>30^{20}</td>
<td>-10^{5}</td>
</tr>
<tr>
<td>-</td>
<td>105</td>
<td>64</td>
<td>60</td>
<td>5^{55}</td>
<td>-5^{120}</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>176</td>
<td>70</td>
<td>42</td>
<td>18</td>
<td>26^{10}</td>
<td>-2^{165}</td>
</tr>
<tr>
<td>+</td>
<td>105</td>
<td>52</td>
<td>78</td>
<td>1^{40}</td>
<td>-2^{77}</td>
<td>↓</td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>85</td>
<td>48</td>
<td>34</td>
<td>34^{32}</td>
<td>-3^{153}</td>
</tr>
<tr>
<td>-</td>
<td>135</td>
<td>102</td>
<td>108</td>
<td>5^{120}</td>
<td>-9^{5}</td>
<td>N_{5}(2)</td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>45</td>
<td>18</td>
<td>9</td>
<td>9^{12}</td>
<td>-3^{143}</td>
</tr>
<tr>
<td>+</td>
<td>130</td>
<td>93</td>
<td>104</td>
<td>2^{143}</td>
<td>-12^{32}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>176</td>
<td>49</td>
<td>12</td>
<td>14</td>
<td>14^{78}</td>
<td>-7^{77}</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>90</td>
<td>90</td>
<td>90^{77}</td>
<td>-6^{88}</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>176</td>
<td>70</td>
<td>18</td>
<td>34</td>
<td>2^{154}</td>
<td>-18^{71}</td>
</tr>
<tr>
<td>!</td>
<td>105</td>
<td>68</td>
<td>54</td>
<td>15^{21}</td>
<td>-8^{10}</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>176</td>
<td>70</td>
<td>24</td>
<td>30</td>
<td>30^{20}</td>
<td>-10^{5}</td>
</tr>
<tr>
<td>-</td>
<td>130</td>
<td>93</td>
<td>90</td>
<td>4^{60}</td>
<td>-5^{122}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>183</td>
<td>70</td>
<td>29</td>
<td>25</td>
<td>25^{60}</td>
<td>-5^{122}</td>
</tr>
<tr>
<td>-</td>
<td>112</td>
<td>66</td>
<td>72</td>
<td>4^{122}</td>
<td>-10^{26}</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>184</td>
<td>48</td>
<td>2</td>
<td>16</td>
<td>16^{50}</td>
<td>-16^{73}</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>102</td>
<td>105</td>
<td>9^{153}</td>
<td>-3^{140}</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>185</td>
<td>92</td>
<td>45</td>
<td>46</td>
<td>46^{392}</td>
<td>-7.3^{92}</td>
</tr>
<tr>
<td>!</td>
<td>189</td>
<td>48</td>
<td>12</td>
<td>12</td>
<td>12^{60}</td>
<td>-6^{68}</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>103</td>
<td>105</td>
<td>9^{98}</td>
<td>-9^{90}</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>189</td>
<td>60</td>
<td>27</td>
<td>15</td>
<td>15^{28}</td>
<td>-3^{140}</td>
</tr>
<tr>
<td>+</td>
<td>128</td>
<td>82</td>
<td>96</td>
<td>2^{160}</td>
<td>-16^{28}</td>
<td>pg(9,16,6);</td>
</tr>
<tr>
<td>+</td>
<td>189</td>
<td>88</td>
<td>37</td>
<td>44</td>
<td>4^{132}</td>
<td>-11^{28}</td>
</tr>
<tr>
<td>-</td>
<td>189</td>
<td>94</td>
<td>46</td>
<td>47</td>
<td>47^{194}</td>
<td>-7.3^{94}</td>
</tr>
<tr>
<td>!</td>
<td>190</td>
<td>36</td>
<td>18</td>
<td>4</td>
<td>4^{16}</td>
<td>-2^{170}</td>
</tr>
<tr>
<td>!</td>
<td>153</td>
<td>120</td>
<td>136</td>
<td>1^{70}</td>
<td>-17^{12}</td>
<td>pg(10,17,8);</td>
</tr>
<tr>
<td>!</td>
<td>190</td>
<td>45</td>
<td>12</td>
<td>10</td>
<td>10^{75}</td>
<td>-5^{114}</td>
</tr>
<tr>
<td>!</td>
<td>144</td>
<td>108</td>
<td>112</td>
<td>2^{114}</td>
<td>-8^{5}</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>189</td>
<td>84</td>
<td>33</td>
<td>40</td>
<td>4^{133}</td>
<td>-11^{56}</td>
</tr>
<tr>
<td>+</td>
<td>105</td>
<td>60</td>
<td>55</td>
<td>10^{56}</td>
<td>-5^{133}</td>
<td>↓</td>
</tr>
<tr>
<td>+</td>
<td>189</td>
<td>84</td>
<td>38</td>
<td>36</td>
<td>3^{75}</td>
<td>-6^{14}</td>
</tr>
<tr>
<td>+</td>
<td>105</td>
<td>56</td>
<td>60</td>
<td>5^{114}</td>
<td>-9^{75}</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>190</td>
<td>90</td>
<td>45</td>
<td>40</td>
<td>10^{77}</td>
<td>-5^{132}</td>
</tr>
<tr>
<td>+</td>
<td>193</td>
<td>96</td>
<td>47</td>
<td>48</td>
<td>6^{396}</td>
<td>-7.4^{56}</td>
</tr>
<tr>
<td>+</td>
<td>98</td>
<td>49</td>
<td>49</td>
<td>9^{90}</td>
<td>-7^{104}</td>
<td>S(2,7,91); ↓</td>
</tr>
<tr>
<td>!</td>
<td>196</td>
<td>26</td>
<td>12</td>
<td>2</td>
<td>2^{126}</td>
<td>-2^{169}</td>
</tr>
<tr>
<td>169</td>
<td>144</td>
<td>156</td>
<td>1^{169}</td>
<td>-1^{26}</td>
<td>OA(14,13)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>196</td>
<td>39</td>
<td>2</td>
<td>9</td>
<td>9^{47}</td>
<td>-10^{28}</td>
</tr>
<tr>
<td>156</td>
<td>125</td>
<td>120</td>
<td>9^{48}</td>
<td>-4^{47}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>196</td>
<td>39</td>
<td>14</td>
<td>6</td>
<td>6^{139}</td>
<td>-3^{156}</td>
</tr>
<tr>
<td>156</td>
<td>122</td>
<td>132</td>
<td>2^{156}</td>
<td>-12^{86}</td>
<td>OA(14,12)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>196</td>
<td>45</td>
<td>4</td>
<td>12</td>
<td>1^{50}</td>
<td>-11^{45}</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r/f</th>
<th>s/ρ</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 196</td>
<td>52</td>
<td>12</td>
<td>40</td>
<td>2</td>
<td>1022</td>
<td>-4</td>
<td>OA(14, 4)</td>
</tr>
<tr>
<td>+ 196</td>
<td>60</td>
<td>14</td>
<td>20</td>
<td>4</td>
<td>435</td>
<td>-11</td>
<td>OA(14, 11)?</td>
</tr>
<tr>
<td>+ 196</td>
<td>60</td>
<td>14</td>
<td>20</td>
<td>4</td>
<td>435</td>
<td>-16</td>
<td>Huang-Huang-Lin, §8.4.3; pg(7,10,2)?</td>
</tr>
<tr>
<td>+ 196</td>
<td>60</td>
<td>14</td>
<td>20</td>
<td>4</td>
<td>435</td>
<td>-5</td>
<td>OA(14, 10)?</td>
</tr>
<tr>
<td>+ 196</td>
<td>60</td>
<td>23</td>
<td>16</td>
<td>11</td>
<td>118</td>
<td>-4</td>
<td>S(2,4,49); Huffman-Tonchev [445]; qs 2-(49,9,6)</td>
</tr>
<tr>
<td>+ 196</td>
<td>66</td>
<td>24</td>
<td>20</td>
<td>9</td>
<td>955</td>
<td>-5</td>
<td>OA(14, 5)</td>
</tr>
<tr>
<td>+ 196</td>
<td>75</td>
<td>26</td>
<td>30</td>
<td>5</td>
<td>120</td>
<td>-9</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>+ 196</td>
<td>78</td>
<td>32</td>
<td>30</td>
<td>8</td>
<td>787</td>
<td>-6</td>
<td>OA(14, 6)</td>
</tr>
<tr>
<td>+ 196</td>
<td>91</td>
<td>42</td>
<td>22</td>
<td>18</td>
<td>119</td>
<td>-5</td>
<td>OA(14, 8)?; †</td>
</tr>
<tr>
<td>+ 197</td>
<td>98</td>
<td>48</td>
<td>49</td>
<td>6</td>
<td>598</td>
<td>-7.5</td>
<td>Paley[197]; ↓</td>
</tr>
<tr>
<td>+ 202</td>
<td>100</td>
<td>49</td>
<td>50</td>
<td>5</td>
<td>6500</td>
<td>-7.59</td>
<td>OA(14,7)?; RHCD+; †</td>
</tr>
<tr>
<td>? 204</td>
<td>28</td>
<td>2</td>
<td>4</td>
<td>-4</td>
<td>199</td>
<td>-6</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 204</td>
<td>63</td>
<td>22</td>
<td>18</td>
<td>-9</td>
<td>68</td>
<td>-6</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>? 204</td>
<td>68</td>
<td>15</td>
<td>26</td>
<td>3</td>
<td>164</td>
<td>-14</td>
<td>OA(14, 6)?</td>
</tr>
<tr>
<td>? 205</td>
<td>96</td>
<td>50</td>
<td>40</td>
<td>14</td>
<td>140</td>
<td>-4</td>
<td>OA(14, 6)?</td>
</tr>
<tr>
<td>? 205</td>
<td>102</td>
<td>50</td>
<td>50</td>
<td>6</td>
<td>6100</td>
<td>-7.66</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>? 205</td>
<td>102</td>
<td>50</td>
<td>50</td>
<td>6</td>
<td>6100</td>
<td>-7.66</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>? 208</td>
<td>45</td>
<td>8</td>
<td>10</td>
<td>-5</td>
<td>117</td>
<td>-9</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>? 208</td>
<td>75</td>
<td>30</td>
<td>25</td>
<td>10</td>
<td>1054</td>
<td>-5</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>? 208</td>
<td>81</td>
<td>88</td>
<td>4</td>
<td>-11</td>
<td>1183</td>
<td>-15</td>
<td>OA(14, 9)?</td>
</tr>
<tr>
<td>? 208</td>
<td>81</td>
<td>24</td>
<td>36</td>
<td>3</td>
<td>-15</td>
<td>OA(2,4,49); PG(19,4,9)</td>
<td></td>
</tr>
<tr>
<td>- 209</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>576</td>
<td>-3</td>
<td>μ = 1</td>
</tr>
<tr>
<td>+ 209</td>
<td>126</td>
<td>80</td>
<td>70</td>
<td>14</td>
<td>140</td>
<td>-4.6</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 209</td>
<td>52</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>76</td>
<td>-5</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>+ 209</td>
<td>100</td>
<td>45</td>
<td>50</td>
<td>5</td>
<td>1302</td>
<td>-10</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 210</td>
<td>33</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>154</td>
<td>-9</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 210</td>
<td>38</td>
<td>19</td>
<td>4</td>
<td>17</td>
<td>1720</td>
<td>-2.19</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 210</td>
<td>76</td>
<td>26</td>
<td>28</td>
<td>6</td>
<td>144</td>
<td>-8.25</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 210</td>
<td>77</td>
<td>28</td>
<td>28</td>
<td>7</td>
<td>799</td>
<td>-7</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 210</td>
<td>95</td>
<td>40</td>
<td>45</td>
<td>5</td>
<td>1333</td>
<td>-10.76</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 210</td>
<td>99</td>
<td>48</td>
<td>45</td>
<td>9</td>
<td>77</td>
<td>-6</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 211</td>
<td>110</td>
<td>50</td>
<td>60</td>
<td>5</td>
<td>1333</td>
<td>-10</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 213</td>
<td>213</td>
<td>60</td>
<td>60</td>
<td>6</td>
<td>1333</td>
<td>-7.8</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 216</td>
<td>40</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>140</td>
<td>-3.75</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 216</td>
<td>43</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>786</td>
<td>-5</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
<tr>
<td>? 216</td>
<td>172</td>
<td>130</td>
<td>140</td>
<td>4</td>
<td>229</td>
<td>-8</td>
<td>OA(2,4,49); PG(19,4,9)</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>v'</th>
<th>s'</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>216</td>
<td>70</td>
<td>40</td>
<td>14</td>
<td>24</td>
<td>-220</td>
<td>† Absolute bound</td>
</tr>
<tr>
<td>-</td>
<td>145</td>
<td>88</td>
<td>116</td>
<td>1</td>
<td>175</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>216</td>
<td>75</td>
<td>18</td>
<td>30</td>
<td>375</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>140</td>
<td>94</td>
<td>84</td>
<td>14</td>
<td>40</td>
<td>-175</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>216</td>
<td>86</td>
<td>40</td>
<td>30</td>
<td>43</td>
<td>-172</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>129</td>
<td>72</td>
<td>84</td>
<td>9</td>
<td>181</td>
<td>-113</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>216</td>
<td>90</td>
<td>39</td>
<td>36</td>
<td>98</td>
<td>-33</td>
<td>S(2,6,81)?</td>
</tr>
<tr>
<td>?</td>
<td>125</td>
<td>70</td>
<td>75</td>
<td>5</td>
<td>135</td>
<td>-105</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>217</td>
<td>66</td>
<td>15</td>
<td>22</td>
<td>12</td>
<td>-115</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>150</td>
<td>105</td>
<td>100</td>
<td>10</td>
<td>102</td>
<td>-54</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>217</td>
<td>88</td>
<td>39</td>
<td>33</td>
<td>376</td>
<td>-122</td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>217</td>
<td>178</td>
<td>53</td>
<td>54</td>
<td>3</td>
<td>108</td>
<td>-87</td>
</tr>
<tr>
<td>?</td>
<td>220</td>
<td>94</td>
<td>32</td>
<td>24</td>
<td>120</td>
<td>-89</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>220</td>
<td>84</td>
<td>38</td>
<td>28</td>
<td>44</td>
<td>-175</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>135</td>
<td>78</td>
<td>90</td>
<td>375</td>
<td>-154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>214</td>
<td>64</td>
<td>24</td>
<td>16</td>
<td>351</td>
<td>-51</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>156</td>
<td>107</td>
<td>117</td>
<td>169</td>
<td>-131</td>
<td>S(2,4,52)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>221</td>
<td>110</td>
<td>54</td>
<td>53</td>
<td>93</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>222</td>
<td>51</td>
<td>20</td>
<td>9</td>
<td>146</td>
<td>-184</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>170</td>
<td>127</td>
<td>140</td>
<td>145</td>
<td>-152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†</td>
<td>225</td>
<td>38</td>
<td>2</td>
<td>3</td>
<td>OA(15,15,12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†</td>
<td>196</td>
<td>169</td>
<td>182</td>
<td>106</td>
<td>-142</td>
<td>OA(15,14)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>42</td>
<td>15</td>
<td>6</td>
<td>124</td>
<td>-132</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>182</td>
<td>145</td>
<td>156</td>
<td>145</td>
<td>-132</td>
<td>OA(15,13)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>225</td>
<td>48</td>
<td>3</td>
<td>12</td>
<td>376</td>
<td>-128</td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>225</td>
<td>56</td>
<td>1</td>
<td>18</td>
<td>2200</td>
<td>-1944</td>
<td>v ≠ a² + b²</td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>56</td>
<td>19</td>
<td>12</td>
<td>124</td>
<td>-200</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>168</td>
<td>129</td>
<td>114</td>
<td>154</td>
<td>-117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>168</td>
<td>123</td>
<td>132</td>
<td>168</td>
<td>-122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>225</td>
<td>64</td>
<td>13</td>
<td>20</td>
<td>400</td>
<td>-114</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>160</td>
<td>115</td>
<td>110</td>
<td>190</td>
<td>-520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>70</td>
<td>25</td>
<td>20</td>
<td>170</td>
<td>-515</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>154</td>
<td>103</td>
<td>110</td>
<td>154</td>
<td>-117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>225</td>
<td>80</td>
<td>25</td>
<td>30</td>
<td>514</td>
<td>-105</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>144</td>
<td>93</td>
<td>90</td>
<td>98</td>
<td>-644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>84</td>
<td>33</td>
<td>30</td>
<td>84</td>
<td>-640</td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>140</td>
<td>85</td>
<td>90</td>
<td>140</td>
<td>-108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>225</td>
<td>96</td>
<td>19</td>
<td>57</td>
<td>216</td>
<td>-39</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>128</td>
<td>88</td>
<td>52</td>
<td>38</td>
<td>226</td>
<td>-226</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>225</td>
<td>96</td>
<td>39</td>
<td>42</td>
<td>128</td>
<td>-95</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>128</td>
<td>73</td>
<td>72</td>
<td>96</td>
<td>-728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>225</td>
<td>96</td>
<td>51</td>
<td>33</td>
<td>214</td>
<td>-3300</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>58</td>
<td>43</td>
<td>42</td>
<td>108</td>
<td>-224</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>86</td>
<td>72</td>
<td>126</td>
<td>-98</td>
<td>OA(15,7); Pasechnik (84,12)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>112</td>
<td>55</td>
<td>56</td>
<td>112</td>
<td>-8112</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>226</td>
<td>105</td>
<td>48</td>
<td>49</td>
<td>113</td>
<td>-8112</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>63</td>
<td>64</td>
<td>120</td>
<td>-8113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>229</td>
<td>114</td>
<td>56</td>
<td>57</td>
<td>70</td>
<td>-80714</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>231</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>55</td>
<td>-375</td>
<td>§10.54; Cameron graph</td>
</tr>
<tr>
<td>?</td>
<td>231</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>58</td>
<td>43</td>
<td>42</td>
<td>108</td>
<td>-224</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>86</td>
<td>72</td>
<td>126</td>
<td>-98</td>
<td>OA(15,9)?</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>112</td>
<td>55</td>
<td>56</td>
<td>112</td>
<td>-8112</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>226</td>
<td>105</td>
<td>48</td>
<td>49</td>
<td>113</td>
<td>-8112</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>63</td>
<td>64</td>
<td>120</td>
<td>-8113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>229</td>
<td>114</td>
<td>56</td>
<td>57</td>
<td>70</td>
<td>-80714</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>231</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>55</td>
<td>-375</td>
<td>§10.54; Cameron graph</td>
</tr>
<tr>
<td>?</td>
<td>231</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>58</td>
<td>43</td>
<td>42</td>
<td>108</td>
<td>-224</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>126</td>
<td>86</td>
<td>72</td>
<td>126</td>
<td>-98</td>
<td>OA(15,9)?</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>225</td>
<td>112</td>
<td>55</td>
<td>56</td>
<td>112</td>
<td>-8112</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>226</td>
<td>105</td>
<td>48</td>
<td>49</td>
<td>113</td>
<td>-8112</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>120</td>
<td>63</td>
<td>64</td>
<td>120</td>
<td>-8113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>229</td>
<td>114</td>
<td>56</td>
<td>57</td>
<td>70</td>
<td>-80714</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>231</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>55</td>
<td>-375</td>
<td>§10.54; Cameron graph</td>
</tr>
<tr>
<td>?</td>
<td>231</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>ex</td>
<td>v</td>
<td>k</td>
<td>λ</td>
<td>μ</td>
<td>r²</td>
<td>s²</td>
<td>comment</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>? 232</td>
<td>77</td>
<td>36</td>
<td>20</td>
<td>19^{28}</td>
<td>-8^{26}</td>
<td>-6^{26}</td>
<td></td>
</tr>
<tr>
<td>? 232</td>
<td>77</td>
<td>96</td>
<td>124</td>
<td>2^{203}</td>
<td>-5^{203}</td>
<td>-20^{28}</td>
<td></td>
</tr>
<tr>
<td>? 232</td>
<td>77</td>
<td>81</td>
<td>30</td>
<td>27</td>
<td>9^{67}</td>
<td>-6^{144}</td>
<td></td>
</tr>
<tr>
<td>? 232</td>
<td>77</td>
<td>95</td>
<td>100</td>
<td>5^{144}</td>
<td>-10^{144}</td>
<td>-6^{47}</td>
<td></td>
</tr>
<tr>
<td>+ 233</td>
<td>116</td>
<td>57</td>
<td>58</td>
<td>7^{1316}</td>
<td>-8^{1316}</td>
<td>S(2,10,145)?</td>
<td></td>
</tr>
<tr>
<td>? 235</td>
<td>42</td>
<td>9</td>
<td>7</td>
<td>7^{94}</td>
<td>-5^{140}</td>
<td>-2^{40}</td>
<td></td>
</tr>
<tr>
<td>? 235</td>
<td>42</td>
<td>12</td>
<td>3</td>
<td>3^{34}</td>
<td>-5^{94}</td>
<td>-2^{40}</td>
<td></td>
</tr>
<tr>
<td>? 235</td>
<td>42</td>
<td>12</td>
<td>9</td>
<td>5^{140}</td>
<td>-4^{94}</td>
<td>-2^{40}</td>
<td></td>
</tr>
<tr>
<td>+ 235</td>
<td>55</td>
<td>18</td>
<td>11</td>
<td>11^{59}</td>
<td>-4^{176}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 233 | 118 | 58 | 59 | 7^{20^{118}} | -8^{20^{118}} | \[v \neq a^2 + b^2 \]
| ? 238 | 75 | 20 | 25 | 5^{153} | -10^{153} | -6^{47} |
| ? 238 | 75 | 111 | 108 | 9^{84} | -6^{153} | -2^{40} |
| + 241 | 120 | 59 | 60 | 12^{76} | -8^{20^{120}} | Paley(241); \|
| + 243 | 22 | 1 | 2 | 4^{132} | -5^{110} | \$10.55; Berlekamp-vanLint-Seidel; [11,5,3] \text{(wts 6,9)} |
| 220 | 199 | 200 | 4^{110} | -5^{132} |
| ? 243 | 66 | 9 | 21 | 3^{198} | -15^{44} |
| 176 | 130 | 120 | 14^{34} | -4^{108} |
| - 243 | 88 | 52 | 20 | 3^{44} | -9^{231} | \[v \neq a^2 + b^2 \]
| 154 | 85 | 119 | 1^{231} | -35^{11} | \[v \neq a^2 + b^2 \]
| + 243 | 110 | 37 | 60 | 2^{220} | -25^{22} | p. 311; Delsarte; [55,5,3] \text{(wts 36,45)} | | | | |
| 132 | 81 | 60 | 24^{2} | -2^{20} |
| ? 243 | 112 | 46 | 56 | 4^{182} | -14^{60} | pg(9,14,4)?; \$? |
| 130 | 73 | 65 | 15^{50} | -5^{182} | -2^{6} |
| ? 244 | 108 | 42 | 52 | 4^{183} | -14^{60} | ? |
| 135 | 78 | 70 | 13^{50} | -5^{183} | ? |
| ? 244 | 117 | 60 | 52 | 13^{51} | -5^{182} | ? |
| 126 | 60 | 70 | 4^{182} | -14^{61} | ? |
| ? 245 | 52 | 3 | 13 | 3^{195} | -13^{49} |
| 192 | 152 | 144 | 12^{59} | -4^{105} |
| - 245 | 64 | 18 | 16 | 8^{100} | -4^{144} | 180 | 131 | 135 | 5^{144} | -9^{100} |
| ? 245 | 108 | 39 | 54 | 3^{204} | -18^{40} | pg(7,18,3)?; \$? |
| 136 | 81 | 68 | 17^{40} | -2^{404} | ? |
| ? 245 | 122 | 60 | 61 | 7^{33^{122}} | -8^{33^{122}} | ? |
| 246 | 85 | 20 | 34 | 3^{204} | -17^{41} | pg(6,17,2)? |
| 160 | 108 | 96 | 16^{11} | -4^{204} | ? |
| ? 246 | 105 | 36 | 51 | 3^{205} | -18^{40} | ? |
| 140 | 85 | 72 | 17^{10} | -2^{205} | ? |
| ? 246 | 119 | 64 | 51 | 17^{111} | -4^{204} | ? |
| 126 | 57 | 72 | 3^{204} | -18^{41} | ? |
| + 247 | 54 | 21 | 9 | 15^{38} | -3^{208} | S(2,3,39) |
| 192 | 146 | 160 | 2^{208} | -16^{38} | pg(13,16,10)? |
| ? 249 | 88 | 27 | 33 | 5^{165} | -1^{83} | 160 | 104 | 10^{10} | 6^{165} | -6^{165} |
| - 249 | 124 | 61 | 62 | 7^{39^{244}} | -8^{39^{244}} | \[v \neq a^2 + b^2 \]
| ? 250 | 81 | 24 | 27 | 6^{444} | -5^{105} | pg(10,9,3)? |
| 168 | 113 | 112 | 8^{105} | -5^{144} | ? |
| ? 250 | 96 | 44 | 32 | 16^{45} | -4^{204} |
| 153 | 88 | 102 | 3^{204} | -17^{45} | pg(10,17,6)? |
| ! 253 | 42 | 21 | 4 | 19^{22} | -2^{230} | T(23) |
| 210 | 171 | 190 | 1^{230} | -20^{22} | ? |
| - 253 | 90 | 17 | 40 | 2^{230} | -25^{22} | ? |
| 162 | 111 | 90 | 24^{22} | -3^{230} | \[q_1^2 < 0 \]
| + 253 | 112 | 36 | 60 | 2^{230} | -26^{22} | \$10.56; S(4,7,23); M_{23} |
| 140 | 87 | 65 | 25^{22} | -3^{230} | Wnt: \[q_2 \times (23,7,21) |
| - 253 | 126 | 62 | 63 | 7^{45^{226}} | -8^{45^{226}} | \[v \neq a^2 + b^2 \]
| + 255 | 126 | 61 | 63 | 7^{135} | -9^{119} | O_2(2); Sp_2(2); pg(15,9,7); \$ |
| 128 | 64 | 64 | 8^{119} | -8^{135} | S(2,8,120); \$ |
| ! 256 | 30 | 14 | 2 | 14^{10} | -2^{225} | 16 \times 16; [10,4]_4 \text{(wts 4,8)}; [30,8]_2 \text{(wts 8,16)} | continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>ϵ</th>
<th>s^8</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>256</td>
<td>196</td>
<td>210</td>
<td>134</td>
<td>5.20</td>
<td>15.60</td>
<td>OA(16, 15)</td>
</tr>
<tr>
<td>210</td>
<td>256</td>
<td>170</td>
<td>182</td>
<td>2.00</td>
<td>5.45</td>
<td>13.57</td>
<td>vanLint-Schrijver, §7.3.1; VO(4); [17, 4] (wts 12, 16)</td>
</tr>
<tr>
<td>204</td>
<td>256</td>
<td>164</td>
<td>156</td>
<td>12.51</td>
<td>5.54</td>
<td>12.00</td>
<td>Jenrich (rk 4); OA(16, 4); Wallis [718]; [20, 4] (wts 12, 16); Brouwer [112]; [60, 8, 2] (wts 24, 32); OA(16, 13)</td>
</tr>
<tr>
<td>195</td>
<td>256</td>
<td>146</td>
<td>156</td>
<td>3.00</td>
<td>13.60</td>
<td>3.70</td>
<td>OA(16, 5); H₄(2, 2); Wallis [718]; VO(4); [25, 4] (wts 16, 20); [75, 8, 2] (wts 32, 40)</td>
</tr>
<tr>
<td>180</td>
<td>256</td>
<td>124</td>
<td>132</td>
<td>4.00</td>
<td>13.75</td>
<td>0.51</td>
<td>vanLint-Schrijver, §7.3.1; [85, 8, 2] (wts 40, 48)</td>
</tr>
<tr>
<td>170</td>
<td>256</td>
<td>114</td>
<td>110</td>
<td>10.85</td>
<td>6.00</td>
<td>-5.80</td>
<td>vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>166</td>
<td>256</td>
<td>90</td>
<td>34</td>
<td>30</td>
<td>5.00</td>
<td>-6.00</td>
<td>OA(16, 6); [30, 4, 4] (wts 20, 24); [90, 8, 2] (wts 40, 48)</td>
</tr>
<tr>
<td>160</td>
<td>256</td>
<td>104</td>
<td>110</td>
<td>5.00</td>
<td>11.80</td>
<td>0.51</td>
<td>OA(16, 11)</td>
</tr>
<tr>
<td>150</td>
<td>256</td>
<td>102</td>
<td>38</td>
<td>42</td>
<td>6.50</td>
<td>10.00</td>
<td>§10.58; Liebeck 2²A₄(17) (rk 3); vanLint-Schrijver, §7.3.1; [34, 4, 4] (wts 24, 28)</td>
</tr>
<tr>
<td>151</td>
<td>256</td>
<td>93</td>
<td>92</td>
<td>9.00</td>
<td>-7.50</td>
<td>OA(16, 10)</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>256</td>
<td>105</td>
<td>44</td>
<td>42</td>
<td>5.00</td>
<td>-7.50</td>
<td>vanLint-Schrijver, §7.3.1; OA(16, 7); [35, 4, 4] (wts 24, 28); Brouwer [112]; [105, 8, 2] (wts 48, 56)</td>
</tr>
<tr>
<td>150</td>
<td>256</td>
<td>86</td>
<td>90</td>
<td>6.50</td>
<td>10.00</td>
<td>OA(16, 10)</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>256</td>
<td>119</td>
<td>54</td>
<td>56</td>
<td>7.30</td>
<td>-9.10</td>
<td>§10.59; VO(2); [19, 8, 2] (wts 56, 64); RSHCD; †</td>
</tr>
<tr>
<td>136</td>
<td>256</td>
<td>72</td>
<td>72</td>
<td>5.00</td>
<td>-8.30</td>
<td>Fickus et al. [324]; †</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>256</td>
<td>120</td>
<td>56</td>
<td>56</td>
<td>8.00</td>
<td>-8.30</td>
<td>§10.60; OA(16, 8); Wallis [718]; [40, 4, 4] (wts 28, 32); [120, 8, 2] (wts 56, 64); RSHCD; †</td>
</tr>
<tr>
<td>135</td>
<td>256</td>
<td>72</td>
<td>72</td>
<td>5.00</td>
<td>-9.20</td>
<td>OA(16, 9); Wallis [718]; Goethals-Seidel [355]; VO(2); †</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>259</td>
<td>128</td>
<td>63</td>
<td>64</td>
<td>7.50</td>
<td>-8.52</td>
<td>Paley(257); ↓</td>
</tr>
<tr>
<td>259</td>
<td>125</td>
<td>42</td>
<td>5</td>
<td>7</td>
<td>5.00</td>
<td>-7.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>70</td>
<td>15</td>
<td>20</td>
<td>5.00</td>
<td>-10.00</td>
<td>Brouwer [112]; [60, 8, 2] (wts 24, 32); OA(16, 13)</td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>138</td>
<td>135</td>
<td>5.00</td>
<td>-6.10</td>
<td>Vogel(8,10,2)?</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>52</td>
<td>11</td>
<td>10</td>
<td>5.00</td>
<td>-6.40</td>
<td>OA(16, 10)</td>
</tr>
<tr>
<td>280</td>
<td>260</td>
<td>165</td>
<td>168</td>
<td>5.00</td>
<td>-8.10</td>
<td>vanLint-Schrijver, §7.3.1; OA(16, 7); [35, 4, 4] (wts 24, 28); Brouwer [112]; [105, 8, 2] (wts 48, 56)</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>64</td>
<td>14</td>
<td>16</td>
<td>6.40</td>
<td>-8.10</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>147</td>
<td>147</td>
<td>6.00</td>
<td>-7.10</td>
<td>OA(16, 10)</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>80</td>
<td>25</td>
<td>24</td>
<td>5.00</td>
<td>-9.10</td>
<td>vanLint-Schrijver, §7.3.1; OA(16, 7); [35, 4, 4] (wts 24, 28); Brouwer [112]; [105, 8, 2] (wts 48, 56)</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>123</td>
<td>123</td>
<td>6.00</td>
<td>-9.10</td>
<td>vanLint-Schrijver, §7.3.1; OA(16, 7); [35, 4, 4] (wts 24, 28); Brouwer [112]; [105, 8, 2] (wts 48, 56)</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>84</td>
<td>39</td>
<td>21</td>
<td>21</td>
<td>-3.30</td>
<td>vanLint-Schrijver, §7.3.1; OA(16, 7); [35, 4, 4] (wts 24, 28); Brouwer [112]; [105, 8, 2] (wts 48, 56)</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>112</td>
<td>132</td>
<td>6.00</td>
<td>-2.20</td>
<td>OA(16, 6)</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>130</td>
<td>64</td>
<td>64</td>
<td>7.50</td>
<td>-8.58</td>
<td>Paley(269); ↓</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>96</td>
<td>32</td>
<td>36</td>
<td>6.00</td>
<td>-10.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>107</td>
<td>105</td>
<td>9.00</td>
<td>-7.10</td>
<td>OA(16, 6)</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>132</td>
<td>66</td>
<td>66</td>
<td>7.60</td>
<td>-8.64</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>45</td>
<td>0</td>
<td>9</td>
<td>3.00</td>
<td>-12.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>260</td>
<td>260</td>
<td>183</td>
<td>176</td>
<td>11.00</td>
<td>-4.00</td>
<td>OA(16, 6)</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>134</td>
<td>66</td>
<td>66</td>
<td>7.70</td>
<td>-8.70</td>
<td>Paley(269); ↓</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>72</td>
<td>21</td>
<td>18</td>
<td>9.00</td>
<td>-6.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>145</td>
<td>150</td>
<td>5.00</td>
<td>-10.00</td>
<td>OA(16, 6)</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>80</td>
<td>19</td>
<td>25</td>
<td>5.00</td>
<td>-10.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>261</td>
<td>260</td>
<td>137</td>
<td>132</td>
<td>10.00</td>
<td>-6.00</td>
<td>OA(16, 6)</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>102</td>
<td>41</td>
<td>36</td>
<td>11.00</td>
<td>-6.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>103</td>
<td>110</td>
<td>5.00</td>
<td>-12.00</td>
<td>OA(16, 6)</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>260</td>
<td>136</td>
<td>65</td>
<td>70</td>
<td>6.00</td>
<td>-11.00</td>
<td>OA(16, 6)</td>
</tr>
<tr>
<td>ex</td>
<td>v</td>
<td>k</td>
<td>λ</td>
<td>μ</td>
<td>r'</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>136</td>
<td>69</td>
<td>66</td>
<td>175</td>
<td>8.76</td>
<td>7.76</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>112</td>
<td>30</td>
<td>56</td>
<td>225</td>
<td>2.22</td>
<td>-2.22</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>162</td>
<td>105</td>
<td>81</td>
<td>272</td>
<td>-3.25</td>
<td>-3.25</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>190</td>
<td>210</td>
<td>1.52</td>
<td>-21.23</td>
<td>pg(12,21,10)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>75</td>
<td>10</td>
<td>24</td>
<td>320</td>
<td>-17.45</td>
<td>-2.30</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>75</td>
<td>18</td>
<td>21</td>
<td>6.10</td>
<td>-9.15</td>
<td>-9.15</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>110</td>
<td>28</td>
<td>54</td>
<td>225</td>
<td>-22.22</td>
<td>-22.22</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>108</td>
<td>84</td>
<td>272</td>
<td>-2.73</td>
<td>-2.73</td>
<td>-2.73</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>110</td>
<td>50</td>
<td>38</td>
<td>186</td>
<td>-1.33</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>135</td>
<td>78</td>
<td>54</td>
<td>272</td>
<td>-3.25</td>
<td>-3.25</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>138</td>
<td>68</td>
<td>69</td>
<td>7.82</td>
<td>-8.33</td>
<td>-8.33</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>128</td>
<td>52</td>
<td>64</td>
<td>4.22</td>
<td>-16.22</td>
<td>pg(9,16,4)?; ↓</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>8.90</td>
<td>-4.18</td>
<td>-4.18</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>210</td>
<td>216</td>
<td>3.69</td>
<td>-5.90</td>
<td>-5.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>62</td>
<td>12</td>
<td>14</td>
<td>6.69</td>
<td>-5.15</td>
<td>-5.15</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>63</td>
<td>14</td>
<td>14</td>
<td>7.35</td>
<td>-5.14</td>
<td>pg(10,7,2)?</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>166</td>
<td>168</td>
<td>6.44</td>
<td>-7.15</td>
<td>-7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>117</td>
<td>44</td>
<td>52</td>
<td>5.95</td>
<td>-13.84</td>
<td>pg(10,13,4)?</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>96</td>
<td>90</td>
<td>12.54</td>
<td>-6.15</td>
<td>Mathon-Rosa S_9 (rk 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>124</td>
<td>48</td>
<td>60</td>
<td>4.22</td>
<td>-16.22</td>
<td>pg(7,21,3)?; ↓</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>155</td>
<td>90</td>
<td>80</td>
<td>15.52</td>
<td>-5.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>135</td>
<td>70</td>
<td>60</td>
<td>15.52</td>
<td>-5.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>144</td>
<td>68</td>
<td>80</td>
<td>4.22</td>
<td>-16.22</td>
<td>pg(10,16,5)?; ↓</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>140</td>
<td>69</td>
<td>70</td>
<td>7.88</td>
<td>-8.88</td>
<td>Paley(281); ↓</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>64</td>
<td>8</td>
<td>16</td>
<td>4.22</td>
<td>-13.75</td>
<td>-13.75</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>171</td>
<td>165</td>
<td>11.75</td>
<td>-2.209</td>
<td>-2.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>142</td>
<td>70</td>
<td>71</td>
<td>7.94</td>
<td>-8.94</td>
<td>-8.94</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>95</td>
<td>24</td>
<td>35</td>
<td>4.22</td>
<td>-15.65</td>
<td>-15.65</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>120</td>
<td>120</td>
<td>14.65</td>
<td>-6.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>125</td>
<td>60</td>
<td>50</td>
<td>15.55</td>
<td>-5.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>84</td>
<td>96</td>
<td>4.22</td>
<td>-16.65</td>
<td>pg(11,16,6)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>126</td>
<td>45</td>
<td>63</td>
<td>3.24</td>
<td>-21.41</td>
<td>pg(7,21,3)?; ↓</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>96</td>
<td>80</td>
<td>20.51</td>
<td>-4.245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>41</td>
<td>4</td>
<td>6</td>
<td>5.16</td>
<td>-5.123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>210</td>
<td>210</td>
<td>4.22</td>
<td>-16.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>208</td>
<td>210</td>
<td>5.17</td>
<td>-5.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>105</td>
<td>52</td>
<td>30</td>
<td>25.77</td>
<td>-4.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>106</td>
<td>130</td>
<td>2.260</td>
<td>-28.27</td>
<td>pg(8,26,5)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>112</td>
<td>36</td>
<td>48</td>
<td>4.22</td>
<td>-16.63</td>
<td>pg(8,16,3)?</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>110</td>
<td>100</td>
<td>15.33</td>
<td>-5.214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>123</td>
<td>42</td>
<td>60</td>
<td>3.24</td>
<td>-21.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>100</td>
<td>84</td>
<td>10.11</td>
<td>-5.246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>140</td>
<td>76</td>
<td>60</td>
<td>20.42</td>
<td>-4.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>66</td>
<td>84</td>
<td>3.24</td>
<td>-21.42</td>
<td>pg(8,21,4)?; ??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>32</td>
<td>15</td>
<td>2</td>
<td>15.72</td>
<td>-2.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>225</td>
<td>240</td>
<td>1.556</td>
<td>-16.32</td>
<td>OA(17,16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>48</td>
<td>17</td>
<td>6</td>
<td>14.48</td>
<td>-3.240</td>
<td>OA(17,3)</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>197</td>
<td>210</td>
<td>2.40</td>
<td>-15.48</td>
<td>OA(17,15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>54</td>
<td>12</td>
<td>12</td>
<td>3.224</td>
<td>-14.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>191</td>
<td>182</td>
<td>13.34</td>
<td>-14.236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>64</td>
<td>21</td>
<td>12</td>
<td>13.54</td>
<td>-4.224</td>
<td>OA(17,4)</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>171</td>
<td>182</td>
<td>3.224</td>
<td>-14.64</td>
<td>OA(17,14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued...
CHAPTER 12. PARAMETER TABLE

<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>v^f</th>
<th>s^f</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>60</td>
<td>20</td>
<td>120</td>
<td>30</td>
<td>12</td>
<td>520</td>
<td>OA(17, 5)</td>
</tr>
<tr>
<td>208</td>
<td>80</td>
<td>156</td>
<td>120</td>
<td>30</td>
<td>12</td>
<td>520</td>
<td>OA(17, 13)</td>
</tr>
<tr>
<td>198</td>
<td>137</td>
<td>132</td>
<td>110</td>
<td>30</td>
<td>13</td>
<td>520</td>
<td>OA(17, 6); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>192</td>
<td>125</td>
<td>132</td>
<td>110</td>
<td>30</td>
<td>13</td>
<td>520</td>
<td>OA(17, 12); vanLint-Schrijver, §7.3.1</td>
</tr>
<tr>
<td>180</td>
<td>131</td>
<td>110</td>
<td>10</td>
<td>36</td>
<td>2</td>
<td>520</td>
<td>§10.64; lines in U0(2); GQ(8, 4)</td>
</tr>
<tr>
<td>176</td>
<td>105</td>
<td>110</td>
<td>16</td>
<td>36</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>172</td>
<td>126</td>
<td>120</td>
<td>12</td>
<td>36</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>170</td>
<td>112</td>
<td>42</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>168</td>
<td>97</td>
<td>105</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>160</td>
<td>87</td>
<td>90</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>158</td>
<td>71</td>
<td>72</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>154</td>
<td>66</td>
<td>70</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>152</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>142</td>
<td>60</td>
<td>55</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>138</td>
<td>50</td>
<td>45</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>134</td>
<td>42</td>
<td>35</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>130</td>
<td>35</td>
<td>25</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>126</td>
<td>28</td>
<td>17</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>122</td>
<td>22</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
<tr>
<td>118</td>
<td>17</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>520</td>
<td>§10.64; NO(4−) (5)</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>319</td>
<td>150</td>
<td>65</td>
<td>75</td>
<td>54</td>
<td>-15.7</td>
<td>pg(11,15,5)?; q?</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>92</td>
<td>84</td>
<td>147</td>
<td>-6</td>
<td>-211</td>
<td>?</td>
</tr>
<tr>
<td>?</td>
<td>320</td>
<td>87</td>
<td>22</td>
<td>24</td>
<td>7</td>
<td>-9.145</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>168</td>
<td>168</td>
<td>84</td>
<td>147</td>
<td>-8.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>88</td>
<td>24</td>
<td>24</td>
<td>8</td>
<td>-8.154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>166</td>
<td>168</td>
<td>8</td>
<td>154</td>
<td>-9.154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>320</td>
<td>99</td>
<td>18</td>
<td>36</td>
<td>3</td>
<td>-2.44</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>156</td>
<td>140</td>
<td>20</td>
<td>44</td>
<td>-4.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>320</td>
<td>132</td>
<td>46</td>
<td>60</td>
<td>45</td>
<td>-1.64</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>114</td>
<td>102</td>
<td>17</td>
<td>54</td>
<td>-5.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>320</td>
<td>145</td>
<td>60</td>
<td>70</td>
<td>5</td>
<td>-15.87</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>98</td>
<td>90</td>
<td>14</td>
<td>87</td>
<td>-6.232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>320</td>
<td>154</td>
<td>78</td>
<td>70</td>
<td>14</td>
<td>-6</td>
<td>-231</td>
</tr>
<tr>
<td>-165</td>
<td>80</td>
<td>80</td>
<td>5</td>
<td>531</td>
<td>-15.88</td>
<td>pg(12,15,6)?; ?</td>
<td></td>
</tr>
<tr>
<td>-321</td>
<td>160</td>
<td>79</td>
<td>80</td>
<td>8.46</td>
<td>-0.4616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>322</td>
<td>96</td>
<td>20</td>
<td>32</td>
<td>42</td>
<td>-1.69</td>
<td>pg(7,16,2)?</td>
</tr>
<tr>
<td>225</td>
<td>160</td>
<td>150</td>
<td>15</td>
<td>59</td>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 323</td>
<td>160</td>
<td>78</td>
<td>80</td>
<td>8.70</td>
<td>-0.352</td>
<td>pg(17,10,8)?; ↓</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>81</td>
<td>81</td>
<td>9</td>
<td>152</td>
<td>-9.170</td>
<td>S(2,9,153)?; ↓</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>324</td>
<td>34</td>
<td>16</td>
<td>2</td>
<td>16</td>
<td>-2.820</td>
<td>18 x 18</td>
</tr>
<tr>
<td>289</td>
<td>256</td>
<td>272</td>
<td>153</td>
<td>-17.34</td>
<td>OA(18,17)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>51</td>
<td>18</td>
<td>6</td>
<td>151</td>
<td>-1.372</td>
<td>OA(18,3)</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>226</td>
<td>240</td>
<td>272</td>
<td>-16.51</td>
<td>OA(18,16)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 324</td>
<td>57</td>
<td>0</td>
<td>12</td>
<td>366</td>
<td>-15.57</td>
<td>† Gavrilyuk & Makhnev [336]; † Kaski & Østergård [483]</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>230</td>
<td>210</td>
<td>14</td>
<td>57</td>
<td>-4.265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>324</td>
<td>68</td>
<td>7</td>
<td>16</td>
<td>42</td>
<td>-1.80</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>202</td>
<td>195</td>
<td>12</td>
<td>50</td>
<td>-5.243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>68</td>
<td>22</td>
<td>12</td>
<td>14</td>
<td>-4.258</td>
<td>OA(18,4)</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>198</td>
<td>210</td>
<td>35</td>
<td>55</td>
<td>-15.68</td>
<td>OA(18,15)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>324</td>
<td>76</td>
<td>10</td>
<td>20</td>
<td>4</td>
<td>-1.76</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>190</td>
<td>182</td>
<td>13</td>
<td>76</td>
<td>-5.247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>85</td>
<td>28</td>
<td>20</td>
<td>13</td>
<td>-5.238</td>
<td>OA(18,5)</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>172</td>
<td>182</td>
<td>4</td>
<td>38</td>
<td>-1.45</td>
<td>OA(18,14)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>324</td>
<td>95</td>
<td>22</td>
<td>30</td>
<td>5</td>
<td>-1.95</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>162</td>
<td>156</td>
<td>12</td>
<td>95</td>
<td>-6.228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>95</td>
<td>34</td>
<td>25</td>
<td>14</td>
<td>-5.243</td>
<td>S(2,5,81)</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>157</td>
<td>168</td>
<td>42</td>
<td>48</td>
<td>-13.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>102</td>
<td>36</td>
<td>12</td>
<td>102</td>
<td>-6.231</td>
<td>OA(18,6)</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>145</td>
<td>156</td>
<td>5</td>
<td>221</td>
<td>-11.102</td>
<td>OA(18,13)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>324</td>
<td>114</td>
<td>36</td>
<td>42</td>
<td>6</td>
<td>-12.164</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>136</td>
<td>132</td>
<td>11</td>
<td>14</td>
<td>-7.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>119</td>
<td>46</td>
<td>42</td>
<td>11</td>
<td>-2.704</td>
<td>OA(18,7)</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>126</td>
<td>132</td>
<td>6</td>
<td>204</td>
<td>-12.119</td>
<td>OA(18,12)?</td>
<td></td>
</tr>
<tr>
<td>- 324</td>
<td>133</td>
<td>22</td>
<td>77</td>
<td>131</td>
<td>-56.8</td>
<td>† q_{22}^r < 0; † Absolute bound</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>133</td>
<td>80</td>
<td>55</td>
<td>55</td>
<td>-2.315</td>
<td>† q_{11}^r < 0; † Absolute bound</td>
<td></td>
</tr>
<tr>
<td>- 324</td>
<td>133</td>
<td>52</td>
<td>56</td>
<td>790</td>
<td>-11.338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>112</td>
<td>110</td>
<td>10</td>
<td>133</td>
<td>-4.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>324</td>
<td>136</td>
<td>58</td>
<td>56</td>
<td>10</td>
<td>-8.187</td>
<td>OA(18,8)?</td>
</tr>
<tr>
<td>187</td>
<td>106</td>
<td>110</td>
<td>7</td>
<td>877</td>
<td>-11.310</td>
<td>OA(18,11)?</td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>152</td>
<td>70</td>
<td>72</td>
<td>871</td>
<td>-10.512</td>
<td>RSHCD^−; ↑</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>90</td>
<td>90</td>
<td>9</td>
<td>152</td>
<td>-9.171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 324</td>
<td>153</td>
<td>72</td>
<td>72</td>
<td>953</td>
<td>-9.170</td>
<td>OA(18,9); RSHCD⁺; ↑</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>88</td>
<td>90</td>
<td>8</td>
<td>770</td>
<td>-10.155</td>
<td>OA(18,10); ↑</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>325</td>
<td>48</td>
<td>24</td>
<td>4</td>
<td>225</td>
<td>-2.299</td>
<td>T(26)</td>
</tr>
<tr>
<td>276</td>
<td>231</td>
<td>253</td>
<td>1</td>
<td>299</td>
<td>-2.25</td>
<td>pg(13,23,11)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>325</td>
<td>54</td>
<td>3</td>
<td>10</td>
<td>42</td>
<td>-11.90</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>225</td>
<td>220</td>
<td>10</td>
<td>90</td>
<td>-5.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 325</td>
<td>60</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>-5.220</td>
<td>§10.65; NO_3^−(5); Wallis [718]; pg(13,5,2)?</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>213</td>
<td>220</td>
<td>42</td>
<td>220</td>
<td>-11.104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 325</td>
<td>68</td>
<td>3</td>
<td>17</td>
<td>3</td>
<td>-17.52</td>
<td>q_{22}^r = 0; GQ(4); GQ(4,16)</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>204</td>
<td>192</td>
<td>16</td>
<td>52</td>
<td>-4.272</td>
<td>q_{11}^r = 0</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>325</td>
<td>72</td>
<td>15</td>
<td>16</td>
<td>7</td>
<td>-8.155</td>
<td>pg(10,8,2)?</td>
</tr>
</tbody>
</table>

continued...
CHAPTER 12. PARAMETER TABLE

<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>v'</th>
<th>s^0</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>252</td>
<td>195</td>
<td>196</td>
<td>742</td>
<td>-2^{40}</td>
<td></td>
<td>Absolute bound</td>
</tr>
<tr>
<td>- 325</td>
<td>108</td>
<td>63</td>
<td>22</td>
<td>43</td>
<td>-2^{12}</td>
<td></td>
<td>Absolute bound</td>
</tr>
<tr>
<td>216</td>
<td>129</td>
<td>172</td>
<td>1</td>
<td>-4^{12}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 325</td>
<td>144</td>
<td>68</td>
<td>60</td>
<td>140</td>
<td>-6^{34}</td>
<td>§10.65, NO$_2^+_f$ (5)</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>95</td>
<td>105</td>
<td>5234</td>
<td>-10^{50}</td>
<td></td>
<td>pg(13,15,7)?</td>
<td></td>
</tr>
<tr>
<td>? 325</td>
<td>162</td>
<td>80</td>
<td>81</td>
<td>8.51</td>
<td>-9.5^{182}</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>? 329</td>
<td>40</td>
<td>3</td>
<td>5</td>
<td>5^{188}</td>
<td>-7^{40}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>252</td>
<td>252</td>
<td>6140</td>
<td>-6^{188}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 329</td>
<td>164</td>
<td>81</td>
<td>82</td>
<td>8.57</td>
<td>-9.5^{764}</td>
<td>dist. 1 or 4 in J(11,4) - Mathon; S(2,3,4.5)</td>
<td></td>
</tr>
<tr>
<td>+ 330</td>
<td>63</td>
<td>24</td>
<td>9</td>
<td>144</td>
<td>-7^{285}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>211</td>
<td>228</td>
<td>2285</td>
<td>-19^{44}</td>
<td></td>
<td>pg(15,19,12)?</td>
<td></td>
</tr>
<tr>
<td>? 330</td>
<td>105</td>
<td>40</td>
<td>30</td>
<td>1577</td>
<td>-5^{252}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>148</td>
<td>160</td>
<td>4252</td>
<td>-16^{25}</td>
<td></td>
<td>pg(15,16,10)?</td>
<td></td>
</tr>
<tr>
<td>? 330</td>
<td>140</td>
<td>58</td>
<td>60</td>
<td>875</td>
<td>-10^{54}</td>
<td></td>
<td>pg(15,10,6)?</td>
</tr>
<tr>
<td>189</td>
<td>108</td>
<td>108</td>
<td>1954</td>
<td>-9^{75}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 333</td>
<td>166</td>
<td>82</td>
<td>83</td>
<td>8.62</td>
<td>-9.6^{566}</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>+ 336</td>
<td>80</td>
<td>28</td>
<td>16</td>
<td>1663</td>
<td>-4^{772}</td>
<td>Jenrich, p. 323; S(2,4,64); qs 2-(64,24,46); lines in $AG(3,4)$ (rk 4); Wallis [718]</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>190</td>
<td>204</td>
<td>3272</td>
<td>-17^{63}</td>
<td></td>
<td>pg(16,17,12)?</td>
<td></td>
</tr>
<tr>
<td>? 336</td>
<td>125</td>
<td>40</td>
<td>50</td>
<td>5245</td>
<td>-15^{60}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>134</td>
<td>126</td>
<td>1490</td>
<td>-6^{45}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 336</td>
<td>135</td>
<td>54</td>
<td>54</td>
<td>5150</td>
<td>-9^{75}</td>
<td></td>
<td>pg(16,9,6)?</td>
</tr>
<tr>
<td>200</td>
<td>118</td>
<td>120</td>
<td>8175</td>
<td>-10^{160}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 337</td>
<td>168</td>
<td>83</td>
<td>84</td>
<td>8.64</td>
<td>-9.6^{188}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 340</td>
<td>108</td>
<td>30</td>
<td>36</td>
<td>6230</td>
<td>-12^{119}</td>
<td></td>
<td>pg(10,12,3)?</td>
</tr>
<tr>
<td>231</td>
<td>158</td>
<td>154</td>
<td>11119</td>
<td>-7^{220}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 341</td>
<td>70</td>
<td>15</td>
<td>14</td>
<td>8154</td>
<td>-7^{186}</td>
<td></td>
<td>pg(11,7,3)?</td>
</tr>
<tr>
<td>270</td>
<td>213</td>
<td>213</td>
<td>6186</td>
<td>-9^{54}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 341</td>
<td>84</td>
<td>19</td>
<td>21</td>
<td>8154</td>
<td>-9^{154}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>341</td>
<td>102</td>
<td>31</td>
<td>30</td>
<td>8186</td>
<td>-8^{186}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 341</td>
<td>170</td>
<td>84</td>
<td>85</td>
<td>8.71</td>
<td>-9.7^{370}</td>
<td>$\uparrow v \neq a^2 + b^2$</td>
<td></td>
</tr>
<tr>
<td>? 342</td>
<td>33</td>
<td>4</td>
<td>3</td>
<td>8152</td>
<td>-5^{189}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>277</td>
<td>280</td>
<td>4189</td>
<td>-7^{152}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 342</td>
<td>66</td>
<td>15</td>
<td>12</td>
<td>9132</td>
<td>-6^{209}</td>
<td></td>
<td>pg(12,6,2)?</td>
</tr>
<tr>
<td>275</td>
<td>220</td>
<td>225</td>
<td>5209</td>
<td>-10^{132}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 343</td>
<td>54</td>
<td>5</td>
<td>9</td>
<td>5216</td>
<td>-9^{26}</td>
<td></td>
<td>Godsil [345]; GQ(6,8)</td>
</tr>
<tr>
<td>288</td>
<td>240</td>
<td>240</td>
<td>4126</td>
<td>-6^{216}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 343</td>
<td>96</td>
<td>54</td>
<td>16</td>
<td>4014</td>
<td>-2^{238}</td>
<td></td>
<td>Absolute bound</td>
</tr>
<tr>
<td>246</td>
<td>165</td>
<td>205</td>
<td>1328</td>
<td>-4^{134}</td>
<td></td>
<td>Absolute bound</td>
<td></td>
</tr>
<tr>
<td>? 343</td>
<td>102</td>
<td>21</td>
<td>34</td>
<td>4722</td>
<td>-17^{20}</td>
<td></td>
<td>pg(7,17,2)?</td>
</tr>
<tr>
<td>240</td>
<td>171</td>
<td>160</td>
<td>170</td>
<td>-5^{72}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 344</td>
<td>114</td>
<td>45</td>
<td>34</td>
<td>1676</td>
<td>-5^{266}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>147</td>
<td>160</td>
<td>4206</td>
<td>-17^{18}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 345</td>
<td>150</td>
<td>53</td>
<td>75</td>
<td>200</td>
<td>-25^{52}</td>
<td>Godsil [345]; pg(7,25,3)?; ↓</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>116</td>
<td>96</td>
<td>2442</td>
<td>-4^{280}</td>
<td></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>? 346</td>
<td>162</td>
<td>81</td>
<td>72</td>
<td>1590</td>
<td>-6^{252}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>89</td>
<td>100</td>
<td>5252</td>
<td>-16^{250}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 344</td>
<td>147</td>
<td>50</td>
<td>72</td>
<td>5203</td>
<td>-25^{21}</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>196</td>
<td>120</td>
<td>100</td>
<td>4242</td>
<td>-4^{201}</td>
<td></td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>? 344</td>
<td>168</td>
<td>92</td>
<td>72</td>
<td>2443</td>
<td>-4^{200}</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>? 345</td>
<td>120</td>
<td>35</td>
<td>45</td>
<td>3232</td>
<td>-15^{72}</td>
<td></td>
<td>pg(9,15,3)?</td>
</tr>
<tr>
<td>244</td>
<td>148</td>
<td>140</td>
<td>1492</td>
<td>-6^{52}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 345</td>
<td>128</td>
<td>46</td>
<td>48</td>
<td>3184</td>
<td>-10^{160}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>135</td>
<td>135</td>
<td>9100</td>
<td>-9^{184}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 345</td>
<td>172</td>
<td>85</td>
<td>86</td>
<td>8.79</td>
<td>-9.7^{92}</td>
<td>$\uparrow v \neq a^2 + b^2$</td>
<td></td>
</tr>
<tr>
<td>+ 349</td>
<td>174</td>
<td>86</td>
<td>87</td>
<td>8.84</td>
<td>-9.8^{474}</td>
<td>Paley(349); ↓</td>
<td></td>
</tr>
<tr>
<td>? 351</td>
<td>50</td>
<td>13</td>
<td>6</td>
<td>1190</td>
<td>-4^{260}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>255</td>
<td>264</td>
<td>5260</td>
<td>-12^{80}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>! 351</td>
<td>50</td>
<td>25</td>
<td>4</td>
<td>2246</td>
<td>-2^{224}</td>
<td>T(27)</td>
<td></td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>(v)</th>
<th>(k)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(r)</th>
<th>(s)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>351</td>
<td>70</td>
<td>13</td>
<td>14</td>
<td>184</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>200</td>
<td>42</td>
<td>24</td>
<td>7(^{351})</td>
<td>3</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>110</td>
<td>37</td>
<td>33</td>
<td>11(^{351})</td>
<td>3</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>162</td>
<td>168</td>
<td>6(^{220})</td>
<td>3</td>
<td>130</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>112</td>
<td>43</td>
<td>32</td>
<td>16(^{78})</td>
<td>3</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>157</td>
<td>170</td>
<td>4(^{178})</td>
<td>3</td>
<td>178</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>126</td>
<td>45</td>
<td>45</td>
<td>15(^{182})</td>
<td>3</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>142</td>
<td>144</td>
<td>8(^{182})</td>
<td>3</td>
<td>16(^{158})</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>140</td>
<td>49</td>
<td>60</td>
<td>5(^{260})</td>
<td>3</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>129</td>
<td>120</td>
<td>15(^{50})</td>
<td>3</td>
<td>260</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>140</td>
<td>73</td>
<td>44</td>
<td>3(^{296})</td>
<td>3</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>113</td>
<td>144</td>
<td>2(^{324})</td>
<td>3</td>
<td>326</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>150</td>
<td>81</td>
<td>51</td>
<td>3(^{325})</td>
<td>3</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>132</td>
<td>2(^{325})</td>
<td>3</td>
<td>325</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>160</td>
<td>64</td>
<td>80</td>
<td>4(^{285})</td>
<td>3</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>109</td>
<td>95</td>
<td>19(^{55})</td>
<td>3</td>
<td>285</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>26</td>
<td>0</td>
<td>2</td>
<td>4(^{11})</td>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>300</td>
<td>300</td>
<td>5(^{143})</td>
<td>3</td>
<td>143</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>36</td>
<td>0</td>
<td>4</td>
<td>4(^{31})</td>
<td>3</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>282</td>
<td>280</td>
<td>7(^{120})</td>
<td>3</td>
<td>120</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>39</td>
<td>6</td>
<td>4</td>
<td>7(^{143})</td>
<td>3</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>276</td>
<td>280</td>
<td>4(^{290})</td>
<td>3</td>
<td>290</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>108</td>
<td>44</td>
<td>28</td>
<td>2(^{20})</td>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>162</td>
<td>180</td>
<td>3(^{297})</td>
<td>3</td>
<td>297</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>117</td>
<td>36</td>
<td>40</td>
<td>7(^{208})</td>
<td>3</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>156</td>
<td>154</td>
<td>14(^{143})</td>
<td>3</td>
<td>143</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>126</td>
<td>50</td>
<td>42</td>
<td>1(^{178})</td>
<td>3</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>140</td>
<td>150</td>
<td>5(^{252})</td>
<td>3</td>
<td>252</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>130</td>
<td>78</td>
<td>30</td>
<td>5(^{240})</td>
<td>3</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>120</td>
<td>170</td>
<td>1(^{240})</td>
<td>3</td>
<td>240</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>156</td>
<td>60</td>
<td>76</td>
<td>4(^{286})</td>
<td>3</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>114</td>
<td>100</td>
<td>19(^{55})</td>
<td>3</td>
<td>286</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>171</td>
<td>90</td>
<td>76</td>
<td>19(^{55})</td>
<td>3</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>84</td>
<td>100</td>
<td>4(^{286})</td>
<td>3</td>
<td>286</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>+ 353</td>
<td>116</td>
<td>88</td>
<td>88</td>
<td>8(^{973})</td>
<td>3</td>
<td>973</td>
<td></td>
</tr>
<tr>
<td>357</td>
<td>100</td>
<td>35</td>
<td>25</td>
<td>15(^{182})</td>
<td>3</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>180</td>
<td>192</td>
<td>4(^{272})</td>
<td>3</td>
<td>272</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>– 357</td>
<td>178</td>
<td>88</td>
<td>89</td>
<td>8(^{973})</td>
<td>3</td>
<td>973</td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>36</td>
<td>17</td>
<td>2</td>
<td>1(^{176})</td>
<td>3</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>280</td>
<td>306</td>
<td>1(^{240})</td>
<td>3</td>
<td>240</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>54</td>
<td>19</td>
<td>6</td>
<td>16(^{164})</td>
<td>3</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>257</td>
<td>272</td>
<td>2(^{286})</td>
<td>3</td>
<td>286</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>72</td>
<td>23</td>
<td>12</td>
<td>15(^{172})</td>
<td>3</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>227</td>
<td>240</td>
<td>3(^{288})</td>
<td>3</td>
<td>288</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>80</td>
<td>9</td>
<td>20</td>
<td>4(^{280})</td>
<td>3</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>210</td>
<td>210</td>
<td>1(^{140})</td>
<td>3</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>90</td>
<td>20</td>
<td>20</td>
<td>1(^{140})</td>
<td>3</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>190</td>
<td>210</td>
<td>4(^{270})</td>
<td>3</td>
<td>270</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>100</td>
<td>21</td>
<td>30</td>
<td>5(^{260})</td>
<td>3</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>189</td>
<td>182</td>
<td>1(^{130})</td>
<td>3</td>
<td>130</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>108</td>
<td>37</td>
<td>30</td>
<td>13(^{108})</td>
<td>3</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>173</td>
<td>182</td>
<td>5(^{252})</td>
<td>3</td>
<td>252</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>120</td>
<td>35</td>
<td>42</td>
<td>6(^{240})</td>
<td>3</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>161</td>
<td>156</td>
<td>1(^{220})</td>
<td>3</td>
<td>220</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>126</td>
<td>47</td>
<td>42</td>
<td>12(^{226})</td>
<td>3</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>149</td>
<td>156</td>
<td>6(^{234})</td>
<td>3</td>
<td>234</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>140</td>
<td>51</td>
<td>56</td>
<td>7(^{220})</td>
<td>3</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>135</td>
<td>132</td>
<td>1(^{140})</td>
<td>3</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>144</td>
<td>50</td>
<td>56</td>
<td>11(^{144})</td>
<td>3</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>127</td>
<td>132</td>
<td>7(^{216})</td>
<td>3</td>
<td>216</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>– 361</td>
<td>150</td>
<td>93</td>
<td>40</td>
<td>5(^{150})</td>
<td>3</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>99</td>
<td>154</td>
<td>1(^{150})</td>
<td>3</td>
<td>150</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 361</td>
<td>182</td>
<td>73</td>
<td>72</td>
<td>10162</td>
<td>-9198</td>
<td>OA(19, 9); Palechnik (8, 12)</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>107</td>
<td>110</td>
<td>8198</td>
<td>-11162</td>
<td>OA(19, 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 361</td>
<td>168</td>
<td>95</td>
<td>63</td>
<td>3524</td>
<td>-3136</td>
<td>† Absolute bound</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>86</td>
<td>120</td>
<td>2880</td>
<td>-3636</td>
<td>† Absolute bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 361</td>
<td>180</td>
<td>89</td>
<td>90</td>
<td>9180</td>
<td>-10180</td>
<td>Paley(361), OA(19, 10); †</td>
<td></td>
</tr>
<tr>
<td>+ 362</td>
<td>171</td>
<td>80</td>
<td>81</td>
<td>9181</td>
<td>-10180</td>
<td>OA(19, 10); ConfMat(20); †</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>99</td>
<td>100</td>
<td>9180</td>
<td>-10181</td>
<td>S(2, 10, 181); †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 363</td>
<td>170</td>
<td>73</td>
<td>85</td>
<td>5272</td>
<td>-1790</td>
<td>pg(11, 17, 5); ‡</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>106</td>
<td>96</td>
<td>1060</td>
<td>-6772</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 364</td>
<td>33</td>
<td>2</td>
<td>3</td>
<td>5195</td>
<td>-6168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>299</td>
<td>300</td>
<td>5168</td>
<td>-6195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 364</td>
<td>66</td>
<td>20</td>
<td>10</td>
<td>1477</td>
<td>-410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>240</td>
<td>252</td>
<td>3286</td>
<td>-1577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 364</td>
<td>88</td>
<td>12</td>
<td>24</td>
<td>4286</td>
<td>-1677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>210</td>
<td>200</td>
<td>1577</td>
<td>-5286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 364</td>
<td>120</td>
<td>38</td>
<td>40</td>
<td>8195</td>
<td>-10168</td>
<td>O_T(3); S_p(3); pg(13, 10, 4)?</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>162</td>
<td>162</td>
<td>9168</td>
<td>-9195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 364</td>
<td>121</td>
<td>48</td>
<td>36</td>
<td>1777</td>
<td>-5286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>156</td>
<td>170</td>
<td>4286</td>
<td>-1877</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 364</td>
<td>165</td>
<td>68</td>
<td>80</td>
<td>5273</td>
<td>-1700</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>112</td>
<td>102</td>
<td>1630</td>
<td>-6773</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 364</td>
<td>176</td>
<td>90</td>
<td>80</td>
<td>1691</td>
<td>-6772</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>90</td>
<td>102</td>
<td>5272</td>
<td>-1791</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 365</td>
<td>182</td>
<td>90</td>
<td>91</td>
<td>9.05.182</td>
<td>-10.05.182</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>? 369</td>
<td>184</td>
<td>91</td>
<td>92</td>
<td>9.10.184</td>
<td>-10.10.184</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>+ 371</td>
<td>120</td>
<td>44</td>
<td>36</td>
<td>14105</td>
<td>-6265</td>
<td>S(2, 6, 106)</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>165</td>
<td>175</td>
<td>5265</td>
<td>-15105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 372</td>
<td>56</td>
<td>10</td>
<td>8</td>
<td>8165</td>
<td>-6216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>206</td>
<td>270</td>
<td>5216</td>
<td>-9155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 373</td>
<td>186</td>
<td>92</td>
<td>93</td>
<td>9.16186</td>
<td>-10.16186</td>
<td>Paley(373); ‡</td>
<td></td>
</tr>
<tr>
<td>- 375</td>
<td>22</td>
<td>5</td>
<td>1</td>
<td>7110</td>
<td>-3264</td>
<td>† µ = 1</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>330</td>
<td>336</td>
<td>2264</td>
<td>-8110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>66</td>
<td>9</td>
<td>12</td>
<td>6220</td>
<td>-9154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>253</td>
<td>252</td>
<td>8154</td>
<td>-7220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>68</td>
<td>13</td>
<td>12</td>
<td>8170</td>
<td>-7204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>249</td>
<td>252</td>
<td>6204</td>
<td>-9170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>102</td>
<td>45</td>
<td>21</td>
<td>2734</td>
<td>-3440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>190</td>
<td>216</td>
<td>2340</td>
<td>-2834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>110</td>
<td>25</td>
<td>35</td>
<td>5275</td>
<td>-1599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>188</td>
<td>180</td>
<td>1499</td>
<td>-6775</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>136</td>
<td>44</td>
<td>52</td>
<td>6255</td>
<td>-1419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>153</td>
<td>147</td>
<td>1319</td>
<td>-7555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>154</td>
<td>53</td>
<td>70</td>
<td>4308</td>
<td>-2166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>135</td>
<td>120</td>
<td>2066</td>
<td>-5908</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>170</td>
<td>85</td>
<td>70</td>
<td>2068</td>
<td>-5906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>103</td>
<td>120</td>
<td>4306</td>
<td>-2158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>176</td>
<td>94</td>
<td>72</td>
<td>4264</td>
<td>-4330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>93</td>
<td>117</td>
<td>3330</td>
<td>-2714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 375</td>
<td>182</td>
<td>85</td>
<td>91</td>
<td>7234</td>
<td>-13440</td>
<td>pg(15, 13, 7); ‡</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>100</td>
<td>96</td>
<td>12140</td>
<td>-8354</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 376</td>
<td>105</td>
<td>32</td>
<td>28</td>
<td>11440</td>
<td>-7235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>192</td>
<td>198</td>
<td>6235</td>
<td>-12140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 376</td>
<td>175</td>
<td>78</td>
<td>84</td>
<td>7235</td>
<td>-13440</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>108</td>
<td>104</td>
<td>12140</td>
<td>-8354</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 376</td>
<td>180</td>
<td>88</td>
<td>84</td>
<td>12141</td>
<td>-8334</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>98</td>
<td>104</td>
<td>7234</td>
<td>-13414</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 377</td>
<td>180</td>
<td>81</td>
<td>90</td>
<td>6260</td>
<td>-15156</td>
<td>pg(13, 15, 6); ‡</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>105</td>
<td>98</td>
<td>14116</td>
<td>-7550</td>
<td>‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 377</td>
<td>188</td>
<td>93</td>
<td>94</td>
<td>9.21.188</td>
<td>-10.21.188</td>
<td>‡</td>
<td></td>
</tr>
<tr>
<td>+ 378</td>
<td>52</td>
<td>1</td>
<td>8</td>
<td>4273</td>
<td>-11104</td>
<td>Cosiddente-Penttila [233]</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>280</td>
<td>275</td>
<td>10104</td>
<td>-5773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>! 378</td>
<td>52</td>
<td>26</td>
<td>4</td>
<td>2427</td>
<td>-21550</td>
<td>T(28)</td>
<td></td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>ν</th>
<th>κ</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>a^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>378</td>
<td>116</td>
<td>34</td>
<td>36</td>
<td>9^{83}</td>
<td>-10^{174}</td>
<td>Muzychuk [580]</td>
</tr>
<tr>
<td>+</td>
<td>378</td>
<td>117</td>
<td>36</td>
<td>36</td>
<td>9^{84}</td>
<td>-9^{195}</td>
<td>$\S(10.67); \S(19.718)$; $\S(14.9.4)$?</td>
</tr>
<tr>
<td>+</td>
<td>378</td>
<td>174</td>
<td>75</td>
<td>84</td>
<td>6^{51}</td>
<td>-15^{116}</td>
<td>?</td>
</tr>
<tr>
<td>+</td>
<td>381</td>
<td>114</td>
<td>29</td>
<td>36</td>
<td>6^{57}</td>
<td>-1^{328}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>381</td>
<td>140</td>
<td>55</td>
<td>49</td>
<td>1^{326}</td>
<td>-2^{10}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>381</td>
<td>190</td>
<td>94</td>
<td>95</td>
<td>9.36^{190}</td>
<td>-10.26^{190}</td>
<td>$\S(2,7.127)$?</td>
</tr>
<tr>
<td>\S</td>
<td>385</td>
<td>60</td>
<td>5</td>
<td>10</td>
<td>5^{352}</td>
<td>-1^{10}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>385</td>
<td>168</td>
<td>77</td>
<td>70</td>
<td>2^{120}</td>
<td>-1^{10}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>385</td>
<td>192</td>
<td>95</td>
<td>96</td>
<td>9.3^{192}</td>
<td>-10.3^{192}</td>
<td>$\S(2,7.127)$?</td>
</tr>
<tr>
<td>+</td>
<td>389</td>
<td>194</td>
<td>96</td>
<td>97</td>
<td>9.3^{194}</td>
<td>-10.3^{194}</td>
<td>Paley(389); $\S(2,7.127)$?</td>
</tr>
<tr>
<td>+</td>
<td>391</td>
<td>140</td>
<td>39</td>
<td>56</td>
<td>4^{222}</td>
<td>-2^{168}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>392</td>
<td>46</td>
<td>0</td>
<td>6</td>
<td>4^{276}</td>
<td>-10^{115}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>392</td>
<td>51</td>
<td>10</td>
<td>6</td>
<td>6^{136}</td>
<td>-5^{25}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>392</td>
<td>294</td>
<td>300</td>
<td>2^{655}</td>
<td>-10^{256}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>392</td>
<td>69</td>
<td>26</td>
<td>9</td>
<td>2^{228}</td>
<td>-3^{343}</td>
<td>$S(2,3.49)$</td>
</tr>
<tr>
<td>\S</td>
<td>392</td>
<td>115</td>
<td>18</td>
<td>40</td>
<td>3^{345}</td>
<td>-2^{164}</td>
<td>$\S(2,7.127)$?</td>
</tr>
<tr>
<td>\S</td>
<td>392</td>
<td>136</td>
<td>60</td>
<td>40</td>
<td>3^{430}</td>
<td>-1^{15}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>392</td>
<td>153</td>
<td>54</td>
<td>63</td>
<td>6^{722}</td>
<td>-1^{12}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>400</td>
<td>21</td>
<td>2</td>
<td>1</td>
<td>2^{224}</td>
<td>-2^{10}</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>398</td>
<td>375</td>
<td>360</td>
<td>3^{224}</td>
<td>-6^{175}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>400</td>
<td>38</td>
<td>18</td>
<td>2</td>
<td>2^{178}</td>
<td>-2^{261}</td>
<td>20×20</td>
</tr>
<tr>
<td>+</td>
<td>400</td>
<td>381</td>
<td>324</td>
<td>342</td>
<td>2^{871}</td>
<td>-19^{25}</td>
<td>$O(20,19)$?</td>
</tr>
<tr>
<td>+</td>
<td>400</td>
<td>56</td>
<td>6</td>
<td>8</td>
<td>6^{224}</td>
<td>-8^{375}</td>
<td>$O_s(7); S_p(7); GQ(7,7)$</td>
</tr>
<tr>
<td>+</td>
<td>400</td>
<td>156</td>
<td>284</td>
<td>294</td>
<td>7^{175}</td>
<td>-2^{224}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>400</td>
<td>57</td>
<td>20</td>
<td>6</td>
<td>1^{377}</td>
<td>-3^{392}</td>
<td>$O(20,3)$</td>
</tr>
<tr>
<td>+</td>
<td>400</td>
<td>176</td>
<td>24</td>
<td>12</td>
<td>3^{472}</td>
<td>-1^{323}</td>
<td>$O(20,4)$</td>
</tr>
<tr>
<td>+</td>
<td>323</td>
<td>258</td>
<td>272</td>
<td>3^{233}</td>
<td>-1^{17}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>400</td>
<td>84</td>
<td>8</td>
<td>20</td>
<td>4^{215}</td>
<td>-1^{16}</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>400</td>
<td>95</td>
<td>30</td>
<td>20</td>
<td>1^{375}</td>
<td>-3^{374}</td>
<td>$\S(2,7.127)$?</td>
</tr>
<tr>
<td>\S</td>
<td>400</td>
<td>102</td>
<td>2</td>
<td>34</td>
<td>2^{734}</td>
<td>-3^{24}</td>
<td>$\S(2,7.127)$?</td>
</tr>
<tr>
<td>\S</td>
<td>400</td>
<td>105</td>
<td>20</td>
<td>30</td>
<td>5^{934}</td>
<td>-1^{10}</td>
<td>$\S(8,15.2)$?</td>
</tr>
<tr>
<td>ex</td>
<td>v</td>
<td>k</td>
<td>λ</td>
<td>μ</td>
<td>r f</td>
<td>s</td>
<td>comment</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>- 400</td>
<td>294</td>
<td>218</td>
<td>210</td>
<td>14</td>
<td>2375</td>
<td>-36.74</td>
<td>† $\beta_{24} < 0$; † Absolute bound</td>
</tr>
<tr>
<td>- 285</td>
<td>212</td>
<td>180</td>
<td>35</td>
<td>2375</td>
<td>-3.375</td>
<td>† $\beta_{11} < 0$; † Absolute bound</td>
<td></td>
</tr>
<tr>
<td>+ 400</td>
<td>114</td>
<td>38</td>
<td>30</td>
<td>14.14</td>
<td>375</td>
<td>-6755</td>
<td>OA(20, 6)</td>
</tr>
<tr>
<td>+ 285</td>
<td>200</td>
<td>210</td>
<td>5</td>
<td>285</td>
<td>-15.14</td>
<td>OA(20, 15)</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>126</td>
<td>34</td>
<td>42</td>
<td>6273</td>
<td>-14.126</td>
<td>pg(10,14,3)</td>
<td></td>
</tr>
<tr>
<td>? 273</td>
<td>188</td>
<td>182</td>
<td>13</td>
<td>273</td>
<td>-7.273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>133</td>
<td>42</td>
<td>45</td>
<td>8224</td>
<td>-11.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 266</td>
<td>177</td>
<td>176</td>
<td>10</td>
<td>175</td>
<td>-9.272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>133</td>
<td>48</td>
<td>42</td>
<td>13</td>
<td>1333</td>
<td>-7.165</td>
<td>OA(20, 7)</td>
</tr>
<tr>
<td>- 266</td>
<td>174</td>
<td>182</td>
<td>6</td>
<td>175</td>
<td>-14.133</td>
<td>OA(20, 14)</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>147</td>
<td>50</td>
<td>56</td>
<td>7525</td>
<td>-13.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 252</td>
<td>160</td>
<td>156</td>
<td>12</td>
<td>156</td>
<td>-8.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>152</td>
<td>60</td>
<td>56</td>
<td>12</td>
<td>1252</td>
<td>-8.152</td>
<td>OA(20, 8)</td>
</tr>
<tr>
<td>- 247</td>
<td>150</td>
<td>156</td>
<td>7</td>
<td>147</td>
<td>-13.152</td>
<td>OA(20, 13)</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>156</td>
<td>74</td>
<td>52</td>
<td>26</td>
<td>2648</td>
<td>-4.511</td>
<td></td>
</tr>
<tr>
<td>- 243</td>
<td>138</td>
<td>162</td>
<td>2</td>
<td>331</td>
<td>-27.238</td>
<td>pg(10,27,6)</td>
<td></td>
</tr>
<tr>
<td>- 400</td>
<td>161</td>
<td>24</td>
<td>192</td>
<td>1391</td>
<td>-69.5</td>
<td>† $\beta_{24} < 0$; † Absolute bound</td>
<td></td>
</tr>
<tr>
<td>- 238</td>
<td>168</td>
<td>102</td>
<td>68</td>
<td>-2.691</td>
<td>† $\beta_{11} < 0$; † Absolute bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>168</td>
<td>68</td>
<td>72</td>
<td>8231</td>
<td>-12.168</td>
<td>pg(15,12,6)</td>
<td></td>
</tr>
<tr>
<td>- 231</td>
<td>134</td>
<td>132</td>
<td>11</td>
<td>1168</td>
<td>-9.231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>171</td>
<td>74</td>
<td>72</td>
<td>11</td>
<td>117</td>
<td>-9.228</td>
<td>OA(20, 9)</td>
</tr>
<tr>
<td>- 228</td>
<td>128</td>
<td>132</td>
<td>8</td>
<td>8228</td>
<td>-12.171</td>
<td>OA(20, 12)</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>198</td>
<td>88</td>
<td>90</td>
<td>9210</td>
<td>-11.189</td>
<td>RSHCD; †</td>
<td></td>
</tr>
<tr>
<td>- 210</td>
<td>110</td>
<td>110</td>
<td>10</td>
<td>1010</td>
<td>-10.107</td>
<td>Fickus et al. [324]; †</td>
<td></td>
</tr>
<tr>
<td>- 400</td>
<td>189</td>
<td>108</td>
<td>72</td>
<td>3924</td>
<td>-3.775</td>
<td>† Absolute bound</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>110</td>
<td>90</td>
<td>12</td>
<td>120</td>
<td>-40.74</td>
<td>† Absolute bound</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>190</td>
<td>90</td>
<td>90</td>
<td>10190</td>
<td>-10.209</td>
<td>OA(20, 10)</td>
<td></td>
</tr>
<tr>
<td>- 209</td>
<td>108</td>
<td>110</td>
<td>9</td>
<td>9009</td>
<td>-11.190</td>
<td>OA(20, 11)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>401</td>
<td>200</td>
<td>99</td>
<td>100</td>
<td>9.51200</td>
<td>-10.51200</td>
<td>Paley(401); ↓</td>
</tr>
<tr>
<td>- 405</td>
<td>84</td>
<td>3</td>
<td>21</td>
<td>3350</td>
<td>-21.54</td>
<td>† $\beta_{24} < 0$</td>
<td></td>
</tr>
<tr>
<td>- 320</td>
<td>256</td>
<td>240</td>
<td>20</td>
<td>274</td>
<td>-4250</td>
<td>† $\beta_{11} < 0$</td>
<td></td>
</tr>
<tr>
<td>? 405</td>
<td>96</td>
<td>18</td>
<td>24</td>
<td>6264</td>
<td>-12.140</td>
<td>pg(9,12,2)</td>
<td></td>
</tr>
<tr>
<td>- 308</td>
<td>235</td>
<td>231</td>
<td>11</td>
<td>1140</td>
<td>-7.264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 405</td>
<td>132</td>
<td>63</td>
<td>33</td>
<td>3330</td>
<td>-3.374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 272</td>
<td>172</td>
<td>204</td>
<td>2</td>
<td>2374</td>
<td>-34.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>196</td>
<td>91</td>
<td>98</td>
<td>7260</td>
<td>-14.144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 208</td>
<td>109</td>
<td>104</td>
<td>13</td>
<td>1144</td>
<td>-8.360</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>? 400</td>
<td>202</td>
<td>100</td>
<td>101</td>
<td>9.56202</td>
<td>-10.56202</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>! 406</td>
<td>54</td>
<td>27</td>
<td>4</td>
<td>2528</td>
<td>-2.377</td>
<td>T(29)</td>
<td></td>
</tr>
<tr>
<td>? 351</td>
<td>300</td>
<td>325</td>
<td>1377</td>
<td>-2.268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 406</td>
<td>108</td>
<td>30</td>
<td>28</td>
<td>10174</td>
<td>-8.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 297</td>
<td>216</td>
<td>220</td>
<td>7</td>
<td>231</td>
<td>-11.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 406</td>
<td>165</td>
<td>68</td>
<td>66</td>
<td>11174</td>
<td>-9.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 240</td>
<td>140</td>
<td>144</td>
<td>8</td>
<td>831</td>
<td>-12.174</td>
<td>S(2,12,232)</td>
<td></td>
</tr>
<tr>
<td>? 406</td>
<td>189</td>
<td>84</td>
<td>91</td>
<td>7261</td>
<td>-14.144</td>
<td>†</td>
<td></td>
</tr>
<tr>
<td>- 216</td>
<td>117</td>
<td>112</td>
<td>13</td>
<td>1144</td>
<td>-8.361</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>! 400</td>
<td>195</td>
<td>96</td>
<td>91</td>
<td>13145</td>
<td>-8.360</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>! 210</td>
<td>105</td>
<td>112</td>
<td>7</td>
<td>7260</td>
<td>-14.145</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>! 407</td>
<td>126</td>
<td>45</td>
<td>36</td>
<td>15110</td>
<td>-6.966</td>
<td>S(2,6,111)</td>
<td></td>
</tr>
<tr>
<td>- 280</td>
<td>189</td>
<td>200</td>
<td>5</td>
<td>296</td>
<td>-16.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 408</td>
<td>110</td>
<td>28</td>
<td>30</td>
<td>8220</td>
<td>-10.187</td>
<td>pg(12,10,3)</td>
<td></td>
</tr>
<tr>
<td>- 207</td>
<td>216</td>
<td>216</td>
<td>9</td>
<td>9187</td>
<td>-9.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 408</td>
<td>176</td>
<td>70</td>
<td>80</td>
<td>6288</td>
<td>-16.119</td>
<td>pg(12,16,5)</td>
<td></td>
</tr>
<tr>
<td>- 231</td>
<td>134</td>
<td>126</td>
<td>11</td>
<td>7288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 409</td>
<td>204</td>
<td>101</td>
<td>102</td>
<td>9.61204</td>
<td>-10.61204</td>
<td>Paley(409); ↓</td>
<td></td>
</tr>
<tr>
<td>+ 411</td>
<td>130</td>
<td>45</td>
<td>39</td>
<td>13137</td>
<td>-7.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 280</td>
<td>188</td>
<td>196</td>
<td>623</td>
<td>-14.137</td>
<td>S(2,14,274)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 413</td>
<td>112</td>
<td>36</td>
<td>38</td>
<td>14118</td>
<td>-6.294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 300</td>
<td>215</td>
<td>225</td>
<td>5</td>
<td>2984</td>
<td>-15.118</td>
<td>S(2,15,295)</td>
<td></td>
</tr>
<tr>
<td>- 413</td>
<td>206</td>
<td>102</td>
<td>103</td>
<td>9.66206</td>
<td>-10.66206</td>
<td>↑ $v \neq a^2 + b^2$</td>
<td></td>
</tr>
<tr>
<td>! 414</td>
<td>63</td>
<td>12</td>
<td>9</td>
<td>9.161</td>
<td>-6.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r²</th>
<th>p²</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
<td>414</td>
<td>140</td>
<td>22</td>
<td>60</td>
<td>200</td>
<td>400</td>
<td>t q^2 < 0; t Absolute bound</td>
</tr>
<tr>
<td>+</td>
<td>416</td>
<td>100</td>
<td>36</td>
<td>20</td>
<td>200</td>
<td>400</td>
<td>§10.68; G_2(4) in Suz tower</td>
</tr>
<tr>
<td>?</td>
<td>416</td>
<td>165</td>
<td>64</td>
<td>66</td>
<td>920</td>
<td>11195</td>
<td>pg(16,21,12)?</td>
</tr>
<tr>
<td>+</td>
<td>418</td>
<td>147</td>
<td>56</td>
<td>49</td>
<td>1430</td>
<td>1320</td>
<td>S(2,7,133)?</td>
</tr>
<tr>
<td>+</td>
<td>421</td>
<td>210</td>
<td>104</td>
<td>105</td>
<td>9760</td>
<td>97610</td>
<td>Paley(421); t</td>
</tr>
<tr>
<td>?</td>
<td>424</td>
<td>99</td>
<td>26</td>
<td>22</td>
<td>1159</td>
<td>1159</td>
<td>S(2,3,51)</td>
</tr>
<tr>
<td>+</td>
<td>425</td>
<td>72</td>
<td>79</td>
<td>9</td>
<td>2150</td>
<td>3774</td>
<td>pg(15,27,13)?</td>
</tr>
<tr>
<td>?</td>
<td>425</td>
<td>160</td>
<td>60</td>
<td>10</td>
<td>2004</td>
<td>10220</td>
<td>pg(17,10,6)?</td>
</tr>
<tr>
<td>?</td>
<td>425</td>
<td>212</td>
<td>105</td>
<td>106</td>
<td>9812</td>
<td>108122</td>
<td>S(2,3,51)</td>
</tr>
<tr>
<td>−</td>
<td>428</td>
<td>112</td>
<td>21</td>
<td>32</td>
<td>5320</td>
<td>16107</td>
<td>pg(8,16,2)?</td>
</tr>
<tr>
<td>?</td>
<td>429</td>
<td>108</td>
<td>27</td>
<td>27</td>
<td>9308</td>
<td>9220</td>
<td>pg(13,9,3)?</td>
</tr>
<tr>
<td>?</td>
<td>429</td>
<td>353</td>
<td>360</td>
<td>3500</td>
<td>10129</td>
<td>S(2,3,51)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>430</td>
<td>135</td>
<td>36</td>
<td>45</td>
<td>6200</td>
<td>15129</td>
<td>pg(10,15,3)?</td>
</tr>
<tr>
<td>+</td>
<td>430</td>
<td>165</td>
<td>68</td>
<td>60</td>
<td>15129</td>
<td>16129</td>
<td>S(2,3,51)</td>
</tr>
<tr>
<td>+</td>
<td>433</td>
<td>216</td>
<td>107</td>
<td>108</td>
<td>99016</td>
<td>1099216</td>
<td>Paley(433); t</td>
</tr>
<tr>
<td>−</td>
<td>435</td>
<td>56</td>
<td>28</td>
<td>4</td>
<td>2609</td>
<td>4095</td>
<td>T(50)</td>
</tr>
<tr>
<td>?</td>
<td>435</td>
<td>154</td>
<td>53</td>
<td>55</td>
<td>9211</td>
<td>11203</td>
<td>pg(15,11,5)?</td>
</tr>
<tr>
<td>?</td>
<td>435</td>
<td>182</td>
<td>73</td>
<td>78</td>
<td>8450</td>
<td>1374</td>
<td>pg(15,13,6)?</td>
</tr>
<tr>
<td>?</td>
<td>437</td>
<td>100</td>
<td>15</td>
<td>25</td>
<td>5322</td>
<td>15114</td>
<td>S(2,3,51)</td>
</tr>
<tr>
<td>−</td>
<td>437</td>
<td>218</td>
<td>108</td>
<td>109</td>
<td>995518</td>
<td>1095518</td>
<td>t v a^2 + b^2</td>
</tr>
<tr>
<td>+</td>
<td>438</td>
<td>92</td>
<td>31</td>
<td>16</td>
<td>1972</td>
<td>1972</td>
<td>S(2,4,73)</td>
</tr>
<tr>
<td>!</td>
<td>441</td>
<td>40</td>
<td>19</td>
<td>2</td>
<td>1940</td>
<td>2072</td>
<td>OA(21, 20)?</td>
</tr>
<tr>
<td>+</td>
<td>441</td>
<td>56</td>
<td>7</td>
<td>7</td>
<td>7216</td>
<td>7224</td>
<td>Wallis [718]; GQ(8, 6)</td>
</tr>
<tr>
<td>+</td>
<td>441</td>
<td>60</td>
<td>21</td>
<td>6</td>
<td>1840</td>
<td>1850</td>
<td>OA(21, 3)</td>
</tr>
<tr>
<td>+</td>
<td>441</td>
<td>80</td>
<td>25</td>
<td>12</td>
<td>1780</td>
<td>1890</td>
<td>OA(21, 4)</td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>88</td>
<td>7</td>
<td>20</td>
<td>472</td>
<td>1758</td>
<td>OA(21, 18)?</td>
</tr>
<tr>
<td>−</td>
<td>441</td>
<td>88</td>
<td>35</td>
<td>13</td>
<td>2544</td>
<td>396</td>
<td>S(2,3,51)</td>
</tr>
<tr>
<td>+</td>
<td>441</td>
<td>100</td>
<td>31</td>
<td>20</td>
<td>16100</td>
<td>16100</td>
<td>OA(21, 5)</td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>110</td>
<td>19</td>
<td>30</td>
<td>5330</td>
<td>16110</td>
<td>OA(21, 17)?</td>
</tr>
<tr>
<td>−</td>
<td>441</td>
<td>120</td>
<td>15</td>
<td>39</td>
<td>372</td>
<td>272</td>
<td>t q^2 < 0</td>
</tr>
<tr>
<td>+</td>
<td>441</td>
<td>120</td>
<td>39</td>
<td>30</td>
<td>1520</td>
<td>6200</td>
<td>OA(21, 6)</td>
</tr>
<tr>
<td>−</td>
<td>441</td>
<td>128</td>
<td>10</td>
<td>48</td>
<td>216</td>
<td>406</td>
<td>t q^2 < 0; t Absolute bound</td>
</tr>
<tr>
<td>continued...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ex</td>
<td>v</td>
<td>k</td>
<td>λ</td>
<td>μ</td>
<td>e^f</td>
<td>s^g</td>
<td>comment</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>441</td>
<td>132</td>
<td>33</td>
<td>42</td>
<td>6</td>
<td>14132</td>
<td>-15114</td>
<td>OA(21, 7)</td>
</tr>
<tr>
<td>308</td>
<td>217</td>
<td>210</td>
<td>14</td>
<td>-1308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>140</td>
<td>49</td>
<td>42</td>
<td>14140</td>
<td>-1300</td>
<td>OA(21, 15)</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>201</td>
<td>210</td>
<td>6</td>
<td>-15140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>152</td>
<td>43</td>
<td>57</td>
<td>5342</td>
<td>-1938</td>
<td>pg(9,19,3)</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>192</td>
<td>180</td>
<td>18</td>
<td>-6342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>154</td>
<td>49</td>
<td>56</td>
<td>3286</td>
<td>-14154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>187</td>
<td>182</td>
<td>13154</td>
<td>-8286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>160</td>
<td>61</td>
<td>56</td>
<td>13160</td>
<td>-8280</td>
<td>OA(21, 8)</td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>176</td>
<td>25</td>
<td>100</td>
<td>226</td>
<td>-14160</td>
<td>OA(21, 14)</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>187</td>
<td>114</td>
<td>758</td>
<td>-2432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>176</td>
<td>67</td>
<td>72</td>
<td>13786</td>
<td>-9264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>176</td>
<td>85</td>
<td>60</td>
<td>2948</td>
<td>-3932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>147</td>
<td>174</td>
<td>392</td>
<td>-3048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>180</td>
<td>75</td>
<td>72</td>
<td>12160</td>
<td>-9260</td>
<td>OA(21, 9)</td>
</tr>
<tr>
<td>260</td>
<td>151</td>
<td>156</td>
<td>8260</td>
<td>-13180</td>
<td>OA(21, 13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>184</td>
<td>87</td>
<td>69</td>
<td>2372</td>
<td>-5368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>140</td>
<td>160</td>
<td>3668</td>
<td>-2472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>190</td>
<td>89</td>
<td>76</td>
<td>1998</td>
<td>-6342</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>135</td>
<td>150</td>
<td>5342</td>
<td>-2098</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>198</td>
<td>87</td>
<td>90</td>
<td>5422</td>
<td>-12198</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>133</td>
<td>132</td>
<td>11198</td>
<td>-10242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>200</td>
<td>91</td>
<td>90</td>
<td>11200</td>
<td>-10240</td>
<td>OA(21, 10)</td>
</tr>
<tr>
<td>240</td>
<td>129</td>
<td>132</td>
<td>9240</td>
<td>-12200</td>
<td>OA(21, 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>220</td>
<td>95</td>
<td>124</td>
<td>3306</td>
<td>-3244</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>123</td>
<td>96</td>
<td>3144</td>
<td>-4396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>441</td>
<td>220</td>
<td>109</td>
<td>110</td>
<td>10220</td>
<td>-11220</td>
<td>Mathon [544]; OA(21, 11)</td>
</tr>
<tr>
<td>-442</td>
<td>105</td>
<td>8</td>
<td>30</td>
<td>3300</td>
<td>-2551</td>
<td>(\dagger \varphi^2 < 0)</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>260</td>
<td>240</td>
<td>2351</td>
<td>-4390</td>
<td>(\dagger q_{11} < 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>442</td>
<td>210</td>
<td>99</td>
<td>100</td>
<td>10221</td>
<td>-11220</td>
<td>(\dagger q_{21} < 0)</td>
</tr>
<tr>
<td>231</td>
<td>120</td>
<td>121</td>
<td>10220</td>
<td>-11221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>445</td>
<td>222</td>
<td>110</td>
<td>111</td>
<td>10222</td>
<td>-110222</td>
<td>S(2,11,221)?; (\dagger q_{21} < 0)</td>
</tr>
<tr>
<td>?</td>
<td>448</td>
<td>150</td>
<td>50</td>
<td>50</td>
<td>5216</td>
<td>-10231</td>
<td>pg(16,10,5)</td>
</tr>
<tr>
<td>297</td>
<td>196</td>
<td>198</td>
<td>5231</td>
<td>-11216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>448</td>
<td>162</td>
<td>66</td>
<td>54</td>
<td>16105</td>
<td>-6342</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>176</td>
<td>190</td>
<td>5342</td>
<td>-19105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>449</td>
<td>224</td>
<td>111</td>
<td>112</td>
<td>100524</td>
<td>-1109224</td>
<td>pg(16,19,10)</td>
</tr>
<tr>
<td>?</td>
<td>451</td>
<td>130</td>
<td>33</td>
<td>39</td>
<td>3286</td>
<td>-13164</td>
<td>pg(11,13,3)</td>
</tr>
<tr>
<td>?</td>
<td>451</td>
<td>156</td>
<td>57</td>
<td>52</td>
<td>1364</td>
<td>-8286</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>451</td>
<td>156</td>
<td>75</td>
<td>52</td>
<td>1364</td>
<td>-8286</td>
<td></td>
</tr>
<tr>
<td>-453</td>
<td>226</td>
<td>112</td>
<td>113</td>
<td>1014226</td>
<td>-1114226</td>
<td>S(2,14,287)?</td>
<td></td>
</tr>
<tr>
<td>-456</td>
<td>35</td>
<td>10</td>
<td>12</td>
<td>1155</td>
<td>-3360</td>
<td>(\dagger v \neq a^2 + b^2)</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>386</td>
<td>396</td>
<td>2360</td>
<td>-1295</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>65</td>
<td>10</td>
<td>9</td>
<td>8208</td>
<td>-7247</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>333</td>
<td>336</td>
<td>6247</td>
<td>-9208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>80</td>
<td>4</td>
<td>16</td>
<td>4300</td>
<td>-1695</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>310</td>
<td>300</td>
<td>1595</td>
<td>-5360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-456</td>
<td>91</td>
<td>2</td>
<td>22</td>
<td>3399</td>
<td>-2356</td>
<td>(\dagger \varphi^2 < 0)</td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>294</td>
<td>276</td>
<td>2256</td>
<td>-4399</td>
<td>(\dagger q_{11} < 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>104</td>
<td>22</td>
<td>24</td>
<td>5247</td>
<td>-10208</td>
<td>OA(21, 15)</td>
</tr>
<tr>
<td>351</td>
<td>270</td>
<td>270</td>
<td>5308</td>
<td>-9247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>130</td>
<td>24</td>
<td>42</td>
<td>5340</td>
<td>-2275</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>236</td>
<td>220</td>
<td>2175</td>
<td>-5380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>140</td>
<td>40</td>
<td>44</td>
<td>5266</td>
<td>-12189</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>218</td>
<td>216</td>
<td>11226</td>
<td>-9266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>140</td>
<td>58</td>
<td>36</td>
<td>2656</td>
<td>-14399</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>210</td>
<td>234</td>
<td>3399</td>
<td>-2756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>175</td>
<td>78</td>
<td>60</td>
<td>2375</td>
<td>-5380</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>164</td>
<td>184</td>
<td>4360</td>
<td>-2475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>456</td>
<td>182</td>
<td>73</td>
<td>72</td>
<td>11208</td>
<td>-10247</td>
<td></td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^f</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>456</td>
<td>215</td>
<td>71</td>
<td>90</td>
<td>5.360</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>260</td>
<td>154</td>
<td>140</td>
<td>20.295</td>
<td>6.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>457</td>
<td>228</td>
<td>113</td>
<td>114</td>
<td>10.19</td>
<td>227</td>
<td>Paley(457); ↓</td>
</tr>
<tr>
<td>?</td>
<td>459</td>
<td>208</td>
<td>82</td>
<td>104</td>
<td>4.28</td>
<td>20.298</td>
<td>pg(9,26.4)?; ↓?</td>
</tr>
<tr>
<td>?</td>
<td>250</td>
<td>145</td>
<td>125</td>
<td>25.58</td>
<td>7.539</td>
<td>23.275</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>460</td>
<td>85</td>
<td>18</td>
<td>15</td>
<td>10.184</td>
<td>7.275</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>374</td>
<td>303</td>
<td>308</td>
<td>6.275</td>
<td>11.194</td>
<td>9.194</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>460</td>
<td>99</td>
<td>18</td>
<td>22</td>
<td>7.275</td>
<td>11.194</td>
<td>pg(10,11.2)?</td>
</tr>
<tr>
<td>?</td>
<td>460</td>
<td>147</td>
<td>42</td>
<td>49</td>
<td>7.299</td>
<td>14.160</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>312</td>
<td>213</td>
<td>208</td>
<td>13.160</td>
<td>8.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>460</td>
<td>153</td>
<td>32</td>
<td>60</td>
<td>3.114</td>
<td>-31.95</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>306</td>
<td>212</td>
<td>186</td>
<td>30.55</td>
<td>-4.914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>460</td>
<td>204</td>
<td>78</td>
<td>100</td>
<td>4.991</td>
<td>-26.68</td>
<td>↑?</td>
</tr>
<tr>
<td>?</td>
<td>255</td>
<td>150</td>
<td>130</td>
<td>25.68</td>
<td>-5.391</td>
<td>↑?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>460</td>
<td>216</td>
<td>116</td>
<td>88</td>
<td>32.45</td>
<td>-4.914</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>243</td>
<td>111</td>
<td>144</td>
<td>3.14</td>
<td>-33.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>460</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>25.19</td>
<td>-5.390</td>
<td>↑?</td>
</tr>
<tr>
<td>+</td>
<td>461</td>
<td>230</td>
<td>114</td>
<td>115</td>
<td>10.24</td>
<td>-10.24</td>
<td>pg(10,26.5)?; ↑?</td>
</tr>
<tr>
<td>+</td>
<td>461</td>
<td>58</td>
<td>29</td>
<td>4</td>
<td>27.30</td>
<td>-2.24</td>
<td>T(31)</td>
</tr>
<tr>
<td>?</td>
<td>406</td>
<td>351</td>
<td>378</td>
<td>1.34</td>
<td>-28.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>465</td>
<td>144</td>
<td>43</td>
<td>45</td>
<td>9.248</td>
<td>-11.216</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>320</td>
<td>220</td>
<td>220</td>
<td>10.216</td>
<td>-10.216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>465</td>
<td>192</td>
<td>72</td>
<td>84</td>
<td>6.740</td>
<td>-18.244</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>465</td>
<td>232</td>
<td>115</td>
<td>116</td>
<td>10.28</td>
<td>-11.28</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>469</td>
<td>234</td>
<td>116</td>
<td>117</td>
<td>10.33</td>
<td>-11.33</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>470</td>
<td>120</td>
<td>27</td>
<td>36</td>
<td>6.729</td>
<td>-15.410</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>334</td>
<td>252</td>
<td>245</td>
<td>11.430</td>
<td>-7.529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>473</td>
<td>236</td>
<td>117</td>
<td>118</td>
<td>10.37</td>
<td>-11.37</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>474</td>
<td>165</td>
<td>52</td>
<td>60</td>
<td>7.315</td>
<td>-15.58</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>308</td>
<td>202</td>
<td>196</td>
<td>14.55</td>
<td>-3.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>475</td>
<td>90</td>
<td>25</td>
<td>15</td>
<td>15.14</td>
<td>-5.360</td>
<td>pg(19,5,3) does not exist (no dual)</td>
</tr>
<tr>
<td>?</td>
<td>384</td>
<td>308</td>
<td>320</td>
<td>4.260</td>
<td>-16.144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>475</td>
<td>96</td>
<td>32</td>
<td>16</td>
<td>20.75</td>
<td>-19.799</td>
<td>S(2,4.76)</td>
</tr>
<tr>
<td>?</td>
<td>378</td>
<td>297</td>
<td>315</td>
<td>3.399</td>
<td>-21.75</td>
<td>pg(19,21,15)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>476</td>
<td>133</td>
<td>42</td>
<td>35</td>
<td>15.45</td>
<td>-7.523</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>476</td>
<td>133</td>
<td>60</td>
<td>28</td>
<td>35.74</td>
<td>-3.341</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>342</td>
<td>236</td>
<td>270</td>
<td>2.441</td>
<td>-30.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>477</td>
<td>140</td>
<td>31</td>
<td>45</td>
<td>5.71</td>
<td>-19.355</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>336</td>
<td>240</td>
<td>228</td>
<td>18.105</td>
<td>-6.371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>477</td>
<td>168</td>
<td>57</td>
<td>60</td>
<td>9.264</td>
<td>-12.122</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>308</td>
<td>199</td>
<td>198</td>
<td>11.112</td>
<td>-10.884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>477</td>
<td>238</td>
<td>118</td>
<td>119</td>
<td>10.42</td>
<td>-11.42</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>481</td>
<td>240</td>
<td>119</td>
<td>120</td>
<td>10.47</td>
<td>-11.47</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>483</td>
<td>240</td>
<td>118</td>
<td>120</td>
<td>10.52</td>
<td>-12.52</td>
<td>pg(21,12.10)?; ↓?</td>
</tr>
<tr>
<td>?</td>
<td>242</td>
<td>121</td>
<td>121</td>
<td>11.230</td>
<td>-11.122</td>
<td>S(2,11,231)?; ↓?</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>484</td>
<td>42</td>
<td>20</td>
<td>2</td>
<td>20.272</td>
<td>-2.241</td>
<td>22 x 22</td>
</tr>
<tr>
<td>+</td>
<td>441</td>
<td>400</td>
<td>420</td>
<td>1.144</td>
<td>-21.42</td>
<td>OA(22, 21)?</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>484</td>
<td>63</td>
<td>22</td>
<td>6</td>
<td>19.53</td>
<td>-3.420</td>
<td>OA(22, 3)</td>
</tr>
<tr>
<td>+</td>
<td>420</td>
<td>362</td>
<td>380</td>
<td>2.420</td>
<td>-20.35</td>
<td>OA(22, 29)?</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>399</td>
<td>326</td>
<td>342</td>
<td>3.399</td>
<td>-19.184</td>
<td>OA(22,19)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>484</td>
<td>92</td>
<td>6</td>
<td>20</td>
<td>4.991</td>
<td>-18.92</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>391</td>
<td>318</td>
<td>306</td>
<td>17.92</td>
<td>-5.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>484</td>
<td>105</td>
<td>14</td>
<td>25</td>
<td>5.563</td>
<td>-16.310</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>378</td>
<td>297</td>
<td>288</td>
<td>15.720</td>
<td>-6.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>484</td>
<td>105</td>
<td>32</td>
<td>20</td>
<td>17.95</td>
<td>-5.378</td>
<td>OA(22, 5)</td>
</tr>
<tr>
<td>+</td>
<td>378</td>
<td>292</td>
<td>306</td>
<td>4.378</td>
<td>-18.185</td>
<td>OA(22, 18)?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>484</td>
<td>115</td>
<td>18</td>
<td>30</td>
<td>5.568</td>
<td>-17.115</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 12. Parameter Table

<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>c/λ</th>
<th>s#</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>484</td>
<td>36</td>
<td>282</td>
<td>272</td>
<td>16126</td>
<td>53</td>
<td>-6346</td>
<td>OA(22, 6)?</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>40</td>
<td>30</td>
<td>15126</td>
<td>557</td>
<td>-17126</td>
<td>OA(22, 17)?</td>
</tr>
<tr>
<td>484</td>
<td>135</td>
<td>18</td>
<td>45</td>
<td>6435</td>
<td>3</td>
<td>-3043</td>
<td>† q₂1 < 0</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>257</td>
<td>232</td>
<td>2548</td>
<td>4</td>
<td>-4345</td>
<td>† q₁1 < 0</td>
</tr>
<tr>
<td>484</td>
<td>138</td>
<td>32</td>
<td>42</td>
<td>6345</td>
<td>3</td>
<td>-16348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>345</td>
<td>248</td>
<td>240</td>
<td>15138</td>
<td>3</td>
<td>-71345</td>
<td></td>
</tr>
<tr>
<td>+ 484</td>
<td>138</td>
<td>47</td>
<td>36</td>
<td>17120</td>
<td>6336</td>
<td>-6336</td>
<td>S(2,6,121)</td>
</tr>
<tr>
<td></td>
<td>345</td>
<td>242</td>
<td>255</td>
<td>5363</td>
<td>3</td>
<td>-18120</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>147</td>
<td>50</td>
<td>42</td>
<td>15147</td>
<td>-7336</td>
<td>OA(22, 7)?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>336</td>
<td>230</td>
<td>240</td>
<td>6336</td>
<td>-16147</td>
<td>OA(22, 16)?</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>161</td>
<td>48</td>
<td>56</td>
<td>7322</td>
<td>-15161</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>322</td>
<td>216</td>
<td>210</td>
<td>14165</td>
<td>3</td>
<td>-8332</td>
<td>OA(22, 8)?</td>
</tr>
<tr>
<td>484</td>
<td>168</td>
<td>62</td>
<td>56</td>
<td>14168</td>
<td>3</td>
<td>-8335</td>
<td>OA(22, 15)?</td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>202</td>
<td>210</td>
<td>23158</td>
<td>3</td>
<td>-15168</td>
<td>OA(22, 15)?</td>
</tr>
<tr>
<td>484</td>
<td>184</td>
<td>66</td>
<td>72</td>
<td>8299</td>
<td>-14184</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>186</td>
<td>182</td>
<td>13184</td>
<td>-9299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>189</td>
<td>76</td>
<td>72</td>
<td>13185</td>
<td>-9294</td>
<td>OA(22, 9)?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>294</td>
<td>176</td>
<td>182</td>
<td>2394</td>
<td>-14189</td>
<td>OA(22, 14)?</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>207</td>
<td>86</td>
<td>90</td>
<td>9276</td>
<td>-13207</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276</td>
<td>158</td>
<td>156</td>
<td>12207</td>
<td>-10276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>210</td>
<td>92</td>
<td>90</td>
<td>12210</td>
<td>-10273</td>
<td>OA(22, 10)?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>273</td>
<td>152</td>
<td>156</td>
<td>5276</td>
<td>-13210</td>
<td>OA(22, 13)?</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>230</td>
<td>108</td>
<td>110</td>
<td>16253</td>
<td>-12230</td>
<td>RSHCD+?; †††</td>
<td></td>
</tr>
<tr>
<td></td>
<td>253</td>
<td>132</td>
<td>132</td>
<td>11230</td>
<td>-11253</td>
<td>††</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>231</td>
<td>110</td>
<td>110</td>
<td>11231</td>
<td>-11252</td>
<td>OA(22, 11); RSHCD+?; †††</td>
<td></td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>130</td>
<td>132</td>
<td>16252</td>
<td>-12231</td>
<td>OA(22, 12); †††</td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>242</td>
<td>120</td>
<td>121</td>
<td>1051242</td>
<td>-115242</td>
<td>↓?</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>97</td>
<td>16</td>
<td>20</td>
<td>2391</td>
<td>-11194</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>388</td>
<td>310</td>
<td>308</td>
<td>16334</td>
<td>-8291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>100</td>
<td>22</td>
<td>20</td>
<td>16210</td>
<td>-8275</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>304</td>
<td>308</td>
<td>2275</td>
<td>-11210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 486</td>
<td>165</td>
<td>36</td>
<td>66</td>
<td>3440</td>
<td>-3345</td>
<td>† Makhnev [534]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>220</td>
<td>192</td>
<td>3245</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>104</td>
<td>67</td>
<td>84</td>
<td>5388</td>
<td>-2297</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>291</td>
<td>180</td>
<td>165</td>
<td>2197</td>
<td>-6388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>210</td>
<td>99</td>
<td>84</td>
<td>21100</td>
<td>-6385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>148</td>
<td>165</td>
<td>5355</td>
<td>-22100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 489</td>
<td>244</td>
<td>121</td>
<td>122</td>
<td>1056244</td>
<td>-1156244</td>
<td>† v ≠ a² + b2; pg(7,24,2)?</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>144</td>
<td>28</td>
<td>48</td>
<td>414</td>
<td>-2475</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>345</td>
<td>248</td>
<td>230</td>
<td>2375</td>
<td>-5414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>165</td>
<td>56</td>
<td>55</td>
<td>11225</td>
<td>-10246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>324</td>
<td>213</td>
<td>216</td>
<td>5264</td>
<td>-12225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>192</td>
<td>92</td>
<td>64</td>
<td>3249</td>
<td>-4440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td>168</td>
<td>198</td>
<td>3440</td>
<td>-3349</td>
<td>pg(10,33,6)?</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>246</td>
<td>122</td>
<td>123</td>
<td>1066246</td>
<td>-1160246</td>
<td>↓?</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>85</td>
<td>12</td>
<td>15</td>
<td>2485</td>
<td>-10208</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>408</td>
<td>337</td>
<td>336</td>
<td>5208</td>
<td>-8285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>38</td>
<td>1</td>
<td>3</td>
<td>5285</td>
<td>-7209</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>456</td>
<td>420</td>
<td>420</td>
<td>6200</td>
<td>-6285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 495</td>
<td>78</td>
<td>29</td>
<td>9</td>
<td>2354</td>
<td>-3440</td>
<td>S(2,3,55)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>346</td>
<td>368</td>
<td>2440</td>
<td>-2454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>104</td>
<td>28</td>
<td>20</td>
<td>14143</td>
<td>-6351</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>305</td>
<td>315</td>
<td>5353</td>
<td>-15133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>190</td>
<td>53</td>
<td>85</td>
<td>3450</td>
<td>-5544</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>304</td>
<td>198</td>
<td>168</td>
<td>3444</td>
<td>-4450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>190</td>
<td>85</td>
<td>65</td>
<td>2576</td>
<td>-5418</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>304</td>
<td>178</td>
<td>200</td>
<td>4118</td>
<td>-2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>208</td>
<td>86</td>
<td>88</td>
<td>10200</td>
<td>-12224</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>296</td>
<td>165</td>
<td>165</td>
<td>11234</td>
<td>-11260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 495</td>
<td>208</td>
<td>130</td>
<td>56</td>
<td>7610</td>
<td>-2484</td>
<td>† Absolute bound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>286</td>
<td>133</td>
<td>209</td>
<td>1484</td>
<td>-7710</td>
<td>† Absolute bound</td>
<td></td>
</tr>
<tr>
<td>? 495</td>
<td>234</td>
<td>93</td>
<td>126</td>
<td>3450</td>
<td>-3644</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[continued...]
<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>µ</th>
<th>r</th>
<th>s</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>495</td>
<td>238</td>
<td>109</td>
<td>119</td>
<td>740</td>
<td>7</td>
<td>\bigoplus10.69; $O_{10}^{(2)}$; pg(15,17,7); ↓</td>
</tr>
<tr>
<td>?</td>
<td>496</td>
<td>54</td>
<td>4</td>
<td>6</td>
<td>6779</td>
<td>8</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>!</td>
<td>496</td>
<td>60</td>
<td>30</td>
<td>34</td>
<td>497</td>
<td>9</td>
<td>Wallis [718]; ↑</td>
</tr>
<tr>
<td>?</td>
<td>496</td>
<td>110</td>
<td>18</td>
<td>26</td>
<td>341</td>
<td>11</td>
<td>Absolute bound</td>
</tr>
<tr>
<td>?</td>
<td>496</td>
<td>135</td>
<td>38</td>
<td>36</td>
<td>1116</td>
<td>11</td>
<td>$O_{10}^{(2)}$; Goethals-Seidel [355]; pg(16,17,8); ↑</td>
</tr>
<tr>
<td>−</td>
<td>496</td>
<td>165</td>
<td>80</td>
<td>42</td>
<td>4130</td>
<td>5</td>
<td>Absolute bound</td>
</tr>
<tr>
<td>?</td>
<td>496</td>
<td>198</td>
<td>80</td>
<td>78</td>
<td>12316</td>
<td>9</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>?</td>
<td>496</td>
<td>231</td>
<td>102</td>
<td>112</td>
<td>7341</td>
<td>7</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>496</td>
<td>240</td>
<td>120</td>
<td>112</td>
<td>16154</td>
<td>7</td>
<td>↑</td>
</tr>
<tr>
<td>+</td>
<td>497</td>
<td>186</td>
<td>55</td>
<td>78</td>
<td>1260</td>
<td>7</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>−</td>
<td>497</td>
<td>161</td>
<td>64</td>
<td>46</td>
<td>2314</td>
<td>7</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>−</td>
<td>501</td>
<td>250</td>
<td>124</td>
<td>125</td>
<td>1069250</td>
<td>7</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>?</td>
<td>505</td>
<td>84</td>
<td>3</td>
<td>16</td>
<td>4104</td>
<td>7</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>505</td>
<td>120</td>
<td>39</td>
<td>25</td>
<td>19600</td>
<td>7</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>505</td>
<td>180</td>
<td>53</td>
<td>70</td>
<td>5104</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>505</td>
<td>224</td>
<td>108</td>
<td>92</td>
<td>22100</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>505</td>
<td>252</td>
<td>125</td>
<td>126</td>
<td>1074252</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>506</td>
<td>100</td>
<td>18</td>
<td>20</td>
<td>875</td>
<td>7</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>?</td>
<td>507</td>
<td>44</td>
<td>1</td>
<td>4</td>
<td>5308</td>
<td>7</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>?</td>
<td>507</td>
<td>46</td>
<td>4</td>
<td>4</td>
<td>7250</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>507</td>
<td>138</td>
<td>49</td>
<td>33</td>
<td>2172</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>507</td>
<td>154</td>
<td>41</td>
<td>49</td>
<td>7348</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>507</td>
<td>176</td>
<td>70</td>
<td>56</td>
<td>2510</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>−</td>
<td>507</td>
<td>184</td>
<td>36</td>
<td>84</td>
<td>2483</td>
<td>7</td>
<td>↑</td>
</tr>
<tr>
<td>?</td>
<td>508</td>
<td>184</td>
<td>71</td>
<td>64</td>
<td>1768</td>
<td>7</td>
<td>\bigoplus</td>
</tr>
<tr>
<td>?</td>
<td>508</td>
<td>198</td>
<td>57</td>
<td>90</td>
<td>3462</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>508</td>
<td>200</td>
<td>162</td>
<td>168</td>
<td>3554</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>509</td>
<td>230</td>
<td>121</td>
<td>90</td>
<td>3556</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>509</td>
<td>240</td>
<td>106</td>
<td>120</td>
<td>6380</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>?</td>
<td>509</td>
<td>247</td>
<td>126</td>
<td>114</td>
<td>19272</td>
<td>7</td>
<td>↓</td>
</tr>
<tr>
<td>+</td>
<td>509</td>
<td>254</td>
<td>126</td>
<td>127</td>
<td>1078554</td>
<td>7</td>
<td>\bigoplus Paley(509); ↓</td>
</tr>
</tbody>
</table>

continued...
Table 12.1: Parameters of strongly regular graphs

<table>
<thead>
<tr>
<th>ex</th>
<th>v</th>
<th>k</th>
<th>λ</th>
<th>μ</th>
<th>r^f</th>
<th>s^g</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>511</td>
<td>68</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>13146</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td>381</td>
<td>390</td>
<td>4</td>
<td>364</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>511</td>
<td>78</td>
<td>5</td>
<td>13</td>
<td>13146</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>432</td>
<td>366</td>
<td>360</td>
<td>12</td>
<td>364</td>
<td>13146</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>512</td>
<td>70</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>GQ(7, 9); [10, 3]_8 (wts 8, 10)</td>
</tr>
<tr>
<td></td>
<td>441</td>
<td>380</td>
<td>378</td>
<td>6</td>
<td>315</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>512</td>
<td>73</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>Fiedler-Klin [326]; [73, 9]_2 (wts 32, 40)</td>
</tr>
<tr>
<td></td>
<td>438</td>
<td>374</td>
<td>378</td>
<td>10</td>
<td>219</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>512</td>
<td>126</td>
<td>70</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>276</td>
<td>330</td>
<td>18</td>
<td>196</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>512</td>
<td>133</td>
<td>24</td>
<td>38</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>378</td>
<td>282</td>
<td>270</td>
<td>38</td>
<td>19112</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>512</td>
<td>189</td>
<td>96</td>
<td>54</td>
<td>45</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>322</td>
<td>186</td>
<td>230</td>
<td>54</td>
<td>341</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>512</td>
<td>196</td>
<td>60</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>202</td>
<td>180</td>
<td>84</td>
<td>2870</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>512</td>
<td>219</td>
<td>106</td>
<td>84</td>
<td>273</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>292</td>
<td>156</td>
<td>180</td>
<td>84</td>
<td>438</td>
<td>273</td>
<td></td>
</tr>
</tbody>
</table>

Table 12.1: Parameters of strongly regular graphs
Bibliography

[34] R. D. Baker, Partitioning the planes of $AG_2(m)$ into 2-designs, Discr. Math. 15 (1976) 205–211. (p. 104)

BIBLIOGRAPHY

A. V. Bondarenko & D. V. Radchenko, On a family of strongly regular graphs with $\lambda = 1$, J. Combin. Th. (B) 103 (2013) 521–531. (p. 15, 329, 383)
K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933) 177–190. (p. 324)
R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacif. J. Math. 13 (1963) 389–419. (pp. 1–2, 205, 207–208)
R. C. Bose & K. R. Nair, Partially balanced incomplete block designs, Sankhyā 4 (1939) 337–372. (p. 20)
R. C. Bose & S. S. Shrikhande, Graphs in which each pair of vertices is adjacent to the same number d of other vertices, Studia Sci. Math. Hungar. 5 (1970) 181–195. (p. 188)
N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Masson, Paris, 1981. (p. 111)

[189] I. M. Chakravarti, Some properties and applications of Hermitian varieties in a finite projective space PG(N,q^2) in the construction of strongly regular graphs (two-class association schemes) and block designs, J. Combin. Th. 11 (1971) 268–283. (p. 85)
BIBLIOGRAPHY

[266] F. De Clerck & M. Delanote, Partial geometries and the triality quadric, J. Geom. 68 (2000) 34–47. (pp. 205, 375–376)
[268] F. De Clerck, R. H. Dye & J. A. Thas, An infinite class of partial geometries associated with the hyperbolic quadric in $PG(4n − 1, 2)$, Europ. J. Combin. 1 (1980) 323–326. (p. 205)
[275] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discr. Math. 3 (1972) 47–64. (p. 166)

[284] M. J. de Resmini & G. Migliori, A 78-set of type (2,6) in PG(2,16), Ars. Combin. 22 (1986) 73–75. (pp. 166, 173)

[312] M. van Eupen & V. D. Tonchev, Linear codes and the existence of a reversible Hadamard difference set in \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4^4 \), J. Combin. Th. (A) 79 (1997) 161–167. (p. 172)
[318] T. Feng, K. Momihara & Q. Xiang, Cameron-Liebler line classes with parameter \(x = \frac{q^2}{2} \), J. Combin. Th. (A) 133 (2015) 307–338. (p. 72)
[320] Tao Feng & Ran Tao, An infinite family of m-ovoids of \(Q(4,q) \), Finite Fields Appl. 63 (2020) 101644. (p. 67)
[322] Tao Feng & Qing Xiang, Strongly regular graphs from unions of cyclotomic classes, J. Combin. Th. (B) 102 (2012) 982–995. (p. 177)
[326] F. Fiedler & M. Klin, A strongly regular graph with the parameters \((v,k,l,\lambda,\mu) = (512,75,438,12,10) \) and its dual graph, Preprint MATH-AL-1998, Technische Universität Dresden, July 1998, 23 pp. (pp. 173, 396)
BIBLIOGRAPHY

[386] W. H. Haemers & Qing Xiang, Strongly regular graphs with parameters $(4m^4,2m^4+m^2,m^4+m^2,m^4+m^2)$ exist for all $m > 1$, Europ. J. Combin. 31 (2010) 1553–1559. (p. 189)
[391] J. I. Hall, Graphs with constant link and small degree and order, J. Graph Theory 8 (1984) 419–444. (p. 4)

[404] N. Hamada, Characterization resp. nonexistence of certain q-ary linear codes attaining the Griesmer bound, Bull. Osaka Women’s Univ. 22 (1985) 1–47. (p. 172)

[408] N. Hamada & T. Helleseth, A characterization of some \(\{3e_2 + v_1, 3e_1 + v_2, 3\} \)-minihypers in a finite projective geometry and its applications to error correcting codes, Hiroshima Math. J. 8 (1978) 135–182. (p. 228)

[420] D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964) 145–156. (p. 4)

BIBLIOGRAPHY

[441] H. D. L. Hollmann & Qing Xiang, Pseudocyclic association schemes arising from the actions of $PGL(2,2^m)$ and $PFL(2,2^m)$, J. Combin. Th. (A) 113 (2006) 1008–1018. (p. 221)

[450] Q. M. Hussain, On the totality of the solutions for the symmetrical incomplete block designs: \(\lambda = 2, k = 5 \) or 6, Sankhyā 7 (1945) 204–208. (pp. 198, 249)
[464] W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33 (1975) 43–58. (p. 198)
BIBLIOGRAPHY

[503] M. Krivelevich & B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory 42 (2003) 17–33. (p. 229)

BIBLIOGRAPHY

BIBLIOGRAPHY

[620] V. Pless, *Symmetry codes over GF(3) and new five-designs*, J. Combin. Th. (A) 12 (1972) 119–142. (p. 338)

[632] M. Z. Rozenfel’d, *О построении и свойствах некоторых классов сильно регулярных графов* (*The construction and properties of certain classes of strongly regular graphs*) (Russian), Uspehi Mat. Nauk **28** (1973), no. 3 (171), 197–198. (pp. 15, 252)

[636] L. Schläfli, *An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface*, Quarterly J. Pure Applied Math. **2** (1858) 110–120. (pp. 39, 71, 290)

BIBLIOGRAPHY

[697] J. Tits, personal communication. (p. 159)
[703] V. D. Tonchev, Quasi-symmetric 2-(31,7,7) designs and a revision of Hamada's Conjecture, J. Combin. Th. (A) 42 (1986) 104–110. (pp. 198–200, 380)
[706] N. Tsanakis & J. Wolfskil, The diophantine equation \(x^2 = 4q^{n/2} + 4q + 1 \), with an application to coding theory, J. Number Th. 26 (1987) 96–116. (p. 171)
[708] F. Vanhove, The maximum size of a partial spread in \(H(4n+1, q^2) \) is \(q^{2n+1} + 1 \), Electr. J. Combin. 16 (2009) #N13. (p. 78)
Parameter Index

Index of the numerical parameter sets \((v, k, \lambda, \mu)\) for strongly regular graphs mentioned in the text. A dagger (†) denotes that no such graph exists, a question mark (?) that none is known. See also

- Table 1.1 Number of nonisomorphic strongly regular graphs p. 14
- Table 1.2 Sporadic parameter sets for which no srg exists p. 15
- Table 7.2 Small two-weight codes and graphs p. 172
- Table 7.3 Sporadic two-weight codes and graphs p. 173
- Table 7.4 Independence and chromatic numbers of Paley graphs p. 182
- Table 7.5 Strongly regular power residue graphs p. 184
- Table 8.2 Parameter sets of sporadic quasi-symmetric designs p. 199
- Table 9.1 \(p\)-ranks of some strongly regular graphs p. 237
- Table 11.7 Parameters of rank 3 graphs p. 362
- Table 11.8 Small rank 3 graphs p. 365
- Table 11.9 Small rank 4–10 strongly regular graphs p. 369
- Table 12.1 Parameters of strongly regular graphs p. 371

\[
\begin{align*}
(5, 2, 0, 1), & \quad 245 \\
(9, 4, 1, 2), & \quad 246 \\
(10, 3, 0, 1), & \quad 5, 246 \\
(13, 6, 2, 3), & \quad 247 \\
(15, 6, 1, 3), & \quad 357 \\
(16, 5, 0, 2), & \quad 251 \\
(16, 6, 2, 2), & \quad 5, 248 \\
(16, 10, 6, 6), & \quad 5, 250 \\
(17, 8, 3, 4), & \quad 252 \\
(21, 10, 4, 5), & \quad 190 \\
(25, 12, 5, 6), & \quad 252 \\
(26, 10, 3, 4), & \quad 252 \\
(27, 10, 1, 5), & \quad 255 \\
(27, 16, 10, 8), & \quad 5, 254 \\
(28, 9, 0, 4), & \quad 14 \\
(28, 12, 6, 4), & \quad 4, 5, 257 \\
(33, 16, 7, 8), & \quad 190 \\
(35, 16, 6, 8), & \quad 27, 259, 278, 357 \\
(35, 18, 9, 9), & \quad 259 \\
(36, 14, 4, 6), & \quad 260, 263, 357 \\
(36, 15, 6, 6), & \quad 263, 277, 293 \\
(40, 12, 2, 4), & \quad 264 \\
(45, 12, 3, 3), & \quad 266, 300 \\
(45, 22, 10, 11), & \quad 190 \\
(49, 24, 11, 12), & \quad 267 \\
(50, 7, 0, 1), & \quad 267, 357 \\
(56, 10, 0, 2), & \quad 14, 272 \\
(63, 30, 13, 15), & \quad 263, 273–275 \\
(63, 32, 16, 16), & \quad 275 \\
(64, 18, 2, 6), & \quad 276 \\
(64, 27, 10, 12), & \quad 277 \\
(64, 28, 12, 14), & \quad 277, 299 \\
(64, 30, 18, 10), & \quad 6 \\
(64, 35, 18, 20), & \quad 278 \\
(65, 32, 15, 16), & \quad 190 \\
(76, 30, 8, 14), & \quad 226 \\
(77, 16, 0, 4), & \quad 12, 14, 279, 312 \\
(81, 20, 1, 6), & \quad 280 \\
(81, 30, 9, 12), & \quad 282, 301 \\
(81, 40, 19, 20), & \quad 283 \\
(96, 20, 4, 4), & \quad 277 \\
(99, 14, 1, 2), & \quad 16, 311 \\
(100, 22, 0, 6), & \quad 283 \\
(100, 36, 14, 12), & \quad 285 \\
(100, 44, 18, 20), & \quad 288 \\
(100, 45, 20, 20), & \quad 288 \\
(105, 32, 4, 12), & \quad 289 \\
(112, 30, 2, 10), & \quad 14, 290 \\
(117, 36, 15, 9), & \quad 293, 321 \\
(119, 54, 21, 27), & \quad 294 \\
(120, 42, 8, 18), & \quad 294 \\
(120, 51, 18, 24), & \quad 295 \\
(120, 56, 28, 24), & \quad 27, 296, 299, 357 \\
(120, 63, 30, 36), & \quad 299 \\
(125, 28, 3, 7), & \quad 220 \\
(125, 52, 15, 26), & \quad 218, 316
\end{align*}
\]
Author Index

Abiad, Aida, 240
Adm, Mohammad, 203
Arlazarov, Vladimir L'vovich, 258
Arslan, Ogül, 63
Aschbacher, Michael, 126
Assmus, Edward F., jr., 235
Azarija, Jernej, 15, 218
Babai, László, 228, 229
Bader, Laura, 306
Bagchi, Bhaskar, 202, 230, 240
Baker, Ronald D., 104
Ball, Simeon, 65, 66, 170
Bamberg, John, 70, 212
Bannai, Eiichi, 16, 224, 225, 355, 356
Bannai, Etsuko, 224
Behbahani, Majid, 16
Belevitch, Vitold, 190
Benson, Clark T., 270
Bergen, Ryan, 203
Berlekamp, Elwyn R., 311
Beukers, Frits, 171
Beutelspacher, Albrecht, 104
Biggs, Norman L., 17
Blokhuis, Aart, 63, 76, 140, 141, 170, 182, 202, 213, 214, 219, 235, 301
van Bon, John T. M., 18, 271
Bondarenko, Andriy Viktorovych, 15, 16, 226, 324, 329
Borsuk, Karol, 324
Bose, Raj Chandra, 1, 2, 20, 21, 29, 188, 192, 205, 207, 208, 232
Bourbaki, Nicolas, 111
Bouyukliev, Ilia Georgiev, 171, 172
Bremner, Andrew, 171
Brouwer, Andries E., 13, 15, 17, 76, 105, 118, 139–141, 166, 169, 188, 227, 229, 230, 240, 279, 280, 301, 305, 310, 337, 355
Bruck, Richard Hubert, 139, 191, 206, 208
Buczak, Janusz Mieczysław Jerry, 227
Buekenhout, Francis, 31, 44, 110, 133, 141, 256
Bussemaker, Frans C., 15, 218, 258
Calderbank, A. Robert, 166, 171, 195, 196, 202, 329
Cameron, Peter J., 7, 15, 25, 72, 78, 141, 198, 211, 227, 231, 290, 306, 310
Cardinali, Ilaria, 72
Carlitz, Leonard, 181
Carmichael, Robert Daniel, 153
Cayley, Arthur, 255
Chakravarti, Indra Mohan, 85
Chandler, David B., 243
Chang, Li-Ch’ien, 4, 16, 257
Charnes, Christopher, 341
Chen, Eric Z., 173
Chowla, Sarvadaman, 191
Chung, Fan R. K., 183, 228
Cimráková, Miroslava, 56
Cioabă, Sebastian M., 13, 231
Clebsch, Rudolf Friedrich Alfred, 252
Cohen, Arjeh M., 17, 108, 118, 126, 130, 205, 323, 355
Cohen, Nathann, 189
Collins, Benjamin V. C., 215
Connor, William S., 16, 198
Conway, John Horton, 16, 63, 68, 151, 163, 345
Conwell, George MacFeely, 157
Coolen, Kris, 15, 266, 289, 294, 301, 309, 346
Cooperstein, Bruce N., 127
Cossidente, Antonio, 71, 212, 315
Coster, Matthijs J., 197
Cowen, Lenore J. J., 195
Coxeter, Harold Scott MacDonald, 111, 255
Crnković, Dean, 16, 266, 282, 326
Curtis, Robert T., 150
Cuypers, Hans, 135, 337, 340
Cvetković, Dragoslav M., 7, 12

van Dam, Edwin R., 17, 18, 177, 281
Damerell, Robert Mark, 225
Davenport, Harold, 175
De Beule, Jan, 56, 57, 64, 67, 70, 76, 77
De Bruyn, Bart, 70, 72, 344
de Caen, Dominique, 14
De Clerck, Frank, 205, 206, 211, 212
Debroey, Ingrid, 211, 212
Degraer, Jan, 15, 266, 294, 301, 309

427
AUTHOR INDEX

Delsarte, Philippe, 11, 22, 23, 29, 151, 166, 208, 223–225, 235
Dempwolff, Ulrich, 341
Denniston, Ralph Hugh Francis, 104, 170, 197, 205
Dickson, Leonard Eugene, 157
Dixmier, Suzanne, 290
Dowling, Thomas A., 232
Dunkl, Charles F., 24
Duval, Art M., 232, 234
Dye, Roger H., 56, 57, 205

Ebert, Gary Lee, 64
Edge, William Leonard, 157
Egawa, Yoshimi, 102
van Eijl, Cleola Angelina, 240
Enright, Gerard M., 345
Etzion, Tuvi, 192
van Eupen, Marijke, 166
Exoo, Geoffrey Allen, 182

Fack, Veerle, 56, 171
Faradžev, Igor A., 304, 317, 326
Fellegara, Grazia, 56
Feng, Tao, 177
Fiala, Nick C., 231
Fickus, Matthew C., 224
Fischer, Bernd, 131, 133–135
Fisher, J. Chris, 306
Fon-Der-Flaass, Dmitrii Germanovich, 16
Foster, Ronald M., 271
Foulser, David A., 177, 178, 327, 359–361
Frankl, Peter, 202
Fujisaki, Tatsuya, 221

Games, Richard Alan, 329
Gavrilyuk, Alexander L., 15, 72
Ge, Gennian, 177
Gebrimichel, Brhane, 16
Gerzon, Michael, 223
Gewirtz, Allan, 15, 272, 284
Gleason, Andrew M., 251
Godsil, Christopher D., 220, 222, 228, 240, 317, 318
Golay, Marcel J. E., 148
Gol'Band, Yakov Yur'eovich, 227
Govier, Elaine, 125
Govaerts, Patrick, 65, 66
Graham, Ronald Lewis, 183, 228
Greaves, Gary R. W., 12
Greenwood, Robert E. Jr., 251
Grigor'ev, Dmitrii Yur'eovich, 228
Gritsenko, Oleg, 190
Gunawardena, Athula D. A., 66
Guo, Ivan, 207
Guo, Krystal, 228, 231

Haemers, Willem H., 11, 12, 15, 189, 197, 203, 205, 206, 218, 230, 231, 240, 249, 257, 276, 280
Hall, Jonathan L., 4, 135, 139, 140, 142, 157, 247, 293
Hall, Marshall, Jr., 138, 198, 273, 285
Hamada, Noboru, 172, 235
Hamilton, Nicholas A., 169
Hasse, Helmut, 175
Helgott, Harald Andrès, 228
Hering, Christoff H., 359
Hestenes, Marshall D., 226
Higman, Donald Gordon, 4, 29, 141, 226, 227, 284
Higman, Graham, 9, 308
Hill, Raymond, 176, 329
Hirschfeld, James William Peter, 64
Holbert, Sylvia A., 29, 196
Hoffman, Alan J., 11, 15, 16, 28, 208, 230, 268
Hoggar, Stuart G., 223
Hollmann, Henk D. L., 221
Horiguchi, Naoyuki, 338
Hu, Yulin, 222
Huang, Lingling, 194
Huang, Taoyuan, 194
Hubaut, Xavier L., 141, 256
Hughes, Daniel R., 197
Humphreys, James E., 111
Hunt, David C., 349
Hurkens, Cornelius Antonius Josephus, 283
Husain, Qazi Motahar, 249

Ihringer, Ferdinand, 70, 203, 222, 227, 274, 277, 278, 282
Ikuta, Takuya, 177
Ivanov, Aleksandr Anatol'evich, 102, 280, 317

Jaeger, François, 285
Jaques, Sam, 203
Jenrich, Thomas, 323, 324, 337
Jones, Gareth A., 183
Jones, Vaughan Frederick Randal, 285
Jordan, Camille, 157
Jørgensen, Leif Kjær, 189, 288
Jurisic, Aleksandar, 301

Kahn, Jeff, 324
Kalai, Gil, 324
Källhaker, Michael J., 177, 178, 359, 361
Kantor, William M., 63, 69, 166, 198, 227, 329, 355, 357
Kaski, Petteri, 16, 227
Kauffman, Louis Hirsch, 285
Keevash, Peter, 152
Key, Jennifer D., 235
Khatiromejad, Mahdad, 227
Kim, Kijung, 13
Kitazume, Masaaki, 338
Kleidman, Peter B., 63, 68
AUTHOR INDEX

Klein, Andreas, 64
Klin, Mikhail H., 27, 189, 234, 263, 288, 304, 310, 317, 326
Kloks, Antonius J. J., 213, 214
Koolen, Jacobus Hendricus, 12, 13, 16–18, 207, 301
Kovács, István, 181
Krčadinac, Vedran, 282
Kreın, Mark Grigor'evich, 24
Krivelevich, Michael, 228, 229
Krotov, Denis, 337
Kuijken, Elisabeth, 206, 217
Lam, Clement Wing Hong, 16, 206
Lander, Eric S., 155
Lane, Richard, 273
de Lange, Kees, 166, 176, 177
Langervin, Philippe, 185
Laskar, René C., 208
Leander, Gregor, 185
Lefèvre, Christiane, 44
Leonard, Douglas Alan, 305
Levenshtein, Vladimir Isoslovich, 148
Levingston, Richard, 219
Liebeck, Martin W., 327, 355, 358, 359
Liebler, Robert A., 72, 355, 357
Lin, Miaow-Ing, 194
van Lint, Jacobus Hendricus, 150, 176, 188, 190, 205, 227, 311
Losey, Nora E., 270
Lovász, László, 257
Lüneburg, Heinz, 275
Luyckx, Deirdre, 78

MacWilliams, F. Jessie, 235
Makhnev, Aleksandr Alekseevich, 15, 16, 250
Maksimović, Marija, 16
Mann, Henry B., 235
Marc, Tilen, 15, 218
Markowsky, Greg, 207
Mason, Geoffrey, 341
Mathon, Rudolf A., 15, 27, 177, 190, 206, 217, 221, 231, 267, 317, 341
Mazzocca, Francesco, 170
McFarland, Robert L., 191
McKay, Brendan D., 15, 218, 222, 228, 260, 263
McKay, John K., 206
McLaughlin, Jack E., 314
Meagher, Karen, 203, 317
Mellit, Anton S., 16
Meringer, Markus, 271
Mesner, Dale Marsh, 13, 16, 21, 279, 280, 284
Meszka, Mariusz, 104, 263
Metsch, Klaus, 70, 71, 77, 207
Metz, Rudolf, 213
Mogilnykh, Ivan, 337
Momihara, Koju, 177
Moore, Eliakim Hastings, 157
Moorhouse, G. Eric, 63, 66, 68, 75–77, 235
Moufang, Ruth, 139
Mount, David M., 228
Munemasa, Akihiro, 16, 177, 222, 225
Muzychuk, Mikhail E., 27, 177, 181, 189, 304, 326, 361
Myklebust, Tor G. J., 228
Nair, Keshavan Raghavan, 20
Nakasora, Hiroyuki, 338
Nakić, Anamari, 57, 77
Nebe, Gabriele, 225
Neumaier, Arnold, 17, 28, 118, 196, 199, 207, 208, 219, 230
Neumann, Peter M., 29
Newman, Michael W., 318
Norton, Simon Phillips, 353
O'Keefe, Christine M., 56, 66
O'Nan, Michael E., 85
Östergård, Patric R. J., 16, 206, 227, 316
Ostrom, Theodore G., 341
Paduchikh, Dmitrii Viktorovich, 250
Pantangi, Venkata Raghu Tej, 244
Parker, Ernest Tilden, 193
Paulus, Albert J. L., 15, 252
Peeters, René, 140, 240, 254, 260, 266, 277
Peisert, Wojciech, 177
Penttila, Tim, 56, 71, 170, 212, 315
Petersen, Julius, 246
Piper, Fred C., 85, 197
Prymak, Andriy V., 15, 16
Purdy, Alison, 203
Pyber, László, 228, 229
Qiu, Lihong, 222
Qiu, Weisheng, 240
Radchenko, Danylo V., 15, 16, 329
Reichard, Sven, 227, 263
Robertson, Neil, 271
Ronan, Mark A., 126
Rosa, Cornelis, 23
Rosa, Alexander, 263, 317
Rosenberg, Ivo G., 177
Rowlinson, Peter, 7
Royle, Gordon F., 56, 170, 240, 341
Rozenveld, Marianna Zinovievna, 15, 252
Rudvalis, Arunas, 345, 349
Rukavina, Sanja, 326
Ryser, Herbert John, 191
Salmon, George, 255
Saouter, Yannick, 334
AUTHOR INDEX

Saxl, Jan, 355, 358
Schläfli, Ludwig, 255
Schmidt, Bernhard, 174
Schrijver, Alexander, 176, 205
Scott, Leonard L., 24
Segre, Beniamino, 7, 15, 290
Shearer, James Bergheim, 182
Shimamoto, Tetsuo, 1, 20, 29
Shin, Seunghyun, 16
Shpectorov, Sergey V., 102, 280
Shrikhande, Mohan S., 203
Shrikhande, Sharadchandra Shankar, 5, 16, 188, 192
Shult, Ernest E., 7, 31, 38, 63, 105, 139, 140, 203, 341
Simić, Slobodan K., 7
Sims, Charles Coffin, 207, 227, 284
Sin, Peter, 63, 241, 243, 244
Singleton, Robert R., 15, 268
Sinkovic, John, 252
Sloane, Neil J. A., 163, 225
Smith, Kempton John Cameron, 235
Smith, Margaret S., 308
Spence, Edward, 15, 217, 218, 258, 260, 263, 266, 276
Spielman, Daniel A., 229
Stickelberger, Ludwig, 175
Storme, Leo, 57, 65, 66, 77
Sudakov, Benjamin, 228, 229
Švob, Andrea, 282, 326
Swiercz, Stan, 206
Tallini, Giuseppe, 56
Tanaka, Hajime, 17
Tarry, Gaston, 192
Taylor, Donald E., 9, 204, 216, 218–220
Terwilliger, Paul M., 214
Thas, Joseph Adolphe, 38, 45, 56, 63, 65, 66, 205, 206, 211, 212, 306
Thas, Koen, 65
Thiel, Larry Henry, 206
Thomason, Andrew, 228
Tietäväinen, Aimo A., 150
Tits, Jacques, 32, 56, 64, 65, 107, 108, 115, 118, 122, 126, 323
Tonchev, Vladimir D., 198, 230, 282
Tzanakis, Nikos, 171
Uchida, Daiyu, 27
Van Maldeghem, Hendrik J., 65, 108, 125, 212
Vanhove, Frédéric, 78, 79
Vardy, Alexander, 104
Veldkamp, Ferdinand D., 32, 122
Venkov, Boris B., 16, 225
Vlazovska, Maryna S., 16
Vrtkalj, Julija, 148
Wagner, Ascher, 157
Wales, David B., 273, 285, 345
Walker, Michael, 306
Wallis, Jennifer Seberry, 188
Wallis, Walter D., 16
Wang, Wei, 222
Wang, Zeying, 240
Weetman, Graham M., 232
Wegner, Gerd, 271
Weng, Guobiao, 240
Werner, Daniel, 77
White, Clinton, 174
Wilbrink, Hendrikus A., 15, 16, 76, 82, 84, 85, 213, 214, 219, 240
Willems, Wolfgang, 171
Wilmes, John, 229
Wilson, Richard M., 152, 183, 228, 242, 243
Wilson, Robert A., 63, 68, 351, 355
Winne, Joost, 171
Witt, Ernst, 153
Wolfmann, Jacques, 174
Wolfskil, John, 171
Wong, Tony W. H., 243
Wu, Fan, 177
Xiang, Qing, 177, 189, 240, 243
Yang, Boting, 203
Yang, Yuansheng, 271
Yuan, Tao, 177
Zanetema, Hans, 355
Zara, François, 213, 290
Zauner, Gerhard, 223
Zhang, Chengxue, 271
Subject Index

(0, α)-geometries, 211
2-character set, see two-character set
2-graph, see two-graph
2-weight code, see two-weight code
4-vertex condition, 92, 227, 263, 288, 319, 329
5-vertex condition, 227, 305
600-cell, 245

absolute bound, 6, 7, 27, 28, 210, 211, 217, 226
adjacency matrix, 1
affine plane, 152
algebra, 122
alternating form, 50, 53
alternating forms graph, 101
alternative multiplication, 123
amorphic association scheme, 177
amly regular graph, 215
anisotropic Hermitian form, 72
anisotropic quadratic form, 59
antiflag, 31
antipodal d.r.g., 19
apartment, 116
association scheme, 20, 220
at infinity, 166
automorphism of a polar space, 35

Baer subplane, 158
bent function, 185
Berlekamp-van Lint-Seidel graph, 212, 311
BIBD, 152
bilinear, 50
bilinear forms graph, 100, 213
binary code, 147
binary Golay code, 148
bipartite graph, 19
bipartite graph, 19
block graph, 275
BLT set, 306, 327
Borsuk conjecture, 324
Bose-Mesner algebra, 21
Brouwer-Haemers graph, 280, 307
Brouwer-Pasechnik graph, 91
Buekenhout-Shult axiom, 31
Buekenhout-Tits geometry, 107
building of type (W, S), 116
cage, 270, 271
Calderbank-Cowen inequality, 195
Cameron graph, 207, 310, 329
Cameron-Liebler line class, 72
cap, 63, 170, 176, 211, 273
Cayley graph, 165, 249
Cayley-Dickson multiplication, 123
centralizer algebra, 29
chamber, 107
Chang graphs, 4, 5, 243, 257
chromatic number, 182, 230, 256, 258, 262, 270, 279, 284, 286, 289
class of 3-transpositions, 131
classical ovoid, 55
claw, 6, 208
claw bound, 206, 207
claw-and-clique method, 13, 208
Clebsch graph, 5, 25, 78, 97, 204, 231, 250, 251, 254, 271, 323
clique covering number, 258
clique extension, 36, 214
clique of a two-graph, 218
clique-convex closure, 90
clique-convex subgraph, 90
cocktail party graph, 2
coclique extension, 36
cocconnected, 214
cocconnected graph, 139
code, 147
code, 147
coc-Heawood graph, 273
Cohen-Tits near octagon, 286, 323, 347
cohomogeneous configuration, 28, 29
cohomogeneous triple, 8, 215
collinear points, 33
collinearity graph, 31, 33
collineation of a polar space, 35
complementary association scheme, 29
companion field automorphism of a
Hermitian form, 72
complementary graph, 2
complementary vector, 147
completely regular two-graph, 219
complex Leech lattice, 164
composition algebra, 122
conference graphs, 190

431
conference matrix, 189, 221, 283
connected geometry, 31, 107
copolar graph, 142
copolar space, 142
core, 189
cospectral, 222
Cossidente-Penttila graphs, 212
cotriangular graph, 139
cotriangular space, 139
cotype, 110
Coxeter diagram, 110
Coxeter geometry, 113
Coxeter graph, 270, 273
Coxeter group, 110
Coxeter matrix, 110
Coxeter system, 110
critical group, 241
crystallographic root system, 112
Cvetković bound, 12
cyclic code, 174
decads, 287
deeper point, 129
deficiency, 207
degree, 9, 225
degree (of a graph), 1
de Lange graphs, 176
deletion condition, 112
Delsarte dual, 166, 311
delta space, 141
derived design, 153, 198
descendant, 9, 245
derminant (of a lattice), 163
diagram, 109, 132
difference set, 165
directed strongly regular graph, 232
discriminant (of a lattice), 163
distance-2-ovoid, 71
distance-regular graph, 16
distance-transitive graph, 17
dodecadel, 151, 156, 333
double sixes, 256
doubly even code, 202
dual generalized polygon, 108
dual generalized quadrangle, 40
dual lattice, 162
dual $O_3(3)$ graph, 264
Dyck graph, 250, 251
Dynkin diagram, 112
decromatic number, 231, 246, 270
degree-regular graph, 215
elementary divisors, 241
equilateral orthogonal polar spaces, 60
embedded polar space, 33
embedded unital, 45, 85, 158
energy (of a graph), 188
equiquadratic, 223
equiquadratic tight frame, 223
equitable, 10, 222
equitable partition, 9
equivalent codes, 147
ETF, 223
Euclidean representation, 25, 324
even lattice, 162
exceptional type, 118
extended binary Golay code, 148
extended code, 150
extended ternary Golay code, 148, 268
Fano plane, 108, 158
feasible parameters, 15
Fischer graph, 131, 299
Fischer group, 131
Fischer space, 131
flag, 31, 107
flat feet, 45
folded graph, 19
folded Johnson graph, 19
formally self-dual (srg), 166
Foster cage, 271
Foster graph, 286
Frame quotient, 3
friendship problem, 232
fundamental basis of a root system, 112
fusion scheme, 26
Games graph, 212, 329
gamma space, 141, 310
Gauss sums, 175, 177
Gel'fand pair, 29
general orthogonal group, 62
general symplectic group, 54
general unitary group, 74
generalized d-gon, 107
generalized hexagon, 27, 65, 108, 124, 335
generalized octagon, 334
generalized polygon, 107
generalized quadrangle, 40, 204
generously transitive, 29
geometric hyperplane, 31
geometry, 107
Gewirtz graph, 231, 272, 290, 295, 315, 324, 358
GM-switching, 222, 274, 277, 278
Godsil-McKay switching, see GM-switching
Goethals graph, 218, 301
Golay codes, 148
Gosset graph, 255, 256, 297
Gram matrix, 162
grand clique, 208
graph, 1
Grassmann graph, 18, 212, 222
grid, 5
grid graph, 140
Griesmer bound, 172
Hadamard 3-design, 156
Hadamard difference sets, 191
Hadamard matrix, 187
Hadamard transform, 185
Haemers coclique, 203
Hall triple system, 138
SUBJECT INDEX

Hall-Janko graph, 194, 261, 274, 285, 322, 334, 348
halved graph, 19, 41, 311
halved Leonard graphs, 305
Hamming code, 149
Hamming distance, 4, 147
Hamming graph, 4, 18, 115
harmonic function, 224
Heawood graph, 269
hemisystem, 39, 78, 212
hemisystem of points, 39, 78, 212, 265, 273, 290, 315
Hermitian form, 50, 72
Hermitian forms graph, 102
Hermitian matrix, 102
Hermitian polar space, 72
Hermitian spread, 65, 71, 129
Hermitian unital, 158
Hermitian variety, 73
hexacode, 149, 276
Higman-Sims graph, 25, 78, 204, 268, 269, 272, 273, 279, 283
Hill cap, 273, 329
Hill graph, 176, 212
Hoffman bound, 11
Hoffman coloring, 230
Hoffman-Singleton graph, 78, 157, 206, 215, 231, 267–269, 271, 301, 315, 316, 346
homogeneous coherent configuration, 29
h-ovoid, 38, 57, 67, 71
h-spread, 39
hyperbolic line, 51
hyperbolic orthogonal polar spaces, 60
hyperbolic spread, 144
hyperoval, 158, 170
hyperplane, 162
icosahedral, 184
icosahedron, 149, 245
imaginary triangles, 304
imprimitive d.r.g., 19
imprimitive s.r.g., 2
incidence, 107
incidence graph, 31, 107
independence number, 257
inertia bound, 12
inner distribution, 22
inner product, 122
integral lattice, 162
interlacing, 10
intersection array, 16
intersection matrices, 20
intersection numbers, 20
intriguing set, 9, 39
invariant factors, 241
isometry, 52
isomorphic Coxeter systems, 110
isomorphic embedded polar spaces, 35
isotropic point, 51
i-tight set, 39, 40, 57, 58, 70–72
Iwasawa’s Lemma, 134
Johnson graph, 4, 18, 115, 259, 300
join, 214
jumbled graph, 228
Kauffman polynomial, 285
Kerdock codes, 231
Klein correspondence, 121
Klein quadric, 61, 104, 121
Kneser graph, 242
knot theory, 285
Koolen-Riebeek graph, 311
Krein condition, 24, 28, 41, 45, 205, 207, 210, 217, 220
Krein parameters, 23
ladder graph, 2
Laplacian, 241
large unitary polar spaces, 74
Latin square, 192, 253
Latin square graph, 25, 193, 267
Latin square parameters, 193
lattice, 162
lattice graph, 5, 356
lax embedding, 142
Leech lattice, 163, 225
Leonard graph, 305
line graph, 4, 5, 210, 269, 301
line packing, 104
linear code, 147
linear group, 48
linear programming bound, 22
linked designs, 231
local graph, 4
locally Λ, 4, 232
locally bipartite, 262
locally cotriangular, 140
locally Γ, 232
locally GQ(2, 2), 263
locally GQ(3, 3), 264
locally grid, 140
locally Hoffman-Singleton, 271
locally icosahedron, 245
locally Paley, 183
locally Petersen, 140, 319
locally Schlafli, 256
locally Shrikhande, 250
locally strongly regular, 232
locally X, 4
loop, 139
Mathon-Rosa graph, 317
maximal arc, 170
maximal n-arc, 205
maximal standard parabolic subgroup, 113
m-clique extension, 36
m-coclique extension, 36
MDS-code, 194
Menon designs, 187
Meringer cage, 270, 271
minihyper, 172
minimum distance of a code, 147
Miracle Octad Generator, 150
miraculous SNF property, 242
MOG, 150
MOLS, 192
Moore graph, 142, 212, 268
Moufang quasigroup, 139
m-ovoid, see h-ovoid
m-system, 38
MUB, 193
µ-bound, 28, 207
µ-graph, 141
multiplier, 191
mutually orthogonal Latin squares, 192
mutually unbiased bases, 193
near hexagon, 157
near polygon, 157
negative Latin square parameters, 25, 193
net, 101, 193, 205, 267
Neumaier geometry, 118, 157
nexus, 9
nondegenerate, 49
nondegenerate Hermitian form, 72
nondegenerate polar space, 33
nondegenerate quadratic form, 59
nondegenerate quadratic space, 59
nondegenerate symplectic form, 53
non-embeddable polar spaces, 32
non-thick polar space, 36
normalized conference matrix, 189
O5(3) graph, 264
OA, 193
objects, 107
octad, 151, 156
octonion algebra, 122
Odd graph, 269, 270, 279, 291, 316
odd lattice, 162
O’Nan configuration, 85
opposite multiplication, 123
opposite points, 33
opposite singular subspaces, 42
orbit, 3
order (of a copolar space), 142
order (of a generalized polygon), 108
order (of a generalized quadrangle), 40
order (of a polar space), 36
ordinary polygon, 114
oriflamme geometry, 117
orthogonal, 49
orthogonal array, 193
orthogonal group, 48
orthogonal Latin squares, 192
orthogonal polar space, 59
ovoid, 38, 54, 63, 75, 121, 303
ovoid of a generalized hexagon, 65
packing, 260
parabolic orthogonal polar spaces, 60
parabolic subgroup of a Coxeter group, 113
parallel class, 152
parallelism, 104
parameters (of a code), 147
parameters (of a d.r.g.), 16
parameters (of an s.r.g.), 2
parity check, 150
partial difference set, 165
partial geometry, 204
partial linear space, 31
partial m-system, 38
partial ovoid, 63
partial quadrangle, 211
Pasechnik graphs, 222
Paulus-Rozenfel’d graphs, 252
PBIBD, 20
Peisert graph, 177, 181, 240, 244, 267, 283, 325, 340
pentagon, 25, 28, 215, 245
perfect code, 150
permutation group, 3
permutation rank, 3
Petersen graph, 4, 5, 136, 140, 206, 215, 231, 234, 242, 246, 247, 251, 268, 270, 271, 284, 287, 310
plane (of a Fischer space), 131
plane ovoid, 76
Plücker coordinates, 125
point graph, 31
polar rank, 33
polar space, 31
polarity, 56
polygon, 19
p-rank, 235
primitive association scheme, 22
primitive permutation group, 3
projective code, 166
projective plane, 152
projective space, 32
pseudo Latin square graph, 193
pseudocyclic association scheme, 220
pseudo-geometric graph, 205, 217
pseudo-GQ graph, 207
pseudo-random, 228
punctured code, 150
quad, 157
quadrangle, 6
quadratic forms graph, 102
quadratic residue code, 149
quadratic space, 59
quadric, 59
σ-quadric, 73
quasideterminant, 49
quasigroup, 139
quasi-symmetric design, 195
quotient matrix, 9, 10
quotient space, 134
radical, 214
radical (of a Hermitian form), 72
radical (of a polar space), 33
radical (of a symmetric bilinear form), 59
radical (of a symplectic form), 53
Ramsey number, 183, 251, 252, 277
rank (of a Coxeter system), 110
rank (of a geometry), 107
rank (of a permutation group), 3, 29
rank (of a polar space), 33
reduced copolar space, 142
reduced cotriangular graph, 139
reduced graph, 214
reduced Zara graph, 214
Ree unital, 275
Reed-Muller code, 185
Ree-Tits ovoids, 65
reflexive form, 49
regular graph, 1
regular Hadamard matrix, 187
regular partition, 9
regular set, 9, 39, 196
regular spread, 129
regular two-graph, 9, 216, 223, 245, 288
Reidemeister moves, 285
replication number, 195
residual design, 153, 198
residually connected geometry, 107
residue, 42, 107
resolution, 197
resolvable design, 152
restricted eigenvalue, 1
Robertson (5,5)-cage, 271
Robertson-Wegner graph, 271
root vectors, 162
RSHCD, 187
Rudvalis graph, 345
Rudvalis-Hunt design, 349
sandpile group, 241
SBIBD, 152
Schläfli graph, 5, 25, 28, 61, 115, 126,
254, 255, 257, 277, 302, 330
Schurian coherent configuration, 29
Seidel matrix, 7
Seidel switching, see switching
self-complementary design, 156
self-complementary graph, 177, 267, 283
self-dual code, 150
self-dual lattice, 163
self-dual strongly regular graph, 166
semibiplane, 262, 313
semipartial geometry, 101, 211
sesquilinear, 50
sextet, 153, 158
shadow geometry, 110
Shannon capacity, 257
shortened code, 148
Shrikhande graph, 5, 8, 222, 231, 243,
248–250
SICPOVM, 223
Singer cycle, 304
spectrum, 1
spectra of a two-graph, 216
spherical building, 117
spherical t-design, 224
split Cayley algebra, 122
split Cayley hexagon, 65, 124
split composition algebra, 122
split octonion algebra, 122
sporadic Peisert graph, 177, 244, 325
spread, 38, 57, 121, 205
spread of a generalized hexagon, 65, 71
spread of a generalized quadrangle, 129
square design, 152, 191, 349
standard apartment, 116
standard involution, 123
standard parabolic subgroup of a Coxeter
224
224, 275
group, 113
standard parameters, 170
Steiner system, 151, 152, 197, 204, 223,
Steiner triple system, 138, 139, 207, 253
Steiner triple systems, 152
strongly regular graph, 1
strongly resolvable design, 197
STS, 152
subconstituent, 4
subgeometry, 107
subscheme, 26
subspace, 31, 34, 131
support, 147
Suzuki graph, 261, 323, 334
Suzuki tower, 261, 334
Suzuki-Tits ovoid, 56
switching, 7
switching class, 7
switching equivalent, 7
switching set, 9
Sylvester graph, 268, 273
symmetric association scheme, 29
symmetric design, 152, 191, 349
symmetric difference property, 198
symmetric form, 50
symmetric graph, 177, 250
symmetrization of a scheme, 222
symplectic form, 50, 53
symplectic graph, 53
symplectic group, 48, 54
symplectic polar space, 53
tangent, 45
T-anticode, 23
T-antidesign, 23
Taylor double, 19
Taylor extension, 19, 105, 183, 256
Taylor graph, 19, 219
T-code, 23
TD, 192
T-design, 23
t-design, 152
tensor product, 330
tensor product of schemes, 221
ternary code, 147
ternary Golay code, 148, 164, 171, 311
Terwilliger graph, 214
tetrad, 155
tetrahedrally closed, 340
thick geometry, 107
thin geometry, 107
tight set, see t-tight set
tight spherical design, 225
t-isoregularity, 227
Tits graph, 334
Tits group, 334
totally isotropic, 49
totally isotropic subspace, 53, 73
totally singular subspace, 59
toughness, 229
tournament, 221
transitive, 3
transversal design, 192, 204
triality, 89, 122
triangular graph, 4, 5
t-tuple regular, 227
t-vertex condition, 222, 226
twisted Grassmann graphs, 18
two-character set, 57, 85, 166, 212, 213
two-graph, 8, 215, 316
two-weight code, 166
type (of a RSHCD), 187
type function, 107
Type I unimodular lattice, 163
Type II unimodular lattice, 163
types (of objects), 107
unimodular lattice, 163
unital, 45, 85, 143, 158, 159, 161, 197, 213, 216, 217, 270, 275, 285, 292, 309
unitary graph, 74
unitary group, 48
unitary polar space, 73
valency, 1
van Dam-Koelen graphs, 18, 222
van Lint-Schrijver graph, 176, 181, 244, 313, 340, 341
van Lint-Schrijver partial geometry, 205, 282
VD, 95
vertex connectivity, 13
Vizing class, 231
Vizing’s theorem, 231
VNO, 95
VO, 92
Wagner graph, 251, 252
Walsh transform, 185
Wang-Qu-Hu switching, see WQH-switching
weight, 106
weight enumerator, 150
weight of a vector, 147
Weisfeiler-Leman algorithm, 30
Witt designs, 153
Witt index of a Hermitian form, 73
Witt index of a quadratic form, 59
Witt’s theorem, 52
WQH-switching, 222, 282
xor-magic, 251
Yang-Zhang cage, 271
Zara graph, 213, 219
Zariski closure, 129