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Preface

The present volume is a monograph on the topic of Strongly Regular Graphs.
So far, no book-length treatment of this subject area has been available.

The topic of strongly regular graphs is an area where statistics, Euclidean
geometry, group theory, finite geometry, and extremal combinatorics meet. The
subject concerns beautifully regular structures, studied mostly using spectral
methods, group theory, geometry and sometimes lattice theory.

Roughly around 1970–1980, Algebraic Combinatorics came up as a separate
branch in mathematics. It turned out that the same structures were studied
in statistics (for the design of experiments), in Euclidean geometry (e.g. in the
construction of systems of equiangular lines), in group theory (where several
sporadic groups arise as automorphism groups of a strongly regular graph), in
coding theory (where association schemes provide a tool for obtaining bounds on
the size of codes, and beautiful structures give rise to good and easy-to-decode
codes), in the theory of special functions (where the spectral data of associa-
tion schemes give rise to series of orthogonal polynomials), in finite geometry
(where collinearity graphs of polar spaces are strongly regular), in extremal
combinatorics, in cryptography, and elsewhere. More recently such very regular
structures find some application in the theory of quantum computation (e.g.
for mutually unbiased bases (MUBs) and symmetric, informationally complete,
positive operator-valued measures (SICPOVMs)).

Axiomatizing the combinatorial information in the action of a finite permu-
tation group G on a set X yields a hierarchy of combinatorial structures. A
general group gives the structure of coherent configuration. For a transitive
group one finds an association scheme. If the representation is multiplicity-free,
the pair (G,K), where K is the point stabilizer in G, is called a Gelfand pair.
The corresponding combinatorial object is a commutative association scheme.
If G is generously transitive, one finds a symmetric association scheme. The
simplest nontrivial case is that of a strongly regular graph, the combinatorial
analog of a rank 3 group, where K has three orbits on X ×X.

Delsarte’s 1973 thesis1 defined the concept of (commutative) association
scheme and showed the use of the linear programming bound. Bannai & Ito2 in-
troduced the term ‘algebraic combinatorics’, described as ‘character-theoretical
study of combinatorial objects’, or ‘group theory without groups’. Brouwer,
Cohen & Neumaier3 published a monograph on distance-regular graphs (that
is, P - and Q-polynomial association schemes) of diameter at least 3 (where the

1Ph. Delsarte, An algebraic approach to the association schemes of coding theory, Philips
Res. Rep. Suppl. 10 (1973).

2E. Bannai & T. Ito, Algebraic Combinatorics I, Benjamin, 1984.
3A. E. Brouwer, A. M. Cohen & A. Neumaier, Distance-Regular Graphs, Springer, 1989.
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strongly regular graphs are precisely the distance-regular graphs of diameter 2).
They wrote ‘Another book would be required to cover the present knowledge
about strongly regular graphs (no such book is available at present)’. The
present monograph fills this gap.

Various teams of authors, starting around 1980 with Van Lint and the present
first author, contemplated writing such a book, but for various reasons such a
project was never completed. Many years later J. I. Hall, at a 2011 meeting
in Oisterwijk, again commented on the lack of a good source of information
about strongly regular graphs more recent than Hubaut’s 1975 survey,4 and the
project was rekindled.

This book was started with the aim to give the classification of rank 3 graphs
and to describe these graphs, possibly as members of larger families, and give
information such as parameters, group, cliques, cocliques, local structure, and
characterization. Later, the project was widened to include the theory of general
strongly regular graphs.

The bulk of the material is more or less well known. Many details are new.
In particular, we give information about regular subsets that is often new. Our
approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces is
original and based on the idea of ‘thickening’ the Clebsch graph. We felt free to
omit proofs that are rather technical, or that do not fit naturally into the line
of development of the book.

Chapter 1 contains the fundaments. Chapters 2 and 3 find the finite polar
geometries in a uniform way and describe the related graphs and substructures.
Chapter 4 is a brief introduction to buildings,5 and provides an explicit and
elementary construction of the finite buildings of types E6 and G2. Chapter 5 is a
very short introduction to the geometry related to the Fischer groups.6 For later
use, lax embeddings of symplectic copolar spaces are studied. Chapter 6 gives
the main facts on the Golay codes and Witt designs, and contains a very short
introduction to the Leech lattice.7 Chapter 7 is about cyclotomy and difference
sets, and the relation to two-weight codes. Chapter 8 contains combinatorial
material that is partly new, with, for example, discussions of orthogonal arrays,
quasi-symmetric designs, partial geometries, regular two-graphs, spherical de-
signs, randomness properties and much more. Chapter 9 discusses the p-rank
of the adjacency matrix, in some cases a useful invariant that may distinguish
graphs with the same parameters. The long Chapter 10 consists of a hundred
sections discussing (more than) a hundred individual graphs in some more detail.
In Chapter 11 we give the classification of rank 3 groups, and identify in each
case the corresponding strongly regular graph. Everywhere there are extensive
tables. Chapter 12 is just a table, listing all feasible parameter sets of strongly
regular graphs with at most 512 vertices together with some information about
existence and other details, with references to other parts of the book.

We would like to especially thank Jon Hall, Ferdinand Ihringer, Alexander
Gavrilyuk, Dima Pasechnik, and the anonymous referees for detailed comments

4X. L. Hubaut, Strongly regular graphs, Discr. Math. 13 (1975) 357–381.
5For a monograph, see P. Abramenko & K. S. Brown, Buildings, Theory and Applications,

Springer, 2008.
6For a monograph on the group theoretical side, see M. Aschbacher, 3-Transposition

Groups, Cambridge University Press, 1997.
7For a monograph, see J. H. Conway & N. J. A. Sloane, Sphere Packings, Lattices and

Groups, Springer, 1988.
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on earlier drafts. We are also grateful to Maarten De Boeck, Ludmila Tsiovkina,
Paulien Jansen, Jeroen Schillewaert, Anneleen De Schepper, Sam Mattheus, and
Jan De Beule for reading, and commenting on, draft versions of specific chapters.
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locating several difficult-to-find papers.

Amsterdam and Ghent, March 2021.



vi



Contents

1 Graphs 1
1.1 Strongly regular graphs . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Complement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Imprimitivity . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.5 Rank 3 permutation groups . . . . . . . . . . . . . . . . . 3
1.1.6 Local graphs . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.7 Johnson graphs . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.8 Hamming graphs . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.9 Paley graphs . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.10 Strongly regular graphs with smallest eigenvalue −2 . . . 5
1.1.11 Seidel switching . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.12 Regular two-graphs . . . . . . . . . . . . . . . . . . . . . . 8
1.1.13 Regular partitions and regular sets . . . . . . . . . . . . . 9
1.1.14 Inequalities for subgraphs . . . . . . . . . . . . . . . . . . 10
1.1.15 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.16 Graphs induced on complementary subsets of the vertex

set of a graph . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.17 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.18 Prolific constructions . . . . . . . . . . . . . . . . . . . . . 16

1.2 Distance-regular graphs . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Distance-transitive graphs . . . . . . . . . . . . . . . . . . 17
1.2.2 Johnson graphs . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Hamming graphs . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 Grassmann graphs . . . . . . . . . . . . . . . . . . . . . . 18
1.2.5 Van Dam-Koolen graphs . . . . . . . . . . . . . . . . . . . 18
1.2.6 Imprimitive distance-regular graphs . . . . . . . . . . . . 19
1.2.7 Taylor graphs . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Association schemes and coherent configurations . . . . . . . . . 20
1.3.1 Association schemes . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 The Bose-Mesner algebra . . . . . . . . . . . . . . . . . . 21
1.3.3 Linear programming bound and code-clique theorem . . . 22
1.3.4 Krein parameters . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.5 Euclidean representation . . . . . . . . . . . . . . . . . . . 25
1.3.6 Subschemes . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.7 Absolute bound and µ-bound . . . . . . . . . . . . . . . . 27
1.3.8 Coherent configurations . . . . . . . . . . . . . . . . . . . 28

vii



viii CONTENTS

2 Polar spaces 31
2.1 Polar spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Embedded polar spaces . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Projective spaces . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Definition of embedded polar spaces . . . . . . . . . . . . 33
2.2.3 Rank and radical . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Maximal singular subspaces . . . . . . . . . . . . . . . . . 34
2.2.5 Order of an embedded polar space . . . . . . . . . . . . . 34
2.2.6 Parameters and spectrum of the polar space strongly reg-

ular graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.7 Ovoids, spreads, m-systems, h-ovoids, hemisystems . . . . 37
2.2.8 Intriguing or regular sets; i-tight sets . . . . . . . . . . . . 39
2.2.9 Distance-regular graphs on singular subspaces . . . . . . . 40
2.2.10 Generalized quadrangles . . . . . . . . . . . . . . . . . . . 40
2.2.11 Strongly regular graphs on the lines . . . . . . . . . . . . 41
2.2.12 Distance-regular graphs on half of the maximal singular

subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Classification of finite embedded polar spaces . . . . . . . . . . . 42

2.3.1 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Reduction to rank 2 . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 The finite rank 2 polar spaces in 3-space . . . . . . . . . . 44
2.3.4 The finite embedded generalized quadrangles . . . . . . . 45
2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.6 Group orders . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Witt’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 Reflexive forms . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 Reflexive forms and embedded polar spaces . . . . . . . . 49
2.4.3 Classification of sesquilinear reflexive forms . . . . . . . . 50
2.4.4 Orthogonal direct sum decomposition . . . . . . . . . . . 51
2.4.5 Witt’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Symplectic polar spaces . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.1 Symplectic forms, polar spaces, and graphs . . . . . . . . 53
2.5.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.3 Automorphism groups . . . . . . . . . . . . . . . . . . . . 54
2.5.4 Maximal cliques . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.5 Ovoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.6 Maximal cocliques . . . . . . . . . . . . . . . . . . . . . . 56
2.5.7 h-Ovoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.8 Spreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.9 Tight sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.10 Local graph . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Orthogonal polar spaces . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.1 Quadratic forms and orthogonal polar spaces . . . . . . . 59
2.6.2 Finite orthogonal polar spaces and graphs . . . . . . . . . 60
2.6.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6.4 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.5 Automorphism groups . . . . . . . . . . . . . . . . . . . . 62
2.6.6 Maximal cliques . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.7 Ovoids and maximal cocliques . . . . . . . . . . . . . . . 63
2.6.8 Tight sets, spreads, and h-ovoids . . . . . . . . . . . . . . 70



CONTENTS ix

2.7 Hermitian or unitary polar spaces . . . . . . . . . . . . . . . . . . 72
2.7.1 Hermitian forms . . . . . . . . . . . . . . . . . . . . . . . 72
2.7.2 Hermitian or unitary polar spaces . . . . . . . . . . . . . 73
2.7.3 Finite unitary polar spaces and graphs . . . . . . . . . . . 73
2.7.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.7.5 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.7.6 Automorphism groups . . . . . . . . . . . . . . . . . . . . 74
2.7.7 Maximal cliques . . . . . . . . . . . . . . . . . . . . . . . 75
2.7.8 Maximal cocliques . . . . . . . . . . . . . . . . . . . . . . 75
2.7.9 Tight sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.7.10 Partial spreads . . . . . . . . . . . . . . . . . . . . . . . . 78
2.7.11 Hemisystems . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Graphs related to polar spaces 79
3.1 Graphs on the nonsingular or nonisotropic points . . . . . . . . . 79

3.1.1 Association scheme in even characteristic . . . . . . . . . 79
3.1.2 Nonsingular points over F2 . . . . . . . . . . . . . . . . . 80
3.1.3 Nonsingular points of one type over F3 in dimension 2m . 81
3.1.4 Nonsingular points of one type in dimension 2m+ 1 . . . 81
3.1.5 Nonsingular points of one type over F5 in dimension 2m+ 1 83
3.1.6 Nonisotropic points for a Hermitian form . . . . . . . . . 84

3.2 Graphs on half of the maximal singular subspaces . . . . . . . . . 86
3.2.1 General observations . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 The rank 4 case: the triality quadric . . . . . . . . . . . . 87
3.2.3 Rank 5 hyperbolic polar spaces . . . . . . . . . . . . . . . 89
3.2.4 Disjoint t.i. planes in O7(q) and Sp6(q) . . . . . . . . . . 91

3.3 Affine polar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Isotropic directions . . . . . . . . . . . . . . . . . . . . . . 92
3.3.2 Square directions . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.3 Affine half spin graphs . . . . . . . . . . . . . . . . . . . . 95

3.4 Forms graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.4.1 Bilinear forms graphs . . . . . . . . . . . . . . . . . . . . 100
3.4.2 Alternating forms graphs . . . . . . . . . . . . . . . . . . 101
3.4.3 Quadratic forms graphs . . . . . . . . . . . . . . . . . . . 102
3.4.4 Hermitian forms graphs . . . . . . . . . . . . . . . . . . . 102
3.4.5 Baer subspaces . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.6 A hyperoval at infinity . . . . . . . . . . . . . . . . . . . . 103

3.5 Grassmann graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.1 Lines in a projective space . . . . . . . . . . . . . . . . . . 104

3.6 The case q = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6.1 Local structure . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6.2 Symmetric groups . . . . . . . . . . . . . . . . . . . . . . 106

4 Buildings 107
4.1 Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1.1 Generalized polygons . . . . . . . . . . . . . . . . . . . . . 107
4.1.2 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.3 Simple properties . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.4 Shadow geometries . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Coxeter systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



x CONTENTS

4.3 Coxeter geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4 Coxeter geometries of types An, Dn and E6 . . . . . . . . . . . . 115
4.5 Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.2 Spherical buildings . . . . . . . . . . . . . . . . . . . . . . 117
4.5.3 Characterizations . . . . . . . . . . . . . . . . . . . . . . . 118
4.5.4 Chain calculus . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 The Klein quadric and Klein correspondence . . . . . . . . . . . 121
4.7 Triality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.1 Split octonion algebras . . . . . . . . . . . . . . . . . . . . 122
4.7.2 Triality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 A construction of G2(q) . . . . . . . . . . . . . . . . . . . . . . . 124
4.9 The E6,1(q) graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.9.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.9.2 Cliques, cocliques and regular sets . . . . . . . . . . . . . 127
4.9.3 Construction of E6,1(q) . . . . . . . . . . . . . . . . . . . . 128

5 Fischer spaces 131
5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Fischer’s classification . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3 Hall triple systems . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Cotriangular graphs . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Locally grid graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.6 Copolar spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.1 Hall’s classification . . . . . . . . . . . . . . . . . . . . . . 141
5.6.2 Lax embeddings of the symplectic copolar spaces . . . . . 142

6 Golay codes, Witt designs, and Leech lattice 147
6.1 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1 The Golay codes . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.2 The Golay codes — constructions . . . . . . . . . . . . . . 148
6.1.3 Properties and uniqueness . . . . . . . . . . . . . . . . . . 150
6.1.4 The Mathieu group M24 . . . . . . . . . . . . . . . . . . . 151
6.1.5 More uniqueness results . . . . . . . . . . . . . . . . . . . 152

6.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.1 The Witt designs . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.2 Substructures of S(5, 8, 24) . . . . . . . . . . . . . . . . . 155
6.2.3 Near polygons . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2.4 The geometry of the projective plane of order 4 . . . . . . 158

6.3 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.1 The Leech lattice . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.2 The mod 2 Leech lattice . . . . . . . . . . . . . . . . . . . 164
6.3.3 The complex Leech lattice . . . . . . . . . . . . . . . . . . 164

7 Cyclotomic constructions 165
7.1 Difference sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.1 Two-character projective sets . . . . . . . . . . . . . . . . 165
7.1.2 Projective two-weight codes . . . . . . . . . . . . . . . . . 166
7.1.3 Delsarte duality . . . . . . . . . . . . . . . . . . . . . . . . 166
7.1.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 167



CONTENTS xi

7.1.5 Complements and imprimitivity . . . . . . . . . . . . . . 167
7.1.6 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.1.7 Field change . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.8 Unions and differences . . . . . . . . . . . . . . . . . . . . 168
7.1.9 Geometric examples . . . . . . . . . . . . . . . . . . . . . 168
7.1.10 Small two-weight codes . . . . . . . . . . . . . . . . . . . 171
7.1.11 Sporadic two-weight codes . . . . . . . . . . . . . . . . . . 173

7.2 Cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.1 Trace representation of an irreducible cyclic code . . . . . 174
7.2.2 Wolfmann’s theorem . . . . . . . . . . . . . . . . . . . . . 174
7.2.3 Irreducible cyclic two-weight codes . . . . . . . . . . . . . 174

7.3 Cyclotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.3.1 The Van Lint-Schrijver graphs . . . . . . . . . . . . . . . 176
7.3.2 The Hill graph . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3.3 The De Lange graphs . . . . . . . . . . . . . . . . . . . . 176
7.3.4 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3.5 Amorphic association schemes . . . . . . . . . . . . . . . . 177
7.3.6 Self-complementary graphs and Peisert graphs . . . . . . 177

7.4 One-dimensional affine rank 3 groups . . . . . . . . . . . . . . . . 177
7.4.1 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.4.2 Subgroups of ΓL(1, q) with two orbits . . . . . . . . . . . 178
7.4.3 One-dimensional affine rank 3 groups . . . . . . . . . . . . 181
7.4.4 Paley graphs . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4.5 Power residue difference sets . . . . . . . . . . . . . . . . 183

7.5 Icosahedrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.5.1 Orbits of A5 on the projective line and plane . . . . . . . 184
7.5.2 Orbits of S4 on the projective line . . . . . . . . . . . . . 185

7.6 Bent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8 Combinatorial constructions 187
8.1 Regular Hadamard matrices with constant diagonal . . . . . . . . 187

8.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.2 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Conference matrices and conference graphs . . . . . . . . . . . . 189
8.3 Symmetric designs . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.3.2 The McFarland difference sets . . . . . . . . . . . . . . . . 191

8.4 Latin squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.4.2 Latin square graphs . . . . . . . . . . . . . . . . . . . . . 193
8.4.3 Transversal 3-designs . . . . . . . . . . . . . . . . . . . . . 194

8.5 Quasi-symmetric designs . . . . . . . . . . . . . . . . . . . . . . . 195
8.5.1 The Calderbank-Cowen inequality . . . . . . . . . . . . . 195
8.5.2 Neumaier’s inequality . . . . . . . . . . . . . . . . . . . . 195
8.5.3 No triangular graph . . . . . . . . . . . . . . . . . . . . . 197
8.5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.5.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.5.6 Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.5.7 Parameter conditions from coding theory . . . . . . . . . 201
8.5.8 Haemers cocliques . . . . . . . . . . . . . . . . . . . . . . 203



xii CONTENTS

8.6 Partial geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.6.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.6.3 Nonexistence . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.6.4 The claw bound . . . . . . . . . . . . . . . . . . . . . . . 206
8.6.5 Claws and cliques . . . . . . . . . . . . . . . . . . . . . . 208

8.7 Semipartial geometries . . . . . . . . . . . . . . . . . . . . . . . . 211
8.7.1 Examples of partial quadrangles . . . . . . . . . . . . . . 211
8.7.2 Examples of semipartial geometries . . . . . . . . . . . . . 212

8.8 Zara graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.9 Terwilliger graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.10 Regular two-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.10.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.10.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.10.3 Completely regular two-graphs . . . . . . . . . . . . . . . 218
8.10.4 Covers and quotients . . . . . . . . . . . . . . . . . . . . . 219

8.11 Pseudocyclic association schemes . . . . . . . . . . . . . . . . . . 220
8.12 Tensor products of skew schemes . . . . . . . . . . . . . . . . . . 221
8.13 Cospectral graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.13.1 Godsil-McKay switching . . . . . . . . . . . . . . . . . . . 222
8.13.2 Wang-Qiu-Hu switching . . . . . . . . . . . . . . . . . . . 222

8.14 Equiangular sets of lines . . . . . . . . . . . . . . . . . . . . . . . 223
8.15 Spherical designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.15.1 Tight spherical designs . . . . . . . . . . . . . . . . . . . . 225
8.15.2 Spherical designs from association schemes . . . . . . . . 226
8.15.3 Bounds on the number of K4’s . . . . . . . . . . . . . . . 226

8.16 Higher regularity conditions . . . . . . . . . . . . . . . . . . . . . 226
8.16.1 The t-vertex condition . . . . . . . . . . . . . . . . . . . . 226
8.16.2 t-Isoregularity . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.17 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.17.1 Graph isomorphism . . . . . . . . . . . . . . . . . . . . . 228
8.17.2 Pseudo-randomness . . . . . . . . . . . . . . . . . . . . . 228

8.18 Conditions in case µ = 1 or µ = 2 . . . . . . . . . . . . . . . . . . 230
8.19 Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.20 Graphs that are locally strongly regular . . . . . . . . . . . . . . 232
8.21 Dropping regularity . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.22 Directed strongly regular graphs . . . . . . . . . . . . . . . . . . 232

9 p-Ranks 235
9.1 Points and hyperplanes of a projective space . . . . . . . . . . . . 235
9.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.3 Strongly regular graphs . . . . . . . . . . . . . . . . . . . . . . . 236
9.4 Smith normal form . . . . . . . . . . . . . . . . . . . . . . . . . . 241

10 Individual graph descriptions 245
10.1 The pentagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10.2 The 3× 3 grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.3 The Petersen graph . . . . . . . . . . . . . . . . . . . . . . . . 246
10.4 The Paley graph on 13 vertices . . . . . . . . . . . . . . . . . . 247
10.5 GQ(2,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



CONTENTS xiii

10.6 The Shrikhande graph . . . . . . . . . . . . . . . . . . . . . . . 248
10.7 The Clebsch graph . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.8 The Paley graph on 17 vertices . . . . . . . . . . . . . . . . . . 252
10.9 The Paulus-Rozenfel’d graphs . . . . . . . . . . . . . . . . . . . 252
10.10 The Schläfli graph . . . . . . . . . . . . . . . . . . . . . . . . . 254
10.11 T (8) and the Chang graphs . . . . . . . . . . . . . . . . . . . . 257
10.12 The strongly regular graphs on 29 vertices . . . . . . . . . . . . 258
10.13 The S8 graph on 35 vertices . . . . . . . . . . . . . . . . . . . . 259
10.14 The G2(2) graph on 36 vertices . . . . . . . . . . . . . . . . . . 260
10.15 NO−6 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.16 The O5(3) graphs on 40 vertices . . . . . . . . . . . . . . . . . 264
10.17 The U4(2) graph on 45 vertices . . . . . . . . . . . . . . . . . . 266
10.18 The rank 3 conference graphs on 49 vertices . . . . . . . . . . . 267
10.19 The Hoffman-Singleton graph . . . . . . . . . . . . . . . . . . . 267
10.20 The Gewirtz graph . . . . . . . . . . . . . . . . . . . . . . . . . 272
10.21 Sp6(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
10.22 The G2(2) graph on 63 vertices . . . . . . . . . . . . . . . . . . 274
10.23 The block graph of the smallest Ree unital . . . . . . . . . . . 275
10.24 GQ(3,5) and the hexacode . . . . . . . . . . . . . . . . . . . . . 276
10.25 VO−6 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.26 The halved folded 8-cube and VO+

6 (2) . . . . . . . . . . . . . . 277
10.27 The M22 graph on 77 vertices . . . . . . . . . . . . . . . . . . . 278
10.28 The Brouwer-Haemers graph . . . . . . . . . . . . . . . . . . . 280
10.29 V NO−4 (3) and the Van Lint-Schrijver partial geometry . . . . 282
10.30 The rank 3 conference graphs on 81 vertices . . . . . . . . . . . 283
10.31 The Higman-Sims graph . . . . . . . . . . . . . . . . . . . . . . 283
10.32 The Hall-Janko graph . . . . . . . . . . . . . . . . . . . . . . . 285
10.33 The 105 flags of PG(2,4) . . . . . . . . . . . . . . . . . . . . . . 289
10.34 The O−6 (3) graph on 112 vertices . . . . . . . . . . . . . . . . . 290
10.35 NO+

6 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.36 The O−8 (2) graph on 119 vertices . . . . . . . . . . . . . . . . . 294
10.37 The L3(4).22 graph on 120 vertices . . . . . . . . . . . . . . . . 294
10.38 NO−5 (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
10.39 NO+

8 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.40 The S10 graph on 126 vertices . . . . . . . . . . . . . . . . . . . 299
10.41 NO−6 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
10.42 The Goethals graph on 126 vertices . . . . . . . . . . . . . . . 301
10.43 The O+

8 (2) graph on 135 vertices . . . . . . . . . . . . . . . . . 302
10.44 NO−8 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
10.45 The L3(3) graph on 144 vertices . . . . . . . . . . . . . . . . . 304
10.46 Three M12.2 graphs on 144 vertices . . . . . . . . . . . . . . . . 305
10.47 The O5(5) graphs on 156 vertices . . . . . . . . . . . . . . . . . 305
10.48 The U4(3) graph on 162 vertices . . . . . . . . . . . . . . . . . 306
10.49 The nonisotropic points of U5(2) . . . . . . . . . . . . . . . . . 308
10.50 A polarity of Higman’s symmetric design . . . . . . . . . . . . 308
10.51 The M22 graph on 176 vertices . . . . . . . . . . . . . . . . . . 308
10.52 The nonisotropic points of U3(4) . . . . . . . . . . . . . . . . . 309
10.53 A rank 16 representation of S7 . . . . . . . . . . . . . . . . . . 310
10.54 The Cameron graph . . . . . . . . . . . . . . . . . . . . . . . . 310



xiv CONTENTS

10.55 The Berlekamp-VanLint-Seidel graph . . . . . . . . . . . . . . 311
10.56 The M23 graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.57 28.S10 and 28.(A8 × S3) . . . . . . . . . . . . . . . . . . . . . . 312
10.58 28.L2(17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.59 VO−8 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.60 VO+

8 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.61 The McLaughlin graph . . . . . . . . . . . . . . . . . . . . . . 314
10.62 The Mathon-Rosa graph . . . . . . . . . . . . . . . . . . . . . . 317
10.63 The lines of U5(2) . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.64 NO−⊥5 (5) and NO−5 (5) . . . . . . . . . . . . . . . . . . . . . . 319
10.65 NO+⊥

5 (5) and NO+
5 (5) . . . . . . . . . . . . . . . . . . . . . . 319

10.66 NO−⊥7 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.67 NO+⊥

7 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
10.68 The G2(4) graph on 416 vertices . . . . . . . . . . . . . . . . . 322
10.69 The O−10(2) graph on 495 vertices . . . . . . . . . . . . . . . . . 324
10.70 The rank 3 conference graphs on 529 vertices . . . . . . . . . . 325
10.71 The U4(2) graphs on 540 vertices . . . . . . . . . . . . . . . . . 326
10.72 The Aut(Sz(8)) graph on 560 vertices . . . . . . . . . . . . . . 326
10.73 The rank 3 graphs on 625 vertices . . . . . . . . . . . . . . . . 327
10.74 The U6(2) graph on 693 vertices . . . . . . . . . . . . . . . . . 329
10.75 The Games graph . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.76 VO−6 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.77 The rank 3 graphs on 961 vertices . . . . . . . . . . . . . . . . 330
10.78 NO+

8 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.79 NO−8 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
10.80 The dodecad graph . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.81 The Conway graph on 1408 vertices . . . . . . . . . . . . . . . 333
10.82 The Tits graph on 1600 vertices . . . . . . . . . . . . . . . . . 334
10.83 The Suzuki graph . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.84 211.M24 on 2048 vertices with valency 276 . . . . . . . . . . . . 336
10.85 211.M24 on 2048 vertices with valency 759 . . . . . . . . . . . . 337
10.86 The rank 3 graphs on 2209 vertices . . . . . . . . . . . . . . . . 338
10.87 D5,5(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
10.88 The Conway graph on 2300 vertices . . . . . . . . . . . . . . . 339
10.89 The rank 3 graphs on 2401 vertices . . . . . . . . . . . . . . . . 340
10.90 The Fi22 graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
10.91 The Rudvalis graph . . . . . . . . . . . . . . . . . . . . . . . . 345
10.92 212.HJ.S3 on 4096 vertices . . . . . . . . . . . . . . . . . . . . . 347
10.93 The 38.21+6.O−6 (2).2 graph on 6561 vertices . . . . . . . . . . . 348
10.94 The Fi22 graph on 14080 vertices . . . . . . . . . . . . . . . . . 349
10.95 The 56.4.HJ.2 graph on 15625 vertices . . . . . . . . . . . . . . 350
10.96 The Fi23 graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
10.97 The Fi23 graph on 137632 vertices . . . . . . . . . . . . . . . . 351
10.98 The E6(2) graph . . . . . . . . . . . . . . . . . . . . . . . . . . 352
10.99 The Fi24 graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
10.100 The Suz graph on 531441 vertices . . . . . . . . . . . . . . . . . 353



CONTENTS xv

11 Classification of rank 3 graphs 355
11.1 Primitive rank 3 permutation groups . . . . . . . . . . . . . . . 355
11.2 Wreath product . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.3 Simple socle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

11.3.1 Alternating socle . . . . . . . . . . . . . . . . . . . . . . 356
11.3.2 Classical simple socle . . . . . . . . . . . . . . . . . . . . 357
11.3.3 Exceptional simple socle . . . . . . . . . . . . . . . . . . 358
11.3.4 Sporadic simple socle . . . . . . . . . . . . . . . . . . . . 358
11.3.5 Triangular graphs . . . . . . . . . . . . . . . . . . . . . . 359

11.4 The affine case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
11.5 Rank 3 parameter index . . . . . . . . . . . . . . . . . . . . . . 362
11.6 Small rank 3 graphs . . . . . . . . . . . . . . . . . . . . . . . . . 365
11.7 Small rank 4–10 strongly regular graphs . . . . . . . . . . . . . 369

12 Parameter table 371

References 397

Parameter Index 425

Author Index 427

Subject Index 431



xvi CONTENTS



Chapter 1

Graphs

This chapter collects some basic material on strongly regular graphs and gives
some information about more general objects (distance-regular graphs and as-
sociation schemes) that will be needed later.

1.1 Strongly regular graphs

A graph is a set X of vertices provided with a symmetric relation ∼ on X called
adjacency, such that no x ∈ X is adjacent to itself. If the graph is denoted Γ,
then its vertex set X is also denoted by VΓ. A pair of adjacent vertices is called
an edge. If xy is an edge, then y is called a neighbor of x.

Let Γ be a finite graph. The adjacency matrix A of Γ is the square matrix
indexed by the vertices of Γ such that Axy = 1 when x ∼ y, and Axy = 0
otherwise. The spectrum of Γ is by definition the spectrum (eigenvalues and
multiplicities) of A, considered as a real matrix. A nonzero (column) vector u,
indexed by VΓ, is an eigenvector of A with eigenvalue θ when Au = θu, i.e.,
when

∑
y∼x uy = θux for all x.

A graph Γ is regular of degree (or valency) k, for some integer k, when every
vertex has precisely k neighbors.

Let Γ be finite with adjacency matrix A. The all-1 vector 1 (of appropriate
length) is an eigenvector (with eigenvalue k) if and only if Γ is regular (of valency
k). If Γ is regular of valency k, then the multiplicity of the eigenvalue k is the
number of connected components of Γ. An eigenvalue θ of a regular graph is
called restricted if it has an eigenvector orthogonal to 1.

A finite regular graph without restricted eigenvalues has at most one vertex.
A finite regular graph with only one restricted eigenvalue is complete or edgeless.
A strongly regular graph is a finite regular graph with precisely two restricted
eigenvalues.

History

The term ‘strongly regular graph’ was first used by Bose [92]. An equivalent
concept was studied by Bose & Shimamoto [97].

1
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1.1.1 Parameters
Let Γ be a strongly regular graph, regular of valency k, with adjacency matrix
A and restricted eigenvalues r, s, where r > s. Let J be the all-1 matrix of
suitable size, so that AJ = JA = kJ . We have (A− rI)(A− sI) = µJ for some
constant µ, so that A2 = κI + λA+ µ(J − I − A) for certain constants κ, λ, µ.
Apparently κ = k and λ = µ+ r + s and k − µ = −rs.

This can be stated in a combinatorial way: For x, y ∈ VΓ, the number of
common neighbors of x, y is k when x = y, and λ when x ∼ y, and µ when
x 6∼ y. One says that the strongly regular graph Γ has parameters (v, k, λ, µ),
where v = |VΓ| is the number of vertices. Conversely, if in a finite graph Γ, not
complete and not edgeless, the number of common neighbors of two vertices is
k, λ, µ depending on whether they are equal, adjacent or nonadjacent, then Γ
is strongly regular, and the restricted eigenvalues r, s are found as the roots of
x2 + (µ− λ)x+ (µ− k) = 0.

The combinatorial definition of k, λ, µ shows that these are nonnegative
integers, and 0 ≤ λ ≤ k − 1 and 0 ≤ µ ≤ k. By Perron-Frobenius’ theorem,
k ≥ r. Since trA = 0 it follows that s < 0 and r ≥ 0.

If µ 6= 0, then the parameters are related by v = 1 + k + k(k − 1− λ)/µ.
From (A− rI)(A− sI) = µJ one gets the identity (k − r)(k − s) = µv.

History

The parameters n, k, l, λ, µ, r, s, f, g (with n = v and l = v−k−1) were perhaps
first used in [419]. Earlier, Bose [92] used v, n1, n2, p

1
11, p

2
11.

1.1.2 Complement
If Γ is a strongly regular graph with parameters (v, k, λ, µ) and restricted eigen-
values r, s, then the complementary graph Γ (with the same vertex set as Γ, and
where distinct vertices are adjacent if and only if they are nonadjacent in Γ) is
also strongly regular, with parameters (v, k̄, λ̄, µ̄) and restricted eigenvalues r̄, s̄,
where k̄ = v−k− 1, λ̄ = v− 2k+µ− 2, µ̄ = v− 2k+λ, r̄ = −1− s, s̄ = −1− r,
as is immediately clear from the definitions and the fact that Γ has adjacency
matrix A = J − I −A.

1.1.3 Imprimitivity
A strongly regular graph Γ is called imprimitive when Γ or Γ is a nontrivial
equivalence relation, equivalently, when λ = k − 1 or µ = k, equivalently, when
µ = 0 or v = 2k − λ, equivalently, when s = −1 or r = 0.

In the former case Γ is a disjoint union aKm of a complete graphs of size m
(and v = am, k = m− 1, λ = m− 2, µ = 0, r = m− 1, s = −1), where a > 1.

In the latter case Γ is a complete multipartite graph Ka×m (and v = am,
k = (a− 1)m, λ = (a− 2)m, µ = (a− 1)m, r = 0, s = −m), again with a > 1.

(The graphs Km and K1×m = Km have only one restricted eigenvalue,
namely −1 and 0 respectively, and hence are not strongly regular.)

For a primitive strongly regular graph it follows that 0 ≤ λ < k − 1 and
0 < µ < k and r > 0 and s < −1. A primitive strongly regular graph is
connected, and hence k > r.

The graph nK2 is sometimes called a ladder graph. Its complement nK2 =
Kn×2 a cocktail party graph.
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1.1.4 Spectrum

Let Γ be strongly regular, with spectrum k, r (with multiplicity f) and s (with
multiplicity g). Then f, g can be solved from 1 + f + g = v and k + fr + gs =
trA = 0. The fact that f, g must be integers is a strong restriction on possible
parameter sets.

If f 6= g, then one can also solve r, s from r + s = λ− µ and fr + gs = −k,
and it follows that r, s are rational. Since they are also algebraic integers, they
are integral in this case. On the other hand, if f = g, then f = g = (v − 1)/2.
Now k = (µ − λ)f = (µ − λ)(v − 1)/2, and since 0 < k < v − 1 it follows
that k = (v − 1)/2 and µ = λ + 1. Now v = 1 + k + k(k − 1 − λ)/µ yields
µ = k − 1 − λ = k/2, so that (v, k, λ, µ) = (4t + 1, 2t, t − 1, t) for a suitable
integer t, and r, s = (−1 ±

√
v)/2. This is known as the ‘half case’. It occurs

e.g. for the Paley graphs (see §1.1.9). For further details, see §8.2.
Summary: if we are not in the half case, then the spectrum is integral.

Explicit expressions for f, g are f = (s+1)k(k−s)
µ(s−r) and g = (r+1)k(k−r)

µ(r−s) .

The identity vk(v−1−k)
fg = (r − s)2 (known as the Frame quotient, cf. [123]

§2.2A, 2.7A) follows.
In particular, v = (r − s)2 if and only if {f, g} = {k, v − k − 1}.

1.1.5 Rank 3 permutation groups

A permutation group is a group G together with an action of G on some set X,
that is, together with a map G×X → X written (g, x) 7→ gx, such that 1x = x
and g(hx) = (gh)x for all g, h ∈ G and x ∈ X, where 1 is the identity element
of G.

An orbit of G on X is a set of the form Gx for some x ∈ X. The G-orbits
form a partition of X. The action (or the group) is called transitive when this
partition has a single element only, that is, when Gx = X for all x ∈ X. A set
A is preserved by G when gA = A for all g ∈ G.

The action of G on X induces an action of G on X×X via g(x, y) = (gx, gy).
If G is transitive, then it is said to be of (permutation) rank r when it has
precisely r orbits on X ×X.

The action (or the group) is called primitive when there is no nontrivial
equivalence relation R ⊆ X ×X that is preserved by G. The trivial equivalence
relations are the full set X ×X and the diagonal D = {(x, x) | x ∈ X}.

Suppose G is a rank 3 permutation group on the set X. Then G has three
orbits D,E, F on X × X, where D is the diagonal. Now either E and F are
inverse relations: F = {(y, x) | (x, y) ∈ E}, or E and F are symmetric. In the
former case (X,E) is a complete directed graph, a tournament (and (X,F ) is the
opposite tournament). In the latter case (X,E) and (X,F ) are a complementary
pair of graphs. When X is finite, they are a complementary pair of strongly
regular graphs: the group G acts as a group of automorphisms on the graphs
(X,E) and (X,F ), and since E and F are single orbits, G is transitive on
ordered pairs of adjacent (nonadjacent) vertices, and the number of common
neighbors of two vertices does not depend on the vertices chosen, but only on
whether they are equal, adjacent or nonadjacent.
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History

The study of rank 3 permutation groups was initiated by Higman [420].

1.1.6 Local graphs

If Γ is a graph, and x a vertex of Γ, then the local graph of Γ at x is the graph
induced by Γ on the set of neighbors of x in Γ.

A graph Γ is called locally ∆ (or locally X) where ∆ is a graph and X a graph
property, when all local graphs are isomorphic to ∆ (or have property X).

For example, the icosahedron is the unique connected locally pentagon graph.
Hall [391] determined all locally ∆ graphs on at most 11 vertices, for all possible
∆, and determined for each graph ∆ on at most 6 vertices whether there exists
a locally ∆ graph.

If Γ is a connected graph, and x a vertex of Γ, then the i-th subconstituent
of Γ (at x) is the graph induced on the set of vertices at (graph) distance i
from x. If Γ is a strongly regular graph, and x a vertex of Γ, then the second
subconstituent of Γ (at x) is the graph induced on the set of vertices other than
x and nonadjacent to x.

1.1.7 Johnson graphs

Let Ω be a set, and d ≥ 0 an integer. The Johnson graph J(Ω, d) is the graph
that has as vertex set the set

(
Ω
d

)
of d-subsets of Ω, where two d-sets D,E are

adjacent when |D ∩ E| = d− 1. Suppose |Ω| ≥ 2d. Then J(Ω, d) has diameter
d, and the symmetric group Sym(Ω) acts as a group of automorphisms that is
transitive of rank d+ 1. If |Ω| = m one writes J(m, d) instead of J(Ω, d).

The full group of automorphisms of J(Ω, d) is Sym(Ω) when |Ω| > 2d > 0,
but Sym(Ω)× 2 when |Ω| = 2d > 0, and 1 when d = 0.

In particular, the graph J(m, 2) (also called the triangular graph T (m)),
where m ≥ 4, is strongly regular. It has parameters v = m(m − 1)/2, k =
2(m − 2), λ = m − 2, µ = 4 and eigenvalues k, r = m − 4, s = −2 with
multiplicities 1, f = m− 1, g = m(m− 3)/2. The graph T (m) is the line graph
of the complete graph Km on m vertices. The complement T (5) of T (5) is the
Petersen graph (§10.3).

These graphs are characterized by their parameters, except when m = 8.
There are four graphs with the parameters (v, k, λ, µ) = (28, 12, 6, 4) of T (8),
namely T (8) itself and three graphs known as the Chang graphs ([191, 192]),
cf. §10.11.

1.1.8 Hamming graphs

Let Ω be a set, and d ≥ 0 an integer. The Hamming graph H(d,Ω) is the graph
that has as vertex set the set Ωd of d-tuples of elements of Ω, where two d-tuples
(a1, . . . , ad), (b1, . . . , bd) are adjacent when they have Hamming distance 1, i.e.,
when ai 6= bi for a unique i. Suppose |Ω| ≥ 2. Then H(d,Ω) has diameter d,
and its full group of automorphisms is the wreath product Sym(Ω) wr Sym(d).
This group is transitive of rank d + 1. If |Ω| = q one writes H(d, q) instead of
H(d,Ω).
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In particular, the graphH(2, q) (also called the lattice graph L2(q) or the q×q
grid ), where q ≥ 2, is strongly regular. It has parameters v = q2, k = 2(q − 1),
λ = q − 2, µ = 2 and eigenvalues k, r = q − 2, s = −2 with multiplicities 1,
f = 2(q − 1), g = (q − 1)2. The graph H(2, q) is the line graph of the complete
bipartite graph Kq,q. The graph L2(3) is isomorphic to its complement. It is
the Paley graph (see §1.1.9) of order 9.

These graphs are characterized by their parameters, except when q = 4.
There are two graphs with the parameters (v, k, λ, µ) = (16, 6, 2, 2), namely
L2(4) and the Shrikhande graph ([649]), cf. §10.6.

The graph H(d, q) is locally dKq−1, the disjoint union of d complete graphs
of size q − 1. The Shrikhande graph is locally a hexagon.

1.1.9 Paley graphs

Let q = 4t + 1 be a prime power. The Paley graph Paley(q) is the graph with
the finite field Fq as vertex set, where two vertices are adjacent when they differ
by a nonzero square. It is strongly regular with parameters (4t+ 1, 2t, t− 1, t).
(The restriction q ≡ 1 (mod 4) is to ensure that −1 is a square, so that the
resulting graphs are undirected.)

Let q = pe, where p is prime. The full group of automorphisms consists of
the maps x 7→ axσ + b where a, b ∈ Fq, a a nonzero square, and σ = pi with
0 ≤ i < e ([186]). It has order eq(q − 1)/2.

Paley(5) is the pentagon. Paley(9) is the 3 × 3 grid. Paley(13) is a graph
that is locally a hexagon. For a more detailed discussion, see §7.4.4.

1.1.10 Strongly regular graphs with smallest eigenvalue
−2

A disjoint union of cliques has smallest eigenvalue s = −1. The pentagon
has smallest eigenvalue (−1 −

√
5)/2. All other strongly regular graphs satisfy

s ≤ −2. Seidel [642] determined the strongly regular graphs with smallest
eigenvalue s = −2. There are three infinite families and seven more graphs:

(i) the complete n-partite graph Kn×2, with parameters (v, k, λ, µ) = (2n,
2n− 2, 2n− 4, 2n− 2), n ≥ 2,

(ii) the lattice graph L2(n), that is, the Hamming graph H(2, n), that is, the
n× n grid, with parameters (v, k, λ, µ) = (n2, 2(n− 1), n− 2, 2), n ≥ 3,

(iii) the triangular graph T (n) with parameters (v, k, λ, µ) = (
(
n
2

)
, 2(n − 2),

n− 2, 4), n ≥ 5,

(iv) the Shrikhande graph (cf. §10.6), with parameters (v, k, λ, µ) = (16, 6, 2, 2),

(v) the three Chang graphs (cf. §10.11), with parameters (v, k, λ, µ) = (28, 12,
6, 4),

(vi) the Petersen graph (cf. §10.3), with parameters (v, k, λ, µ) = (10, 3, 0, 1),

(vii) the Clebsch graph (cf. §10.7), with parameters (v, k, λ, µ) = (16, 10, 6, 6),

(viii) the Schläfli graph (cf. §10.10), with parameters (v, k, λ, µ) = (27, 16, 10, 8).
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More generally, the strongly regular graphs with fixed smallest eigenvalue
are (i) complete multipartite graphs, (ii) Latin square graphs, (iii) block graphs
of Steiner systems, (iv) finitely many further graphs, see Theorem 8.6.4.

We include a proof of Seidel’s classification. (For different proofs, see [419]
and [123], Theorem 3.12.4. See also below.)

Theorem 1.1.1 A strongly regular graph with smallest eigenvalue −2 is one of
the examples in (i)–(viii) above.

Proof. We shall assume the classification of the graphs with the parameters
of the examples. The proof here derives the possible parameters.

Let Γ be a strongly regular graph with parameters v, k, λ, µ and spectrum
k1 rf sg, where s = −2. Then λ = µ+ r− 2 and k = µ+ 2r (by §1.1.1), so that
k = 2λ− µ+ 4.

If µ = 2, then Γ has the parameters of L2(n) (for n = r + 2), and hence is
L2(n), or (if n = 4) the Shrikhande graph (cases (ii) and (iv)). If µ = 4, then Γ
has the parameters of T (n) (for n = r + 4), and hence is T (n), or (if n = 8) a
Chang graph (cases (iii) and (v)). Assume µ 6= 2, 4.

From 1 + f + g = v and k + fr − 2g = 0 and µv = (k − r)(k + 2), we find
f = 2v−k−2

r+2 = (µ+2r)(µ+2r+2)
µ(r+2) .

Let anm-claw be an inducedK1,m subgraph. Let a quadrangle be an induced
C4 subgraph. Let x ∼ a, b with a 6∼ b. If {x, a, b} is contained in c 3-claws and
in q quadrangles, then k = 2 + 2λ− (µ− 1− q) + c so that c+ q = 1.

First consider the case where the graph contains a 3-claw. Let x ∼ a, b, c
with mutually nonadjacent a, b, c. We shall show that v = 2k + 4 and Γ is one
of the examples (iv)–(vi).

For a list of vertices Z, let N(Z) (‘near’) be the set of vertices adjacent
to each z in Z, and F (Z) (‘far’) the set of vertices not in Z and nonadjacent
to each z in Z. Since the k − λ − 1 = r + 1 vertices in N(x) ∩ F (a) are in
{b, c}∪N(b, c)\{x}, we have r ≤ µ. Since the k−λ vertices in (N(a)∩F (x))∪{a}
are among the λ = v − 2k + µ − 2 vertices of F (b, c), we have v ≥ 5r + µ + 4.
Since µv = (k − r)(k + 2) we have v = 3r + µ + 2 + 2r(r+1)

µ so that µ ≤ r. It
follows that µ = r, λ = 2r− 2, k = 3r, v = 6r+ 4 = 2k+ 4, f = 9− 12

r+2 so that
r ∈ {1, 2, 4, 10}. For r = 1, 2, 4 we are in case (vi), (iv), (v), respectively. The
case (v, k, λ, µ) = (64, 30, 18, 10) has f = 8, which violates the absolute bound
v ≤ 1

2f(f + 3) (Proposition 1.3.14 below).

Now assume that Γ does not contain 3-claws. Since c + q = 1, each 2-claw
is in a unique quadrangle. It follows that µ is even, say µ = 2m, and if a 6∼ b,
then N(a, b) induces a Km×2. If moreover d ∼ a, d 6∼ b, then d is adjacent to
precisely m vertices of N(a, b). (If x, y ∈ N(a, b) with x 6∼ y, then d cannot be
nonadjacent to both x and y, since (a;x, y, d) would be a 3-claw, and d cannot
be adjacent to both x and y, since we already see the µ common neighbors of x
and y in N(a, b) ∪ {a, b}.)

Let b be a vertex, and consider the graph induced on F (b). It is strongly
regular or complete or edgeless with parameters (v0, k0, λ0, µ0) = (v − k − 1,
k − µ, λ − m,µ). If it is edgeless, then k = µ, so that Γ is imprimitive, and
we are in case (i). If it is complete, then v − k − 1 = k − µ + 1 so that
(µ + 2r)(r + 1) = µ(2r + 1), hence µ = 2(r + 1) and f = 8 − 12

r+2 , so that
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r ∈ {1, 2, 4, 10}. For r = 1 we have T (5) (in case (iii)), for r = 2 the Clebsch
graph (case (vii)), and r = 4 (v = 28, f = 6) and r = 10 (v = 64, f = 7) both
violate the absolute bound.

So we may assume that F (b) induces a strongly regular graph ∆. Since
k0 = 2λ0 − µ0 + 4, also ∆ has smallest eigenvalue −2, and the other restricted
eigenvalue is r0 = r − m with multiplicity f0 = 2r(r+1)

m(r−m+2) . By induction we
already know ∆ (and it does not contain 3-claws) so either µ ∈ {6, 8}, or ∆ is
Kn×2. For µ = 6 there are no feasible parameters. For µ = 8 we find the Schläfli
graph (case (viii)). If ∆ isKn×2, then (v, k, λ, µ) = (6n−3, 4n−4, 3n−5, 2n−2),
r = n − 1, f = 8 − 12

r+2 , so that r ∈ {1, 2, 4, 10}. For r = 1 we have L2(3) (in
case (ii)), for r = 2 we have T (6) (in case (iii)), for r = 4 the Schläfli graph
(case (viii)), and r = 10 (v = 63, f = 7) violates the absolute bound. �

Root systems

In fact it is possible to find all graphs with smallest eigenvalue ≥ −2. By the
beautiful theorem of Cameron, Goethals, Seidel & Shult [179] (see also
[123], §3.12 and [132], §8.4) such a graph is either a generalized line graph or is
one in a finite (but large) collection.

(Sketch of the proof: Consider A+ 2I. It is positive semidefinite, so one can
write A+ 2I = M>M . Now the columns of M are vectors of squared length 2
with integral inner products, and this set of vectors can be completed to a root
system. By the classification of root systems one gets one of An, Dn, E6, E7 or
E8. In the first two cases the graph was a generalized line graph. In the latter
three cases the graph is finite: at most 36 vertices, each vertex of degree at most
28. If the graph was regular, it has at most 28 vertices, and each vertex has
degree at most 16. For details, see [123], Theorem 3.12.2 or [132], Chapter 8.)

There is a lot of literature describing manageable parts of this large collec-
tion, and related problems. A book-length treatment is Cvetković et al. [249].

1.1.11 Seidel switching

Instead of the ordinary adjacency matrix A, Seidel considered the Seidel matrix
S of a graph, with zero diagonal, where Sxy = −1 if x ∼ y, and Sxy = 1
otherwise. These matrices are related by S = J − I − 2A.

Let Γ be a graph with vertex set X. Let Y ⊆ X. The graph Γ′ obtained
by switching Γ with respect to Y is the graph with vertex set X, where two
vertices that are both inside or both outside Y are adjacent in Γ′ when they are
adjacent in Γ, while a vertex inside Y is adjacent in Γ′ to a vertex outside Y
when they are not adjacent in Γ. If Γ has Seidel matrix S, then Γ′ has Seidel
matrix S′ where S′ is obtained from S by multiplying each row and each column
with index in Y by −1. It follows that S and S′ have the same spectrum.

If Γ′ is obtained from Γ by switching w.r.t. Y , and Γ′′ is obtained from Γ′

by switching w.r.t. Z, then Γ′′ is obtained from Γ by switching w.r.t. Y4Z.
It follows that graphs related by switching fall into equivalence classes (called
switching classes). Two graphs in the same switching class are called switching
equivalent.

If two regular graphs of the same valency are switching equivalent, then
they have the same ordinary spectrum. This happens precisely when each vertex
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inside (outside) the switching set is adjacent to half of the vertices outside (resp.
inside) the switching set. For example, the Shrikhande graph is obtained from
the 4× 4 grid by switching w.r.t. a diagonal.

It may happen that two strongly regular graphs of different valencies are
switching equivalent. If that happens, then they are related to regular 2-graphs
(see §1.1.12).

Proposition 1.1.2 Let Γ be a strongly regular graph with parameters (v, k, λ, µ)
and spectrum k1 rf sg. Let ∆ be a strongly regular graph of valency ` > k
switching equivalent to Γ. Then (i) ∆ has spectrum `1 rf−1 sg+1, (ii) 1

2v =
k− s = `− r, (iii) k− r = 2µ, (iv) 1

2v = 2k− λ− µ, (v) any switching set from
Γ to ∆ has size 1

2v and is regular of degree k − µ.

Proof. (i)–(iv) The Seidel matrices S = J − I − 2A of Γ and ∆ have the
same spectrum (v− 1− 2k)1 (−1− 2r)f (−1− 2s)g, and if k < l it follows that
v − 1− 2k = −1− 2s and v − 1− 2` = −1− 2r. Since (k − r)(k − s) = µv for
all strongly regular graphs, it follows from k − s = 1

2v that k − r = 2µ. Since
r+s = λ−µ for all strongly regular graphs, we find 1

2v = k−s = k−r−s+r =
k+µ−λ+k− 2µ = 2k−λ−µ. (v) Suppose ∆ is obtained from Γ by switching
w.r.t. a set U of size u. Let x ∈ U have k1 neighbors in U and k2 outside. Then
k = k1 +k2 and ` = k1 +v−u−k2, so that k1 and k2 can be expressed in terms
of k, `, u, v and are independent of x. Similarly, if y /∈ U has k3 neighbors in U
and k4 outside, then k = k3 + k4 and ` = u − k3 + k4, so that k3 and k4 are
independent of y. Counting the number of edges with one end in U in two ways,
we find k2u = k3(v − u), and since k2 = 1

2 (k− `− u+ v) and k3 = 1
2 (k− `+ u)

this simplifies to (k− `)u = (k− `)(v−u), so that u = 1
2v, k2 = k3, k1 = k4. �

The Seidel matrix plays a role in the description of regular two-graphs and
of sets of equiangular lines, cf. [132], Chapter 10. The condition 1

2v = 2k−λ−µ
is necessary and sufficient for a strongly regular graph to be associated to a
regular two-graph, cf. [132], 10.3.2(i), and see below.

History

The Seidel matrix was introduced in Seidel [641].

1.1.12 Regular two-graphs

A two-graph Ω = (V,∆) is a finite set V provided with a collection ∆ of
unordered triples from V , such that every 4-subset of V contains an even number
of triples from ∆. The triples from ∆ are called coherent.

From a graph Γ = (V,E), one can construct a two-graph Ω = (V,∆) by
calling a triple from V coherent if the three vertices induce a subgraph in Γ
with an odd number of edges. One checks that Ω is a two-graph. It is called
the two-graph associated to Γ. Switching equivalent graphs have the same
associated two-graph.

Conversely, from any two-graph Ω = (V,∆), and any fixed w ∈ V , we can
construct a graph Γ = Ωw with vertex set V as follows: let w be an isolated
vertex in Γ, and let any two other vertices x, y be adjacent in Γ if {w, x, y} ∈ ∆.
Then Ω is the two-graph associated to Γ.
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Thus we have established a one-to-one correspondence between two-graphs
and switching classes of graphs.

Let Ω = (V,∆) be a two-graph, and w ∈ V . The descendant of Ω at w is the
graph Ω∗w, obtained from Ωw by deleting the isolated vertex w.

A two-graph (V,∆) is called regular (of degree a) if every unordered pair
from V is contained in exactly a triples from ∆. The two-graph Ω = (V,∆)
with v = |V | vertices and 0 < |∆| <

(
v
3

)
is regular if and only if any descendant

is strongly regular with parameters (v−1, k, λ, µ) where µ = k/2 (and then this
holds for all descendants). If this is the case, then a = k and v = 3k − 2λ.

See also §8.10 and [132], §10.3.

History

Regular two-graphs were introduced by G. Higman. See also Taylor [677].

1.1.13 Regular partitions and regular sets
Let Γ be a finite graph with vertex set X. A partition {X1, . . . , Xm} of X is
called regular or equitable when there are numbers eij , 1 ≤ i, j ≤ m, such that
each vertex of Xi is adjacent to precisely eij vertices in Xj . In this situation
the matrix E = (eij) of order m is called the quotient matrix of the partition.

If θ is an eigenvalue of E, say Eu = θu, then θ is also an eigenvalue of Γ, for
the eigenvector that is constant ui on Xi. And conversely, the eigenvalues of Γ
that belong to eigenvectors constant on each Xi are eigenvalues of E.

Let Γ be finite and regular of valency k. A subset Y of the vertex set X is
called regular (of degree d and nexus e) when the partition {Y,X \Y } is regular
(and e11 = d, e21 = e where X1 = Y ). Now the quotient matrix E = ( d k−de k−e )
has eigenvalues k and d− e, so that d− e is an (integral) eigenvalue of Γ.

A regular set is also called an intriguing set ([263]).

Proposition 1.1.3 Let Γ be strongly regular with parameters (v, k, λ, µ). If Y
and Y ′ are regular sets of degrees d, d′ and nexus e, e′ belonging to different
eigenvalues d− e and d′ − e′ other than k, then |Y ∩ Y ′| = ee′/µ.

Proof. The vector u that is 1 on Y and a := −e
k−d outside Y is an eigenvector of

the adjacency matrix A of Γ with eigenvalue θ := d− e. Here a 6= 1 since θ 6= k.
The characteristic vector of Y is χY = 1

1−au−
a

1−a1, where a
1−a = −e

k−θ . Similarly
for Y ′. Since u, u′,1 are mutually orthogonal, (1,1) = v, and µv = (k−θ)(k−θ′),
we have |Y ∩ Y ′| = (χY , χY ′) = ee′

(k−θ)(k−θ′)v = ee′/µ. �

We also see that |Y | = (χY ,1) = ev
k−θ with θ = d− e.

The collection of regular sets belonging to the same eigenvalue θ = d − e
(together with ∅ and X) is closed under taking complements, under taking
disjoint unions, and under removal of one set from one containing it.

In descendants of regular two-graphs, switching sets are regular sets.

Proposition 1.1.4 Let Γ be strongly regular with parameters (v, k, λ, µ) and
restricted eigenvalues r, s, where k = 2µ. Let Y be a regular set in Γ of degree
d and nexus e. If |Y | = k− c, where {c, d− e} = {r, s}, then adding an isolated
vertex and switching w.r.t. Y yields a strongly regular graph with parameters
(v + 1, k − c, λ− c, µ− c). �
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1.1.14 Inequalities for subgraphs
We give inequalities that must hold for a graph Γ to have certain induced
subgraphs. Additional regularity holds when there are such subgraphs and the
inequality holds with equality.

Interlacing

Let Γ be a finite graph with adjacency matrix A, and let Π = {X1, . . . , Xm} be
a partition of a subset of VΓ. The quotient matrix of A w.r.t. Π is the matrix
B of order m where Bij is the average row sum of the submatrix A(i, j) of A
that has rows indexed by Xi and columns indexed by Xj . If each A(i, j) has
constant row sums, and Π partitions VΓ, then Π is an equitable partition of Γ,
and B is a quotient matrix in the sense of §1.1.13 (hence the present definition
generalizes the previous one).

Theorem 1.1.5 Let Γ be a graph with adjacency matrix A and v vertices. Let
Π = {X1, . . . , Xm} be a partition of a subset of VΓ with quotient matrix B.
Then the eigenvalues of B interlace those of A. That is, if A has eigenvalues
θ1 ≥ · · · ≥ θv and B has eigenvalues η1 ≥ · · · ≥ ηm, then θi ≥ ηi (1 ≤ i ≤ m)
and ηm−i ≥ θv−i (0 ≤ i ≤ m− 1).

If the interlacing is tight, that is, if there is an h such that ηi = θi for
1 ≤ i ≤ h and ηi = θv−m+i for h+ 1 ≤ i ≤ m, then the partition is equitable.

For a proof, and related results, see [132], §2.5.
Note that this theorem applies to an (induced) subgraph ∆ of Γ with adja-

cency matrix B. Indeed, one can take for Π the partition of V∆ into singletons.

Bounds on the size of regular subgraphs

As an application of interlacing, we find bounds on the size of regular subgraphs
of a graph.

Proposition 1.1.6 Let Γ be a regular graph with v vertices, valency k, second
largest eigenvalue r and smallest eigenvalue s. Let Y be a nonempty proper
subset of X := VΓ inducing a subgraph that is regular of degree d. Then

(i) |Y | ≤ v(d−s)
k−s , and

(ii) |Y | ≥ v(d−r)
k−r if r < k.

(iii) If equality holds in either (i) or (ii), then each vertex in X \ Y has the
same number e = d− θ of neighbors in Y , where θ = s in case (i), and θ = r in
case (ii).

Proof. Apply Theorem 1.1.5 with Π = {Y,X \Y }. Put u = |Y |. The quotient
matrix is

B =

(
d k − d

u(k−d)
v−u k − u(k−d)

v−u

)
with eigenvalues k and d− u(k−d)

v−u . By interlacing we have s ≤ d− u(k−d)
v−u ≤ r,

which gives (i) and (ii). If equality holds on either side, then the partition is
equitable, and e = u(k−d)

v−u . �

One sees that in case of equality the vector χY −
u
v
1 is an eigenvector of A with eigenvalue

θ = d− e. If θ has small multiplicity this allows a computer search for all such subgraphs Y .
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Hoffman bound

In particular, we have the so-called Hoffman bounds (due to Delsarte for strongly
regular graphs, generalized by Hoffman to arbitrary regular graphs, then further
by Haemers to arbitrary graphs) on the sizes of cliques and cocliques.

Proposition 1.1.7 Let Γ be a strongly regular graph with parameters (v, k, λ, µ)
and smallest eigenvalue s. Then

(i) If C is a coclique in Γ, then |C| ≤ v/(1 + k
−s ). If equality holds, then

each vertex outside C has the same number −s of neighbors inside.
(ii) If D is a clique in Γ, then |D| ≤ 1 + k

−s . If equality holds, then each
vertex outside D has the same number µ/(−s) of neighbors inside.

(iii) If a coclique C and a clique D both meet the bounds of (i) and (ii), then
|C ∩D| = 1.

Proof. Part (i) is the special case d = 0 of Proposition 1.1.6. Part (ii) is part
(i) applied to Γ. For part (iii), clearly C and D cannot have more than one
point in common. If they are disjoint, then the number of edges joining C and
D is both k − s and µv/(k − s) = k − r, a contradiction. �

If a regular set in a strongly regular graph is a coclique or a clique, then it
has equality in (i) or (ii), respectively.

The bound on cocliques for Γ equals the bound on cliques for the comple-
mentary graph Γ, i.e., v/(1 + k

−s ) = 1 + v−k−1
r+1 .

Quadratic counting

Similar results are obtained by combinatorial methods. Consider a strongly
regular graph with parameters (v, k, λ, µ) and an induced subgraph with u
vertices, e edges, and degree sequence d1, . . . , du. Let there be xi vertices outside
the subgraph that are adjacent to precisely i vertices inside. Then∑

i

xi = A = v − u,∑
i

ixi = B = ku− 2e,

∑
i

(
i

2

)
xi = C = λe+ µ(

(
u

2

)
− e)−

u∑
i=1

(
di
2

)
.

Let γ = B/A and put i = bγc and i = dγe. Then

(B + 2C)− (i+ i)B + iiA =
∑
i

(i− i)(i− i)xi ≥ 0. (*)

Equality holds if and only if every vertex outside the subgraph is adjacent to
either i or i vertices inside.

If the subgraph is a clique or a coclique, the inequality
∑
i(i − γ)2xi ≥ 0

is equivalent to the Hoffman bound. When γ is nonintegral, inequality (*) is
slightly stronger.

This inequality is folklore. For the case of cliques an equivalent inequality was rediscovered
in [364]. Sometimes combinatorial bounds are stronger than the Hoffman bound. For example,
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for the parameter set (v, k, λ, µ) = (400, 21, 2, 1) with s = −4, the Hoffman bound for the size
of cliques is 6.25, but the obvious upper bound λ+ 2 is 4.

For the case of cliques of size u, the above counts become
∑
xi = v−u,

∑
ixi = u(k−u+1),∑(i

2

)
xi =

(u
2

)
(λ − u + 2). For example, for (v, k, λ, µ) = (235, 42, 9, 7) with s = −5, the

Hoffman bound is 9.4, but the above counting also rules out size 9. And for example for
(v, k, λ, µ) = (11124, 882, 45, 72), with s = −45, the Hoffman bound is 20.6, but the above
counting rules out size 18 so that the upper bound for clique sizes becomes 17.

Cvetković bound

Let Γ be a graph on v vertices, and let A be a matrix indexed by VΓ such that
Axy = 0 when x 6∼ y. Let n+(A) (resp. n−(A)) be the number of positive (resp.
negative) eigenvalues of A. For the independence number α(Γ) of Γ we have the
bound (known as Cvetković bound or inertia bound)

α(Γ) ≤ min(v − n+(A), v − n−(A)).

One has additional regularity in case both the Hoffman and the Cvetković
bound are tight.

Proposition 1.1.8 (Haemers [376], Theorem 2.1.7) Let Γ be a strongly regular
graph with point set X, and C a coclique in Γ with |C| = 1 + v−k−1

r+1 = g. Then
the graph induced on X \ C is strongly regular.

This happens for example for a 21-coclique in a graph with parameters
(v, k, λ, µ) = (77, 16, 0, 4). See also §8.5.8.

Greaves-Koolen-Park bound

Greaves, Koolen & Park [363] derived a bound on the size of maximal cliques
that rules out an interval of values. In some cases that interval extends past the
Hoffman upper bound, so that the upper bound is greatly strengthened. If in
addition one can show that cliques must exist with a size past the start of the
interval, then the corresponding parameter set is ruled out.

Denote by H(a, t) the graph on a+ t+ 1 vertices consisting of a clique Ka+t

together with a vertex that is adjacent to precisely a vertices of the clique. The
graph H(a, t) has an obvious equitable partition with quotient matrix

Q =

0 a 0
1 a− 1 t
0 a t− 1

 .
Lemma 1.1.9 Let Γ be a graph having smallest eigenvalue −m that contains
H(a, t) as an induced subgraph. Then

(a−m(m− 1))(t− (m− 1)2) ≤ (m(m− 1))2.

Proof. This inequality expresses det(Q+mI) ≥ 0. �

If a strongly regular graph Γ has a maximal clique C of size c, and a vertex
outside adjacent to a vertices of the clique, then a ≤ µ. The above lemma
(with t = c − a) gives a quadratic inequality on a, and if the quadratic has
two roots r1, r2, then r1 < a < r2 is excluded. If r1 ≤ µ < r2, it follows that
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a ≤ r1. On the other hand, there are certainly vertices outside C that have at
least α = 1 + (c−1)(λ−c+2)

k−c+1 neighbors in C. The inequality α ≤ a ≤ r1 gives a
condition on c.

Lemma 1.1.10 Let Γ be a strongly regular graph with parameters (v, k, λ, µ)
and smallest eigenvalue −m, where µ > m(m−1). If Γ has a maximal clique C
of order c > max{(m−1)(4m−1), µ2

µ−m(m−1) −m+1} and D = (c+m−1)(c−
(m−1)(4m−1)) then (2(c−1)(λ−c+2)−(c+m−3)(k−c+1))2−(k−c+1)2D ≥ 0.

This lemma gives a cubic condition on c.
For example, consider the case (v, k, λ, µ) = (1344, 221, 88, 26) wherem = 3. The Hoffman

bound is c ≤ 74. Lemma 1.1.10 says that 32 ≤ c ≤ 80 is impossible for maximal cliques. So a
maximal clique has size at most 31.

By the usual claw-and-clique method (cf. §8.6.5) one finds a lower bound for
the size of maximum cliques.

Lemma 1.1.11 Let Γ be a strongly regular graph with parameters (v, k, λ, µ).
If e is a nonnegative integer such that (µ − 1)

(
e
2

)
< e(λ + 1) − k, then Γ has a

clique of size at least λ+ 2− (e− 2)(µ− 1).

Together with the above, this sometimes suffices to rule out a parameter set.
For example, consider the case (v, k, λ, µ) = (23276, 1330, 372, 58) with m = 4. The

Hoffman bound says that cliques have sizes c ≤ 333. By Lemma 1.1.10, for maximal cliques
71 ≤ c ≤ 340 is impossible. By Lemma 1.1.11 with e = 6, there is a clique of size c ≥ 146. It
follows that no such graph exists.

Various refinements are possible.

1.1.15 Connectivity
For a graph Γ, let Γi(x) denote the set of vertices at distance i from x in
Γ. Instead of Γ1(x) we write Γ(x). Using interlacing, we see that the 2nd
subconstituent of a primitive strongly regular graph is connected.

Proposition 1.1.12 If Γ is a primitive strongly regular graph, then the sub-
graph Γ2(x) is connected for each vertex x.

Proof. Note that Γ2(x) is regular of valency k−µ. If it is not connected, then
its eigenvalue k−µ would have multiplicity at least two, and hence would be not
larger than the second largest eigenvalue r of Γ. Then x2 + (µ−λ)x+µ−k ≤ 0
for x = k − µ, i.e., (k − µ)(k − λ− 1) ≤ 0, a contradiction. �

The vertex connectivity κ(Γ) of a connected non-complete graph Γ is the
smallest integer m such that Γ can be disconnected by removing m vertices.

Theorem 1.1.13 (Brouwer & Mesner [138]) Let Γ be a connected strongly
regular graph of valency k. Then κ(Γ) = k, and the only disconnecting sets of
size k are the sets of all neighbors of some vertex x. �

One might guess that the cheapest way to disconnect a strongly regular
graph such that all components have at least two vertices would be by removing
the 2k−λ−2 neighbors of an edge. Cioabă, Kim &Koolen [198] observed that
this is false (the simplest counterexample is probably T (6), where edges have 10
neighbors and certain triangles only 9), but proved it for several infinite classes
of strongly regular graphs and conjectured that any counterexample must have
λ ≥ k/2. See also [199].
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1.1.16 Graphs induced on complementary subsets of the
vertex set of a graph

For a real symmetric matrix with two distinct eigenvalues, and with a symmetric
2 × 2 partition of rows and columns, the spectrum of the upper left-hand
corner determines the spectrum of the lower right-hand corner (cf. [132], Lemma
2.11.1).

For strongly regular graphs with adjacency matrix A this applies to A− aJ
for suitable a, so that the spectrum of a regular induced subgraph determines
the spectrum of the subgraph induced on the complementary set of vertices,
when that is also regular. More generally, one has

Proposition 1.1.14 (de Caen [264]) Let Γ be strongly regular on v vertices,
with spectrum k1 rf sg, and suppose that VΓ has a partition {C,D} such that
the graph Γ[C] induced by Γ on C is regular, with valency kC . Let c = |C|.
If Γ[C] has eigenvalues kC , λ1, . . . , λc−1, then the graph Γ[D] has eigenvalues r
(with multiplicity f − c), s (with multiplicity g − c), r+ s− λj (1 ≤ j ≤ c− 1),
together with the two roots of (X − k)(X − r − s+ kC) + µc = 0.

In the case of a regular partition, these two roots can be given explicitly:

Proposition 1.1.15 If also the graph Γ[D] is regular, with valency kD, then
kC + kD − k ∈ {r, s}, and (X − k)(X − r − s+ kC) + µc = (X−kD)(X−r)(X−s)

X−kC−kD+k .

For example, if Γ is a strongly regular graph with parameters (v, k, λ, µ) =
(28, 9, 0, 4) and C is a point-neighborhood (a 9-coclique), then D has spectrum
112 (−5)−3 (−4)8 51 01, a contradiction. So no such graph exists.

For example, if Γ is the unique strongly regular graph with parameters
(v, k, λ, µ) = (77, 16, 0, 4) and C is a 21-coclique, then D induces a Gewirtz sub-
graph (with parameters (v, k, λ, µ) = (56, 10, 0, 2) and spectrum 101 235(−4)20,
see §10.20).

For example, if Γ is the O−6 (3) graph on 112 vertices (with parameters
(v, k, λ, µ) = (112, 30, 2, 10) and spectrum 301 290 (−10)21, see §10.34), and
C induces a Gewirtz subgraph, then the subgraph induced on the remaining 56
vertices has the same spectrum, and hence is also a Gewirtz subgraph.

See also [178], [381].

1.1.17 Enumeration
For some smallish parameter sets, a complete enumeration of all strongly regular
graphs has been made. We list only one graph from a complementary pair.
Triangular graphs and n× n grids on more than 50 vertices are not listed.

count v k λ µ ref
1 5 2 0 1 pentagon
1 9 4 1 2 3× 3 grid
1 10 3 0 1 Petersen graph, T (5)
1 13 6 2 3 Paley
1 15 6 1 3 GQ(2,2), T (6)
1 16 5 0 2 folded 5-cube, complement of the Clebsch graph
2 16 6 2 2 4× 4 grid, Shrikhande graph

continued...
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count v k λ µ ref
1 17 8 3 4 Paley
1 21 10 3 6 T (7)
1 25 8 3 2 5× 5 grid
15 25 12 5 6 Paulus [606]; enumerated by Rozenfel’d [632]
10 26 10 3 4 Paulus [606]; enumerated by Rozenfel’d [632]
1 27 10 1 5 GQ(2,4), complement of the Schläfli graph
4 28 12 6 4 T (8), 3 Chang graphs
41 29 14 6 7 enumerated by Bussemaker and by Spence

3854 35 16 6 8 enumerated by McKay & Spence [556]
1 36 10 4 2 6× 6 grid

180 36 14 4 6 enumerated by McKay & Spence [556]
1 36 14 7 4 T (9)

32548 36 15 6 6 enumerated by McKay & Spence [556]
28 40 12 2 4 enumerated by Spence [670]
78 45 12 3 3 enumerated by Coolsaet, Degraer & Spence [223]
1 45 16 8 4 T (10)
1 49 12 5 2 7× 7 grid
1 50 7 0 1 Hoffman & Singleton [436]
1 56 10 0 2 Gewirtz [342]

167 64 18 2 6 enumerated by Haemers & Spence [384]
1 77 16 0 4 Brouwer [111]
1 81 20 1 6 Brouwer & Haemers [130]
1 100 22 0 6 Gewirtz [341]
1 105 32 4 12 Coolsaet [221]
1 112 30 2 10 Cameron, Goethals & Seidel [178]
1 120 42 8 18 Degraer & Coolsaet [274]
1 126 50 13 24 Coolsaet & Degraer [222]
1 162 56 10 24 Cameron, Goethals & Seidel [178]
1 176 70 18 34 Degraer & Coolsaet [274]
1 275 112 30 56 Goethals & Seidel [356]

Table 1.1: Number of nonisomorphic strongly regular graphs

Let us call a parameter set (v, k, λ, µ) feasible when it and its complement
satisfy the conditions of §1.1.1 and §1.1.4. There are further general conditions
on strongly regular graphs, such as the absolute bound (§1.3.7), the Krein
conditions (§1.3.4), the claw bound (§8.6.4), and the condition on conference
graphs (§8.2), and on graphs with µ = 1 or µ = 2 (§8.18). For a few sets of
parameters there is an ad hoc proof that no such graph exists. Below the current
list of such cases.

v k λ µ ref
49 16 3 6 Bussemaker et al. [162]
57 14 1 4 Wilbrink & Brouwer [732]
75 32 10 16 Azarija & Marc [20]
76 21 2 7 Haemers [378]; see also [8]
76 30 8 14 Bondarenko et al. [89]
95 40 12 20 Azarija & Marc [21]
96 38 10 18 Degraer [273]
289 54 1 12 Bondarenko & Radchenko [90]
324 57 0 12 Gavrilyuk & Makhnev [336],

continued...
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v k λ µ ref
Kaski & Östergård [483]

460 153 32 60 Bondarenko et al. [88]
486 165 36 66 Makhnev [534]
1127 486 165 243 Makhnev [534]
1911 270 105 27 Koolen & Gebremichel1

3159 1408 532 704 Bannai et al. [49], [646]

Table 1.2: Sporadic parameter sets for which no srg exists
Makhnev [535] purports to show the nonexistence of graphs with parameters (v, k, λ, µ) =

(784, 116, 0, 20), but the proof is wrong. Also the proof in Makhnev [536] of the nonexistence
of graphs with parameters (3250, 57, 0, 1) is wrong.

Money

J. H. Conway [214] offered $1000 for the construction or nonexistence proof of
a strongly regular graph with parameters (v, k, λ, µ) = (99, 14, 1, 2).

Wilbrink [731] showed that such a graph cannot have an automorphism of order 11, and
hence cannot have a transitive group. Behbahani & Lam [55] show that any automorphism
of prime order must have order 2 or 3. Crnković & Maksimović [240] rule out groups of
order six or nine.

History

Uniqueness of the triangular graphs T (n), given the parameters, was shown for
n ≥ 9 by Connor [211], for n ≤ 6 by Shrikhande [648], and for n 6= 8 by
Hoffman [432]. The latter also found a counterexample for n = 8. Indepen-
dently, Chang [191, 192] settled all cases and found the three counterexamples
for n = 8.

Uniqueness of the lattice graph L2(n), n 6= 4 was shown by Mesner [559].
Shrikhande [649] gave a shorter proof and also found the single exception.

1.1.18 Prolific constructions

Strongly regular graphs live on the boundary between the crystalline world
and the random world. For some parameters there is no graph, or a unique
graph. For other parameters the number of examples is exponentially large.
Constructions that produce hyperexponentially many strongly regular graphs
for certain parameters have been given by Wallis [718] and Fon-Der-Flaass
[328]. See also [184], [176], [580].

1.2 Distance-regular graphs
A finite connected graph Γ of diameter d is called distance-regular with param-
eters ai, bi, ci (0 ≤ i ≤ d) if for any two vertices x, y with mutual distance
d(x, y) = i the number of vertices z adjacent to y and at distance i − 1 or i or
i+ 1 from x equals ci or ai or bi, respectively.

A distance-regular graph is regular with valency k = b0, and ai + bi + ci = k
for all i. Obviously c0 = a0 = bd = 0 and c1 = 1. The intersection array is the
symbol {b0, b1, . . . , bd−1; c1, c2, . . . , cd} that suffices to determine all parameters.

1Pers. comm., Aug. 2021.
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The distance-regular graphs of diameter 2 are precisely the connected strongly
regular graphs. A connected strongly regular graph with parameters (v, k, λ, µ)
is distance-regular with intersection array {k, k − λ− 1; 1, µ}.

Let Γ be distance-regular, with vertex x. The number ki of vertices at
distance i from x is found by k0 = 1 and ki+1 = kibi/ci+1 for 0 ≤ i ≤ d− 1, and
is independent of the choice of x. The total number of vertices is v = k0+· · ·+kd.

Let v = |VΓ|. Let Ai be the matrix of order v indexed by VΓ with (Ai)xy = 1
when d(x, y) = i and (Ai)xy = 0 otherwise. Clearly A0 = I. Let A = A1 be the
adjacency matrix of Γ. Then AAi = bi−1Ai−1 +aiAi+ci+1Ai+1 for 0 ≤ i ≤ d, if
we agree that b−1A−1 = cd+1Ad+1 = 0. We find an expression for Ai of degree
i in A, and then an equation of degree d+ 1 for A, so that A has precisely d+ 1
distinct eigenvalues (since the matrices Ai are linearly independent).

Biggs’ multiplicity formula

The previous paragraph implies (for a precise argument see also below) that the
d+ 1 eigenvalues of A are the d+ 1 eigenvalues of the matrix L, where

L =


0 b0 0
c1 a1 b1

c2 a2 b2
. . . . . . . . .

0 cd ad

 .

Theorem 1.2.1 (Biggs [67], Theorem 21.4) If Lu = θu and u0 = 1, then the
multiplicity of θ as eigenvalue of Γ equals

m(θ) = v/(
∑

kiu
2
i ).

Proof. We have Ai = pi(A) where the polynomials pi are defined by p0(x) = 1,
p1(x) = x, xpi(x) = bi−1pi−1(x) + aipi(x) + ci+1pi+1(x). If η is an eigenvalue
of A, then p(η) = (p0(η), . . . , pd(η)) is a left eigenvector of L and p(η)L =
ηp(η). The ui satisfy ciui−1 + aiui + biui+1 = θui, so that pi(θ) = kiui. Now
v = tr

∑
i uiAi =

∑
i,η uim(η)pi(η) = m(θ)

∑
i kiu

2
i , where the sum is over the

eigenvalues η of A, and the last equality holds because left and right eigenvectors
for different eigenvalues are orthogonal. �

Thus, the parameters of a distance-regular graph determine eigenvalues and
multiplicities. The fact that the multiplicities must be integers is a strong
restriction on candidate parameter sets.

A comprehensive monograph on the topic of distance-regular graphs, com-
plete up to 1989, is Brouwer, Cohen & Neumaier [123]. An update to the
state of affairs in 2016 is Van Dam, Koolen & Tanaka [252].

1.2.1 Distance-transitive graphs
A connected graph Γ is called distance-transitive if for any vertices x, y, z, w
with d(x, y) = d(z, w) there is an automorphism g of Γ such that g(x) = z
and g(y) = w. If Γ is distance-transitive of diameter d, then its group of
automorphisms is transitive, of rank d+ 1.
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Every finite distance-transitive graph is distance-regular.
The classification of distance-transitive graphs of diameter d > 2 is unfin-

ished. For a survey of the status in 2007, see Van Bon [86].

1.2.2 Johnson graphs

The Johnson graph J(m, d), where m ≥ 2d, is distance-transitive of diameter
d. It has parameters bi = (d− i)(m− d− i), ci = i2 and eigenvalues bi − i with
multiplicity

(
m
i

)
−
(
m
i−1

)
(0 ≤ i ≤ d) and v =

(
m
d

)
vertices.

1.2.3 Hamming graphs

The Hamming graph H(d, q), where q > 1, is distance-transitive of diameter
d. It has parameters bi = (q − 1)(d − i), ci = i and eigenvalues bi − i with
multiplicity

(
d
i

)
(q − 1)i (0 ≤ i ≤ d) and v = qd vertices.

1.2.4 Grassmann graphs

Let V be a vector space of dimension n over the field Fq. The Grassmann graph
Jq(n,m) is the graph with vertex set

[
V
m

]
, the set of all m-subspaces of V , where

two m-subspaces are adjacent when they intersect in an (m − 1)-space. This
graph is distance-transitive, with parameters bi = q2i+1

[
m−i

1

][
n−m−i

1

]
, ci =

[
i
1

]2
,

diameter d = min(m,n − m), and eigenvalues qi+1
[
m−i

1

][
n−m−i

1

]
−
[
i
1

]
with

multiplicity
[
n
i

]
−
[
n
i−1

]
. (Here

[
n
i

]
= (qn− 1) · · · (qn−i+1− 1)/(qi− 1) · · · (q− 1)

is the q-binomial coefficient, the number of i-subspaces of an n-space.)

In particular, for m = 2, n ≥ 4, we find the graph Jq(n, 2) of lines in a
projective space, adjacent when they meet. This graph is strongly regular, with
parameters v =

[
n
2

]
, k = (q+1)(

[
n−1

1

]
−1), λ =

[
n−1

1

]
+q2−2, µ = (q+1)2, and

eigenvalues k, r = q2
[
n−3

1

]
− 1, s = −q − 1 with multiplicities, 1, f =

[
n
1

]
− 1,

g =
[
n
2

]
−
[
n
1

]
.

1.2.5 Van Dam-Koolen graphs

Van Dam & Koolen [251] construct distance-regular graphs vDK(q,m) with
the same parameters as Jq(2m+ 1,m). (They call them the twisted Grassmann
graphs.) The group of automorphisms of these graphs is not transitive.

The construction is as follows. Let V be a vector space of dimension 2m+ 1
over Fq, and let H be a hyperplane of V . Take as vertices the (m+1)-subspaces
of V not contained in H, and the (m − 1)-subspaces contained in H, where
two subspaces of the same dimension are adjacent when their intersection has
codimension 1 in both, and two subspaces of different dimension are adjacent
when one contains the other.

It follows that Grassmann graphs need not be determined by their parame-
ters. Also, that the combinatorial definition of distance-regular graphs does not
directly imply the existence of a nice group of automorphisms, not even when
the diameter is large.

For m = 2, these graphs are strongly regular.
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1.2.6 Imprimitive distance-regular graphs
Let Γ be a distance-regular graph of diameter d, and let Γi be the graph with
the same vertex set, where two vertices are adjacent when they have distance i
in Γ, so that Ai is the adjacency matrix of Γi (0 ≤ i ≤ d). The graph Γ is called
imprimitive if Γi is disconnected for some i, 2 ≤ i ≤ d.

If Γ is a polygon (i.e., if it has valency 2) then Γi is disconnected for each i
with i | v, 1 < i < v. The only imprimitive distance-regular graphs of valency
k > 2 are the bipartite and the antipodal graphs.

A graph is called bipartite if it does not contain an odd cycle. A halved graph
of a connected bipartite graph Γ is the graph with as vertex set one of the two
bipartite classes, where two vertices are adjacent when they have distance 2 in Γ.

A distance-regular graph of diameter d is called antipodal when having
distance 0 or d is an equivalence relation on its vertex set. The folded graph of an
antipodal distance-regular graph is the graph with as vertices the equivalence
classes of Γd, where two equivalence classes are adjacent when they contain
adjacent vertices.

Theorem 1.2.2 An imprimitive distance-regular graph of valency k, k > 2, is
bipartite or antipodal (or both). Let Γ be distance-regular of diameter d with
intersection array {b0, . . . , bd−1; c1, . . . , cd}, and put µ = c2 and m = bd/2c.

(i) Γ is bipartite if and only if ai = 0 (i.e., bi + ci = k) for all i. If
Γ is bipartite, then its halved graphs are distance-regular of diameter m with
intersection array

{b0b1
µ
,
b2b3
µ
, . . . ,

b2m−2b2m−1

µ
;
c1c2
µ
,
c3c4
µ
, . . . ,

c2m−1c2m
µ

}.

(ii) Γ is antipodal if and only if bi = cd−i for all i 6= m. If Γ is antipodal,
then its antipodal classes have size r = 1 + bm/cd−m, and the folded graph is
distance-regular of diameter m with intersection array

{b0, . . . , bm−1; c1, . . . , cm−1, γcm}

where γ = r if d = 2m, and γ = 1 if d = 2m+ 1. �

For example, the Johnson graph J(2d, d) is antipodal. The folded Johnson
graph J (2d, d) (of which the vertices are the partitions of a 2d-set into two d-
sets) is distance-regular of diameter bd/2c, and in particular is strongly regular
for d = 4, 5.

1.2.7 Taylor graphs
A distance-regular graph Γ with intersection array {k, µ, 1; 1, µ, k} is called a
Taylor graph. Such a graph is an antipodal double cover of the complete graph
Kk+1. The local graphs ∆ = Γ(x) are strongly regular, and satisfy v∆ = k,
k∆ = λΓ = k − µ− 1 = 2µ∆, λ∆ = 1

2 (3k∆ − k − 1). See §8.10.4.
Given a graph Σ with vertex set X, its Taylor double is the graph with vertex

set {xε | x ∈ X, ε = ±1} and edges xδyε (for x 6= y) with δε = 1 when x ∼ y
and δε = −1 otherwise.

Given a strongly regular graph ∆ with k∆ = 2µ∆, its Taylor extension T∆
is the Taylor double of {∞}+ ∆. It is a Taylor graph.
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1.3 Association schemes and coherent configura-
tions

We briefly state the main facts for symmetric association schemes. For more
details, see [123], Chapter 2, and [132], Chapter 11. Results proved there are
given here without proof.

1.3.1 Association schemes
A (symmetric) association scheme with d classes is a finite set X together with
d+ 1 relations Ri on X such that

(i) {R0, R1, . . . , Rd} is a partition of X ×X;

(ii) R0 = {(x, x) | x ∈ X};

(iii) if (x, y) ∈ Ri, then also (y, x) ∈ Ri, for all x, y ∈ X and i ∈ {0, . . . , d};

(iv) for any (x, y) ∈ Rk the number pkij of z ∈ X with (x, z) ∈ Ri and (z, y) ∈
Rj depends only on i, j and k.

The numbers pkij are called the intersection numbers of the association scheme.
Define n = |X|, and ni = p0

ii. Clearly, for each i ∈ {1, . . . , d}, (X,Ri) is a
simple graph which is regular of degree ni.

Proposition 1.3.1 The intersection numbers of an association scheme satisfy

(i) pk0j = δjk, p
0
ij = δijnj , p

k
ij = pkji,

(ii)
∑
i p
k
ij = nj ,

∑
j nj = n,

(iii) pkijnk = pjiknj,

(iv)
∑
l p
l
ijp

m
kl =

∑
l p
l
kjp

m
il . �

It is convenient to write the intersection numbers as entries of the so-called
intersection matrices L0, . . . , Ld defined by

(Li)kj = pkij .

Note that L0 = I and LiLj =
∑
pkijLk.

From the definition it is clear that an association scheme with two classes
is the same as a pair of complementary strongly regular graphs. If (X,R1) is
strongly regular with parameters (v, k, λ, µ), then the intersection matrices of
the scheme are

L1 =

 0 k 0
1 λ k − λ− 1
0 µ k − µ

 , L2 =

 0 0 v − k − 1
0 k − λ− 1 v − 2k + λ
1 k − µ v − 2k + µ− 2

 .
History

Association schemes as defined above (also known as ‘symmetric association
schemes’) were introduced in Bose & Shimamoto [97] as one of the ingredients
for a PBIBD (partially balanced incomplete block design). Almost the same
definition of PBIBD occurs already in Bose & Nair [96].
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1.3.2 The Bose-Mesner algebra
The relations Ri of an association scheme are described by their adjacency
matrices Ai of order n defined by

(Ai)xy =

{
1 whenever (x, y) ∈ Ri,
0 otherwise.

In other words, Ai is the adjacency matrix of the graph (X,Ri). In terms of
the adjacency matrices, the axioms (i)–(iv) become

(i)
∑d
i=0Ai = J ,

(ii) A0 = I,

(iii) Ai = A>i , for all i ∈ {0, . . . , d},

(iv) AiAj =
∑
k p

k
ijAk, for all i, j ∈ {0, . . . , d}.

From (i) we see that the (0, 1) matrices Ai are linearly independent, and by
use of (ii)–(iv) we see that they generate a commutative (d + 1)-dimensional
algebra A of symmetric matrices with constant diagonal. This algebra was first
studied by Bose & Mesner [95] and is called the Bose-Mesner algebra of the
association scheme.

Since the matrices Ai commute, they can be diagonalized simultaneously.
It follows that the algebra A is semisimple and has a unique basis of minimal
idempotents E0, . . . , Ed, where EiEj = δijEi and

∑d
i=0Ei = I.

The matrix 1
nJ is a minimal idempotent. We shall fix the numbering so that

E0 = 1
nJ . Let P and 1

nQ be the matrices relating our two bases for A :

Aj =

d∑
i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi.

Then clearly
PQ = QP = nI.

It also follows that
AjEi = PijEi,

which shows that the Pij are the eigenvalues of Aj and that the columns of Ei
are the corresponding eigenvectors. Thus mi = rkEi is the multiplicity of the
eigenvalue Pij of Aj (provided that Pij 6= Pkj for k 6= i). We see that m0 = 1,∑
imi = n, and mi = trace Ei = n · (Ei)jj (indeed, Ei has only eigenvalues 0

and 1, so rk Ei equals the sum of the eigenvalues).

Proposition 1.3.2 The numbers Pij and Qij satisfy

(i) Pi0 = Qi0 = 1, P0i = ni, Q0i = mi,

(ii) PijPik =
∑d
l=0 p

l
jkPil,

(iii) miPij = njQji,
∑
imiPijPik = nnjδjk,

∑
i niQijQik = nmjδjk,

(iv) |Pij | ≤ nj, |Qij | ≤ mj. �
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An association scheme is called primitive if no union of the relations is a
nontrivial equivalence relation. Equivalently, if no graph (X,Ri) with i 6= 0 is
disconnected. For a primitive association scheme, (iv) above can be sharpened
to |Pij | < nj and |Qij | < mj for j 6= 0.

If d = 2, and (X,R1) is strongly regular with parameters (v, k, λ, µ) and
spectrum k1 rf sg, the matrices P and Q are

P =

 1 k v − k − 1
1 r −r − 1
1 s −s− 1

 , Q =

 1 f g
1 fr/k gs/k
1 −f r+1

v−k−1 −g s+1
v−k−1

 .
The matrices P and Q can be computed from the intersection numbers of

the scheme.

Proposition 1.3.3 For j = 0, . . . , d, the intersection matrix Lj has eigenvalues
Pij (0 ≤ i ≤ d). �

The fact that the multiplicities mi = Q0i must be nonnegative integers is a
powerful restriction on the parameters of an association scheme.

1.3.3 Linear programming bound and code-clique theorem

Being symmetric and idempotent, the matrices Ej are positive semidefinite.
(Indeed, for any vector x ∈ Rn and any E with E> = E = E2 one has x>Ex =
x>E2x = x>E>Ex = ‖Ex‖2 ≥ 0.) This leads to inequalities.

First of all, we have the linear programming bound for subsets of an associ-
ation scheme. Consider a nonempty subset C of X. Its inner distribution a is
the row vector with entries ai = 1

|C|χ
>Aiχ, where χ = χC is the characteristic

vector of C. The value ai is the average number of points of C in relation Ri
to a given point of C. Note that a0 = 1 and |C| =

∑
i ai.

Theorem 1.3.4 The inner distribution a of a nonempty subset C of X satisfies
aQ ≥ 0. Moreover, (aQ)j = 0 if and only if EjχC = 0.

Proof. Let χ = χC . Then

|C|(aQ)j = χ>
∑
i

QijAiχ = nχ>Ejχ = n‖Ejχ‖2 ≥ 0. �

This theorem gives inequalities on subsets when information on their inner
distribution is given. For example, let Γ be the graph (X,Rj) defined by relation
Rj in an association scheme. Let it have valency k (namely, nj) and smallest
eigenvalue s (namely, some Pij) with k > 0. A clique C of size c in Γ has inner
distribution a with a0 = 1, aj = c − 1 and ah = 0 for h 6= 0, j. The inequality
(aQ)i ≥ 0 yields 1 + s

k (c − 1) ≥ 0, that is, c ≤ 1 + k
−s . For strongly regular

graphs this is the Hoffman bound on cliques.

One can also give results for pairs of subsets. First a lemma.
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Lemma 1.3.5 (Roos [630]) For any vectors x, y ∈ Rv, we have

d∑
i=0

x>Aiy

nni
Ai =

d∑
j=0

x>Ejy

mj
Ej .

Proof.∑
i

x>Aiy

nni
Ai =

∑
i,j

x>PjiEjy

nni
Ai =

∑
i,j

x>QijEjy

nmj
Ai =

∑
j

x>Ejy

mj
Ej . �

Let T ⊆ {1, . . . , d}. A nonempty subset C of X with characteristic vector
χ and inner distribution a is called a T -code when ai = 0 for all i ∈ T . It is
called a T -anticode when ai = 0 for all i ∈ {1, . . . , d} \T . It is called a T -design
when Ejχ = 0 for all j ∈ T . It is called a T -antidesign when Ejχ = 0 for all
j ∈ {1, . . . , d} \ T .

Theorem 1.3.6 Let C be a T -design and D a T -antidesign in X, where T ⊆
{1, . . . , d}. Then |C ∩D| = |C| · |D|/n.

Proof. Let C and D have characteristic vectors χ and η. Then nχ>Aiη =
n
∑
j Pjiχ

>Ejη = ni|C| · |D|. The theorem is the special case i = 0. �

Theorem 1.3.7 Let C be a T -code and D a T -anticode in X, where T ⊆
{1, . . . , d}. Then |C| · |D| ≤ n. When equality holds, |C ∩D| = 1.

Proof. Let χ and η be the characteristic vectors of C and D, respectively.
Apply Roos’ lemma with x = y = χ, and pre- and post-multiply by η> and η
to find

∑
i

1
ni

(χ>Aiχ)(η>Aiη) = n
∑
j

1
mj

(χ>Ejχ)(η>Ejη). The only nonzero
term on the left-hand side is that for i = 0, which is |C| · |D|. The right hand
side is bounded below by the term for j = 0, which is 1

n |C|
2|D|2. When equality

holds, C and D are an S-design and S-antidesign for some S ⊆ {1, . . . , d}, and
the previous theorem yields the desired conclusion. �

For example, if in a strongly regular graph a clique and a coclique both
meet the Hoffman bound, then they meet in a single point (see also Proposi-
tion 1.1.7(iii)).

History

The linear programming bound is due to Delsarte [276].

1.3.4 Krein parameters
The Bose-Mesner algebra A is not only closed under ordinary matrix multiplica-
tion, but also under componentwise (Hadamard, Schur) multiplication (denoted
◦). Clearly {A0, . . . , Ad} is the basis of minimal idempotents with respect to
this multiplication. Write

Ei ◦ Ej =
1

n

d∑
k=0

qkijEk.

The numbers qkij thus defined are called the Krein parameters.
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Proposition 1.3.8 The Krein parameters of an association scheme satisfy

(i) qk0j = δjk, q
0
ij = δijmj , q

k
ij = qkji,

(ii)
∑
i q
k
ij = mj ,

∑
jmj = n,

(iii) qkijmk = qjikmj,

(iv)
∑
l q
l
ijq

m
kl =

∑
l q
l
kjq

m
il ,

(v) QijQik =
∑d
l=0 q

l
jkQil,

(vi) nmkq
k
ij =

∑
l nlQliQljQlk. �

The main use of the Krein parameters is the fact that they are nonnegative,
and that the scheme satisfies additional regularity properties when some Krein
parameter is zero.

Theorem 1.3.9 (Scott [638, 639]) The Krein parameters of an association
scheme satisfy qkij ≥ 0 for all i, j, k ∈ {0, . . . , d}. �

Theorem 1.3.10 ([123], Theorem 2.3.2) For given i, j, k ∈ {0, . . . , d} one has
qkij = 0 if and only if ∑

x∈X
Ei(u, x)Ej(v, x)Ek(w, x) = 0

for all u, v, w ∈ X. �

The Krein parameters can be computed by use of equation (vi) above. In
the case of a strongly regular graph we obtain

q1
11 =

f2

v

(
1 +

r3

k2
− (r + 1)3

(v − k − 1)2

)
≥ 0,

q2
22 =

g2

v

(
1 +

s3

k2
− (s+ 1)3

(v − k − 1)2

)
≥ 0

or, equivalently (assuming r 6= k and s 6= −1),

(r + 1)(k + r + 2rs) ≤ (k + r)(s+ 1)2,

(s+ 1)(k + s+ 2rs) ≤ (k + s)(r + 1)2

(the other Krein conditions are trivially satisfied in this case).

History

L. L. Scott, jr. gave the Krein conditions in the case of finite groups with abelian
centralizer algebra, and credited C. Dunkl, who in turn quoted Kreı̆n [502],
p. 139. See also [422].
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Smith graphs and graphs with strongly regular subconstituents

A strongly regular graph is called a Smith graph when q2
22 = 0, or, equivalently,

when k = s2(2r+1)−r2s
(r+1)2−s−1 .

Theorem 1.3.11 (Cameron, Goethals & Seidel [178]) Let Γ be a strongly
regular graph with q1

11 = 0 or q2
22 = 0. Then for each vertex x both subcon-

stituents of x are themselves strongly regular or complete or edgeless.

Proof. Given three vertices u, v, w, let pijk(u, v, w) be the number of vertices x
at distances i, j, k from u, v, w, respectively. When one of i, j, k is 0, the numbers
pijk(u, v, w) do not depend on u, v, w but only on their mutual distances. E.g.,
pij0(u, v, w) = 1 if d(u,w) = i and d(v, w) = j, and pij0(u, v, w) = 0 other-
wise. We also have identities like

∑
k pijk(u, v, w) = phij when d(u, v) = h. It

follows that all pijk(u, v, w) can be expressed in the single value p111(u, v, w)
(given the mutual distances of u, v, w). Since Ej = 1

n

∑
QhjAh, we have

Ej(u, x) =
Qhj

n if d(u, x) = h. Now by Theorem 1.3.10, if q1
11 = 0, then∑

i,j,k pijk(u, v, w)Qi1Qj1Qk1 = 0. One checks that this equation is independent
of the previous identities for the pijk(u, v, w)‡, so that all values pijk(u, v, w) are
determined. �

For example, there is no graph with parameters (2950, 891, 204, 297) since it would have
q2
22 = 0 but there is no feasible parameter set on 891 vertices with valency 204 ([88]). There
are various generalizations of this theorem to distance-regular graphs of small diameter. See,
e.g., [224].

Conversely, the authors of [178] investigated in what cases both subcon-
stituents of a strongly regular graph are themselves strongly regular or com-
plete or edgeless. The primitive strongly regular graphs in question are the
Smith graphs and their complements, and possibly graphs with Latin square or
negative Latin square parameters (cf. §8.4.2).

Examples of Smith graphs are the pentagon, mK2, Km,m, the complement
of the Clebsch graph (§10.7), the complement of the Schläfli graph (§10.10),
the Higman-Sims graph (§10.31), the McLaughlin graph (§10.61), and both
of its subconstituents (§§10.34, 10.48). An infinite family of examples is that
of the strongly regular graphs with the parameters of the collinearity graph
of a generalized quadrangle of order (q, q2). It follows that these graphs are
collinearity graphs of such generalized quadrangles ([178], Theorem 7.9).

Graphs with negative Latin square parameters NLr(r
2 + 3r) are Smith

graphs (with λ = 0, cf. p. 203). All further known strongly regular graphs
with parameters LSm(n) or NLm(n) and strongly regular subconstituents are
the grids m × m or have parameters LSt(2t) or NLt(2t) (that is, (v, k, λ) =
(4t2, t(2t±1), t(t±1)). The authors of [178] conjecture that there are no further
example parameters. Examples are the graphs VOε2m(2).

1.3.5 Euclidean representation
Let (X,R) be an association scheme with d classes. Fix a primitive idempotent
E of the scheme. Let m := rkE. Now the map x 7→ x̄ that maps x ∈ X to

‡After eliminating the pijk where some index is 0, the equations are of the form∑
aijkpijk = 0 with a111 + a122 + a212 + a221 = a112 + a121 + a211 + a222. But the final

equation has aijk = Qi1Qj1Qk1 and is of this form only when Q11 = Q21, impossible.
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column x of E maps X into a system of vectors in Rm (namely, the column
space of E) with the property that the inner product 〈x̄, ȳ〉 only depends on the
relation x, y are in, and not on the choice of x, y. Indeed, if E =

∑
ciAi, and

(x, y) ∈ Ri, then 〈x̄, ȳ〉 = (E>E)xy = Exy = ci, since E> = E and E2 = E.
This allows one to use Euclidean geometry to study (X,R).

In particular we find, after scaling, that if θ is an eigenvalue 6= k of a primitive
strongly regular graph Γ of multiplicity m, then the vertices x of Γ have a
representation in Rm by unit vectors x̄ such that 〈x̄, ȳ〉 = θ

k if x ∼ y and
〈x̄, ȳ〉 = −θ−1

v−k−1 if x 6∼ y.
There are many applications.

1.3.6 Subschemes
An association scheme (X,S ) is called a subscheme (or fusion scheme) of the
association scheme (X,R) (with R = {R0, . . . , Rd}) when each S ∈ S is the
union of a subset of R, that is, when the partition R of X ×X is a refinement
of S . Equivalently, when the Bose-Mesner algebra of (X,S ) is a subalgebra of
the Bose-Mesner algebra of (X,R).

Given the P matrix of (X,R) one can find all subschemes with e classes by
considering all possible partitions Π of {0, . . . , d} into e+ 1 parts, one of which
is {0}. Let Z be the (d+ 1)× (e+ 1) (0, 1)-matrix with columns indexed by Π
with entries Ziπ = 1 if i ∈ π. (Then Z has row sums 1.) The partition Π defines
a subscheme if and only if the (d + 1) × (e + 1) matrix PZ has precisely e + 1
distinct rows.

For example, the P matrix of J(13, 6) is

1 42 315 700 525 126 7
1 29 120 50 −125 −69 −6
1 18 21 −60 −15 30 5
1 9 −15 −15 30 −6 −4
1 2 −15 20 −5 −6 3
1 −3 0 10 −15 9 −2
1 −6 15 −20 15 −6 1


and with Π = {{0}, {1, 2, 4}, {3, 5, 6}} one finds the P matrix of a subscheme
by taking the rows of PZ, deleting duplicates:1 882 833

1 24 −25
1 −18 17

 .

With Π = {{0}, {1, 6}, {2, 5}, {3, 4}} one finds
1 49 441 1225
1 23 51 −75
1 5 −21 15
1 −5 9 −5

 .

Subschemes of the Johnson scheme

Trivially, J(2m,m) has the subscheme with Π = {{0}, {1, . . . ,m−1}, {m}},
where Rm has valency 1. The scheme J(2m + 1,m) has the subscheme with
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Π = {{0}, {1,m}, {2,m − 1}, . . . , {bm+1
2 c, d

m+1
2 e}} isomorphic to the folded

scheme J (2m + 2,m + 1). Sporadic examples are due to Mathon and Klin:
the distance 1-or-3 graphs of J(10, 3) and J(12, 4), the distance 1-or-4 graph of
J(11, 4), and the distance 1-or-2-or-4 graph of J(13, 6) are strongly regular with
parameters (v, k, λ, µ) = (120, 56, 28, 24), (495, 256, 136, 128), (330, 63, 24, 9),
and (1716, 882, 456, 450), respectively. For m = 3, 4, the distance 1-or-m graph
of J(2m + 1,m) is strongly regular with parameters (v, k, λ, µ) = (35, 16, 6, 8)
and (126, 25, 8, 4), respectively.

Muzychuk [579] and Uchida [707] showed that J(n,m) does not have a
nontrivial subscheme for n ≥ f(m), where f(3) = 11, f(4) = 13, f(5) = 15,
f(6) = 18 and f(m) = 3m− 1 for m ≥ 7.

Subschemes of distance-regular graphs of diameter 3

Proposition 1.3.12 Let Γ be a distance-regular graph of diameter 3. Then
(i) the distance-2 graph Γ2 of Γ is strongly regular if and only if c3(a3 +a2−

a1) = b1a2, and
(ii) the distance-3 graph Γ3 of Γ is strongly regular if and only if Γ has

eigenvalue −1, that is, if and only if k = b2 + c3 − 1.

Proof. See [123], 4.2.17. �

For example, the distance-3 graph of the collinearity graph of a generalized
hexagon of order s is strongly regular.

1.3.7 Absolute bound and µ-bound

The absolute bound

The absolute bound expresses the fact that in a Euclidean representation the
dimension cannot be too small.

Proposition 1.3.13 The multiplicities mi (0 ≤ i ≤ d) of a d-class association
scheme satisfy ∑

qkij 6=0

mk ≤
{
mimj if i 6= j,
1
2mi(mi + 1) if i = j.

Proof. See [123], 2.3.3. �

In particular, one finds for strongly regular graphs:

Proposition 1.3.14 (Absolute bound) The multiplicities f, g of a primitive
strongly regular graph satisfy v ≤ 1

2f(f + 3) and v ≤ 1
2g(g + 3).

Proof. See [132], 10.6.8. �

Proposition 1.3.13 implies ‘if q1
11 6= 0 then v ≤ 1

2f(f + 1)’. It follows that if
v = 1

2f(f + 3) then q1
11 = 0 and if v = 1

2g(g + 3) then q2
22 = 0.

This rules out, e.g., (v, k, λ, µ) = (841, 200, 87, 35) with f = 40 and q1
11 6= 0.
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The µ-bound

For primitive strongly regular graphs with smallest eigenvalue s = −m, the
value of µ is bounded as a function of m.

This was first shown by Hoffman who developed a structure theory for
families of graphs with lower bounded smallest eigenvalue (cf. [433, 435]). An
explicit (and sharp) bound was given by Neumaier.

Theorem 1.3.15 (Neumaier [587]) Let Γ be a primitive strongly regular graph
with integral smallest eigenvalue s = −m. Then µ ≤ m3(2m − 3). If equality
holds, then n = m(m− 1)(2m− 1), where n = r − s. �

This bound is proved as a consequence of the Krein condition and the
absolute bound. It does not yield new feasibility conditions. Equality holds
for the Schläfli graph (m = 2) and the McLaughlin graph (m = 3).

Equality in Krein condition or absolute bound

With the notation from Theorem 1.3.15, the three independent parameters of a
strongly regular graph can be taken to be m,n, µ.

Proposition 1.3.16 For a primitive strongly regular graph:
(i) We have q1

11 = 0 if and only if

µ =
(n+m2 −m)(n−m)(m− 1)

n−m2 +m
.

(ii) We have v = 1
2f(f + 3) if and only if µ has the value given in (i), and

n = m(m− 1)(2m− 1). Now µ = m3(2m− 3).
(iii) We have q2

22 = 0 if and only if

µ =
(r + 1)(r2 + s)s

r2 + 2r − s
.

(iv) We have v = 1
2g(g + 3) if and only if µ has the value given in (iii), and

−s = r2(2r + 3). Now µ = r3(2r + 3). �

If the graph does not have integral eigenvalues, then these conditions hold
if and only if the graph is the pentagon. The graphs from (iii) are the Smith
graphs.

1.3.8 Coherent configurations

Above we gave the definition of a symmetric association scheme. It is the com-
binatorial analog of the permutation group-theoretical situation of a transitive
permutation group with only self-paired orbits. More general schemes are the
analogs of more general group actions.
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Coherent configurations

Consider a permutation group G acting on a finite set X. For g ∈ G, let Pg
be the permutation matrix indexed by X with entries (Pg)xy = 1 if x = gy, so
that PgPh = Pgh. The centralizer algebra A of G is the algebra consisting of
the matrices M such that PgM = MPg for all g ∈ G. A basis for A is the set
of 0-1 matrices AO, where O is a G-orbit on X ×X, and AO is the 0-1 matrix
with (AO)xy = 1 if (x, y) ∈ O.

The corresponding combinatorial analog is called coherent configuration, see
Higman [423, 424]. Thus, a coherent configuration is described by a collection
of 0-1 matrices {A0, . . . , Ad} that is a basis for an algebra A such that (i)∑
iAi = J , (ii) I ∈ A , (iii) for each i there is a j such that A>i = Aj . As

before, the Ai are viewed as adjacency matrices for relations. The fact that A
is an algebra means that AiAj =

∑
pkijAk for certain constants pkij .

A coherent configuration is called Schurian if it is derived from a permutation
group as above.

Homogeneous coherent configurations

If G is transitive, then the diagonal of X×X is a single relation, so that we can
take A0 = I. Now dim A = d+ 1 is the rank of the permutation action.

A coherent configuration with A0 = I is called homogeneous, or also a
(general) association scheme, following Delsarte [276].

Commutative association schemes

For transitive G, the action of G on X is isomorphic to the action of G on G/K
(by left multiplication), where K = Ga is a point stabilizer. The algebra A
is commutative precisely when this action is multiplicity-free, that is, when all
irreducible constituents of the permutation character π = (1K)G are distinct
(see [729], §29). Now (G,K) is a Gelfand pair.

An association scheme is called commutative when A is commutative. Now
pkij = pkji for all i, j, k.

Symmetric association schemes

A permutation group G is called generously transitive if for arbitrary elements
x, y ∈ X there is a g ∈ G with gx = y and gy = x. This happens if and only if
G is transitive and all its suborbits are self-paired (Neumann [591]).

An association scheme is called symmetric when A>i = Ai for all i, so that
M> = M for all M ∈ A . This was the original definition of association scheme
(Bose & Shimamoto [97]). A symmetric association scheme is commutative
since MN = (MN)> = N>M> = NM .

Linear programming bound

Hobart [431] proved an analog of Delsarte’s linear programming bound for
general coherent configurations.
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The Weisfeiler-Leman algorithm

The k-dimensional Weisfeiler-Leman algorithm is a procedure that given a graph
Γ with vertex set X computes a canonical partition (coloring) Π of Xk.

Compute for h ≥ 0 partitions Πh of Xk by successive refinement. Start with
Π0, the partition according to the ordered isomorphism type of the k-tuples,
so that u, v are in the same part if and only if the map ui 7→ vi (1 ≤ i ≤ k)
preserves identity, adjacency and nonadjacency.

For u ∈ Xk and x ∈ X and 1 ≤ i ≤ k, let fxi (u) be the k-tuple v with vi = x
and vj = uj for j 6= i. For h ≥ 0 and u ∈ Xk, let ch(u) be the color of u after
step h, that is, the part of Πh containing u. Given Πh, compute the refinement
Πh+1 by splitting each part according to the value of the map that assigns to
the k-tuple u the multiset {(ch(fx1 (u)), . . . , ch(fxk (u))) | x ∈ X} of k-tuples of
colors of neighboring k-tuples. Repeat this step until no further splitting occurs.
Put Π = Πh when Πh = Πh+1.

This algorithm is efficient (takes time O(vk+1 log v)), and any automorphism
of Γ must preserve Π. The special case k = 2 of this algorithm computes the
coarsest coherent configuration that is a refinement of Γ, in the sense that its
algebra A contains the adjacency matrix A of Γ.



Chapter 2

Polar spaces

In this chapter we define and study (finite) polar spaces and their collinearity
graphs. We first give a geometric description of polar spaces embedded in
a finite-dimensional vector space, and classify them, next describe the same
spaces in terms of bilinear, sesquilinear, and quadratic forms, and finally look in
detail at the geometries and graphs of each of the three families, the symplectic,
unitary, and orthogonal spaces. We give parameter information, and state what
is currently known about substructures like caps, ovoids, spreads, and tight sets.

2.1 Polar spaces
Generalities

A partial linear space is a set of points together with a collection of subsets
(called lines) such that two points are on at most one line and each line has at
least two points.

The collinearity graph (or point graph) of a partial linear space is the graph
with the points as vertices, where two (distinct) points are adjacent when they
are collinear.

The incidence graph of a partial linear space is the bipartite graph with the
points and lines as vertices, where a point is adjacent to a line when it is on the
line. The geometry is connected when its incidence graph is connected.

A flag is an incident point-line pair. An antiflag is a nonincident point-line
pair.

A subspace is a subset of the point set that contains each line that meets it
in at least two points. A singular subspace is a subspace such that any two of its
points are collinear. A (geometric) hyperplane is a proper subspace that meets
each line.

Polar spaces
A polar space is a partial linear space (X,L ) such that for each line L and

point x 6∈ L, the point x is collinear with either 1 or all points of L. This
is known as the Buekenhout-Shult axiom. The polar spaces where the second
alternative of the Buekenhout-Shult axiom does occur, every line contains at
least 3 points, every nested family of singular subspaces is finite, and no point
is collinear to all other points, were classified by Buekenhout & Shult [158].
They showed that such a polar space is equivalent to a polar space in the sense
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of Veldkamp [715] and Tits [694] and then one can use the classification in
[694]. Below we study embedded polar spaces, i.e., polar spaces embedded in a
finite-dimensional vector space. This covers all nondegenerate finite polar spaces
containing proper projective planes. In the infinite case further examples arise.

Comments
The results of Veldkamp [715] also include a classification, but restricted to the case where
all planes of the polar space are Desarguesian. This is enough for the finite case. In the
general case, there is one class of polar space (of rank 3) which does not have Desarguesian
planes; these polar spaces are usually referred to as non-embeddable polar spaces. They are
related to octonion division rings and algebraic groups of type E7. The corresponding planes
still satisfy the so-called Moufang condition (every line is a translation line).

In the Desarguesian case, besides the line Grassmannian of any projective 3-space, the
polar spaces (of rank at least 3) are classified by (nondegenerate) pseudo-quadratic forms.
However, in the case the characteristic of the skew field underlying the projective planes is
different from 2, the nondegenerate pseudo-quadratic forms are equivalent to ordinary non-
degenerate reflexive sesquilinear forms (and these are equivalent to nondegenerate Hermitian
forms and nondegenerate symmetric and alternating bilinear forms). Hence in this case the
polar space is fully embedded in a projective space in such a way that its point set is the set
of absolute points of a polarity of that projective space. In the characteristic 2 case this is not
true and the situation is more complicated. Roughly, besides the polar spaces arising from
nondegenerate reflexive forms (for a suitable definition of nondegeneracy), there are also polar
spaces contained in such a polar space that cannot be described by reflexive forms, but only by
pseudo-quadratic forms. As a result, all polar spaces in characteristic 2 can be fully embedded
in a projective space, but in some cases only as a proper subset of the set of absolute points
of a polarity.

In the finite case, the anomalies in characteristic 2 do not appear, and every Moufang
plane is Desarguesian, even Pappian (corresponding to a field). Hence all finite polar spaces
of rank at least 3 are embeddable in a finite projective space. Moreover, all examples of polar
spaces of rank 2 that produce rank 3 graphs are also embeddable in a projective space. The
embeddings also provide other rank 3 graphs by looking at points off the polar space, lines
not belonging to polar space, etc. Reasons enough to introduce embedded polar spaces and
explicitly classify the finite ones. We consider a slight variation of the definitions of Veldkamp
and Tits to adapt them to the embeddable setting. Along the way we also show that the
Buekenhout-Shult axiom is satisfied.

2.2 Embedded polar spaces

2.2.1 Projective spaces

Let V be a vector space. The projective space PV is the collection of subspaces of
V . A point (line, plane) of PV is a 1-space (2-space, 3-space) in V . A hyperplane
of PV is a hyperplane (subspace of codimension 1) of V .

If S is a subset of V , or of PV , then 〈S〉 denotes the subspace of V spanned
by S. We write 〈v〉 instead of 〈{v}〉. The empty set of vectors spans the 0-
dimensional subspace 0.

Suppose V has finite dimension n over the finite field Fq. Then V has qn
vectors, and PV has (qn−1)/(q−1) points. More generally, V has

[
n
m

]
q
subspaces

of dimension m, where
[
n
m

]
q

=

m−1∏
i=0

qn−i − 1

qm−i − 1
is the Gaussian (or q-binomial)

coefficient. The subscript q is usually omitted.
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2.2.2 Definition of embedded polar spaces
Let V be a vector space and PV the corresponding projective space. A pair
(X,Ω) is a polar space (embedded) in PV if X is a set of points spanning PV
and Ω is a nonempty family of finite-dimensional subspaces of V satisfying
conditions (EPS1) and (EPS2) below. We shall view the members of Ω as sets
of projective points, and write x ∈ ω and ω ∩ ω′ = ∅ instead of x ⊆ ω and
ω ∩ ω′ = 0 for x ∈ X and ω, ω′ ∈ Ω.

Two points x, y of X are called collinear (in (X,Ω)), notation x ⊥ y, if they
are contained in a common member of Ω. Otherwise they are called opposite.

(EPS1) For every ω ∈ Ω, the set of points of ω is contained in X.

(EPS2) For every x ∈ X and every ω ∈ Ω with x /∈ ω, the set U of points of ω
collinear with x is a codimension 1 subspace of ω and 〈x, U〉 ∈ Ω.

Let (X,Ω) be an embedded polar space. By (EPS1),
⋃

Ω ⊆ X; by (EPS2),
X ⊆

⋃
Ω, since Ω 6= ∅. Hence X is the union of all elements of Ω.

The intersection R :=
⋂

Ω of all members of Ω is called the radical of (X,Ω).
The space (X,Ω) is called nondegenerate if

(EPS3) The intersection of all members of Ω is empty.

The collinearity graph Γ(X,Ω) of (X,Ω) is the graph with vertex set X
with collinearity as adjacency. We shall show that the collinearity graph of a
nondegenerate embedded polar space with finite set of points is strongly regular.

2.2.3 Rank and radical
Let (X,Ω) be an embedded polar space. Let ∆ = ∆(X,Ω) be the graph with
vertex set Ω, where ω ∼ ω′ when ω ∩ ω′ has codimension 1 in both ω and ω′.
Vertices in the same connected component of ∆ have the same dimension.

Lemma 2.2.1 The graph ∆ is connected. In particular, the dimensions of all
members of Ω are the same.

Proof. By (EPS1) and (EPS2), no member of Ω is strictly contained in
another. (If ω ⊂ ω′ and x ∈ ω′ \ ω then x ∈ X by (EPS1) and x is collinear
with all of ω, contradicting (EPS2).)

Hence, if ω and ξ are distinct members of Ω, then we can find x ∈ ξ \ ω and
by (EPS2) there is an ω′ ∈ Ω that is adjacent to ω and such that ω′ contains
〈x, ω∩ ξ〉. Since ξ is finite-dimensional, an induction on dim(ω∩ ξ) implies that
ξ and ω are in the same connected component of ∆. �

The common (vector space) dimension n of all members of Ω is called the
(polar) rank of (X,Ω).

We show some equivalent forms of axiom (EPS3).

Lemma 2.2.2 Equivalent are
(i) (EPS3),

(ii) Every point of X is opposite some other point of X,
(iii) Every member of Ω is disjoint from some other member of Ω,
(iv) There exist two disjoint members of Ω.
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More generally, if R is the radical of (X,Ω), then
(a) Every point of X \R is opposite some other point of X \R.
(b) Every member of Ω meets some member of Ω in precisely R.

Proof. (a). Let x ∈ X \ R. Then by definition of R there is an ω ∈ Ω with
x /∈ ω. By (EPS2) the point x is not collinear to all points of ω.

(a)⇒(b). Let ξ ∈ Ω be given, and ω ∈ Ω be arbitrary. If x, x′ ∈ X, where
x ∈ ω ∩ ξ and x′ is opposite x (by (a), there is such a pair when ω ∩ ξ 6= R),
then by (EPS2) there is an ω′ containing x′ adjacent to ω in ∆. Now ω′ ∩ ξ is
strictly contained in ω∩ξ since x /∈ ω′ and x is already collinear with the points
of the hyperplane ω ∩ ω′ of ω′, and cannot be collinear with any further points
of ω′. Since ξ is finite-dimensional and dim(ω′∩ ξ) < dim(ω∩ ξ), we inductively
end with a member of Ω meeting ξ precisely in R.

Now each of the four statements (i)–(iv) says that R is empty. �

2.2.4 Maximal singular subspaces
A subspace S of an embedded polar space (X,Ω) is a subset S ⊆ X such that, if
x, y ∈ S are two distinct collinear points, then all points of the line 〈x, y〉 belong
to S. A singular subspace S is a subspace containing no opposite pair of points.

Proposition 2.2.3 In an embedded polar space (X,Ω), the maximal singular
subspaces are precisely the elements of Ω.

Proof. Certainly the elements of Ω are singular subspaces. Let S be a maximal
singular subspace. Given ω ∈ Ω not containing S, we find a neighbor ω′ that
meets S in a strictly larger subspace. But the intersection ω ∩ S cannot have
dimension larger than the rank n, so S is contained in, and therefore equals,
some element of Ω. �

Corollary 2.2.4 (Buekenhout-Shult axiom) Let L be a line containing two
collinear points of an embedded polar space (X,Ω), and let x ∈ X. Then x is
collinear to either exactly one or all points of L.

Proof. Including L in a maximal singular subspace, which is a member of Ω
by the foregoing proposition, yields the corollary. �

2.2.5 Order of an embedded polar space
For x ∈ X, let x⊥ be the set of all points of X collinear with x.

Lemma 2.2.5 Given an embedded polar space (X,Ω) with radical R, and a
point x ∈ X,

(i) for every ω ∈ Ω with x ∈ ω there exists ω′ ∈ Ω with ω ∩ ω′ = 〈x,R〉;
(ii) for each point y ∈ x⊥ \ 〈x,R〉, there exists an opposite point y′ ∈ x⊥.

Proof. By Lemma 2.2.2 (b) we may assume x /∈ R. Let ω ∈ Ω with x ∈ ω. By
Lemma 2.2.2 (b) we find ξ ∈ Ω with ω ∩ ξ = R. By (EPS2), there exists ω′ ∈ Ω
with x ∈ ω′ ∼ ξ. A line in ω ∩ ω′ intersects ξ nontrivially, hence intersects
R. Consequently R is a hyperplane of ω ∩ ω′ and so ω ∩ ω′ = 〈x,R〉. Take
y ∈ ω \ 〈x,R〉 arbitrarily (then y is arbitrary in x⊥ \ 〈x,R〉), then by (EPS2)
there is a point y′ ∈ ω′ not collinear to y. �
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Lemma 2.2.6 Let (X,Ω) be an embedded polar space and p ∈ X. Let Hp =
〈p⊥〉. Then Hp ∩X = p⊥.

Proof. Suppose not, and let y ∈ Hp ∩X be opposite p such that the number,
saym, of members ω1, . . . , ωm of Ω containing p needed to generate y is minimal.
(Such an m exists since y is generated by a finite number of points of p⊥.)
Obviously m > 1. Let ω ∈ Ω be such that y ∈ ω ∼ ωm and put S =
〈ω1, . . . , ωm−1〉. Since ω ⊆ 〈S, ωm〉, so that dim〈S, ω〉 ≤ dim〈S, ωm〉, we have
dim(S ∩ ω) ≥ dim(S ∩ ωm). And since p ∈ ωm \ ω, there is at least one point z
in (S ∩ ω) \ ωm. Now z ∈ X since ω ⊆ X, and z ∈ p⊥ by minimality of m, so
that z is collinear with all points of ωm, contradicting (EPS2). �

Proposition 2.2.7 Let p be a point of the embedded polar space (X,Ω) of rank
n and with radical R, where p /∈ R. Put Xp = p⊥ and Ωp = {ω ∈ Ω | p ∈ ω}.
Then (Xp,Ωp) is an embedded polar space of rank n and radical 〈p,R〉 in Hp.

Proof. Note that two points of Xp are collinear in (Xp,Ωp) if and only if they
are collinear in (X,Ω). �

Lemma 2.2.8 Let (X,Ω) be an embedded polar space of rank n with radical R,
and let p ∈ X \R. If dimR ≤ n− 2, then Hp is a hyperplane of PV .

Proof. Fix z ∈ X \ p⊥ and let z′ ∈ X \ p⊥ be arbitrary. We show that
z′ ∈ 〈Hp, z〉, which completes the proof of the lemma. By Lemma 2.2.5 (ii) we
can find noncollinear y, y′ ∈ p⊥ (since each ω on p has dimension n, while 〈p,R〉
has dimension at most n − 1). By Corollary 2.2.4 we may assume that z ∈ y⊥
and z′ ∈ y′⊥ (by adapting the choices of y and y′ in the lines 〈p, y〉 and 〈p, y′〉).
By the same corollary, since y is not collinear to y′, the point y is collinear to a
unique point w′ of the line 〈z′, y′〉. Since lines contain at least three points, we
can pick a point u′ of 〈z′, y′〉\{y′, w′}. The point u′ is collinear to a unique point
u of 〈z, y〉\{y}. Again by Corollary 2.2.4, there is a unique point v ∈ 〈u, u′〉∩p⊥
and v /∈ {u, u′}. We conclude z′ ∈ 〈Hp, u

′〉 = 〈Hp, u〉 = 〈Hp, z〉. �

Two polar spaces (X,Ω) and (X ′,Ω′) in the projective spaces PV and PV ′,
respectively, are isomorphic if there is an isomorphism θ : PV → PV ′ mapping
X bijectively to X ′ and mapping Ω bijectively onto Ω′. Isomorphic embedded
polar spaces have isomorphic collinearity graphs. An isomorphism from (X,Ω)
to itself is called an automorphism, or a collineation.

Proposition 2.2.9 Let x and y be two opposite points of an embedded polar
space (X,Ω) of rank n and with radical R, where dimR ≤ n − 2. Set Ωx,y =
{ω ∩ x⊥ | y ∈ ω ∈ Ω}. Then Ωx,y = Ωy,x, and (x⊥ ∩ y⊥,Ωx,y) is an embedded
polar space of rank n − 1 in the subspace 〈x⊥ ∩ y⊥〉 of dimension dimV − 2,
with radical R.

Moreover, if z is opposite x, then the embedded polar spaces (x⊥ ∩ y⊥,Ωx,y)
and (x⊥ ∩ z⊥,Ωx,z) are isomorphic.

Proof. The fact that Ωx,y = Ωy,x follows immediately from Axiom (EPS2).
Since 〈x⊥〉 = 〈x, x⊥ ∩ y⊥〉, and hence 〈x⊥ ∩ y⊥〉 = 〈x⊥〉 ∩ 〈y⊥〉, the fact that
dim 〈x⊥∩y⊥〉 = dimV −2 follows from Lemma 2.2.8. Now, (EPS1) is trivial for
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(x⊥ ∩ y⊥,Ωx,y) and (EPS2) follows from noting that x⊥ ∩ y⊥ does not contain
any element of Ω (hence the rank of Ωx,y is n−1). The fact that R is the radical
follows immediately from Proposition 2.2.7.

Finally, projection of 〈x⊥∩y⊥〉 into 〈x⊥∩z⊥〉 from x induces an isomorphism
between (x⊥ ∩ y⊥,Ωx,y) and (x⊥ ∩ z⊥,Ωx,z). �

Let V be finite and defined over the field Fq. We can show, in the non-
degenerate case, that the graph Γ = Γ(X,Ω) is strongly regular, without explic-
itly calculating the precise parameters.

Theorem 2.2.10 Let (X,Ω) be finite nondegenerate embedded polar space of
rank at least 2. Then the associated collinearity graph Γ is strongly regular.

Proof. Note that Γ is not complete and not edgeless. Proposition 2.2.9 implies
that |x⊥| = 1 + q|x⊥ ∩ y⊥| = |y⊥| for all pairs of opposite points x, y ∈ X. Now
let x, y ∈ X be collinear. Select z ∈ 〈x, y〉 \ {x, y}. Then by Lemma 2.2.5(ii),
there exists u ∈ z⊥ opposite x and hence also opposite y by Corollary 2.2.4.
Hence k + 1 := |x⊥| = |u⊥| = |y⊥| is a constant and Γ is k-regular. It also
follows that the sets x⊥ ∩ y⊥, for x opposite y, have constant size k/q.

Given collinear points x, z, let y ∈ z⊥ \ x⊥. Suppose w is a point in x⊥ ∩ z⊥
not on 〈x, z〉. Let v be the unique point collinear with y on 〈x,w〉. Then
v ∈ x⊥∩y⊥∩z⊥. Hence, if the valency of the graph Γ(x⊥∩y⊥,Ωx,y) is k′ (note
that k′ = 0 if n = 2), then the number of points of X collinear to both x and z
is q + 1 + qk′. �

The last part of the proof also shows that there are a constant number of
singular planes of (X,Ω) through a line of (X,Ω). Similarly, continuing that
argument, we derive the following consequence, also valid in the infinite case.

Corollary 2.2.11 If the rank of the not necessarily finite nondegenerate em-
bedded polar space (X,Ω) is n, then there are a constant number of maximal
singular subspaces of (X,Ω) which contain a given singular subspace of dimen-
sion n− 1. �

Order

Let (X,Ω) be a finite nondegenerate embedded polar space of rank n. We
set t + 1 equal to the number of maximal singular subspaces of (X,Ω) that
contain a given singular subspace of dimension n − 1. We call (q, t) the order
of (X,Ω). Note that t ≥ 0 by Proposition 2.2.3. But in fact we have t ≥ 1 by
Lemma 2.2.5 (ii), as t+1 is the number of singular lines of a polar space of rank
2 through a point. Note that, by the definition of t, the order of (x⊥∩y⊥,Ωx,y),
for x ∈ X opposite y ∈ X is also (q, t). Polar spaces with t = 1 are called
non-thick.

Clique and coclique extensions

If Γ is a graph with vertex set X, then its m-coclique extension is the graph
with vertex setM×X, where |M | = m, and adjacencies (i, x) ∼ (j, y) whenever
x ∼ y. Itsm-clique extension is the graph with vertex setM×X, and adjacencies
(i, x) ∼ (j, y) whenever x ∼ y or i 6= j, x = y. If Γ has adjacency matrix A
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then these graphs have adjacency matrices Jm⊗A and (Jm⊗(A+ Iv))− Im⊗Iv,
respectively, where v = |X|.

Now Proposition 2.2.9 implies: Let (X,Ω) be an embedded polar space of
rank n ≥ 2 and order (q, t). Then its collinearity graph Γ is locally the q-clique
extension of a polar space of rank n− 1 and order (q, t).

2.2.6 Parameters and spectrum of the polar space strongly
regular graphs

We are now ready to determine the parameters of Γ in terms of (q, t).

Theorem 2.2.12 Let (X,Ω) be a finite embedded polar space of rank n ≥ 2 and
order (q, t). Then the strongly regular graph Γ(X,Ω) has parameters (v, k, λ, µ)
and spectrum k1 rf sg, where

v =
qn − 1

q − 1
(tqn−1 + 1), r = qn−1 − 1,

k = q
qn−1 − 1

q − 1
(tqn−2 + 1), s = −tqn−2 − 1,

λ = q2 q
n−2 − 1

q − 1
(tqn−3 + 1) + q − 1, f =

tq(qn − 1)(tqn−2 + 1)

(q − 1)(q + t)
,

µ =
qn−1 − 1

q − 1
(tqn−2 + 1) =

k

q
, g =

q2(qn−1 − 1)(tqn−1 + 1)

(q − 1)(q + t)
.

Note that the use of ‘order’ implies that (X,Ω) is nondegenerate.

Proof. We count the number v = |X| of points as follows. Fix ω ∈ Ω. Every
point x outside ω is contained in a unique ξ ∈ Ω with x ∈ ξ and ω ∩ ξ a
hyperplane in ω. There are (qn− 1)/(q− 1) hyperplanes in ω each contained in
t members of Ω distinct from ω itself. Each such member contains qn−1 points
outside ω. This gives v.

Now µ is the number of points of a polar space of rank n− 1 and order (q, t)
and k = qµ. Finally, λ is q times the number of points in x⊥ ∩ y⊥ collinear to a
given point z ∈ x⊥ ∩ y⊥ (including z), minus 1 (namely, excluding z itself). �

Proposition 2.2.13 Let (X,Ω) be a finite embedded polar space of rank n ≥ 2

and order (q, t). Then |Ω| =
∏n−1
i=0 (tqi + 1). �

2.2.7 Ovoids, spreads, m-systems, h-ovoids, hemisystems
Let (X,Ω) be a finite embedded polar space of rank n ≥ 2 and order (q, t). Let
Γ = Γ(X,Ω) be its collinearity graph.

Proposition 2.2.14 In the strongly regular graph Γ the maximal cliques are
precisely the elements of Ω (and have size (qn − 1)/(q − 1)). Every coclique C
satisfies |C| ≤ tqn−1 + 1. Equivalent are: (i) |C| = tqn−1 + 1, (ii) |C ∩ ω| = 1
for each ω ∈ Ω, (iii) |x⊥ ∩ C| = tqn−2 + 1 for each x /∈ C.

Proof. Since the span of a clique is a clique again, the maximal cliques of Γ
are the maximal singular subspaces of (X,Ω), i.e., the elements of Ω. These
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have dimension n and size (qn − 1)/(q − 1), and hence attain the Hoffman
bound (Proposition 1.1.7). For cocliques C, the upper bound on |C|, and the
conclusions for equality follow from that same proposition. That (iii) implies
(i) follows by counting edges between C and X \ C. Let mn(q, t) be the size
of Ω as given in Proposition 2.2.13. That (ii) implies (i) follows from |C| =
mn(q, t)/mn−1(q, t). �

A set of points C that meets each ω ∈ Ω in a single point is called an
ovoid of the polar space. For a discussion of when ovoids exist, see the various
subsections of §§2.5–2.7. A general result is that existence (nonexistence) of
ovoids implies the existence (nonexistence) of ovoids in embedded polar spaces
of smaller (larger) rank.

Proposition 2.2.15 If Γ(X,Ω) has a coclique of size c, then there is a pair of
opposite points x, y ∈ X such that the embedded polar space (x⊥ ∩ y⊥,Ωx,y) of
rank n−1 (with the notation of Proposition 2.2.9) has a coclique of size at least
d1 + c−1

q e.

Proof. Let C be a coclique of Γ(X,Ω) and let L be a line of (X,Ω) containing
a point p ∈ C. For each x in L \ {p} we select y ∈ X opposite x and construct
a coclique Cx as follows. For every point u ∈ C ∩ x⊥, let u′ be the point on the
line xu collinear in (X,Ω) to y. Then the set of all such points u′ is a coclique
Cx in Γ(x⊥ ∩ y⊥,Ωx,y). Since every point of C \ {p} is collinear to a unique
point x of L \ {p}, the q cocliques thus obtained contain in total q + |C| − 1

points. Hence at least one among them contains at least d1 + |C|−1
q e points. �

In particular we have:

Corollary 2.2.16 If the embedded polar spaces (X ′,Ω′) = (x⊥ ∩ y⊥,Ωx,y), for
noncollinear x, y ∈ X, do not contain an ovoid, then neither does (X,Ω). �

Spreads and m-systems

A spread of an embedded polar space (X,Ω) is a collection of members of Ω
that partitions X. If (X,Ω) has rank n ≥ 2 and order (q, t), then clearly
|S| ≤ |X|/ q

n−1
q−1 = tqn−1 + 1, the same bound we found for ovoids.

Shult & Thas [653] define more generally a partial m-system to be a
collection {U1, . . . , Ur} of singular subspaces Ui of projective dimension m such
that U⊥i ∩ Uj = 0 whenever i 6= j. They prove r ≤ tqn−1 + 1, independent of
m, and call the collection an m-system when equality holds. For m = 0 the
m-systems are the ovoids, for m = n− 1 the spreads.

For an m-system, let M =
⋃
i Ui and ω ∈ Ω. Then |M ∩ ω| = qm+1−1

q−1 .
In the cases Sp2n(q), O−2n+2(q) and U2n+1(q) (cf. Theorem 2.3.6), the size

of the intersection H ∩M takes two values for hyperplanes H, so that in these
spaces an m-system gives rise to a strongly regular graph (§7.1.1).

See also [654], [411], [658].

h-Ovoids, h-spreads and hemisystems

An h-ovoid of an embedded polar space (X,Ω) is a subset of X that meets each
ω ∈ Ω in precisely h points. Thus, a 1-ovoid is an ovoid. If O is an h-ovoid
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in (X,Ω), and H is a hyperplane spanned by ΩH = {ω ∈ Ω | ω ⊆ H}, then
O ∩H is an h-ovoid in the induced embedded polar space (X ∩H,ΩH). Every
h-ovoid is a regular set of size h(tqn−1 + 1), degree (h−1)(tqn−2 + 1) and nexus
h(tqn−2 + 1) in Γ(X,Ω).

An h-spread of an embedded polar space (X,Ω) is a collection of members
of Ω such that each x ∈ X is contained in precisely h of them. Thus, a 1-spread
is a spread.

A hemisystem of an embedded polar space (X,Ω) is a subset of Ω that for
each x ∈ X contains precisely half of the members of Ω containing x. Thus,
a hemisystem is an h-spread, where h = 1

2

∏n−2
i=0 (tqi + 1). Hemisystems were

introduced by Segre [640], who showed that a nontrivial h-spread of U(4, q)
must be a hemisystem, and constructed such hemisystems in case q = 3. A
hemisystem of points in an embedded polar space (X,Ω) of rank 2 is a (q+1)/2-
ovoid, i.e., a subset of X meeting each line in exactly half of its points.

2.2.8 Intriguing or regular sets; i-tight sets

In the polar space literature the notion of ‘intriguing set’ is used to refer to
a regular set of the underlying strongly regular graph; we shall use ‘regular
set’. Let Y be a regular set of the embedded polar space (X,Ω) of order (q, t),
and let Y have degree d and nexus e. (Then |Y |(k − d) = (v − |Y |)e implies
|Y | = ev

k−d+e .) According to §1.1.13, there are two cases.

Case d− e = r. Since in this case |Y | = ev
k−r = e · qn−1

qn−1−1 , and gcd(qn − 1,

qn−1 − 1) = q − 1, we deduce that e is a multiple of q
n−1−1
q−1 , say e = i · q

n−1−1
q−1 .

In this case, Y is called a tight set of (X,Ω), in particular an i-tight set. So, the
size, degree, and nexus of i-tight sets is |Y | = i · q

n−1
q−1 , d = qn−1− 1 + i · q

n−1−1
q−1 ,

and e = i · q
n−1−1
q−1 . The terminology ‘tight set’ is from [608].

An example of a 1-tight set is a maximal singular subspace.

Case d − e = s. Applying Proposition 1.1.3 to Y with Y ′ any maximal
singular subspace, we see that each maximal singular subspace intersects Y in a
constant number of points. Hence Y is an h-ovoid for some natural number h.

There are some results in the literature that classify i-tight sets for small i
in various polar spaces. We will review some of these in the various subsections
of §§2.5–2.7. For now, we content ourselves with mentioning some standard
examples of i-tight sets.

Disjoint unions of maximal singular subspaces

Since disjoint unions of tight sets are tight again, in particular the disjoint
union of i maximal singular subspaces is an i-tight set. For i = 1, this is the
only possible example, as is easily seen from the value of the degree. The papers
[42] and [565] contain for each finite polar space an upper bound b so that if
i ≤ b, then an i-tight set is automatically the union of disjoint maximal singular
subspaces.
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Polar subspaces of the same rank

Let (X,Ω) be an embedded polar space of rank n and order (q, t) and let (X ′,Ω′)
be an embedded polar space of rank n order (q, t′), with X ′ ⊆ X and Ω′ ⊆ Ω. If
t′ < t, then X ′ is an i-tight set with i = t′qn−1 + 1, that is the size of a putative
ovoid or spread in (X ′,Ω′), which is not surprising as a spread in (X ′,Ω′) gives
rise to the tight set X ′ of (X,Ω) of type ‘the disjoint union of maximal singular
subspaces’.

2.2.9 Distance-regular graphs on singular subspaces

We show that the graphs ∆(X,Ω) (on the maximal singular subspaces, adjacent
when they meet in codimension 1) are distance-regular (cf. §1.2).

Theorem 2.2.17 Let (X,Ω) be a finite embedded polar space of rank n ≥ 2 and
order (q, t). Then ∆(X,Ω) is distance-regular of diameter n. The parameters
are ci = (qi − 1)/(q − 1) and bi = tqi(qn−i − 1)/(q − 1) for 0 ≤ i ≤ n. The
distance of two vertices ω, ω′ in ∆(X,Ω) is the codimension of ω ∩ ω′ in both.

Proof. Let ω, ω′ ∈ Ω, where dim ω∩ω′ = n− i. If ω′′ ∼ ω′ and dim ω∩ω′′ >
n − i, then ω′′ contains some x ∈ ω \ ω′ and then is uniquely determined by
x ∈ ω′′ ∼ ω′. The number of such ω′′ is (qi − 1)/(q − 1), which is nonzero for
i > 0. This shows that ω and ω′ have distance at most, and therefore precisely, i
in ∆(X,Ω), and that ci = (qi−1)/(q−1). If ω′′ ∼ ω′ and dim ω∩ω′′ < n−i, then
ω′ ∩ ω′′ is a hyperplane in ω′ not containing ω ∩ ω′. There are (qn − qi)/(q− 1)
such hyperplanes, each contributing t choices for ω′′. This yields the stated
value of bi. �

These graphs have eigenvalues θi = t
qn−i − 1

q − 1
− qi − 1

q − 1
(0 ≤ i ≤ n).

For more details, see [123], §9.4.
The special case n = 2 yields strongly regular graphs. See Theorem 2.2.19

below.

2.2.10 Generalized quadrangles

A generalized quadrangle (X,L ) is a partial linear space such that given a
point x ∈ X and a line L ∈ L not incident with x, there is exactly one pair
(y,M) ∈ X ×L with x ∈M 3 y ∈ L.

If every point is contained in at least two lines, then the dual of a generalized
quadrangle (X,L ) is the partial linear space with point set L and set of lines
{{L ∈ L | x ∈ L} | x ∈ X} and is also a generalized quadrangle.

A finite generalized quadrangle is said to be of order (s, t) when s > 0, t > 0
and every line is incident with s+1 points and every point is incident with t+1
lines. Then its dual has order (t, s). An arbitrary generalized quadrangle of
order (s, t) is often denoted by GQ(s, t).

Examples of generalized quadrangles of order (s, t) are known when s = 1
or (s, t) = (q, q), (q, q2), (q2, q3), or (q − 1, q + 1) (where q is a prime power),
and the duals of these. For constructions and properties, see [609], [687], [710].
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Proposition 2.2.18 The collinearity graph of a generalized quadrangle of order
(s, t) is strongly regular with parameters (v, k, λ, µ) and spectrum k1 rf ag, where

v = (s+ 1)(st+ 1), r = s− 1,

k = s(t+ 1), a = −t− 1,

λ = s− 1, f =
s(s+ 1)t(t+ 1)

s+ t
,

µ = t+ 1, g =
s2(st+ 1)

s+ t
.

(We named the negative eigenvalue here a instead of s to avoid a conflict
with the s from the order.)

Since the multiplicities are integers, one has the divisibility condition that
(s+ t) | s2(s2 − 1).

The 2nd Krein condition implies s = 1 or t ≤ s2. Dually, one has t = 1 or
s ≤ t2.

2.2.11 Strongly regular graphs on the lines

An embedded polar space of rank 2 is a generalized quadrangle, and the above
applies, and we have strongly regular graphs on the duals. Or, we might invoke
Theorem 2.2.17 with n = 2.

Theorem 2.2.19 Let (X,Ω) be a finite embedded polar space of rank 2 and
order (q, t). Then the graph ∆ = ∆(X,Ω) is strongly regular with parameters
(v, k, λ, µ) and spectrum k1 rf sg, where

v = (1 + t)(1 + qt), r = t− 1,

k = t(q + 1), s = −q − 1,

λ = t− 1, f =
tq(t+ 1)(q + 1)

q + t
,

µ = q + 1 =
k

t
, g =

t2(tq + 1)

q + t
.

2.2.12 Distance-regular graphs on half of the maximal sin-
gular subspaces

Let (X,Ω) be a finite embedded polar space of rank n and order (q, 1). We
see from Theorem 2.2.17 that the graph ∆ = ∆(X,Ω) has diameter n, and
is bipartite (since k = bi + ci for all i). Now Theorem 1.2.2 tells us that the
halved graphs are distance-regular of diameter bn/2c. In particular, they will
be strongly regular for n = 4, 5.

Let ∆1/2 be one of the two connected components of the distance-2 graph
of ∆. We will see later (see §3.2) that both components are isomorphic. It will
also turn out that, if (X,Ω) has rank 4, then Γ = Γ(X,Ω) is isomorphic to
∆1/2. Hence, we only obtain a new strongly regular graph for rank 5. See §3.2
for more details.
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Theorem 2.2.20 Let (X,Ω) be a finite embedded polar space of rank 5 of order
(q, 1). Then the graph ∆1/2 is strongly regular with parameters (v, k, λ, µ) and
spectrum k1 rf sg, where

v = (q4 + 1)(q3 + 1)(q2 + 1)(q + 1), r = q5 + q4 + q3 − 1,

k = q(q2 + 1)
q5 − 1

q − 1
= q

[
5

2

]
q

, s = −q2 − 1,

λ = q − 1 + q2(q + 1)(q2 + q + 1), f = q7 + q5 + q4 + q3 + q,

µ = (q2 + 1)(q2 + q + 1) =

[
4

2

]
q

, g = q2(q4 + 1)
q5 − 1

q − 1
.

Proof. Immediate from Theorems 2.2.17 and 1.2.2 (i). �

2.3 Classification of finite embedded polar spaces

2.3.1 Residues

We first note the following straightforward generalization of Proposition 2.2.9.
For a subset A ⊆ X we use the notation A⊥ to denote the set of points of X
collinear to all points of A.

Proposition 2.3.1 Let S be a singular subspace of dimension i, 0 ≤ i ≤ n− 2,
of a nondegenerate embedded polar space (X,Ω) of rank n. Then there exists a
singular subspace T of dimension i with the property that no point of S ∪ T is
collinear to all points of S∪T . Also, if XS,T = S⊥∩T⊥ and ΩS,T = {ω∩XS,T |
ω ∈ Ω}, then (XS,T ,ΩS,T ) is a nondegenerate polar space in 〈XS,T 〉 of rank n−i
whose isomorphism type does not depend on T , i.e., if U is an arbitrary singular
subspace of dimension i with the property that no point of S∪U is collinear to all
points of S ∪ U , then the embedded polar spaces (XS,T ,ΩS,T ) and (XS,U ,ΩS,U )
are isomorphic. We also have dim〈XS,T 〉 = dimV − 2i. In the finite case,
(X,Ω) and (XS,T ,ΩS,T ) have the same order.

Proof. Proceeding by induction on dimS, we note that for dimS = 1 we
can refer to Proposition 2.2.9. For dimS ≥ 2, we choose a pair of noncollinear
points x, y with x ∈ S. Induction implies that we can find a singular subspace
T ′ ⊆ x⊥ ∩ y⊥ with the property that no point of (S ∩ y⊥)∪T ′ is collinear to all
points of (S∩y⊥)∪T ′. Set T = 〈T ′, y〉. Clearly, no point of S∪T is collinear to
all points of S ∪ T . Now we see that, inside x⊥ ∩ y⊥, the set of points collinear
to all points of (S ∩ y⊥) ∪ T ′ is exactly S⊥ ∩ T⊥ and so induction yields that
(XS,T ,ΩS,T ) is a nondegenerate polar space in 〈XS,T 〉 of rank n− i.

The claim about the isomorphism type is proved exactly in the same way as
the last assertion of Proposition 2.2.9. �

Since the isomorphism class of (XS,T ,ΩS,T ) does not depend on T , we denote
that polar space by ResS and call it the residue of S.

Subspaces S and T with the property that no point of S ∪ T is collinear to
all points of S ∪ T are called opposite.
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2.3.2 Reduction to rank 2
Let (X,Ω) be a nondegenerate embedded polar space of rank n ≥ 3. Let x ∈ X.
Then Resx is a nondegenerate embedded polar space of rank n − 1 ≥ 2 whose
isomorphism type is independent of x. Hence, in order to classify all (finite)
embedded polar spaces, it suffices to determine all nondegenerate embedded
polar spaces of rank 2, and then determine all extensions to higher ranks. In
this paragraph, we will show that a nondegenerate embedded polar space admits
at most one extension to any given higher rank. More precisely:

Theorem 2.3.2 Let (X,Ω) be a nondegenerate embedded polar space of rank
n ≥ 2. Then, up to isomorphism, there exists at most one nondegenerate
embedded polar space (X ′,Ω′) of rank n + 1 such that for any pair of opposite
points x, y ∈ X ′ the embedded polar space (X ′x,y,Ω

′
x,y) is isomorphic to (X,Ω).

Proof. Suppose two embedded polar spaces (X ′1,Ω
′
1) and (X ′2,Ω

′
2) as de-

scribed in the theorem exist. Let ⊥i denote the collinearity in (X ′i,Ω
′
i), i = 1, 2,

and let ⊥X denote the collinearity in (X,Ω).
Let xi, yi be two opposite points of X ′i, i = 1, 2. Then x⊥i

i ∩y
⊥i
i is isomorphic

to (X,Ω). By Proposition 2.3.1, dim〈X ′1〉 = dim〈X〉 + 2 = dim〈X ′2〉. For
convenience, and without loss of generality, we can thus identify x⊥i

i ∩ y
⊥i
i with

X, i = 1, 2, and moreover assume that x1 = x2 =: x and y1 = y2 =: y. Then
〈X ′1〉 = 〈X ′2〉 and x⊥1 ∪ y⊥1 coincides with x⊥2 ∪ y⊥2 .

Let u, v ∈ X be two opposite points and choose arbitrarily y′ ∈ 〈u, y〉\{u, y}.
By possibly applying a projective collineation fixing all points of 〈y,X〉 ∪ {x},
we may assume that the same point x′ ∈ 〈v, x〉 \ {v, x} is collinear to y′ in
both (X ′1,Ω

′
1) and (X ′2,Ω

′
2). Then 〈u⊥X , x′〉 ⊆ 〈y′⊥i〉. Since every line of

(X ′1,Ω
′
1), or equivalently, of (X ′2,Ω

′
2), through x contains a unique point of

y′⊥i , i = 1, 2, and also a unique point of 〈u⊥X , x′〉 (for dimension reasons: it
is a hyperplane in 〈x⊥i〉), we see that y′⊥i ∩ x⊥i = x⊥i ∩ 〈u⊥X , x′〉, i = 1, 2.
Since x⊥1 = x⊥2 , this shows that y′⊥1 = y′⊥2 . Now pick a maximal singular
subspace ω ∈ Ω through u and an opposite (disjoint) one, say ξ, containing v.
Then ω′ = 〈ω, y〉 and ξ′ = 〈ξ, x〉 belong to Ω′1 ∩ Ω′2. In (X ′i,Ω

′
i), i = 1, 2, the

mapping ρi : ω′ → ξ′ : z 7→ z⊥i ∩ ξ′ is an isomorphism from the n-dimensional
projective space ω′ to the dual of ξ′. The images of the points in ω under ρ1 and
ρ2 coincide because if z ∈ ω, then ρi(z) = 〈z⊥X ∩ ξ, x〉, which is independent
of i, i ∈ {1, 2}. Also, the images of y and y′ under both ρ1 and ρ2 are ξ and
〈y′⊥X ∩ ξ, x′〉, respectively. Hence ρ1 and ρ2 completely coincide. In particular,
for each point y′′ on 〈y, u〉 \ {y, u}, we know that y′′⊥1 ∩ 〈x, v〉 = y′′⊥2 ∩ 〈x, v〉.
Then what we proved about y′ also holds for y′′, and in particular y′′⊥1 = y′′⊥2 .
Since u ∈ X was chosen arbitrarily, we conclude that w⊥1 = w⊥2 , for all
w ∈ (x⊥1 ∪ y⊥1) \X. Interchanging the roles of (v, y) and (x, y), this argument
yields v⊥1 = v⊥2 . Since v in X was chosen arbitrarily, we conclude w⊥1 = w⊥2

for all w ∈ X, too. Since every point of X ′ is ⊥i-collinear to at least one point
of 〈y, u〉, this already implies X ′1 = X ′2.

The foregoing implies that collinearity in (X ′1,Ω
′
1) coincides with collinearity

in (X ′2,Ω
′
2) as soon as there is a point of x⊥1 ∪ y⊥1 involved. Now let w ∈

X ′1 \ (x⊥1 ∪ y⊥1). Then the previous sentence implies w⊥1 ∩ x⊥1 = w⊥2 ∩ x⊥2 .
This implies that collinearity in (X ′1,Ω

′
1) coincides with collinearity in (X ′2,Ω

′
2),

globally. Hence Ω′1 = Ω′2. �
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2.3.3 The finite rank 2 polar spaces in 3-space

Let an embedded generalized quadrangle be an embedded polar space of rank
2. Degenerate examples consist of a number of lines on a common point.
We classify the finite nondegenerate examples. The classification is due to
Buekenhout & Lefèvre [157].

Theorem 2.3.3 Let (X,L ) be an embedded nondegenerate generalized quad-
rangle of order (q, t) with dimV = 4. Then we have one of the following three
possibilities.

(i) t = 1 and L is the set of lines of a nondegenerate ruled quadric.
(ii) t =

√
q and L is the set of fixed lines under a unitary polarity, or

equivalently, (X,L ) arises from a nondegenerate σ-Hermitian form on
V , with σ : Fq → Fq : a 7→ a

√
q.

(iii) t = q and L is a linear complex, or equivalently, L is the set of fixed
lines under a symplectic polarity, or equivalently, (X,L ) arises from a
nondegenerate alternating form on V .

Proof. We first note the following property (∗).
(∗) All lines of (X,L ) through a point x ∈ X are contained in a plane πx

and every line N of PV through x not in πx contains t+ 1 points of X.

The first assertion of (∗) follows from Lemma 2.2.8.
For the second, let L ∈ L be such that x /∈ L and let M ∈ L with x ∈ M

and M ∩ L = ∅. The plane π = 〈M,N〉 meets L in a point y not in πx, and y
is collinear with a point z on M distinct from x. Now π = πz, and the t + 1
lines on z in L meet N in t+ 1 points in X, and N cannot contain any further
points in X. Property (∗) is proved.

Since (X,L ) is a generalized quadrangle, one has

(∗∗) For L ∈ L , let π(L) be the set of planes of PV through L. The mapping
L→ π(L) : x 7→ πx is a bijection.

Suppose first t = 1. Then clearly (i) holds.1

Suppose t = q. Then for every point x ∈ X we have πx ⊆ X and (∗∗)
implies that X = PV . It is then routine to check that the mapping x 7→ πx is a
polarity all of whose points are incident with their image; hence the polarity is
a symplectic one and (iii) follows.

Now suppose 1 < t < q. Let π be a plane of PV containing some point
x ∈ X, but not containing any line of (X,L ) through x (π exists since t < q).
Then π does not contain any line of (X,L ), and every line through x in π
except for π ∩ πx contains t+ 1 points of X, while π ∩ πx only contains x of X.
It follows that |π ∩ X| = tq + 1. Let L be any line of PV in π through x but
not contained in πx. Then |L∩X| = t+ 1. Pick y1, y2 ∈ L∩X \ {x}, then each
point of y⊥1 ∩ y⊥2 is collinear with y1 and y2, and hence with all points of L∩X.
It follows that πx contains 〈y⊥1 ∩ y⊥2 〉, which intersects π in a projective point
xL. Then each of the t+ 1 lines joining xL with a point of L ∩X intersects X

1When t = 1 (two lines on each point), we have a grid consisting of q + 1 mutually skew
lines, all intersected by q + 1 transversals. Any three mutually skew lines uniquely determine
the q + 1 transversals, and then the remaining lines. The projective group is transitive on
triples of mutually skew lines, so we may take them to be X = Y = 0, Z = W = 0, and
X = Z, Y = W . Now all lines lie on the hyperbolic (ruled) quadric XW = Y Z.
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in exactly one point, whereas the other q − t lines of π through xL intersect X
in at most t+ 1 points. It follows that

tq + 1 ≤ t+ 1 + (t+ 1)(q − t),

which reduces to t2 ≤ q. Since also q ≤ t2 (by the Krein condition), we conclude
t =
√
q. Then U = π ∩X is a unital2 in π with flat feet,3 so, by Thas [686], it

is a Hermitian unital arising from a unitary polarity.
Since all Hermitian unitals are projectively equivalent, we can fix one of them

and so π ∩X is projectively unique. Now we consider a line K ∈ L through x
and two points x0, x1 ∈ K\{x}. We also consider two linesM0,M1 in π through
x distinct from M := π ∩ πx. Without loss of generality we may assume that
πxi

= 〈xi,Mi〉, i = 0, 1. The substructure U ∪ x⊥0 ∪ x⊥1 of X is projectively
unique; we show that it determines the rest of X. Set z = 〈x0, xM0

〉∩〈x1, xM1
〉.

Note that xMi
∈ M , i = 0, 1, and hence z is well defined. For any point

u ∈ U ∩ (M0 ∪M1) we have z ∈ πu. Hence, if v ∈ U is a point on a block of U
that intersects both M0 ∩ U and M1 ∩ U in points distinct from x, then z ∈ πv
and hence z ∈ 〈x〈v,x〉, v⊥ ∩ K〉. All points of U except for q − 2

√
q points on√

q − 2 blocks through x are on a block of U intersecting both (M0 ∩ U) \ {x}
and (M1 ∩ U) \ {x}. But then these q − 2

√
q points are obtained by repeating

the argument withM1 replaced by another (appropriate) line of π through x. It
follows that for an arbitrary point x2 ∈ K, the plane πx2

is determined by being
spanned by x2 and ρ(〈x2, z〉 ∩M), where ρ is the unitary polarity associated
with U .

Hence the structure of (X,L ) is uniquely determined and it necessarily
arises from a unitary polarity in PV . �

2.3.4 The finite embedded generalized quadrangles
Theorem 2.3.4 Let (X,L ) be an embedded generalized quadrangle. Let 〈X〉
be a hyperplane of the projective space PV . Suppose (X ′,L ′) is an embedded
generalized quadrangle with 〈X ′〉 = PV and such that X = X ′ ∩ 〈X〉. Then the
isomorphism type of (X ′,L ′) only depends on the isomorphism type of (X,L ),
and X 6= 〈X〉. In particular, (X,L ) is not a symplectic quadrangle.

Proof. Let x′ ∈ X ′ \ X and let L′ ∈ L ′ with x′ ∈ L′. Then there is a
unique point x ∈ L′ ∩X. Set O = x′⊥ ∩X. Since x′⊥ is a hyperplane of PV ,
the set O spans a hyperplane of 〈X〉 and by Proposition 2.2.7 O = x′⊥ ∩ 〈X〉.
Clearly O is an ovoid of (X,L ). Hence (X,L ) is not symplectic as in this case
every plane intersects the quadrangle in the perp of a point. Since in the other
cases all hyperplanes intersecting (X,L ) in ovoids are projectively equivalent,
the dataset {(X,L ), x′, O}, with x′⊥ ∩ X = O, is projectively unique. Let
y ∈ O \ {x}, and let u ∈ X be an arbitrary point distinct from y but collinear

2A unital is a Steiner system S(2, a+ 1, a3 + 1), that is, is a 2-(a3 + 1, a+ 1, 1) design. An
embedded unital is such a design embedded in a projective plane PG(2, a2), where the point
set of the design is a subset P of the set of projective points, and the blocks of the design are
the nontrivial intersections P ∩ L of P with projective lines L.

3A tangent of an embedded unital U is a projective line containing precisely one point of
U . An embedded unital has a unique tangent at each point, and a+ 1 tangents through each
point p 6∈ U . An embedded unital is said to have flat feet if for each point p 6∈ U the tangents
passing through p meet the unital in collinear points.
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with y and not collinear with x. Let v ∈ 〈x, x′〉 be the unique point of 〈x, x′〉
collinear with u in X ′. Up to a collineation fixing all points of 〈X〉 ∪ {x′} the
point v is unique; hence the dataset {(X,L ), x′, O, u, v} with the above relations
is projectively unique. We now claim that it uniquely determines (X ′,L ′). In
fact, since the symplectic quadrangle can never be an embedded subquadrangle
of (X ′,L ′), the set X ′ determines L ′ and so we only need to show that X ′ is
determined. SetH = 〈x⊥X 〉∩〈O〉 = 〈x⊥〉∩〈x′⊥〉∩〈X〉. ThenH has codimension
2 in 〈X〉. Suppose 〈v⊥〉 does not contain H. Then 〈v⊥〉 ∩ 〈x′⊥〉 contains a line
M in 〈X〉 through x not contained in x⊥. Hence M intersects X in a second
point p. Then p ∈ x′⊥ ∩ v⊥ and so p = x, a contradiction. We have shown that
H ⊆ 〈v⊥〉. Now H ∩ 〈y⊥X 〉 and u belong to v⊥, hence Hv := 〈H ∩ 〈y⊥X 〉, u〉
belongs to v⊥. But Hv has codimension 1 in 〈y⊥X 〉, hence Hv intersects every
line of (X,L ) through y. Hence the set v⊥ ∩ y⊥X is uniquely determined.

Note that the previous argument shows that, in an embedded generalized
quadrangle, the following property (∗) holds.

(∗) If a line L is opposite two intersecting lines M1,M2, and L does not
intersect the plane 〈M1,M2〉, then all lines 〈u1, u2〉, with ui ∈ Mi, i = 1, 2,
u1 6= u2, collinear to the same point of L, contain a fixed point only depending
on L and the plane 〈M1,M2〉. (In the above argument, M1 and M2 are two
lines of X through y, and L is the line 〈x, x′〉.)

We can now interchange y with any other point of O collinear with any of
Hv ∩X. The same argument then gives further points of v⊥∩X, and one point
v′ is enough to see that v⊥ ∩X = 〈Hv, v

′〉 ∩X is determined. Hence all points
of X ′ collinear with v are determined.

Set L = 〈u, y〉 and let M1 be a line of X through x opposite L. Let w and
w′ be the unique point of X on M1 collinear with u and y, respectively. Let
v0 be an arbitrary point on 〈x, x′〉 \ {x′}. Let w0 be the intersection of M1

with the line 〈v0, 〈v, w〉 ∩ 〈x′, w′〉〉. By (∗) (with M2 = 〈x, x′〉), the point v0 is
collinear with the unique point on L which is (in X) collinear with w0. Hence
we can interchange the roles of v and v0 and by the foregoing, all points of
v⊥0 are determined. Hence all points collinear with a point of 〈x, x′〉 \ {x} are
determined. We can interchange x with any point x0 ∈ X collinear with X.
But then all points of X ′ are determined as no point of X ′ \X is collinear with
both x and x0. �

2.3.5 Summary
We list the finite embedded polar spaces of rank at least 2 in a vector space V
over the finite field Fq, and give order and full collineation group G.
One also meets the notationW2n−1(q), Q+

2n−1(q), Q2n(q), Q−2n+1(q), H2n−1(q2),
H2n(q2) for the polar spaces Sp2n(q), O+

2n(q), O2n+1(q), O−2n+2(q), U2n(q),
U2n+1(q), respectively.

Theorem 2.3.5 For n = 2, Table 2.1 is a list of all finite nondegenerate
embedded generalized quadrangles.

Proof. The case dimV = 4 follows from Theorem 2.3.3. Theorem 2.3.4 implies
that only O+

4 (q) and U4(q) possibly extend to a quadrangle in dimension 4. And
they do, in view of the existence of the appropriate quadrics and Hermitian
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Name Symbol dimV Order G
Symplectic Sp2n(q) 2n (q, q) PΓSp2n(q)
polar space of rank n
Hyperbolic orthogonal O+

2n(q) 2n (q, 1) PΓO+
2n(q)

polar space of rank n
Parabolic orthogonal O2n+1(q) 2n+ 1 (q, q) PΓO2n+1(q)
polar space of rank n
Elliptic orthogonal O−2n+2(q) 2n+ 2 (q, q2) PΓO−2n+2(q)
polar space of rank n
Small unitary or Hermitian U2n(

√
q) 2n (q, q1/2) PΓU2n(

√
q)

polar space of rank n
Large unitary or Hermitian U2n+1(

√
q) 2n+ 1 (q, q3/2) PΓU2n+1(

√
q)

polar space of rank n

Table 2.1: The finite nondegenerate embedded polar spaces.

forms, see §2.6–§2.7. Now let dimV = 6. Note that, if Q′ is a subquadrangle
of order (s, t′) of some generalized quadrangle Q of order (s, t), then through
every point of Q′ there are t − t′ lines of Q \ Q′. Hence (1 + t)(1 + st) ≥
(1 + t′)(1 + st′) + (1 + s)(1 + st′)(t − t′), which simplifies to t ≥ st′. Hence,
if (s, t′) = (q, q3/2), then t ≥ q5/2 > q2, a contradiction. Consequently, U5(q)
cannot be extended anymore. Since there exists a quadric with Witt index 2
in 6-dimensional space, it is the unique one extending O5(q). Note that the
above inequality yields (q, t) = (q, q2) for O−6 (q) since O5(q) has order (q, q).
The latter follows from applying the Klein correspondence to the symplectic
quadrangle (which shows that the quadrangle Sp4(q) is the dual of O5(q)). The
above inequality shows that O−6 (q) does not extend to a quadrangle in dimension
7. �

Using Theorem 2.3.2 and the constructions in §2.5–§2.7, we have the follow-
ing theorem.

Theorem 2.3.6 Table 2.1 is a list of all finite nondegenerate embedded polar
spaces. �

The embedded polar space O+
4 (q) is a ruled quadric. The automorphism

group of the embedded polar space (defined as the subgroup of the collineation
group of PV preserving the embedded polar space) is PΓO+

4 (q). If one forgets
the embedding, this geometry is a grid, with automorphism group Sq+1 wr 2. In
all other cases (of rank at least 2) the corresponding two groups coincide.

2.3.6 Group orders
We define the various classical groups and give their orders. We follow the Atlas
[215] where possible. Let q = pe and let V be a vector space over Fq.

If G is the name of a group of semilinear transformations of V , then PG is
the name of the corresponding projective group, that is, is G/(G ∩ Z) where
Z = {cI | c ∈ Fq} is the group of scalars.

If G is the name of a group of linear transformations of V , then SG is the
name of the subgroup of G consisting of the elements of determinant 1. The
prefix SG is simplified to S.
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Linear groups

The general linear group GLn(q) is the group of nonsingular linear transforma-
tions of a vector space V of dimension n over Fq. Its order is

N =

n−1∏
i=0

(qn − qi) = q
1
2n(n−1)

n∏
i=1

(qi − 1).

We have |SLn(q)| = |PGLn(q)| = N/(q − 1) and |PSLn(q)| = N/(d(q − 1)),
where d = (q − 1, n). The group PSLn(q) is also called Ln(q). The general
semilinear group ΓLn(q) consists of GLn(q) extended by the field automorphisms.
Its subgroup ΣLn(q) consists of SLn(q) extended by the field automorphisms.
The size of ΓLn(q), ΣLn(q), PΓLn(q), PΣLn(q) is a factor e larger than that of
GLn(q), SLn(q), PGLn(q), PSLn(q), respectively.

Unitary groups

The general unitary group GUn(q) is the subgroup of GLn(q2) consisting of the
elements that preserve a nondegenerate Hermitian form. Its order is

N = q
1
2n(n−1)

n∏
i=1

(qi − (−1)i).

We have |SUn(q)| = |PGUn(q)| = N/(q + 1) and |PSUn(q)| = N/(d(q + 1)),
where d = (q + 1, n). The group PSUn(q) is also called Un(q).

The Atlas [215] does not have separate names for groups larger than GUn(q),
but one has the group preserving the Hermitian form up to a scalar multiple,
and the same group extended by the field automorphisms, and the projective
versions of these two. We call the last group PΓUn(q). Its size is 2eN/(q + 1).

Symplectic groups

The symplectic group Spn(q), where n = 2m, is the subgroup of GLn(q) con-
sisting of the elements that preserve a nondegenerate symplectic form. (Such
elements all have determinant 1.) Its order is

N = qm
2
m∏
i=1

(q2i − 1).

We have |PSpn(q)| = N/d where d = (2, q − 1), and |PΓSpn(q)| = eN . (The
group PSpn(q) is also called Sn(q).)

Orthogonal groups

The general orthogonal group GOn(q) is the subgroup of GLn(q) consisting of
the elements that preserve a nondegenerate quadratic form. If n = 2m + 1 is
odd, its order is

N = dqm
2
m∏
i=1

(q2i − 1).

where d = (2, q − 1). We have |SOn(q)| = |PGOn(q)| = |PSOn(q)| = N/d. Also
|Ωn(q)| = |PΩn(q)| = |On(q)| = N/d2 and |PΓOn(q)| = eN/d.
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If n = 2m is even, we distinguish GOε
n(q) with ε = 1 for hyperbolic and

ε = −1 for elliptic forms. The order is

N = 2qm(m−1)(qm − ε)
m−1∏
i=1

(q2i − 1).

We have |SOε
n(q)| = |PGOε

n(q)| = N/d, where d = (2, qm−ε), |PSOε
n(q)| = N/d2,

|Ωεn(q)| = N/(2d), |PΩε
n(q)| = |Oε

n(q)| = N/(2d′), where d′ = (4, qm − ε), and
|PΓOε

n(q)| = eN .
In the above, if q is odd, then Ωεn(q) is the subgroup of index 2 of SOε

n(q)
consisting of the elements with spinor norm 1. If q is even and n is odd, then
Ωn(q) = SOn(q). For any q and even n, let the quasideterminant of an element
be (−1)f , where f is the dimension of the fixed space. If q is odd, this agrees
with the determinant. If q is even, let Ωεn(q) be the subgroup of SOε

n(q) of
index 2 consisting of the elements with quasideterminant 1. Geometrically (for
ε = 1) this is the subgroup preserving one of the two classes of maximal totally
isotropic subspaces. (These are the Atlas [215] definitions.)

2.4 Witt’s theorem
The spaces considered here have large groups of automorphisms, as follows from
Witt’s theorem. Witt’s theorem concerns spaces with a reflexive form, and we
first relate these to embedded polar spaces.

2.4.1 Reflexive forms
Let V be a vector space over the field F . A map f : V ×V → F is called reflexive
when f is linear in the second coordinate, and f(x, y) = 0⇔ f(y, x) = 0 for all
x, y ∈ V .

Two vectors x, y are called orthogonal (for a given reflexive f) when f(x, y) =
0. Orthogonality is a symmetric relation. If A is a set of vectors, then A⊥ is the
set of all vectors orthogonal to each element of A. This is a subspace of V . The
pair (V, f) (or, when f or V is understood, just V or f) is called nondegenerate
when V ⊥ = 0.

If V is finite-dimensional and nondegenerate, and U is a subspace of V , then
U⊥⊥ = U and dimU + dimU⊥ = dimV .

2.4.2 Reflexive forms and embedded polar spaces
Let V be a vector space over the field F , and let f be a reflexive form on V . A
subspace U of V is called totally isotropic when the restriction of f to U × U
vanishes identically.

Proposition 2.4.1 Let V be finite-dimensional, and let Ω be the set of maximal
totally isotropic subspaces of V , and let X =

⋃
Ω. Then (X,Ω) is an embedded

polar space.

Proof. Indeed, first of all we have f(x, x) = 0 for all x ∈ V with 〈x〉 ∈ X,
since such an x is contained in a totally isotropic subspace. Next, two points 〈x〉
and 〈y〉 are collinear if and only if they are orthogonal: If they are orthogonal,
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then the subspace 〈x, y〉 is totally isotropic and contained in a maximal totally
isotropic subspace ω ∈ Ω. The converse is clear. Finally, axiom (EPS2) is
satisfied: if 〈x〉 ∈ X and ω ∈ Ω with x /∈ ω, then, since f is linear in the second
coordinate, the set ξ = {y ∈ ω | f(x, y) = 0} is a codimension 1 subspace of ω,
and η = 〈x, ξ〉 is totally isotropic. Since ω is maximal, and x /∈ ω, there is a
z ∈ ω with f(x, z) 6= 0. Now ω = 〈z, ξ〉. If η were not maximal, it would be
properly contained in a totally isotropic η′, and its subspace orthogonal to z
would properly contain ξ, violating the maximality of ω. Hence η ∈ Ω. �

2.4.3 Classification of sesquilinear reflexive forms

Let V be a vector space over a field F . A map f : V × V → F is called bilinear
if it is linear in each coordinate, and sesquilinear, more precisely σ-sesquilinear,
where σ : F → F is a field automorphism, when it is additive in each coordinate,
and f(ax, by) = aσbf(x, y). Thus, the bilinear forms are the σ-sesquilinear forms
where σ is the identity. A σ-sesquilinear form f is called σ-Hermitian when σ
has order 2 and f(y, x) = f(x, y)σ for all x, y ∈ V .

A bilinear form f is called symmetric (resp. skew-symmetric) when f(x, y) =
f(y, x) (resp. f(x, y) = −f(y, x)) for all x, y. It is called alternating (or
symplectic) when f(x, x) = 0 for all x. An alternating form is skew-symmetric
since 0 = f(x+y, x+y) = f(x, x)+f(x, y)+f(y, x)+f(y, y) = f(x, y)+f(y, x). If
F has characteristic different from 2, then a skew-symmetric form is alternating.

Clearly, symmetric and alternating and σ-Hermitian forms are reflexive, and
we show that essentially there are no other sesquilinear reflexive forms.

Proposition 2.4.2 A bilinear form f is reflexive if and only if it is either
symmetric or alternating.

Proof. Clearly, symmetric and alternating forms are reflexive. Now let f be
reflexive and bilinear. Then for all x, y, z:

f(x, f(x, z)y − f(x, y)z) = f(x, z)f(x, y)− f(x, y)f(x, z) = 0,

and therefore

f(x, z)f(y, x)− f(x, y)f(z, x) = f(f(x, z)y − f(x, y)z, x) = 0. (2.1)

Substituting z = x yields f(x, x)(f(y, x)−f(x, y)) = 0 for all x, y. It follows that
if f(y, x) 6= f(x, y) then f(x, x) = 0. Suppose f(y, x) 6= f(x, y) and f(z, z) 6= 0
for some x, y, z. Then f(w, z) = f(z, w) for all w, and (2.1) implies f(x, z) = 0.
By symmetry also f(y, z) = 0. Now f(x + z, y) = f(x, y) and f(y, x + z) =
f(y, x), so that f(x+ z, y) 6= f(y, x+ z) and therefore f(x+ z, x+ z) = 0. But
f(x+z, x+z) = f(x, x)+f(x, z)+f(z, x)+f(z, z) = f(z, z) 6= 0, contradiction.

�

Proposition 2.4.3 Let f be a nondegenerate reflexive σ-sesquilinear form on
V , where dimV ≥ 2. Then either σ = 1 and f is symmetric or alternating,
or σ 6= 1, σ2 = 1 and there is a nonzero constant a ∈ F such that af is
σ-Hermitian.
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Proof. For fixed x, the linear functionals y 7→ f(x, y) and y 7→ σ−1f(y, x)
have the same kernel, so differ by a constant. It follows that there are constants
cx ∈ F such that σ−1f(y, x) = cxf(x, y) for all x, y ∈ V . By linearity of f in
the second argument, we have cx+yf(x + y, z) = σ−1f(z, x + y) = cxf(x, z) +
cyf(y, z), i.e., by additivity in the first coordinate, f(dx+y(x+y)−dxx−dyy, z) =
0 for all x, y, z, where cx = σ(dx) for all x. Since f is nondegenerate, it follows
that dx+y(x + y) − dxx − dyy = 0 for all x, y. If x, y are independent, dx+y =
dx = dy. If x, y are dependent, then we can pick z independent from x, y since
dimV ≥ 2, and dx = dz = dy. So, cx and dx do not depend on x, and we
drop the index. From f(y, x) = (cf(x, y))σ = (c(cf(y, x))σ)σ it follows that
(ccσ)σaσ

2

= a for all a ∈ F , so that ccσ = 1 and σ2 = 1. If σ = 1, then f is
bilinear and the previous proposition applies. Otherwise, pick a constant a such
that c = a/aσ. Then af is σ-Hermitian. �

(If ccσ = 1, does there exist an a with c = a/aσ? Try a = b + bσc. Then
aσc = bσc+ b = a as desired, and one only has to choose b so that a 6= 0.)

If dimV = 1, then w.l.o.g. V = F , and up to a nonzero constant f(a, b) =
aσb. There is no need for σ to have order 2.

2.4.4 Orthogonal direct sum decomposition

Let V be a finite-dimensional vector space provided with a reflexive form f . We
write V = V1 ⊥ . . . ⊥ Vr when V is the vector space direct sum of the Vi, and
the Vi are mutually orthogonal, i.e., f(x, y) = 0 for x ∈ Vi, y ∈ Vj , i 6= j.

Conversely, let (Vi, fi) (1 ≤ i ≤ r) be finite-dimensional vector spaces
provided with reflexive forms fi. Put V = ⊕iVi and define f by f(x, y) = 0
for x ∈ Vi, y ∈ Vj , i 6= j, and f(x, y) = fi(x, y) if x, y ∈ Vi. Then f is a
reflexive form on V , and V = V1 ⊥ . . . ⊥ Vr (for this f), and f is symmetric, or
alternating, or σ-sesquilinear when each of the fi is.

A point is called isotropic when it is totally isotropic. A hyperbolic line is a
nondegenerate 2-space spanned by two isotropic points.

Symplectic spaces

Let f be a symplectic form (that is, f is bilinear and f(x, x) = 0 for all x ∈ V ).
Then V can be written

V = L1 ⊥ . . . ⊥ Lr ⊥ V ⊥

where the Li are hyperbolic lines. (Indeed, if x /∈ V ⊥, then there is a y with
f(x, y) 6= 0 so that L = 〈x, y〉 is a hyperbolic line, and V = L ⊥ L⊥. Now apply
induction on dimV .)

For a hyperbolic line L = 〈x, y〉 we may take f(x, x) = f(y, y) = 0, f(x, y) =
1, so that (V, f) is determined up to isomorphism by dimV and dimV ⊥.

Orthogonal spaces

Let f be a symmetric bilinear form and assume charF 6= 2. Then V can be
written

V = P1 ⊥ . . . ⊥ Pr ⊥ V ⊥
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where the Pi are nonisotropic points. (Indeed, if f(x, x) = 0 for all x, then f is
skew-symmetric and hence identically zero since charF 6= 2. If f(x, x) 6= 0 then
V = P ⊥ P⊥ where P = 〈x〉. Now apply induction on dimV .)

Assume F is finite. If P is nonisotropic, then we can pick x with P = 〈x〉
so that either f(x, x) = 1 or f(x, x) = a, where a is a fixed nonsquare in F .
If V = P ⊥ Q is the sum of two nonisotropic points P = 〈x〉 and Q = 〈y〉,
and both are of the second type, then f(λx + µy, λx + µy) = (λ2 + µ2)a and
since charF 6= 2 the squares do not form a field, and we may pick R = 〈z〉
with z = λx + µy such that f(z, z) = 1. (Now P ⊥ Q = R ⊥ S for S = 〈w〉,
w = λx − µy, and f(w,w) = 1.) Thus, in the above orthogonal direct sum we
may take all points Pi of the first type, with at most one exception.

A change of basis changes det f by a square, so the two types are really
different, and (V, f) is determined up to isomorphism by dimV and dimV ⊥

and the quadratic character of det f .

Hermitian spaces

Let f be a σ-Hermitian form. Then V can be written

V = P1 ⊥ . . . ⊥ Pr ⊥ V ⊥

where the Pi are nonisotropic points. (Indeed, if f(x, x) = 0 for all x, then f
is skew-symmetric and hence identically zero since σ 6= 1. If f(x, x) 6= 0 then
V = P ⊥ P⊥ where P = 〈x〉. Now apply induction on dimV .)

Assume F is finite, and let F0 be the subfield of F fixed by σ. Then f(x, x) ∈
F0 for all x, and since aaσ takes all values in F0, we can write any nonisotropic
point as P = 〈x〉 with f(x, x) = 1. Thus (V, f) is determined up to isomorphism
by dimV and dimV ⊥.

2.4.5 Witt’s theorem
Let, just for this section, a space be a pair (V, f) where V is a finite-dimensional
vector space and f a reflexive sesquilinear form on V , either symplectic, or
orthogonal (with charF 6= 2), or σ-Hermitian. Given two spaces (V, f) and
(W, g), an injective linear map φ : V →W is called an isometry when f(x, y) =
g(φ(x), φ(y)) for all x, y ∈ V .

Theorem 2.4.4 (Witt’s theorem) Let V, V ′ be isometric nondegenerate spaces,
and let φ : U → V ′ be an isometry from a subspace U of V into V ′. Then φ can
be extended to an isometry from V onto V ′.

Proof. Induction on dimV , and for fixed dimV on the codimension of U in V .
Let R = U ∩U⊥. If R 6= 0, then let r be a nonzero vector in R. Pick s ∈ V with
f(r, s) 6= 0. We may take f(r, s) = 1. Let r′ = φ(r). We want to pick s′ ∈ V ′
with g(r′, s′) = 1 and g(φ(u), s′) = 0 whenever f(u, s) = 0. That is possible: let
Y = U ∩ s⊥. Then Y is a hyperplane in U , and φ(Y ) is a hyperplane in φ(U).
Now φ(Y )⊥ strictly contains φ(U)⊥, and we can choose s′ in φ(Y )⊥ \ φ(U)⊥.
Linearly extend φ to φ̄ by letting φ̄(u) = φ(u) for u ∈ U , and φ̄(s) = s′. Then
φ̄ is an isometry defined on 〈s, U〉, and induction applies.

Now assume that R = 0, so that U is nondegenerate. Then U⊥ is non-
degenerate, and V = U ⊥ U⊥. Since V and V ′ are isometric, also U⊥ and
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φ(U)⊥ are isometric, and given an isometry φ1 : U⊥ → φ(U)⊥ we can define
φ̄(u+ u′) = φ(u) + φ1(u′) for u ∈ U and u′ ∈ U⊥. �

2.5 Symplectic polar spaces

We review some properties of the strongly regular graph defined by the points
of a finite symplectic polar space, adjacent when collinear. We pay special
attention to (maximal) cliques and cocliques, regular sets and geometric notions
in the corresponding polar space such as h-ovoids and spreads.

2.5.1 Symplectic forms, polar spaces, and graphs

Symplectic forms

Let V be a vector space over a field F . A symplectic form f on V is a bilinear
map f : V × V → F such that f(v, v) = 0 for all v ∈ V . A symplectic form
is alternating: since f(v + w, v + w) = f(v, v) = f(w,w) = 0 it follows that
f(w, v) = −f(v, w).

If S is a subset of V , then S⊥ is the subspace of V consisting of all vectors
v for which f(s, v) = 0 for all s ∈ S. The radical Rad V of (V, f) is V ⊥. The
symplectic form is called nondegenerate if Rad V = 0. A subspace W of V is
called totally isotropic when f vanishes identically on W ×W .

Symplectic polar spaces

Suppose V is finite-dimensional. Let X be the set of totally isotropic 1-spaces
of V and let Ω be the set of maximal totally isotropic subspaces in V with
respect to f . Then (X,Ω) is a polar space embedded in PV , called a symplectic
polar space. The radical of (X,Ω) coincides with the radical Rad V of (V, f),
so that (X,Ω) is nondegenerate precisely when f is nondegenerate. If (X,Ω)
is nondegenerate and dimV is finite, then dimV = 2n, where n is the rank of
(X,Ω), and this polar space is called Sp2n(F ). (In the literature one also finds
W2n−1(F ).) If F = Fq then we also write Sp2n(q).

Symplectic graphs

The symplectic graph of (V, f) is the collinearity graph Γ = Γ(X,Ω) of (X,Ω)
and thus has as vertex set the set of points of PV , where distinct vertices 〈u〉
and 〈v〉 are adjacent when f(u, v) = 0. Note that the condition f(u, v) = 0 does
not depend on the choice of u and v in 〈u〉 and 〈v〉, and that it is symmetric:
f(u, v) = 0 implies f(v, u) = 0.

2.5.2 Parameters

Let f be nondegenerate, let V have finite dimension 2n, and let F be the finite
field Fq. We determine the parameters of Γ. For n = 0 the symplectic graph
Γ has no vertices. For n = 1 the graph Γ is empty, a coclique of size q + 1.
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For n > 1 the graph Γ is strongly regular and the parameters are given as in
Theorem 2.2.12 with (q, t) = (q, q):

v = (q2n − 1)/(q − 1), r = qn−1 − 1,

k = q(q2n−2 − 1)/(q − 1), s = −qn−1 − 1,

λ = q2(q2n−4 − 1)/(q − 1) + q − 1, f =
1

2
(
q2n − q
q − 1

+ qn),

µ = (q2n−2 − 1)/(q − 1), g =
1

2
(
q2n − q
q − 1

− qn).

so that λ = µ− 2 and µ = k/q.

2.5.3 Automorphism groups

The symplectic group Sp(V, f) is the group of all linear transformations of V
that preserve the form f . The general symplectic group GSp(V, f) is the group
of all linear transformations of V that preserve the form f up to a constant.

The subgroup D of GL(V ) consisting of all multiples of the identity acts
trivially on PV , and D ∩ Sp(V, f) = {±I}. The projective symplectic group
PSp(V, f) is the quotient Sp(V, f)/{±I}. The projective general symplectic group
PGSp(V, f) is GSp(V, f)/D.

If f is nondegenerate and V has finite dimension 2n over the field F , we also
write Sp2n(F ) etc. instead of Sp(V, f) etc.

The full automorphism group of Γ is PΓSp2n(F ), that is, PGSp2n(F ) ex-
tended by the field automorphisms of F . This group acts rank 3 on Γ, and
already PSp2n(F ) acts rank 3.

For n ≥ 2, the group PSp2n(F ) is simple if (n, |F |) 6= (2, 2). The group
PSp4(2) is isomorphic to the symmetric group S6 and has a simple subgroup of
index 2 (isomorphic to the alternating group A6), which also acts rank 3 on Γ.

2.5.4 Maximal cliques

As remarked in §2.2.7, the maximal cliques of Γ are the maximal totally isotropic
subspaces of (V, f), i.e., the elements of Ω. In the finite nondegenerate case of
Sp2n(q) these have dimension n and size (qn − 1)/(q− 1). The maximal cliques
form a single orbit under Aut Γ. The polar space Sp2n(q) has spreads (partitions
into maximal cliques).

2.5.5 Ovoids

Recall that a (symplectic) ovoid in a nondegenerate symplectic polar space
Sp2n(F ) is a set of points that meets every maximal totally isotropic subspace
in precisely one point. Ovoids (when they exist) are maximal cocliques. In
Sp2n(q) one has |C| ≤ qn + 1 and |O| = qn + 1 for each coclique C and ovoid O.
Ovoids exist precisely when n = 2 and q is even. We first show the nonexistence
part of that statement.

Proposition 2.5.1 The generalized quadrangle Sp4(q) has no ovoid when q is
odd.
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Proof. Suppose O is an ovoid of Sp4(q). Let L be a hyperbolic line of PV .
The (q+1)2 lines of PV meeting both L and L⊥ are totally isotropic. But every
point of PV (remember V has dimension 4) is either on L∪L⊥, or on precisely
one line meeting both L and L⊥. Let a be the number of points of O on L∪L⊥;
we may assume these a points are contained in L. Then there is a bijective
correspondence between the points of O \L and the lines of PV joining a point
of L⊥ with a point of L\O. Hence q2 +1−a = (q+1)(q+1−a), implying a = 2.
We conclude that every hyperbolic line contains an even number of points of O.
Now let p be any point of O, select a totally isotropic line M through p and two
points x, y ∈M \O, with x 6= y. In the plane y⊥ all lines through x other than
M are hyperbolic. Hence, by the foregoing, y⊥ \M contains an even number of
points of O. But that number is q. Hence q is even. �

Proposition 2.5.2 The polar space Sp2n(q) has no ovoid, for n ≥ 3.

Proof. By Corollary 2.2.16, it suffices to consider n = 3.
Let, for a contradiction, O be an ovoid of the polar space Sp6(q). Then

|O| = q3 + 1. Every hyperplane of PV is the perp p⊥ of some point p. If p ∈ O,
then |p⊥∩O| = 1; if p /∈ O, then |p⊥∩O| = q2+1. LetW be a 4-space containing
at least two points of O and set |W ∩ O| = t. Every hyperplane containing W
intersects O in q2 + 1 points. Hence q3 + 1 = t + (q + 1)(q2 + 1 − t), implying
t = q + 1. Now let π be a plane in W containing at least 3 points (q ≥ 2) of
O and set |π ∩ O| = t′. Then, similarly counting the number of points in O in
some hyperplane H with W ⊆ H, we obtain q2 + 1 = t′ + (q + 1)(q + 1 − t′),
implying t′ = 2, a contradiction. �

Proposition 2.5.3 The generalized quadrangle Sp4(q), q even, has an ovoid.

Proof. Let V be 4-dimensional over Fq, and let the alternating form f be
given by

f((x0, x1, x2, x3), (y0, y1, y2, y3)) = x0y1 + x1y0 + x2y3 + x3y2.

Let g(x) = x2 + x+ d be an irreducible quadratic polynomial over Fq (one can
always find one of this form) and let g(x, y) = x2 +xy+dy2. Consider the set O
of projective points {(x0, x1, 1, g(x0, x1)) : x0, x1 ∈ Fq}∪{(0, 0, 0, 1)}. We claim
that no two points of O are conjugate with respect to the alternating form f .
Denote vx0,x1

= (x0, x1, 1, g(x0, x1)) and v∞ = (0, 0, 0, 1). Then f(vx0,x1
, v∞) =

1. Also one computes

f(vx0,x1
, vy0,y1) = g(x0 + y0, x1 + y1),

which implies our claim. Since |O| = q2 + 1, the proposition is proved. �

The Suzuki-Tits ovoids

For q divisible by 4, every known ovoid of Sp4(q) is isomorphic to the example
in the previous proposition (and we call that example the classical ovoid ).
However, for q = 22e−1, there is a unique second known example.

Let V and f be as above, and let q = 22e−1. Set r = 2e and define the
following set of points of PV , given by their coordinates:
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O = {(0, 0, 0, 1)} ∪ {(x0, x1, 1, x
r+2
0 + x0x1 + xr1) | x0, x1 ∈ Fq}.

We claim that P is an ovoid of Sp4(q). Since |O| = q2 + 1, it suffices to
show that no pair of points of O is collinear in Sp4(q). Let px0,x1

be the point
with coordinates (x0, x1, 1, x

r+2
0 + x0x1 + xr1), x0, x1 ∈ Fq, and p∞ = (0, 0, 0, 1).

Then clearly p∞ 6⊥ px0,x1 . Also, px0,x1 ⊥ py0,y1 if and only if

x0y1 + x1y0 + xr+2
0 + x0x1 + xr1 + yr+2

0 + y0y1 + yr1 = 0.

This is equivalent to

(x0 + y0)(x1 + y1) = xr+2
0 + yr+2

0 + (x1 + y1)r.

If x0 = y0, then clearly also x1 = y1. Assume now x0 6= y0. Then we can divide
both sides of the equality by (x0 + y0)r+2 and obtain, after some elementary
manipulation,

x1 + y1

(x0 + y0)r+1
= 1 + (

x0

x0 + y0
)r + (

x0

x0 + y0
)2 +

(x1 + y1)r

(x0 + y0)r+2
,

which we can rewrite, setting

z0 = (
x0

x0 + y0
)r, z1 =

x1 + y1

(x0 + y0)r+1
,

as
z1 + zr1 = 1 + z0 + zr0 ,

so that w = z0 + z1 satisfies wr +w+ 1 = 0. Raising this equality to the power
r, we obtain w2 + wr + 1 = 0, which combines to w + w2 = 0. However, then
w ∈ {0, 1} and clearly wr + w + 1 = 1 6= 0. The claim is proved.

This ovoid O is called the Suzuki-Tits ovoid (also sometimes the Suzuki
ovoid, or the Tits ovoid). When q is even and q ≤ 32, then it is known that
the only ovoids (up to a collineation) of Sp4(q) are the classical and Suzuki-Tits
ovoids (only appearing for q = 8, 32; for q = 2, the classical ovoid and the
Suzuki-Tits ovoid are equivalent). For q = 2, 4, this is folklore; for q = 8 this
was first proved by Fellegara [317]; for q = 16, see O’Keefe & Penttila
[594]; for q = 32, see O’Keefe, Penttila & Royle [595].

The Suzuki-Tits ovoid of Sp4(22e−1) can also be constructed as follows.
It is well-known that, as a(n abstract) rank 2 geometry, Sp4(22e−1) is a self-
dual geometry which even admits a (unique up to conjugacy) polarity, i.e., a
permutation of order 2 of the union of the point and the line set interchanging
the points with the lines, and preserving incidence. The set of points which are
incident with their image is precisely a Suzuki-Tits ovoid, see Tits [692, 693].

2.5.6 Maximal cocliques
In Sp2n(q), the smallest maximal cocliques are the hyperbolic lines (of size q+1).

In Sp4(q), q odd, a coclique (partial ovoid) has size at most q2−q+1 (Tallini
[675]). For q = 3, 5, 7 the largest partial ovoids have size 7, 18, 33 (Cimráková
& Fack [197]). Upper bounds for the size of cocliques in Sp2n(q), n ≥ 3, have
been given by Thas [685], Dye [301], and De Beule et al. [255] (Theorem 6.1).

The following proposition, derived from Section 6 of De Beule et al. [255],
summarizes the best bounds at present.
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Proposition 2.5.4 A coclique of Γ(Sp2n(q)), n ≥ 3, has at most

• 2n+ 1 vertices, q = 2;

• 15 · 2n−3 − 2 vertices, q = 3;

•
q(q − 1)n−3 − 2

q − 2
+

1

2
q(q − 1)n−3(

√
5q4 + 6q3 + 7q2 + 6q + 1− q2 − q − 1)

vertices, q ≥ 4.

The first bound of the previous proposition is sharp. Indeed, we inductively
define a coclique of size 2n+1 in Sp2n(2), n ≥ 2, as follows. For n = 2, it is just
an ovoid (as for instance constructed in Proposition 2.5.3). Now let n ≥ 3. Let
{x0, x1, x2} be a hyperbolic line in PV . The definition of embedded polar space
yields x⊥1 ∩ x⊥0 = x⊥2 ∩ x⊥0 . Hence on each line L through x0 there is a unique
point xL /∈ (x⊥1 ∪ x⊥2 ). Let C ′ be a coclique of size 2n − 1 of the symplectic
polar space x⊥1 ∩ x⊥2 , then C ′ ⊆ x⊥0 , and

C = {x1, x2} ∪ {xL | x0 ∈ L and L ∩ C ′ 6= ∅}

is a coclique of Sp2n(2) of size 2n+ 1.
The case (n, q) = (3, 3) of the second bound is exact (namely 13). It is not

known whether the other bounds are sharp, but presumably they are not.

2.5.7 h-Ovoids
As we saw, Sp2n(q) has 1-ovoids (i.e., ovoids) if and only if n = 2 and q is even.
For odd q there is a partition of Sp4(q) into 2-ovoids ([43], Cor. 5.2), and there
exist many 1

2 (q + 1)-ovoids ([227]). For even q and n = 2 there are h-ovoids
for all h, 1 ≤ h ≤ q ([227]). See also [321] for examples in spaces of larger
rank. Note that since h-ovoids are regular sets in Γ(Sp2n(q)) and the point
neighborhoods are the hyperplanes, these h-ovoids are also two-character sets
in PG(2n − 1, q). By Theorem 13 of [42], no h-ovoids of Sp2n(q), n ≥ 3, exist
for 1 ≤ h ≤ (−3 +

√
9 + 4qn)/(2q − 2).

2.5.8 Spreads
Dye [300] showed that the Sp2n(q) polar space has spreads, partitions of the
point set into qn + 1 pairwise disjoint t.i. subspaces. For Γ = Γ(Sp2n(q)) this
means that its complement has chromatic number χ(Γ) = qn + 1.

2.5.9 Tight sets
Since Sp2n(q) has spreads, it has i-tight sets for all i ∈ {1, 2, . . . , qn}.

It is possible to prove for small i that an i-tight set must be the union of
some specific examples. If q is a square and i < 1 + q5/8/

√
2 (De Beule et

al. [254]), or q ≥ 81 is an odd square and i < (q2/3 − 1)/2 (Nakić & Storme
[584]), an i-tight subset X of Sp2n(q) must be the disjoint union of pairwise
disjoint subspaces PG(n − 1, q) and Baer subgeometries PG(2n − 1,

√
q). More

precisely, X must be a disjoint union of some of the examples (i)-(iv) below.
(i) A maximal t.i. subspace (i = 1).
(ii) The unionW∪W⊥ of a conjugate pair of nondegenerate n-spaces (i = 2).
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(iii) The point set Z of a Baer subgeometry Sp2n(
√
q) invariant for the

symplectic polarity (i =
√
q + 1).

(iv) The union Z1∪Z2 of two disjoint Baer subgeometries Sp2n(
√
q) conjugate

under the symplectic polarity (i = 2
√
q + 2).

Two Baer subgeometries Z and Z′ are called conjugate under the symplectic polarity
when for each z ∈ Z the hyperplane z⊥ meets Z′ in a PG(2n− 2,

√
q).

Further examples can be constructed as follows. Let Sp2n(
√
q) be naturally

embedded in Sp2n(q) = (X,Ω). Let X ′ be the set of points of Sp2n(
√
q). Each

point of X \X ′ is contained in a unique line meeting X ′ in √q + 1 points. Let
X ′′ (resp. X ′′′) be the set of points of X \X ′ where this line is totally isotropic
(resp. hyperbolic). Then Theorem 8 of [42] asserts that each of X ′, X ′′, X ′′′ is
tight. (They are i-tight for i =

√
q+1, i =

√
q(qn−1−1), and i = qn−1(q−√q),

respectively.)

Example 4 of Section 8 of [43] yields i-tight sets in Sp4(7), with i = 5, 15
(and i = 35, 45 for the complementary set), containing no singular line. With
the notation of §10.89C, the 15-tight set is P0. The 5-tight set is obtained as
the union of the four vertices of 10 quadrangles; one typical quadrangle has sides
corresponding to the points (1, 2, 4, 0, 0, 0, 0), (1, 4, 2, 0, 0, 0, 0), (0, 0, 0, 1, 2, 4, 0)
and (0, 0, 0, 1, 4, 2, 0) (still using the notation of §10.89C), the other quadrangles
are obtained by letting S6 act on the first six coordinates.

In the same vein, §10.89B provides a 10-tight set in Sp4(7) not containing
any singular line by taking the orbit of size 80 in PG(3, 7) of the group 24 : S5.
The fact that this is a tight set in Sp4(7) follows, with the notation of §10.89B,
from the fact that 24 : S5 fixes the point (00000; 1) and hence also its perp, which
defines Sp4(7).

Other constructions of tight sets in symplectic polar spaces are contained in
[231]. For q even, we also refer to the tight sets mentioned on p. 71 for parabolic
polar spaces.

2.5.10 Local graph

Suppose f is nondegenerate. If U is totally isotropic then f induces a non-
degenerate symplectic form fU on U⊥/U given by fU (v + U,w + U) = f(v, w).
In particular, for Sp2n(q), if x is a point of PV , then x⊥/x carries the structure
of Sp2n−2(q). This means that Γ(Sp2n(q)) is locally the q-clique extension of
Γ(Sp2n−2(q)).

2.6 Orthogonal polar spaces

We review some properties of the strongly regular graph defined by the points
of a finite orthogonal polar space, adjacent when collinear. We pay special
attention to (maximal) cliques and cocliques, regular sets and geometric notions
in the corresponding polar space such as h-ovoids and spreads.
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2.6.1 Quadratic forms and orthogonal polar spaces

Quadratic forms

Let V be a vector space over a field F . A quadratic form is a map Q : V → F
satisfying the two conditions

• Q(λv) = λ2Q(v), for all v ∈ V and all λ ∈ F ;

• the (symmetric) form fQ : V × V → F defined by (v, w) 7→ fQ(v, w) =
Q(v + w)−Q(v)−Q(w) is bilinear.

If Q is a quadratic form, we call (V,Q) a quadratic space. The quadratic form Q
is called anisotropic on a subspace U of V if Q(u) = 0 for u ∈ U only if u = 0.
If S is a subset of V , then we denote by S⊥ the subspace of V consisting of all
vectors v for which fQ(s, v) = 0 for all s ∈ S. The radical Rad V of Q is the
subspace V ⊥. The quadratic form is called nondegenerate if Q is anisotropic on
the radical Rad V . We then say that (V,Q) is a nondegenerate quadratic space.

A subspace W of V is called totally singular when Q vanishes identically on
W . The Witt index is the dimension of a maximum totally singular subspace.
The set of totally singular 1-spaces, also called the null set of Q, is a quadric in
PV .

Orthogonal polar spaces

Let V be a vector space over F and let (V,Q) be a quadratic space. Let X be
the set of totally singular 1-spaces of V and let Ω be the set of maximal totally
singular subspaces in V with respect to Q. If X spans V , then (X,Ω) is a polar
space embedded in PV , called an orthogonal polar space. Moreover, the radical
R of (X,Ω) coincides with the intersection X ∩Rad V of the radical of Q with
the set of totally singular 1-spaces. Hence (X,Ω) is nondegenerate precisely
when Q is nondegenerate. We have 〈X〉 = V when either Ω 6= {R}, or V = R.
Two points 〈v〉 and 〈w〉 of (X,Ω) are collinear if and only if fQ(v, w) = 0.

We have the following reduction theorem for nondegenerate quadratic forms.

Theorem 2.6.1 Let (V,Q) be a nondegenerate quadratic space with finite Witt
index n. Then V admits a direct sum decomposition V = V0 ⊕ V1 such that
dimV0 = 2n, and there exists a basis E = {e−n, e−n+1, . . . , e−1, e1, e2, . . . , en}
of V0 such that Q is given by

Q(

n∑
i=1

(x−ie−i + xiei) + v1) = x−nxn + · · ·+ x−2x2 + x−1x1 +Q(v1),

with Q anisotropic on V1.

Proof. The 1-spaces 〈ei〉, i ∈ {−n,−n + 1, . . . ,−1, 1, 2, . . . , n} correspond to
points in two disjoint maximal singular subspaces, chosen in such a way that
ei ∈ e⊥j if and only if i+ j 6= 0. Set V0 = 〈E〉, and set V1 = E⊥. It is routine to
check that V = V0⊕V1 and an elementary calculation proves the last assertion.

�
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2.6.2 Finite orthogonal polar spaces and graphs

By Theorem 2.6.1, the nondegenerate orthogonal polar spaces of rank n over a
field F are classified by anisotropic quadratic forms over F . There are always
two standard anisotropic quadratic forms which exist over any field: the trivial
one (in a 0-dimensional vector space), and the form Q : F → F : x 7→ x2.

If F = Fq, then the fact that all quadratic field extensions are isomorphic
yields that the embedded polar spaces arising from anisotropic quadratic forms
in 2-dimensional vector spaces are isomorphic to each other. Since a quadratic
field extension always exists, there exists, for any rank n, a nondegenerate
orthogonal polar space in a (2n+ 1)-dimensional projective space over Fq.

There is no anisotropic quadratic form Q on a vector space V of dimension
at least 3 over Fq. Indeed, let x, y, z be three vectors in V that are mutually
orthogonal for fQ. Then Q(x+ λy+ µz) = Q(x) + λ2Q(y) +µ2Q(z). Now each
of λ2 and µ2 takes at least (q + 1)/2 values, so Q(x) + λ2Q(y) and −µ2Q(z)
have a common value, and for this λ, µ the point x+λy+µz is isotropic. (This
also follows from Theorem 2.3.4.)

Hence there are exactly three cases: The trivial anisotropic quadratic form
(hyperbolic orthogonal polar spaces, also said to be of type +1), the 1-dimensional
one (parabolic orthogonal polar spaces), and the 2-dimensional one (elliptic or-
thogonal polar spaces, also said to be of type −1).

The orthogonal graph of (V,Q) is the collinearity graph Γ = Γ(X,Ω) of
(X,Ω) and thus has as vertex set the set X of points, where distinct vertices
〈u〉 and 〈v〉 are adjacent when f(u, v) = 0. Note that, as before, the condition
f(u, v) = 0 does not depend on the choice of u and v in 〈u〉 and 〈v〉, and it
is obviously symmetric since f(u, v) = f(v, u). For Witt index at most 1, the
graph Γ has no edges.

2.6.3 Parameters

If (V,Q) has finite Witt index n, and V is defined over Fq, and Q is non-
degenerate, then dimV ∈ {2n, 2n + 1, 2n + 2} and the corresponding quadric
is denoted by O+

2n(q), O2n+1(q) and O−2n+2(q), respectively. (In the literature
one also finds Q+

2n−1(q), Q2n(q) and Q−2n+1(q).) If the Witt index is at least
2, then the corresponding embedded polar space has order (q, 1), (q, q), (q, q2),
respectively.

For n ≥ 2, the orthogonal graphs are strongly regular and the parameters
are given as in Theorem 2.2.12 with (q, t) ∈ {(q, 1), (q, q), (q, q2)}:

• The hyperbolic orthogonal graph Γ(O+
2n(q)).

v = (qn − 1)(qn−1 + 1)/(q − 1),

k = q(qn−1 − 1)(qn−2 + 1)/(q − 1),

λ = q2(qn−2 − 1)(qn−3 + 1)/(q − 1) + q − 1,

µ = (qn−1 − 1)(qn−2 + 1)/(q − 1),

so that µ = k/q. The eigenvalues are k, −1 + qn−1 and −1 − qn−2 with
multiplicities 1, f = q(qn−1)(qn−2+1)

q2−1 and g = q2(q2n−2−1)
q2−1 , respectively.
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• The parabolic orthogonal graph Γ(O2n+1(q)). Here we find the same
parameters as for Γ(Sp2n(q)) but the graphs are not isomorphic in char-
acteristic different from 2; they are isomorphic in characteristic 2.

v = (q2n − 1)/(q − 1),

k = q(q2n−2 − 1)/(q − 1),

λ = q2(q2n−4 − 1)/(q − 1) + q − 1,

µ = (q2n−2 − 1)/(q − 1),

so that v − k − 1 = q2n−1, λ = µ− 2 and µ = k/q. The eigenvalues are k
and −1±qn−1 with multiplicities 1, f = 1

2 ( q
2n−q
q−1 +qn), g = 1

2 ( q
2n−q
q−1 −q

n).

• The elliptic orthogonal graph Γ(O−2n+2(q)).

v = (qn − 1)(qn+1 + 1)/(q − 1),

k = q(qn−1 − 1)(qn + 1)/(q − 1),

λ = q2(qn−2 − 1)(qn−1 + 1)/(q − 1) + q − 1,

µ = (qn−1 − 1)(qn + 1)/(q − 1),

so that µ = k/q. The eigenvalues are k, −1 + qn−1 and −1 − qn with
multiplicities 1, f = q2(q2n−1)

q2−1 and g = q(qn−1−1)(qn+1+1)
q2−1 , respectively.

• For convenience, we give combined expressions for Γ(Oε
2m(q)).

v = (qm − ε)(qm−1 + ε)/(q − 1),

k = q(qm−1 − ε)(qm−2 + ε)/(q − 1),

λ = q2(qm−2 − ε)(qm−3 + ε)/(q − 1) + q − 1,

µ = (qm−1 − ε)(qm−2 + ε)/(q − 1),

so that v−k−1 = q2m−2 and µ = k/q. The eigenvalues are k, −1+εqm−1

and −1 − εqm−2 with multiplicities 1, q(qm−ε)(qm−2+ε)
q2−1 and q2(q2m−2−1)

q2−1 ,
respectively.

2.6.4 Isomorphisms
• As already mentioned, the graph Γ(O2n+1(q)) is isomorphic to Γ(Sp2n(q))

when q is even.

• The graph Γ(O5(q)) is isomorphic to the graph ∆(Sp4(q)) of maximal
singular subspaces of Sp4(q), see §2.2.11.

• The graph Γ(O−6 (q)) is isomorphic to the graph ∆(U4(q)) of maximal
singular subspaces of U4(q), see §2.2.11.

• The graph Γ(O+
4 (q)) is isomorphic to the Hamming graph H(2, q + 1).

• The graph Γ(O5(2)) ∼= Γ(Sp4(2)) is isomorphic to the complement of the
Johnson graph J(6, 2).

• The graph Γ(O−6 (2)) is isomorphic to the complement of the Schläfli graph
(§10.10), or the complement of the collinearity graph of E6,1(1) (§4.9).

• Since O+
6 (q) is the so-called Klein quadric, the graph Γ(O+

6 (q)) is isomor-
phic to the Grassmann graph Jq(4, 2).
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2.6.5 Automorphism groups

Let the general orthogonal group GO(V,Q) be the group of all linear transfor-
mations of V that preserve the nondegenerate quadratic form Q. Let (just here)
GGO(V,Q) be the group of all linear transformations of V that preserve Q up
to a constant.

The subgroup D of GL(V ) consisting of all multiples of the identity acts
trivially on PV , and D ∩ GO(V,Q) = {±I}. Let the projective general or-
thogonal group PGO(V,Q) be the quotient GO(V,Q)/{±I}, and let (just here)
PGGO(V,Q) = GGO(V,Q)/D.

The full automorphism group of Γ and of the corresponding embedded
polar space (X,Ω) is PΓO(V,Q), that is, PGGO(V,Q) extended by the field
automorphisms of the underlying field F , except if the corresponding embedded
polar space is O+(4, q), in which case Aut Γ is Sq+1 wr 2 (see §1.1.8).

If V and F are finite, say V is n-dimensional over F = Fq, then we denote
GO(V,Q) and PGO(V,Q) by

GOn(q) and PGOn(q) if n is odd (and hence (V,Q) is parabolic),
GO−n (q) and PGO−n (q) if n is even and (V,Q) is elliptic,
GO+

n (q) and PGO+
n (q) if n is even and (V,Q) is hyperbolic.

Unlike the symplectic case, the group PGO(V,Q) is in general not simple.
One reason is that the determinant of an element of GO(V,Q) can be equal to
−1. So let SO(V,Q) be the (normal) subgroup of GO(V,Q) of matrices with
determinant 1, and let PSO(V,Q) be its quotient with the subgroup of scalar
matrices it contains. In the finite case we also use the corresponding more
specific (self-explaining) notation SOn(q), PSOn(q) (n odd), SO−n (q), PSO−n (q),
SO+

n (q) and PSO+
n (q) (n even).

Now PSOn(q) is simple if (n, q) 6= (5, 2), and it is denoted by On(q). If
n = (5, 2), then PSO5(2) is isomorphic to the symmetric group S6. However, in
the elliptic and hyperbolic cases, the groups PSO−n (q) and PSO+

n (q) are generally
not simple. Here, the reason is that hyperbolic polar spaces contain two systems
of maximal singular subspaces, and the stabilizer of these systems in PSO+

n (q) is
a normal subgroup of index at most 2 (could be 1), which we denote by O+

n (q) if
n ≥ 6. The latter is always simple; if n = 4, that normal subgroup is the direct
product of two copies of PSL2(q). In the elliptic polar space O−2m(q), there are
likewise two systems of imaginary maximal singular subspaces (of dimension m)
obtained after quadratically extending the field to Fq2 . Again, the stabilizer of
these systems in PSO−n (q), n = 2m, is a normal subgroup of index at most 2
(could be 1), which we denote by O−n (q). The latter is again always simple.

In all cases, except the case O+
4 (q), the simple group is the intersection of

all groups acting rank 3 on the graph Γ, and hence that group and all larger
groups in the full automorphism group act rank 3.

2.6.6 Maximal cliques

As remarked in §2.2.7, the maximal cliques of Γ are the maximal totally singular
subspaces of (V,Q), i.e., the elements of Ω. In the finite nondegenerate cases
O+

2n(q), O2n+1(q), and O−2n+2(q), these have dimension n and size (qn−1)/(q−1).
The maximal cliques form a single orbit under Aut Γ.



2.6. ORTHOGONAL POLAR SPACES 63

2.6.7 Ovoids and maximal cocliques

Recall that an ovoid in a nondegenerate orthogonal polar space is a set of points
that meets every maximal totally singular subspace in precisely one point. Also
recall that ovoids (when they exist) are maximal cocliques of the corresponding
graph. For dimV = n+m+1, where n is the Witt index andm ∈ {n−1, n, n+1},
one has |C| ≤ qm + 1 and |O| = qm + 1 for each coclique C and ovoid O. There
are ovoids in O+

4 (q), in O+
6 (q), in O+

8 (q) for q even, q an odd prime, or q ≡ 2 (mod
3)), in O5(q), and in O7(q), q = 3h. Not in O2n+1(q), n > 2, q even or prime
6= 3, or n > 3, q = 5e; not in O−2n+2(q), n > 1; not in O+

2n(q), n > 4, q = 2e, 3e

or n > 5, q = 5e, 7e. (Thas [683], Kantor [478], Conway et al. [216], Shult
[652], Blokhuis & Moorhouse [82].)

No ovoids are known in finite embedded polar spaces of rank at least 5, and
we can conjecture there are none. It seems hard to prove this conjecture, but
many partial results exist. Below we discuss some details.

A bound on the size of caps

Let q = pe where p is prime, and let A be the point-hyperplane incidence
matrix of PG(d, q). Then rkpA =

(
p+d−1
d

)e
+ 1. Let Q be a nondegenerate

quadratic form on this projective space. It induces a partition A =
(
B C
C> D

)
with the rows partitioned into those for singular and nonsingular points and
columns ordered like the rows, with column x⊥ corresponding to row x, so
that A is a symmetric matrix, and B is the collinearity matrix of the polar
space on the quadric defined by Q. Blokhuis & Moorhouse [82] show that
rkp(B C) = (

(
p+d−1
d

)
−
(
p+d−3
d

)
)e + 1. Let a cap or partial ovoid be a coclique

in the collinearity graph on Q. If K is a cap, then the corresponding rows and
columns induce an identity submatrix of the matrix B, so that |K| ≤ rkp(B C).
Subsequently, Arslan & Sin [11] determined the precise value of rkpB. Often
this equals rkp(B C), sometimes it is slightly smaller.

Theorem 2.6.2 (Blokhuis & Moorhouse [82]) Let K be a coclique in the
collinearity graph of the polar space on PG(d, q) provided with nondegenerate
quadric. Let q = pe. Then |K| ≤ (

(
p+d−1
d

)
−
(
p+d−3
d

)
)e + 1. �

Theorem 2.6.3 (Arslan & Sin [11]) In the above situation, let n = d+ 1.
(i) Let p = 2. If n is even, rkpB = ne + 1. If n is odd, rkpB = (n− 1)e + 1.
(ii) Let p > 2. If there exists a positive integer a such that a+1 ≡ n (mod 2)

and n−3 ≤ ap ≤ n+p−5, then rkpB = (
(
p+n−2
n−1

)
−
(
p+n−4
n−1

)
−
(
ap+2
n−1

)
+
(
ap
n−1

)
)e+1,

otherwise rkpB = (
(
p+n−2
n−1

)
−
(
p+n−4
n−1

)
)e + 1.

In particular, if an ovoid would have size qm + 1, then an ovoid can exist
only when pm ≤

(
p+d−1
d

)
−
(
p+d−3
d

)
. For example, this shows that O9(5e) does

not have ovoids. This bound on the size of caps is sometimes tight for q = 2,
see §3.6.

Ovoids in elliptic polar spaces

Proposition 2.6.4 The elliptic polar space O−2n+2(q), n ≥ 2, q an arbitrary
prime power, does not have an ovoid.
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Proof. By Corollary 2.2.16, it suffices to show that the generalized quadrangle
O−6 (q) (of order (q, q2)) does not admit an ovoid. But that is a special case of
the following proposition. �

Proposition 2.6.5 Suppose a generalized quadrangle GQ(s, t) has an ovoid
(i.e., a coclique of size 1 + st). Then t ≤ s(s− 1) or s = 1.

Proof. The collinearity graph has eigenvalues s(t+ 1), s− 1 and −t− 1 with
multiplicities 1, s(s+ 1)t(t+ 1)/(s+ t) and s2(st+ 1)/(s+ t), respectively. By
the Cvetković bound, the size of a coclique is at most the number of nonpositive
eigenvalues, so if s > 1 then st+ 1 ≤ s2(st+ 1)/(s+ t), i.e., t ≤ s2 − s. �

Partial ovoids in elliptic polar spaces

Let xn,q be the maximal size of a partial ovoid of O−2n+2(q), and let q = pe.
Klein [491] showed that if n ≥ 2 then xn,q−2 ≤ qn−1

qn−1−1 (xn−1,q−2). De Beule
et al. [256] showed that x2,q ≤ 1

2q(q
2 +1)+1. The bound from Theorem 2.6.3 is

(for odd p) x2,q ≤ ( 1
3p(2p

2 + 1))e + 1, which is better for e ≥ 2, and (for p = 2)
x2,q ≤ 6e + 1, which is better for e ≥ 3. Also for larger n and small p Theorem
2.6.3 is sometimes better.

For (n, q) ∈ {(2, 2), (2, 3)} the bound is sharp: x2,2 = 6 and x2,3 = 16.
If (n, q) = (2, 2), then the graph Γ(O−6 (2)) is the complement of the Schläfli

graph (§10.10) and a maximum coclique has 6 vertices.
If (n, q) = (2, 3), let Q(x) =

∑6
i=1 x

2
i . The set of 16 isotropic points without

zero coordinate and with an even number of 2’s is a coclique. See also Ebert
& Hirschfeld [303].

The value of xn,q is known exactly for q = 2, see §3.6.

Ovoids in parabolic polar spaces

For finite parabolic polar spaces, the situation concerning existence of ovoids is
still satisfying, although not as straight as for the elliptic case. We start with
some constructions.

Proposition 2.6.6 The generalized quadrangle O5(q) has ovoids for any prime
power q.

Proof. The intersection of O5(q) with a hyperplane that contains no lines
of O5(q) is an ovoid. More concretely, let O5(q) be given in PV , with V 5-
dimensional over Fq, by the equation X1X2 +X3X4 = X2

0 . Let x2 − tx+ n be
an irreducible quadratic polynomial over Fq. Then the hyperplane of PV given
by the equation X4 = tX0 − nX3 intersects O5(q) in an elliptic quadric (with
equation X1X2 = X2

0 − tX0X3 + nX2
3 ), which contains q2 + 1 points and does

not contain any pair of collinear points. �

For q a power of 2, the quadrangles O5(q) and Sp4(q) are isomorphic and the
above construction is equivalent to the one in Proposition 2.5.3. Also, because
of that isomorphism, O5(q) is self dual. It is self polar (meaning it admits a
polarity) if and only if q = 22e−1, for some positive integer e (see Tits [693]).
Hence O5(22e−1) admits a second isomorphism class of ovoids, e ≥ 2, namely
the Suzuki-Tits ovoids.
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Ball, Govaerts & Storme [36] prove that for q a prime, the ovoids
constructed in Proposition 2.6.6 are unique, up to a collineation.

Proposition 2.6.7 The parabolic polar space O7(3e) has ovoids for any integer
e ≥ 1.

Proof. For r = 3e, let O7(r) be given in projective 6-space by the standard
equation x0x4 +x1x5 +x2x6 = x2

3, so that the corresponding bilinear form f on
V is given by

f((x0, x1, . . . , x6), (y0, y1, . . . , y6)) = x0y4+x1y5+x2y6+x3y3+x4y0+x5y1+x6y2.

Let γ ∈ Fr be an arbitrary nonsquare. Let P (x, y, z) denote the point with
coordinates

(z2 − γ−1(γx2 − y2)2, x, y, z, 1, γx3 − xy2 − yz, γ−1y3 + xz − x2y),

x, y, z ∈ Fr. Set P (∞) = (1, 0, 0, 0, 0, 0, 0). We claim that

Oγ = {P (∞)} ∪ {P (x, y, z) | x, y, z ∈ Fr}

is an ovoid of O7(r).
Clearly P (∞) is not collinear to any other point of Oγ . Now assume for a

contradiction that P (x, y, z) and P (u, v, w) are collinear points of O7(r). Then,
using the bilinear form f given above, one calculates that

−γ−1(γ(x− u)2 − (y − v)2)2 + (z − w − xv + yu)2 = 0,

which contradicts γ being a nonsquare in Fr.
Hence O is a coclique, and since |O| = 1 + r3, it is an ovoid. �

One might wonder where the algebraic construction in the above proof comes
from. It has to do with the existence of a generalized hexagon, called the split
Cayley hexagon G2(q), whose points are all the points of O7(q) and whose lines
are some lines on the quadric (see Tits [691] and §4.8). The lines of G2(q) in
an elliptic hyperplane of O7(q) constitute a spread of G2(q), which is a set of
q3 + 1 lines, pairwise opposite in both G2(q) and O7(q). (This spread is called a
Hermitian spread.) If q is a power of 3, then G2(q) is a self-dual geometry and
a duality takes this spread to an ovoid of both G2(q) and O7(q) (where an ovoid
in a generalized hexagon is defined to be a set of points such that every point
is equal to or collinear with exactly one point of the ovoid).

Just like O5(22e−1), e ≥ 2, admits Suzuki-Tits ovoids, O7(32e−1), e ≥ 2,
admits a second isomorphism type of ovoids, called the Ree-Tits ovoids. These
arise as the set of points incident with their image under a polarity of the
generalized hexagon G2(q) mentioned in the previous paragraph and embedded
in O7(32e−1). An explicit coordinate description of a Ree-Tits ovoid can be
found in Section 9.2.4 of Thas, Thas & Van Maldeghem [687].

From the isomorphism Γ(O2n+1(q)) ∼= Γ(Sp2n(q)) we deduce with Proposi-
tion 2.5.2:

Proposition 2.6.8 The parabolic polar space O2n+1(2e), n ≥ 3, has no ovoids
for any integer e ≥ 1. �
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For odd q not a prime power of 3, the situation is that no ovoids are known,
but only for q a prime there is a nonexistence proof. We will not reproduce that
proof here; it goes in two steps. First, O’Keefe & Thas [596] show that, if
O5(q) only admits ovoids equivalent to the classical one (given in the proof of
Proposition 2.6.6), then O7(q) does not admit any ovoid at all. Then we can use
the result by Ball, Govaerts & Storme [36] mentioned above to conclude
the following proposition.

Proposition 2.6.9 The parabolic polar space O2n+1(p), n ≥ 3, has no ovoids
for any prime p > 3. �

Now we consider the case of rank at least 4. If q is even, then no ovoids exist
by Proposition 2.6.8. But also for odd q, O2n+1(q) does not admit any ovoid if
n ≥ 4.

Proposition 2.6.10 (Gunawardena & Moorhouse [371]) For n ≥ 4 and
any prime power q, the parabolic polar space O2n+1(q) has no ovoids.

Proof. By Corollary 2.2.16 it suffices to prove this for n = 4 and by Proposi-
tion 2.6.8 we may assume q odd. Assume for a contradiction that O is an ovoid
of the polar space O9(q). Pick a point p ∈ O. Let X = O \ {p} and define a
symmetric relation ∼ on X by x ∼ x′ if p⊥∩x⊥∩x′⊥ is a hyperbolic quadric (the
only alternative is an elliptic quadric since p, x, x′ are pairwise noncollinear). We
show that (X,∼) is a strongly regular graph.

First, we claim that (X,∼) is regular with degree 1
2 (q3 + 1)(q − 1). Indeed,

fix a point x ∈ X and let k be its degree. We count the pairs (u, y), with u ⊥ y,
u ∈ p⊥ ∩ x⊥, and y ∈ X \ {x}. For u we have q5 + q4 + q3 + q2 + q + 1 choices
(the number of points of O7(q)), while for given u, there are q3 + 1 members of
O collinear to u (among which p and x). Hence there are (q6 − 1)(q2 + q + 1)
pairs (u, y) as described. Now, there are k choices for y ∼ x and q4 − 1− k for
y ∈ X not adjacent to x. If y ∼ x, then there are (q2 + 1)(q2 + q + 1) points
u ∈ p⊥ ∩ x⊥ ∩ y⊥; otherwise this number is (q + 1)(q3 + 1). Hence

(q6 − 1)(q2 + q + 1) = k(q2 + 1)(q2 + q + 1) + (q4 − 1− k)(q + 1)(q3 + 1).

It follows that k = 1
2 (q3 + 1)(q − 1). Hence (X,∼) is regular.

Now let (V, f) be the associated orthogonal space of O9(q). If v1, v2, v3 ∈
V are three pairwise non-conjugate isotropic vectors, and if p1, p2, p3 are the
associated points in PV , then the type of p⊥1 ∩ p⊥2 ∩ p⊥3 only depends on
the quadratic residue class of n(v1, v2, v3) := f(v1, v2)f(v2, v3)f(v3, v1). If
p1, p2, p3, p4 ∈ O, and p4 = 〈v4〉, then

n(v1, v2, v3)n(v1, v2, v4)n(v1, v3, v4)n(v2, v3, v4) =

 ∏
1≤i<j≤4

f(vi, vj)

2

is a square and hence an even number of triples from {p1, p2, p3, p4} are orthog-
onal to a hyperbolic quadric. So we obtain a two-graph Γ with vertex set O
and triples defining hyperbolic quadrics. The descendant Γp is precisely (X,∼).
Since (X,∼) is regular, so is Γ, and hence, by §1.1.12, (X,∼) is strongly regular
with parameters

(q4,
1

2
(q3 + 1)(q − 1),

1

4
(q4 − 3q3 + 3q − 5),

1

4
(q3 + 1)(q − 1)).

One now easily calculates r = 1
2 (q − 1) and s = − 1

2 (q3 + 1). It follows that
g = q2(q2 − 1)/(q2 + 1), which is never an integer. �
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Partial ovoids in parabolic polar spaces

In the cases where it is known that no ovoid exist, there are usually better upper
bounds for the coclique number of the corresponding graph than just the ovoid
number minus one. Note first that, if q is even, then Γ(O2n+1(q)) is isomorphic
to Γ(Sp2n(q)), and hence Proposition 2.5.4 applies.

Now let q be odd. Then we know that there are no ovoids if either n ≥ 4, or
if n = 3 and q > 3, q prime. The following two results are proved by De Beule
et al. [255].

Proposition 2.6.11 A coclique of the parabolic polar space graph Γ(O2n+1(q)),
n ≥ 4, q odd, q not a prime, has at most

qn − qn− 5
2 − qn−4 + 1

vertices.

For primes q there is a better bound, at least, when q ≥ 17:

Proposition 2.6.12 A coclique of the parabolic polar space graph Γ(O2n+1(q)),
n ≥ 3, q ≥ 17 a prime, has at most

qn − 2qn−2 + 1

vertices.

For q ∈ {5, 7, 11, 13}, we only have the trivial upper bound q3 for the size of
a partial ovoid of O7(q).

From Theorem 2.6.2 we obtain a bound for O9(q) when q is a power of 5.

Proposition 2.6.13 Let K be a coclique of the parabolic polar space graph
Γ(O2n+1(q)), where q = 5e, e a natural number, and n ≥ 4. Then

(i) |K| ≤ qn ·
(

18
25

)e
+ 1,

(ii) |K| ≤
(

1
6 n(n+ 1)(2n+ 1)(2n+ 7)

)e
+ 1.

Proof. (i) Use Theorem 2.6.2 for n = 4 and apply Proposition 2.2.15. (ii) Use
Theorem 2.6.2 directly. �

h-Ovoids in O5(q)

For each odd prime power q there is an h-ovoid in O5(q) with h = (q− 1)/2, see
[42], [319], [320].

Ovoids in hyperbolic polar spaces

We start with ranks 2 and 3, where ovoids always exist.

Proposition 2.6.14 The hyperbolic polar spaces O+
4 (q) and O+

6 (q) always ad-
mit ovoids, for each prime power q.
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Proof. Since the hyperbolic polar space O+
4 (q) is just the (q + 1) × (q + 1)

grid, it has precisely (q + 1)! ovoids, namely all grid transversals.
There exists a solid (4-space) Σ intersecting O+

6 (q) in an elliptic quadric
Q; then Q is an ovoid since every plane of PV intersects Σ nontrivially by a
dimension argument. In fact, every spread of projective 3-space becomes under
the Klein correspondence an ovoid of O+

6 (q) and vice versa (ovoids of O+
6 (q) and

spreads of projective 3-space over Fq are equivalent objects). �

The construction in the beginning of the last paragraph of the previous proof
can obviously be generalized as follows: If O is an ovoid of O2n+1(q), n ≥ 2,
and we see O2n+1(q) as a hyperplane section of O+

2n+2(q), then O is an ovoid of
O+

2n+2(q). Applied to the case n = 3, this gives us the following result.

Proposition 2.6.15 The hyperbolic polar space O+
8 (3e) has ovoids for each

integer e ≥ 1.

Proof. This follows from the previous discussion and Proposition 2.6.7. �

However, there is no argument to make the converse of the preceding argu-
ment work, i.e., the fact that O2n+1(q), n ≥ 2, does not admit an ovoid does
not guarantee that O+

2n+2(q) has no ovoid. Here are some counterexamples.

Proposition 2.6.16 The hyperbolic polar space O+
8 (q) has ovoids (i) for q = p,

a prime, (ii) for prime powers q such that q ≡ 2 mod 3, (iii) for q = 2e, e ≥ 1.

Proof. For the construction of ovoids of O+
8 (p), with p prime, see Conway,

Kleidman & Wilson [216]. The construction uses the E8 root lattice modulo
2 and 3, and the set of vectors of that lattice with norm p and 2p, respec-
tively (these two constructions are referred to as the binary and the ternary
construction). Moorhouse [573] generalized this to a construction modulo r
for arbitrary primes r (instead of 2 and 3). See also [572].

Let q ≡ 2 mod 3. We present an explicit construction of an ovoid in O+
8 (q).

First note that the condition q ≡ 2 mod 3 implies that Fq has no nontrivial
cubic roots of unity. In particular, the quadratic polynomial x2 − x + 1 is
irreducible over Fq. Let η and η := ηq be the roots of x2−x+ 1 = 0 in Fq2 . We
shall from now on write xq more compactly as x, x ∈ Fq2 .

Let the quadric O+
8 (q) be given by the equation X0X1 + X2X3 + X4X5 +

X6X7 = 0. Consider the set of points O = {1, 0, 0, 0, 0, 0, 0, 0)} ∪ {P (a, b) | a ∈
Fq, b ∈ Fq2}, where P (a, b) is the point with coordinates

(9abb− 9a2 − 3(bb)2, 1, b+ b,−3a(ηb+ ηb) + bb(b+ b+ ηb+ ηb),

ηb+ ηb, 3a(b+ b) + bb(ηb+ ηb− 2(b+ b)), 3a, 3a− 3bb).

With an elementary calculation one verifies that O ⊆ O+
8 (q). Now, |O| = q3 + 1

for if P (a, b) = P (a′, b′), then the second last coordinate implies a = a′, and the
third and fifth imply b = b′ since∣∣∣∣ 1 1

η η

∣∣∣∣ 6= 0.

Clearly (1, 0, 0, 0, 0, 0, 0, 0) is not collinear to P (a, b), for any a ∈ Fq and any
b ∈ Fq2 . Now assume for a contradiction that P (a, b) is collinear to P (a′, b′),
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a, a′ ∈ Fq, b, b′ ∈ Fq2 , (a, b) 6= (a′, b′). After simplification, the algebraic
condition expressing this is

3(a− a′)2 − (a− a′)[3(bb− b′b′) + (η − η)(bb
′ − bb′)]

−bb(ηbb′ + ηbb′ − bb)− b′b′(ηb′b+ ηb
′
b− b′b′) = 0.

The discriminant of this equation (viewing a− a′ as the unknown) is, after
simplification, equal to −3[(b− b′)(b− b′)]2. Since −3 is the discriminant of the
equation x2 − x + 1 = 0, which has no solution in Fq, we see that −3 is not a
square in Fq. Hence b = b′. It then easily follows that a = a′, a contradiction.
Hence O is an ovoid.

Finally, let q = 2e, e ≥ 1. We construct an ovoid in O+
8 (q), cf.Kantor [480].

For x ∈ Fq3 , let x̄ = xq and T (x) = x+ x̄+ ¯̄x and N(x) = xx̄¯̄x.
Choose4 r ∈ Fq3 \ Fq so that T (r) 6= 0 and T (rr̄) = 0.
For each x ∈ Fq3 , define the following point P (x):

(T (r), T (r)N(x), T (rx), T (rx̄¯̄x), T (r̄x), T (r̄x̄¯̄x), T (¯̄rx), T (¯̄rx̄¯̄x)).

An elementary calculation shows that P (x) belongs to O+
8 (q). Now let x, y ∈

Fq3 with x 6= y. Then we show that P (x) and P (y) are noncollinear on O+
8 (q).

In view of the equation of the quadric O+
8 (q) given above, P (x) and P (y) are

noncollinear if and only if

0 6= T (r)2(N(x) +N(y)) + T (rx)T (rȳ ¯̄y) + T (ry)T (rx̄¯̄x)

+T (r̄x)T (r̄ȳ ¯̄y) + T (r̄y)T (r̄x̄¯̄x) + T (¯̄rx)T (¯̄rȳ ¯̄y) + T (¯̄ry)T (¯̄rx̄¯̄x),

which is easily seen to be equivalent to

0 6= T (r)2N(x+ y),

which is true. It follows that the set {P (x) | x ∈ Fq3} ∪ {(0, 1, 0, 0, 0, 0)} is an
ovoid of O+

8 (q). �

From Theorem 2.6.2 we get bounds for q a power of 2, 3, 5 and 7.

Proposition 2.6.17 Let q = pe, where p is prime and e a natural number. Let
K be a coclique of the hyperbolic polar space graph Γ(O+

2n(q)).

(i) If p = 2, n ≥ 5, then |K| ≤ (2n)e + 1.

(ii) If p = 3, n ≥ 5, then |K| ≤ ((n+ 1)(2n− 1))
e

+ 1.

(iii) If p = 5, n ≥ 6, then |K| ≤
(
n+3

2

(
2n+1

3

))e
+ 1.

4Suppose for a contradiction that T (xx̄) = 0 implies T (x) = 0. Let y ∈ Fq3 be such that
T (y) = 0 and set y′ = y+

√
T (yȳ). Then T (yȳ) = 0 and T (y′) =

√
T (yȳ), hence

√
T (yȳ) = 0

and the conditions T (xx̄) = 0 and T (x) = 0 are equivalent. Choose a basis {1, u, v} of Fq3 over
Fq so that T (u) = T (v) = 0 (obtained by possibly replacing u by u+T (u) and v by v+T (v)).
Let a, b ∈ Fq be arbitrary and set w = au+ bv. Then T (w) = 0 and hence T (ww̄) = 0. This
easily implies w2 +ww̄+ w̄2 = 0, hence w̄ = εw, with ε a nontrivial third root of unity (which
must necessarily belong to Fq). Then w3 = w(εw)(ε2w) = N(w) ∈ Fq . Hence there are at
least q2 − 1 solutions of an equation x3 = c, with c ∈ Fq \ {0}. Since also 1 is such a solution,
we have q2 ≤ 3(q − 1), a contradiction.
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(iv) If p = 7, n ≥ 6, then |K| ≤
(
n+5

3

(
2n+3

5

))e
+ 1. �

For q = 2 the sizes of cocliques are given in §3.6. The previous proposition
implies that O+

2n(q) has no ovoids if n ≥ 5 and p ∈ {2, 3}, and if n ≥ 6 and
p ∈ {5, 7}. Whilst Proposition 2.6.17 relies on an algebraic argument (p-ranks of
matrices), Bamberg, De Beule & Ihringer [38] produce a particularly nice
geometric argument to disprove the existence of ovoids in O+

10(q) for q even.
Note that, however, the proof of their Lemma 4.3 is incorrect; they will present
a corrected version on arXiv. We here present another argument to bypass their
Lemma 4.3.

Proposition 2.6.18 No ovoids exist in O+
10(2e), e ≥ 1.

Proof. Let, for a contradiction, O be an ovoid of O+
10(2e). Select two points

x1, x2 ∈ O and consider the polar space with point set X = x⊥1 ∩ x⊥2 . (This is
isomorphic to O+

8 (2e).) Consider three pairwise disjoint maximal t.s. subspaces
W1,W2,W3 in X. The map ρ taking each point p1 ∈ W1 to the hyperplane
p⊥2 ∩W1, where {p2} = W2∩ (p⊥1 ∩W3)⊥ = W2∩〈p1, p

⊥
1 ∩W3〉, is easily checked

to be a symplectic polarity ofW1. (It is obviously a duality every point of which
is contained in its image; then by Lemma 3.2 of [680], it is a polarity). Also,
the map taking p1 to p2 (defined as above) is an isomorphism β : W1 →W2.

Let x be an arbitrary point ofO\{p1, p2}. Then x⊥∩Wi is a plane πi, i = 1, 2.
If β(π1) = π2, then ρ(π1) ⊥ π2 and x ∈ 〈ρ(π1), π2, x1〉, for some i ∈ {1, 2}, a
contradiction. Hence β(π1) intersects π2 in a line L2; set L1 = β−1(L2). Then
x is collinear to each line 〈z, β(z)〉, for z ∈ L1, and not collinear to any line
〈u, β(u)〉, for u ∈W1 \ L1. Note that L1 is not fixed by ρ.

Now let Q be an elliptic quadric O−4 (2e) inW1 such that Q is an ovoid of the
symplectic polar space (generalized quadrangle) defined by ρ. If x is collinear
to a line 〈y, β(y)〉, with y ∈ Q, then the previous paragraph (in particular the
fact that L1 is not fixed under ρ and hence is not tangent to Q) implies that
there is precisely one other such line 〈y′, β(y′)〉, y′ ∈ Q \ {y}, collinear to x. So
x⊥ contains an even number of lines 〈y, β(y)〉 with y ∈ Q. Since |Q| is odd and
since each line 〈z, β(z)〉, z ∈W1, is collinear to an odd number 22e− 1 of points
of O \ {x1, x2}, this leads to a contradiction. �

2.6.8 Tight sets, spreads, and h-ovoids

Elliptic case The natural inclusions O+
2n(q) ⊆ O2n+1(q) ⊆ O−2n+2(q) give rise

to (qn−1 + 1)-tight and (qn + 1)-tight sets, respectively, of O−2n+2(q).
If U is a nondegenerate n-space in O−2n(q), then U ∪U⊥ is 2-tight. For odd n

one can choose U such that U and U⊥ induce On(q). For even n one can choose
U such that U and U⊥ induce O−n (q) and O+

n (q), respectively (De Bruyn [262]).
For other values of i, the only known examples are partial spreads and

disjoint unions of maximal singular subspaces and (disjoint) copies of the 2-
tight sets of the previous paragraph. Metsch [565] shows that, as soon as
i3 − 3i+ 6 ≤ q, every i-tight set is like that. Not much is known about partial
spreads, except for q even or n small.

Indeed, if q is even, then O2n+1(q) ∼= Sp2n(q) has a spread. Intersecting with
a nondegenerate hyperplane yields a spread of O−2n(q). Also, nondegenerate
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hyperplane sections of U4(q) yield ovoids of U4(q) and hence spreads of O−6 (q),
for all prime powers q.

Except for the cases n = 3, 4, not much is known about the existence of
h-ovoids in O−2n(q), n ≥ 3. Segre [640] showed that any h-ovoid of O−6 (q) is
a hemisystem of points, and that these do not exist for q even. Cossidente
& Penttila [233] construct hemisystems of points of O−6 (q), for every odd q,
admitting the group PΩ4(q).

By Theorem 13 of [42], no h-ovoids of O−2n(q), n ≥ 3, exist for 1 ≤ h ≤
(−3 +

√
9 + 4qn)/(2q − 2).

Parabolic case The natural inclusions O−2n(q) ⊆ O2n+1(q) and O+
2n(q) ⊆

O2n+1(q) give rise to (qn−1 − 1)/(q − 1)-ovoids and (qn−1 + 1)-tight sets, re-
spectively. For n odd, one can also take away two disjoint maximal singular
subspaces from O+

2n(q), which produces a (qn−1−1)-tight set of O2n+1(q) which
is neither the union of maximal singular subspaces, nor the complement of such
union.

Like in the symplectic case, other examples of tight sets can be constructed
as follows. Let O2n+1(

√
q) be naturally embedded in O2n+1(q) = (X,Ω). Let X ′

be the set of points of O2n+1(
√
q), let X ′′ be the set of points of X\X ′ contained

in a line of O2n+1(
√
q), and set X ′′′ = X \ (X ′ ∪X ′′). Then Theorem 8 of [42]

asserts that each of X ′, X ′′, X ′′′ is tight. (They are i-tight for i =
√
q + 1,

i =
√
q(qn−1 − 1), and i = qn−1(q −√q), respectively.)

By Theorem 14 of [42], no 2-ovoids of O2n+1(q), n ≥ 5, exist.
For q even, O2n+1(q) is isomorphic to Sp2n(q). For q odd not much addi-

tionally to the previous constructions and nonexistence is known, neither about
spreads, except for the cases n = 2, 3.

For n = 2, Metsch [565] shows that, if an i-tight set of O5(q) is not the
union of pairwise disjoint lines, then i ≥ √q+ 1, with equality if and only if the
tight set is an embedded O5(

√
q).

For n = 3, there exist some computer results for q ∈ {3, 5}, see Section 7.3 of
[42]. In general, one explores the link with the split Cayley generalized hexagon
G2(q), see §4.8, whose point set is exactly the point set of O7(q), as follows.

(i) A distance-2-ovoid O of G2(q) is a set of points meeting every line exactly
once. Then O is a (q2 − q + 1)-tight set of O7(q). There exist examples for
q = 2, 3, 4, see [288], [286].

(ii) The point set of a (non-thick) subhexagon H of G2(q) of order (q, 1) is a
(q + 1)-tight set of O7(q). Such subhexagons exist if and only if q is a power of
3, see [710].

(iii) A spread S of G2(q) is a set of q3 + 1 lines which are pairwise opposite,
that is, the only pairs of collinear points on the union of all members of S
are contained in the members of S. Then the union of all members of S is a
(qn−1 − 1)/(q − 1)-ovoid. There is always the so-called Hermitian spread SH in
G2(q), which is obtained by taking the lines of G2(q) in an elliptic hyperplane
of O7(q). It follows that the union of all members of SH is the point set of
O−6 (q), and so the corresponding (qn−1 − 1)/(q − 1)-ovoids are not new. If
q 6≡ 2 mod 3, then nonisomorphic spreads exist, see [71], and these yield new
(qn−1 − 1)/(q − 1)-ovoids of O7(q).
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Hyperbolic case The natural inclusion O2n−1(q) ⊆ O+
2n(q) yields a (qn−1 −

1)/(q−1)-ovoid. Cardinali & De Bruyn [185] construct (q3 +1)-tight sets of
O+

8 (q2) as follows. Let X2
0 + aX0X1 + bX2

1 be a quadratic form with a, b ∈ Fq,
which is irreducible over Fq but reducible over Fq2 . Let O+

8 (q2) be defined by
the equation

X2
0 + aX0X1 + bX2

1 +X2X3 +X4X5 +X6X8 = 0

over Fq2 , and let O−8 (q) be defined by the same equation, but then considered
over Fq. This way, O−8 (q) ⊆ O+

8 (q2). Recall that the graph on maximal singular
subspaces (which are 4-spaces) of O+

8 (q2), adjacent when intersecting in a plane
(a 3-space) is bipartite. Let Φ be one of the corresponding bipartition classes.
Let Φ′ be the subset of Φ consisting of the members containing a singular plane
of O−8 (q). Let τ be a triality (cf. §3.2.2) of O+

8 (q2) mapping Φ to the set of
points of the polar space O+

8 (q2). Then τ(Φ′) is a (q3 + 1)-tight set of O+
8 (q2).

For n ≥ 4, there are no known examples of tight sets other than the ones
in the previous paragraph and disjoint unions of maximal singular subspaces.
Upper bounds b on i such that an i-tight set of O+

2n(q), with i ≤ b, is automat-
ically the union of maximal singular subspaces are given in [42], [63] and [564].
Gavrilyuk [334] provides other restrictions on i for i-tight sets that are not
the union of maximal singular subspaces.

Through the Klein correspondence, tight sets of O+
6 (q) are equivalent to

so-called Cameron-Liebler line classes (first studied by Cameron & Liebler
[180]), for which many examples and nonexistence results exist. See, e.g., [615],
[295], [151], [563], [360], [339], [318], [257], [338], [232].

2.7 Hermitian or unitary polar spaces
We review some properties of the strongly regular graph defined by the points of
a finite unitary polar space, adjacent when collinear. We pay special attention to
(maximal) cocliques and regular sets (which translate to the geometric notions
of partial ovoids and tight sets, respectively, in the corresponding polar space).
We also mention a result on hemisystems.

2.7.1 Hermitian forms
Let V be a vector space over a field F , and let σ : F → F be an involutive field
automorphism. Recall that a map f : V × V → F is called a (σ-)Hermitian
form if it is additive in each coordinate, semi-linear in the first and linear in the
second component, i.e., f(ax, by) = aσbf(x, y), for all a, b ∈ F and all x, y ∈ V ,
and σ-symmetric, i.e., f(y, x) = f(x, y)σ for all x, y ∈ V .

If f is a σ-Hermitian form, then we call (V, f) a Hermitian space, and σ is
called the companion field automorphism of f . The fixed point set of σ is a
subfield of F which we denote by Fσ. A σ-Hermitian form is nondegenerate if
for all x ∈ V , x = 0 as soon as f(x, y) = 0, for all y ∈ V . The set {x ∈ V :
f(x, y) = 0,∀y ∈ V } is again called the radical of f and denoted Rad(f) (and
then f is nondegenerate precisely when Rad(f) is trivial). The Hermitian form
f is called anisotropic if f(x, x) = 0 implies x = 0, for all x ∈ V .

We adopt the same notation as in §2.6. Given a σ-Hermitian form f and
a subset S of V , put S⊥ = {x ∈ V : f(s, x) = 0,∀s ∈ S} (then the radical is
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just V ⊥ again). A subspace W of V is called totally isotropic when f vanishes
identically on W . The Witt index is the dimension of a maximal isotropic
subspace. The set of totally isotropic 1-spaces, also called the null set of f , is a
Hermitian variety in PV , sometimes also called a σ-quadric.

2.7.2 Hermitian or unitary polar spaces
Suppose V is a vector space over F and let (V, f) be a Hermitian space. Let
X be the set of totally isotropic 1-spaces of V and let Ω be the set of maximal
totally isotropic subspaces in V with respect to Q. Then it is easy to check
that, if the Witt index is at least 2, (X,Ω) is a polar space embedded in PV ,
called a Hermitian or unitary polar space. The singular subspaces of (X,Ω)
coincide with the totally isotropic subspaces of (V, f). Moreover, the radical of
(X,Ω) coincides with Rad (f). Hence (X,Ω) is nondegenerate precisely when f
is nondegenerate. Moreover, one checks that two points 〈v〉 and 〈w〉 of (X,Ω)
are collinear if and only if f(v, w) = 0.

Similarly to Theorem 2.6.1, we have the following reduction theorem for
nondegenerate σ-Hermitian forms. The proof is also similar and is omitted.

Theorem 2.7.1 Let (V, f) be a nondegenerate unitary space with finite Witt
index n. Then V admits a direct sum decomposition V = V0 ⊕ V1 such that
dimV0 = 2n, and there exists a basis E = {e−n, e−n+1, . . . , e−1, e1, e2, . . . , en}
of V0 such that f is given by

f(

n∑
i=1

(x−ie−i + xiei) + v1,

n∑
i=1

(y−ie−i + yiei) + w1)

= xσ−nyn + · · ·+ xσ−2y2 + xσ−1y1 + xσ1y−1 + · · ·+ xσny−n + f1(v1, w1),

with f1 : V1 × V1 → F : (v1, w1) 7→ f(v1, w1) anisotropic.

2.7.3 Finite unitary polar spaces and graphs
By Theorem 2.7.1, the nondegenerate unitary polar spaces of rank n over a field
F are classified by anisotropic Hermitian forms over F . There are always two
standard anisotropic Hermitian forms which exist over any field F admitting
an involutary field automorphism σ: the trivial one (in a 0-dimensional vector
space), and the form f : F × F → F : (x, y) 7→ xσy.

For finite fields F no 2-dimensional anisotropic Hermitian form over F exists.
Indeed, let F be arbitrary, with involutive field automorphism σ, and let f be
such a form. Its null set is given by an equation (in the unknowns x, y) of shape

axxσ + bxσy + bσxyσ + cyyσ = 0,

with a, c ∈ Fσ, b ∈ F .
Since f is anisotropic, (x, y) = (1, 0) is not a solution, so a 6= 0 and we

may assume a = 1. Substituting x by x − by, the equation reduces to xxσ =
(bbσ − c)yyσ, which has a solution if and only if bbσ − c = zzσ for some z ∈ F .
Hence no 2-dimensional anisotropic σ-Hermitian form exists over F if and only
if every element of Fσ can be written as xxσ, x ∈ F .

A finite field admits an involutive automorphism if and only if its order
is a square. So let F = Fq2 , then σ : x 7→ xq is the unique involutive field
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automorphism. Now Fσ = Fq and since the polynomial xq+1, that maps the
q2 − 1 nonzero elements of Fq2 to the q − 1 nonzero elements of Fq, can take
any value at most q + 1 times, it must take each value precisely q + 1 times,
and in particular at least once. Hence there are no 2-dimensional anisotropic
Hermitian forms over a finite field.

We find that if F is finite, there are exactly two cases: The trivial anisotropic
Hermitian form (small unitary polar spaces) and the unique 1-dimensional one
large unitary polar spaces). This means that in every finite-dimensional vector
space over a given finite field of square order, there exists a unique nondegenerate
Hermitian form. Hence in every projective space of dimension at least 3 over a
field of square order a unique unitary embedded polar space (X,Ω) exists.

The unitary graph of a Hermitian space (V, f) is the collinearity graph Γ =
Γ(X,Ω) of the corresponding embedded polar space (X,Ω) and thus has as
vertex set the set X of points of ∆, where distinct vertices 〈u〉 and 〈v〉 are
adjacent when f(u, v) = 0. Note that, as before, the condition f(u, v) = 0
does not depend on the choice of u and v in 〈u〉 and 〈v〉, and it is obviously
symmetric since f(u, v) = f(v, u)σ. The graph Γ can similarly also be defined
for Witt index ≤ 1, but then it is has no edges.

2.7.4 Parameters

If V has finite dimension m over the field Fq2 , and f is nondegenerate, then
(V, f) has Witt index n = bm/2c and the corresponding Hermitian variety is
denoted by Um(q). (In the literature one also finds Hm−1(q2).) If the Witt index
is at least 2, then the corresponding embedded polar space has order (q2, q) if
m is even, and (q2, q3) if m is odd. The collinearity graph of this polar space is
called Γ(Um(q)).

For m ≥ 4, the unitary graphs are strongly regular and the parameters
are given as in Theorem 2.2.12 with (q, t) replaced by (q2, q) or (q2, q3). Let
ε = (−1)m. The unitary graph Γ(Um(q)), has the following parameters.

v = (qm − ε)(qm−1 + ε)/(q2 − 1),

k = q2(qm−2 − ε)(qm−3 + ε)/(q2 − 1),

λ = q4(qm−4 − ε)(qm−5 + ε)/(q2 − 1) + q2 − 1,

µ = (qm−2 − ε)(qm−3 + ε)/(q2 − 1),

so that µ = k/q2. The eigenvalues are k, −1 + εqm−2 and −1 − εqm−3 with
multiplicities 1, q

2(qm−ε)(qm−3+ε)
(q2−1)(q+1) and q3(qm−2−ε)(qm−1+ε)

(q2−1)(q+1) , respectively.

2.7.5 Isomorphisms

The generalized quadrangle U4(q) is dual to the orthogonal quadrangle O−6 (q).
Hence the graph Γ(U4(q)) is isomorphic to the graph ∆(O−6 (q)) on the maximal
singular subspaces of O−6 (q) and the graph Γ(O−6 (q)) is isomorphic to the graph
∆(U4(q)) on the maximal singular subspaces of U4(q).

2.7.6 Automorphism groups

Let the general unitary group GU(V, f) be the group of all linear transformations
of V that preserve the nondegenerate σ-Hermitian form f . The subgroup D
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of GL(V ) consisting of all multiples of the identity acts trivially on PV , and
D ∩ GU(V, f) = {aI : aaσ = 1}. Let the projective general unitary group
PGU(V, f) be the quotient GU(V,Q)/{aI : aaσ = 1}. The automorphism group
Aut Γ contains PGU(V, f). The full automorphism group of Γ is PΓσU(V, f),
that is, PGU(V, f) extended by the field automorphisms of the underlying field
F commuting with σ. It is also the full automorphism group of the embedded
polar space Un(q).

If V and F are finite, say V is n-dimensional over F = Fq2 , then we denote
GU(V, f) and PGU(V, f) by GUn(q) and PGUn(q), respectively. Also, in this
case, the automorphism group of the field is abelian and so the subscript σ in
the notation of the full automorphism group is redundant and is omitted; hence
we denote PΓUn(q).

The group PGU(V, f) is in general not simple. Let SU(V, f) be the (normal)
subgroup of GU(V, f) of all its matrices with determinant 1, and let PSU(V, f) be
its quotient with the subgroup of scalar matrices it contains. In the finite case
we also use the corresponding more specific (self-explaining) notation SUn(q)
and PSUn(q), respectively. The latter is also denoted by Un(q) (there will be
no confusion with the polar space) and is simple (remember we have n ≥ 4).

The group Un(q) is the intersection of all groups acting rank 3 on the graph
Γ(Un(q)). Hence that group, and all overgroups in PΓUn(q), act rank 3 on the
graph Γ.

2.7.7 Maximal cliques
Again, the maximal cliques of Γ are the maximal totally isotropic subspaces
of (V, f). In the finite nondegenerate cases U2n(q) and U2n+1(q), these have
dimension n and size (q2n − 1)/(q2 − 1). The maximal cliques form a single
orbit under Aut Γ.

2.7.8 Maximal cocliques
Recall that an ovoid in a nondegenerate unitary polar space is a set of points
that meets every maximal totally singular subspace in precisely one point. Also,
ovoids (when they exist) are maximal cocliques. For dimV = n+m+1, where n
is the Witt index andm ∈ {n−1, n}, one has |C| ≤ q2m+1+1 and |O| = q2m+1+1
for each coclique C and ovoid O.

There are ovoids in U4(q) and no ovoids in U2n+1(q) for n ≥ 2. There is no
ovoid in U6(2) ([258]; see also §10.74). For U2n+2(q), n ≥ 2, the best result is
due to Moorhouse [574], see Proposition 2.7.8 below.

Proposition 2.7.2 The generalized quadrangle U4(q) has ovoids for each prime
power q.

Proof. Any plane of PV that does not have any line in common with U4(q)
intersects the latter in an ovoid. Such planes exist in abundance. Algebraically,
if U4(q) is given by the equation x0x

q
1 + x1x

q
0 + x2x

q
3 + x3x

q
2 = 0, then pick

a ∈ Fq2 so that a + aq = 1 and the plane with equation x3 = ax2 intersects
U4(q) in the Hermitian curve O with (more or less) standard equations{

0 = x3 − ax2,

0 = x0x
q
1 + x1x

q
0 + xq+1

2 ,
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which clearly contains no lines. �

Let U4(q) have point set X. Let a plane ovoid of U4(q) be the intersection
X ∩ π of X with a nontangent plane π. If H is any hyperbolic line, then H
and H⊥ meet precisely the same totally isotropic lines. Thus, if O is any ovoid,
and H ∩X ⊆ O then (O \H) ∪ (H⊥ ∩X) is again an ovoid. In particular this
applies to plane ovoids and produces nonisomorphic ovoids. This can be done
multiple times (at least q2−q+1 times) to produce many nonisomorphic classes
of ovoids.

No partition of X into ovoids can consist of plane ovoids only. But never-
theless we can construct such partitions.

Proposition 2.7.3 (Brouwer &Wilbrink [144]) The generalized quadrangle
U4(q) admits partitions into ovoids.

Proof. Fix a nonisotropic point p, an isotropic point x ∈ p⊥, and a tangent
T on x in p⊥. Put Ox = X ∩ p⊥, and Oy = ((y⊥ ∩X) \ p⊥) ∪ (〈y, p〉 ∩X) for
each y ∈ T \ {x}. Then each Ou is an ovoid, and {Ou | u ∈ T} is a partition of
X into ovoids. �

Corollary 2.7.4 The graph Γ(U4(q)) has chromatic number q2 + 1. �

Proposition 2.7.5 The unitary polar space U2n+1(q), n ≥ 2, has no ovoids for
any prime power q.

Proof. As before, due to Corollary 2.2.16, it suffices to show the assertion for
n = 2.

In this case, an ovoid O has q5+1 points. A hyperplane (4-space) H contains
q3 + 1 points of O if the hyperplane intersects U5(q) in a nondegenerate unitary
space (isomorphic to U4(q); in this case H ∩ O is an ovoid of U4(q)), or if
it intersects U5(q) in a degenerate unitary space and the radical p does not
correspond to a point of O (then every line of U5(q) through p contains a unique
point of O and there are precisely q3 + 1 such lines). Otherwise the hyperplane
contains a unique point of O, and we can pick a plane π disjoint from O. If
exactly k hyperplanes through π intersect O in q3 + 1 points, then k(q3 + 1) +
(q2 + 1− k) = q5 + 1. This is impossible for integer k. �

We mention without proof the following upper bound, proved by De Beule
et al. [256].

Proposition 2.7.6 The maximum size of a coclique of the graph Γ(U2n+1(q))
is

1 + q2(n−3)(q7 − q6 + q5 + 1)− q3 · q
2(n−2) − 1

q2 − 1
.

Finally, we mention a result due to Blokhuis & Moorhouse [82].

Proposition 2.7.7 The unitary polar space U2n(q), has no ovoids for n ≥ 4
and q a power of 2 or 3. Also, it has no ovoids for n ≥ 5 and q a power of 5 or
7.
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The latter proposition is also a consequence of the following stronger result
due to Moorhouse [574].

Proposition 2.7.8 Let q = pe, p prime and e a positive integer. If C is a
coclique of Γ(Um(q)), then

|C| ≤

[(
p+m− 2

m− 1

)2

−
(
p+m− 3

m− 1

)2
]e

+ 1.

If U2n(q) contains an ovoid, then

p2n−1 ≤
(
p+ 2n− 2

2n− 1

)2

−
(
p+ 2n− 3

2n− 1

)2

.

The bounds presented in Propositions 2.7.6 and 2.7.8 are complementary;
none of them is always better than the other.

2.7.9 Tight sets
The natural inclusions U2n(q) ⊆ U2n+1(q) ⊆ U2n+1(q) give rise to standard
(q2n−1 + 1)-tight sets and (q2n − 1)/(q2 − 1)-ovoids of U2n+1(q) and U2n+2(q),
respectively. Every i-tight set of U2n(q) is by natural inclusion also an i-tight
set of U2n+1(q). There are two other generic examples, which we now describe.
Let U2n+1(q) be defined by the Hermitian form

f : (x0, x1, . . . , x2n) 7→
2n∑
i=0

(−1)ixix
q
i .

Its restriction to Fq defines a polar space O2n+1(q) contained in U2n+1(q), and
this is a (q+ 1)-tight set (as shown in [259]). Also, let U2n(q) be defined by the
Hermitian form

f : (x1, x2, . . . , x2n) 7→
n∑
i=1

x2i−1x
q
2i − x2ix

q
2i−1.

Its restriction to Fq defines a polar space Sp2n(q) contained in U2n(q) and this
is a (q + 1)-tight set of both U2n(q) and U2n+1(q). Except for some sporadic
examples in small cases, these are essentially the only known tight sets (up to
disjoint unions of these) in finite Hermitian polar spaces.

Nakić & Storme [584] prove that every i-tight set of U2n(q), with q ≥ 9
odd, and i < q4/3−1)/2, is the disjoint union of a number of the above examples.

Metsch & Werner [566] prove that every i-tight set of U2n+1(q), with
i ≤ (q + 1)/2, is the disjoint union of a number of maximal singular subspaces.
The ultimate conjecture is that this is true as soon as i < q+1. This conjecture is
proved for U5(q) by De Beule & Metsch [259]. The latter paper also contains
an improvement for the above bound when n = 3: Every i-tight set of U7(q),
with i ≤ q + 1 −

√
2q, is the disjoint union of a number of maximal singular

subspaces.
There is not much hope of constructing large tight sets using disjoint max-

imal singular subspaces as it is known that U2n(q) and U5(2) have no spreads
(see [683] and §10.63, respectively), and for the other Hermitian polar spaces,
nothing is known about the existence of spreads.
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2.7.10 Partial spreads
Luyckx [530] constructed partial spreads of size q2n+1 + 1 in U4n+2(q), and
Vanhove [708] shows that there are no larger partial spreads.

2.7.11 Hemisystems
A hemisystem in U4(q), where q is odd, is a system of lines covering each point
(q+1)/2 times. Equivalently, a hemisystem of points in O−6 (q) is a set of isotropic
points that meets every t.i. line in (q + 1)/2 points.

Proposition 2.7.9 (Cameron et al. [177]) Let S be a hemisystem of points in
O−6 (q). Then S induces in Γ(O−6 (q)) a strongly regular graph with parameters
(v, k, λ, µ) = (1

2 (q+1)(q3+1), 1
2 (q−1)(q2+1), 1

2 (q−3), 1
2 (q−1)2) and eigenvalues

r = q − 1, s = − 1
2q(q − 1)− 1.

This is a special case of the following lemma.

Lemma 2.7.10 Let Γ be a strongly regular graph with spectrum k1 rf sg, and
let C be a regular subset of VΓ of size c, degree d, and nexus e. If d− e = s and
cd − d2 − (c − g)r2 − (d+(c−g)r)2

g−1 = 0, then C induces a strongly regular graph

with eigenvalues d, r, and −d+(c−g)r
g−1 .

Proof. Use that the sum of the eigenvalues of a graph with adjacency matrix
A is trA = 0, and the sum of the squares of the eigenvalues is trA2 which is
twice the number of edges. Apply this to the graph Γ[C] induced by Γ on C.
It has eigenvalues d, and r with multiplicity at least c − g, and certain other
eigenvalues θi, say. (Let U be the space of vectors indexed by VΓ that vanish
outside C and are orthogonal to the s-eigenspace W of Γ. Then dimU ≥ c− g
and all u ∈ U restrict to r-eigenvectors of Γ[C] since W contains a nonzero
vector constant on C.) We find

∑
i 1 = g − 1,

∑
i θi = −d − (c − g)r and∑

i θ
2
i = cd − d2 − (c − g)r2. If θ̄ is the average of the θi, then θ̄ = −d+(c−g)r

g−1

and our condition says
∑
i(θi − θ̄)2 = 0, so that all θi are equal. �

Other examples of this situation are subgraphs 4K2 in the complement of the
Clebsch graph, and Hoffman-Singleton subgraphs of the Higman-Sims graph.



Chapter 3

Graphs related to polar
spaces

The previous chapter discussed the collinearity graphs of embedded polar spaces.
Here we discuss other strongly regular graphs that are found in the same setting,
such as graphs on the nonisotropic points or on the maximal singular subspaces.

3.1 Graphs on the nonsingular or nonisotropic
points

3.1.1 Association scheme in even characteristic

Let q be a power of 2, and n ≥ 3. Let V be an n-dimensional vector space over
Fq provided with a nondegenerate quadratic form. If n is odd, there will be a
nucleus N = V ⊥. Let X be the set of nonsingular points other than N .

Consider the following relations on X.

R0 = {(x, x) | x ∈ X},
R1 = {(x, y) | 〈x, y〉 is a hyperbolic line (secant)},
R2 = {(x, y) | 〈x, y〉 is an elliptic line (exterior line)},
R3 = {(x, y) | 〈x, y〉 is a tangent},
R3a = {(x, y) | 〈x, y〉 is a tangent not on N},
R3n = {(x, y) | 〈x, y〉 is a tangent on N}.

Note that every line on N is a tangent, and that for n = 3 there are no
other tangents, so that R3a is empty. For q = 2 a hyperbolic line contains only
one nonsingular point, and a tangent on N contains only one nonsingular point
distinct from N , so that R1 and R3n are empty.

Theorem 3.1.1 (Vanhove [709])
(i) If n is even or n = 3, then (X, {R0, R1, R2, R3}) is an association scheme.
(ii) If n is odd and n ≥ 5, then (X, {R0, R1, R2, R3a, R3n}) is an association

scheme.

79
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(Part (ii) corrects [123], Theorem 12.1.1.)
All parameters pijk are given in loc. cit. For n = 2m the graph (X,R3) has

parameters v = q2m−1 − εqm−1, k = n3 = q2m−2 − 1, λ = p3
33 = q2m−3 − 2. It

is strongly regular only when q = 2.

The eigenvalue matrix and multiplicities are for Oε
2m(q):

P =


1 1

2q
m−1(qm−1 + ε)(q − 2) 1

2q
m(qm−1 − ε) q2m−2 − 1

1 1
2εq

m−2(q + 1)(q − 2) − 1
2εq

m−1(q − 1) εqm−2 − 1
1 0 εqm−1 −εqm−1 − 1
1 −εqm−1 0 εqm−1 − 1


with multiplicities (in the order of the rows of P ) 1, q2(q2m−2 − 1)/(q2 − 1),
1
2q(q

m−1 − ε)(qm − ε)/(q + 1), 1
2 (q − 2)(qm−1 + ε)(qm − ε)/(q − 1).

For O2m+1(q):

P =


1 1

2q
2m−1(q − 2) 1

2q
2m q(q2m−2 − 1) q − 2

1 1
2q
m−1(q − 2) 1

2q
m −(qm−1 + 1)(q − 1) q − 2

1 − 1
2q
m−1(q − 2) − 1

2q
m (qm−1 − 1)(q − 1) q − 2

1 1
2q
m − 1

2q
m 0 −1

1 − 1
2q
m 1

2q
m 0 −1


with multiplicities (in the order of the rows of P ) 1, 1

2q(q
m+1)(qm−1−1)/(q−1),

1
2q(q

m − 1)(qm−1 + 1)/(q − 1), 1
2 (q − 2)(q2m − 1)/(q − 1) (twice).

For q = 2 and n = 2m+ 1 the graph (X,R3) is isomorphic to Γ(O2m+1(2)).
The graph obtained for q = 2 and n = 2m is discussed below.

3.1.2 Nonsingular points over F2

Let V be a vector space of dimension 2m over F2, provided with a nondegenerate
quadratic form of type ε, ε = ±1. The corresponding quadric has 22m−1 +
ε2m−1 − 1 points, so that V has 22m−1 − ε2m−1 nonsingular points. Let Γ be
the graph on these nonsingular points, adjacent when they are orthogonal, i.e.,
when the connecting line is a tangent. If m ≥ 2, then Γ is strongly regular with
parameters (v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 , where

v = 22m−1 − ε 2m−1, θ1 = ε 2m−2 − 1,

k = 22m−2 − 1, θ2 = −ε 2m−1 − 1,

λ = 22m−3 − 2, m1 =
4

3
(22m−2 − 1),

µ = 22m−3 + ε 2m−2, m2 =
1

3
(2m−1 − ε)(2m − ε).

(The identification of θm1
1 θm2

2 with rf sg depends on the sign of ε.)
We shall denote this graph by NOε2m(2).
The group Oε

2m(2) acts as a group of automorphisms.
For m = 1, 2 one finds NO+

2 (2) = K1, NO−2 (2) = 3K1, NO+
4 (2) = K3,3,

and NO−4 (2) = T (5).
Details on cliques and cocliques are given in §3.6.
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3.1.3 Nonsingular points of one type over F3 in dimension
2m

Let V be a vector space of dimension 2m over F3, provided with a nondegenerate
quadratic form Q of type ε, ε = ±1. The corresponding quadric has 1

2 (32m−1 +
ε3m−1 − 1) points, and the set of nonsingular points is split into two parts of
equal size by considering the value of Q. Let Γ be the graph on one part, where
two points are adjacent when they are orthogonal (i.e., when the connecting line
is elliptic). If m ≥ 2, then Γ is strongly regular with parameters (v, k, λ, µ) and
spectrum k1 θm1

1 θm2
2 , where

v =
1

2
3m−1(3m − ε), θ1 = ε3m−1,

k =
1

2
3m−1(3m−1 − ε), θ2 = −ε3m−2,

λ =
1

2
3m−2(3m−1 + ε), m1 =

1

8
(3m − ε)(3m−1 − ε),

µ =
1

2
3m−1(3m−2 − ε), m2 =

9

8
(32m−2 − 1).

We shall denote this graph by NOε2m(3).
The group Oε

2m(3) acts as a group of automorphisms.
For m = 1, 2 one finds NO+

2 (3) = K1, NO−2 (3) = K2, NO+
4 (3) = 3K4, and

NO−4 (3) = Sp4(2).

Cocliques and chromatic number of NO+
2m(3)

The Hoffman bound for cocliques in NO+
2m(3) is 3m−1. Cocliques of this size are

for example the sets CU of vertices in a perp U⊥ where U is a t.s. (m−1)-space.
If U runs through all hyperplanes of a t.s. m-space, then the sets CU partition
VΓ, so that this graph has chromatic number 1

2 (3m − 1).
If m ≥ 2, and W is a t.s. (m− 2)-space, then W⊥/W is a 4-space in which

NO+
4 (3) = 3K4. That means thatW⊥ meets the vertex set in the 3m−2-coclique

extension of 3K4 and we find 43 cocliques of size 3m−1 in W⊥. Of these, 42 are
of the form CU for some U ⊃W . In particular, we found two types of cocliques
meeting the Hoffman bound.

3.1.4 Nonsingular points of one type in dimension 2m+ 1

Let V be a vector space of dimension 2m + 1 over Fq, where m ≥ 1, provided
with a nondegenerate quadratic form Q. The set of nonsingular hyperplanes is
split into two parts of sizes 1

2q
m(qm + ε) (ε = ±1), with ε = +1 (resp. −1) for

hyperbolic (resp. elliptic) hyperplanes. Let Γ be the graph on one part, where
two hyperplanes x, y are adjacent when Q ∩ x ∩ y is degenerate. Then Γ is
strongly regular with parameters (v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 , where

v =
1

2
qm(qm + ε), θ1 = −εqm−1 − 1,

k = (qm−1 + ε)(qm − ε), θ2 = ε(q − 2)qm−1 − 1,

λ = 2(q2m−2 − 1) + εqm−1(q − 1), m1 =
1

2
q2m − 1− q(q2m−1 − 1)

2(q − 1)
,

µ = 2qm−1(qm−1 + ε), m2 =
q(q2m−1 − 1)

2(q − 1)
+

1

2
εqm.
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(To be more precise: this graph is complete if q = 2, edgeless if (m, ε) =
(1,−1), and strongly regular otherwise.)

This construction is due to Wilbrink (cf. [137]).
We shall denote this graph by NOε2m+1(q).
The group O2m+1(q) acts as a group of automorphisms, see below for the

cases of a rank 3 action.
For odd q, this description is equivalent to: Let V be a vector space of

dimension 2m + 1 over Fq, where m ≥ 1, provided with a nondegenerate
quadratic form Q. The set of nonsingular points is split into two parts of
sizes 1

2q
m(qm + ε) (ε = ±1), where the points x are distinguished by the type

ε (= ±1) of the hyperplane x⊥. Let Γ be the graph on one part, where two
points are adjacent when the line joining them is a tangent. Then Γ is strongly
regular with parameters as given above. For even q this second description fails
because of the nucleus.

For ε = +1, the maximum cliques have size qm, and reach the Hoffman
bound.

For ε = +1, m = 2 and odd q, the maximum cocliques have size (q2 + 1)/2
and reach the Hoffman bound.

The complementary graph Γ is strongly regular with parameters (v, k, λ, µ)
and spectrum k1 θm1

1 θm2
2 , where

v =
1

2
qm(qm + ε), θ1 = −ε(q − 2)qm−1,

k =
1

2
(q − 2)qm−1(qm − ε), θ2 = εqm−1,

λ =
1

2
(q − 2)2q2m−2 − 1

2
ε(3q − 8)qm−1, m1 =

q(q2m−1 − 1)

2(q − 1)
+

1

2
εqm,

µ =
1

2
(q − 2)2q2m−2 − 1

2
ε(q − 2)qm−1, m2 =

1

2
q2m − 1− q(q2m−1 − 1)

2(q − 1)
.

In the special case q = 3 this graph Γ has parameters

v =
1

2
3m(3m + ε), θ1 = −ε3m−1,

k =
1

2
3m−1(3m − ε), θ2 = ε3m−1,

λ =
1

2
3m−1(3m−1 − ε), m1 =

3(32m−1 − 1)

4
+

1

2
ε3m,

µ =
1

2
3m−1(3m−1 − ε), m2 =

1

2
32m − 1− 3(32m−1 − 1)

4
.

and vertices (in the second description) are adjacent when they are orthogonal.
We shall also call this latter graph NOε⊥2m+1(3), so that NOε⊥2m+1(3) is the same
as NOε2m+1(3). One has NO+⊥

3 (3) = 3K2 and NO−⊥3 (3) = K3.

Rank 3 graphs

The graph NOε2m+1(q) is rank 3 for q ∈ {3, 4, 8} and (m, ε) 6= (1,−1), and for
(m, ε) = (1, 1) and any q. In the latter case this graph is the triangular graph
T (q + 1). The groups O3(3).2 ' PGL2(3), O3(4) ' PSL2(4) and O3(8) : 3 '
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PΓL2(8) act as a rank 3 permutation group on NO+
3 (3), NO+

3 (4) and NO+
3 (8),

respectively. For q = 8, we always need to extend the group by the nontrivial
field automorphisms to obtain a rank 3 action on NOε2m+1(8), (m, ε) 6= (1,−1).

For m = 3, the graph NOε7(q) admits a description using the generalized
hexagons G2(q), see §4.8. Indeed, a hyperbolic hyperplane of V intersects G2(q)
in a subhexagon of order (1, q) (and all such subhexagons arise this way) and
an elliptic hyperplane of V intersects G2(q) in a Hermitian spread (and all
Hermitian spreads arise this way). Then NO+

7 (q) is the graph with vertices
the subhexagons of order (1, q) of G2(q), adjacent when they share at least one
point (in which case they share exactly 2 or q + 2 points), and NO−7 (q) is the
graph with vertices the Hermitian spreads of G2(q), adjacent when they share
exactly one line (the only alternative is that they share a regulus of a hyperbolic
quadric in the intersection of Q and a solid).

For q = 3, 4, 8, the group G2(q) (extended by the field automorphisms if
q = 8) acts rank 3 on NO−7 (q); it cannot act rank 3 on NO+

7 (q) as there are
always three possibilities for the number of points in the intersection of two
subhexagons of order (1, q) of the split Cayley hexagon G2(q), namely 0, 2 and
q + 2. However, it is rank 4 precisely when the stabilizer in the group G2(q)
of a given subhexagon H of order (1, q) acts transitively on the subhexagons
sharing exactly a given set of q + 1 (mutually opposite) lines with H (and
no points). Since such hexagons have two points on either such line, this is
equivalent to PGL2(q) acting rank 3 on the triangular graph T (q + 1) obtained
from the projective line PG(1, q) by taking pairs of points, adjacent when sharing
a point. Hence G2(q) acts rank 4 on NO+

7 (q) precisely when q ∈ {3, 4}, and
G2(8) : 3 acts rank 4 on NO+

7 (8) (as one can easily check; it also follows from
Theorem 11.3.3(ii)).

Tower and clique sizes

The NO∗(3) graphs form a tower: the graph NO−ε2n+2(3) is locally NOε⊥2n+1(3),
and the graph NOε⊥2n+1(3) is locally NOε2n(3). Conversely, Pasechnik [599]
shows that for n ≥ 3 the only locally NOε2n(3) graph is NOε⊥2n+1(3), and the
only locally NOε⊥2n+1(3) graph is NO−ε2n+2(3).

It follows that maximum cliques in NOε2m(3) have size 2m if ε = (−1)m, and
2m − 1 otherwise, and that maximum cliques in NOε⊥2m+1(3) have size 2m + 1
if ε = (−1)m, and 2m otherwise.

3.1.5 Nonsingular points of one type over F5 in dimension
2m+ 1

Let V be a vector space of dimension 2m + 1 over F5, provided with a non-
degenerate quadratic form Q. The set of nonsingular points is split into two
parts, depending on the type ε (= ±1) of the hyperplane x⊥. Let Γ be the graph
on one part, where two points are adjacent when they are orthogonal. Then Γ
is strongly regular with parameters (v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 , where

v = 5m(5m + ε)/2, θ1 = 2ε 5m−1,

k = 5m−1(5m − ε)/2, θ2 = −ε 5m−1,

λ = 5m−1(5m−1 + ε)/2, m1 =
1

6
(52m − 1),

µ = 5m−1(5m−1 − ε)/2, m2 =
5

6
(5m − ε)(2 · 5m−1 + ε).
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This construction is due to Wilbrink (cf. [137]).
We shall call this graph NOε⊥2m+1(5).
The group O2m+1(5) acts as a group of automorphisms.

3.1.6 Nonisotropic points for a Hermitian form

Let V be a vector space of dimension n over Fq2 , provided with a nondegenerate
Hermitian form. Let n ≥ 3 and ε = (−1)n. Let Γ be the graph on the
nonisotropic points, adjacent when joined by a tangent. Then Γ is strongly
regular with parameters (v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 , where

v = qn−1(qn − ε)/(q + 1), θ1 = εqn−2 − 1,

k = (qn−1 + ε)(qn−2 − ε), θ2 = −ε(q2 − q − 1)qn−3 − 1,

λ = q2n−5(q + 1)− εqn−2(q − 1)− 2, m1 =
(q2 − q − 1)(qn − ε)(qn−1 + ε)

(q + 1)(q2 − 1)
,

µ = qn−3(q + 1)(qn−2 − ε), m2 =
q3(qn−2 − ε)(qn−1 + ε)

(q + 1)(q2 − 1)
.

We shall denote this graph by NUn(q). The group Un(q) acts as a group of
automorphisms.

If n is odd, the Hoffman bound for cliques is qn−1. Cliques meeting this
bound are obtained as Z⊥ \Z where Z is a maximal totally isotropic subspace.

If n = 3, the Hoffman bound for cocliques is q2 − q + 1. Cocliques meeting
this bound are obtained as the sets Cx of vertices in {x} ∪ x⊥ for nonisotropic
x. The collection of sets Cx where x varies on a fixed tangent line is a partition
of the vertex set, so that NU3(q) has chromatic number q2. (See §10.22 and
§10.52 for q = 3, 4).

The complementary graph NUn(q) is the graph on the nonisotropic points,
adjacent when on a secant. It is strongly regular with parameters (v, k, λ, µ)
and spectrum k1 θm1

1 θm2
2 , where

v =
qn−1(qn − ε)

q + 1
, θ1 = εqn−3r,

k =
qn−2r(qn−1 + ε)

q + 1
, θ2 = −εqn−2,

λ = µ+ εqn−3r − εqn−2, m1 =
q3(qn−2 − ε)(qn−1 + ε)

(q + 1)(q2 − 1)
,

µ =
qn−2r(qn−3r + ε)

q + 1
, m2 =

r(qn − ε)(qn−1 + ε)

(q + 1)(q2 − 1)
,

where r = q2 − q − 1.

Rank 3 tower

The case q = 2 is special. The group action is rank 3 for q = 2. The graph
NUn(2) is the graph on the nonisotropic points, adjacent when orthogonal. It
is locally NUn−1(2).
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Hyperplanes

The graph NUn(q) can also be seen as the set of nondegenerate hyperplanes of
a nondegenerate hermitian form on a vector space V of dimension n over Fq2 ,
adjacent if they intersect in a nondegenerate subhyperplane (i.e., a subspace
of codimension 2). For n = 3, NU3(q) is hence the graph on the blocks of a
Hermitian unital, adjacent if they are disjoint.

Orthogonality in the plane

Let V be a vector space of dimension 3 over Fq2 , provided with a nondegenerate
Hermitian form. Let Γ be the graph on the nonisotropic points, adjacent when
orthogonal. Then Γ has v = q2(q2 − q + 1) vertices. If q = 2, then Γ '
4K3, the disjoint union of four triangles. If q > 2 the Γ is distance-regular
with intersection array {q2 − q, q2 − q − 2, q + 1; 1, 1, q2 − 2q} and spectrum
(q2 − q)1 qf (−1)q

3

(−q)g, where f = 1
2 (q2 − q)(q2 − q + 1) and g = 1

2 (q2 − q −
2)(q2 − q + 1). See [123], Theorem 12.4.1.

Unitals and O’Nan configurations

A unital (of order q) is a Steiner system S(2, q + 1, q3 + 1), that is, a 2-(q3 +
1, q + 1, 1) design. The order q need not be a prime power; examples for q = 6
were constructed in [547] and [32]. An embedded unital is a unital of order q of
which the point set X is a subset of the set of points of a(n arbitrary) projective
plane PG(2, q2), and the blocks are the nontrivial intersections of X with lines.
For example, the Hermitian unitals (where the point set is the set of absolute
points for a unitary polarity) are embedded unitals, and the name comes from
this example. Embedded unitals are two-character sets: each line meets X in
either 1 or q + 1 points. A monograph on embedded unitals is [51].

An O’Nan configuration (say, in a partial linear space) is a configuration of
four lines meeting in six points. O’Nan [597] proved that the full automorphism
group of the Hermitian unital is PΓU3(q). Also, that this design does not contain
O’Nan configurations. An immediate consequence is that NU3(q) (viewed as the
block graph of the unital) has precisely two types of maximal cliques: cliques of
size q2 (meeting the Hoffman bound) consisting of all blocks on a fixed point,
and cliques of size q + 2 consisting of the q + 1 blocks on a point p meeting a
block B not on p, together with this block B.

Piper [619] conjectured that the Hermitian unital is characterized among
the S(2, q + 1, q3 + 1) designs by the absence of O’Nan configurations. This
conjecture remains open. Wilbrink [730] has partial results. See also [367] for
another intrinsic characterization of the Hermitian unitals.

History

The above graphs were constructed in Chakravarti [189] for n = 3, 4. The
chromatic number of NU3(q) was given by Soicher.
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3.2 Graphs on half of the maximal singular sub-
spaces

3.2.1 General observations
Let (X,Ω) be a finite embedded polar space of rank n and order (q, 1). Recall
from §2.2.12 that the graph ∆ = ∆(X,Ω) has diameter n, and is bipartite,
and hence that the halved graphs are distance-regular of diameter bn/2c. In
particular, they are strongly regular for n = 4, 5. We take a look at these cases
separately, but we first show that the halved graphs are mutually isomorphic.

Lemma 3.2.1 The two connected components ∆1/2 and ∆′1/2 of the distance-2
graph of ∆ are isomorphic.

Proof. Let X be given by its standard equation in 2n-dimensional space V
over the field Fq:

X−1X1 +X−2X2 + · · ·+X−nXn = 0,

and let ϕ be the linear mapping interchanging the X−1- and the X1-coordinate
of every vector (and leaving the rest as it is). Clearly ϕ preservesX and Ω. Then
the maximal singular subspace W with equations X1 = X2 = · · · = Xn = 0 is
mapped onto the subspace W ′ with equations X−1 = X2 = X3 = · · · = Xn = 0,
which intersectsW in an (n−1)-space. HenceW andW ′ correspond to adjacent
vertices in ∆ and hence to different connected components of the distance-2
graph of ∆. �

So from now on, we denote by ∆1/2 one of the two connected components
of the distance-2 graph of ∆. When we want to emphasize the corresponding
polar space O+

2n(q) we write ∆1/2(O+
2n(q)).

We have the following isomorphism result.

Proposition 3.2.2 The graph ∆1/2(O+
2n+2(q)) is isomorphic to the distance-

{1, 2} graph of ∆(O2n+1(q)). If q is even, then it is also isomorphic to the
distance-{1, 2} graph of ∆(Sp2n(q)).

Proof. Let Q+ be a hyperbolic quadric in a (2n+2)-dimensional space V over
Fq, n ≥ 2. Let Q = Q+ ∩H be a hyperplane section of Q+ with a hyperplane
H such that Q is a nondegenerate parabolic quadric in H. Let Ω be the set
of maximal singular subspaces of Q, and let Ω1 and Ω2 be the two natural
classes of maximal singular subspaces of Q+ (so any member of Ω1 intersects
any member of Ω2 in a subspace of odd codimension in both, and Ω1 ∪ Ω2

is the complete set of maximal singular subspaces—which are (n + 1)-spaces).
Let M ∈ Ω. Then M is an n-dimensional singular subspace of Q+ and hence
contained in exactly two maximal singular subspaces (since Q+ is hyperbolic).
Clearly, exactly one of them belongs to Ω1 (and the other to Ω2). Conversely,
for every member M+ ∈ Ω1, the intersection H ∩M+ belongs to Ω (since M+

is not contained in H). This defines a natural bijection β : Ω ↔ Ω1. Suppose
M+, N+ ∈ Ω1 intersect in an (n− 1)-space. Then β(M+) and β(N+) intersect
in (M+ ∩ H) ∩ (N+ ∩ H) = (M+ ∩ N+) ∩ H, which has dimension n − 1 or
n − 2, i.e., M+ ∩ H and N+ ∩ H are at distance 1 or 2 in the graph, with
self-explaining notation, ∆(Q) ∼= ∆(O2n+1(q)). Conversely, let M,N ∈ Ω be at



3.2. GRAPHS ON HALF OF THE MAXIMAL SINGULAR SUBSPACES 87

distance at most 2 in ∆(Q). Then M ∩N has dimension at least n− 2, and so
β(M)∩β(N) has dimension at least n− 2. Since the parity of the dimension of
β(M) ∩ β(N) is that of n + 1, the dimension of β(M) ∩ β(N) cannot be n− 2
and hence is at least n − 1. This means that β(M) and β(N) are adjacent in
∆(Q+).

The last assertion follows from §2.6. �

3.2.2 The rank 4 case: the triality quadric
Suppose that the rank of (X,Ω) is 4. The next proposition says that the graph
∆1/2 is isomorphic to Γ(X,Ω). Usually, this is proved using a trilinear form
(cf. [710], §2.4.6). We proceed with an explicit isomorphism.

Proposition 3.2.3 If (X,Ω) is an embedded polar space of rank 4 and order
(q, 1), then the collinearity graph Γ(X,Ω) is isomorphic to each of the halved
graphs of ∆(X,Ω).

Proof. Let X be given by the equation X−1X1 +X−2X2 +X−3X3 +X−4X4 =
0, and order the coordinates (x−4, x−3, x−2, x−1;x1, x2, x3, x4). Consider the
following mapping τ from the point set X into the set Ω of maximal singular
subspaces (every such subspace is given by a 4× 8 matrix whose rows represent
spanning vectors):

(1, x−3, x−2, x−1;x1, x2, x3,−x−1x1 − x−2x2 − x−3x3) 7→
1 0 0 0 x−1 x−2 x−3 0
0 1 0 0 −x2 x1 0 −x−3

0 0 1 0 x3 0 −x1 −x−2

0 0 0 1 0 −x3 x2 −x−1


(0, 1, x−2, x−1;x1, x2,−x−1x1 − x−2x2, x4) 7→

x1 −x−2 1 0 −x4 0 0 0
−x2 −x−1 0 1 0 x4 0 0

0 0 0 0 x−1 x−2 1 0
0 0 0 0 x2 −x1 0 1


(0, 0, 1, x−1;x1,−x−1x1, x3, x4) 7→

−x1 1 0 0 x4 0 0 0
x3 0 −x−1 1 0 0 −x4 0
0 0 0 0 x−1 1 0 0
0 0 0 0 −x3 0 x1 1



(0, 0, 0, 1; 0, x2, x3, x4) 7→


x2 1 0 0 0 −x4 0 0
−x3 0 1 0 0 0 x4 0

0 0 0 0 1 0 0 0
0 0 0 0 0 x3 −x2 1



(0, 0, 0, 0; 1, x2, x3, x4) 7→


1 0 0 0 −x4 0 0 0
0 x3 x2 1 0 0 0 x4

0 0 0 0 −x2 1 0 0
0 0 0 0 −x3 0 1 0
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(0, 0, 0, 0; 0, 1, x3, x4) 7→


1 0 0 0 0 −x4 0 0
0 x3 1 0 0 0 0 x4

0 0 0 0 1 0 0 0
0 0 0 0 0 −x3 1 0



(0, 0, 0, 0; 0, 0, 1, x4) 7→


1 0 0 0 0 0 −x4 0
0 1 0 0 0 0 0 x4

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0



(0, 0, 0, 0; 0, 0, 0, 1) 7→


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


From the fact that the matrices on the right are diagonalized (up to permut-

ing columns), we see that τ is injective in Ω. Now let Ω1 be the collection
of maximal singular subspaces intersecting the subspace W1 with equations
X−1 = X−2 = X−3 = X−4 = 0 in a subspace of even codimension (disjoint or
intersecting in a line). We claim that τ is surjective on Ω1. Indeed, let W ∈ Ω1

be arbitrary and let pijk` be the Grassmann coordinate of W corresponding
to the positions i, j, k, ` ∈ {−4,−3,−2,−1, 1, 2, 3, 4}, where we write ī instead
of −i for brevity. If W and W1 are disjoint, then p4̄3̄2̄1̄ 6= 0, and so W is
the image under τ of a point (1, . . .). If W intersects W1 in a line, then we
can pick a generating set of points of W such that the 4 × 4 matrix consisting
of the first four coordinates of these four points is in diagonalized form, and
has rank 2. Hence W is the image of a point of one of the following six
shapes: (0, 1, . . .), (0, 0, 1, . . .), (0, 0, 0, 1; . . .), (0, . . . , 0; 1, . . .), (0, . . . , 0; 0, 1, . . .)
or (0, . . . , 0; 0, 0, 1, . . .). Finally, if W = W1, then the inverse image of W is
(0, . . . , 0, 1).

Now we claim that two points of X are collinear if and only if their images
under τ intersect nontrivially. This follows from inspecting the 36 different cases
for the shapes of the pair of points, according to the definition of τ . Let us do the
most involved case, where the points, say u and v, have respective coordinates

(1, x−3, x−2, x−1;x1, x2, x3,−x−1x1 − x−2x2 − x−3x3)
and (1, y−3, y−2, y−1; y1, y2, y3,−y−1y1 − y−2y2 − y−3y3).

It is easy to calculate that u and v are collinear if and only if

(x−1 − y−1)(x1 − y1) + (x−2 − y−2)(x2 − y2) + (x−3 − y−3)(x3 − y3) = 0,

whereas the determinant of the matrix

1 0 0 0 x−1 x−2 x−3 0
0 1 0 0 −x2 x1 0 −x−3

0 0 1 0 x3 0 −x1 −x−2

0 0 0 1 0 −x3 x2 −x−1

1 0 0 0 y−1 y−2 y−3 0
0 1 0 0 −y2 y1 0 −y−3

0 0 1 0 y3 0 −y1 −y−2

0 0 0 1 0 −y3 y2 −y−1


is equal to

[(x−1 − y−1)(x1 − y1) + (x−2 − y−2)(x2 − y2) + (x−3 − y−3)(x3 − y3)]2.
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This shows the claim for u and v. Similar, but simpler, calculations hold for the
other cases. �

It is rather cumbersome to calculate the inverse images of a given generic
member of Ω1. Except in characteristic 2. Indeed, in general, the image of the
set of members of Ω1 through a fixed line L on the Grassmannian of 4-spaces
of V is a conic. When q is a power of 2, we can project the Grassmannian from
the subspace generated by the nuclei of all such conics; this gives us precisely a
point set projectively equivalent to X.

Proposition 3.2.4 Let q be even and let W ∈ Ω1 be arbitrary. Let pijk`,
i, j, k, ` ∈ {4̄, . . . , 1̄, 1, . . . , 4}, be as above. Then τ−1(W ) is the point with
coordinates

(p
1/2

4̄3̄2̄1̄
, p

1/2

2̄1̄34
, p

1/2

3̄1̄24
, p

1/2

3̄2̄14
; p

1/2

4̄1̄23
, p

1/2

4̄2̄13
, p

1/2

4̄3̄12
, p

1/2

1234
).

Proof. This follows immediately by calculating the relevant Grassmann coor-
dinates of the images of a point, given in the definition of τ above. �

Remark One easily checks that the image under τ of the point set of a member
W1 of Ω1 is a set of 4-spaces sharing 3-spaces with a fixed member W2 of
Ω2 := Ω \ Ω1. We set W2 = τ(W1). The image under τ of the point set of
W2 is the set of members of Ω1 containing a fixed point P and we can define
P = τ(W2). If we call points of (X,Ω) type 0 objects, members of Ω1 type 1
objects and members of Ω2 type 2 objects, then τ is an adjacency preserving
and type rotating (0 → 1 → 2 → 0) map in ∆, with adjacency inherited
by Γ(X,Ω) and the two halved graphs ∆1/2 and ∆′1/2. Such a map is called a
triality. Trialities of order 3 play a special role since they give rise to generalized
hexagons (i.e., the fixed lines with all their points form a possibly degenerate
generalized hexagon).

3.2.3 Rank 5 hyperbolic polar spaces
Let (X,Ω) be a finite embedded polar space of rank 5 of order (q, 1) and set
Γ = Γ(X,Ω) and ∆ = ∆(X,Ω). This latter graph is bipartite. Let Ω1 and Ω2

be the two vertex classes, and let ∆1/2 be the halved graph of ∆ with vertex
set Ω1. The graph ∆1/2 is strongly regular, with parameters given in Theorem
2.2.20.

Maximal cliques

The Hoffman bound yields |C| ≤ q5 + q4 + q3 + q2 + q + 1 for a maximal clique
C of ∆1/2. But no maximal clique meets this bound; in fact, maximal cliques
are much smaller as the following proposition shows.

Proposition 3.2.5 Every maximal clique is either the set of members of Ω1

containing a fixed line (and then has size q3 + q2 + q+ 1), or the set of members
of Ω1 intersecting a fixed member of Ω2 in codimension 1 (and then has size
q4 + q3 + q2 + q + 1).

Proof. Let C be a maximal clique of ∆1/2. Any two members of C meet
in a plane. Let M1,M2,M3 be three distinct elements of C , not all on the
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same plane. If P is a point of M2 ∩M3 \M1, then P⊥ ∩M1 has codimension 1
in M1, so (M1∩M2)∪ (M1∩M3) does not span M1, so the two planes M1∩M2

and M1 ∩M3 span a hyperplane of M1, i.e., a point of the dual projective space
M∗1 .

Let M be a fixed element of C , and let Π be the set of planes M ∩M ′ for
M ′ ∈ C , M ′ 6= M . In the dual projective space M∗, the set Π is a set of lines
pairwise intersecting in a point. Either all these lines have a common point, or
are contained in a common plane. In the former case that point corresponds to
a hyperplane H of M , which is contained in a unique N ∈ Ω2 (and all elements
of C have a codimension 2, hence codimension 1 space in common with N); in
the latter case the plane corresponds to a line L of M and all elements of Π,
and hence of C , contain L. �

We record a useful corollary of the above proposition.

Corollary 3.2.6 Let u, v be two adjacent vertices of ∆1/2. Then the inter-
section of all maximal cliques containing u, v is the set of all members of Ω1

containing a fixed projective plane of O+
10(q).

Maximal cocliques

The Hoffman bound for cocliques is q8−1
q3−1 which is not an integer. An obvious

construction of (much smaller) maximal cocliques runs as follows.

Proposition 3.2.7 Let p be a point of O+
10(q). Then Res (p) is an embedded

polar space in the quotient space PV/p isomorphic to O+
8 (q). Let S be a spread

of O+
8 (q) contained in Ω1. Then S corresponds to a maximal coclique (of size

q3 + 1) of ∆1/2.

Larger cocliques exist, but the known examples are messy.

Automorphism group

The automorphism group of (X,Ω) is PΓO+
10(q). The subgroup that preserves

the parts Ω1 and Ω2 has index 2 in PΓO+
10(q), and is a group of automorphisms

of ∆1/2. We show that it is the full group. To this end, we introduce the notion
of clique-convex subgraph of a graph: This is a subgraph closed under taking
shortest paths between its vertices and such that, for every pair u, v of adjacent
vertices of the subgraph, the intersection of all maximal cliques containing u and
v is contained in the subgraph. The clique-convex closure of a subset of vertices
is the intersection of all clique-convex subgraphs containing that subset; clearly
this is a clique-convex subgraph.

The above claim about the automorphism group of ∆1/2 follows from the
next proposition.

Proposition 3.2.8 The family of clique-convex subgraphs of ∆1/2 which are
the clique-convex closure of two vertices at distance 2 from each other, is in
natural bijective correspondence with the set of vertices of Γ; moreover two such
subgraphs are disjoint if and only if the corresponding vertices of Γ are not
adjacent.
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Proof. Let v ∈ V (Γ). Let Wv = {M ∈ Ω1 | v ∈ M}. We claim that the
induced subgraph ∆1/2(Wv) is clique-convex. Indeed, let M,N be vertices of
∆1/2(Wv). ThenM∩N is either a point or a plane. If it is a plane, thenM ∼ N
and Corollary 3.2.6 implies that each member of the intersection of all maximal
cliques containing M and N contains v. If M ∩N = {v}, then their distance is
2 in ∆1/2. Let, in the latter case, M ∼ R ∼ N for some vertex R of ∆1/2. Since
R cannot contain two disjoint planes, we must have M ∩N ∩R 6= 0, so v ∈ R,
that is, R ∈ ∆1/2(Wv), showing the claim.

Now let again M,N be vertices of ∆1/2 with M ∩N = {v}. Let ∆1/2(M,N)
be the clique-convex closure of {M,N}. We claim ∆1/2(M,N) = ∆1/2(Wv).
The previous paragraph already implies ∆1/2(M,N) ⊆ ∆1/2(Wv). Left to
show is ∆1/2(M,N) ⊇ ∆1/2(Wv). Considering the residue at v, and noting
Proposition 3.2.3, we see that the claim is proved if we show that (embedded)
polar space graphs have no proper clique-convex subgraphs containing two
noncollinear points. Let us show this.

Let x, y be two noncollinear points of an embedded polar space E and let
F be a clique-convex subgraph of the collinearity graph containing x and y.
Then the definition of clique-convexity readily implies that x⊥ ∪ y⊥ belongs
to F . Let v ∈ E be an arbitrary point and suppose v does not belong to F .
Consider two lines L,L′ through x which are not contained in a singular plane.
Then v⊥ ∩ (L ∪ L′) is a pair of noncollinear points belonging to F ; hence by
clique-convexity also v belongs to F and so E = F .

Since Wu ∩Wv 6= 0 if and only if u, v are collinear in Γ, the last assertion
follows. �

3.2.4 Disjoint t.i. planes in O7(q) and Sp6(q)

The dual polar graphs on the t.i. planes in the O7(q) or Sp6(q) geometry,
adjacent when they meet in codimension 1, are distance-regular of diameter
3, with parameters bi = qi+1(q3−i − 1)/(q − 1) and ci = (qi − 1)/(q − 1) and
eigenvalues θi = (q4−i − qi)/(q − 1) − 1 (0 ≤ i ≤ 3), cf. §2.2.9. In particular,
θ2 = −1. It follows from Proposition 1.3.12 that the distance-3 graph of each is
strongly regular. Their parameters are

v = (q3 + 1)(q2 + 1)(q + 1), r = q2,

k = q6, s = −q3,

λ = q2(q3 − 1)(q − 1), f = q2(q4 + q2 + 1),

µ = (q − 1)q5, g = q(q + 1)2.

For the O7(q) geometry, this graph is just the (complement of the) O+
8 (q)

polar graph. Indeed, by triality that polar graph is isomorphic to the graph on
one kind of t.i. solids, adjacent when they meet in a line, and hitting with a
hyperplane we find the above description. For Sp6(q) (with odd q) however, this
graph is not isomorphic to graphs discussed earlier. The group is rank 4.

The subgraph of the dual polar graph for O7(q) induced of the set of q6 t.i.
planes disjoint from a given plane is the Brouwer-Pasechnik graph described
in [140], Proposition 3.1. It is distance-regular of diameter 3 with intersection
array {q3−1, q3−q, q3−q2 +1; 1, q, q2−1} and has eigenvalue −1. We see that
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the graph Γ on the t.i. planes of O7(q), adjacent when disjoint, has local graphs
that are strongly regular with parameters v = q6, k = (q3 − 1)(q3 − q2 + 1),
λ = µ− (q3 − 2q2 + 2), µ = q2(q − 1)(q3 − q2 + 1).

The subgraph of the dual polar graph for Sp6(q) induced of the set of q6

t.i. planes disjoint from a given plane is the symmetric bilinear forms graph on
V = F3

q ([123], Theorem 9.5.10). For even q the spaces Sp6(q) and O7(q) are
isomorphic. So, let q be odd. Then the symmetric bilinear forms graph is the
same as the quadratic forms graph (§3.4.3). We see for odd q that the graph Γ
on the t.i. planes of Sp6(q), adjacent when disjoint, is locally the complement of
the quadratic forms graph on V , so that both Γ and its local graph are strongly
regular. For Γ the parameters were given above. Its local graph has parameters
v = q6, k = q2(q3 − 1)(q − 1), λ = µ− q2(q − 2), µ = q2(q − 1)(q3 − q2 − 1). In
particular, Γ satisfies the 4-vertex condition.

3.3 Affine polar graphs
So far our graphs were mostly defined on projective points. Here we construct
strongly regular graphs the vertices of which are vectors, where the vector space
has a polar space on its hyperplane at infinity. These graphs are associated with
two-weight codes, cf. §7.1.1.

3.3.1 Isotropic directions
Let V be a vector space of dimension 2m over Fq, m ≥ 1, provided with a
nondegenerate quadratic form Q of type ε (= ±1). Take as vertices the vectors
in V , where two different vectors u and v are joined when Q(v − u) = 0. This
yields a strongly regular graph Γ with parameters (v, k, λ, µ) and spectrum
k1 θm1

1 θm2
2 , where

v = q2m, θ1 = ε(q − 1)qm−1 − 1,

k = (qm − ε)(qm−1 + ε), θ2 = −εqm−1 − 1,

λ = q(qm−1 − ε)(qm−2 + ε) + q − 2, m1 = (qm − ε)(qm−1 + ε) = k,

µ = qm−1(qm−1 + ε), m2 = qm−1(q − 1)(qm − ε).

Let us call these graphs VOε2m(q).

If we take the Hamming scheme H(n, 4) and call two vertices adjacent when
their distance is even, we obtain a strongly regular graph (as was observed in
[474]). But this is just the graph VOε2n(2), where ε = (−1)n. Indeed, the
weight of a quaternary digit is given by the (elliptic) binary quadratic form
x2

1 + x1x2 + x2
2.

If m = 1, then VO+
2 (q) is the q × q grid graph.

Rank 3 group action

Consider the graph Γ(V,X) obtained by taking a vector space V as vertex set,
and joining two vectors when the line joining them has a direction in X, where
X is a subset of PV . This graph has a transitive group (namely the additive
group V ). It will have a rank 3 group when the stabilizer of X in the collineation
group of PV has precisely two orbits (namely X and its complement).

The graphs VOε2m(q) are obtained when X is the set of points on a quadric
(and dimV is even).
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Rank 3 action of the unitary group

If we take an m-dimensional vector space over F = Fq2 provided with a non-
degenerate Hermitian form f(x, y), then Q(x) = f(x, x) is a nondegenerate
quadratic form over Fq of type ε = (−1)m. One finds that VOε2m(q) (with
ε = (−1)m) admits a rank 3 action of the group V.(F ∗ ◦ SU(m, q)).

Rank 3 action of the 7-dimensional orthogonal group

Take the graph VO+
8 (q). We claim that it admits a rank 3 action of the group

V.(F∗q ◦ PSO7(q)), with PSO7(q) ≤ PGO+
8 (q) the image under triality of a

subgroup G ≤ PGO+
8 (q) stabilizing a nondegenerate hyperplane W of V (or,

equivalently, fixing a nonisotropic point).
Let W be a nondegenerate hyperplane of V . Then Q defines in W a polar

space (X ′,Ω′) of type O7(q), which is a subspace of the polar space (X,Ω)
related to Q. Write Ω = Ω1 ∪ Ω2, with Ω1 and Ω2 the two orbits in Ω under
the action of O+

8 (q). Consider the group G = PSO7(q) as subgroup of PSO+
8 (q)

acting naturally onW . Each member of Ω′ is contained in precisely one member
of Ω1, and each member of Ω1 contains precisely one member of Ω′. Hence the
group G acts transitively on Ω1, since it acts transitively on Ω′. Conjugating
with an appropriate triality τ : X → Ω2 → Ω1 → X in Out(O+

8 (q)), we see that
Gτ acts transitively on the singular points of PV .

We now show that Gτ acts transitively on the nonsingular points of PV .
Since Gτ acts transitively on the singular points, it suffices to prove that, for
some singular point x, the stabilizer (Gτ )x acts transitively on the nonsingular
points in 〈x⊥〉 (here, ⊥ is with respect to the O+

8 (q) geometry). We achieve this
in two steps: First we show that the stabilizer in (Gτ )x of some nonsingular line
L in 〈x⊥〉 through x acts transitively on the nonsingular points of L; then we
show that (Gτ )x acts transitively on the nonsingular lines in 〈x⊥〉 through x.

We start with determining the order and structure of the kernel K ≤ (Gτ )x
of the action of (Gτ )x on the t.s. (totally singular) lines through x.

Set Z1 = xτ
−1 ∈ Ω1 and set Z = Z1 ∩W . Let H := {g ∈ G | τ−1gτ fixes x

and all t.s. lines on x}, so that K = Hτ . Then H = {g ∈ G | g fixes Z1 and all
t.s. lines in Z1} = {g ∈ G | g fixes Z1 pointwise}.

Taking for Q the standard quadratic form

X−1X1 +X−2X2 +X−3X3 +X−4X4,

for W the hyperplane with equation X−4 + X4 = 0 and for Z1 the solid (4-
space) with equations X1 = X2 = X3 = X4 = 0, it is easily checked that H
corresponds to the family of linear maps with generic matrix (action on the
right) 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 a b 0 1 0 0 0
0 c 0 −b 0 1 0 0
0 0 −c−a 0 0 1 0
0 0 0 0 0 0 0 1
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where the coordinates are ordered (x−4, x−3, x−2, x−1;x1, x2, x3, x4). Hence
both H and K are elementary abelian groups of order q3.

Let S1 be the t.s. solid with equations X−2 = X−1 = X3 = X4 = 0. Then
S1 ∈ Ω1 since N := S1 ∩ Z1 is a line. Computing the images of S1 under the
action of H, we see that H acts transitively on the q t.s. solids in Ω1 on N
distinct from Z1, so K acts transitively on M \ {x} for M = Nτ .

The t.s. solid Z2 with equations X1 = X2 = X3 = X−4 = 0 contains Z,
belongs to Ω2, and H fixes Z2 pointwise, hence fixes all solids in Ω1 incident
with Z2. Applying τ we find a t.s. solid S = Z2

τ through x pointwise fixed byK.
Considering a plane through M and a point of S not collinear to all points

of M , we deduce that there also exists a nonsingular line L such that K acts
transitively on L \ {x}. This shows Step 1.

Now the order of G is q9(q6 − 1)(q4 − 1)(q2 − 1). Since there are (q3 + 1)
(q2 + 1)(q + 1) singular planes in a polar space of type O7(q), the stabilizer
(Gτ )x has order q9(q3 − 1)(q2 − 1)(q − 1). Hence, since |K| = q3, the quotient
group (Gτ )x/K, which is canonically isomorphic to GZ1/H, has order q6(q3−1)
(q2 − 1)(q − 1). But GZ1

/H acts faithfully on Z1, and is thus isomorphic to a
subgroup of PGL(Z1)Z . Since the latter has the same order, GZ1

/H coincides
with PGL(Z1)Z .

The perp of a nonsingular line on x in 〈x⊥〉 induces in x⊥ a degenerate
polar space with radical x of which the quotient space with respect to x is
of type O5(q). The triality τ−1 takes the point set of such a space (i.e., the
t.s. lines on x of the corresponding degenerate polar space) to the set of lines
in Z1 t.i. with respect to a nondegenerate symplectic form. Hence Step 2 is
equivalent to showing that the stabilizer in PGL(Z1) ∼= PGL4(q) of the plane
Z acts transitively on the family of symplectic polar spaces of type Sp4(q) in
Z1
∼= PG(3, q), which follows from the transitivity of PGL4(q) on this family and

the transitivity of the group Sp4(q) on the points of PG(3, q).
Hence we have shown that Gτ acts transitively on the nonsingular points of

PV .
Note that, if we would have started with O7(q) instead of PSO7(q), then

we would have ended up with PSL4(q), which does not act transitively on the
symplectic polar spaces in PG(3, q) if q is odd.

The Suzuki-Tits ovoid at infinity

There is another rank 3 graph with the same parameters and similar construc-
tion as VO−4 (q). Let O be the Suzuki-Tits ovoid (see §2.5) embedded in PV ,
where V is a 4-dimensional vector space over the field Fq with q = 22e−1, and
let V Sz(q) be the graph Γ(V,O) defined as above.

Since O is an ovoid of a symplectic quadrangle, the totally isotropic lines with
respect to the corresponding alternating form (hence those of the symplectic
quadrangle) intersect O in exactly one point. The first paragraph of the proof
of Proposition 2.5.1 shows that nonisotropic lines intersect O in zero or two
points. Hence O is an ovoid of PV . There are as many planes that meet O in
q + 1 points forming an oval as there are nonisotropic points. Every such plane
contains a unique nucleus of the corresponding oval, which is a point contained
in all tangent lines to the oval. These tangent lines are, by the above discussion,
totally isotropic, hence a point is the nucleus of exactly one oval. This implies
that there is a bijective correspondence between the ovals on O and the points off
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O. As the Suzuki group Sz(q) acts transitively on the ovals, it acts transitively
on the points off O, and hence V.(F∗q ◦ Sz(q)) acts rank 3 on V Sz(q).

3.3.2 Square directions
Let V be a vector space of dimension 2m over Fq, where q is odd, provided
with a nondegenerate quadratic form Q of type ε (= ±1). Take as vertices the
vectors in V , where two vectors u and v are joined when Q(v − u) is a nonzero
square. This yields a strongly regular graph Γ with parameters (v, k, λ, µ) and
spectrum k1 rf sg, where

v = q2m, λ = µ+ εqm−1,

k =
1

2
(q − 1)(qm − ε)qm−1, µ =

1

4
qm−1(q − 1)(qm − qm−1 − 2ε),

r =
1

2
qm−1(q + ε), f =

1

2
(q2m − qm + qm−1 − 1)− 1

2
ε(q2m−1 − 1),

s = −1

2
qm−1(q − ε), g =

1

2
(q2m + qm − qm−1 − 1) +

1

2
ε(q2m−1 − 1).

Here f = k if ε = 1, and g = k if ε = −1.
Let us call these graphs V NOε(2m, q). They have a rank 4 group.

3.3.3 Affine half spin graphs
The first subconstituent of the affine polar graph VOε2m(q) is a (q − 1)-clique
extension of the graph Γ(Oε

2m(q)). There is also an affine graph that is locally a
(q−1)-clique extension of the graph ∆1/2 = ∆1/2(O+

10(q)). In order to define and
construct this graph, which we shall denote by VD5,5(q), we need to represent
the vertex set of ∆1/2 as 1-spaces in a vector space (and not as a set of higher
dimensional subspaces, as we did above).

Let V = V1⊕V2 be a 16-dimensional vector space, written as the direct sum
of two 8-dimensional subspaces V1, V2, over the finite field Fq (but everything
that follows, except for the counts, holds over an arbitrary field). Let ι : V1 →
V2 be an isomorphism, identify V1 with F8

q , labeling the coordinates Xi, with
i ∈ {−4,−3,−2,−1, 1, 2, 3, 4} and consider the quadratic form

Q : V1 → Fq : (x−4, x−3, . . . , x4) 7→ X−1X1 +X−2X2 +X−3X3 +X−4X4.

Let Φ = {u ∈ V1 | Q(u) = 0} be the corresponding hyperbolic quadric in V1.
Recall the map τ defined in the proof of Proposition 3.2.3 sending the 1-spaces
in Φ to 4-spaces of V1 contained in Φ, and define ρ(u) = τ(〈u〉) for u ∈ Φ \ {0}.
Let S be the union over all u ∈ Φ\{0} of the 5-dimensional subspaces 〈u, ιρ(u)〉.

The vertex set of VD5,5(q) is V , and two vectors u1 and u2 are adjacent
when u1 − u2 ∈ S.

Proposition 3.3.1 The graph VD5,5(q) is a rank 3 strongly regular graph with
parameters (v, k, λ, µ) and spectrum k1 rf sg, where

v = q16, r = q8 − q3 − 1,

k = (q8 − 1)(q3 + 1), s = −(q3 + 1),

λ = q8 + q6 − q3 − 2, f = (q8 − 1)(q3 + 1) = k,

µ = q3(q3 + 1), g = q3(q8 − 1)(q5 − 1).
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The proof of this proposition will occupy the rest of this subsection. It will
reveal some interesting structure of VD5,5(q) and its underlying geometry.

Lemma 3.3.2 With the above notation, choose coordinates in V2 so that ι maps
a vector in V1 to a vector with the same coordinates in V2. Let the coordinates
of a generic vector in V be labeled as

(x−4, x−3, x−2, x−1;x1, x2, x3, x4 | y−4, y−3, y−2, y−1; y1, y2, y3, y4).

Then S is given by the intersection of the null sets of the following quadratic
forms:

X−4X4 +X−3X3 +X−2X2 +X−1X1, (3.1)
Y−4Y4 + Y−3Y3 + Y−2Y2 + Y−1Y1, (3.2)

X−4Y4 +X−3Y−3 +X−2Y−2 +X−1Y−1, (3.3)
X−4Y3 −X−3Y−4 −X2Y−1 +X1Y−2, (3.4)
X−4Y2 +X3Y−1 −X−2Y−4 −X1Y−3, (3.5)
X−4Y1 −X3Y−2 +X2Y−3 −X−1Y−4, (3.6)
X4Y−1 −X−3Y2 +X−2Y3 −X1Y4, (3.7)
X4Y−2 +X−3Y1 −X2Y4 −X−1Y3, (3.8)
X4Y−3 −X3Y4 −X−2Y1 +X−1Y2, (3.9)
X4Y−4 +X3Y3 +X2Y2 +X1Y1. (3.10)

Proof. Let T denote the intersection of the null sets of the quadratic forms in
the statement of the lemma. We show S ⊆ T and T ⊆ S.

Part 1: S ⊆ T

We present an algebraic argument. This consists of going through the possible
coordinate shapes of a vector u of Φ, u 6= 0, and then show that 〈u, ιρ(u)〉 is
contained in T . Let us do this for the most involved case, i.e., when u has
coordinates

(1, x−3, x−2, x−1;x1, x2, x3,−x−1x1 − x−2x2 − x−3x3).

Then a generic vector of 〈u, ιρ(u)〉 has, according to the proof of Proposi-
tion 3.2.3, the following coordinates:

(1, x−3, x−2, x−1; x1, x2, x3, − x−1x1 − x−2x2 − x−3x3 |
y−4, y−3, y−2, y−1; y−4x−1 − y−3x2 + y−2x3, y−4x−2 + y−3x1 − y−1x3,

y−4x−3 − y−2x1 + y−1x2, − y−3x−3 − y−2x−2 − y−1x−1).

An elementary calculation shows that this vector vanishes under all of the given
quadratic forms.

Part 2: T ⊆ S

Let there now be given a vector w with coordinates

(x−4, x−3, x−2;x−1;x1, x2, x3, x4 | y−4, y−3, y−2, y−1; y1, y2, y3, y4)

vanishing under all of the given quadratic forms. Since both sets S and T are
projective, we may assume that the first nonzero coordinate is equal to 1. We
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again treat the most involved case. Suppose x−4 6= 0, then we assume x−4 = 1.
Expressing that w is in the null set of the quadratic forms 3.1, 3.3, 3.4, 3.5
and 3.6 implies

x4 = −x−1x1 − x−2x2 − x−3x3,

y4 = −y−3x−3 − y−2x−2 − y−1x−1,

y3 = y−4x−3 − y−2x1 + y−1x2,

y2 = y−4x−2 + y−3x1 − y−1x3,

y1 = y−4x−1 − y−3x2 + y−2x3,

and yields the coordinates of a generic vector of 〈u, ιρ(u)〉, with u as in Part 1
of this proof. �

Let us denote byG the automorphism group of VD5,5(q) induced by AGL(V ),
and by G0 the stabilizer in G of the zero vector of V ; so G0 = G ∩ GL(V ).

Lemma 3.3.3 The group G0 acts transitively on the set of 1-spaces in S.

Proof. Each of the quadratic forms 3.1–3.10 defines a hyperbolic quadric of
type O+

8 (q) in an 8-dimensional subspace of V (generated by the basis vectors
corresponding to the variables appearing in the quadratic form). We first show
that G0 acts transitively on this set of ten quadrics.

We define a graph Υ on the set of basis vectors of V by declaring two
basis vectors e en f adjacent if e + f ∈ S (hence Υ is the graph on the basis
vectors induced by Γ). It is easy to see that two basis vectors are adjacent in
Υ if and only if the corresponding coordinate variables do not appear together
in a common term of one of the forms 3.1–3.10. One now checks that the
correspondence

X−4 7→ 00000 X1 7→ 10010 Y−4 7→ 00011 Y1 7→ 01111
X−3 7→ 11000 X2 7→ 01010 Y−3 7→ 00101 Y2 7→ 10111
X−2 7→ 10100 X3 7→ 00110 Y−2 7→ 01001 Y3 7→ 11011
X−1 7→ 01100 X4 7→ 11110 Y−1 7→ 10001 Y4 7→ 11101

yields an isomorphism of Υ (where we indicated every basis vector with its
corresponding coordinate variable) to the Clebsch graph, which is the graph on
the set of even weight binary vectors of length 5, adjacent when the Hamming
distance is 2, see §10.7. We now claim that the full automorphism group of Υ
acts on (extends to) Γ.

We define g1, g2, g3 ∈ GL(V ) by their action on a generic vector

u = (x−4, x−3, x−2, x−1;x1, x2, x3, x4 | y−4, y−3, y−2, y−1; y1, y2, y3, y4)

as follows:

g1 : u 7→ (−x−4, x−3, x−2, x−1; y−1, y−2, y−3,−y4

| −y−4, x3, x2, x1; y1, y2, y3,−x4),
g2 : u 7→ (−x−4, x−1,−x2, x3;−x−3, x−2,−x1, x4

| y−1, y−4, y−3, y−2; y2, y3, y4, y1),
g3 : u 7→ (x−1,−x−4,−x−3, x−2;x2,−x3,−x4, x1

| y1,−y4,−y−3, y−2; y2,−y3,−y−4, y−1).
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Then one checks that gi, i = 1, 2, 3, stabilizes the set of quadratic forms 3.1–
3.10. Moreover, g1, g2 fix the coordinate X−4, hence they permute the five
binary coordinate positions in the representation of Υ given above. The action
of g2 is a 4-cycle on the first four coordinate positions, whereas g1 induces the
transposition related to the last two positions. Hence 〈g1, g2〉 induces the full
stabilizer S5 of 00000 in Aut(Υ). Since g3 moves the basis vector corresponding
to the coordinate X−4, we conclude that 〈g1, g2, g3〉 induces the full automor-
phism group of Υ and our claim, to which we will refer as Observation 1, is
proved.

Now we observe that, since ρ is a triality, every automorphism ϕ ∈ GL(V1)
of Φ preserving each of the natural systems of maximal singular subspaces,
induces an automorphism ι(ϕ) ∈ GL(V2) of ι(Φ), unique up to a scalar, such
that (ϕ, ι(ϕ)), acting on V1⊕V2, preserves S. We refer to this as Observation 2.
We denote the group of automorphisms of Φ preserving the systems of maximal
singular subspaces by Aut◦(Φ).

We note that Witt’s theorem implies that the stabilizer in Aut◦(Φ) of a max-
imal singular subspace W of Φ (as an embedded polar space) acts transitively
on the 1-spaces of W . This will be referred to as Observation 3.

Now let u ∈ S be given by coordinates as above and different from the zero
vector. We establish an automorphism of S mapping u to a vector in V1. The
transitivity of Aut(S) on the 1-spaces of S then follows from Observation 2.

First note that, if (x−4, x−3, x−2, x−1;x1, x2, x3, x4) = (0, 0, 0, 0; 0, 0, 0, 0),
then u ∈ ι(Φ) and, using Observation 1, we may use an automorphism of S
interchanging V1 and V2; this automorphism does the job. Henceforth we assume
(x−4, x−3, x−2, x−1;x1, x2, x3, x4) 6= (0, 0, 0, 0; 0, 0, 0, 0).

Then note that, by Observation 2, we may assume that

(x−4, x−3, x−2, x−1;x1, x2, x3, x4) = (1, 0, 0, 0; 0, 0, 0, 0).

Let e ∈ V be the first basis vector (all coordinates 0 except for the first, which is
1). Then Observation 2, combined with Observation 3 (applied to the maximal
singular subspace 〈ιρ(e)〉), implies that, if u /∈ V1, we may assume that

(y−4, y−3, y−2, y−1; y1, y2, y3, y4) = (1, 0, 0, 0; 0, 0, 0, 0).

Hence u is contained in the quadric corresponding to one of the quadratic
forms 3.4, 3.5 or 3.6. But then Observation 1 yields an automorphism of S
mapping u in Φ. �

Now we can start looking at the parameters of VD5,5(q). Clearly, v = |V | =
q16. Also, k = |S| = |Φ \ {0}| · (q4 + 1) = (q8 − 1)(q3 + 1).

Proposition 3.3.4 λ = q8 + q6 − q3 − 2.

Proof. Obviously, λ is equal to q − 2 plus q2 − q times the number Nu of
2-spaces entirely contained in S and containing a given vector u of S. By the
previous lemma we may assume u ∈ Φ. Let us briefly call two vectors or 1-
spaces of S spanning a 2-space entirely contained in S collinear. Then Nu can
be written as N1 +N2 +N3, where N1 is the number of 2-spaces in Φ through
u, N2 is the number of 1-spaces in ιρ(u), and N3 = Nu −N1 −N2. Clearly

N1 = (q2 + 1)(q2 + q + 1),

N2 = q3 + q2 + q + 1.
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Taking into account that every 1-space of V \ (V1 ∪ V2) lies on a unique 2-
space intersecting both V1 and V2 nontrivially, we deduce that a vector w of
V \ (V1 ∪ 〈u, ιρ(u)〉) is collinear to u if and only if it is contained in a 3-space
intersecting V2 in a 1-space T on ιρ(u) and V1 in a 2-space U containing u and
contained in Φ. There are q3 + q2 + q+ 1 possibilities for T , and fixing T , there
are q2 + q + 1 possibilities for U . This yields

N3 = (q − 1)(q3 + q2 + q + 1)(q2 + q + 1) = (q4 − 1)(q2 + q + 1).

An easy calculation now completes the proof of the proposition. �

Lemma 3.3.5 Every 1-space of S is contained in exactly q3+q2+q+1 quadrics
of type O+

8 (q) entirely contained in S and contained in the orbit of Φ under G0.

Proof. Let u ∈ S, u 6= 0, be arbitrary. By Lemma 3.3.3 we may assume u ∈ Φ
is the first basis vector of the standard basis. Let e be the eighth basis vector
of the standard basis. Then W = ιρ(e) is a 4-space in ι(Φ) disjoint from ιρ(u).
The 5 standard basis vectors of 〈e, ιρ(e)〉 are each contained in a quadric of type
O+

8 (q) entirely contained in S and contained in the orbit of Φ under G0, by
Observation 1 of the proof of Lemma 3.3.3. Since the stabilizer in Aut◦(ι(Φ))
of the 4-space ιρ(u) acts transitively on the 1-spaces of ι(ρ(e)), we deduce that
every 1-space of ιρ(e) is together with u contained in a quadric of type O+

8 (q)
entirely contained in S and contained in the orbit of Φ under G0. Again using
Observation 1 of the proof of Lemma 3.3.3, we see that the stabilizer of u in G0

acts transitively on the set of 1-spaces of 〈e, ιρ(e)〉, and hence deduce that each
1-space of the latter is together with u contained in a quadric of type O+

8 (q)
entirely contained in S and contained in the orbit of Φ under G0. This yields
q4 + q3 + q2 + q + 1 such quadrics. Denote by Q this set of quadrics.

Now we claim that two such quadrics intersect in a singular subspace. In-
deed, by transitivity we may assume that one of them is Φ. Now two noncollinear
1-spaces of Φ are only collinear with common 1-spaces of Φ, as follows from the
construction of S. This yields the claim.

We conclude that there are precisely q6(q4 + q3 + q2 + q + 1) 1-spaces of S
not collinear to u contained in some member of Q. But that is exactly equal
to the number of 1-spaces on S (namely, (q4 + 1)(q3 + 1)(q2 + 1)(q+ 1)), minus
the number of 1-spaces of S spanned by or collinear to u (and that is equal to
1 + q(q4 + q3 + q2 + q+ 1)(q2 + 1)), which concludes the proof of the lemma. �

We can now finish the proof of Proposition 3.3.1. It remains to determine
the value of µ.

Proposition 3.3.6 The group G0 acts transitively on V \ S. Also, for a given
vector w ∈ V \S, precisely 1

2 (q6+q3) 2-spaces containing w intersect S in exactly
two 1-spaces (and we call such a 2-space a secant), and no 2-space through w
intersects S in at least three 1-spaces. This implies µ = q6 + q3.

Proof. It is easy to see directly from the construction of S that no 2-space of
V intersecting V1 in a 1-space outside Φ has more than one 1-space in common
with S. This first implies, after a moment’s thought, that no vector outside S
is contained in at least two 8-spaces spanned by members of Q. Second, this
implies that all secants through w ∈ V1 \ Φ are contained in V1. This easily
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yields 1
2 (q6 + q3) secants through such w. Now we count the number of 1-spaces

contained in at least (and then in precisely) one 8-space spanned by a member
of Q.

An elementary double count reveals that

|Q| = (q4 + q3 + q2 + q + 1)(q4 + 1).

This gives rise to (q4 + q3 + q2 + q + 1)(q11 − q3) 1-spaces all nonzero vectors
w of which satisfy the proposition. But this is exactly equal to the number of
1-spaces in V \ S, as one easily calculates.

The transitivity of G0 on V \ S now follows from the transitivity of G0 on
Q together with the transitivity of GO+

8 (q) on the nonisotropic vectors.
Since the common neighbors in VD5,5(q) of 0 and w are given by the nonzero

vectors u ∈ S such that w − u ∈ S, each secant through w defines two such
common neighbors. Hence µ = q6 + q3. �

Automorphism group

The additive group of V , which is isomorphic to the elementary abelian group
q16, acts simply transitively on the vertex set of VD5,5(q). The full isomorphism
group of VD5,5(q) is the group of index 2 in q16 : Aut(GO+

10(q)) preserving the
systems of maximal singular subspaces.

Cliques and cocliques

The maximal cliques correspond to the maximal subspaces of V contained in
S, and these have dimensions 5 and 4, each forming a single orbit. Examples of
the former are 〈u, ιρ(u)〉, with u ∈ Φ; examples of the latter are the maximal
singular subspaces of ι(Φ) not in the natural system containing ιρ(u), for some
u ∈ Φ.

There are cocliques of size q4 obtained by the span of two 2-spaces; one in V1

intersecting Φ trivially, and one in V2 intersecting ι(Φ) trivally. We conjecture
that these are maximal (but there are several orbits).

Note that the sizes of the cliques and cocliques mentioned above are much
smaller than the Hoffman bound q8.

3.4 Forms graphs

3.4.1 Bilinear forms graphs

The bilinear forms graph Hq(d, e) is the graph of which the vertices are the
d× e matrices over the field Fq, adjacent when the difference has rank 1. This
graph has qde vertices, and is distance-transitive of diameter min(d, e), cf. [123],
Theorem 9.5.2. The neighbors of the zero matrix are the rank 1 matrices xy>,
where x ∈ Fdq and y ∈ Feq . If we fix y and vary x, or fix x and vary y, we find
cliques of sizes qd and qe.

The bilinear forms graph Hq(d, e) is isomorphic to the graph on the d-
subspaces of a (d + e)-space that are disjoint from a fixed e-space E, adjacent
when they meet in codimension 1. There are two types of maximal cliques:
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those of size qd (all vertices contained in a fixed (d + 1)-space that meets E in
a single point), and those of size qe (all vertices containing a fixed (d− 1)-space
disjoint from E).

In particular, for d = 2 and e ≥ 2 we get a strongly regular graph with
parameters (v, k, λ, µ) and spectrum k1 rf sg, where

v = q2e, r = qe − q − 1,

k = (q + 1)(qe − 1), s = −q − 1,

λ = qe + (q − 2)(q + 1), f = k,

µ = q(q + 1), g = v − k − 1 = q(qe − 1)(qe−1 − 1).

The large cliques reach the Hoffman bound, and we have a partial geometry
pg(K,R, T ) with K = qe, R = q + 1, T = q (cf. §8.6). This is a net, a dual
transversal design. The small cliques are the lines of a semipartial geometry
(cf. §8.7.2, (vii)).

This graph is its own Delsarte dual (cf. §7.1.3).
For d = e = 2, the condition rkM ≤ 1 for a d × e matrix M is equivalent

to m11m22 −m12m21 = 0, and the bilinear forms graph is the strongly regular
graph VO+

4 (q) with vertex set F4
q where two vertices are adjacent when the

line joining them hits the hyperplane at infinity in a point of a fixed hyperbolic
quadric.

Let q = pr with p prime and r an integer. The full automorphism group of the graphs
Hq(d, e) is G = prde : (q−1) : (PGLd(q)×PGLe(q)) : r when d 6= e, and is G.2 when d = e. This
group acts distance-transitively ([123], Theorem 9.5.1). In particular, for d = 2 and e ≥ 2 the
group G is rank 3. For q = 2, it is easy to see that the group 22e : (S3×H) still acts rank 3 for
any subgroup H of PGLe(2) acting transitively on the set of points and on the set of lines of
PG(e− 1, 2). For example, for e = 2, 3, 5 one can take H = 3, 7, 31 : 5. For e = 4 the smallest
rank 3 group is 28 : (3× A7).

3.4.2 Alternating forms graphs
The alternating forms graph on Fnq is the graph of which the vertices are
the skew-symmetric matrices with zero diagonal of order n over the field Fq,
adjacent when the difference has rank 2. This graph has qn(n−1)/2 vertices, and
is distance-transitive of diameter bn/2c, cf. [123], Theorem 9.5.6. In particular,
we get a strongly regular graph for n = 4 and n = 5. The parameters for n = 4
are

v = q6, r = q3 − q2 − 1,

k = (q2 + 1)(q3 − 1), s = −q2 − 1,

λ = q4 + q3 − q2 − 2, f = k,

µ = q2(q2 + 1), g = v − k − 1 = q2(q3 − 1)(q − 1).

The parameters for n = 5 are

v = q10, r = q5 − q2 − 1,

k = (q2 + 1)(q5 − 1), s = −q2 − 1,

λ = q5 + q4 − q2 − 2, f = k,

µ = q2(q2 + 1), g = v − k − 1 = q2(q5 − 1)(q3 − 1).
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This graph is its own Delsarte dual (cf. §7.1.3).
For n = 4, the condition rkA ≤ 2 for an alternating matrix A is equivalent

to a12a34 + a14a23 + a13a42 = 0, and the alternating forms graph is the strongly
regular graph VO+

6 (q) with vertex set F6
q where two vertices are adjacent when

the line joining them hits the hyperplane at infinity in a point of a fixed
hyperbolic quadric. In the special case n = 4, q = 2 we find the complement of
the folded halved 8-cube.

3.4.3 Quadratic forms graphs

The quadratic forms graph on V = Fnq is the graph of which the vertices are the
quadratic forms on V , adjacent when the rank of the difference is 1 or 2. It has
v = qn(n+1)/2 vertices, and is distance-regular of diameter b(n+ 1)/2c (Egawa
[305]; cf. [123], Theorem 9.6.3). In particular, we get a strongly regular graph
for n = 3 and n = 4.

The quadratic forms graph on Fnq is distance-regular with the same parame-
ters as the alternating forms graph on Fn+1

q , but these graphs are nonisomorphic
for n ≥ 3, (n, q) 6= (3, 2), as the former is not distance-transitive.

3.4.4 Hermitian forms graphs

Let q = u2, where u is a prime power. Let x = xu. A Hermitian matrix is a
matrix A satisfying A = A>. The Hermitian forms graph on Fdq is the graph
of which the vertices are the Hermitian matrices of order d over the field Fq,
adjacent when the difference has rank 1. This graph has ud

2

vertices, and is
distance-transitive of diameter d, with parameters bi = (u2d − u2i)/(u + 1),
ci = ui−1(ui − (−1)i)/(u+ 1) (0 ≤ i ≤ d) ([123], Theorem 9.5.7). In particular,
we get a strongly regular graph for d = 2. The parameters are

v = u4, r = u− 1,

k = (u2 + 1)(u− 1), s = −u2 + u− 1,

λ = u− 2, f = u(u− 1)(u2 + 1),

µ = u(u− 1), g = k.

Let ∆ be the collinearity graph of the dual polar space U(2d, q). Then
∆ is distance-regular of diameter d, and the Hermitian forms graph is the
graph induced on the vertices at distance d from a fixed vertex of ∆ ([123],
Theorem 9.5.10).

When lines (q-cliques) are given, one can use this to characterize the Her-
mitian forms graph:

Theorem 3.4.1 (Ivanov & Shpectorov [458]) Let Γ be a distance-regular
graph with the parameters of the Hermitian forms graph, and assume that each
edge in Γ is contained in a clique of size q. If d ≥ 3, then u is a prime power, and
Γ is the Hermitian forms graph on Fdq . If d = 2, then Γ is the subgraph induced
on the vertices at distance 2 from a fixed vertex in a generalized quadrangle
GQ(q, q2).
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3.4.5 Baer subspaces
Let V be a vector space of dimension m over Fq2 , so that |V | = q2m, and let X
be a Baer subspace of the hyperplane PV at infinity, so that |X| = qm−1

q−1 . For

hyperplanes H, the intersection size |X ∩H| takes the two values m1 = qm−1−1
q−1

and m2 = qm−2−1
q−1 . It follows (cf. §7.1.1) that the graph with vertex set V ,

where two vectors x, y ∈ V are joined when 〈y − x〉 ∈ X, is strongly regular
with parameters

v = q2m, r = qm − q − 1,

k = (q + 1)(qm − 1), s = −q − 1,

λ = qm + q2 − q − 2, f = (q + 1)(qm − 1),

µ = q(q + 1), g = q(qm−1 − 1)(qm − 1).

This graph is isomorphic to the bilinear forms graph Hq(2,m).
More generally, let V be a vector space of dimension e over Fqd , so that |V | = qde,

and let X be an Fq-subspace of dimension e of the hyperplane PV at infinity, so that
|X| = qe−1

q−1
. Then the graph with vertex set V , where two vertices x, y ∈ V are joined

when 〈y − x〉 ∈ X, is isomorphic to Hq(d, e). The qd-cliques are the lines of V in
the direction of X. The qe-cliques are the Fq-subspaces of dimension e with X as
hyperplane at infinity.

The special case d = 3, e = 2 occurs in the classification of rank 3 groups because
PGL2(r) has two orbits (of sizes r + 1 and r3 − r) on PG(1, r3).

In fact PV has a partition into qm+1
q+1 Baer subspaces. Each hyperplane H

hits one in qm−1−1
q−1 points, and qm−q

q+1 in qm−2−1
q−1 points. Let D be the union of

t of these Baer subspaces, where 0 < t < qm+1
q+1 . Then |D ∩ H| takes the two

values t q
m−2−1
q−1 and qm−2 + t q

m−2−1
q−1 . Let Γ be the graph on V where x, y ∈ V

are joined when 〈y − x〉 ∈ D. Then Γ is strongly regular with parameters

v = q2m, r = qm − t(q + 1),

k = t(q + 1)(qm − 1), s = −t(q + 1),

λ = qm + t(q + 1)(tq + t− 3), f = t(q + 1)(qm − 1),

µ = t(q + 1)(tq + t− 1), g = (qm − 1)(qm + 1− tq − t).

3.4.6 A hyperoval at infinity
Let V be a 3-dimensional vector space over Fq, where q is even, and let X be
a fixed hyperoval of the hyperplane PV at infinity, so that |X| = q + 2. Now
|X ∩H| takes the two values 0 and 2 for lines H. It follows (cf. §7.1.1) that the
graph with vertex set V , where two vectors x, y ∈ V are joined when 〈y−x〉 ∈ X,
is strongly regular with parameters

v = q3, r = q − 2,

k = (q − 1)(q + 2), s = −q − 2,

λ = q − 2, f =
1

2
(q2 − 1)(q + 2),

µ = q + 2, g =
1

2
q(q − 1)2.
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These graphs are the collinearity graphs of generalized quadrangles with
parameters (q − 1, q + 1). See [6].

3.5 Grassmann graphs

The graph on the d-subspaces of an n-space, adjacent when they meet in a
(d − 1)-space, is distance-regular of diameter d (for n ≥ 2d). The case d = 2
yields strongly regular graphs.

3.5.1 Lines in a projective space

Let Γ be the graph on the lines in PG(n−1, q), where n ≥ 4, adjacent when they
meet. (This is the Grassmann graph Jq(n, 2), cf. §1.2.4.) Then Γ is strongly
regular, with parameters v =

[
n
2

]
, k = (q + 1)(

[
n−1

1

]
− 1), λ =

[
n−1

1

]
+ q2 − 2,

µ = (q+ 1)2, and eigenvalues k, r = q2
[
n−3

1

]
− 1, s = −q− 1 with multiplicities,

1, f =
[
n
1

]
− 1, g =

[
n
2

]
−
[
n
1

]
.

For n = 4, the lines can be seen as points on the Klein quadric, and Γ is
isomorphic to the O+

6 (q) graph.

Group

The full automorphism group Aut Γ of Γ is PGLn(q) if n > 4 and PGLn(q).2 if
n = 4.

Cliques

Maximal cliques are maximal sets of pairwise intersecting lines, and come in
two types: (i) all lines on a given point, and (ii) all lines in a given plane. Sets
of type (i) have size

[
n−1

1

]
(and reach the Hoffman bound), those of type (ii)

have size
[
3
1

]
. Both types are in the same Aut Γ-orbit for n = 4.

Cocliques

Maximal cocliques are maximal sets of pairwise disjoint lines. If n is even, the
largest of these are line spreads, of size (qn−1)/(q2−1). If n is odd, the largest
are partial spreads of size (qn − q3)/(q2 − 1) + 1 (Beutelspacher [66]).

Chromatic number

If the set of all lines can be partitioned into spreads, then n is even and Γ has
chromatic number χ(Γ) =

[
n−1

1

]
. Such a partition is known as a line packing

or parallelism. The existence of a parallelism is known for n = 4 (Denniston
[282]), for n = 2e, e ≥ 2 (Beutelspacher [65]), for q = 2, n even (Baker [34];
see also [728]), and for (q, n) = (3, 6) (Etzion & Vardy [308]).

For odd n ≥ 5, and q = 2, Meszka [561] showed that χ(Γ) = 2n−1 + 2.
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3.6 The case q = 2

3.6.1 Local structure
We have precise information about the local structure of the polar graphs Oεm(2).

Proposition 3.6.1 (Brouwer & Shult [142])

TOεm(2) = 1 +Oεm(2) +Oεm(2) + 1

VOε2n(2) = 1 +Oε2n(2) +NOε2n(2) and VO2n+1(2) = TO2n+1(2)

NOε2n(2) = 1 +O2n−1(2) + TO−ε2n−2(2)

Oεm(2) = 1 +Oεm−2(2).2 + VOεm−2(2),

Here we indicate the subgraphs found at a given distance from a fixed point,
writing Γ = Γ0(x) + Γ1(x) + Γ2(x) + · · · . The graphs occurring here are Oεm(2),
the graph on the singular points, adjacent when orthogonal, NOε2n(2), the graph
on the nonsingular points, adjacent when orthogonal, VOεm(2), the graph on Fm2
where distinct vectors x, y are adjacent when Q(y − x) = 0, and TOεm(2), the
Taylor extension of Oεm(2). The notation Γ.2 denotes the 2-clique extension of Γ.

Small cases are O−2 (2) = K0, O−4 (2) = K5, O+
2 (2) = K2, O+

4 (2) = 3 × 3,
NO−2 (2) = K3, NO−4 (2) = T (5), NO+

2 (2) = K1, NO+
4 (2) = K3,3, NO+

6 (2) =

T (8), VO−2 (2) = K4, VO+
2 (2) = 2× 2, TO−2 (2) = K2, TO+

2 (2) = C6.
As a consequence, the size of the largest cocliques in Oεm(2) depends on m

(mod 8). See also [746].

Proposition 3.6.2 For evenm ≥ 2, the largest cocliques in the graphs TOεm(2),
NOεm(2), VOεm(2), and Oεm(2) have sizes given in the following table

m (mod 8) 0 2 4 6
TO−m(2) m m m+ 2 m+ 1
TO+

m(2) m+ 2 m+ 1 m m
NO−m(2) m− 1 m+ 1 m m− 1
NO+

m(2) m m− 1 m− 1 m+ 1
VO−m(2) m m+ 2 m+ 1 m
VO+

m(2) m+ 1 m m m+ 2
O−m(2) m− 1 m− 1 m+ 1 m
O+
m(2) m+ 1 m m− 1 m− 1

except for the empty graph O−2 (2), where the largest coclique has size 0.
If we call this maximum cmax, then the smaller maximal cocliques have all

possible sizes c0 ≤ c < cmax with c ≡ c0 (mod 4), where c0 = 2, 3, 4, 5 for the
cases TOεm(2), NOεm(2), VOεm(2), Oεm(2), respectively. When size c occurs,
there is a single orbit of maximal cocliques of size c. �

For example, O−14(2) has single orbits of maximal cocliques of sizes 5, 9, 13,
14. In particular, the bound obtained from Theorem 2.6.3 holds with equality
for O−8t+4(2) and O+

8t(2).

Proposition 3.6.3 The maximal cocliques in VO2n+1(2), n ≥ 0, have all even
sizes c with 2 ≤ c ≤ 2n + 2. The maximal cocliques in O2n+1(2), n ≥ 1 have
all odd sizes c with 3 ≤ c ≤ 2n + 1. When size c occurs, there is a single orbit
of maximal cocliques of size c. The graph O1(2) has no vertices. The graph
Sp2n(2) is isomorphic with O2n+1(2). �
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The maximal cliques of O−2n(2), O+
2n(2), O2n+1(2) have size 2n−1−1, 2n−1,

2n − 1, respectively. The maximal cliques of VO−2n(2), VO+
2n(2), VO2n+1(2)

have size 2n−1, 2n, 2n, respectively. The maximal cliques of NOε2n(2) have size
2n−1. In all cases they form a single orbit.

Above we gave the partition of a binary orthogonal graph around a point.
There are further such partitions, induced by the perp of a nonsingular point.
These give rise to regular sets

Oε2n(2) = TOε2n−2(2) +O2n−1(2).

3.6.2 Symmetric groups
Let V be the m-dimensional vector space over F2, provided with the quadratic
form Q(x) =

∑
i<j xixj . Then the symmetric group Sm acts on V by coordinate

permutation.
We determine the type of the corresponding polar space. Let wt(x) be weight

of the vector x, i.e., its number of nonzero coordinates. Then Q(x) =
(

wt(x)
2

)
and B(x, y) = wt(x)wt(y) +

∑
i xiyi. In particular, B(x,1) = (m+ 1)wt(x). It

follows that V ⊥ = {1} if m is odd, while the bilinear form B is nondegenerate if
m is even. A vector x is singular when wt(x) ≡ 0 or 1 (mod 4), and nonsingular
when wt(x) ≡ 2 or 3 (mod 4). In particular, the space V is degenerate only
when m ≡ 1 (mod 4).

Proposition 3.6.4 (i) If m = 4t, the polar space PV and the quotient 1⊥/〈1〉
are both nondegenerate of Witt type (−1)t.

(ii) If m = 4t+ 1, the quotient V/〈1〉 is nondegenerate of Witt type (−1)t.
(iii) If m = 4t+ 2, the polar space PV is nondegenerate of Witt type (−1)t.
(iv) If m = 4t+ 3, the polar space PV is nondegenerate parabolic. �



Chapter 4

Buildings

Generalizing the situation of projective spaces and polar spaces, Tits associated
a building to arbitrary Chevalley groups and classified the resulting groups and
geometries in [694]. Finite buildings of type E6 have strongly regular collinearity
graphs that are most easily and naturally described in this buildings setup.

4.1 Geometries
A Buekenhout-Tits geometry (or just geometry) Γ is a set X of objects together
with a type function t : X → I, where I is the set of types, and a symmetric and
reflexive incidence relation ∗ such that if x ∗ y and x 6= y, then t(x) 6= t(y). The
corresponding intuition is that one has objects of several types, maybe points
and lines and planes and circles, and that objects of different types may be
incident; conventionally each object is incident with itself.

The rank of a geometry is the cardinality |I| of its set of types.
A flag F in a geometry is a set of pairwise incident objects. If t(F ) = I

(that is, if F contains one object of each type), then F is called a chamber. The
residue Res ΓF (or just ResF ) of a flag F in a geometry Γ = (X, I, t, ∗) is the
geometry ∆ = (X ′, I ′, t′, ∗′), where X ′ is the set of objects not in F incident
with each element of F , and I ′ = I \ t(F ), and t′, ∗′ are the restrictions of t, ∗
to X ′ and X ′ ×X ′, respectively. We say that I ′ is the type of ResF .

A geometry is called connected when its incidence graph (with the objects
as vertices, different objects joined when they are incident) is connected. A
geometry is called residually connected when all of its residues of rank at least 2
are connected, and all of its residues of rank at least 1 are nonempty (i.e., have a
nonempty set of objects). A residually connected geometry is called thick (resp.
thin) when all of its residues of rank 1 have at least three (resp. precisely two)
objects.

A subgeometry of a geometry Γ = (X, I, t, ∗) is a geometry (Y, J, t′, ∗′) with
Y ⊆ X, J ⊆ I, and t′, ∗′ the restrictions of t, ∗ to Y and Y × Y , respectively.

4.1.1 Generalized polygons
A generalized polygon (generalized d-gon) with d ≥ 3 is a partial linear space
with an incidence graph of diameter d and girth 2d. For example, a generalized
3-gon is a projective plane.

107
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A generalized polygon of order (s, t) is one where each line has s+ 1 points,
and each point is on t+ 1 lines. If s = t one says of order s.

The dual of a generalized polygon (P,L) is the generalized polygon (L,P )
obtained by interchanging the roles of points and lines.

The standard reference for generalized polygons is Van Maldeghem [710].

Example: the Fano plane

The Fano plane is the (unique) projective plane of order 2. It has 7 points and 7
lines. One can take as points the integers mod 7, and as lines the sets {0, 1, 3}+i
(mod 7). In the notation of §6.2, it is an S(2, 3, 7).

Example: the generalized quadrangle of order 2

There is a unique generalized quadrangle of order 2. It has 15 points and 15
lines. One can take as points the

(
6
2

)
= 15 pairs from a set Ω of 6 symbols, and

as lines the partitions of Ω into three pairs, where a point is incident with a line
when the pair is one of the parts of the partition.

Example: the generalized hexagons of order 2

There are precisely two nonisomorphic generalized hexagons of order 2, one the
dual of the other, so that the incidence graph is uniquely determined (Cohen
& Tits [205]). They have 63 points and 63 lines. Diagram of the collinearity
graph:

����1 6 1����6
1

4 1����24
1

4 3����32
3

v = 63

Combinatorially the two can be distinguished by looking at the subgraph of the
collinearity graph induced by the vertices at distance 3 from a given point.
In what one calls the classical G2(2) generalized hexagon, this subgraph is
connected. In its dual this subgraph has two connected components of size
16. See also [114].

The classical generalized hexagon of order 2 is found by taking the 7 + 7 +
21 + 28 = 63 points, lines, flags, and antiflags of the Fano plane as points, and
whenever (p, L) is a flag of the Fano plane and L = {p, q, r} and p is on L,M,N ,
taking the sets {p, L, (p, L)} and {(p, L), (q,M), (r,N)} as lines ([711]).1

According to [691], the dual of the classical generalized hexagon of order 2
is found by taking as points the nonisotropic points of PG(2, 9) provided with
a nondegenerate Hermitian form, and as lines the orthogonal bases. See also
[710], (1.3.12) and [123], p. 384.

Terminology: what we have called here the ‘classical’ generalized hexagon
of order 2 (to distinguish it from its dual) is known in the literature as the
‘short root’ or ‘split Cayley’ or ‘symplectic’ generalized hexagon (the latter in
characteristic 2), whereas its dual is called the ‘long root’ or ‘dual split Cayley’
generalized hexagon. For a construction of the split Cayley hexagon over an
arbitrary field, see §4.8.

1This construction shows that the classical generalized hexagon of order 2 contains the
generalized hexagon of order (1, 2). Its dual does not—this is another way to distinguish
them.
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4.1.2 Diagrams

A diagram for a geometry is a labeled directed graph on the set of types. It is
interpreted as an axiom system for the geometry, as follows: the label on the
pair (i, j) is a class of rank 2 geometries Γij with set of types {1, 2} (thought
of as {points, lines}) such that each residue of rank 2 with set of types {i, j} is
isomorphic to a member of Γij under an isomorphism that maps i to 1 and j to 2.

Below a dictionary of traditional labels.s s Every point is incident to every line.s s Points and lines of a projective plane.s s Points and lines of a generalized quadrangle.s s Points and lines of a generalized hexagon.s (n) s Points and lines of a generalized n-gon, n ≥ 2s sAf Points and lines of an affine plane.s sC Points and edges of a complete graph.

Examples

The geometry of points, lines and planes in a 3-dimensional projective space
satisfies the axioms given by the diagram s s s .

(That is: the lines and planes on a point form the points and lines of a
projective plane; every point on a line is on every plane containing that line;
the points and lines on a plane are the points and lines of a projective plane.)

The geometry of points, lines and planes in a 3-dimensional affine space
satisfies the axioms given by the diagram s Af s s .

The geometry of 8 vertices, 12 edges and 6 faces of a cube satisfies the axioms
given by the diagram s s s . This is a thin geometry.

The geometry of totally singular points, lines, planes and solids in a geometry
of type O+

8 (F ) satisfies the axioms given by the diagram s s s s .
The geometry of totally singular points, lines, solids of the first kind, and

solids of the second kind in a geometry of type O+
8 (F ) satisfies the axioms given

by the diagram s s ss�
�

@
@

. The solids are 4-spaces (as vector spaces) and two

solids of the same type have an intersection of even (vector space) dimension.
Two solids of different types are incident when they meet in a plane (that is, in
a 3-space).

4.1.3 Simple properties

In principle, the diagram is a labeled complete graph. However, we omit the
edges labeled with the label of invisibility which denotes a generalized digon
(every point incident to every line). Now it makes sense to talk about connected
components of the diagram.
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Proposition 4.1.1 (Buekenhout [155]) Let Γ = (X, I, t, ∗) be a residually
connected Buekenhout-Tits geometry of finite rank. Let Xi = t−1(i) be the set
of objects of type i.

(i) For any two distinct types i, j ∈ I, the subgraph of the incidence graph
induced on Xi ∪Xj is connected.

(ii) If the types i, j belong to different connected components of the diagram,
then each i-object is incident with each j-object.

Proof. (i) Induction on the rank. The case of rank at most 2 holds by
definition. Since Γ is connected, we can join two objects in Xi ∪ Xj by a
chain x0 ∗x1 ∗ · · · ∗xl. Next, for each xh in this chain with a type different from
i and j, we can replace xh by a chain in Xi ∪Xj in Res(xh) (by the induction
hypothesis and residual connectedness).

(ii) Induction on the rank. The case of rank at most 2 holds by definition.
Using part (i) we can join two objects x ∈ Xi and y ∈ Xj by a chain x =
x0 ∗ x1 ∗ · · · ∗ xl = y contained in Xi ∪Xj (so that the types alternate between
i and j). Let the length l be chosen minimal, and suppose that l > 1. Let k
be a third type different from i and j. We may suppose that j and k belong
to different connected components of the Buekenhout-Tits diagram. In Res(x1)
we can replace x0 ∗x1 ∗x2 by a path x0 = x′0 ∗x′1 ∗ · · ·∗x′m = x2 using only types
i and k. Now x3 and its two predecessors in the chain have types k-i-j, and
by the induction hypothesis we can omit the middle object (of type i). Then
x3 and its two predecessors have types i-k-j, and again we can omit the middle
object. It follows after m steps that x0 ∗ x3, so that l was not minimal. �

After this preparation, it is an easy exercise to prove the Veblen-Young axiom
from the An diagram, so that a (thick) residually connected geometry satisfying
the An diagram is a projective space.

Buildings (§4.5) provide the prototypes of diagram geometries.

4.1.4 Shadow geometries
Consider a geometry (X, I, t, ∗) and fix an element i ∈ I, calling the objects of
that type points. Let the shadow of any flag F be the set of points p incident
with all elements of F . Let lines be the shadows of the flags of cotype {i} (i.e.,
of type I \ {i}). In this way, a Buekenhout-Tits geometry yields a point-line
geometry (where lines are sets of points) if we specify the point type.

4.2 Coxeter systems
Let W be a group generated by a finite nonempty set S = {s1, . . . , sn} of
involutions and let, for each pair (si, sj) ∈ S × S, the number mij be the order
of the product sisj (setting mij =∞ if sisj generates an infinite group). Then
(W,S) is a Coxeter system, andW is a Coxeter group, ifW has the presentation
by generators and relations W = 〈S : (sisj)

mij = 1,∀i, j ∈ {1, 2, . . . , n}〉. The
natural number n is called the rank of the system. Two Coxeter systems (W,S)
and (W ′, S′) are isomorphic if there is a bijection S → S′ extending to an
isomorphism W →W ′.

The symmetric matrix (mij)1≤i,j≤n is called the Coxeter matrix belonging
to (W,S). The Coxeter diagram is the edge labeled graph Γ(W,S) with vertex
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set S and no edge between si and sj if mij = 2; otherwise an edge with label
(mij) between si and sj , for all i, j ∈ {1, 2, . . . , n}. The labels of edges with
label (3) are usually omitted, those with label (4) are usually drawn as a double
edge, and those with label (6) are sometimes drawn as a triple edge. Note
that the Coxeter diagram completely determines the Coxeter group and system.
However, it is not true that any Coxeter group determines a unique isomorphism
class of Coxeter systems, as distinct sets of generators may lead to different
Coxeter diagrams. For example, the Coxeter group D12 = 〈s1, s2 : s2

1 = s2
2 =

(s1s2)6 = 1〉 is also generated by the involutions r1 := s1, r2 := s2s1s2, and
r3 := s2s1s2s1s2s1, and the group can be presented as 〈r1, r2, r3 : r2

1 = r2
2 =

r2
3 = (r1r2)3 = (r1r3)2 = (r2r3)2 = 1〉.

Let (W,S) be a Coxeter system. If S = S1∪S2, with W = 〈S1〉×〈S2〉 (then
automatically S1 ∩ S2 = ∅), then we say that (W,S) is reduced. If (W,S) is not
reduced, then it is called irreducible. For instance, the above Coxeter group D12

is the direct product 〈r1, r2〉 × 〈r3〉.
We will only be concerned with finite Coxeter groups. These were classified

by Coxeter [237], and the Coxeter diagrams of the irreducible ones are the
following.

Type An: t1 t2 t3 . . . tn−1 tn n ≥ 1,

Type Bn/Cn: t1 t2 t3 . . . tn−1 tn n ≥ 2,

Type Dn: t1 t2 t3 . . . tn−2
�
�
�

@
@@

tn−1

tn
n ≥ 4,

Type En: t1 t3 t4
t
2

t5 t6 t7 t8
n ∈ {6, 7, 8},

Type F4: t1 t2 t3 t4
Type G2: t1 t2
Type Hn: t1 t2 t3 t4 n ∈ {2, 3, 4},

(5)

Type I
(m)
2 : t1 t2(m)

m ≥ 7.

Standard references for Coxeter groups areBourbaki [102] andHumphreys
[448].
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Remarks

• Most finite irreducible Coxeter systems (W,S) are related to an irreducible
crystallographic root system, i.e., a finite set R of vectors spanning the real
Euclidean n-space Rn, n = |S|, not contained in the union of two nontrivial
orthogonal subspaces and satisfying the following three conditions: (1) if
v ∈ R and rv ∈ R, for some r ∈ R, then r ∈ {1,−1}; (2) if v, w ∈ R, then
w−2 〈v,w〉〈v,v〉 v ∈ R; and (3) if v, w ∈ R, then 2 〈v,w〉〈v,v〉 ∈ Z. Given an irreducible
crystallographic root system R, there exists a basis B ⊆ R of Rn, called
a fundamental basis, such that every element of R can be expressed as a
linear combination of members of B only using either nonnegative integer
coefficients, or nonpositive integer coefficients. The set S of reflections
about the hyperplanes perpendicular to the members of B generates the
automorphism groupW ofR, and (W,S) is a Coxeter system. The Coxeter
systems arising as such are the ones of types A to G above.

• The reason why the second diagram has two names (Bn and Cn) is be-
cause this particular Coxeter system is related to two nonisomorphic root
systems, one of type Bn and one of type Cn. A root system of type Bn
(resp. Cn) can be obtained from one of type Cn (resp. Bn) by multiplying
the shortest vectors by 2.

• The Dynkin diagram of a crystallographic root system is an edge labeled
graph with vertices the elements of a fundamental basis, and an edge with
label (k) joining two vertices if the angle between the corresponding basis
vectors is equal to k−1

k π. Edges with label (2) are usually omitted. It is
easy to see that basis vectors corresponding to vertices joined by an edge
with label (3) have the same length. If the label is (4) or (6), then the
length of one vector is

√
2 or
√

3, respectively, times that of the other. No
other labels are possible. An edge with label (4) or (6) is further furnished
with an arrow pointing from the longer to the shorter vector. By removing
the arrows of the Dynkin diagram one obtains the Coxeter diagram of the
corresponding Coxeter system.

• Coxeter groups of type An are isomorphic to the full symmetric group
Sym(n + 1); those of type Bn are the full automorphism group of the n-
cube; the one of type F4 is the automorphism group of the 24-cell in R4;
those of type Hn, n = 2, 3, 4 are the automorphism group of a regular
pentagon in R2, a dodecahedron or icosahedron in R3, and a 120-cell or
600-cell in R4, respectively.

• TheCoxeter groups of types E6,E7,E8 are isomorphic to the groups GO−6 (2),
2× GO7(2), 2.GO+

8 (2), respectively.

• Coxeter systems of type I
(m)
2 are dihedral groups D2m with generators two

reflections about axes forming an angle of π/m. Occasionally one denotes
the types A2,B2,G2,H2 by I

(3)
2 , I

(4)
2 , I

(6)
2 , I

(5)
2 , respectively.

We mention some fundamental properties of Coxeter systems, the first one
of which is called the deletion condition.
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Proposition 4.2.1 Let (W,S) be a Coxeter system and let w ∈W be arbitrary.
Let `(w) be the minimum length of an expression in the generators (members
of S) producing w. Suppose w = s1s2 · · · sm, with m > `(w). Then there exist
i, j ∈ {1, 2, . . . ,m}, with i < j, such that w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sm.

Proposition 4.2.2 Every symmetric matrix M = (mij)1≤i,j≤n, with mij ∈
Z>1 ∪ {∞}, for all i 6= j, and mii = 1, for all i, is the Coxeter matrix
belonging to a Coxeter system. In other words, if S = {s1, s2, . . . , sn} and
W = 〈S : (sisj)

mij = 1,∀i, j ∈ {1, 2, . . . , n}〉, then (W,S) is a Coxeter system
with Coxeter matrix M ; in particular, the order of the product sisj is exactly
equal to mij. Also, for any subset S′ ⊆ S, the system (〈S′〉, S′) is a Coxeter
system with Coxeter matrix the restriction of M to S′, with self-explaining
terminology.

A consequence of these properties is the following.

Corollary 4.2.3 Let (W,S) be a Coxeter system, and let w ∈ W be arbitrary.
Then all expressions of w in the elements of S of length `(w) contain exactly
the same elements of S.

Proof. Induction on `(w). Set ` = `(w) and let s1s2 · · · s` and r1r2 · · · r` be
two expressions of w in the elements of S. We have s1 · · · s`−1 = r1r2 · · · r`s`,
and the right-hand side is not reduced, while the expression r1r2 · · · r` is, so s`
can be canceled against some factor ri, and s1 · · · s`−1 = r1 · · · ri−1ri+1 · · · r`.
Similarly, s2 · · · s` = r1 · · · rj−1rj+1 · · · r` for some j, proving (by induction) that
the si occur among the rj . �

This also implies that, with the terminology of Proposition 4.2.2, 〈S′〉 ∩S =
S′. Another consequence is the following.

Corollary 4.2.4 Let (W,S) be a Coxeter system. Let R, T ⊆ S. Then 〈R〉 ∩
〈T 〉 = 〈R ∩ T 〉.

Proof. Clearly 〈R ∩ T 〉 ≤ 〈R〉 ∩ 〈T 〉. Conversely, let w ∈ 〈R〉 ∩ 〈T 〉. The
set Sw of elements occurring in one (and then each) minimal expression of w is
contained in R and in T , hence in R ∩ T . It follows that w ∈ 〈R ∩ T 〉. �

4.3 Coxeter geometries

Let (W,S) be a Coxeter system. A standard parabolic subgroup is a subgroup
of W generated by a proper subset of S. A parabolic subgroup is a conjugate of
a standard parabolic subgroup. A maximal standard parabolic subgroup is one
not properly contained in another one, i.e., generated by all but one elements
of S. We shall use the notation PT = 〈S \ T 〉 for T ⊂ S, and Ps = P{s}.

Let (W,S) be a Coxeter system. We define a Coxeter geometry Γ(X,S, t, ∗)
as follows. The set X is the set of all right cosets of any maximal standard
parabolic subgroup. Two members of X are incident if they are, as subsets of
W , not disjoint. The type function is defined by t(Psw) = s for s ∈ S and
w ∈W . We have the following results.
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Lemma 4.3.1 Let (W,S) be a Coxeter system, and let T ⊆ S. If the cosets
Ptwt (for t ∈ T ) meet pairwise, then

⋂
t∈T Ptwt is nonempty. If T = S, then

this intersection is a singleton.

Proof. Let U = {t ∈ T | wt = 1}. Apply induction on |T \ U |.
If |T \ U | = 0, then

⋂
t∈T Ptwt = PT , as desired.

If t ∈ T \ U , then let wt be a shortest representative of Ptwt. Since Ptwt
meets Pu for all u ∈ U , wt can be written without u for all u ∈ U , so that
wt ∈ PU . Now multiply on the right by w−1

t to reduce to the case U ′ = U ∪{t}.
Finally, if T = S, then we reduce to PS = {1}. �

Proposition 4.3.2 Let (W,S) be a Coxeter system. Then the corresponding
Coxeter geometry Γ(X,S, t, ∗) is a residually connected thin Buekenhout-Tits
geometry of rank |S|.

Proof. It is clear that the type function t is well defined, asW is not generated
by a proper subset of S. In the previous lemma we showed:

(*) Any flag of type T ⊆ S can be written as {Ptw : t ∈ T} for some w ∈W ,
that is, is the collection of objects of type t (with t ∈ T ) containing PTw.

It follows that a chamber is just a coset of the trivial subgroup; hence the
chambers are in one-to-one correspondence with the elements of W . Let s ∈ S
and let F be a flag of type S \ {s}. Then (*) implies that F is the set of cosets
of maximal standard parabolics containing a fixed coset of {1, s}, say {1, s}w,
w ∈ W . Then only Psw and Pssw complete F to chambers, corresponding to
w and sw, respectively. Hence Γ(X,S, t, ∗) is thin.

Now let T ⊆ S, |T | < |S| − 1, and let F be a flag of type T . Using an
appropriate translate, we may assume that F is the set {Pt : t ∈ T}. Since⋂
t∈T Pt = 〈S \ T 〉, the set of elements incident with every member of F can

be identified with the set of maximal standard parabolics of 〈S \ T 〉. Hence
ResF is the Coxeter geometry corresponding to the Coxeter system (〈S \T 〉, S \
T ). Hence, to show local connectivity, it suffices to show that every Coxeter
geometry of rank at least 2 is connected.

Consider the graph on X where adjacency is incidence. For each w, all
objects Psw (s ∈ S) are mutually adjacent, and hence are in the same connected
component. If w 6= 1, say w = rv with `(w) = `(v) + 1, then the factor r can
be absorbed in Ps whenever s 6= r. So induction on `(w) shows that this graph
is connected. �

Since Coxeter geometries are residually connected and thin, all rank 2 residues
of a Coxeter geometry are (as incidence graphs) even length cycles or (bi)infinite
paths. In the finite case only cycles appear, and the cycle has 2` vertices if and
only if the corresponding Coxeter group (of the residue) is the dihedral group
D2`. A cycle with 2` vertices is the incidence graph of a geometry called an
ordinary polygon.

Hence the Coxeter diagram can be interpreted geometrically as follows: the
label of the diagram of a Coxeter system (W,S) between nodes i and j is (k)
if and only if each residue in the corresponding Coxeter geometry (X,S, t, ∗) of
type {i, j} is an ordinary k-gon.
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4.4 Coxeter geometries of types An, Dn and E6

We describe the Coxeter geometries of types An, Dn and E6 and find that they
belong to the complete graph Kn+1, the complete n-partite graph Kn×2, and
the Schläfli graph (§10.10).

An object of type i will be called an i-object. Given a diagram Xn and a
point type i we denote the corresponding shadow geometry by Xn,i.

An

Let Ω = {1, . . . , n + 1}. The Coxeter group (W,S) of type An can be taken
to be the symmetric group Sym(Ω) of order (n + 1)!, with set of generators
S = {s1, . . . , sn}, where si is the transposition (i, i + 1) interchanging i and
i+ 1.

The standard i-object can be identified with the i-subset {1, . . . , i} of Ω fixed
by the standard maximal parabolic Sym{1, . . . , i}×Sym{i+1, . . . , n+1}. Then
the i-objects are the i-subsets of Ω, collinear when they meet in an (i − 1)-set
(and have an (i+ 1)-set as union). It follows that the collinearity graph of the
shadow geometry of type An,i is the Johnson graph J(Ω, i).

Dn

Let Ω be the set {1, . . . , n}×{±1}. The Coxeter group (W,S) of type Dn can be
taken to be the group W of shape 2n−1:Sym(n) acting on Ω by permutation of
{1, . . . , n}, and changing an even number of signs, together with the generators
S = {s1, . . . , sn}, where si interchanges (i,±1) and (i+1,±1) (preserving signs)
for 1 ≤ i ≤ n− 1, and sn interchanges (n− 1,±1) and (n,∓1).

Let Γ be the complete n-partite graph Kn×2 on Ω (with (i, 1) and (i,−1)
nonadjacent (1 ≤ i ≤ n)). The i-objects can be identified with the i-cliques in Γ
(1 ≤ i ≤ n− 2). The (n− 1)-objects and n-objects can be identified with the n-
cliques in Γ containing an even (odd) number of vertices with second coordinate
−1, adjacent when they differ by a single sign change. We see that Γ is the
collinearity graph of the shadow geometry of type Dn,1, and find for Dn,n−1 and
Dn,n the halved graphs of the Hamming graph H(n, 2).

E6

����1 16 1����16
10

5 8����10
8

v = 27

The Weyl group W (E6) is isomorphic to GO−6 (2), and the collinearity graph
Γ of the shadow geometry of type E6,1 is the Schläfli graph, the noncollinearity
graph of an elliptic quadric in PG(5, 2) (§10.10).

The i-objects of the Coxeter geometry of type E6 (1 ≤ i ≤ 6) can be identified
with the vertices, 6-cliques, edges, triangles, maximal 5-cliques and subgraphs
K5×2 in Γ, respectively.

4.5 Buildings
Buildings provide a geometrical setting e.g. for groups of Lie type. They were
introduced in Tits [694]. See also [4], [147], [628], [727].
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4.5.1 Generalities
Let (W,S) be a Coxeter system with corresponding Coxeter geometry (X,S, t, ∗),
which will be called the standard apartment. A building of type (W,S) is a geom-
etry (B,S, t, ∗) endowed with a family A of subgeometries, called apartments,
over the type set S, all isomorphic (preserving types) to (X,S, t, ∗), such that

(B1) Every pair of flags of (B,S, t, ∗) is contained in a member of A ;

(B2) If two flags F, F ′ are both contained in two apartments Σ,Σ′, then there
exists an isomorphism (preserving types) Σ→ Σ′ fixing F ∪F ′ vertexwise.

Note that it does no harm to have the same notation for the type map and
the incidence relation in the building and in the standard apartment.

The Coxeter groupW is sometimes also called theWeyl group of the building.
If (W,S) is of type Xn, with X ∈ {A, . . . ,G} and n appropriate, then the building
is also said to be of type Xn itself.

The family of apartments is not necessarily unique, but in finite buildings it
always is.

To gain more insight into the structure of a building, we now determine its
diagram, using the list of traditional labels. So we ought to look at the residues.

First note that any set B can be seen as a building of rank 1 by considering
every pair of elements of B as an apartment; the Weyl group is the group of
order 2.

Proposition 4.5.1 Any nonempty residue of a building is a building.

Proof. Let F be a flag of the building ∆ = (B,S, t, ∗) of type (W,S) and set
of apartments A , and assume that F is not a chamber. Endow ResF with the
family of apartments AF = {Res ΣF : F ⊆ Σ ∈ A }. Pick two flags G,G′ in
Res ∆F . Then F ∪G and F ∪G′ are contained in a common apartment Σ, and
so G and G′ are contained in the common apartment Res ΣF of ResF .

Now assume thatG andG′ are both contained in two apartments Res ΣF and
Res Σ′F , with Σ,Σ′ ∈ A . Then any type preserving isomorphism Σ→ Σ′ fixing
F ∪G∪G′ vertexwise induces a type preserving isomorphism Res ΣF → Res Σ′F
fixing G ∪G′ vertexwise. �

A straightforward example of a building is a Coxeter geometry. The easiest
thick examples are those of rank 2 related to finite dihedral groups.

Proposition 4.5.2 Let (W,S) be a Coxeter system of rank 2 with W finite.
Then every building of type (W,S) is a generalized polygon, more exactly a
generalized |W |2 -gon. Conversely, every generalized polygon is a building of rank
2 with finite dihedral Weyl group.

Proof. Let (B,S, t, ∗) be a rank 2 building with finite Weyl group W , say
|W | = 2n. The graph Γ = (B, ∗) is bipartite and the bipartition classes
correspond to the types S. According to the definition in §4.1.1, we only need
to show that Γ has diameter n and girth 2n. In fact, it suffices to show that the
diameter is at most n and the girth is exactly 2n.

Note that apartments of (B,S, t, ∗) are 2n-cycles in Γ. Since every pair of
vertices is contained in an apartment by (B1), we see that the diameter of Γ is
at most n. Also, the girth is even, say 2g, and at most 2n.



4.5. BUILDINGS 117

Let γ = (v1, v2, . . . , v2g) be any 2g-cycle. Obviously, by the definition of
girth, the distance between two vertices of γ in Γ equals the distance between
these vertices in γ (as a subgeometry). Let j < g be maximal with the property
that every apartment through two vertices of γ at distance j from each other
contains all vertices on the shortest path between them in γ. Note that j is
well defined since obviously j ≥ 1. Suppose for a contradiction that j < g − 1.
Without loss we may assume that there is an apartment Σ containing v1 and
vj+2 not containing any of v2, . . . , vj+1. Any apartment Σ′ through {v1, v2}
and vj+2 contains the path µ = (v1, v2, . . . , vj+2). Now µ together with its
image under any isomorphism Σ′ → Σ fixing v1 and vj+2 forms a cycle of length
2j + 2 < 2g, a contradiction. Hence j = g − 1.

Now consider an apartment Σ′′ through the chambers {v1, v2} and {vg+1,
vg+2}. By the previous paragraph, Σ′′ contains γ, so g = n as desired.

The converse is easy (the apartments being the 2n-cycles of the incidence
graph). �

We can now recover the diagram of any building.

Corollary 4.5.3 The diagram of any building as a Buekenhout-Tits geometry
coincides with the diagram of its Weyl group as the corresponding Coxeter
system.

Proof. Follows directly from Propositions 4.5.1 and 4.5.2. �

4.5.2 Spherical buildings
A building is called spherical if its Weyl group is finite. Non-spherical buildings
are necessarily infinite, hence we now take a closer look at the spherical ones,
in particular the finite ones.

By Corollary 4.5.3, spherical buildings are geometries of type An, n ≥ 1,
Bn, n ≥ 2, Dn, n ≥ 4, En, n = 6, 7, 8, F4, Hn, n = 3, 4, or I

(m)
2 , m ≥ 5.

In each case the Coxeter geometry of the corresponding type is a finite thin
example. Thick buildings of type H3 and H4 do not exist (see [695]). Also, thick
finite buildings of type I

(m)
2 with m 6= 2, 3, 4, 6, 8, do not exist by [316] (by an

eigenvalue argument).
We give the identification of finite thick buildings with classical geometries.

• Thick buildings of type An, n ≥ 2, are the projective spaces. With
the numbering of the nodes of the diagram as before, elements of type
i correspond to subspaces of projective dimension i − 1 and incidence is
symmetrized containment.

• Thick buildings of type Bn, n ≥ 2, are the thick polar spaces, i.e., polar
spaces of order (s, t) with s, t ≥ 2. With the numbering of the nodes of
the diagram as before, elements of type i correspond to singular subspaces
of projective dimension i− 1 and incidence is symmetrized containment.

• Thick buildings of type Dn, n ≥ 4, are the oriflamme geometries of the
non-thick polar spaces, i.e., of the polar spaces of order (s, 1), s ≥ 2. The
oriflamme geometry of a non-thick polar space of rank n is the geometry
of rank n where the elements of type i, 1 ≤ i ≤ n − 2, are the singular
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subspaces of projective dimension i − 1, and where the elements of type
n−1 and n correspond to the partition of maximal singular subspaces into
the two classes given by the bipartite graph of Theorem 2.2.17. Incidence
is given by containment when at least one element has type i ≤ n−3; two
elements of types n − 1 and n are incident if they intersect in a singular
subspace of projective dimension n− 2. The moral here is that we throw
away the (n − 2)-spaces as elements of the geometry, but they sneak in
again via the incidence (in graph theoretical language: they cease to be
vertices and become edges).

• Thick buildings of type En, n ∈ {6, 7, 8}, and F4 are called of exceptional
type. They do not correspond to classical objects. Only type E6 will be of
interest to us, and we provide an explicit construction below (§4.9.3).

In the not necessarily finite case, thick buildings of type An also include
vector spaces over skew fields, and for n = 2 also non-Desarguesian projective
planes. Similarly, the projective spaces that occur as residues in arbitrary thick
buildings of types Bn and F4 need not be defined over fields and for B3 and
F4 can be non-Desarguesian. On the other hand, thick buildings of types Dn

(n ≥ 4) and En are always defined over a field and uniquely determined by that
field. In the infinite case, the s and t in the order of polar spaces can be infinite
cardinal numbers.

In the finite case there is a unique building of type An, Dn (n ≥ 3) and
E6,E7,E8 such that the rank 2 residues are projective planes that have order q.
We denote such buildings by Xn(q), X ∈ {A,D,E}. The corresponding shadow
geometry with respect to type i (in the labeling given in the list of diagrams in
Section 4.2) is denoted by Xn,i(q). If we do not want to specify the field, then
we write Xn,i.

4.5.3 Characterizations

Tits [696] characterizes various buildings as residually connected geometries
with given diagram and point type such that the shadows (cf. §4.1.4) satisfy
certain axioms. Brouwer & Cohen [124] show that in the case of E6 these
axioms are automatically satisfied. Hence

Proposition 4.5.4 Every residually connected geometry of type An, n ≥ 2, Dn,
n ≥ 4, or E6 is a building. �

For other spherical diagrams quotients exist that are not buildings. However,
an eigenvalue argument shows that in the finite case quotients do not occur.

Today only one example is known of a finite residually connected thick
geometry of rank at least 3 with a spherical Coxeter diagram and not the
quotient of any building. It is the famous Neumaier geometry, with 7 points, 35
lines and 15 planes constituting a geometry of type B3 with full automorphism
group A7 ([590], [16]; cf. §6.2.2).

4.5.4 Chain calculus

The chain calculus due to Tits [690] allows one to obtain results on the diameter
of a geometry from its diagram.
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We shall talk about chains x0 ∗ x1 ∗ · · · ∗ xl (in some residually connected
Buekenhout-Tits geometry satisfying a given diagram) by just giving the se-
quence of types t0-t1-· · · -tl, where the object xi is of type ti.

A sequence of types given as a statement, denotes the claim that arbitrary
objects x0 and xl of the types occurring first and last can be joined by a chain of
objects of the indicated types, each incident with the preceding and following.
In the proofs we shall modify chains, but always keep the ends fixed. A main
ingredient is Proposition 4.1.1, which we shall not explicitly quote.

se
1
s
2
s
3
. . . s
n−1
s
n

An.

Proposition An: For 2 ≤ i ≤ n we have 1-i-(i − 1). In particular, for n ≥ 2,
we have 1-2-1.
Proof. If i < n, then by induction we find that if 1-2-1-i-(i − 1), then 1-2-
(i+ 1)-i-(i− 1), hence 1-(i+ 1)-(i− 1), hence 1-i-(i− 1), so chains 1-2-1-i-(i− 1)
can be shortened to 1-i-(i− 1), and by residual connectedness we are done. By
definition of A2 we have 1-2-1 in A2. There remains the case i = n ≥ 3. But in
that case 1-2-1-(n− 1), so 1-2-n-(n− 1), so 1-n-(n− 1), by induction and since
1-2-1 holds. �

se
1
s
2
s
3
. . . s
n−2
�
�

@
@

s
s

n−1

n

Dn.

Proposition Dn: Let n ≥ 2. Then the following hold.
(a) 1-(n− 1)-n.
(b) 1-i-(i− 1)-i for 2 ≤ i ≤ n− 2. In particular: 1-2-1-2.
(c) If n is even, then (n− 1)-1-n. If n is odd, then n-1-n.

Proof. In D2 we have 1-2, implying all our claims. For n = 3 everything
follows from Proposition A3. Now use induction on n. For part (a) we find
by induction and Proposition An: if 1-2-1-(n − 1)-n then 1-2-n-(n − 1)-n so
1-n-(n− 2)-n so 1-(n− 1)-(n− 2)-n so 1-(n− 1)-n, proving part (a).

For part (b): by part (a) 1-(n− 1)-n-i, so 1-(n− 1)-(i− 1)-i, so 1-i-(i− 1)-i.
For part (c): if n is even, then (by part (a) and induction): (n−1)-n-1-n, so

(n−1)-n-2-n, so (n−1)-1-2-n, so (n−1)-1-n, and if n is odd, then n-1-(n−1)-n,
so n-2-(n− 1)-n, so n-2-1-n, so n-1-n. �

For E6, E7, E8 we shall omit the ‘-’ in type sequences.

se
1
s
3
s
4

s2
s
5
s
6

E6.

Proposition E6: (a) 161,
(b) 13126,
(c) if 1316 then 126.

Proof. (c) 1316 yields 1326 and then 126.
(a) 13161 yields 1261, 1251, 1651, 161.
(b) 1616 yields 15216, 15236, 131236, 131436, 131426, 13126. �



120 CHAPTER 4. BUILDINGS

s
1
s
3
s
4

s2
s
5
s
6
s
7
e E7.

Proposition E7: (a) 7671,
(b) 7176,
(c) if 76767 then 717.

Proof. (c) 76767 yields 76167 and then 717.
(a) 767671 yields 7171, 7161, 76761, 7671.
(b) 76767676 yields 717676, 717616, 71716, 71616, 767616, 76716, 767676,

7176. �

s
1
s
3
s
4
s
5
s
6

s2
s
7
s
8
e E8.

Proposition E8: (a) 8181,
(b) if 81878 then 87878,
(c) 878787.

Proof. (a) 181878 yields 1817678, 181768, 1878768, 187868, 187878, 1767878,
176878, 1767178, 1787178, 1818.

(b) 81878 yields 817678, 81768, 878768, 87868, 87878.
(c) 81817 (by (a)), 818787, 878787 (by (b)). �

For the collinearity graph Γ of the shadow geometry for the circled node
(vertices: objects of the circled type, say i; adjacency: both in the residue of
some flag of cotype i — in our cases this is equivalent to both incident to some
object of type j, where j is the unique neighbor of i in the diagram) the above
means the following:

An,1: Γ is a clique (has diameter 1).
Dn,1: Γ has diameter 2; any line carries a point at distance at most one from

a given point.
E6,1: Γ has diameter 2 — indeed, any two vertices are in a D5,1 subgraph.
E7,7: Γ has diameter 3; any two vertices at distance 2 are in a D6,1 subgraph;

any line carries a point at distance at most two from a given point.
E8,8: Γ has diameter 3; if x and y are two points at distance 2 in a D7,1

subgraph, then y has no neighbors at distance 3 from x; any line carries a point
at distance at most two from a given point.

For the relation between points x and symplecta S (objects of type 6, 1, 1 in
E6, E7, E8, respectively), the above implies:

E6,1: x⊥ ∩ S is either empty or a projective 4-space.
E7,7: x⊥ ∩ S is either a single point or a projective 5-space.
E8,8: x⊥ ∩ S is either empty or a line or a projective 6-space.

We established that the collinearity graph of a geometry of type E6,1 has
diameter 2. In the finite case, it will turn out to be strongly regular.
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4.6 The Klein quadric and Klein correspondence

se
1
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2
s
3

A3
se
1
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s
s
2

3

D3

The A3 and D3 diagrams are the same, and hence they describe the same
buildings. The circled node differs: different objects are called ‘points’. The
A3 diagram (for a finite geometry) is that of the points, lines, and planes
of projective 3-space. The D3 diagram (for a finite geometry) is that of the
points and the totally singular planes (of two kinds) of a hyperbolic quadric in
projective 5-space.

In coordinates the correspondence goes as follows. Let V be a 4-dimensional
vector space over Fq with basis e1, . . . , e4. Let W = V ∧V be the 6-dimensional
vector space over Fq with basis fij = ei ∧ ej (1 ≤ i < j ≤ 4). A vector
w =

∑
aijfij is of the form u∧v whenQ(w) = 0, whereQ(w) = a12a34−a13a24+

a14a23 is a nondegenerate quadratic form onW . If 〈u〉, 〈v〉 are distinct points in
PV , then 〈u∧ v〉 is a point in PW corresponding to the line 〈u, v〉 of PV . Thus,
projective lines in PG(3, q) correspond to singular points on this hyperbolic
quadric. The quadric is called the Klein quadric, and this correspondence the
Klein correspondence.

Ovoids and spreads

Let B be the symmetric bilinear form derived from Q, so that B(w,w′) = Q(w+
w′)−Q(w)−Q(w′). Put f = e1 ∧ e2 ∧ e3 ∧ e4. Then w ∧w′ = B(w,w′)f . Two
singular points w,w′ are orthogonal if and only if they correspond to intersecting
lines. An ovoid in PW , that is, a set of q2 + 1 pairwise nonorthogonal singular
points, corresponds to a spread in PV , that is, a set of q2 + 1 pairwise disjoint
lines (a partition of the space).

Symplectic forms

Each w ∈ W defines a symplectic form fw on V via fw(u, v) = B(u ∧ v, w),
and conversely all symplectic forms occur in this way. The nonsingular points
correspond to the nondegenerate symplectic forms. The isotropic lines for fw
correspond to the singular points in w⊥. Thus the points and lines of the
Sp(4, q) generalized quadrangle correspond to the lines and points of the O5(q)
generalized quadrangle.

Groups

The linear group PGL4(q) corresponds to the subgroup of the orthogonal group
PGO+

6 (q) that preserves both types of maximal singular planes. The simple
groups are isomorphic: L4(q) ' O+

6 (q).
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4.7 Triality
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D4

By the classification of buildings of type D4 (Veldkamp [715], Tits [694])
there is for each field F up to isomorphism a unique building D4(F ). It is the
geometry O+

8 (F ) of points, lines, and totally singular solids (of two kinds) of a
hyperbolic quadric in projective 7-space.

By the symmetry of the diagram, also the objects of types 3 and 4 can be
viewed as the singular points on a quadric in projective 7-space, and the building
admits trialities, non-type-preserving automorphisms that permute the types
1→ 3→ 4→ 1 and 2→ 2.

In order to give a compact algebraic description, we now first introduce split
octonion algebras. These will also be used later to construct buildings of type
E6 and the split Cayley generalized hexagons.

4.7.1 Split octonion algebras

Composition algebras

An algebra is a vector space provided with a bilinear multiplication. A com-
position algebra C is an algebra with two-sided identity element e and a non-
degenerate quadratic form N such that N(xy) = N(x)N(y) for all x, y. Define
a symmetric bilinear inner product by f(x, y) = N(x + y) − N(x) − N(y),
and define x = f(x, e)e − x. Then x2 − f(x, e)x + N(x)e = 0 for all x, and
x = x, and xx = xx = N(x)e, and xy = y x.† If f is degenerate, one can show
that its radical R = C⊥ is a field, and then that C = R. Assume that f is
nondegenerate. One can show that dimC ∈ {1, 2, 4, 8} (and the real numbers,
complex numbers, quaternions and octaves are examples over R where N(x)
is positive definite). The composition algebra C is called split when there is a
nonzero x with N(x) = 0. For each dimC ∈ {2, 4, 8} there is a unique split
example, given the underlying field.

Split octonion algebras

We introduce the split octonion algebra or split Cayley algebra over the field F .
Let M = M 2×2(F ) be the algebra of 2 × 2 matrices over the field F . Then
the split Cayley algebra O(F ) over F consists of pairs (A,B) ∈ M ×M with
componentwise addition, and multiplication given by

(A,B) · (C,D) = (AC +DBAd, AAdD + CB)

†In N(xy) = N(x)N(y) replace y by y + z and expand to get f(xy, xz) = N(x)f(y, z).
Replace x by x + w and expand to get f(xy,wz) + f(wy, xz) = f(x,w)f(y, z). With w = e
this becomes f(xy, z) = f(y, (f(x, e)e − x)z) = f(y, xz). Similarly, f(yx, z) = f(y, zx).
Since N(e) = 1 and N(x) = N(x) and x = x, one finds f(x, y) = f(x, y). Now f(xy, z) =
f(xy, z) = f(x, z y) = f(zx, y) = f(z, y x) for all z, so that xy − y x belongs to the radical of
f . Using 2N(w) = f(w,w) for w = xy we see that N(xy − y x) = 0, and hence, since N is
nondegenerate, xy = y x. From N(x)f(y, z) = f(xy, xz) = f(x(xy), z) and symmetry one gets
x(xy) = N(x)y = (yx)x. With y = e this proves all claims.
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for A,B,C,D ∈M , where Ad denotes the adjoint operator, i.e.,(
a b
c d

)Ad

=

(
d −b
−c a

)
,

so that AAAd = AAdA = (detA)I and (AB)Ad = BAdAAd.
We call this multiplication the Cayley-Dickson multiplication, as it is the

result of the so-called Cayley-Dickson process in composition algebras. In the
literature, a traditional direct definition of this multiplication is the following.
Denote by v.w and v ×w the ordinary dot product and vector product,3
respectively, of vectors v,w ∈ F 3, and by av the scalar multiplication, a ∈ F ,
v ∈ F 3. Define the following multiplication in the set of mixed matrices{(

a v
w b

)
| a, b ∈ F, v,w ∈ F 3

}
:

Let v,v′,w,w′ ∈ F 3 and let a, a′, b, b′ be scalars (elements of F ). Then(
a v
w b

)
�
(
a′ v′

w′ b′

)
=

(
aa′ + v.w′ av′ + b′v + w ×w′

a′w + bw′ + v′ × v bb′ + w.v′

)
.

In fact, the Cayley-Dickson multiplication and the traditional multiplication �
are opposite multiplications4 under the identification (denoting the components
of the vector v ∈ F 3 by (v1, v2, v3) and similar for w)(

a v
w b

)
←→

((
a w1

v1 b

)
,

(
v2 v3

−w3 w2

))
.

For x = (A,B) ∈ O(F ), we define x = (AAd,−B) (in terms of mixed
matrices, this amounts to the adjoint defined in the obvious way). Now x·y = y·x
for all x, y ∈ O(F ). Let I and O be the identity matrix and zero matrix,
respectively, in M 2×2(F ). We can identify F with F ′ = {(aI,O) | a ∈ F} ⊆
O(F ). Then the addition and multiplication of F coincides with the addition
and multiplication of O(F ) restricted to F ′. One easily calculates that, using
this identification, x + x ∈ F and x · x = x · x ∈ F for all x ∈ O(F ). The
mapping x 7→ x is called the standard involution in O(F ). The multiplication
in O(F ) is not associative, but it is alternative, i.e., for all x, y ∈ O(F ) it is true
that  x · (x · y) = (x · x) · y,

x · (y · x) = (x · y) · x,
y · (x · x) = (y · x) · x.

Note that O(F ) is in the natural way an 8-dimensional vector space over
F . The scalar multiplication (c, x) 7→ cx is, for x = (A,B), given by cx =
(cA, cB) = (cI,O) · (A,B).

With N(x) = xx, the algebra O(F ) is an 8-dimensional composition algebra
over F . For x = (A,B), we have N(x) = detA−detB and T (x) := x+x = trA.

3That is, v.w = v1w1 + v2w2 + v3w3, and (v ×w)i = vjwk − vkwj for i, j, k ∈ {1, 2, 3}
where (i, j, k) = (i, i+ 1, i+ 2) (mod 3).

4The opposite multiplication of (a, b) 7→ ab is (a, b) 7→ ba.
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4.7.2 Triality

The two previous paragraphs imply that the norm map in O := O(Fq) is a
quadratic form that defines the O+

8 (q) geometry, where the t.i. vectors are given
by the elements of O with norm 0. The perp of a vector x is given by the
elements y ∈ O such that f(x, y) = xy + yx = 0, or equivalently, f(x, y) =
xy + yx = 0. For a ∈ O, define the linear maps ϕa : O → O : x 7→ xa and
aϕ : O → O : x 7→ ax.

Noting that two t.i. vectors x, y ∈ O are collinear if and only if x+ y is t.i.,
one deduces that Kerϕa and Imϕa = Oa are singular subspaces, and hence
their dimension is at most 4. Since clearly Imϕa ⊆ Kerϕā we conclude that
Imϕa = Kerϕā is a maximal singular subspace. In fact, it turns out that the
following facts hold (see §2 of [70]):

(i) Every maximal singular subspace is of the form Oa or aO, for a unique
a ∈ O with N(a) = 0.

(ii) Two distinct maximal singular subspaces have a plane in common if and
only if they are of the form aO and Ob, with ab = 0.

(iii) Two distinct maximal singular subspaces intersect in a line if and only
if they are of the form either Oa and Ob, or aO and bO, with N(a) =
N(b) = N(a+ b) = 0.

So we can view the maximal singular subspaces of the form Ox, N(x) = 0,
as the elements of type 3 of the corresponding building of type D4. It follows
that x 7→ Ox induces an isomorphism from the shadow geometry D4,1(q) to
the shadow geometry D4,3(q). It is precisely the map given in the proof of
Proposition 3.2.3 when interchanging columns i and −i, i ∈ {1, 2, 3}, and
negating the last column. One checks that this isomorphism maps Ox back
to x and interchanges xO and xO.

Hence the mapping x 7→ Ox 7→ xO 7→ x induces a triality of order 3. We
say a little more about this triality in Section 4.8.

4.8 A construction of G2(q)

The only known finite generalized hexagons of order s are the split Cayley
hexagon G2(s) and its dual (and then s is any prime power). It is self-dual if
and only if s is a power of 3 (see Section 3.5 of [710]). It arises as the absolute
geometry of a suitable triality of order 3, like the one in Subsection 4.7.2 defined
on the t.i. points of O(F(s)) under the bilinear form defined by the norm and
given by τ : x 7→ Ox 7→ xO 7→ x, N(x) = 0. A point 〈x〉, x ∈ O, N(x) = 0, is
absolute for τ if and only if x ∈ Ox, or equivalently x ∈ Kerϕx, which is clearly
equivalent to x2 = 0, and then to f(x, e) = 0, or x + x = 0. Consequently, the
points of G2(s) are the t.i. points in the hyperplane e⊥, hence the points of a
parabolic polar space O7(s). The lines fixed under τ are the 2-spaces spanned
by two vectors x, y ∈ O with x2 = y2 = xy = yx = 0. This can be calculated
explicitly, and then one obtains the following description, first given in [691].

As we already deduced, the points of G2(s) are the points of a parabolic
polar space O7(s). In order to describe the lines it is convenient to fix the



4.8. A CONSTRUCTION OF G2(q) 125

corresponding quadratic form β : V → Fs of the 7-dimensional vector space V
over Fs as

(x0, x1, . . . , x6) 7→ x0x4 + x1x5 + x2x6 − x2
3.

Then the lines are given by the singular 2-spaces of V whose Plücker coordinates
satisfy p12 = p34, p20 = p35, p01 = p36, p03 = p56, p13 = p64 and p23 = p45, where

pij =

∣∣∣∣ xi xj
yi yj

∣∣∣∣, for independent vectors (x0, x1, . . . , x6) and (y0, y1, . . . , y6) of

the 2-space in question. This representation of G2(s), or any isomorphic one,
will be called the standard representation of G2(s).

The diagram of the collinearity graph of both G2(s) and its dual is

����1 s2+s 1

����s2+s

s−1

s2 1

����s4+s3

s−1

s2 s+1��
��
s5

s2−1

v = s5+s4+s3+s2+s+1

and we see that k = s2 + s = b2 + c3 − 1. Proposition 1.3.12 implies that the
graph with vertices the points of G2(s) or its dual, adjacent when they are at
distance 3 from one another in the collinearity graph, is strongly regular. For
G2(s), this graph is the complement of the O7(s) graph and is rank 3. For the
dual of G2(s), if s is not a power of 3, this graph has the same parameters of
the complement of the O7(s) graph but is not isomorphic to it. By Theorem 4
of Govaert & Van Maldeghem [359], the full group of this graph equals
Aut G2(s). It is rank 4.

Another rank 4 permutation group is obtained by considering the action
of SO7(q) on the set of standard representations of the split Cayley hexagons
on O7(q). There are q3(q4 − 1) such representations. The group O7(q) has
gcd(2, q − 1) orbits on this set. The suborbits can be seen geometrically as
follows. Let ω be a fixed split Cayley hexagon on O7(q) and let Ω be the orbit
of ω under the action of O7(q).

• ω contains 1
2q

3(q3 − 1) Hermitian spreads, and each Hermitian spread is
the intersection of the line set of ω with the line set of every member of
a set of q+1

gcd(2,q−1)
− 1, that is, q (if q is even) or q−1

2 (if q is odd) split
Cayley hexagons from Ω.

• ω contains 1
2q

3(q3 + 1) non-thick subhexagons of order (1, q), and the line
set of each such subhexagon is the intersection of the line set of ω with
the line set of every member of a set of q−1

gcd(2,q−1)
− 1, that is, q − 2 (if q

is even) or q−3
2 (if q is odd) split Cayley hexagons from Ω.

• For each point x of ω, the set of lines at distance 1 from x (that is, the lines
not containing x but containing a point collinear to x) is the intersection
of the line set of ω with the line set of every member of a set of q− 1 split
Cayley hexagons from Ω.

An elementary count reveals that the union of the subsets of Ω described
above (also considering ω) is Ω.

The group G2(q), seen as an automorphism group of ω, acts transitively on
each of the three above subsets of Ω, hence we obtain a rank 4 permutation group
of O7(q) on the cosets of its subgroup G2(q). However, the number q−1

gcd(2,q−1)
−1

equals 0 if and only if q ∈ {2, 3}, in which case we obtain a rank 3 group. The
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corresponding strongly regular graphs are NO+
8 (2) and NO+

8 (3) and they have
larger full automorphsm group, to be precise O+

8 (2) : 2 and PGO+
8 (3).

4.9 The E6,1(q) graph
We study the collinearity graph of the shadow geometry E6,1(q).

The literature contains several constructions of E6,1(q) (or, more generally,
E6,1(F )). The standard construction is as coset geometry in an algebraic group
of type E6. Alternatively, one can use the blueprint construction of Ronan &
Tits [629]. The geometry E6,1(q) admits an embedding in PG(26, q), of which
there exists a construction using a trilinear form, see Aschbacher [15]. One
can also construct it as an intersection of quadrics, see Cohen [204] and the
remarks in §4.9.3 below. Here, we provide a construction of E6,1(F ) over an
arbitrary field F using a split octonion algebra.

4.9.1 Parameters
The parameters can be read off from the diagram.

Proposition 4.9.1 The collinearity graph of E6,1(q) is strongly regular with
parameters (v, k, λ, µ) and spectrum k1 rf sg, where

v =
(q12 − 1)(q9 − 1)

(q4 − 1)(q − 1)
, r = q8 + q7 + q6 + q5 + q4 − 1,

k = q(q3 + 1)

[
8

1

]
, s = −q3 − 1,

λ = q2(q2 + 1)

[
5

1

]
+ q − 1, f = q11 + q8 + q7 + q5 + q4 + q,

µ = (q3 + 1)

[
4

1

]
, g = q2(q6 + 1)(q4 + 1)

[
5

1

]
.

In the thin case (q = 1) we find the Schläfli graph (§10.10).
Proof. It suffices to find k, λ, and µ.

The local structure is clear by inspection of the diagram: the residue of E6,1

at a point (that is, of E6(q) at a type 1 vertex, taking as points of the residue
the vertices corresponding to the lines of E6,1(q)) is a geometry of type D5,5.
By Theorem 2.2.20 we have v(D5,5(q)) = (q3 + 1)

[
8
1

]
and k(D5,5(q)) = q

[
5
2

]
.

The points of D5,5(q) are lines in E6,1(q), and each contributes q neighbors, so
k = q · v(D5,5(q)) and λ = q · k(D5,5(q)) + q − 1.

That µ(E6,1(q)) = µ(D5,1(q)) follows from the fact that the symplecton
(object of type 6) on two noncollinear points is unique. (Indeed, if s1, s2 are
symplecta on the points p1, p2, then {p1, s1} and {p2, s2} are flags contained in
an apartment. The apartment consists of the 27 vertices, 72 6-cliques, 216 edges,
720 triangles, 216 maximal 5-cliques and 27 subgraphs of the form Γ2(x) for a
vertex x in the Schläfli graph Γ, the noncollinearity graph of the generalized
quadrangle GQ(2, 4), cf. §10.10. Now {p1, p2, s1} and {p1, p2, s2} correspond to
3-cocliques in Γ, hence to lines in the GQ(2, 4), hence s1 = s2.) �

We saw that the local graph of the collinearity graph of E6,1(q) is the q-clique
extension of the collinearity graph of D5,5(q).



4.9. THE E6,1(q) GRAPH 127

4.9.2 Cliques, cocliques and regular sets

Cliques

Themaximal cliques correspond to the maximal singular subspaces of the shadow
geometry E6,1(q), which, on their turn, correspond to the objects of types 2 and
5 in the corresponding building and hence contain q5 +q4 +q3 +q2 +q+1 points
(singular subspaces of projective dimension 5) and q4 + q3 + q2 + q + 1 points
(singular subspaces of projective dimension 4), respectively.

Cocliques

Cooperstein [225] shows that the existence of an ovoid in the O+
10(q) hyperbolic

quadric implies the existence of a coclique of largest possible size q8 + q4 +
1 in the collinearity graph of E6,1(q). However, no such ovoid is known (for
q > 1), and for many q nonexistence has been established, see for instance
Proposition 2.6.17.

A regular set of type F4

The geometry E6,1(q) has exactly three types (orbits) of geometric hyperplanes.
Two types have the property that they contain all points collinear to some fixed
point, and hence these cannot give rise to a regular bipartition. The third type
does give rise to a regular bipartition. In fact, such a geometric hyperplane
H has the following property. Let LH be the set of lines contained in H and
lying in at least two maximal singular subspaces of projective dimension 5 which
are also entirely contained in H. Then (H,LH) is isomorphic to the point-line
geometry F4,4(q). Also, the stabilizer in Aut E6,1(q) of H acts transitively on
the complement of H (this is true in general for any field, see [285]).

Hence H is a regular set of size (q+1)(q2 +1)(q4 +1)(q8 +q4 +1) with degree
q(q3 + 1)(q6 + q5 + q4 + q3 + q2 + q+ 1) and nexus (q+ 1)(q2 + 1)(q3 + 1)(q4 + 1).

A regular set of type 3D4

Let O := O(Fq3) be the split Cayley algebra over Fq3 . Then the absolute
points and fixed lines of the triality map τ : x 7→ Oxq 7→ xO 7→ xq

2

, N(x) =
0, constitute a GH(q3, q). Since the line grassmannian of the O+

8 (q3) quadric
embeds in the shadow geometry F4,1(q3), we obtain an embedding of the dual
GH(q, q3) in F4,1(q3). It turns out that this embedding is contained in the
subgeometry isomorphic to F4,1(q) obtained by field restriction.

Now the regular set of type F4 described in the previous paragraph gives
rise to an embedding of the F4,1(q) shadow geometry into the E6,2(q) shadow
geometry. It follows that there is a representation of the GH(q, q3) in E6,1(q)
where points p are maximal (projective) 5-spaces Up and the lines L are planes
πL, with natural incidence. The lines of GH(q, q3) incident with a given point
p form a symplectic spread in Up. This symplectic spread is pointwise fixed
by a (Singer) group of order q2 + q + 1, and all elements of that group extend
to elements of Aut E6,1(q) pointwise stabilizing GH(q, q3) (i.e., stabilizing the
plane πL, for each line L of GH(q, q3)). Let W be the union of all such planes.
Together with the cyclic group generated by the field automorphism x 7→ xq

acting on GH(q, q3), which becomes a linear automorphism in E6,1(q), we obtain
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a group ((q2 + q + 1)× 3D4(q)) : 3 stabilizing W . (This is a maximal subgroup
of E6(q).)

Let x be a point in W . Then x is contained in a unique plane πL, with L
a line of GH(q, q3). If M is a line of GH(q, q3) opposite L, then πL and πM are
opposite in E6,1(q) and no point of πM is collinear to x. IfM is concurrent to L,
then πM is contained in a projective 5-space together with x and so all points
of πM are collinear to x. Finally, if M is at distance 1 from L (meaning that
the minimal distance in the collinearity graph of GH(q, q3) between points of M
and points of L is 1; so there exist unique collinear points u ∈ L and v ∈ M),
then x is collinear to the points of a solid S of Uv. Since πuv ⊆ S, we see that
S ∩ πM is a point. (Note that we used the fact that a point outside a given
projective 5-space U is either collinear with a unique point of U , or with the
points of a unique solid in U , see Fact 4.2.10 in [285].) This yields the degree
of the graph induced on W , namely

(q2 + q) + (q + 1)q3(q2 + q + 1) + (q + 1)q7 = q(q3 + 1)(q4 + q3 + q2 + q + 1).

Now let x be a point offW , and let p be a point of GH(q, q3). Then, as mentioned
earlier, x is collinear to either a unique point of Up, or all points of a solid in
Up. In the former case, we see that x is collinear to either one or zero points
of the planes πL contained in Up; in the latter case x is collinear to either 1 or
q + 1 points of the planes πL contained in Up and there are exactly q + 1 such
planes in Up containing q + 1 points collinear to x (if x⊥ would contain a plane
πL, then it would follow that x ∈W ). It can now be argued that the projective
5-spaces Up with x⊥ ∩W a solid and the planes πL with x⊥ ∩ πL a line, form a
subhexagon H of order q of GH(q, q3). Moreover, x⊥∩πL is a point if and only
if L is a line not contained in H but incident with a point of H . We see that

|x⊥∩W | = (q+1)2(q4+q2+1)+(q3−q)(q+1)(q4+q2+1) = (q3+1)2(q2+q+1).

Hence W is a regular set of size (q2 + q + 1)(q3 + 1)(q8 + q4 + 1) with degree
q(q3 + 1)(q4 + q3 + q2 + q + 1) and nexus (q3 + 1)2(q2 + q + 1).

4.9.3 Construction of E6,1(q)

Let F 2 ×O(F )3 be a model for the 26-dimensional affine space AG(26, F ) over
F , with projective completion PG(26, F ). We use 27-tuples over F to describe
the points of PG(26, F ) and order them so that a point with coordinates (1, . . .)
belongs to AG(26, F ), and the coordinates following the 1 belong to F 2×O(F )3.
It is convenient to write a semicolon between the third and fourth position,
separating the coordinates in F from those in O(F ). Also, we denote the zero
element of O(F ) simply by 0.

For every pair (x, y) ∈ O(F )×O(F ), we define the point p(x, y) of AG(26, F )
by p(x, y) = (1, xx, yy;xy, x, y). We set S1 = {p(x, y) | x, y ∈ O(F )}.

For every pair ((x1, y1), (x2, y2)) ∈ (O(F )×O(F ))2 with

(∗)

 (x1 − x2)(x1 − x2) = 0,
(y1 − y2)(y1 − y2) = 0,
(x1 − x2)(y1 − y2) = 0,

we define the point p(x1, y1, x2, y2) = p(x1, y1)− p(x2, y2). The set of all points
p(x1, y1, x2, y2) with ((x1, y1)(x2, y2)) satisfying (∗), is denoted by S2.



4.9. THE E6,1(q) GRAPH 129

Finally, let S3 be the set of points with coordinates (0, a, b;x, 0, 0) satisfying
ab = xx (S3 is a nonsingular hyperbolic quadric Q in a 9-dimensional projective
subspace, an element of type 6 in the corresponding building of type E6). Then
S := S1 ∪ S2 ∪ S3, endowed with all projective lines contained in it, is a model
for E6,1(F ).

Remarks

• If |F | > 2, then S2 is just the set of points lying on the projective extension
of an affine line of AG(26, F ) entirely contained in S1. Likewise, S3 is the
set of points lying on a line of which all points but one are contained in
S2. Now all lines of PG(26, F ) all but possibly one of whose points belong
to S1 ∪ S2 ∪ S3 are entirely contained in S1 ∪ S2 ∪ S3. This procedure
can be seen as the Zariski closure of the set S1, viewed as a variety of low
degree.

• The set S2 ∪ S3 is a geometric hyperplane of S with S3 as its set of deep
points. A deep point of a geometric hyperplane is a point p with the
property that all points collinear to p also belong to the hyperplane. The
geometric hyperplane S2 ∪ S3 arises as the intersection of the hyperplane
H1 := PG(26, F ) \ AG(26, F ).

• The orbit of H1 under the group E6(F ) forms a set of points in the dual
of PG(26, F ) which is isomorphic to S. This exhibits the duality of the
building of type E6 apparent in its diagram.

• There are two other orbits of hyperplanes; the first is the orbit of the hyper-
plane H2 spanned by all points of S1 collinear in E6,1(F ) to (1, 0, 0, 0, 0, 0)
(these all have coordinates of the form (1, 0, 0, 0, x, y), with xx = yy =
xy = 0) and the points of a nonsingular parabolic subquadric of Q in
an 8-dimensional projective subspace. The point (1, 0, 0, 0, 0, 0) is the
unique deep point of the corresponding geometric hyperplane; hence every
geometric hyperplane in this orbit has a unique deep point. But unlike the
situation with H1, where the set of deep points determines the geometric
hyperplane, here there are many geometric hyperplanes (of the same orbit)
having the same deep point as the one corresponding to H2. The second
orbit is an orbit of a hyperplane H3 such that H3 ∩ S has no deep points,
and does not contain any element of type 6. The stabilizer is a group of
type F4. If we restrict the set of lines to the set of lines contained in at
least two 5-spaces entirely contained in S ∩H3, then we obtain a shadow
geometry of type F4,4.

• Let GQ(2, 4) = (P,L ) be the unique generalized quadrangle of order
(2, 4). The complement of its collinearity graph is the Schläfli graph
(§10.10). Recall that a spread is a set of lines that partitions the point
set. There are two isomorphism classes of spreads in GQ(2, 4) ([144]).
One isomorphism class contains spreads S , called regular or Hermitian
spreads, with the property that, given any pair of lines L1, L2 ∈ S , the
unique line L3 composed of the three points outside L1 ∪ L2 that are
collinear with collinear points of L1 ∪L2, also belongs to S . We consider
such a spread S . Let a basis of the projective space PG(26, F ) be indexed
by the 27 points of GQ(2, 4). Hence an arbitrary point of PG(26, F ) has



130 CHAPTER 4. BUILDINGS

coordinates of the form (xi)i∈P , xi ∈ F , for all i ∈ P. Given a point
i ∈P, we define the quadric Qi with equation

xj1xj2 + xj3xj4 + xj5xj6 + xj7xj8 = xj9xj0 ,

where {i, j1, j2}, {i, j3, j4}, {i, j5, j6}, {i, j7, j8} are the four lines of GQ(2, 4)
on i not belonging to S , and {i, j9, j0} ∈ S . Then the set S constructed
above is projectively equivalent to the intersection of the 27 quadrics Qi,
with i ranging over P. Up to the numbering, it is the same set of quadrics
as given by Cohen [204].

• A brief algebraic way to note down the set of 27 quadrics of the previ-
ous remark is to label a generic point of PG(26, F ) with the coordinates
(x1, x2, x3, X1, X2, X3) ∈ F 3×O(F )3, up to an F -multiple. Then E6,1(F )
is given by the set of points whose coordinates satisfy XiXi = xi+1xi+2

and xiXi = Xi+1Xi+2, for all i ∈ {1, 2, 3} mod 3.



Chapter 5

Fischer spaces

Fischer classified the groups generated by a conjugacy classD of 3-transpositions
(involutions such that the product of any two has order at most 3) and discovered
three new sporadic groups that bear his name. These groups are rank 3 groups:
D carries in a natural way the structure of a geometry with lines of length 3
and the structure of a rank 3 graph.

5.1 Definition

Let (X,L ) be a partial linear space. A subset Y of X, together with the lines
contained in it, is called a subspace when Y contains each line that meets it in at
least two points. A Fischer space is a partial linear space such that (i) each line
has size 3, and (ii) any two intersecting lines span a subspace, called a plane,
that is isomorphic either to the dual affine plane of order 2 (with 6 points and
4 lines), or to the affine plane of order 3 (with 9 points and 12 lines).

Consider a partial linear space (X,L ) with three points on each line. Each
point x defines a permutation sx of X defined by sx(y) = z when {x, y, z} ∈ L ,
and sx(y) = y otherwise. Now s2

x = 1 and sx is an involution (unless there are
no lines on x, and sx = 1). If (X,L ) is a Fischer space, then each sx induces
an automorphism of each plane on x, and hence an automorphism of (X,L ).
If x, y are not collinear then sxsy = sysx and (sxsy)2 = 1. If {x, y, z} is a
line, then sz = sxsysx = sysxsy and (sxsy)3 = s2

z = 1, so that 〈sx, sy〉 acts on
{x, y, z} as the symmetric group S3.

We see that if the Fischer space is connected, then all sx are conjugate,
and each product sxsy has order at most 3. Conversely, suppose that G is a
group generated by a conjugacy class of involutions D, such that the product
of any two elements of D has order at most 3. (Then D is called a class of
3-transpositions.) Make a partial linear space with point set D and lines of
size 3 given by {s, t, sts} when s, t are distinct involutions in D that do not
commute. Now the group G acts by conjugation, and the partial linear space is
a connected Fischer space. (See also Example (vi) below.)

The Fischer graph of a Fischer space is its noncollinearity graph, that is, is
the commuting involutions graph of D. The Fischer group of a Fischer space
(X,L ) is the group G = 〈sx | x ∈ X〉.
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Examples

We list examples of groups with a class D of 3-transpositions. Detailed param-
eter information is given below.

(i) LetD be the class of transpositions (ij) in the symmetric group Sn, n ≥ 2.
The corresponding Fischer graph is T (n), the complement of the triangular
graph T (n).

(ii) Let V be a 2n-dimensional vector space over F2 provided with a non-
degenerate symplectic form. Let D be the class of transvections tv : x 7→
x + (x, v)v, where v 6= 0, in the symplectic group Sp2n(2) acting on V . If
(v, w) = 0, then tv and tw commute. Otherwise, (v, w) = 1, and tvtwtv = tv+w.
The Fischer graph is the collinearity graph of the symplectic space provided with
its totally isotropic lines, and the lines of the Fischer space are the hyperbolic
lines of the geometry.

(iii) Let V be a 2n-dimensional vector space over F2 provided with a non-
degenerate quadratic form Q of type ε = ±1. Let D be the class of transvections
tv : x 7→ x + (x, v)v, where Q(v) = 1, in the orthogonal group Oε

2n(2) acting
on V . If (v, w) = 0, then tv and tw commute. Otherwise, (v, w) = 1, and
tvtwtv = tv+w. The Fischer graph and Fischer spaces here are the induced ones
from the symplectic example.

(iv) Let V be an n-dimensional vector space over F4 provided with a non-
degenerate Hermitian form, linear in the first coordinate. Let D be the class of
transvections tv : x 7→ x+ (x, v)v, where (v, v) = 0, v 6= 0, in the unitary group
SUn(2). Here tv and tw commute when (v, w) = 0. Otherwise, tvtwtv = tu,
where u = v+(v, w)w. The Fischer graph is the collinearity graph of the unitary
space provided with its totally isotropic lines, and the lines of the Fischer space
are the triples of isotropic points on nondegenerate lines.

(v) Let V be an n-dimensional vector space over F3 provided with a non-
degenerate quadratic form Q of type ε = ±1. Let η = ±1. Let Dη be the
class of reflections tv : x 7→ x + (x,v)

(v,v)v, where Q(v) = η (that is, (v, v) = −η),
in the orthogonal group Oε

n(3) acting on V . Here tv and tw commute when
(v, w) = 0. Otherwise, tvtwtv = tu, where u = v − η(v, w)w. The subgroup of
Oε
n(3) generated by Dη is called Oε,η

n (3). The Fischer graph is the orthogonality
graph on the set X of nonsingular points of one kind. The Fischer space has as
lines the intersections with X of tangent lines.

(v)′ The group S6 = Sp4(2) = O−,+4 (3) appears three times on the list above.
It is most familiar as S6, where it has an outer automorphism interchanging
transpositions (ij) and synthemes (ab)(cd)(ef). Both classes give a Fischer
group. The geometries and graphs are the same.

The existence of the outer automorphism is best understood in terms of
O−,+4 (3). Each 3-transposition group O−,+2m (3) has two generating classes of 3-
transpositions, the reflections of D+ and negative reflections of −D−. As Q and
−Q are isometric in even dimension, the two groups are canonically isomorphic,
and these two classes are switched by an outer automorphism.

(vi) The noncommuting graph ∆ of a set S of 3-transpositions is often called
the diagram of S since the group 〈S〉 must be a quotient of the Coxeter group
with simply laced diagram ∆. In particular, the generating reflection class
of the finite Weyl groups W (Am), W (Dm), and W (Em) are all classes of 3-
transpositions. The connected diagrams on three vertices are A3 with Weyl
group S4—yielding as Fischer space the dual affine plane on 6 points—and
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Ã2 with affine Weyl group (Z × Z) : S3, whose 3-transposition quotients are
(2 × 2) : S3 = S4 and (3 × 3) : S3 = SU3(2)′—yielding the dual affine plane
again and the 9 point affine plane. This justifies the earlier claim that every
3-transposition group yields a Fischer space.

History
Fischer introduced classes of 3-transpositions—aiming to characterize the trans-
position class of the symmetric group—and was led to his broad classification
(Theorem 5.2.2 below). Soon after that Buekenhout [154] introduced the
concept of Fischer space in order to provide a uniform geometric context for
Fischer’s examples.

Maximal cliques in a Fischer graph
Let (X,L ) be a finite Fischer space with Fischer graph Γ and Fischer group G.
Then G acts transitively on the set of maximal cliques in Γ. More precisely, if
M and M ′ are two maximal cliques, then there is a g ∈ G mapping M to M ′
and fixing M ∩M ′ pointwise. (Indeed, since M ∪M ′ is not a clique, we can
choose x ∈M \M ′ and y ∈M ′\M joined by a 3-line {x, y, z}. Now sz = sxsysx
fixesM ∩M ′ pointwise and maps x to y, so that it sendsM to a maximal clique
with larger intersection with M ′.)

Let GM be the stabilizer in G of the maximal clique M . Then GM contains
the elementary abelian 2-group 〈 sx | x ∈M 〉 as a normal subgroup.

If (X,L ) is connected, then G is transitive on X and hence on pairs (x,M)
with x ∈M . It follows that GM is transitive on M .

Subspaces
Every subspace of a Fischer space is again a Fischer space. If (X,L ) is a Fischer
space, then the subset Y is a subspace if and only if Y is invariant under sy for
all y ∈ Y .

The connected components of Fischer spaces are subspaces. Conversely,
given a collection of Fischer spaces (Xi,Li), where the Xi are disjoint, the
union (

⋃
iXi,

⋃
i Li) is a Fischer space. If the (Xi,Li) are connected, they are

the connected components of their union.

Also the connected components of Fischer graphs are subspaces. (If C is
such a component, and {x, y, z} is a line with x, y ∈ C, then sx maps a path
from x to y into a path from x to z, so that also z ∈ C.)

Let (X,L ) be a Fischer space with Fischer graph Γ. For each x ∈ X, the
set Γ(x) of neighbors of x in Γ, that is, the set of points noncollinear with x in
(X,L ), is a subspace. (And so is x⊥ = {x} ∪ Γ(x).)

Diameter
The connected components of the collinearity and noncollinearity graphs of a
Fischer space have diameter at most 2.

(Indeed, if a ∼ b ∼ c ∼ d is an induced path in the collinearity graph, then
both a and d are collinear with the third point of the line bc.
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If a ∼ b ∼ c ∼ d is an induced path in the Fischer graph, then let e be the
third point of the line ac (then b ∼ e), f the third point of de, and g the third
point of bf . The plane acd shows that a ∼ f , so a ∼ g. The plane bde shows
that d ∼ g. So a ∼ g ∼ d is a shorter path.)

Quotient spaces and imprimitivity

Let F = (X,L ) be a Fischer space with Fischer group G, and let Π be a G-
invariant partition of X. Then each Y ∈ Π is a subspace of F . Moreover, Π,
together with the lines {Y, Y ′, Y ′′} where Y, Y ′, Y ′′ are distinct elements of Π
and there are points y ∈ Y , y′ ∈ Y ′, y′′ ∈ Y ′′ with {y, y′, y′′} ∈ L , is again a
Fischer space, called the quotient space F/Π of F with respect to Π.

(Indeed, if {y, y′, y′′} ∈ L , then sy interchanges Y ′ and Y ′′, so for each
z ∈ Y ′ there is a line {y, z, sy(z)} with sy(z) ∈ Y ′′. Similarly, y′ and y′′ are
collinear with each point of Y , and Y ∪ Y ′ ∪ Y ′′ is a subspace of F .)

There are three sources of nontrivial invariant partitions, two of which were
mentioned above:

(i) The connected components of a disconnected Fischer space. The quotient
Fischer space is a collection of points with no lines.

(ii) The connected components of the Fischer graph. The quotient Fischer
space has complete collinearity graph. (See the discussion of Hall triple systems
below.)

(iii) Degenerate forms on classical spaces. In examples (ii)–(v) above, the
form in question can be degenerate as long as the points of the Fischer space
(transvection and reflection centers v) are chosen outside the radical. Nontrivial
blocks of the invariant partition consist of the points in the same coset of the
radical. In the characteristic 2 examples (ii)–(iv) the resulting group will have a
noncentral normal 2-subgroup that respects the partition, while in case (v) the
corresponding noncentral normal subgroup will be a 3-group.

Rank 3

Let (X,L ) be a finite Fischer space. Its Fischer group G is transitive (in its
permutation action on X) when the space is connected. Suppose that moreover
the action of G on X (with |X| > 3) is primitive. Then this action is rank 3
(cf. Fischer [327] (3.3.5)).

5.2 Fischer’s classification

Since g(sx) = sgx, it follows that sx is central in Gx. From this, and Iwasawa’s
Lemma, we see that if G acts primitively on X, it is close to being simple.

Lemma 5.2.1 (‘Iwasawa’s Lemma’, cf. [461], [678] (1.2)) Let G be a group
acting primitively on a set X. Let x ∈ X and suppose that Gx has an abelian
normal subgroup A such that G = 〈gA | g ∈ G〉. If NEG, then N ≤ G[X]

(the pointwise stabilizer of X) or N ≥ G′ (the commutator subgroup of G). In
particular, if G = G′, then G/G[X] is simple.
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In our case (i.e., G primitive), we can take A = 〈sx〉 and G[X] = 1 so that
any nontrivial normal subgroup of G contains G′. Also, either G = G′ or G′
has index 2 in G; in fact one easily proves that if 1 < NEG then G = N ∪Nsx.

(As follows: G is primitive, so N is transitive, and G = NGx. Now any element of G is
a product of conjugates of sx, i.e., of the form (n1g1sxg

−1
1 n−1

1 ).(n2g2sxg
−1
2 n−1

2 )...., where
ni ∈ N and gi ∈ Gx. And this reduces to (n1sxn

−1
1 ).(n2sxn

−1
2 ).... since sx is central in Gx.

If the number of factors is even, this is in N (since N is normal), otherwise in Nsx.)
Since G′′ is normal in G, either G′′ = G′ or G′′ = 1. But in the latter

case G′ is abelian and transitive, hence regular and we find that |X| = ph

and G′ is elementary abelian; since X is connected, G′ contains elements of
order 3, so p = 3; now our linear space is obtained from AG(h, 3) by replacing
all 3-lines in some parallel classes by 2-lines, and G′ is the translation group.
Clearly, sx preserves parallelism, so that each parallel class of lines is a system
of imprimitivity for G, a contradiction unless |X| = 1 or |X| = 3. This shows
that in all cases, if G is primitive on X, then G′ = G′′.

Let Z(G) be the center of G and Op(G) the largest normal p-subgroup of G.
(Then we saw Z(G) = Op(G) = 1 unless |X| = 3.) Now we can state the main
theorem of Fischer.

Theorem 5.2.2 (Fischer [327]) Let G be a finite group, generated by a con-
jugacy class D of 3-transpositions. If O2(G) and O3(G) are both contained in
the center Z(G) of G, then G/Z(G) is one of the following:

(i) the trivial group,
(ii) a symmetric group Sn with n ≥ 5,
(iii) a symplectic group Sp2n(2) with n ≥ 3,
(iv) a unitary group PSUn(2) with n ≥ 5,
(v) an orthogonal group O±2n(2) with n ≥ 4,
(vi) PO±,+n (3), the subgroup of index 2 in PO±n (3) generated by the reflections

in norm 1 vectors, where n ≥ 5,
(vii) Ω+

8 (2).S3 or PΩ+
8 (3).S3,

(viii) Fi22, Fi23, or Fi24.

If Γ is the collinearity graph of a Fischer space, then its 3-clique extension
and sometimes also its 2-coclique extension are also collinearity graphs of Fischer
spaces. It is this construction that is ruled out by the condition that O2(G) and
O3(G) are contained in Z(G). In Cuypers & Hall [248] the classification is
redone, without this hypothesis.

Fischer graphs

We already mentioned most of the examples. Here we give the parameters and
some further detail. Recall that a Fischer graph is the noncollinearity graph of
a Fischer space.

(i) In Sn (n ≥ 2) the set D of involutions is the set of transpositions (except
for S6, where there are two possibilities). The corresponding graph is T (n). The
parameters are:

v =
(
n
2

)
, k =

(
n−2

2

)
, λ =

(
n−4

2

)
, µ =

(
n−3

2

)
,

r = 1, s = −(n− 3), f = 1
2n(n− 3), g = n− 1.
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The group has order n! and (Sn)′ = An, of order 1
2n!, is simple for n ≥ 5.

(ii) In Sp2n(2) (n ≥ 1) the set D of involutions is the set of transvections
ta : x 7→ x+(x, a)a. The corresponding graph is the symplectic graph Γ(Sp2n(2))
(note that ta and tb commute if and only if (a, b) = 0, i.e., a ⊥ b). The
parameters are:

v = 22n − 1, k = 22n−1 − 2, λ = 22n−2 − 3, µ = 22n−2 − 1,
r, s = ±2n−1 − 1, f, g = 22n−1 ± 2n−1 − 1.

The group has order 2n
2 ∏n

i=1(22i − 1) and is simple for n ≥ 3. For n = 2 we
have Sp4(2) ' O−,−4 (3) ' S6 and we find T (6) again; it occurs again under (v).
For n = 1 we have Sp2(2) ' S3 and the graph is K3.

(iii) In O±2n(2) (n ≥ 3) the set D of involutions is the set of transvections
ta : x 7→ x + (x, a)a with Q(a) = 1. The corresponding graph is the graph
NO±2n(2) (nonsingular points, adjacent when orthogonal). The parameters
(v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 are:

v = 22n−1 − ε 2n−1, θ1 = ε 2n−2 − 1,

k = 22n−2 − 1, θ2 = −ε 2n−1 − 1,

λ = 22n−3 − 2, m1 =
4

3
(22n−2 − 1),

µ = 22n−3 + ε 2n−2, m2 =
1

3
(2n−1 − ε)(2n − ε).

The group has order 2n(n−1)+1(2n∓1)
∏n−1
i=1 (22i−1) and has simple commutator

subgroup Ω±2n(2) of index 2.
(If n = 2 then Ω−4 (2) ' A5 is still simple, but Ω+

4 (2) ' S3 × S3. In the
former case the graph is the Petersen graph, in the latter K3,3.)

(iv) In PSUn(2) (n ≥ 4 or n = 2) the set D of involutions is the set of
unitary transvections x 7→ x+(x, p)p with isotropic p. The corresponding graph
is the unitary graph Γ(Un(2)) (isotropic points, adjacent when orthogonal). Let
ε = (−1)n. The parameters (v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 are:

v =
1

3
(2n − ε)(2n−1 + ε), θ1 = −1 + ε2n−2,

k =
4

3
(2n−2 − ε)(2n−3 + ε), θ2 = −1− ε2n−3,

λ =
16

3
(2n−4 − ε)(2n−5 + ε) + 3, m1 =

4

9
(2n − ε)(2n−3 + ε),

µ =
1

4
k =

1

3
(2n−2 − ε)(2n−3 + ε), m2 =

8

9
(2n−2 − ε)(2n−1 + ε),

so that v − k − 1 = 22n−3. The group has order 1
(n,3)2(n

2)
∏n
i=2(2i − (−1)i) and

is simple for n ≥ 4.

(v) In Oε
n(3) consider the reflections ta : x 7→ x+ (x,a)

(a,a)a with nonsingular a.
The reflections ta, tb commute when (a, b) = 0. The group preserves the value of
Q and there are two conjugacy classesDη (η = ±1) of such reflections, consisting
of the ta with Q(a) = η. Let Oε,η

n (3) be the subgroup generated by Dη.
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If n is even, say n = 2m, the corresponding Fischer graph is NOε2m(3). Its
parameters (v, k, λ, µ) and spectrum k1 θm1

1 θm2
2 are:

v =
1

2
3m−1(3m − ε), θ1 = ε3m−1,

k =
1

2
3m−1(3m−1 − ε), θ2 = −ε3m−2,

λ =
1

2
3m−2(3m−1 + ε), m1 =

1

8
(3m − ε)(3m−1 − ε),

µ =
1

2
3m−1(3m−2 − ε), m2 =

9

8
(32m−2 − 1).

The group Oε,−
2m (3) has order 2

d3m(m−1)(3m − ε)
∏m−1
i=1 (32i − 1) where d :=

(4, 3m − ε), and has commutator subgroup Oε,+
2m (3) ' PΩε

2m(3) of index 2;
this latter group is simple, except when m = 2 and ε = +1, in which case
PΩ+

4 (3) ' A4 × A4.
If n is odd, say n = 2m+ 1, the corresponding Fischer graph is NO2m+1(3).

Its parameters are:

v =
1

2
3m(3m + η), r = 3m−1,

k =
1

2
3m−1(3m − η), s = −3m−1,

λ = µ, f =
v − 1

2
− 1

4
(3m − η),

µ =
1

2
3m−1(3m−1 − η), g =

v − 1

2
+

1

4
(3m − η).

Here η is chosen such that for η = 1 (resp.−1) the perp of a vertex is a hyperbolic
(resp. elliptic) quadric. This corresponds to the η as used earlier if we fix Q to
have discriminant 1.

The group O+,−
2m+1(3) ' PO2m+1(3) has order 3m

2 ∏m
i=1(32i − 1) and has

simple commutator subgroup O+,+
2m+1(3) ' PΩ2m+1(3) of index 2. (The first +

in these group denotations is just a place-holder: there is no ε here. Sometimes
people do use the first sign to denote the discriminant of Q. If Q defines
Oε,η

2m+1(q), then −Q defines O−ε,−η2m+1 (q).)

Group notation
Notation for the orthogonal groups in characteristic 3 varies.

Given a quadratic form Q on the vector space V of dimension n over F3, one defines a
symmetric bilinear form by (x, y) = Q(x+ y)−Q(x)−Q(y), so that (x, x) = 2Q(x) = −Q(x).
The reflection corresponding to a nonsingular vector v is tv : x 7→ x− 2

(x,v)
(v,v)

v = x− (x,v)
Q(v)

v =

x+(v, v)(x, v)v, and all authors agree. There are two conjugacy classes Dη of such reflections,
and the Fischer groups Oε,ηn (3) are the groups generated by Dη in O(V,Q) of type ε.

Aschbacher ([13], p. 44) lets Dη consist of the tv with Q(v) = η. Fischer ([327]) uses
(v, v) = η instead, so has the opposite sign.

Aschbacher, Fischer and others define and use a discriminant δ for Q to distinguish forms,
and they denote their groups Oδ,ηn (3). Aschbacher takes as δ the discriminant of the polar
bilinear form fQ given by Q(x+ y)−Q(x)−Q(y), while Fischer lets δ be the discriminant of
the diagonal bilinear form dQ determined by dQ(x, x) = Q(x). We have fQ = −dQ. In even
dimension the distinction does not change the determinant, but in odd dimension it negates
it. If n = 2m is even, then the Witt sign ε equals (−1)mδ. If Q defines Oδ,η2m+1(3), then −Q
defines O−δ,−η2m+1 (3).



138 CHAPTER 5. FISCHER SPACES

(vi) The graphs in the last three cases have parameters

v k λ µ λ̄ µ̄ r s f g
3510 693 180 126 2248 2304 63 −9 429 3080
31671 3510 693 351 25000 25344 351 −9 782 30888
306936 31671 3510 3240 246832 247104 351 −81 57477 249458

The groups have orders

|Fi22| = 217 · 39 · 52 · 7 · 11 · 13,
|Fi23| = 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23,
|Fi24| = 222 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29.

The first two are simple, the third has simple commutator subgroup of index 2.
The point stabilizers are 2.PSU6(2), 2.Fi22 and 2.Fi23, respectively. These graphs
have maximal cliques of size 22, 23 and 24, respectively, and the stabilizers of
the maximal cliques are the Mathieu groups M22, M23 and M24.

The group Fi22 has exactly one other rank 3 representation. It has parame-
ters

v k λ µ λ̄ µ̄ r s f g
14080 3159 918 648 8408 8680 279 −9 429 13650

The point stabilizer is O+,+
7 (3) of order 29 · 39 · 5 · 7 · 13.

Also Fi23 has exactly one other rank 3 representation. It has parameters

v k λ µ λ̄ µ̄ r s f g
137632 28431 6030 5832 86600 86800 279 −81 30888 106743

The point stabilizer is O+,+
8 (3).S3 (= PΩ+

8 (3).S3) of order 212 ·312 ·52 ·7 ·13×6.

In both cases the points of the graph are the 3-lines through a fixed point in
the next larger graph (belonging to Fi23 and Fi24, respectively), where two lines
are adjacent when they span a dual affine plane of order 2. The lines through a
fixed point in the Fi22 graph give the Conway graph for U6(2).2 (§10.81).

5.3 Hall triple systems
A Steiner triple system is a point-line geometry where any two points determine
a unique line, and lines have three points. (That is, is a 2-(v, 3, 1) design.)
A Hall triple system is a Steiner triple system in which any two intersecting
lines are contained in a subsystem isomorphic to AG(2, 3). That is, Hall triple
systems are precisely the connected Fischer spaces without 6-point subplanes,
or, equivalently, precisely those whose Fischer graph is edgeless.

These systems were first investigated in Hall [396], where it is shown that
a Steiner triple system satisfies the defining property for a Hall triple system
if and only if for each point x there is an automorphism sx of order at most 2
fixing only that point. If this is the case, then all sx are conjugate, and for
distinct x, y the product sxsy has order 3.

Obvious examples of Hall triple systems are the affine spaces AG(n, 3). The
smallest nonaffine example has order 81 (loc. cit.).

The order (number of points) of a Hall triple system is a power of 3. A short
proof is given in [389].
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Commutative Moufang loops of exponent 3

A quasigroup is a set Q with binary operation ◦ such that in x ◦ y = z any two
of x, y, z uniquely determine the third. A loop is a quasigroup with two-sided
identity e (satisfying e ◦ x = x ◦ e = x for all x ∈ Q). A Moufang quasigroup
is a quasigroup satisfying the identity x ◦ (y ◦ (x ◦ z)) = ((x ◦ y) ◦ x) ◦ z for all
x, y, z ∈ Q. Every Moufang quasigroup is a loop ([506]).

Any Steiner triple system (X,B) defines a commutative idempotent quasi-
group (X, ◦) by x ◦ x = x and x ◦ y = z if {x, y, z} ∈ B. It also defines a loop
(X, ∗, e) if we pick an arbitrary element e ∈ X and define x∗y = (e◦x)◦ (e◦y).

Moufang loops with at most 2 generators are associative (Moufang [575];
[149], p. 117). In particular, powers of an element are well defined. A Moufang
loop (X, ∗, e) is said to be of exponent 3 if x3 = e for all x ∈ X.

Hall triple systems are equivalent to commutative Moufang loops of exponent
3 (Bruck, cf. [397]). (Indeed, the above recipe produces a commutative Moufang
loop of exponent 3 from any Hall triple system and arbitrarily chosen e. Con-
versely, a commutative Moufang loop (X, ∗, e) of exponent 3 becomes a Hall
triple system with the lines {x, y, x2∗y2}. This correspondence is 1-1: the
isomorphism type of (X, ∗, e) does not depend on the choice of e since the
corresponding Fischer group is transitive on points.) See also [539].

5.4 Cotriangular graphs

A cotriangular space is a partial linear space (X,L ) with lines of size 3, such
that whenever a point x is not on a line L, it is collinear with none or all but
one of the points of L. A Fischer space where any two intersecting lines span a
subspace isomorphic to the dual affine plane of order 2 is a cotriangular space.

A cotriangular graph is a graph in which every nonedge lies in a 3-coclique
(‘cotriangle’) T such that every vertex outside T is adjacent to one or all of the
vertices of T . The noncollinearity graph of a cotriangular space is a cotriangular
graph. A clique extension of a cotriangular graph is again cotriangular. A
cotriangular graph is called reduced when x⊥ = y⊥ implies x = y. A reduced
cotriangular graph is the noncollinearity graph of a unique cotriangular space.
A graph Γ is called coconnected when its complement Γ is connected.

Theorem 5.4.1 (Shult [651], cf. [395]) Let Γ be a finite reduced coconnected
cotriangular graph. Then Γ is either (i) Nε

2n(2) (n ≥ 3), or (ii) Sp2n(2) (n ≥ 3),
or (iii) T (n) (n ≥ 2, n 6= 4).

Here Nε
2n(2) is the graph on the nonsingular vectors in a vector space of

dimension 2n over F2 provided with a nondegenerate quadratic form of type ε,
adjacent when orthogonal, Sp2n(2) is the graph on the nonzero vectors in a
vector space of dimension 2n over F2 provided with a nondegenerate symplectic
form, adjacent when orthogonal, and T (n) is the complement of the triangular
graph T (n). Thus, the cotriangular graphs of the theorem are among the Fischer
graphs for examples (i)–(iii) in the list of Fischer spaces in §5.1.

This theorem was generalized to the infinite case in Hall [392, 393]. The
‘1 or 3 neighbors’ of the definition of cotriangular was generalized to ‘an odd
number of neighbors’ in Brouwer & Shult [142].
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The locally cotriangular graphs are determined in Hall & Shult [395]. See
also Hall [394], Theorem 6.2. The special case of locally Petersen graphs was
done in Hall [388]. The special case of locally K3,3 or Petersen graphs was
done in Blokhuis & Brouwer [75].

Cotriangular graphs and 2-ranks

A graph Γ is cotriangular (resp. the collinearity graph of a polar space with
lines of size 3) precisely when the adjacency matrix A of Γ has the property that
the mod 2 sum of any two rows corresponding to nonadjacent (resp. adjacent)
vertices in Γ is again a row of A.

The graphs that occur in this situation are characterized by their low 2-rank:

Theorem 5.4.2 (Peeters [611]) For n ≥ 2 the strongly regular graphs Sp2n(2),
Sε2n(2), Nε

2n(2) and their complements are uniquely determined by their parame-
ters and the minimality of the 2-rank, which is 2n+ 1 for the graphs mentioned,
and 2n for their complements.

Here Sε2n(2) is the graph on the singular vectors in a vector space of di-
mension 2n over F2 provided with a nondegenerate quadratic form of type ε,
adjacent when orthogonal. The parameters are:

Name v k r s

Sp2n(2) 22n − 1 22n−1 − 2 2n−1 − 1 −2n−1 − 1
S+

2n(2) 22n−1 + 2n−1 − 1 22n−2 + 2n−1 − 2 2n−1 − 1 −2n−2 − 1
S−2n(2) 22n−1 − 2n−1 − 1 22n−2 − 2n−1 − 2 2n−2 − 1 −2n−1 − 1
N+

2n(2) 22n−1 − 2n−1 22n−2 − 1 2n−2 − 1 −2n−1 − 1
N−2n(2) 22n−1 + 2n−1 22n−2 − 1 2n−1 − 1 −2n−2 − 1

(We followed the notation used in the literature. Elsewhere in this volume
we used the names Γ(Sp2n(2)), Γ(Oε

2n(2)) and NOε2n(2) for these graphs.)

5.5 Locally grid graphs
A grid graph p× q is the Cartesian product of the complete graphs Kp and Kq

(with (x, y) ∼ (x′, y′) when either x = x′, y ∼ y′ or x ∼ x′, y = y′).
A graph Γ is locally grid when each point neighborhood Γ(x) is a grid graph.

If Γ is connected, then it follows that there are p, q such that Γ is locally p× q.
For example, the Johnson graph J(p+ q, p) is locally p× q. Hall [392] observes
that classifying locally 3 × q graphs is equivalent to classifying cotriangular
Fischer spaces.

Theorem 5.5.1 (Hall [392, 393]) Let Γ be a locally 3×q graph. Then there is
a partial linear space (X,L ) with lines of size 3, and where any two intersecting
lines span a subspace isomorphic to the dual affine plane of order 2, such that Γ
is the line graph of (X,L ): the vertices are the lines of (X,L ), adjacent when
they meet. Conversely, such line graphs are locally 3× q for some fixed q when
connected.

For example, the graph J(m, 3) is the line graph of T (m) with lines of the
form {(ij), (ik), (jk)}. As another example, there are precisely two connected
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locally 3× 3 grid graphs, on 16 and 20 vertices, namely 4× 4 and J(6, 3). The
former is the line graph of PG(3, 2) minus a line; the noncollinearity graph of
this partial linear space is 3K4.

Locally grid graphs have been classified in a few other cases. It is easy to see
that the unique connected locally 2× q graph is the triangular graph T (q + 2).

Blokhuis & Brouwer [74] show that there are precisely four connected
locally 4× 4 grid graphs, on 35, 40, 40 and 70 vertices. The last one is J(8, 4),
the first one its antipodal quotient. The second is a member of an infinite family
constructed in Cameron [175]. The third one is ugly, with a group that is not
vertex-transitive.

A µ-graph of a graph is the subgraph induced on the set of common neighbors
of two vertices at distance 2.

In [74] the locally grid graphs such that all µ-graphs are unions of 4-cycles
are characterized (as quotients of a Johnson graph). In [335] certain locally
grid graphs are classified where all µ-graphs are hexagons. In [604] two types
of locally 5 × 5 graphs are constructed inside the O+

6 (4) polar graph. In [9]
some locally n× n graphs are constructed, and certain locally 5× 5 graphs are
classified.

Grids are (thin) generalized quadrangles. More generally, people have looked
at EGQs (extended generalized quadrangles) and at locally polar graphs. An
early reference is Buekenhout & Hubaut [156].

5.6 Copolar spaces

5.6.1 Hall’s classification

Gamma spaces

A gamma space is a partial linear space such that for each point p and line L
the point p is collinear to 0, 1, or all points of L. Equivalently, a gamma space is
a partial linear space such that the set of points collinear with any given point
is a subspace. For an example, see §10.54.

For graphs of Lie type a strong form of this property holds, see [123],
Theorem 10.6.3.

Delta spaces

A delta space is a partial linear space such that for each point p and line L the
point p is collinear to 0, all-but-one, or all points of L. Equivalently, a delta
space is a partial linear space such that the set of points not collinear with any
given point is a subspace. Examples are the copolar spaces below.

The concepts of gamma space and delta space are due to D. G. Higman
(in various talks, maybe there is no publication). In his terminology, a ‘strict
gamma space’ is a gamma space in which the possibility 0 never occurs, that
is, a polar space. A ‘strict delta space’ is a delta space in which the possibility
‘all’ never occurs. These are the copolar spaces studied below.



142 CHAPTER 5. FISCHER SPACES

Copolar spaces

A copolar space is a partial linear space (X,L ) such that for each line L and
point x 6∈ L, the point x is collinear with either 0 or all-but-one points of L.
For x ∈ X, let x⊥ be the set of all points of X collinear with x. The space is
called reduced when x⊥ \ {x} 6= y⊥ \ {y} for distinct points x, y. The space is
called of order q when all lines have size q + 1.

A copolar graph is a graph Γ that is the noncollinearity graph of a copolar
space. Copolar spaces and copolar graphs generalize cotriangular spaces and
cotriangular graphs (where lines have size 3).

Theorem 5.6.1 (Hall [390]) A finite reduced connected copolar space has some
fixed order q and is one of the following.

(1) A single line of size q + 1.
(2) The vertices and point neighborhoods Γ(x) = x⊥ \ {x} of a Moore graph

Γ of diameter 2 (a strongly regular graph with λ = 0 and µ = 1). For q + 1 ∈
{2, 3, 7} there is a unique example. All other examples have q + 1 = 57, and no
such examples are known.

(3) The
(
n
2

)
pairs and

(
n
3

)
sets of three pairs contained in a fixed triple, in a

fixed n-set. Here q + 1 = 3.
(4) The points outside a nonsingular quadric in a projective space PG(d, q)

with d odd and q = 2, with the elliptic lines.
(5) The points of a projective space PG(d, q) provided with a nondegenerate

symplectic polarity, with the hyperbolic lines.

Examples (3) and (4) here are examples (i) and (iii) from the list of Fischer
spaces in §5.1. The case q = 2 of (5) is example (ii).

5.6.2 Lax embeddings of the symplectic copolar spaces
Let us denote the copolar spaces of Case (5) in Theorem 5.6.1 by HSpd+1(q).

A lax embedding of a point-line geometry (X,L ) in a projective space PG(d, q) is an
injection φ sending points to points and lines to lines, preserving incidence and such that
φ(X) spans the space PG(d, q).

We are interested in classifying the lax embeddings of HSp4(q) in projective spaces
PG(d, q′) for d ≥ 3 and q′ ≥ q. The standard examples are obtained from including the
projective space PG(3, q) provided with a nondegenerate symplectic form in a larger space
PG(3, q′) by extending the field Fq to Fq′ .

Proposition 5.6.2 If q ≥ 4, then every lax embedding of HSp4(q) in PG(d, q′), d ≥ 3, is
standard.

Proof (sketch). The geometry induced on the set of points of HSp4(q) not collinear to a fixed
point is a dual affine plane, which, by [521], only admits a (canonical) embedding in PG(2, q′),
with Fq a subfield of Fq′ . Hence the points on any isotropic line are mapped into some line of
PG(d, q′). This yields a lax embedding of PG(3, q) in PG(d, q′), leading to the proposition. �

The cases q = 2, 3 remain. If q = 2, then HSp4(q) is the case n = 6 of Case (3) of
Theorem 5.6.1. Let us denote the copolar space corresponding to n of that case by Ωn. Then
Ωn admits the following standard lax embedding into the hyperplane H (after coordinatiza-
tion) with equation

∑n
i=1 Xi = 0 of PG(n−1, q′): The point {a, b}, a, b ∈ {1, 2, . . . , n}, a 6= b

is identified with the point whose coordinates are zero, except on places a and b, where the
coordinates are nonzero and opposite. A subspace S of H is called admissible if 〈S, x〉 6= 〈S, y〉
as soon as x and y are distinct points of the copolar space. Without going into details, we
just state that, using the techniques of [688], one can easily prove the following proposition.

Proposition 5.6.3 Every lax embedding of Ωn is the projection from an admissible subspace
of the standard lax embedding described above.
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Since some rank 3 graphs are intimately related to HSp4(3) (see §10.89A and §10.93), we
investigate the case q = 3 in some more detail. (We shall write 3 for q, and q for q′.)

First a lemma. (Note that the planes of HSp4(3) are dual affine planes AG(2, 3)∗.)

Lemma 5.6.4 Let Π be the image of the dual affine plane AG(2, 3)∗ into the projective
plane PG(2, q), q = pe ≥ 3, under a lax embedding. Then either p = 3 and Π is canonically
contained in a subplane of order 3, or q ≡ 1 (mod 3) and Π is completely determined by any
four points of which three form a coclique. In this latter case, the stabilizer in PGL3(q) of Π
is a group (32.2) : A4. The stabilizer in PΓL3(q) is the same group when p ≡ 1 (mod 3), and
(32.2) : S4 when p ≡ 2 (mod 3).

Proof. The collinearity graph of Π is K4×3, with four 3-cocliques. If each of these cocliques
is contained in a line of PG(2, q), then Π is contained in a subplane PG(2, 3) of PG(2, q), so
that q is a power of 3 and Π is canonically embedded.

So we may assume that some coclique {p1, p2, p3} forms a triangle in PG(2, q), and we label
p1(1, 0, 0), p2(0, 1, 0) and p3(0, 0, 1). Let u be any other point of Π. If u is on one of the lines
pipj , i 6= j, i, j ∈ {1, 2, 3}, then all points of Π must be contained in that line, a contradiction.
Hence we may label u(1, 1, 1). Now we label the points of the line of Π containing u and p1

by (a1, 1, 1) and (b1, 1, 1), and similarly we have the points (1, a2, 1), (1, b2, 1) and (1, 1, a3),
(1, 1, b3). We may assume that {(a1, 1, 1), (1, a2, 1), (1, 1, a3)} is a coclique. Expressing that
{(a1, 1, 1), (1, b2, 1), (0, 0, 1)} forms a line we obtain a1b2 = 1. Likewise a1b3 = a2b1 = a2b3 =
a3b1 = a3b2 = 1. Hence a1 = a2 = a3 = a, where a 6= 1, and b1 = b2 = b3 = a−1. The three
lines of PG(2, q) with respective equations aX1 = X2, aX2 = X3 and aX3 = X1 have a point
of Π in common, which implies a3 = 1. It follows that q ≡ 1 (mod 3). Finally, ap = a2 if and
only if p ≡ 2 (mod 3). �

The small cases q = 4, 7 have some interesting additional properties.

Lemma 5.6.5 Consider the situation of the previous lemma, with q ≡ 1 (mod 3).
(i) The set of points off Π lying on at least two, and then on exactly 4, two-secants forms

together with these 12 two-secants, an affine plane Π′ of order 3.
(ii) For q = 4, Π′ is a Hermitian unital, and its point set is the complement of that of Π.
(iii) For q = 7, the stabilizer of Π acts transitively on the 36 points of PG(2, 7) not in Π

that are incident with a line of Π.

Proof. (i) Using the coordinates introduced in the proof of Lemma 5.6.4, the nine points of
the affine plane have coordinates (0, 1,−c), with c3 = 1, and all permutations thereof.

(iii) Let G be the stabilizer of Π in PGL3(7). By Lemma 5.6.4, the stabilizer GL of a line
L of Π acts on L as A4. Since no nontrivial element of this A4 fixes at least three points of L,
viewed as a line of PG(2, 7), we see that GL acts transitively on the the four remaining points
of L. �

Proposition 5.6.6 A non-standard lax embedding of HSp4(3) in PG(d, q), d ≥ 3, q = pe ≥
3, exists if and only if d = 3 and q ≡ 1 (mod 3), and is for each such q unique up to a
collineation. Moreover, for a given such embedding, the stabilizer in PGL4(q) of the image of
HSp4(3) is the group PSp4(3) ' U4(2). The stabilizer in PΓL4(q) is the same group when
p ≡ 1 (mod 3), and the split extension PSp4(3) : 2 ' PΣU4(2) when p ≡ 2 (mod 3).

Proof. Let Σ be the image of a non-standard lax embedding of HSp4(3) in PG(d, q), d ≥ 3.
Since HSp4(3) has planes isomorphic to AG(2, 3)∗, Lemma 5.6.4 yields q ≡ 1 (mod 3).

Consider an isotropic line M of the Sp4(3) geometry on Σ. No three points of M are
collinear in PG(d, q), since any triple M\{m} is contained as a coclique in the dual affine
plane m⊥\{m}. Also, if all four points of M were contained in a plane of PG(d, q), then Σ
would be contained in that plane, contradicting d ≥ 3. For m ∈ M , let πm be the plane
〈M\{m}〉 of PG(d, q). It contains the plane Πm = m⊥\{m} of Σ. The union of the point
sets of Πm over m ∈ M is the point set of Σ, and it follows that d = 3. For m,n ∈ M the
three lines of Πn through m, viewed as lines of PG(3, q), intersect πm in the points of the
affine plane Π′m in πm as described in Lemma 5.6.5 (i). Hence, choosing Πm without loss of
generality in a unique way, Πn is determined up to a homology in PG(3, q) with center m and
axis πm. Hence Πm ∪ Πn is projectively unique. If p is a third point of M , then using the
same argument with Πp now with respect to both Πm and Πn, we conclude that HSp4(3)
has at most one projectively unique embedding in PG(3, q). An easy but cumbersome explicit
computation, which we shall not perform, now shows existence.
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The uniqueness of the construction and the last assertion of Lemma 5.6.4 show the other
assertions. �

The above embeddings play a role in the construction of certain rank 3 graphs on 74 and
38 vertices.

The case q = 7

Proposition 5.6.7 Let the copolar space HSp4(3) be embedded in PG(3, 7). The stabilizer of
HSp4(3) in PGL4(7) acts transitively on the 40 points of HSp4(3) and also on the 360 points
off HSp4(3).

The point set of HSp4(3) is a two-character set of PG(3, 7); planes intersect in either 12
points (and the intersection is a dual affine plane AG(2, 3)∗), or 5 points (and the intersection
contains a unique line of HSp4(3) plus some point).

Proof. Let G be the stabilizer of HSp4(3) in PGL4(7). By Lemma 5.6.5 and Proposi-
tion 5.6.6, G acts transitively on the set of points that are contained in a line of HSp4(3). The
number of such points is clearly equal to four times the number of lines of HSp4(3), hence to
90× 4 = 360. Consequently, this comprises all points off HSp4(3).

The second assertion follows by a straightforward count. �

With the point set of HSp4(3) at infinity of F4
7 , we find a rank 3 graph with parameters

(v, k, λ, µ) = (2401, 240, 59, 20). This is the graph of §10.89A .

The case q = 4 and a self-conjugate spread in HSp4(3)

The uniqueness in Proposition 5.6.6 implies that for q = 4m the copolar space HSp4(3) is
always contained in a subspace PG(3, 4). It arises there as the geometry on the nonisotropic
points of the U4(2) geometry, provided with the tangent lines—these are the lines with exactly
one U4(2)-isotropic point.

Consider PG(3, 3) provided with a nondegenerate symplectic form. A spread is called
hyperbolic if it consists of hyperbolic lines, and self-conjugate if it is invariant under the
symplectic polarity. Up to a collinearity, PG(3, 3) has a unique hyperbolic self-conjugate
spread. In the current setting it is found by taking the ten tangents meeting a fixed t.i. line
of U4(2). An explicit example with respect to the standard alternating form x0y1 − x1y0 +
x2y3 − x3y2 is given by the following (we omit the braces and commas):

1000 + 0100 1010 + 0101 0110 + 1002 1011 + 0112 1101 + 0211
0010 + 0001 1020 + 0102 0120 + 1001 1110 + 2011 0111 + 1102

This spread S has the following property, which is easy to check with the above given
coordinates: For each L ∈ S , the unique nontrivial homology with axes L and L⊥ (i.e.,
the unique collineation of PG(3, 3) fixing L ∪L⊥ pointwise) stabilizes S and interchanges M
and M⊥ for each M ∈ S , M 6= L,L⊥. All such homologies generate an elementary abelian
2-group P of order 16, normalized by A5 ≤ PSp4(3), acting naturally on the five conjugate
pairs of lines of S .

A rank 3 graph on 6561 vertices
Using the above spread, we construct a rank 3 graph Γ with parameters (v, k, λ, µ) = (6561,
1440, 351, 306). This is the graph of §10.93.

Let Σ and Σ′ be two disjoint solids of PG(7, 3), each furnished with a self-conjugate
hyperbolic spread, say S and S ′, respectively. Let θ : Σ → Σ′ be an isomorphism mapping
S to S ′. There are precisely two collineations ϕ,ϕ′ of PG(7, 3) interchanging x ∈ Σ with
θ(x) ∈ Σ′. Let P be the elementary abelian 2-group of Σ stabilizing S . For each g ∈ P ,
there are precisely two collineations, say ϕg and ϕ′g , of PG(7, 3) such that ϕg(x) = g(x), for
all x ∈ Σ, and ϕ′g(x) = θ(g(θ−1(x))), for all x ∈ Σ′. The group Q generated by ϕ,ϕ′ and all
ϕg , ϕ′g , for g ∈ P , is an elementary abelian 2-group of order 64. It has exactly 45 orbits of size
16, each consisting of four lines. The union X of all these orbits can be described as follows.

Each L ∈ S has a symplectic conjugate L⊥ in S , which is the line corresponding to
L under the corresponding symplectic polarity. Now X is the union of all solids of PG(7, 3)
generated by a line L ∈ S and its image θ(L), or the symplectic conjugate of that image.
The orbits of Q of size 16 can be recovered from this construction by iterating the following
process.
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Select L ∈ S arbitrarily. Denote M := θ(L), and let L∗ and M∗ be the symplectic
conjugates of L and M , respectively. Let θ′ = θ · g, with g ∈ QL arbitrary. Then there are
exactly two solids ξ and ξ′ intersecting each solid 〈K, θ′(K)〉, K ∈ S , in lines LK and L′K ,
respectively. The set of lines LK , K ∈ S , is a hyperbolic self-conjugate spread SL of ξ;
likewise for the set of lines L′K of ξ′. The associated isomorphism θL : ξ → ξ′ is given by
the unique nontrivial collineation σ of PG(7, 3) fixing all points of Σ ∪ Σ′. For fixed K ∈ L ,
the union of the four lines LK , L′K and their symplectic conjugates is an orbit of size 16 for
Q. The above construction of X applied to ξ, ξ′, SL and σ(SL) yields X again. Hence the
process can be iterated, and one obtains a set of 45 orbits of size 16.

The graph Γ has the points of F8
3 as vertex set, adjacent when the joining line hits X at

infinity.
The previous paragraphs also imply that the stabilizer of X in PGL8(3) acts transitively

on the orbits of Q of size 16. The graph with vertices these orbits, adjacent when they are
contained in the union of two solids, is isomorphic to the graph on the singular points of the
U4(2) geometry (hence isomorphic to the collinearity graph of the GQ(4, 2)). It follows that
G = Q : PGU4(2) acts as a transitive automorphism group of X.

We now show that G acts transitively on the complement X′ of X in PG(7, 3). Indeed,
it is not hard to see that the group Q acts freely on X′; it hence partitions X′ in 40 orbits
of size 64. Let x ∈ X′ be arbitrary. Then there are unique points px ∈ Σ and p′x ∈ Σ′ such
that x ∈ 〈px, p′x〉. Now px and θ−1(p′x) are contained in unique respective members Lx and
L′x of the spread S . For every point z in the same partition class P of X′ as x we have
Lz , L′z ∈ {Lx, L′x, L⊥x , L′⊥x }. Letting A5 ≤ GΣ∪Σ′ act on Σ ∪ Σ′ we see that the orbit of P
under the action of G has size at least 10. Since PGU4(2) has only primitive permutation
representations on 27, 35, 40 and 45 elements, we see that PGU4(2) acts transitively on X′.

We determine the dimension of the maximal subspaces contained in X′. Clearly any 5-
space intersects both Σ and Σ′ nontrivially. Now we construct solids entirely contained in
X′. To that aim, we note that every solid S defines a unique isomorphism from Σ to Σ′ by
projection from S. A direct counting argument proves that every (linear) isomorphism arises
in this way (and it arises precisely twice). If we consider the isomorphism θ followed by a
fixed point free member ρ of A5 ≤ GΣ∪Σ′ , then we see that the corresponding solid, say S,
completely lies in X′. Such solids give rise to maximum cocliques of Γ of size 81.

Let S and ρ be as in the previous paragraph and let L ∈ S be arbitrary. Then 〈L, S〉∩Σ′ =
ρθ(L). The 5-dimensional subspace 〈L, S〉 has 4 + 4 + 16 · 4 = 72 points in common with X.

A standard count reveals that a hyperplane of PG(7, 3) containing a solid entirely contained
in X intersects X in 261 points and contains exactly three solids contained in X. Each other
hyperplane intersects X in 234 points. Hence X is a two-character set of PG(7, 3).
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Chapter 6

Golay codes, Witt designs,
and Leech lattice

We collect preliminary material on codes, designs, geometries and lattices. Then
construct the Golay codes, the Witt designs, and the Leech lattice.

6.1 Codes

A code is a subset of a metric space, so that there is a concept of distance. Our
metric spaces will mostly be vector spaces with given basis.

Let V be a vector space over Fq with fixed basis e1, ..., en.
A code C is a subset of V . A linear code is a subspace of V . Its length is n.

A binary (ternary) code is a code with q = 2 (resp. q = 3). The vector with all
coordinates equal to zero (resp. one) will be denoted by 0 (resp. 1).

In a binary code, the complement of the vector u is u+ 1.
The Hamming distance dH(u, v) between two vectors u, v ∈ V is the number

of coordinates where they differ: dH(u, v) = |{i | ui 6= vi}| when u =
∑
uiei,

v =
∑
viei. The weight of a vector u is its number of nonzero coordinates, i.e.,

dH(u,0).
The minimum distance d(C) of a code C is min{dH(u, v) | u, v ∈ C, u 6= v}.

The support of a vector is the set of coordinate positions where it has a nonzero
coordinate.

Two codes are called equivalent when one is obtained from the other by a
permutation of coordinate positions, followed by a permutation of the set of
coordinate values, independently for each coordinate position. Equivalent codes
have the same size and length and minimum distance.

Parameters

An (n,M, d)q-code is a code of length n, size M and minimum distance at least
d. An [n, k, d]q-code is a linear code of length n, dimension k and minimum
distance at least d. Its size is qk. The subscript q is omitted for binary codes.
The parameter d may be omitted.

147
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Given an [n, k, d]q-code C, a shortened code is an [n − 1, k − 1, d]q code
obtained by selecting all code words that are 0 at some fixed coordinate position,
and dropping that coordinate position.

6.1.1 The Golay codes

The most beautiful and important sporadic structures in algebraic combinatorics
are the Golay codes, named after their discoverer, M. J. E. Golay, who published
them in the 1-page paper [357].1 The binary and ternary Golay codes are perfect
(defined below). The extended binary Golay code is the basis for the definition
of the Leech lattice (§6.3.1), which in turn allows the definition of many sporadic
simple groups, including the Fischer-Griess Monster group.

Theorem 6.1.1 There exist codes, unique up to equivalence, with the indicated
values of n, q, |C| and d(C):

n q |C| d(C) name of C
(i) 23 2 4096 7 binary Golay code
(ii) 24 2 4096 8 extended binary Golay code
(iii) 11 3 729 5 ternary Golay code
(iv) 12 3 729 6 extended ternary Golay code

If they contain 0, these codes are linear (with dimensions 12, 12, 6, 6).

Below we first construct some examples of codes with these parameters, then
we study their properties, and we finish showing uniqueness. The binary part
of this theorem will be proved in full. For some details in the ternary case we
refer to the literature.

6.1.2 The Golay codes — constructions

We give four constructions of the extended binary Golay code, and a construc-
tion of the binary and ternary Golay codes.

A construction of the extended binary Golay code

This code is the lexicographically first code with word length n = 24 and
minimum distance 8: write down the numbers 0, 1, ..., 224 − 1 in binary and
consider them as binary vectors of length 24. Cross out each vector that has
distance less than 8 to a previous non-crossed out vector. The 4096 vectors not
crossed out form the extended binary Golay code.

Proof: just do it. Some work may be saved by observing (Levenshtein
[753]) that any lexicographically minimal binary code with a number of vectors
that is a power of two is linear so that all one needs are the 12 base vectors.
These turn out to be

1The ternary Golay code was discovered independently, and a year earlier, by Juhani
Virtakallio (pseudonym Jukka) as a football pool system (Veikkaaja 27/1947 and subsequent
issues). See [409] and [207], §15.3.
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000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

Construction from the icosahedron

Let A be the adjacency matrix of (the 1-skeleton of) the icosahedron (with 12
vertices, regular of valency 5). Then the rows of the 12 × 24 matrix (I J−A)
generate the extended binary Golay code.

Construction as quadratic residue codes

For (n, q) = (11, 3) or (23, 2) consider the linear code generated over Fq by the
n vectors ci (1 ≤ i ≤ n) with coordinates

(ci)j =

{
1 if j − i is a nonzero square mod n,
0 otherwise.

This yields the ternary and binary Golay codes, and shows that these have an
automorphism that permutes the 11 or 23 coordinate positions cyclically.

Two Hamming codes

Let H be the [8, 4, 4] extended binary Hamming code consisting of the 8 rows

of
(

0 0>

1 F

)
(where F = circ(0110100) is the incidence matrix of the Fano

plane PG(2, 2)) and their complements.
Let H∗ be the code obtained by replacing F by F ∗ = circ(0001011). Then

H ∩H∗ = {0,1}.
Let C = {(a + x, b + x, a + b + x) | a, b ∈ H,x ∈ H∗}. Then C has word

length 24, dimension 12 and minimum distance 8 as one easily checks. Hence C
is the extended binary Golay code. This representation shows an automorphism
with cycle structure 1373.

Hexacode and Miracle Octad Generator

Up to equivalence, there is a unique [6, 3, 4]4 code, known as the hexacode. A
generator matrix (over F4 = {0, 1, ω, ω2}) is1 0 0 1 1 1

0 1 0 1 ω ω2

0 0 1 1 ω2 ω

 .
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The weight enumerator (see below) is 1 + 45x4 + 18x6. This code is self-dual
(for the sesquilinear form f(x, y) =

∑
i x̄iyi).

The extended binary Golay code can be defined in terms of the hexacode as
follows: codewords are binary 4× 6 matrices M that satisfy:

(i) The six column sums and the sum of the top row all have the same parity.
(ii) Let n = (0, 1, ω, ω2). Then nM is a codeword in the hexacode.
This description is due to Curtis [246], and known as the Miracle Octad

Generator or MOG.

6.1.3 Properties and uniqueness
We study properties of (arbitrary) codes with parameters as in Theorem 6.1.1.

The codes (i) and (iii) are perfect, i.e., the balls with radius 1
2 (d(C)− 1) around

the code words partition the vector space.
(Proof by counting: |ball| = 1 +

(
23
1

)
+
(

23
2

)
+
(

23
3

)
= 2048 = 211 in case (i),

and |ball| = 1 + 2
(

11
1

)
+ 4
(

11
2

)
= 243 = 35 in case (iii).)

Except for the repetition codes (with |C| = q, d(C) = n), there are no other
perfect codes C with d(C) > 1 (Tietäväinen [689], Van Lint [523]).2

From now on, assume that C contains 0. The weight enumerators A(x) :=∑
aix

i, where ai is the number of code words of weight i, are:

(i) 1 + 253x7 + 506x8 + 1288x11 + 1288x12 + 506x15 + 253x16 + x23

(ii) 1 + 759x8 + 2576x12 + 759x16 + x24

(iii) 1 + 132x5 + 132x6 + 330x8 + 110x9 + 24x11

(iv) 1 + 264x6 + 440x9 + 24x12

(Proof: For cases (i) and (iii) use the fact that the codes are perfect. E.g. in
case (iii) the ball around 0 covers the vectors of weight at most 2. The 23

(
11
3

)
vectors of weight 3 must be covered by balls around codewords of weight 5, so
that a5 = 23.

(
11
3

)
/
(

5
3

)
= 132. Next a6 = (24.

(
11
4

)
−132.

(
5
4

)
−132.

(
5
3

)
.2)/

(
6
4

)
= 132.

Etc. For cases (ii) and (iv), use that dropping any coordinate yields a case (i)
or (iii) code.)

The codes (ii) and (iv) are self-dual, i.e., with the standard inner product
(u, v) =

∑
uivi one has C = C⊥ for these codes. In particular codes (ii)

and (iv) are linear.

(Proof: If v ∈ C, then also C − v contains 0, hence has the same weight
enumerator as C. In the binary case this means that all distances are divisible
by 4 so that all inner products vanish. In the ternary case, (u, v) = (u− v, u−
v)− (u, u)− (v, v) = 0. That shows C ⊆ C⊥. But C⊥ is linear. Since |C| is 212

and 36 in the two cases, the span 〈C〉 has dimension at least 12 resp. 6, so that
C⊥ has dimension at most 12 resp. 6, and equality holds.)

The codes (i) and (iii) are linear.

(Proof: Given one of the extended codes one may puncture it by deleting
one coordinate position. This produces (i) and (iii) from (ii), (iv). Conversely,
given (i) one may construct (ii) by extending it, i.e., adding a parity check bit
so as to make the weight of all code words even. After adding the check bit all

2More generally, if the alphabet size q is not necessarily a prime power, nonexistence of
perfect codes is known for d ≥ 7. There are partial results for d = 5.
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distances are even, and d(C) ≥ 8. This shows that every code (i) is linear. For
codes (iii) (normalized by multiplying certain coordinate positions by −1 such
that the normalized code contains 1) one may construct (iv) by adding a check
trit so as to make the sum of all coordinates a multiple of three, as was shown
by Delsarte & Goethals [277]. Hence every code (iii) is linear.)

The code (ii) is unique up to equivalence.

(Proof: Let C be a code as in (ii). From the weight enumerator we see that
1 ∈ C. Let u be a weight 12 vector in C. The code Cu obtained from C by
throwing away all coordinate positions where u has a 1, has word length 12 and
dimension 11 and hence must be the even weight code (consisting of all vectors
of even weight). This means that we can pick a basis for C consisting of u
and 11 vectors vj with (u + 1, vj) = 2 so as to get a generator matrix of the

form
(

0 0> 1> 1
1 I K 1

)
, where I is an identity matrix of order 11. A little

reflection shows that K is the incidence matrix of a 2-(11,5,2) biplane (see §6.2).
This shows uniqueness of C given the uniqueness of the 2-(11,5,2) biplane, and
the latter is easily verified by hand.)

Finally, the code (i) is unique up to equivalence.

(Proof: the unique code (ii) has a group that is transitive on the 24 posi-
tions.)

We omit the uniqueness proof in the ternary case.

The supports of the code words of minimal nonzero weight form Steiner systems
S(4, 7, 23), S(5, 8, 24), S(4, 5, 11) and S(5, 6, 12), respectively. (See §6.2.)

6.1.4 The Mathieu group M24

M24 is by definition the automorphism group of the extended binary Golay code
C, i.e., the group of permutations of the 24 coordinate positions preserving the
code. For a beautiful discussion of this and related groups, see Conway [213].

Using the automorphisms visible in a few different constructions of the
extended binary Golay code C it is not difficult to see

Theorem 6.1.2 M24 has order 24 · 23 · 22 · 21 · 20 · 16 · 3 and acts 5-transitively
on the 24 coordinate positions. �

Let a point be a coordinate position, and an octad be the support of a code
word of weight 8.

Theorem 6.1.3 Let H be the subgroup of M24 fixing an octad B (setwise) and
a point x /∈ B. Then H ' A8 ' PGL4(2). �

Theorem 6.1.4 M24 is transitive on trios (partitions of the point set into 3
octads), sextets (partitions of the point set into six 4-sets, such that the union
of any two is an octad) and dodecads (vectors in C of weight 12). �
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6.1.5 More uniqueness results

Theorem 6.1.5 (a) Let C(i) be a binary code containing 0 with word length
24 − i, minimum distance 8, and size at least 212−i. If 0 ≤ i ≤ 3 then C(i) is
the i times shortened extended binary Golay code.

(b) Let C(i)
0 be a binary code containing 0 with word length 23− i, minimum

distance 7, and size at least 212−i. If 0 ≤ i ≤ 3 then C(i)
0 is the i times shortened

binary Golay code.
The weight enumerators are (for i > 0) given by

i n dim weight enumerator

1 23 11 1 + 506x8 + 1288x12 + 253x16

2 22 10 1 + 330x8 + 616x12 + 77x16

3 21 9 1 + 210x8 + 280x12 + 21x16

1 22 11 1 + 176x7 + 330x8 + 672x11 + 616x12 + 176x15 + 77x16

2 21 10 1 + 120x7 + 210x8 + 336x11 + 280x12 + 56x15 + 21x16

3 20 9 1 + 80x7 + 130x8 + 160x11 + 120x12 + 16x15 + 5x16

Adding a parity check bit to C(i)
0 we find C(i), and for i > 0 the latter is the

even weight subcode of C(i)
0 .

(c) Let C00 be a binary self-dual code with word length 22 and minimum
distance 6. Then C00 is the once truncated binary Golay code. �

It is true that a binary code with word length 20 and minimum distance 8
has size at most 256 ([344]), but there are many codes achieving this ([141]).

6.2 Designs

A t-(v, k, λ) design is a set of v points together with a collection of subsets of
size k (called blocks) such that each set of t points is in precisely λ blocks.

A Steiner system S(t, k, v) is such a design with λ = 1.
A projective plane PG(2, n) is a Steiner system S(2, n+ 1, n2 + n+ 1). (We

shall not suppose that the plane is Desarguesian.)
An affine plane AG(2, n) is a Steiner system S(2, n, n2).
A BIBD (balanced incomplete block design) is a 2-(v, k, λ) design.
A square design, or symmetric design, or SBIBD, is a 2-(v, k, λ) design with

equally many points as blocks. A biplane is such a design with λ = 2.
A parallel class is a set of blocks partitioning the point set. The design

is resolvable when the set of blocks has a partition into parallel classes. For
example, AG(2, n) is resolvable.

A necessary condition for the existence of a t-(v, k, λ) design is that
(
k−i
t−i
)
divides

λ
(
v−i
t−i
)
for 0 ≤ i ≤ t (since the number of blocks on a given i-set is an integer).

Wilson [736] showed for t = 2, and Keevash [487] showed for all t, that if
t, k, λ are fixed, and the divisibility condition is satisfied, and v is sufficiently
large, then a t-(v, k, λ) design exists.

The number of nonisomorphic designs increases quickly with v: there are 1, 1, 2, 80,
11084874829 Steiner triple systems STS(v) (that is, S(2, 3, v)) for v = 7, 9, 13, 15, 19, and
(v/e2 + o(v))v

2/6 such systems for large v ([482], [488]).
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Given a t-(v, k, λ) design one may delete one point and all blocks not containing
that point and obtain a (t−1)-(v−1, k−1, λ) design (called the derived design).

On the other hand, deleting a point and all blocks containing it one obtains
a (t− 1)-(v − 1, k, v−kk−t λ) design (called the residual design).

A t-(v, k, λ) design is also an i-(v, k, λi) design for 0 ≤ i ≤ t, with λi =
λ(v − t+ 1) · · · (v − i)/(k − t+ 1) · · · (k − i).

For a t-(v, k, λ) design, the number of blocks containing a point set X and
disjoint from a point set Y (whereX∩Y = ∅) can be expressed in the parameters
t, v, k, λ, |X|, |Y | when |X ∪ Y | ≤ t. Let us call these numbers µ(|X|, |Y |).

6.2.1 The Witt designs
We are mostly interested in the systems S(5, 8, 24) and S(5, 6, 12) and derived
designs.

These designs are generally known as the Witt designs because of Witt [740, 741]. An
earlier construction was given in Carmichael [187].

For S(5, 8, 24) we have: λ5 = 1, λ4 = 5, λ3 = 21, λ2 = 77, λ1 = 253,
λ0 = 759. The ‘intersection’ triangle here gives the numbers µ(|X|, |Y |) with
|X ∪ Y | constant in each row and |X| increasing in each row, where X ∪ Y is
contained in a block.

759
253 506

77 176 330
21 56 120 210

5 16 40 80 130
1 4 12 28 52 78

1 0 4 8 20 32 46
1 0 0 4 4 16 16 30

1 0 0 0 4 0 16 0 30

Given a block B0 of S(5, 8, 24), let ni be the number of blocks B such that
|B0 ∩ B| = i. Then n8 = 1, n4 = 280, n2 = 448, n0 = 30 and all other ni are
zero.

For S(5, 6, 12) we have: λ5 = 1, λ4 = 4, λ3 = 12, λ2 = 30, λ1 = 66, λ0 = 132.
Our intersection triangle becomes

132
66 66

30 36 30
12 18 18 12

4 8 10 8 4
1 3 5 5 3 1

1 0 3 2 3 0 1

Given a block B0 of S(5, 6, 12), let ni be the number of blocks B such that
|B0∩B| = i. Then n6 = 1, n4 = 45, n3 = 40, n2 = 45, n0 = 1 (and n5 = n1 = 0).
In particular the complement of a block is again a block.

Note that the above intersection numbers are a consequence of the parame-
ters alone (and may thus be used in uniqueness proofs).
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As we shall see, there exist unique designs S(5, 8, 24), S(4, 7, 23), S(3, 6, 22),
S(2, 5, 21), S(1, 4, 20), S(5, 6, 12), S(4, 5, 11), S(3, 4, 10), S(2, 3, 9), S(1, 2, 8).
The system S(2, 5, 21) is the projective plane of order 4, S(2, 3, 9) the affine plane
of order 3, S(3, 4, 10) the Möbius plane of order 3. (In view of the derivation
S(t, k, v)→ S(t−1, k−1, v−1) it suffices to construct S(5, 8, 24) and S(5, 6, 12),
and we shall find these as the supports of the code words of minimal nonzero
weight in the extended Golay codes. Uniqueness will come as a corollary of the
uniqueness of the Golay codes.)

Theorem 6.2.1 There is a unique Steiner system S(5, 8, 24).

Proof. (i) Existence: the words of weight 8 in the extended binary Golay
code C cover each 5-set at most once since d(C) = 8, and exactly once since(

24
5

)
= 759 ·

(
8
5

)
.

(ii) Uniqueness: Let S be such a system, and let C1 be the binary linear code
spanned by (the characteristic functions of) its blocks. From the intersection
numbers we know that C1 is self-orthogonal (i.e., C1 ⊆ C1

⊥) with all weights
divisible by 4. In order to show that |C1| ≥ 212 (so that |C1| = 212), fix three
independent coordinate positions, say 1, 2, 3, and look at the subcode C2 of
C1 consisting of the vectors u with u1 = u2 = u3. Then dimC1 = 2 + dimC2.
Thus, in order to prove dimC1 ≥ 12 it suffices to show that the code generated
by the blocks of S(5, 8, 24) containing three given points has dimension at least
10. In other words, we must show that the code generated by the lines of the
projective plane PG(2, 4) (which is nothing but S(2, 5, 21)) has dimension at
least 10, but that is the result of the next theorem.

The blocks of an S(5, 8, 24) assume all possible 0-1 patterns on sets of
cardinality at most 5 so that C1

⊥ has minimum weight at least 6. Since C1

has all weights divisible by 4 and C1 ⊆ C1
⊥ it follows that d(C1) = 8. Now

apply Theorem 6.1.1 to see that C1 is the extended binary Golay code. Since
that has a8 = 759, S is the set of its weight 8 vectors. �

Theorem 6.2.2 The binary code spanned by the lines of the projective plane
PG(2, 4) has dimension 10.

Proof. Let abcde be a line in PG(2, 4). The set of ten lines consisting of all
five lines on a, three more lines on b, and one more line on each of c, d, is
linearly independent, so the dimension is at least 10. But the previous proof (or
a simple direct argument showing that the extended code cannot be self-dual)
shows that it is at most 10. �

Theorem 6.2.3 There is a unique Steiner system S(4, 7, 23).

Proof. The proof is very similar to that of the uniqueness of S(5, 8, 24). Let
C0 be the code spanned by the blocks and add a parity bit to obtain a self-
orthogonal code C of word length 24. As before one identifies C as the extended
binary Golay code, then C0 as the (perfect) binary Golay code, then the blocks
of S(4, 7, 23) as the words of weight 7 in this code. �

Theorem 6.2.4 There is a unique Steiner system S(3, 6, 22).
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Proof. Inspired by Lander [508] (esp. pp. 54 and 71), we first construct
D as the binary linear code spanned by the lines of PG(2, 4), extended by a
parity check bit. Then D has word length 22, and dimD = 10. The code D is
self-orthogonal and hence there are three codes Di of dimension 11 such that
D ⊆ Di ⊆ D⊥ (i = 1, 2, 3). But D can be identified with the subcode of the
extended binary Golay code C defined by u1 = u2 = u3, and the three codes Di

are found as subcodes defined by u2 = u3, u1 = u3 and u1 = u2, respectively.
(More precisely, our codes are obtained from the subcodes of C just mentioned
by dropping the first three coordinate positions and adding a parity bit; note
that 1 ∈ D.) Now 3-transitivity of M24 tells us that the three codes Di are
equivalent; each has 77 words of weight 6. Given any Steiner system S(3, 6, 22),
its blocks must span one of the codes Di, and the blocks of the Steiner system
are recovered as the supports of the code words of weight 6 in this code. �

Starting from S(5, 8, 24) and taking successive derived or residual designs we
find designs with the following parameters:

5-(24,8,1)
4-(23,7,1) 4-(23,8,4)

3-(22,6,1) 3-(22,7,4) 3-(22,8,12)
2-(21,5,1) 2-(21,6,4) 2-(21,7,12) 2-(21,8,28)

Up to now we have seen uniqueness of the three largest Steiner systems (and
used the uniqueness of S(2, 5, 21) = PG(2, 4)—an easy exercise). Such strong
results are not available for the remaining six designs.

(In fact, observe that a 2-(21,7,3) design exists—e.g., the residual of an SBIBD 2-(31,10,3).
Taking 4 copies of such a design, independently permuting the point sets in each case, produces
large numbers of nonisomorphic designs with parameters 2-(21,7,12), so this structure is
certainly not determined by its parameters alone.)

Let D be a collection of k-subsets of an n-set such that (the characteristic vectors
of) any two k-subsets have Hamming distance at least 8. Then for each of the
cases listed below we have |D | ≤ b with b as given in the table, and when equality
holds then the system is known to be unique, except in five cases. For (n, k, b) =
(19, 5, 12) there are precisely two nonisomorphic systems, corresponding to the
two Latin squares of order 4. For (n, k, b) = (18, 5, 9) there are precisely three
nonisomorphic systems. For the three cases (n, k, b) = (19, 6, 28), (20, 7, 80),
(21, 8, 210) no information is available. In all cases other than these three, the
block intersection numbers are as shown ([116]).

k \ n 18 19 20 21 22 23 24 intersections
5 9 12 16 21 1
6 28 40 56 77 0,2
7 80 120 176 253 1,3
8 210 330 506 759 0,2,4

Also the systems with (n, k, b) = (22, 10, 616), (22, 11, 672), (23, 11, 1288),
and (24, 12, 2576) are unique ([141]).

6.2.2 Substructures of S(5, 8, 24)

Sextets

A tetrad is a 4-subset of the point set of S(5, 8, 24).
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Proposition 6.2.5 Let T0 be a fixed tetrad. Then T0 determines a unique
sextet, i.e., partition of the 24-set into six tetrads Ti such that Ti ∪Tj is a block
for all i, j (i 6= j).

Proof. Since λ4 = 5 there are five blocks Bi on T0 (1 ≤ i ≤ 5) and with
Ti := Bi \ T0 we have Ti ∪ Tj = Bi + Bj (0 6= i 6= j 6= 0). Since λ5 = 1, the six
tetrads Ti are pairwise disjoint. �

The embedding of S(5,6,12)

A dodecad is the support of a vector of weight 12 in C.

Proposition 6.2.6 Let D0 be a fixed dodecad. The 132 octads meeting D0 in
six points form the blocks of a Steiner system S(5, 6, 12) on D0.

Proof. Each 5-set in D0 is in a unique block of S(5, 8, 24), and this block must
meet D0 in six points. �

A Hadamard 3-design is a 3-(4n, 2n, n − 1) design. If H is a Hadamard
matrix of order 4n having a row 1, then the 8n − 2 rows different from ±1 in
( H
−H ) give the (±1-characteristic vectors of the) blocks of a Hadamard 3-design.

Proposition 6.2.7 Let D0 be a fixed dodecad and x /∈ D0. The 22 octads
meeting D0 in six points and containing x form the blocks of a Hadamard 3-
design 3-(12, 6, 2). There is a natural 1-1 correspondence between the 1

2 .132 = 66

pairs of disjoint blocks of the S(5, 6, 12) on D0 and the
(

12
2

)
= 66 pairs of points

not in D0.

Proof. Given a pair of points x,y outside D0, there are precisely two octads on
{x, y} meeting D0 in six points, and these give disjoint blocks in the S(5, 6, 12)
(for: if these octads are B, B′ then B′ = B+D0). Varying y we find 11 pairs of
disjoint blocks, blocks from different pairs having precisely 3 points in common.

�

Labeling the lines of PG(3,2) with triples from a 7-set

The isomorphism PGL4(2) ' A8 can be seen inside M24. A useful consequence
is that the 35 lines of PG(3, 2) can be labeled with the 35 triples from a 7-set in
such a way that intersecting lines correspond to triples that meet in a singleton.

Proposition 6.2.8 Let B0 be a fixed octad. The 30 octads disjoint from B0

form a self-complementary3 3-(16, 8, 3) design, namely the design of the points
and affine hyperplanes in AG(4, 2), the 4-dimensional affine space over F2. �

Proposition 6.2.9 Let B0 be a fixed octad, x ∈ B0, y /∈ B0, Z the complement
of B0 ∪ {y}. Then there is a natural 1-1 correspondence between the

(
7
3

)
= 35

triples in B0 \{x} and the 35 lines in the PG(3, 2) defined on Z. Triples meeting
in a singleton correspond to intersecting lines.

3A design (X,B) is called self-complementary if for each B ∈ B also X \B ∈ B.
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Proof. A line in the PG(3, 2) on Z is a set T \ {y} where T is a 4-set such
that three of the blocks on it are disjoint from B0. Of the remaining two blocks
on T , precisely one contains the point x, and if B is this one then B ∩B0 \ {x}
is the triple corresponding to the given line. �

Remark. For a discussion of this correspondence, cf. Jordan [469, no 426, 516],
Moore [571], Dickson [291], Conwell [219], Edge [304], Wagner [717,
p. 424] and Hall [387].

Remark. Using this correspondence we find a description of the Neumaier
geometry. Let Σ be a set of 7 symbols, and let a 1-1 correspondence between
the triples from Σ and the lines of PG(3, 2) be given, such that triples meeting
in a singleton correspond to intersecting lines. Construct a geometry with three
types: the 7 symbols of Σ, the 35 lines of PG(3, 2), and the 15 planes of PG(3, 2),
where the incidence is natural, and each symbol is incident with each plane. This
defines a geometry with diagram

t
symbols
t

lines
t

planes
.

Remark. This also yields the ‘15+35’ construction of the Hoffman-Singleton
graph (§10.19).

6.2.3 Near polygons

A near polygon is a partial linear space such that for each point x and each line
L there is a unique point y on L closest to x in the collinearity graph. A quad
in a near polygon is a geodetically closed sub near polygon of diameter 2. A
near hexagon is a near polygon of diameter 3.

Near polygons were introduced in [655]. For properties and classification of
near polygons, see [174], [143], [122], [260].

Example: the extended ternary Golay code

The partial linear space with as points the vectors of the extended ternary Golay
code and as lines the cosets of 1-dimensional subspaces spanned by a vector of
weight 12 is a near hexagon with 3 points per line and 12 lines per point and
diagram (as distance-transitive graph)

����1 24 1����24
1

22 2����264

2
20 12����440

12

v = 729

It has quads (3× 3 grids).

Example: the Witt design S(5, 8, 24)

The partial linear space with as points the 759 blocks of the Steiner system
S(5, 8, 24) and as lines the partitions of the point set of the design into three
pairwise disjoint blocks, is a near hexagon with 3 points per line and 15 lines
per point and diagram (as distance transitive graph)
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����1 30 1����30
1

28 3����280

3
24 15����448

15

v = 759

It has quads (Sp(4, 2) generalized quadrangles). A quad in the near polygon
corresponds to a sextet in the design: a partition of the point set into six 4-sets
such that the union of any two of them is a block. Distances 0, 1, 2, 3 in the
near polygon correspond to intersections of size 8, 0, 4, 2, respectively.

6.2.4 The geometry of the projective plane of order 4

There is a unique projective plane of order 4. It has 5 points on each line and 5
lines on each point (by definition of ‘order’), and 21 points and 21 lines (more
generally, a projective plane of order q has q2 + q+ 1 points and as many lines).
Its geometry is closely related to the structure of the Witt designs, and we
discuss it in some detail.

Hyperovals

A hyperoval in a projective plane is a set of points intersecting any line in either
0 or exactly 2 points. In PG(2, 4) each hyperoval contains six points (in general
a hyperoval of a projective plane of order q contains q + 2 points) and may be
constructed as follows. Select four points arbitrarily but such that no three are
on a line, and cross out all points on each line containing two of these. Then
exactly two points remain. Add these to the four previously selected points
and these six points form a hyperoval. A simple count reveals that there are
21·20·16·9

6·5·4·3 = 168 hyperovals in PG(2, 4).

Baer subplanes

A Baer subplane B of a projective plane P is a proper subset of points and
lines such that the induced incidence relation renders it a projective plane with
the property that every line of P contains at least one point of B and every
point of P is on at least one line of B. In the finite case the order of B is
necessarily equal to the square root of the order of P , and every subplane with
that order is a Baer subplane. In PG(2, 4) each Baer subplane is a Fano plane
(see §4.1.1) and may be constructed as follows. Select four points arbitrarily
but such that no three are on a line, and add the intersection points of all pairs
of lines spanned by two of the selected points. A simple count reveals that there
are 21·20·16·9

7·6·4·1 = 360 Baer subplanes in PG(2, 4).

Unitals

A unital is an S(2, q+ 1, q3 + 1) Steiner system, for a certain natural number q.
An embedded unital U is a set of q3 +1 points in a projective plane P of order q2

such that each line of P intersects U in either 1 (tangent line) or exactly q + 1
(secant line) points. It follows that each point of U is incident with a unique
tangent line and that U together with the subsets induced by the secant lines is
a unital. A Hermitian unital is a unital in a classical projective plane PG(2, F )
over a field F such that its points correspond precisely to the set of isotropic



6.2. DESIGNS 159

1-spaces of a nondegenerate Hermitian form on F 3. In PG(2, 4) every unital is
Hermitian, contains 9 points and may be constructed as the set of points on the
lines of a triangle, excluding the vertices of the triangle. A simple count reveals
that there are 21·20·16

4·3·2·1 = 280 unitals in PG(2, 4).

Going down

One can see PG(2, 4) and its hyperovals and Baer subplanes inside the Witt
design S(5, 8, 24). Let Y be a 21-set, and X = Y ∪ {∞1,∞2,∞3} be a 24-set,
and S the collection of 759 blocks of an S(5, 8, 24) on X. Write the blocks using
their characteristic vectors, with∞1,∞2,∞3 as the first three coordinates. The
21 blocks starting 111 . . . give the 21 lines of a PG(2, 4) on Y. The 56 + 56 +
56 = 168 blocks starting 110, 101, or 011 give the 168 hyperovals on Y . The
120+120+120 = 360 blocks starting 100, 010, or 001 give the 360 Baer subplanes
on Y. Let C be the extended binary Golay code spanned by the characteristic
vectors of the blocks in S . The 280 vectors of weight 12 in C starting 111 give
the 280 unitals on Y .

Often, geometric questions about PG(2, 4) can be answered quickly by using
this representation. For example, PG(2, 4) does not contain three pairwise
disjoint hyperovals since their sum would be a vector of weight more than 16
but less than 24 in the extended binary Golay code C, and there is no such
vector.

Going up

On the other hand, it is possible (but a bit cumbersome) to construct S(5, 8, 24)
from the above data in PG(2, 4) ([697, 529]). The main step is partitioning the
168 hyperovals into three sets of 56 and the 360 Baer subplanes into three sets
of 120.

One way to do this is via the group. The above discussion shows that PGL3(4)
is transitive on hyperovals and on Baer subplanes. Its index 3 subgroup PSL3(4)
has three orbits on hyperovals and on Baer subplanes, and provides the needed
partition.

On the other hand, from the description in terms of the extended binary
Golay code C (and the fact that C is self-orthogonal) it is clear that meeting
in an even number of points is an equivalence relation with three classes on the
hyperovals, and meeting in an odd number of points is an equivalence relation
with three classes on the Baer subplanes. This can be verified directly, without
use of C, from the geometry of PG(2, 4):

Proposition 6.2.10 Let H be the set of hyperovals of PG(2, 4) and let B be
the set of Baer subplanes of PG(2, 4). There are partitions {H1,H2,H3} of H
and {B1,B2,B3} of B into three classes such that

(i) hyperovals intersect in an even number of points if and only if they belong
to the same class;

(ii) Baer subplanes intersect in an odd number of points if and only if they
belong to the same class;

(iii) for H ∈ Hi and B ∈ Bj the intersection size |B ∩ H| is even if and
only if i = j.
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Proof. The proof is elementary but tedious. A simple count shows that there
are 1, 3, 12, 48, 168 hyperovals on 4, 3, 2, 1, 0 given points, no three collinear.
For a fixed hyperoval H it follows that there are 1, 0, 0, 40, 45, 72, 10 hyperovals
intersecting H in precisely 6, 5, 4, 3, 2, 1, 0 points, respectively, so that there are
precisely 56 hyperovals intersecting H in an even number of points.

For a fixed Baer subplane B, a simple count yields 1, 0, 0, 56, 77, 168, 42, 16
Baer subplanes intersecting B in precisely 7, 6, 5, 4, 3, 2, 1, 0 points, respectively.
Hence 1 + 0 + 77 + 42 = 120 intersect B in an odd number of points.

Fix a Baer subplane B in PG(2, 4). We show that there are 7, 42, 7 hyperovals
meeting it in 4, 2, 0 points, respectively. Also, that the mutual intersection sizes
of these 56 hyperovals are even. That will prove that meeting in an even number
of points is an equivalence relation on the hyperovals, with classes of size 56.

Given 4 points of B no three on a line there is a unique hyperoval containing
these. Hence 7 hyperovals intersect B in exactly 4 points.

Given two points p1, p2 of B, let q1, q2 be two points off B but on different
lines of B through p1 and such that no three points among p1, p2, q1, q2 are
collinear (there are two possible choices for {q1, q2}). The hyperoval determined
by p1, p2, q1, q2 intersects B in just {p1, p2}, and every hyperoval intersecting B
in exactly two points arises this way. Hence there are 42 hyperovals intersecting
B in exactly 2 points.

Given a point p of B, the points off B on the lines of B through p form a
hyperoval disjoint from B; we claim every hyperoval H disjoint from B arises
in this way: since the lines disjoint from H form a dual hyperoval (as can be
easily checked), at most 4 can be contained in B; hence B contains at least
three secants to H which must necessarily be concurrent and the claim follows.
This accounts for 7 hyperovals disjoint from B.

In total we have 7 + 42 + 7 hyperovals intersecting B in an even number
of points. It is an elementary verification that each pair of such hyperovals
intersects in an even number of points itself. Hence we have a set of 56 hyperovals
pairwise intersecting in an even number of points.

Completely similar the reciprocal to the previous paragraph can be proved:
Fix a hyperoval H in PG(2, 4) and exhibit all Baer subplanes intersecting H in
an even number of points. Clearly

(
6
4

)
= 15 intersect H in exactly 4 points.

Consider two points p1, p2 of H. In order to include p1, p2 in a Baer subplane B
it is necessary and sufficient to select two lines through each of them (distinct
from the line p1p2). To avoid further intersection points with H, it is necessary
and sufficient to make the selection so that each points of H \ {p1, p2} is on
exactly one selected line. This can be done in 6 ways, giving rise to 6 ·

(
6
2

)
= 90

Baer subplanes intersecting H in precisely 2 points. Finally, for each point p
outside H, the set of points off H but on a secant through p constitutes a Fano
plane, as is easily checked, and no other disjoint Fano planes exist. Hence there
are 15 such and in total we have 15 + 90 + 15 = 120 Baer subplanes intersecting
H in an even number of points. Again it is readily seen that all these subplanes
intersect each other in an odd number of points. �

We have the following construction/theorem.

Theorem 6.2.11 Let Hi ⊆ H and Bi ⊆ B, i = 1, 2, 3, be the partition
classes of hyperovals and Baer subplanes, respectively, as defined in the previous
proposition. Let L be the set of lines of PG(2, 4) and let X be the set of points
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of PG(2, 4) enriched with three new elements ∞1,∞2,∞3 (so |X| = 24). Define
the following 8-subsets of X and call them blocks of X:

(i) L ∪ {∞1,∞2,∞3}, for every L ∈ L ;
(ii) H ∪ {∞i,∞j}, for every H ∈Hk, for all i, j, k with {i, j, k} = {1, 2, 3};

(iii) B ∪ {∞i}, for every B ∈ Bi, for all i ∈ {1, 2, 3};
(iv) (L ∪M) \ (L ∩M), for all distinct L,M ∈ L .
Then X endowed with these 8-subsets is an S(5, 8, 24).

Moreover, if U is a Hermitian unital in PG(2, 4), then the set Y = U ∪
{∞1,∞2,∞3} endowed with the blocks of X that intersect Y in at least 5
elements, is an S(5, 6, 12).

Proof. The fact that X endowed with its blocks is an S(5, 8, 24) is an easy
exercise. The second statement follows from the observation that, if a block of
X intersects Y in at least 5 elements, then it has precisely 6 elements in common
with Y , which is equivalent to verifying that

• If a line intersects U in at least 2 points, then it shares exactly 3 points
with it.

• If a hyperoval intersects U in at least 3 points, then it shares exactly 4
points with it.

• If a Baer subplane intersects U in at least 4 points, then it shares exactly
5 points with it.

All these follow easily from the above construction of any Hermitian unital as
the set of points on a given triangle, except for the vertices of the triangle. �

As a Hermitian unital of PG(2, 4) endowed with the secant lines is just an
affine plane of order 3, we deduce the following independent construction of
S(5, 6, 12).

Theorem 6.2.12 Let AG(2, 3) be the affine plane of order 3, let M be its set of
lines, and denote by {p1, p2, p3, p4} the set of directions (points at infinity). Let
Y be the set of points of AG(2, 3) enriched with three new elements ∞1,∞2,∞3

(so |Y | = 12). If, for two intersecting lines L,M in AG(2, 3), we denote by
L∆M = (L ∪M) \ (L ∩M), and we denote by p(L) the direction of L, then we
define the following 6-subsets of Y and call them blocks of Y :

(i) L ∪ {∞1,∞2,∞3}, for every L ∈M ;
(ii) (L∆M) ∪ {∞i,∞j}, for every intersecting pair L,M ∈ M such that

the sets {p(L), p(M)} and {pi, pj} either coincide or are disjoint, i, j ∈
{1, 2, 3};

(iii) L ∪ M ∪ {∞i}, for all intersecting pairs L,M ∈ M such that either
{p(L), p(M), pi} = {p1, p2, p3}, or {p(L), p(M)} = {pi, p4}, i ∈ {1, 2, 3};

(iv) L ∪M , for disjoint pairs L,M ∈M .
Then Y endowed with these 6-subsets is an S(5, 6, 12).

Remarks
(1) The sets L∆M , for intersecting lines in AG(2, 3) can also be defined as

conics; the elements ∞i, i = 1, 2, 3, can then be identified with the conjugate
pairs of points at infinity in a quadratic extension plane AG(2, 9), and the
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equivalence classes are defined by the relation ‘having the same points at infinity
in AG(2, 9)’.

(2) The geometric construction can also be used to prove uniqueness. For
example, let us prove uniqueness of S(3, 6, 22). Since S(2, 5, 21) is unique as a
projective plane of order 4, we may without loss of generality view S(3, 6, 22)
as PG(2, 4) ∪ {∞}, where the blocks are the lines completed with ∞, and 56
subsets of size 6 in PG(2, 4). These subsets do not intersect any line in at least
3 points, hence they are hyperovals. They do not mutually intersect in 3 points,
and by the numbers, all hyperovals intersecting a given one (that is a block
of S(3, 6, 22)) in two points, are also blocks of S(3, 6, 22). It follows that the
hyperovals that are blocks exactly constitute one equivalence class. This shows
uniqueness. Likewise, uniqueness of S(4, 7, 23) and S(5, 8, 24) is shown, as well
as uniqueness of S(3, 4, 10), S(4, 5, 11) and S(5, 6, 12).

6.3 Lattices
A lattice is a discrete additive subgroup of Rn. (Or, equivalently, a finitely-
generated free Z-module with positive definite symmetric bilinear form.)

Determinant

Assume that the lattice Λ has dimension n, i.e., spans Rn. Let {a1, ..., an} be
a Z-basis of Λ. Let A be the matrix with the vectors ai as rows. If we choose
a different Z-basis {b1, ..., bn}, so that bi =

∑
sijaj , and B is the matrix with

the vectors bi as rows, then B = SA, with S = (sij). Since S is integral and
invertible, it has determinant ±1. It follows that |detA| is uniquely determined
by Λ, independent of the choice of basis.

Volume and Gram matrix

Rn/Λ is an n-dimensional torus, compact with finite volume. Its volume is the
volume of the fundamental domain, which equals |detA|.

If Λ′ is a sublattice of Λ, then vol(Rn/Λ′) = vol(Rn/Λ).|Λ/Λ′|.
Let G be the matrix (ai, aj) of inner products of basis vectors for a given

basis. Then G = AA>, so vol(Rn/Λ) =
√

detG.

Dual lattice

The dual Λ∗ of a lattice Λ is the lattice of vectors having integral inner products
with all vectors in Λ: Λ∗ = {x ∈ Rn | (x, r) ∈ Z for all r ∈ Λ}.

It has a basis {a∗1, ..., a∗n} defined by (a∗i , aj) = δij . Now A∗A> = I, so
A∗ = (A−1)> and Λ∗ has Gram matrix G∗ = G−1.

It follows that vol(Rn/Λ∗) = 1/vol(Rn/Λ). We have Λ∗∗ = Λ.

Integral lattice

The lattice Λ is called integral when the inner products of lattice vectors are all
integral. For an integral lattice Λ one has Λ ⊆ Λ∗.

The lattice Λ is called even when (x, x) is an even integer for each x ∈ Λ.
An even lattice is integral. An integral lattice that is not even is called odd.
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Roots are lattice vectors x with (x, x) = 2.

Unimodular lattice

The discriminant (or determinant) disc Λ of a lattice Λ is defined by disc Λ =
detG. When Λ is integral, we have disc Λ = |Λ∗/Λ|.

A lattice is called self-dual or unimodular when Λ = Λ∗, i.e., when it is
integral with discriminant 1. An even unimodular lattice is called Type II, the
remaining unimodular lattices are called Type I.

If there is an even unimodular lattice in Rn, then n is divisible by 8. (This
follows by studying the associated theta series and modular forms.)

6.3.1 The Leech lattice

The Leech lattice Λ is the unique even unimodular lattice in R24 without roots.
For lots of information, see Conway & Sloane [217].

Theorem 6.3.1 (Conway [212]) There exists a unique even unimodular lattice
without roots in R24. It has 196560 vectors of norm (squared length) 4.

Proof (very brief sketch). For the construction, take the lattice spanned by the
vectors 1√

8
(∓3,±123) with ∓3 in any position, and the upper signs in a code

word of the extended binary Golay code.
For the vectors of norm 4 one finds the shapes 42 022, 3 123, 28 016 (omitting

the 1√
8
) with frequencies 22

(
24
2

)
= 1104, 212 · 24 = 98304 and 27 · 759 = 97152,

respectively.
Uniqueness is proved using theta functions and the theory of modular forms.
Given a lattice Λ, define

θΛ(z) =
∑
x∈Λ

q
1
2 (x,x)

where q = e2πiz and Im(z) > 0.
One has

θΛ∗(z) = det(Λ)
1
2

(
i

z

)n
2

θΛ(−1

z
).

For the Leech lattice one has Λ = Λ∗ and det(Λ) = 1, so that θΛ(z) is a
modular form of weight 12.

The space of modular forms of weight 12 has dimension 2, and the two
conditions: unique vector of norm 0, no vectors of norm 2, determine θΛ(z)
uniquely. Thus, any even unimodular lattice without roots in R24 must have
the same weight enumerator as the Leech lattice.

Some more work gives the desired conclusion. �

One can replace the requirement ‘unimodular’ by giving three counts.

Proposition 6.3.2 ([735], Theorem 5.1) Let Λ be an even integral lattice in R24

with ai vectors of squared norm i, where a2 = 0, a4 = 196560, a6 = 16773120,
a8 = 398034000. Then Λ is isomorphic to the Leech lattice. �
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The automorphism group of the Leech lattice (fixing the zero vector) is 2.Co1

of order 222 ·39 ·54 ·72 ·11 ·13 ·23. It is transitive on the vectors of squared norm
4 and on those of squared norm 6. The stabilizer of a vector of squared norm 4
is Co2 of order 218 · 36 · 53 · 7 · 11 · 23. The stabilizer of a vector of squared norm
6 is Co3 of order 210 · 37 · 53 · 7 · 11 · 23.

6.3.2 The mod 2 Leech lattice
Let V be the F24

2 obtained as Λ/2Λ. The 224 = 1 + 1
2a4 + 1

2a6 + 1
48a8 vectors

of V each have a representative of squared norm at most 8, unique up to sign
when it has squared norm less than 8, while vectors in Λ of squared norm 8 fall
into classes of 48 congruent mod 2Λ ([217], p. 332).

Let X be the image in V of the set of vectors of squared norm 4. Then
|X| = 98280 and each hyperplane of PV meets X in either 49128 or 51176
points. We find a rank 4 strongly regular graph with parameters (v, k, λ, µ) =
(16777216, 98280, 4600, 552) with group 224.Co1 ([129], [627]).

6.3.3 The complex Leech lattice
Let θ =

√
−3 and ω = (−1 +

√
−3)/2, so that ω3 = 1 and θ = ω − ω̄ is a prime

in Z[ω]. Let C be the extended ternary Golay code (as subset of {−1, 0, 1}12).
The complex Leech lattice is the lattice L in Z[ω]12 consisting of the vectors

0 + θc+ 3x, 1 + θc+ 3y, −1 + θc+ 3z

with c ∈ C, x, y, z ∈ Z[ω]12, and
∑
xi ≡ 0,

∑
yi ≡ 1,

∑
zi ≡ −1 (mod θ).

Now L is a lattice, with minimal squared norm 18.
If we view L as 24-dimensional real lattice, and scale by a factor 1

3

√
2, we

get the Leech lattice. (For example, by Proposition 6.3.2.)
See also [522], [217] (pp. 200, 293), [734], [735] (§5.6.10).

The automorphism group of L is 6.Suz of order 214 · 38 · 52 · 7 · 11 · 13. The
central 6 arises from the scalars (−ω)i. The quotient L/θL is isomorphic to 312.

Let V be F12
3 obtained as L/θL. Then 2.Suz acts on V , and Suz has precisely

two orbits on PV , of sizes 32760 and 232960, respectively. This leads to a rank 3
strongly regular graph with parameters (v, k, λ, µ) = (531441, 65520, 8559, 8010)
and automorphism group 312.2.Suz.2. See also §10.100 and Table 11.6.



Chapter 7

Cyclotomic constructions

We look at graphs defined by a difference set in a usually abelian group. Dif-
ference sets in a vector space that are invariant under multiplication by scalars
are equivalent to two-weight codes and to two-character subsets of a projective
space.

7.1 Difference sets

Given an abelian group G and a subset D of G such that D = −D and 0 /∈ D,
we can define a graph Γ with vertex set G by letting x ∼ y whenever y−x ∈ D.
This graph is known as the Cayley graph on G with difference set D.1

If A is the adjacency matrix of Γ, and χ is a character of G, then (Aχ)(x) =∑
y∼x χ(y) =

∑
d∈D χ(x+ d) = (

∑
d∈D χ(d))χ(x). It follows that the spectrum

of Γ consists of the numbers
∑
d∈D χ(d), where χ runs through the characters of

G. In particular, the trivial character χ0 yields the eigenvalue |D|, the valency
of Γ.

7.1.1 Two-character projective sets

Let V be a vector space of dimension m over the finite field Fq. Let X be a
subset of size n of the point set of the projective space PV . Define a graph
Γ with vertex set V by letting x ∼ y whenever 〈y − x〉 ∈ X. This graph has
v = qm vertices, and is regular of valency k = (q − 1)n. It is the Cayley graph
on V with difference set D = {x ∈ V | 〈x〉 ∈ X}.

Let q be a power of the prime p, let ζ = e2πi/p be a primitive p-th root of
unity, and let tr : Fq → Fp be the trace function. Let V ∗ be the dual vector
space to V , that is the space of linear forms on V . Then the characters χ are
of the form χa(x) = ζtr(a(x)), with a ∈ V ∗. Now

∑
λ∈Fq

χa(λx) =

{
q if a(x) = 0
0 otherwise.

1About the terminology: in the area of design theory a difference set D in a group G is a
set such that {gD | g ∈ G} is a symmetric (i.e., square) design. A partial difference set is a
set such that the Cayley graph for this difference set is a strongly regular graph.

165
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Hence Γ has the eigenvalues (q−1)|X| and
∑
d∈D χa(d) = q.|Ha∩X|− |X| (for

a 6= 0), where Ha is the hyperplane {〈x〉 | a(x) = 0} in PV . Consequently, Γ
will be strongly regular precisely when |Ha ∩X| takes only two different values.

The above construction of the graph Γ is often described as ‘take the vector
space V with the subset X of PV at infinity’.

7.1.2 Projective two-weight codes

This can be formulated in terms of coding theory (Delsarte [275]). To the
set X corresponds a linear code C of word length n and dimension m. Each
a ∈ V ∗ gives rise to the vector (a(x))x∈X indexed by X, and the collection of
all these vectors is the code C.2,3 A code word a of weight w corresponds to
a hyperplane Ha that meets X in n − w points, and hence to an eigenvalue
q(n− w)− n = k − qw of Γ.

If X is a two-character set, that is, if the size of hyperplane intersections
H ∩X takes only two different values, then C is a two-weight code, that is, the
weight wt(c) of nonzero code words c ∈ C takes only two different values.

A survey of two-weight codes was given by Calderbank & Kantor [169].
Additional families and examples were given in [112], [284], [283], [53], [511],
[287], [230], [235], [228], [288], [229], [627].

The code C obtained above is called projective: no two coordinate positions
are dependent. That is, the dual code C⊥ has minimum distance at least 3.
The more general case of a code C with dual C⊥ of minimum distance at least
2 corresponds to a multiset X. Brouwer & van Eupen [127] gives a 1-1
correspondence between arbitrary projective codes and two-weight codes.

7.1.3 Delsarte duality

Suppose X is a subset of the point set of PV that meets hyperplanes in either n1

or n2 points. We find a subset Y of the point set of the dual space PV ∗ consisting
of the hyperplanes that meet X in n1 points. Also Y is a two-character set. If
each point of PV is on n′1 or n′2 hyperplanes in Y , then (n1−n2)(n′1−n′2) = qm−2.
It follows that the difference of the weights in a projective two-weight code is a
power of the characteristic. (This is a special case of the duality for translation
association schemes. See [276], §2.6, and [123], §2.10B.)
A strongly regular graph invariant for a regular abelian translation group is called self-dual
when it is isomorphic to its dual, and formally self-dual when it has the same parameters as
its dual (so that {k, l} = {f, g}). For formally self-dual graphs/codes, w2 − w1 = n1 − n2 =
q

1
2
m−1. This is the most common situation. Different examples are for example i-subspaces

of PV (with n1 − n2 = qi−1) or the third De Lange set (cf. §7.3.3 below), which can be
seen as a 39-set in PG(3, 8) such that all planes meet it in either 3 or 7 points, so that
(q, n1−n2) = (8, 4).

2More precisely, each a ∈ V ∗ gives rise to the vector (a(ux))x∈X indexed by X, where ux
is some fixed vector in V spanning the projective point x = 〈ux〉. Different choices for these
representatives ux yield equivalent codes.

3More precisely, the dimension of C is the dimension of the span 〈X〉 of X.
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7.1.4 Parameters

Let V be a vector space of dimension m over Fq. Let X be a subset of size n
of its hyperplane at infinity PV . Construct the graph Γ by taking V as vertex
set, where two vertices u, v are adjacent when 〈v − u〉 ∈ X. This graph has
v = qm vertices, and is regular of valency k = (q − 1)n. As we saw, the other
eigenvalues are q|H ∩X| − n where H runs through the hyperplanes of PV .

We obtain a strongly regular graph when |H ∩X| takes precisely two values,
say n1 and n2, with n1 > n2. Let f1 and f2 be the number of hyperplanes
meeting X in n1 and n2 points, respectively. Then f1 and f2 satisfy

f1 + f2 =
qm − 1

q − 1
,

f1n1 + f2n2 = n
qm−1 − 1

q − 1
,

f1n1(n1 − 1) + f2n2(n2 − 1) = n(n− 1)
qm−2 − 1

q − 1

and it follows that

(qm − 1)n1n2 − n(qm−1 − 1)(n1 + n2 − 1) + n(n− 1)(qm−2 − 1) = 0,

so that in particular n | (qm − 1)n1n2.
The strongly regular graph Γ has parameters

v = qm, r = qn1 − n,
k = (q − 1)n, s = qn2 − n,
λ = µ+ r + s, f = (q − 1)f1,

µ = k + rs =
(n− n1)(n− n2)

qm−2
, g = (q − 1)f2.

IfX spans PV , then the code C constructed above has parameters [n,m,w1]q
and weight enumerator 1 + fxw1 + gxw2 , where w1 = n− n1, w2 = n− n2, and

f =
1

w2 − w1
(w2(qm − 1)− nqm−1(q − 1)).

7.1.5 Complements and imprimitivity

If Γ is the graph corresponding to the subset X of PV , then Γ corresponds to
the complementary subset X = PV \ X. For the parameters n, n1, n2 we find
n = qm−1

q−1 −n, ni = qm−1−1
q−1 −nj , so that wi = qm−1−wj , where {i, j} = {1, 2}.

The graph Γ is disconnected if and only if X is a proper subspace of PV . In
particular, the code C has dimension m precisely when Γ is connected.

7.1.6 Divisibility

From (n1−n2)(n′1−n′2) = qm−2 and f1(n1−n2) = n q
m−1−1
q−1 −n2

qm−1
q−1 , it follows

that (n1 − n2) | qm−2 and (n1 − n2) | (n − n2), so that w1 and w2 are divisible
by w2 − w1.
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Now w1 and w2 are divisible by p, except perhaps when n1 − n2 = 1. If
m ≥ 3, this latter case occurs only when X is a point or the complement of a
point, so that n = 1, µ = 0 or n = qm−1

q−1 − 1, k = µ ([103]).

(Indeed, since q divides µqm−2 = w1w2, it must divide one of w1, w2, if the other does not
have a factor p. Let A be an (m−2)-space, and count the gi hyperplanes on A meeting X in ni
points (i = 1, 2). From g1 +g2 = q+1 and (n1−a)g1 +(n2−a)g2 = n−a, where a = |A∩X|,
we see g1 = (n1−n2)g1 = (n−a)−(n2−a)(q+1) = w2−q(n2−a) and g2 = −w1 +q(n1−a).
Let {i, j} = {1, 2}, where q|wi. Then q|gj , so that gj ∈ {0, q} and a ∈ {n1 − wi

q
, n2 − wi

q
}. If

m > 3, then we are done by induction on m. If m = 3, then A is a single point, so a ∈ {0, 1}
and n2 = n−ni

q
. If i = 1, then n− 1 = (q + 1)n2 so that all lines on a point of X meet X in

n1 points, and n2 = 0, X is a single point. If i = 2, then n = (q + 1)n2 so that all lines on a
point outside X meet X in n2 points, and n1 = q + 1, X is the complement of a point.)

7.1.7 Field change

If q = re, then from an [n, k]q code we find a [ q−1
r−1n, ke]r code by choosing a

basis of Fq over Fr. To weights w of the q-ary code there correspond weights
q
rw of the r-ary code. The corresponding graphs are the same.

7.1.8 Unions and differences

Let Z be an arbitrary subset of PG(m−1, q) with hyperplane intersections of size
ni for fi hyperplanes. Then, as above,

∑
fi = qm−1

q−1 , and
∑
fini = n q

m−1−1
q−1 ,

and
∑
fini(ni − 1) = n(n − 1) q

m−2−1
q−1 . When at most three distinct ni occur,

the fi are determined (since the coefficient determinant is nonzero), and we can
conclude that Z is in fact a two-character set when one of these fi vanishes.

Consider the situation where X and Y are disjoint, and |X ∩H| ∈ {a, a+d}
and |Y ∩H| ∈ {b, b+d} for all hyperplanesH. Put c = a+b. Then |(X∪Y )∩H| ∈
{c, c+d, c+ 2d} for all hyperplanes H, and we can read off from the parameters
whether c + 2d actually occurs. If |X ∪ Y | = n, then c + 2d does not occur
precisely when c(c+ d) q

m−1
q−1 − (2c− 1 + d)n q

m−1−1
q−1 + n(n− 1) q

m−2−1
q−1 = 0.

Let F = F (α, d,m, q) be the collection of two-character sets X in PG(m−
1, q) with hyperplane intersection sizes α|X| and α|X| + d, where d may be
negative. If

α2(qm − 1)− 2α(qm−1 − 1) + (qm−2 − 1) = 0,

then F is closed under disjoint unions and under taking differences X \Y when
Y ⊆ X. For example, if m is even, then 1

2m-subspaces and hyperbolic quadrics
belong to the same collection F , and we find the examples under C below.

7.1.9 Geometric examples

We give some examples of two-character sets in projective spaces PV , where V
is an m-dimensional vector space over Fq.

A. Subspaces

LetW be an i-dimensional subspace of V , where 0 < i < m. Then X = PW is a
two-character set of size n = qi−1

q−1 with hyperplane intersection sizes n1 = qi−1
q−1

and n2 = qi−1−1
q−1 , so that n1 − n2 = qi−1.
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B. Partial spreads

For m = 2d, let X be the union of t pairwise disjoint d-subspaces of PV (1 ≤
t ≤ qd). Then X is a two-character set of size n = t q

d−1
q−1 with hyperplane

intersection sizes n1 = qd−1 + n2 and n2 = t q
d−1−1
q−1 , so that n1 − n2 = qd−1.

C. Quadrics

For m = 2d, let X be the point set of a nondegenerate hyperbolic (ε = 1) or
elliptic (ε = −1) quadric. Then X has size n = q2d−1−1

q−1 +εqd−1 with hyperplane

intersection sizes {n1, n2} = { q
2d−2−1
q−1 , q2d−2−1

q−1 +εqd−1}, so that n1−n2 = qd−1.
The corresponding graphs are the affine polar graphs VOε(m, q).

For ε = 1, this example has the same parameters as the partial spread
construction (Ex. B) with t = qd−1 + 1. Since the union condition is satisfied
one can take (for m = 2d) the disjoint union of pairwise disjoint d-spaces and
nondegenerate hyperbolic quadrics, where possibly a number of pairwise disjoint
d-spaces contained in some of the hyperbolic quadrics is removed ([134]).

Also for ε = −1 the union condition is satisfied. In particular, if m = 4, one
can take the disjoint union of pairwise disjoint nondegenerate elliptic quadrics
(or arbitrary ovoids). Since PG(3, q) has a partition into q+ 1 ovoids, this gives
two-character sets with intersection numbers n1 = j(q + 1), n2 = n1 − q for
1 ≤ j ≤ q.

D. Nonisotropic points

For odd q and m = 2d, consider a nondegenerate quadric Q of type ε = ±1
in V . Let X be the set of nonisotropic projective points x = 〈v〉 where Q(v)
is a nonzero square. Then X has size n = 1

2 (q2d−1 − εqd−1) and n1, n2 =
1
2q
d−1(qd−1± 1) (independent of ε), so that n1−n2 = qd−1. The corresponding

graphs are the affine nonisotropics graphs V NOε(m, q).

E. Quadric minus quadric over overfield

Let r = qe where e > 1, and write F1 = Fr, F = Fq. Let V1 be a vector space
of dimension d over F1, where d is even, and write V for V1 regarded as a
vector space of dimension de over F . Let tr : F1 → F be the trace map. Let
Q1 : V1 → F1 be a nondegenerate quadratic form on V1. Then Q = tr ◦Q1 is a
nondegenerate quadratic form on V . Let X = {x ∈ PV | Q(x) = 0 and Q1(x) 6=
0}. Write ε = 1 (ε = −1) if Q is hyperbolic (elliptic). The set X is a two-
character set in PV , has size n = qe−1−1

q−1 (qde−e − εqde/2−e), and hyperplane

intersection sizes {n1, n2} = {a, a + εqde/2−1}, with a = qe−1−1
q−1 (qde−e−1 −

εqde/2−e), so that n1 − n2 = qde/2−1 (Brouwer [112]).
For example, when q = e = 2, d = 4, ε = −1, this yields a 68-set in

PG(7, 2) with hyperplane intersections of sizes 28 and 36. This construction was
generalized in Hamilton [410].
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F. Hermitian quadrics

Let q = r2 and let V be provided with a nondegenerate Hermitian form. Let X
be the set of isotropic projective points. Then X has size n = (rm − ε)(rm−1 +
ε)/(q − 1) where ε = (−1)m, and n− n2 = r2m−3, n1 − n2 = rm−2.

If we view V as a vector space of dimension 2m over Fr, the same set X
now has n = (rm − ε)(rm−1 + ε)/(r − 1), n− n2 = r2m−2, n1 − n2 = rm−1, as
expected, since the form is a nondegenerate quadratic form in 2m dimensions
over Fr. Thus, the graphs that one gets here are also graphs one gets from
quadratic forms, but the codes here are defined over a larger field.

G. Baer subspaces

Let q = r2 and let m be odd. Then PG(m − 1, q) has a partition into pairwise
disjoint Baer subspaces PG(m − 1, r). Each hyperplane hits all of these in a
PG(m − 3, r), except for one which is hit in a PG(m − 2, r). Let X be the
union of u such Baer subspaces, 1 ≤ u < rm+1

r+1 . Then n = |X| = u r
m−1
r−1 ,

n1 = n2 + rm−2 and n2 = u r
m−2−1
r−1 , so that n1 − n2 = rm−2.

H. Maximal arcs and hyperovals

A maximal arc in a projective plane PG(2, q) is a two-character set with inter-
section numbers n1 = a, n2 = 0, for some constant a (1 < a < q). Clearly,
maximal arcs have size n = qa − q + a, and necessarily a | q. For a = 2
these objects are called hyperovals, and exist for all even q. Denniston [281]
constructed maximal arcs for all even q and all divisors a of q. Ball, Blokhuis
& Mazzocca [35] showed that there are no maximal arcs in PG(2, q) when q is
odd.

These arcs show that the difference between the intersection numbers need
not be a power of q.

I. Two-character subsets of the plane

Penttila & Royle [616] determined all two-character sets in each of the four
projective planes of order 9. They say that a two-character set in a projective
plane has standard parameters when q is a square and n1−n2 =

√
q. (It follows

that the set has size n = n2(q+
√
q+ 1) or n = n1(q−√q+ 1).) For q = 9 only

standard parameters are feasible and the number of nonisomorphic examples in
PG(2, 9) is given in the table below.

n n2 n1 # comments
13 1 4 1 Baer subplane
28 1 4 2 unital
26 2 5 3 e.g., union of two Baer subplanes
35 2 5 7 sporadic
39 3 6 22 e.g., union of three Baer subplanes
42 3 6 6 sporadic

J. Caps

The dual code C⊥ has minimum distance at least 4 if and only if X is a cap,
that is, does not have three collinear points.
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Characterizing two-weight projective codes C with dual distance (minimum
distance of C⊥) at least 4 is equivalent to characterizing two-character projective
sets that are caps. There are strong parameter conditions, and Calderbank,
Beukers, Bremner and others solved the corresponding Diophantine equations
in a series of papers [164], [64], [106], [107], [705]. The final result was:

Theorem 7.1.1 (Tzanakis & Wolfskill [706]) Let C be a q-ary two-weight
[n,m]-code with weights w1, w2 and dual distance at least 4. Then we have one
of the cases in Table 7.1 below.

q m n w1 w2 comment
q 2 2 1 2 two points
2e 3 q + 2 q q + 2 hyperoval
q 4 q2 + 1 q2 − q q2 ovoid
3 5 11 6 9 ternary Golay code
3 6 56 36 45 Hill [427]
4 6 78 56 64 Hill [428]
4 7 430 320 352 unknown
2 m 2m−1 2m−2 2m−1 hyperplane complement

Table 7.1: Two-character sets that are caps

This table with examples already occurs in [332], p. 72.

7.1.10 Small two-weight codes
For m = 2 any subset of PG(m − 1, q) is met by any hyperplane in either 0 or
1 points. One finds q-ary projective two-weight codes [n, 2]q with weights n− 1
and n for 2 ≤ n ≤ q+ 1, and primitive strongly regular graphs with parameters
LSn(q) (cf. §8.4.2) for 2 ≤ n ≤ q− 1. For n = 2 these are the grid graphs q× q.

Bouyukliev, Fack, Willems & Winne [103] enumerated the two-weight
codes with m ≥ 3, q ≤ 4, n ≤ 68 or m = 4, q = 5, n ≤ 39 (and also give
the automorphism group sizes). In the table below, the codes are [n,m,w1]q
codes. The weight enumerators are 1 + f1z

w1 + f2z
w2 . The column # gives

the number of nonequivalent such codes. The corresponding strongly regular
graphs have the parameters given above. In particular, v = qm and k = (q−1)n
and µ = w1w2/q

m−2.

q m n wt. enum. # v k λ µ example
2 4 5 1+10z2 + 5z4 1 16 5 0 2 VO−4 (2)

2 4 6 1+ 6z2 + 9z4 1 16 6 2 2 VO+
4 (2)

2 6 14 1+14z4 + 49z8 1 64 14 6 2 q = 8
2 6 18 1+45z8 + 18z12 1 64 18 2 6 q = 4
2 6 21 1+21z8 + 42z12 2 64 21 8 6 H2(2, 3)
2 6 27 1+36z12+ 27z16 5 64 27 10 12 VO−6 (2)

2 6 28 1+28z12+ 35z16 7 64 28 12 12 VO+
6 (2)

2 8 30 1+30z8 +225z16 1 256 30 14 2 q = 4
2 8 45 1+45z16+210z24 2 256 45 16 6 H2(2, 4)

continued...
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q m n wt. enum. # v k λ µ example
2 8 51 1+204z24+ 51z32 1 256 51 2 12 q = 4
2 8 60 1+ 60z24+195z32 12 256 60 20 12 q = 4
2 8 68 1+187z32+ 68z40 41 256 68 12 20 VO−8 (2) \ VO−4 (4)

3 4 8 1+ 16z3 + 64z6 1 81 16 7 2 two skew lines
3 4 10 1+ 60z6 + 20z9 1 81 20 1 6 VO−4 (3)
3 4 12 1+ 24z6 + 56z9 2 81 24 9 6 V NO+

4 (3)
3 4 15 1+ 50z9 + 30z12 2 81 30 9 12 V NO−4 (3)
3 4 16 1+ 32z9 + 48z12 4 81 32 13 12 VO+

4 (3)
3 4 20 1+ 40z12+ 40z15 4 81 40 19 20 five skew lines
3 5 11 1+132z6 +110z9 1 243 22 1 2 dual ternary Golay
3 5 55 1+220z36+ 22z45 1 243 110 37 60 its Delsarte dual
3 6 56 1+616z36+112z45 1 729 112 1 20 Hill cap
4 3 6 1+ 45z4 + 18z6 1 64 18 2 6 hyperoval
4 3 7 1+ 21z4 + 42z6 1 64 21 8 6 Baer subplane
4 3 9 1+ 36z6 + 27z8 1 64 27 10 12 unital
4 4 10 1+ 30z4 +225z8 1 256 30 14 2 two skew lines
4 4 15 1+ 45z8 +210z12 2 256 45 16 6 three skew lines
4 4 17 1+204z12+ 51z16 1 256 51 2 12 VO−4 (4)
4 4 20 1+ 60z12+195z16 7 256 60 20 12 four skew lines
4 4 25 1+ 75z16+180z20 19 256 75 26 20 VO+

4 (4)
4 4 30 1+ 90z20+165z24 68 256 90 34 30 six skew lines
4 4 34 1+153z24+102z28 84 256 102 38 42 two ovoids
4 4 35 1+105z24+150z28 231 256 105 44 42 seven skew lines
4 4 40 1+120z28+135z32 481 256 120 56 56 eight skew lines
5 4 12 1+ 48z5 +576z10 1 625 48 23 2 two skew lines
5 4 18 1+ 72z10+552z15 1 625 72 25 6 three skew lines
5 4 24 1+ 96z15+528z20 7 625 96 29 12 four skew lines
5 4 26 1+520z20+104z25 1 625 104 3 20 VO−4 (5)
5 4 30 1+120z20+504z25 38 625 120 35 20 five skew lines
5 4 36 1+144z25+480z30 547† 625 144 43 30 VO+

4 (5)
5 4 39 1+468z30+156z35 8 625 156 29 42 [312], [104]

Table 7.2: Small two-weight codes and graphs

Minihypers and the Griesmer bound

Part of the literature in this area is formulated in terms of ‘minihypers’. A
subset X of PG(m− 1, q) is called an {n, c; m− 1, q}-minihyper if |X| = n and
|X ∩H| ≥ c for each hyperplane H, with equality for at least one hyperplane.5
In the above we have been looking at {n, n2; m− 1, q}-minihypers.

Put vi = qi−1
q−1 . If X is the disjoint union of e0 points (1-spaces), e1 lines (2-

spaces), ..., then X is a {
∑m−2
i=0 eivi+1,

∑m−2
i=0 eivi; m−1, q}-minihyper. Many

classification theorems for minihypers give sufficient conditions for a minihyper
X to be such a union. See, e.g., [406], [407], [361], [673].
TheGriesmer bound on the length of an [n,m, d]q code says that n ≥

∑m−1
i=0 d

d
qi e.

Suppose 1 ≤ d ≤ qm−1. Then one can uniquely write d = qm−1 −
∑m−2
i=0 eiq

i

with 0 ≤ ei ≤ q−1 for all i. Hamada [404, 405] showed that the [n,m, d]q codes
with equality in the Griesmer bound are precisely the codes that correspond to
PV \X, where X is a {

∑m−2
i=0 eivi+1,

∑m−2
i=0 eivi; m− 1, q}-minihyper.

†Iliya Bouyukliev, pers. comm.
5The word ‘minihyper’ is supposed to suggest ‘with prescribed minimal size for hyperplane

intersections’. Early publications also used ‘min·hyper’.
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7.1.11 Sporadic two-weight codes

Most known examples of projective two-weight codes arise from well-known
geometric objects, and come in infinite families. Below a table with some
sporadic two-weight codes and corresponding graphs.

q m n w1 w2−w1 comments
2 9 73 32 8 Fiedler & Klin [326]; [496]
2 9 219 96 16 Delsarte dual of previous
2 10 198 96 16 Kohnert [496]
2 11 276 128 16 211.M24, see §10.84
2 11 759 352 32 Delsarte dual of previous; [355]
2 12 65i 32i 32 Kohnert [496] (12 ≤ i ≤ 31, i 6= 19)
2 24 98280 47104 2048 Rodrigues [627], see §6.3.2
4 5 11i 8i 8 Dissett [292] (7 ≤ i ≤ 14, i 6= 8)
4 6 78 56 8 Hill [428]
4 6 429 320 32 Delsarte dual of previous
4 6 147 96 16 [112]; Cossidente et al. [228]
4 6 210 144 16 Cossidente et al. [228]
4 6 273 192 16 Ex.B; De Wispelaere &Van Maldeghem [287]
4 6 315 224 16 [112]; Cossidente et al. [228]
4 6 525 384 16 Liebeck [517] 212.HJ, see §10.92
4 6 585 432 16 Chen quasi-twisted
8 4 39 32 4 De Lange [510]
8 4 273 224 16 Delsarte dual of previous
16 3 78 72 4 De Resmini & Migliori [284]
3 5 11 6 3 dual of the ternary Golay code
3 5 55 36 9 Delsarte dual of previous
3 6 56 36 9 Games graph (see §10.75), Hill cap [427]
3 6 84 54 9 Gulliver [369]; [540]
3 6 98 63 9 Gulliver [369]; [540]
3 6 154 99 9 Van Eupen [310]; [370]
3 8 82i 54i 27 Kohnert [496] (8 ≤ i ≤ 12)
3 8 41i 27i 27 Kohnert [496] (26 ≤ i ≤ 39)
3 8 1435 945 27 De Lange [510]
3 12 7592 5022 81 Schmidt & White [637]
3 12 32760 21627 243 312.2.Suz.2, see §10.100
9 3 35 30 3 De Resmini [283]
9 3 42 36 3 Penttila & Royle [616]
9 4 287 252 9 De Lange [510]
81 3 3285 3240 9 Lane-Harvard & Penttila [509]
5 4 39 30 5 Dissett [292]; [103]
5 6 1890 1500 25 Liebeck [517] 56.4.HJ, see §10.95
25 3 21i 20i 5 Lane-Harvard & Penttila [509] (i = 10–12,15)
125 3 829 820 5 Batten & Dover [53]
125 3 7461 7400 25 Delsarte dual of previous
343 3 3189 3178 7 Batten & Dover [53]
343 3 28701 28616 49 Delsarte dual of previous
13 4 595 546 13 Chen quasi-twisted

Table 7.3: Sporadic two-weight codes and graphs
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7.2 Cyclic codes
An [n, k]q code is a linear code of length n and dimension k over the field Fq. Its
size is qk. This code is cyclic if it is invariant under the map (c1, c2, . . . , cn) 7→
(cn, c1, . . . , cn−1) that cyclically permutes the coordinate positions. Let x be
a variable, and represent the codeword c = (c1, c2, . . . , cn) by the polynomial
c(x) =

∑
i cix

i−1. The code C is cyclic precisely when {c(x) | c ∈ C} is an ideal
in the ring R = Fq[x]/(xn − 1).

In this ring every ideal is generated by a single element, so every cyclic
code has the representation g(x)R for some generator polynomial g(x). W.l.o.g.
g(x) | (xn−1). Now if xn−1 = g(x)h(x), then c ∈ C if and only if c(x)h(x) = 0
in R, and h(x) is called the check polynomial of C. It has degree k.

The code C is called irreducible when its check polynomial is irreducible,
that is, when the ideal of the code is minimal nonzero.

7.2.1 Trace representation of an irreducible cyclic code
Let C be irreducible. Let F0 = Fq and F = Fqk . Let tr : F → F0 be the trace.
Let α ∈ F be a root of h(x). Then C can be represented as C = {c(ξ) | ξ ∈ F},
where c(ξ) = (c0(ξ), . . . , cn−1(ξ)) and ci(ξ) = tr(ξα−i).

Indeed, this latter code is linear and cyclic, and if h(x) =
∑
hix

i then the coefficient of
xj in c(x)h(x) is

∑
i cj−ihi = tr(ξα−jh(α)) = 0. Thus, the check polynomial of the code

divides h(x), and hence equals h(x).

If αt = 1 for some t < n, then the code words in C are periodic with period
t. We shall assume that this is not the case, so that α is a primitive n-th root
of unity. It follows that gcd(q, n) = 1, and that k is the order of q mod n (since
h(x) =

∏k−1
i=0 (x− αqi)).

Let β = α−1. The code C here is one as in §7.1.2 corresponding to the
(multi)setX = {〈βi〉 | 0 ≤ i ≤ n−1}. It is projective when there are no repeated
points, i.e., when βi /∈ F0 for 1 ≤ i ≤ n − 1, i.e., when gcd(q − 1, n) = 1. Now
n | q

k−1
q−1 and X is the orbit of a suitable power of the Singer cycle on PG(k−1, q).

In this situation, C is an irreducible cyclic two-weight code if and only if X is
a two-character projective set.

7.2.2 Wolfmann’s theorem
Wolfmann [742] shows that every two-weight projective cyclic code is either
irreducible or the direct sum of two one-weight irreducible cyclic codes, where
the latter case can occur only for q > 2. For examples of the latter possibility,
see [713], [714].

7.2.3 Irreducible cyclic two-weight codes
In the case of a vector space that is a field F , one conjectures that one knows
all examples of difference sets that are subgroups of the multiplicative group F ∗
containing the multiplicative group of the base field.

Conjecture 7.2.1 (Schmidt & White [637], Conj. 4.4; cf. [340], Conj. 1.2)
Let F be a finite field of order q = pf . Suppose 1 < e | (q − 1)/(p − 1) and

let D be the subgroup of F ∗ of index e. If the Cayley graph on F with difference
set D is strongly regular, then one of the following holds:
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(i) (subfield case) D is the multiplicative group of a subfield of F .

(ii) (semiprimitive case) There exists a positive integer l such that pl ≡ −1
(mod e).

(iii) (exceptional case) |F | = pf , and (e, p, f) takes one of the following eleven
values: (11, 3, 5), (19, 5, 9), (35, 3, 12), (37, 7, 9), (43, 11, 7), (67, 17, 33),
(107, 3, 53), (133, 5, 18), (163, 41, 81), (323, 3, 144), (499, 5, 249).

In each of the mentioned cases the graph is strongly regular. See also below.
Since F ∗ has a partition into cosets of D, the point set of the projective

space PF is partitioned into isomorphic copies of the two-intersection set X =
{〈d〉 | d ∈ D}.

7.3 Cyclotomy

More generally, the difference set D can be be a union of cosets of a subgroup
of F ∗, for some finite field F . Let F = Fq where q = pf , p is prime, and let
e | q − 1, say q = em + 1. Let K ⊆ F∗q be the subgroup of the e-th powers (so
that |K| = m). Let α be a primitive element of Fq. For J ⊆ {0, 1, . . . , e − 1}
put u := |J | and D := DJ :=

⋃
{αjK | j ∈ J} = {αie+j | j ∈ J, 0 ≤ i < m}.

Define a graph Γ = ΓJ with vertex set Fq and edges (x, y) whenever y− x ∈ D.
Note that Γ will be undirected if q is even or e|(q − 1)/2.

As before, the eigenvalues of Γ are the sums
∑
d∈D χ(d) for the characters χ

of F . Their explicit determination requires some theory of Gauss sums. Let us
write Aχ = θ(χ)χ. Clearly, θ(1) = mu, the valency of Γ. Now assume χ 6= 1.
Then χ = χg for some g, where

χg(α
j) = exp(

2πi

p
tr(αj+g))

and tr : Fq → Fp is the trace function. If µ is any multiplicative character of
order e (say, µ(αj) = ζj , where ζ = exp( 2πi

e )), then

e−1∑
i=0

µi(x) =

{
e if µ(x) = 1
0 otherwise.

Hence,

θ(χg) =
∑
d∈D

χg(d) =
∑
j∈J

∑
y∈K

χj+g(y) =
1

e

∑
j∈J

∑
x∈F∗q

χj+g(x)

e−1∑
i=0

µi(x) =

=
1

e

∑
j∈J

(−1 +

e−1∑
i=1

∑
x6=0

χj+g(x)µi(x)) =
1

e

∑
j∈J

(−1 +

e−1∑
i=1

µ−i(αj+g)Gi)

where Gi is the Gauss sum
∑
x 6=0 χ0(x)µi(x).

In a few cases these sums can be evaluated.

Proposition 7.3.1 (Stickelberger and Davenport & Hasse; see [553])
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Suppose e > 2 and p is semiprimitive mod e, i.e., there exists an l such that
pl ≡ −1 (mod e). Choose l minimal and write f = 2lt. Then

Gi = (−1)t+1εit
√
q,

where
ε =

{
−1 if e is even and (pl + 1)/e is odd
+1 otherwise.

Under the hypotheses of this proposition, we have
e−1∑
i=1

µ−i(αj+g)Gi =

e−1∑
i=1

ζ−i(j+g)(−1)t+1εit
√
q =

{
(−1)t

√
q if r 6= 1,

(−1)t+1√q(e− 1) if r = 1,

where r = rg,j = ζ−j−gεt (so that re = εet = 1), and hence

θ(χg) =
u

e
(−1 + (−1)t

√
q) + (−1)t+1√q .#{j ∈ J | rg,j = 1}.

If we abbreviate the cardinality in this formula with # then: If εt = 1 then
# = 1 if g ∈ −J (mod e), and # = 0 otherwise. If εt = −1 (then e is even and
p is odd) then # = 1 if g ∈ 1

2e− J (mod e), and # = 0 otherwise. We proved:

Theorem 7.3.2 ([54], [146]) Let q = pf , p prime, f = 2lt and e | pl + 1 | q − 1.
Let u = |J |, 1 ≤ u ≤ e − 1. Then the graphs ΓJ are strongly regular with
eigenvalues

k = q−1
e u with multiplicity 1,

u
e (−1 + (−1)t

√
q) with multiplicity q − 1− k,

u
e (−1 + (−1)t

√
q) + (−1)t+1√q with multiplicity k.

The above construction can be generalized.

7.3.1 The Van Lint-Schrijver graphs
Van Lint& Schrijver [524] use the above setup in case e is an odd prime,
and p primitive mod e (so that l = (e− 1)/2 and f = (e− 1)t), and notice that
the group G consisting of the maps x 7→ axp

i

+ b, where a ∈ K and b ∈ F and
i ≥ 0 acts as a rank 3 group on F . Thus one obtains rank 3 graphs for u = 1,
and strongly regular graphs for arbitrary u.

7.3.2 The Hill graph
The cap of size 78 in F6

4 found by Hill [428] corresponds to a strongly regular
graph with parameters (4096, 234, 2, 14). It is obtained from the above setup
for q = 212, e = 35, and J = {0, 7}.

7.3.3 The De Lange graphs
De Lange [510] found that one gets strongly regular graphs in the following
three cases (that are not semiprimitive).

p f e J
3 8 20 {0, 1, 4, 8, 11, 12, 16}
3 8 16 {0, 1, 2, 8, 10, 11, 13}
2 12 45 {0, 5, 10}

This latter graph can be viewed as a graph with vertex set F3
q for q = 16 such

that each vertex has a unique neighbor in each of the q2 +q+1 = 273 directions.
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7.3.4 Generalizations

The examples given by De Lange and by Ikuta & Munemasa [453, 454]
(p = 2, f = 20, e = 75, J = {0, 3, 6, 9, 12} and p = 2, f = 21, e = 49,
J = {0, 1, 2, 3, 4, 5, 6}) and the sporadic cases of the Schmidt-White Conjecture
7.2.1 were generalized by Feng & Xiang [322], Ge, Xiang & Yuan [340],
Momihara [568], Wu [745], Momihara & Xiang [570], and Momihara [569],
who find several further infinite families of strongly regular graphs. The first two
papers use results on Gauss sums for the case when 〈p〉 does not contain −1 but
has index 2 or 4 in (Z/eZ)∗. Momihara [568] uses relative Gauss sums. Wu
[745] treats the case of higher even index. Momihara [569] generalizes [44] (but
has a typo in the stated values for λ, µ; for example, the sporadic graph found
on the last page has parameters (v, k, λ, µ) = (q2, r(q+1),−q+r(r+3), r(r+1)),
where q = 77 and r = 35(q − 1)/58).

For more on Gauss sums, see the monograph [62].

7.3.5 Amorphic association schemes

An association scheme (X, {R0, . . . , Rd}) with d classes is called amorphic if
every fusion (X, {S0, . . . , Se}) (where R0 = S0 is the identity relation, the Si
partition X ×X, and each Si is the union of some Rj) is again an association
scheme. In an amorphic association scheme all relations are strongly regular
graphs. The setting of Theorem 7.3.2 yields amorphic association schemes with
e classes. For a survey, see Van Dam & Muzychuk [253].

7.3.6 Self-complementary graphs and Peisert graphs

A graph is called self-complementary when it is isomorphic to its complement.
For example, the path P4 (with 4 vertices and 3 edges) is self-complementary.
Mathon [548] found all self-complementary strongly regular graphs on at most
49 vertices. For earlier work, see Rosenberg [631].

A graph is called symmetric when its group is transitive on its vertices and
edges. Of course a self-complementary symmetric graph is strongly regular.
Peisert [613] classified the self-complementary symmetric graphs. These turn
out to be (i) the Paley graphs, (ii) the graphs ΓJ constructed above for q = p2t,
where p ≡ 3 (mod 4), e = 4, and J = {0, 1} so that u = 2, l = 1, and (iii) one
graph on 232 vertices. We call these the Paley graphs of order q, the Peisert
graphs of order q, and the sporadic Peisert graph. For (i) and (iii), see §7.4.4
and §10.70. In case (ii), the full automorphism group has size fq(q − 1)/4 for
q = pf , q 6= 32, 72, 34 and is 2, 3, 6 times as large in the three exceptional cases.

7.4 One-dimensional affine rank 3 groups

Let q be a prime power, say q = pr, where p is prime. Consider the 1-dimensional
semilinear group G = ΓL(1, q) acting on the nonzero elements of Fq. It consists
of the maps ta,i : x 7→ axσ, where a 6= 0 and σ = pi.

Foulser & Kallaher ([330], §3) determined which subgroups H of G have
precisely two orbits. We need some preparation.
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7.4.1 Divisibility

For a prime p, let pa||x mean that pa|x and pa+1 - x.

Lemma 7.4.1 Let x, s, t, a be integers with x > 1, s, t > 0 and a ≥ 0. Let u be
an odd prime such that u|xs − 1 and u - t. Then ua||(xstua − 1)/(xs − 1).

Proof. Since

xstu
a − 1

xs − 1
=

xstu
a − 1

xstua−1 − 1
. . .

xstu
2 − 1

xstu − 1

xstu − 1

xst − 1

xst − 1

xs − 1

it suffices to consider the case a = 1, t = 1 and the case a = 0. Write xs = ku+1.
Then (xse − 1)/(xs − 1) = ((1 + ku)e − 1)/(ku) =

∑e
i=1

(
e
i

)
(ku)i−1, and this is

congruent u (mod u2) for e = u, and congruent t (mod u) for e = t. �

For u = 2 one has ((1+2k)2−1)/(2k) = 2+2k, which has additional factors
2 when k is odd.

Lemma 7.4.2 Let x, s, t, a be integers with x > 1 and s, t, a > 0. If x and t are
odd and 2b+1||xs + 1, then 2a+b||(xst2a − 1)/(xs − 1). �

Lemma 7.4.3 Let x > 1 and s,m > 0 be integers such that each prime divisor
of m divides xs − 1. Then m | (xms − 1)/(xs − 1). �

We shall write ordmx for the order of x in the multiplicative group (of order
φ(m)) of residues mod m, coprime with m.

7.4.2 Subgroups of ΓL(1, q) with two orbits

Let q = pr, where p is prime, and let H be a subgroup of ΓL(1, q). It acts on F∗q .
In this section we determine in what cases this action has precisely two orbits.
All results are due to Foulser & Kallaher [330].

Lemma 7.4.4 Let H be a subgroup of ΓL(1, q). Then H = 〈tb,0〉 for suitable
b, or H = 〈tb,0, tc,s〉 for suitable b, c, s, where s|r and c(q−1)/(ps−1) ∈ 〈b〉.

Proof. The subgroup of all elements ta,0 in H is cyclic and has a generator
tb,0. If this was not all of H, then H/〈tb,0〉 is cyclic again, and has a generator
tc,s with s|r. Since tc,si = tcj ,is where j = 1 + ps + p2s + · · ·+ p(i−1)s, it follows
for i = r/s that c(q−1)/(ps−1) ∈ 〈b〉. �

Theorem 7.4.5 H = 〈tb,0〉 has two orbits if and only if q is odd and H consists
precisely of the elements ta,0 with a a square in F∗q .

Proof. Let b have multiplicative order m. Then m|(q − 1), and 〈tb,0〉 has d
orbits, where d = (q − 1)/m. �

Let b have order m and put d = (q − 1)/m. Choose a primitive element
ω ∈ F∗q with b = ωd. Let c = ωe.
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Theorem 7.4.6 H = 〈tb,0, tc,s〉 (where s|r and d | e(q−1)/(ps−1)) has two or-
bits of different lengths n1, n2, where n1 < n2, n1 + n2 = q − 1, if and only if
(0) n1 = m1m, where (1) the prime divisors of m1 divide ps − 1, and (2)
v := (q − 1)/n1 is an odd prime, and pm1s is a primitive root mod v, and (3)
gcd(e,m1) = 1, and (4) m1s(v − 1)|r.

Proof. Let P0, . . . , Pd−1 be the orbits (of size m each) of 〈tb,0〉. Then tc,s
permutes the Pi. The group H will have two orbits of lengths n1, n2 precisely
when 〈tc,s〉 has two orbits on {P0, . . . , Pd−1} of lengths m1,m2, where n1 =
m1m, n2 = m2m.

Recall that tc,si = tcj ,is where j = (pis− 1)/(ps− 1). The element tc,si fixes
Pk (where ωk ∈ Pk) if and only if d | ej + k(pis − 1). Let g = gcd(d, pis − 1).
There are fixed Pk only when g|ej, and if this is the case there are precisely g
fixed sets Pk.

For i = m1 the element tc,si fixes precisely m1 of the Pk, and we find
m1 = gcd(d, pm1s − 1) | ej = e(pm1s − 1)/(ps − 1). In particular, m1|d.

(1) For i < m1 the element tc,si fixes no Pk, so gcd(d, pis−1) - e(pis−1)/(ps−
1). Let k1 (resp. k2) be the products of the prime powers ua in m1 where u does
(resp. does not) divide ps − 1. Then m1 = k1k2, and k1|(pk1s − 1)/(ps − 1) by
Lemma 7.4.3. In order to show (1) we have to show that m1 = k1. If not, then
k1 < m1 and we can use the nondivisibility for i = k1. Since k1|m1|d, we can
write gcd(d, pk1s − 1) = k1k3, where k3|k2 since gcd(d, pk1s − 1) | gcd(d, pm1s −
1) = m1 = k1k2. It follows that the primes in k3 are not in ps − 1, so that
k3|(pk1s − 1)/(ps − 1), contradicting the nondivisibility.

(2) Since v = (q − 1)/n1 = d/m1, this is an integer, and m2 = (v − 1)m1,
so v > 2. The element tc,sim1 fixes precisely m1 of the Pk for 1 ≤ i ≤ v − 2,
but fixes them all for i = v − 1. It follows that gcd(d, pim1s − 1) = m1 for
1 ≤ i ≤ v − 2, and gcd(d, p(v−1)m1s − 1) = d. If gcd(m1, v) = 1, this says that
ordvp

m1s = v − 1, so that v − 1 ≤ φ(v), and v is prime, as desired. Let u be
a prime factor of gcd(m1, v), so that d contains more factors u than m1. Then
u|ps − 1 by (1), and if u 6= 2 then by Lemma 7.4.1 (v − 1)m1 contains more
factors u than m1, so that u|v−1, a contradiction. Hence u = 2. Since p2m1s−1
contains more factors 2 than pm1s − 1, we have v = 3, contradicting u | v.

From ordvp
m1s = v − 1 it follows immediately that gcd(m1s, v − 1) = 1, so

that m1, s and d are all odd. We saw that gcd(m1, v) = 1.
(3) Let u be a prime factor of gcd(m1, e) and i = m1/u. Then i is odd, and

all prime factors of i divide ps−1. By Lemma 7.4.3, gcd(d, pis−1) | gcd(d, pm1s−
1) = m1 = ui | e(pis − 1)/(ps − 1), contradicting nondivisibility for i.

(4) The orbit size m2 = m1(v − 1) divides the order of tc,s in its action on
the Pk, which is r/s.

That proved the necessity of (0)–(4). Conversely, assume (0)–(4). We
investigate the number of fixed sets Pk under the action of tc,si for different
i.

First, look at i = m1w with 1 ≤ w < v − 1. By (1) and Lemma 7.4.3,
m1 | (pm1s−1)/(ps−1), and by (2) v - pis−1, and since d = vm1 it follows that
gcd(d, pis − 1) = m1. It follows that for these i the element tc,si fixes precisely
m1 of the sets Pk.

Next, look at i = m1(v − 1). We have gcd(d, pis − 1) = d | (pis − 1)/(ps − 1)
so the element tc,si fixes all sets Pk.
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Finally, consider the case m1 - i. Let u be a prime with ua||m1 and ub||i
with b < a. (Then u is odd since, as we saw, (2) implies that m1 is odd; also,
by (3), u - e.) Now ub+1 | gcd(d, pis−1) and ub||e(pis−1)/(ps−1) so that there
are no fixed sets Pk for these i.

Since d = m1 + (v − 1)m1, it follows that tc,s has precisely two orbits (of
lengths m1 and (v − 1)m1) on {P0, . . . , Pd−1}. �

That settled the case of two orbits of different lengths. Next consider that of
two orbits of equal length. As before, let b have order m and put d = (q−1)/m.
Choose a primitive element ω ∈ F∗q with b = ωd. Let c = ωe.

Theorem 7.4.7 H = 〈tb,0, tc,s〉 (where s|r and d | e(q−1)/(ps−1)) has exactly
two orbits of the same length (q − 1)/2 if and only if (0) (q − 1)/2 = m1m, (1)
the prime divisors of 2m1 divide ps − 1, (2) no odd prime divisor of m1 divides
e, (3) m1s|r, (4) one of the following cases applies: (i) m1 is even, ps ≡ 3
(mod 8), and e is odd, (ii) m1 ≡ 2 (mod 4), ps ≡ 7 (mod 8), and e is odd, (iii)
m1 is even, ps ≡ 1 (mod 4), and e ≡ 2 (mod 4), (iv) m1 is odd and e is even.

Proof. As before, let P0, . . . , Pd−1 be the orbits (of size m) of 〈tb,0〉. The
group H will have two orbits of equal length (q− 1)/2 precisely when 〈tc,s〉 has
two orbits on {P0, . . . , Pd−1} of equal length m1 = d/2, where (q−1)/2 = m1m.

Recall that tc,si = tcj ,is where j = (pis− 1)/(ps− 1). The element tc,si fixes
Pk if and only if d | ej + k(pis − 1). Let g = gcd(d, pis − 1). There are fixed Pk
only when g|ej, and if this is the case there are precisely g fixed sets Pk.

For i = m1 all Pk are fixed, so d | pm1s − 1 and d | e(pm1s − 1)/(ps − 1). We
shall use twice below that if u is an odd divisor of m1, then all factors 2 in d
are in e(p(m1/u)s − 1)/(ps − 1), since (pm1s − 1)/(p(m1/u)s − 1) is odd.

(1) Since q−1 is even, p is odd. Let k1 (resp. k2) be the products of the prime
powers ua in m1 where u does (resp. does not) divide ps − 1. Then m1 = k1k2,
and k1 | (pk1s−1)/(ps−1) by Lemma 7.4.3. Since 2k1 | d and 2k1 | pk1s−1, we can
write gcd(d, pk1s− 1) = 2k1k3, where k3|k2 since gcd(d, pk1s− 1) | gcd(d, pm1s−
1) = 2m1 = 2k1k2. It follows that the primes in k3 are not in ps − 1, so that
gcd(d, pk1s − 1) = 2k1k3 | e(pk1s − 1)/(ps − 1), since k2 is odd. This shows that
for i = k1 the element tc,si has fixed points, and therefore k1 = m1.

(2) Let u be an odd prime factor of gcd(m1, e). By part (1), 2u | ps − 1. Let
i = m1/u. By Lemma 7.4.3, i | (pis− 1)/(ps− 1), so that d = 2ui | pis− 1. Then
gcd(d, pis − 1) = 2ui | e(pis − 1)/(ps − 1) contradicting nondivisibility.

(3) The orbit size m1 divides the order of tc,s in its action on the Pk, which
is r/s.

(4) Since d | e(pm1s − 1)/(ps − 1) and d is even, e must be even if m1 is odd
(case (iv)). Let m1 be even. Write 2a||m1 with a ≥ 1, so that 2a+1||d. Let
2b+1||(ps + 1) and 2c||e and 2h||(ps − 1). Then b + h ≥ 2 since 8 | (p2s − 1).
Since gcd(d, p(m1/2)s − 1) - e(p(m1/2)s − 1)/(ps − 1), the LHS has a single factor
2 more than the RHS. If a ≥ 2, then 2a−1+b+c||e(p(m1/2)s − 1)/(ps − 1), and
gcd(d, p(m1/2)s − 1) = d (since p(m1/2)s − 1 is divisible by m1/2 = d/4 and by
2a−1+b+h), so a+ b+ c = a+ 1, and we have case (i) or (iii). If a = 1, so that
m1/2 is odd, then c+ 1 = min(2, h). Now if b = 0 then c = 1, case (iii). If b = 1
then c = 0, case (i). If b ≥ 2, we have case (ii).

That proved the necessity of (0)–(4). Conversely, assume (0)–(4). By (1), p
is odd. We investigate the number of fixed sets Pk under the action of tc,si for
different i.
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First, look at i = m1. We want to show that all Pk are fixed, that is, that
(a) gcd(d, pm1s − 1) = d and (b) d|e(pm1s − 1)/(ps − 1). By (1) and Lemma
7.4.3 we have m1|(pm1s − 1)/(ps − 1). Since d = 2m1 and p is odd, this implies
(a). For (b) we only have to check the powers of 2. If e is even, then it provides
the needed extra factor 2. Otherwise, by (4), m1 is even and 4|ps + 1, and we
are done by Lemma 7.4.2.

Next, look at i = m1/u where u is prime. We want to show that no Pk
is fixed, that is, that gcd(d, pis − 1) - e(pis − 1)/(ps − 1). If u is odd, then
this nondivisibility follows from (1) and (2) and Lemma 7.4.1. If u = 2,
nondivisibility follows from (4). It follows that the orbit of each Pk has size
m1. �

7.4.3 One-dimensional affine rank 3 groups

Let q = pr be a prime power, where p is prime. Consider the group G =
AΓL(1, q) consisting of the semilinear maps x 7→ axσ + b on Fq. Let T be the
subgroup of size q consisting of the translations x 7→ x+b. The previous section
provides a classification of the rank 3 subgroups of G that contain T .

The graphs from Theorem 7.4.5 are the Paley graphs, discussed further below
in §7.4.4. The (rank 3) VanLint-Schrijver graphs from §7.3.1 are the special case
of Theorem 7.4.6 where s = 1, e = 0, m1 = 1. The Peisert graphs from §7.3.6
are the special case of Theorem 7.4.7 where s = 1, e = 1, m1 = 2, d = 4.

Muzychuk [581] determined all graphs Γ with vertex set Fq such that G ∩
Aut Γ acts as a rank 3 group on Γ, and finds that these are the Paley graphs,
the VanLint-Schrijver graphs (and complements), and the Peisert graphs.

7.4.4 Paley graphs

Construction

The Paley graph of order q has as vertex set the finite field Fq of order q, where
q ≡ 1 (mod 4), and two vertices are adjacent when their difference is a square
in the field.

Parameters

The Paley graph P (q) of order q = 4t + 1 is strongly regular with parameters
(v, k, λ, µ) = (4t + 1, 2t, t − 1, t). It has eigenvalues k and (−1 ± √q)/2 with
multiplicities 1 and (q − 1)/2 (twice).

Automorphism group

Let q = pe, where p is prime. The full group of automorphisms of P (q) consists
of the maps x 7→ axσ + b where a, b ∈ Fq, a a nonzero square, and σ = pi with
0 ≤ i < e (Carlitz [186]). It has order eq(q − 1)/2.

The Paley graph P (q) is self-complementary. The map x 7→ ax, where a is
a nonsquare, maps P (q) to its complement.

The subgraph Π of P (q) induced on the neighbors of 0 has full automorphism
group consisting of the maps x 7→ ax±σ where a is a nonzero square and σ = pi

with 0 ≤ i < e (Muzychuk &Kovács [582]). It has order e(q−1) for q > 9. For
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q = 5 and q = 9 the group is only half as large because in the first case x 7→ x−1

is the identity, while in the second case x 7→ x−1 is the field automorphism
x 7→ x3.

When q = p is prime, the Paley graph has a regular cyclic group of auto-
morphisms. There are no other such primitive strongly regular graphs ([489],
[108]). See also [109].

Independence and chromatic numbers

Since the Paley graphs are self-complementary, bounds for cliques are equivalent
to bounds for cocliques.

The Hoffman upper bound for the size of cliques and cocliques is √q. If q is
a square then the subfield of size √q is a clique of this size, and Blokhuis [72]
showed that every clique or coclique of size √q is the affine image of a subfield.
The translates of this subfield form a partition into cliques (hence a partition
into cocliques for the complementary graph). One finds that if q is a square,
then the independence number α and the chromatic number χ are given by
α = χ =

√
q.

If q is prime, say q = p, the best upper bound known is α ≤ 1
2 (
√

2p− 1 + 1)
([413], see also [290]). Equality holds for p = 5, 13, 41. For nonsquare prime
powers q = p2e+1 a similar bound (a bit more than

√
q/2) was proved in [194].

Concerning lower bounds, one has α > ( 1
2 +o(1)) log2 q ([209]). For infinitely

many primes q the smallest quadratic nonresidue is Ω(log q log log log q) ([362]),
and this is a lower bound for α.

James Shearer [645] computed the independence numbers of the Paley graphs
of order p, p a prime, p < 7000. Geoffrey Exoo [313] extended that table beyond
order 16000. Below we present a small table. The upper bounds on χ come from
an actual coloring, the lower bounds from χ ≥ dv/αe. The chromatic numbers
for q = 125, 173, and q ≥ 197 are due to G. Exoo. For q < 16000, the values of
α grow roughly like 1

10 (log2 q)
2.

q 5 9 13 17 25 29 37 41 49 53 61 73 81 89 97
α 2 3 3 3 5 4 4 5 7 5 5 5 9 5 6
χ 3 3 5 6 5 8 10 9 7 11 13 15 9 18 17

q 101 109 113 121 125 137 149 157 169 173 181 193 197
α 5 6 7 11 7 7 7 7 13 8 7 7 8
χ 21 19 17 11 18 20 22 23 13 22 26 28 25

q 229 233 241 257 269 277 281 293 313 317 14797 15461
α 9 7 7 7 8 8 7 8 8 9 27 19
χ 26 or 27 34 35 37 34 35 41 37 40 36

Table 7.4: Independence and chromatic numbers of small Paley graphs

p-rank

Let q = pe. We have rkp(A+ 1
2I − bJ) = (p+1

2 )e for all b. See also §9.3.
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Locally Paley graphs

For q = 5, the Paley graph is a pentagon, and the unique connected locally
pentagon graph is the icosahedron. For q = 9 the Paley graph is the 3 × 3
grid, and there are precisely two connected locally 3 × 3 graphs, namely the
Johnson graph

(
6
3

)
on 20 vertices, and the complement of the 4 × 4 grid on 16

vertices ([123], p. 258). For all q 6= 9 there is a unique connected locally P (q)
graph, namely the Taylor extension of P (q). This graph is distance-transitive,
with intersection array {q, (q − 1)/2, 1; 1, (q − 1)/2, q} (an antipodal 2-cover of
the complete graph Kq+1) and with full automorphism group 2×PΣL(2, q), cf.
[123], p. 15 and p. 228.

That these are all locally Paley graphs was shown for 13 ≤ q ≤ 41 in [160],
and for q > 41 in [119] under a hypothesis that was proved in [582].

Ramsey numbers

The Ramsey number R(m,n) is the minimum number of vertices v0 such that
any graph of size v ≥ v0 contains a clique of size m or a coclique of size n. It
follows that if P (q) has independence number α, then R(α+ 1, α+ 1) > q and
(using the above locally Paley graphs) R(α + 2, α + 2) > 2q + 2. Using q =
5, 17, 101, 281 one finds R(3, 3) ≥ 6, R(4, 4) ≥ 18, R(6, 6) ≥ 102, R(7, 7) ≥ 205,
R(8, 8) ≥ 282, R(9, 9) ≥ 565, and these are the sharpest bounds known today.
See also [644].

Quasi-randomness

The Paley graphs P (q) are fully deterministic, but exhibit the behavior one
expects from random graphs. This is caused by the large eigenvalue gap:
the other eigenvalues are much smaller in absolute value than the valency.
Chung, Graham & Wilson [196] discuss a number of equivalent properties,
each implying quasi-random behavior, where the Paley graphs satisfy these
properties. See also [69], [84] and §8.17.2.

Name

Jones [467] has an extensive historical discussion about the naming of these
graphs.

7.4.5 Power residue difference sets
Consider the graph with as vertex set the finite field Fq, where two vertices are
adjacent when their difference is an e-th power. W.l.o.g. e|(q− 1), and in order
to get an undirected graph we require that q is even or e|(q − 1)/2. Of course
we get the Paley graphs for e = 2, so assume e > 2.

Below we give a small table of the cases with q ≤ 210 where this yields a
connected strongly regular graph.

All of these are of the shape q = r2t, where r is a prime power, and e | r+ 1,
special cases of Theorem 7.3.2, with the single exception of (q, e) = (243, 11). In
particular, in all cases here except (q, e) = (243, 11) one can take u disjoint copies
of these graphs and get strongly regular graphs of valency uk for 1 ≤ u ≤ e− 1,
or take e disjoint copies and get Kq.

Other examples exist, like (q, e) = (312, 35). See also Conjecture 7.2.1.
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q e k λ µ comment
16 3 5 0 2 VO−4 (2)
25 3 8 3 2 5× 5
49 4 12 5 2 7× 7
64 3 21 8 6 H2(2, 3)

81 4 20 1 6 VO−4 (3)
81 5 16 7 2 9× 9
121 3 40 15 12
121 4 30 11 6
121 6 20 9 2 11× 11
169 7 24 11 2 13× 13
243 11 22 1 2 §10.55
256 3 85 24 30
256 5 51 2 12 VO−4 (4)
289 3 96 35 30
289 6 48 17 6
289 9 32 15 2 17× 17
361 4 90 29 20
361 5 72 23 12
361 10 36 17 2 19× 19
529 3 176 63 56

q e k λ µ comment
529 4 132 41 30
529 6 88 27 12
529 8 66 23 6
529 12 44 21 2 23× 23
625 3 208 63 72
625 6 104 3 20 VO−4 (5)
625 13 48 23 2 25× 25
729 4 182 55 42
729 7 104 31 12 H3(2, 3)
729 14 52 25 2 27× 27
841 3 280 99 90
841 5 168 47 30
841 6 140 39 20
841 10 84 29 6
841 15 56 27 2 29× 29
961 4 240 71 56
961 8 120 35 12
961 16 60 29 2 31× 31
1024 3 341 120 110
1024 11 93 32 6 H2(2, 5)

Table 7.5: Strongly regular power residue graphs

7.5 Icosahedrals

7.5.1 Orbits of A5 on the projective line and plane
For τ = 1

2 (1 +
√

5), consider the set S = {(0,±1,±τ), (±τ, 0,±1), (±1,±τ, 0)}
in R3. All inner products (x, y) for y 6= ±x equal ±τ , and we see that S is the
set of 12 vertices of an icosahedron. Its isometry group 2 × A5 has a matrix
representation with entries in Z[τ, 1

2 ].
Let q be a prime power. The group L2(q) has subgroups A5 if and only if

q ≡ 0, 1, or 4 (mod 5). Indeed, this is necessary, since |A5| = 60 must divide
|L2(q)|, and suffices, since for these q the field Fq contains an element τ satisfying
τ2 = τ + 1 and the above construction produces a 6-set in PG(2, q) stabilized
by a subgroup A5 of O3(q) ' L2(q) if q is odd. Finally, L2(4) ' L2(5) ' A5.

Such a 6-set in PG(2, q) stabilized by A5 is called an icosahedral.
Let q be odd. Then the plane PG(2, q) is partitioned into the q+ 1 points of

a conic, 1
2q(q + 1) exterior points, and 1

2q(q − 1) interior points. Consider the
action of A5 < O3(q). There are unique A5-orbits of sizes 6, 10, and 15, and at
most one orbit of sizes 12 and 20. The following table gives the conditions on q
for each possible quadratic character of the points in these orbits.

orbitsize isotropic exterior interior
6 0 (mod 5) 1 (mod 5) −1 (mod 5)
10 3 (mod 6) 1 (mod 6) −1 (mod 6)
15 - 1 (mod 4) −1 (mod 4)
12 1 (mod 10) - -
20 1 (mod 6) - -

The remaining orbits have sizes 30 or 60. For q = 5, 9, 11, 19, 29, 59, the
group A5 is transitive on the conic. For q = 25, 31, 41, 49, 71, 79, 89 the group
A5 has two orbits on the conic (of sizes 6 + 20, 12 + 20, 12 + 30, 20 + 30, 12 + 60,
20 + 60, 30 + 60, respectively). It follows that in these cases one finds a rank 3
graph on q2 vertices with one of these orbits at infinity.

For q = 16, 64, 125 the group A5 has orbits of sizes 5 + 12, 5 + 60, 6 + 60 + 60
on the conic, where in the last case these are fused to 6 + 120 in S5. Again this
leads to rank 3 graphs.

See also §10.89D and Theorem 11.4.3.
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7.5.2 Orbits of S4 on the projective line
One can similarly look at S4-orbits on the projective line PG(1, q). The group
L2(q) contains (two conjugacy classes of) subgroups S4 precisely when q ≡ ±1
(mod 8). The group PGL2(q) contains (a single conjugacy class of) subgroups
S4 precisely when q is not a power of 2.

The orbit sizes of S4 on PG(1, q) are uniquely determined by the fact that
their sum is q + 1 and the sizes are among 4, 6, 8, 12, 24, where only 24 may
be repeated and 4, 8 do not occur together. It follows that 4 occurs for q ≡ 3, 9
(mod 24), 6 occurs for q ≡ 1 (mod 4), 8 occurs for q ≡ 1 (mod 6), and 12 occurs
for q ≡ 1, 11, 17, 19 (mod 24).

The group S4 is transitive for q = 3, 5, 7, 11, 23. It has two orbits (with sizes
determined by the above) for q = 9, 13, 17, 19, 27, 29, 31, 47. It follows that in
these cases one finds a rank 3 graph on q2 vertices with one of these orbits at
infinity. For q = 7, 23 the single S4-orbit splits into two A4-orbits. Again that
leads to rank 3 graphs. See also Theorem 11.4.4.

7.6 Bent functions
Bent functions are maximally nonlinear Boolean functions. They have applica-
tions e.g. in coding theory and cryptography.

Given F : Zm2 → R, let its Hadamard transform be the map F ∗ : Zm2 → R
defined by F ∗(w) =

∑
x(−1)(x,w)F (x), where (x,w) =

∑
i xiwi. Then F ∗∗ =

2mF . Given f : Zm2 → Z2, let its Walsh transform be F ∗, where F is defined by
F (x) = (−1)f(x).

A function f : Zm2 → Z2 is called a bent function when the equation f(x+a)−
f(x) = b has 2m−1 solutions x for all nonzero a and all b. For F (x) = (−1)f(x)

this means that
∑
x F (x)F (x+ a) = 0 for all nonzero a.

Proposition 7.6.1 Equivalent are
(i) f is a bent function,
(ii) |F ∗(w)| = 2m/2 for all w,
(iii) the matrix (F (x+ y))x,y is a Hadamard matrix.

Proof. That (i) ⇔ (iii) is clear from the definitions. We prove (i) ⇔ (ii). If∑
x F (x)F (x + a) = 0 for a 6= 0, then F ∗(w)2 =

∑
x,y(−1)(x+y,w)F (x)F (y) =∑

x,a(−1)(a,w)F (x)F (x + a) =
∑
x F (x)2 = 2m. Conversely, if |F ∗(w)| = 2m/2

for all w, then 22m
∑
x F (x)F (x+a) =

∑
v,w,x F

∗(v)F ∗(w)(−1)(a,w)(−1)(v+w,x)

= 2m
∑
w(−1)(a,w)F ∗(w)2 = 22m

∑
w(−1)(a,w) = 0 if a 6= 0. �

It follows thatm is even. Form = 2, 4, 6, 8, 10 the number of bent functions is
2, 8, 896, 5425430528, 99270589265934370305785861242880 (according to OEIS
[661] (A004491); the last number is from Langevin & Leander [512]).

Let V = Fm2 be the m-dimensional vector space over F2. The first order
Reed-Muller code RM(1,m) is the code C (with vectors indexed by V ) gen-
erated by the all-one vector 1 together with the characteristic vectors of the
hyperplanes in V . Now C has length 2m, dimension m + 1, and minimum
weight 2m−1. The bent functions are the vectors at maximal distance from C.
A bent function has distance 2m−1 ± 2m/2−1 from each vector in C.



186 CHAPTER 7. CYCLOTOMIC CONSTRUCTIONS

Given a function f : Zm2 → Z2, let D = Df = {x ∈ Zm2 | f(x) = 1}. Let
Γ = ΓD be the graph on Zm2 defined by the difference set D, so that u ∼ v when
v − u ∈ D, i.e., when f(v − u) = 1. (Then Γ has loops if f(0) = 1.)

Proposition 7.6.2 (cf. [60], [61]) The spectrum of Γ consists of |D| and the
numbers − 1

2F
∗(a) for a 6= 0. Suppose f(0) = 0. The graph Γ is strongly regular

with λ = µ if and only if f is a bent function, and in that case has parameters
v = 2m, k = 2m−1 + ε2m/2−1, λ = µ = 2m−2 + ε2m/2−1, and eigenvalues
r, s = ±2m/2−1 and multiplicities f, g = 2m−1 ∓ 2m/2−1 − 1

2 (1 ± ε), where
ε ∈ {±1}.

Proof. For χ(d) = (−1)(a,d) we find
∑
d∈D χ(d) = 1

2

∑
x(−1)(a,x)(1−F (x)) =

− 1
2F
∗(a) if a 6= 0. The two nontrivial eigenvalues of a strongly regular graph

have the same absolute value precisely when λ = µ. �

Of course the parameters here are those of VOεm(2). The above large num-
bers show that there are many nonisomorphic examples.

There is a large literature, with many generalizations.



Chapter 8

Combinatorial constructions

This chapter collects constructions related to some combinatorial setting, where
the starting point is not a group. It discusses e.g. Hadamard and conference
matrices, Latin squares and various designs, partial geometries, two-graphs, and
spherical designs.

8.1 Regular Hadamard matrices with constant
diagonal

A Hadamard matrix is a matrix H of order n with entries ±1 such that HH> =
nI. It is called symmetric when H = H>. It is called regular when all row
sums are equal. If J denotes the all-1 matrix of order n, then all row sums
are a if and only if HJ = aJ . (It follows that JH = aJ and a2 = n.) The
matrix H = (hij) has constant diagonal when hii = e for all i and some fixed
e ∈ {±1}. Abbreviate the phrase ‘regular symmetric Hadamard matrix with
constant diagonal’ with RSHCD.

Let H be a RSHCD with parameters n, a, e. Then a2 = n so that a = ±
√
n.

The matrix −H is a RSHCD with parameters n,−a,−e, so that there are the
two essentially distinct cases ae > 0 and ae < 0. Put ae = ε

√
n with ε ∈ {±1},

and callH of type ε. If n > 1, then 4|n, so 2|a, say a = 2t. ThenA = 1
2 (J−eH) is

the adjacency matrix of a strongly regular graph (complete for (n, ε) = (4,−1))
with parameters

v = 4t2, k = 2t2 − εt, λ = µ = t2 − εt,

r = t, s = −t, f = 2t2 − t− (1− ε)/2, g = 2t2 + t− (1 + ε)/2.

And J − I −A = 1
2 (J + eH − 2I) is the adjacency matrix of the complementary

strongly regular graph with parameters

v = 4t2, k = 2t2 + εt− 1, λ = t2 + εt− 2, µ = t2 + εt,

r = t− 1, s = −t− 1, f = 2t2 + t− (1 + ε)/2, g = 2t2 − t− (1− ε)/2.
Conversely, graphs with these parameters yield RSHCDs.
We see that A is the incidence matrix of a square (4t2, 2t2 ± t, t2 ± t)-design

(and moreover is symmetric with zero diagonal). Designs with these parameters
are known as Menon designs.

187
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In [497] it is shown that the sum of the absolute values of the eigenvalues
(the ‘energy’) of a graph on n vertices is at most n(

√
n + 1)/2, with equality

precisely in the case of a graph corresponding to a RSHCD of negative type.
See also [379].

8.1.1 Examples
Constructions for RSHCDs were discussed in [719] and [137]. However, not all
details given there are correct, so we resurvey this area.

Let R be the set of pairs (n, ε) for which an RSHCD of order n and type ε ex-
ists.

Section 8D of Brouwer & Van Lint [137] is about RSHCDs. It is the
first place that kept track of the sign ε involved. It contains the recursive
construction

(m, δ), (n, ε) ∈ R ⇒ (mn, δε) ∈ R
and six direct constructions:

(i) (4,±1), (36,±1) ∈ R.

(ii) If there exists a Hadamard matrix of order m, then (m2, 1) ∈ R
([355], Theorem 4.4).

(iii) If both a− 1 and a+ 1 are odd prime powers, and 4|a, then (a2, 1) ∈ R
([355], Theorem 4.3).

(iv) If a+ 1 is a prime power, and there exists a symmetric conference matrix
of order a, then (a2, 1) ∈ R ([720], Corollary 17).

(v) If there is a set of t− 2 mutually orthogonal latin squares of order 2t, then
(4t2, 1) ∈ R.

(vi) Suppose we have a Steiner system S(2,K, V ) with V = K(2K − 1). If
we form the block graph, and add an isolated point, we get a graph in
the switching class of a regular two-graph. The corresponding Hadamard
matrix is symmetric with constant diagonal, but not regular. If this Steiner
system is invariant under a regular abelian group of automorphisms (which
necessarily has orbits on the blocks of sizes V , V , and 2K − 1), then by
switching with respect to a block orbit of size V we obtain a strongly
regular graph with parameters

v = 4K2, k = K(2K − 1), λ = µ = K(K − 1)

showing that (4K2, 1) ∈ R. Steiner systems S(2,K,K(2K−1)) are known
for K = 3, 5, 6, 7 or 2t, but only for K = 2, 3, 5, 7 are systems known that
have a regular abelian group of automorphisms. Thus we find (196, 1) ∈ R.
The required switching set also exists when the design is resolvable: take
the union of K parallel classes. Resolvable designs are known for K = 3
or 2t. ([100], Theorem 2.2.)

See also Bose & Shrikhande [99], Goethals & Seidel [355], §4, and Wallis
[719], §5.3.

More recent constructions:
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(vii) In Jørgensen & Klin [471] it is shown that (100,−1) ∈ R.

(viii) In Haemers [379] it is shown that if there exists a Hadamard matrix of
order m, then (m2,−1) ∈ R.

(ix) In Muzychuk & Xiang [583] it is shown that (4m4, 1) ∈ R for all m.

(x) In Haemers & Xiang [386] it is shown that (4m4,−1) ∈ R for all m.

8.1.2 Errata
Nathann Cohen and Dima Pasechnik and others implemented a large number of constructions
for strongly regular graphs in SageMath (cf. [208], [633]), and encountered flaws in various
descriptions.

Ad (iii)
In [137] the condition 4|a was omitted from (iii) above. But it seems necessary. (Here [137]
referred to [719], which gives the result without this condition in Theorem 5.11, and Corollary
5.12, and in the table on p. 454. It says ‘we strengthen a theorem of Goethals and Seidel’,
but the proof is wrong.)

After correction, (iii) becomes a special case of (ii).

Ad (iv)
Many of the parameter sets that would be produced by (iii) without the condition 4|a are also
produced by (iv). In this way one finds e.g. (676, 1) ∈ R and (900, 1) ∈ R. Now in [208] the
authors found that also (iv) was wrong, or at least could not be reproduced. The reference
for (iv) was [719], Corollary 5.16 which uses the construction of [719], Theorem 5.15. There
is a typo in that theorem: the expression given for H misses a minus-sign in front of the C in
the bottom-right entry. In [720] the expression is correct. So, construction (iv) stands. (The
construction uses Szekeres difference sets, and if one tries to find those in the original Szekeres
paper [674] one may stumble over another sign typo: in (4.2) the − should be a +.)

Ad (vi)
In the Handbook of Combinatorial Designs the chapter on Hadamard matrices [239] contains
(Theorem 1.44, p. 277) the statement

If there is a BIBD(u(2u − 1), 4u2 − 1, 2u + 1, u, 1), then there is a regular graphical
Hadamard matrix of order u2.
with a reference to [650]. Here ‘graphical’ means ‘symmetric with constant diagonal’. However,
that reference constructs the Hadamard matrix by observing that the block graph is strongly
regular with parameters (v, k, λ, µ) = (4u2−1, 2u2, u2, u2) and bordering its (−1, 1)-adjacency
matrix with a constant border, so that the resulting Hadamard matrix is not regular. In [355],
Theorem 4.5 and also in [719], Theorem 5.14 this same result is shown without the ‘regular’.
In [719], p. 454, construction GV is mistakenly starred.

In [386] the statement (196,±1) ∈ R is attributed to [456], p. 258. As we saw, (196, 1) ∈ R was
shown in [137] as application of [355], Theorem 4.5. It is still unknown whether (196,−1) ∈ R.
The proof of Theorem 8.2.26 (iii) in [456] is wrong. For [386], §5 this means that the smallest
open case again is n = 196.

8.2 Conference matrices and conference graphs

Conference matrices
A conference matrix of order n is an n×n matrix C with diagonal entries 0 and
off-diagonal entries±1 such that C>C = (n−1)I. This property does not change
if we multiply some rows or columns by −1. Let a normalized conference matrix
be such a matrix where the off-diagonal entries of the first row and column are
all +1. Let S be the matrix obtained from a normalized conference matrix by
deleting the first row and column. It is called the core of C.
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Theorem 8.2.1 (Delsarte, Goethals & Seidel [751]) If n > 1 then n is
even. If n ≡ 2 (mod 4), then S = S>. If n ≡ 0 (mod 4), then S = −S>.

Proof. Since C>C = (n − 1)I also CC> = (n − 1)I, and rows are mutually
orthogonal. Rows 1 and 2 of C agree in (n − 2)/2 positions, so n is even, say
n = 2m. Normalize C, and compare rows 2 and 3 in positions 4 up to n. Let
nεη be the number of these positions where row 2 has entry ε and row 3 η, where
ε, η ∈ {+,−}. If C23 = 1 = −C32, then the orthogonality of rows 1 and 2 gives
n+−+n++ = m−2; the orthogonality of rows 1 and 3 gives n−−+n+− = m−2;
and the orthogonality of rows 2 and 3 gives n−− + n++ = m − 2. Combining
these three equations yields 2n−− = m− 2, so that n ≡ 0 (mod 4).

Similarly, if C23 = C32, say C23 = C32 = 1, then n+− + n++ = m − 2 and
n−− + n+− = m− 1 and n−− + n++ = m− 2 so that 2n−− = m− 1 and n ≡ 2
(mod 4). �

Proposition 8.2.2 Let C = ( 0 1>

±1 S ) be a conference matrix of order n + 1.
Then S⊗S + I⊗J − J⊗I is the core of a conference matrix of order n2 + 1.

Proof. That C is a conference matrix of order n+ 1, is expressed by SS> =
nI − J , SJ = JS = 0, S> = ±S. �

Conference graphs
Strongly regular graphs with ‘half case’ parameters (v, k, λ, µ) = (4t+ 1, 2t, t−
1, t) are also known as conference graphs. If S is the Seidel matrix of such a
graph (of order v), then bordering it with a first column and top row of 1’s,
with 0 in the top left position, yields a symmetric conference matrix of order
n = v + 1, and conversely, starting with a symmetric conference matrix and
normalizing yields the Seidel matrix S of a strongly regular graph with ‘half
case’ parameters.

Theorem 8.2.3 (Belevitch [57], see also Van Lint & Seidel [525])
If (v, k, λ, µ) = (4t + 1, 2t, t − 1, t) are the parameters of a strongly regular

graph, then v is the sum of two squares.

For example, there is no strongly regular graph with parameters (21, 10, 4, 5)
because 21 is not the sum of two squares. Similarly, v = 33 is ruled out. Of
course for all prime powers v = 4t+ 1 one has the Paley graphs (and for v > 17
also further examples). The smallest example of a non-prime power v was given
by Mathon [544], who constructed a family of examples including v = 45. An
example for the next smallest case, v = 65, was constructed by Gritsenko
[366]. The smallest open case is now v = 85. That is, it is unknown whether
there exists a symmetric conference matrix of order 86. For a recent survey, see
[37].

Switching

Given a conference matrix of order 2m+ 2, Proposition 8.2.2 yields conference
graphs of order (2m + 1)2. We can apply Proposition 1.1.4 and switch w.r.t.
the union of m pairwise disjoint (2m + 1)-cocliques and get strongly regular
graphs with parameters (v, k, λ, µ) = ((2m + 1)2 + 1,m(2m + 1),m2 − 1,m2).
For example, we find graphs with parameters (226, 105, 48, 49).
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8.3 Symmetric designs

8.3.1 Generalities
A square design, or symmetric design, is a 2-(v, k, λ) design with equally many
points as blocks. Thus, it has v blocks, and k blocks on each point, and λ(v−1) =
k(k − 1).

A necessary condition for existence is

Theorem 8.3.1 (Bruck, Chowla & Ryser [150, 195]) Suppose a symmetric
2-(v, k, λ) design exists. Then if v is even, k − λ is a square. If v is odd, then
the equation X2 = (k − λ)Y 2 + (−1)(v−1)/2λZ2 has a nontrivial solution.

This theorem is the consequence of the matrix equation A>A = (k−λ)I+λJ
for the point-block incidence matrix A. The first part is easy, since k+λ(v−1) =
k2, and (detA)2 = (k + λ(v − 1))(k − λ)v−1 is a square. For the second part,
see, e.g., [398], Theorem 10.3.1.

The adjacency matrix A of a strongly regular graph with µ = λ is the point-
block incidence matrix of a symmetric 2-(v, k, λ) design. If µ = λ + 2, then
A + I is the point-block incidence matrix of a symmetric 2-(v, k + 1, λ + 2)
design. Conversely, given such a design with a polarity where no (or all) points
are absolute, we find a strongly regular graph again.

The Bruck-Chowla-Ryser theorem is really a result on rational matrices M
satisfying M>M = aI + bJ . Now for a strongly regular graph with parameters
(v, k, λ, µ) if one putsM = 2A+(µ−λ)I, thenM2 = ((µ−λ)2−4(µ−k))I+4µJ ,
and one finds Theorem 8.2.3 again.

8.3.2 The McFarland difference sets
Let G be an abelian group, and D a subset such that |D ∩ (D + g)| = λ
for all nonzero g ∈ G. Then the design with point set G and set of blocks
{D + g | g ∈ G} is a symmetric 2-(v, k, λ) design, where v = |G| and k = |D|.
One says that D has multiplier −1 when it is fixed under d 7→ −d. In that
case the incidence matrix A = (Agh) indexed by points g and blocks D + h is
symmetric. Now if 0 /∈ D, then A is the adjacency matrix of a strongly regular
graph with parameters (v, k, λ, λ), and if 0 ∈ D, then A − I is the adjacency
matrix of a strongly regular graph with parameters (v, k − 1, λ− 2, λ).

Difference sets with multiplier −1 are rare, and McFarland conjectures that
the only possible parameters are (v, k, λ) = (4m2, 2m2 ±m,m2 ±m) (so-called
Hadamard difference sets) and (v, k, λ) = (4000, 775, 150). InMcFarland [554]
examples with these latter parameters are constructed. From these one finds
strongly regular graphs with the following parameters.

v k λ µ comment
a 4000 774 148 150 0 ∈ D
b 4000 775 150 150 0 /∈ D
c 4000 1935 910 960 Delsarte dual of (a)
d 4000 1984 1008 960 Delsarte dual of (b)
e 3999 1950 925 975 descendant of (c), (d)

The McFarland construction is as follows. Let V be an (s + 1)-dimensional vector space
over Fq , let r = qs+1−1

q−1
be the number of hyperplanes in V , and let K be any group of order
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r+1. For each hyperplane H, let eH be an arbitrary vector in V , and let kH be some element
of K, where the kH are distinct. Put G = V ×K and D =

⋃
H(H + eH) × {kH}. This is a

(v, k, λ) difference set with v = qs+1(r + 1), k = qsr and λ = qs q
s−1
q−1

.
(Indeed, |D∩ (D+ g)| = (r− 1)qs−1 = λ when g = (u, k) with k 6= 0, and |D∩ (D+ g)| =∑

H3u q
s = λ when g = (u, 0).)

If q = 5, s = 2, then r + 1 = 32 and we can take K to be an elementary abelian 2-group.
Take eH = 0 for all H. Now −1 is a multiplier, and 0 ∈ D when 0 is one of the kH .

8.4 Latin squares

8.4.1 Generalities

A Latin square of order n is an n × n array, such that each of the n rows and
n columns is a permutation of the same n-set. Two Latin squares A and B of
the same order n are called orthogonal when the n2 pairs of symbols (Aij , Bij)
are distinct (and hence take all possible values). A set of m MOLS (mutually
orthogonal Latin squares) of order n is a set of m Latin squares of order n,
pairwise orthogonal.

1234
2143
3412
4321

1234
3412
4321
2143

1234
4321
2143
3412

Table 8.1: Three MOLS of order 4

A transversal design TD(k;n) is a partial linear space with kn points and
k + n2 lines, with k lines (called groups) of size n forming a partition of the
point set, and n2 lines (called blocks) of size k, each meeting every group in a
single point.

Lemma 8.4.1 A set of m MOLS of order n is equivalent to a TD(m+ 2;n).

Proof. Given a set of m MOLS Ah of order n (1 ≤ h ≤ m), let the m + 2
groups be indexed by {1, . . . ,m, r, c}, each containing a copy of the symbol set
{1, . . . , n}. Let the n2 blocks correspond to the n2 positions ij. Let the block
belonging to ij contain the point (Ah)ij in group h, and points i, j in groups
r, c. One checks that this gives a 1-1 correspondence. �

Lemma 8.4.2 A set of m MOLS of order n > 1 does not exist for m ≥ n.
A set of n − 1 MOLS of order n is equivalent to a projective plane of order n
together with a designated point.

Proof. Consider the corresponding TD(m + 2;n). If P is a point outside a
block B, then P is on n blocks, m + 1 of which meet B. Hence m + 1 ≤ n. If
n = m+ 1 then any two blocks meet, and we obtain a projective plane of order
n by adding a ‘point at infinity’ to each group. �

Let N(n) be the maximum number of mutually orthogonal Latin squares of order n for
n ≥ 2. We see that N(n) ≤ n − 1, and that N(q) = q − 1 for prime powers q. It was shown
by Tarry [676] that N(6) = 1. Euler [309] conjectured that there do not exist two MOLS
of order n for any n ≡ 2 (mod 4), but this was disproved by Bose & Shrikhande [98], and
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together with Parker they proved that N(n) > 1 for n > 6 ([101]). It is known that N(12) ≥ 5
([466]) and N(14) ≥ 4 ([700]). For a table with lower bounds on N(n), see [1]. Here a small
table with lower bounds on N(n) for n < 100.

0 1 2 3 4 5 6 7 8 9
0 ∞ ∞ 1 2 3 4 1 6 7 8
10 2 10 5 12 4 4 15 16 5 18
20 4 5 3 22 7 24 4 26 5 28
30 4 30 31 5 4 6 8 36 4 5
40 7 40 5 42 5 6 4 46 10 48
50 6 5 5 52 5 6 7 7 5 58
60 5 60 5 8 63 7 5 66 5 6
70 6 70 7 72 5 7 6 6 6 78
80 9 80 8 82 6 6 6 6 7 88
90 6 7 6 6 6 6 8 96 6 8

There is some similarity with the problem of constructing sets of mutually unbiased bases
(MUBs)1. If n factors as

∏
qi where the qi are prime powers, and k = min qi + 1, then

there exists a TD(k;n) and also a set of k MUBs in Cn. The maximum number of mutually
unbiased bases in Cn is not larger than n+ 1, just like k ≤ n+ 1 for a TD(k;n) ([744]). See
also [667].

A net of degree k and order n is a partial linear space with n2 points and
kn lines, each of size n, where the lines are partitioned into k parallel classes.

Lemma 8.4.3 A net of degree k and order n is equivalent to a TD(k;n).

Proof. The points and blocks and groups of the transversal design correspond
to the lines and points and parallel classes of the net. �

Yet another equivalent structure is that of an orthogonal array. An OAλ(n, q,
t) is an n×N array, where N = λqt, with symbols in an alphabet of size q, such
that for any t rows each possible column occurs precisely λ times. One drops λ
when λ = 1, and t when t = 2. An OA(n, q) is equivalent to a TD(q;n).

8.4.2 Latin square graphs
Given a transversal design TD(m;n) with 2 ≤ m ≤ n, we construct a graph
known as a Latin square graph LSm(n) by taking its blocks as vertices, where
two blocks are adjacent when they meet. This graph is strongly regular with
parameters (v, k, λ, µ) = (n2,m(n− 1), (m− 1)(m− 2) + n− 2,m(m− 1)) and
spectrum k1 (n−m)f (−m)g, where f = m(n− 1) and g = (n+ 1−m)(n− 1).

We say that a strongly regular graph has Latin square parameters LSm(n)
when it has these parameters but is not necessarily derived from a transversal
design. Such graphs are also called pseudo Latin square graphs. We say that
a strongly regular graph has negative Latin square parameters NLm(n) when it
has parameters LS−m(−n) (that is, v = n2, k = m(n + 1), λ = m(m + 3) − n,
µ = m(m+ 1), r = m, s = m− n, f = (n+ 1)(n− 1−m), g = m(n+ 1)).

The complementary graph of a graph with parameters LSm(n) (and m < n)
has parameters LSn−m+1(n).

The graph LS2(n) is the n × n grid. It is uniquely determined by its
parameters for n 6= 4. For 2 < m < n − 1 there are many other graphs with
the same parameters, for example because there are many nonisomorphic Latin
squares and sets of mutually orthogonal Latin squares. But also other graphs
with the same parameters exist.

1Two bases {ui | 1 ≤ i ≤ n} and {vj | 1 ≤ j ≤ n} of Cn are called mutually unbiased if
|u∗i vj | =

1√
n

for all i, j.
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Cliques

Latin square graphs LSm(n) have maximal cliques of size n, meeting the Hoffman
bound. If n > (m − 1)2, then each edge lies in a unique clique of size n. For
smaller n this needs not be true.

For example, in the LS3(4) derived from the addition table of F4, each edge
lies in two 4-cliques. More generally, let q be a prime power and consider in
PG(3, q) the lines and points disjoint from a fixed line L. This is a TD(m;n)
for m = q + 1 and n = q2 and in the corresponding graph LSm(n) each edge
{M,N} lies in two n-cliques, one consisting of the lines missing L on the point
M ∩N , the other of the lines missing L in the plane 〈M,N〉.

If n = m these graphs are complete multipartite graphs Kn×n with nn

cliques of size n, nn−2 on each edge.
There do exist two MOLS of order 10, and one finds graphs with parameters

LS4(10) and maximal cliques of size 10. The Hall-Janko graph (cf. §10.32) also
has parameters LS4(10) but maximal cliques of size 4, hence is not a Latin
square graph.

Switching

The block graph of a TD(m;n) with n = 2m − 1 satisfies k = 2µ, and we can
apply Proposition 1.1.4. If there are 1

2 (n− 1) parallel classes (sets of n pairwise
disjoint blocks), and in particular, if a TD(m+1;n) exists, then switching yields
a strongly regular graph with parameters (n2+1, 1

2n(n−1), 1
4 (n−3)(n+1), 1

4 (n−
1)2). In particular this applies to odd prime powers n.

8.4.3 Transversal 3-designs

A transversal design TD(k;n) is pairwise balanced: two points from different
groups determine a unique block. When q is a power of 2, there exist triplewise
balanced designs 3TD(q + 2; q) with q + 2 groups of size q, and q3 blocks each
meeting all groups in a single point, such that three points from different groups
determine a unique block. Now there are q3 blocks, each point is on q2 blocks,
each pair of points from different groups is on q blocks.

An equivalent object is an (n,M, d) = (q + 2, q3, q) MDS-code, with q3 code words of
length q + 2 and mutual distance at least q. One sees that all distances are q or q + 2. A
construction as linear code is found by labeling the positions with Fq ∪ {σ, τ} and the code
words with triples (x, y, z) ∈ F3

q , where word (x, y, z) has entry x+ya+za2 at position a ∈ Fq ,
and entries y and z at positions σ and τ , respectively.

The block graph Γ (where blocks are adjacent when they have nonempty
intersection) is strongly regular with parameters v = q3, k = 1

2 (q + 2)(q2 − 1),
λ = 1

4 (q3 + 5q2−2q−8), µ = 1
4q(q+ 1)(q+ 2), r = 1

2 (q−2)(q+ 1), s = − 1
2q−1.

This is the Delsarte dual of the graph (with v = q3, k = (q − 1)(q + 2)) obtained from a
hyperoval at infinity.

The second subconstituent of Γ is strongly regular with parameters v =
1
2q(q−1)2, k = 1

4 (q−2)(q+2)(q+1), λ = 1
8q

2(q+5)−q−2, µ = 1
8q(q+1)(q+2),

r = 1
4 (q− 4)(q+ 1), s = − 1

2q− 1. For example, for q = 8 one finds (v, k, λ, µ) =
(196, 135, 94, 90).

See also Huang, Huang & Lin [444].
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8.5 Quasi-symmetric designs
A quasi-symmetric design is a 2-design such that the size of the intersection
of two distinct blocks takes two values. Consider a quasi-symmetric 2-(v, k, λ)
design, with block intersection numbers x, y, and assume that 1 < k < v. The
number of blocks on each point is r = λ(v− 1)/(k− 1) and the total number of
blocks is b = vr/k. Let N be the point-block incidence matrix. Let A be the 0-1
matrix indexed by the blocks with (B,C)-entry 1 precisely when |B ∩ C| = x.
Then NN> = rI + λ(J − I) and N>N = kI + xA+ y(J − I −A).

Now A is the adjacency matrix of a strongly regular graph. Indeed, NN>
has two different eigenvalues r − λ and kr, so N>N has three eigenvalues 0,
r − λ and rk, and also A = 1

x−y (N>N − (k − y)I − yJ) has three eigenvalues,

namely K = (r−1)k−(b−1)y
x−y , R = r−λ−k+y

x−y and S = −k−yx−y with multiplicities 1,
v − 1, and b− v, respectively.

We find a strongly regular graph with parameters (V,K,Λ,M) and eigen-
values R,S with multiplicities F,G where V = b and K,R, S are as above (for
x > y) so that F = v − 1 and G = b − v. The values of Λ,M follow from
R+ S = Λ−M and RS = M −K.

For example, the Steiner system S(4, 7, 23) has b = 253, r = 77, λ = 21. It
has block intersection sizes y = 1 and x = 3. The graph on the blocks, adjacent
when they meet in 3 points, is strongly regular with parameters (V,K,Λ,M) =
(253, 140, 87, 65) with spectrum 1401 2522 (−3)230 (cf. §10.56).

Complement
The complementary design (found by replacing each block by its complement) is
a quasi-symmetric 2-(v, v−k, b−2r+λ) design with block intersection numbers
v − 2k + x, v − 2k + y and the same graph.

History

Quasi-symmetric designs were introduced by Goethals & Seidel [354], [355].

8.5.1 The Calderbank-Cowen inequality
The following result allows one to express the number of blocks b of a quasi-
symmetric 2-design in terms of the parameters v, k, x, y.

Proposition 8.5.1 (Calderbank [167]) Every 1-(v, k, r) design with b blocks,
and two block intersection numbers x, y, satisfies

1− 1

b
≤ k(v − k)

v(v − 1)

(
(v − 1)(2k − x− y)− k(v − k)

(k − x)(k − y)

)
with equality if and only if the design is a 2-design. �

8.5.2 Neumaier’s inequality
Let Γ be the strongly regular graph on the blocks of a quasi-symmetric 2-(v, k, λ)
design (X,B) with block intersection numbers x, y, where blocks are adjacent
if they meet in x points. Let r = λ(v − 1)/(k − 1) be the replication number
(number of blocks on any point).
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Proposition 8.5.2 (Neumaier [589]) The sets of all blocks S(x) containing a
fixed point x are regular sets in Γ of size r, degree d = (λ−1)(k−1)−(r−1)(y−1)

x−y
and nexus e = λk−ry

x−y .

Proof. Clearly, |S(x)| = r. For B ∈ S(x), with dB neighbors in S(x), count
the number of pairs (y, C) with y 6= x and C 6= B and x, y ∈ C and y ∈ B. This
number is (k− 1)(λ− 1) and also dB(x− 1) + (r−dB − 1)(y− 1) so that d = dB
does not depend on B and has the stated value. Similarly, for B 6∈ S(x), with
eB neighbors in S(x), we find kλ = eBx+(r−eB)y, so that eB does not depend
on B and has the stated value. �

Proposition 8.5.3 (Neumaier [589]) The parameters of (X,B) satisfy

B(B −A) ≤ AC,

where

A = (v − 1)(v − 2), B = r(k − 1)(k − 2)

C = rd(x− 1)(x− 2) + r(r − 1− d)(y − 1)(y − 2).

Equality holds if and only if (X,B) is a 3-design.

Proof. For distinct points x, y, z, let λxyz denote the number of blocks con-
taining these three points. Fix x and sum over all ordered pairs y, z with x, y, z
distinct. One obtains

∑
1 = A,

∑
λxyz = B,

∑
λxyz(λxyz − 1) = C. Now

0 ≤
∑

(λxyz − B
A )2 = C +B − B2

A . �

For example, there is no 2-(24, 6, 10) design with x = 2, y = 0.

An equivalent inequality was given by Calderbank as a consequence of the linear
programming bound in the Johnson scheme.

Proposition 8.5.4 (Calderbank [167]) Let x′ = k− x and y′ = k− y. Then

(v − 1)(v − 2)x′y′ − k(v − k)(v − 2)(x′ + y′) + k(v − k)(k(v − k)− 1) ≥ 0,

with equality if and only if the design is a 3-design. �

An equivalent inequality was derived by Hobart as a consequence of inequalities
for coherent configurations.

Proposition 8.5.5 (Hobart [430]) The parameters of a quasisymmetric de-
sign (and its strongly regular intersection-x graph) satisfy

v − 2

v

(
1 +

R3

K2
− (R+ 1)3

(b−K − 1)2

)
− (v − 2k)2λ

k2(k − 1)(v − k)
≥ 0. �
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8.5.3 No triangular graph

Proposition 8.5.6 (i) A quasi-symmetric design with b = v(v − 1)/2 and 1 <
k < v − 1 is either the trivial 2-(v, 2, 1) design or its complementary 2-(v, v −
2,
(
v−2

2

)
) design, or the unique 4-(23, 7, 1) design.

(ii) In particular, if also 2 < k < v − 2, then Γ is not a triangular graph.

Proof. The triangular graph T (m) has multiplicities F = m − 1 and G =
m(m− 3)/2, so that v = m and b = m(m− 1)/2, and b = v(v − 1)/2. By [182]
(1.52), if 4 ≤ k ≤ v − 2, then a quasi-symmetric 2-design with b = v(v − 1)/2
is a 4-design, and by ibid. (1.54) this can happen only for 4-(23, 7, 1) and for
k = v − 2. But the block graph of the former is not triangular. �

For example, there is no quasi-symmetric 2-(27, 7, 21) design with x = 3,
y = 1 and no 2-(59, 27, 351) with x = 15, y = 11. Coster & Haemers [236]
give conditions for Γ to be the complement of the triangular graph.

8.5.4 Examples

A. Steiner 2-designs

In a Steiner 2-design S(2,m, u) two blocks meet in at most one point, so that
we have the above situation with x = 1 and y = 0 (when u > m2 + m + 1,
so that both cases occur). We find a strongly regular graph with parameters
v = u(u−1)/m(m−1), k = m(u−m)/(m−1), λ = (m−1)2+(u−2m+1)/(m−1),
µ = m2, r = (u−m2)/(m− 1), and s = −m.

For example, the lines in PG(3, q), adjacent when they meet, form a strongly
regular graph with parameters v = (q2 + 1)(q2 + q + 1), k = q(q + 1)2, λ =
2q2 + q − 1, µ = (q + 1)2, r = q2 − 1, s = −q − 1.

Infinite families of known Steiner 2-designs include the following.
(a) For block size k = 3, 4, 5, Steiner systems S(2, k, v) exist if and only if v ≡ 1 or k (mod

k(k − 1)). For larger block size there are only partial results (cf. [2]).
(b) For each prime power q there exist systems S(2, q, qn) (for example, the affine space

AG(n, q)), S(2, q+ 1, qd + · · ·+ 1) (for example, the projective space PG(d, q)), and S(2, q+ 1,
q3 + 1) (for example, the Hermitian unitals in PG(2, q2)).

(c) For q a power of 2, and a | q there exist systems S(2, a, qa − q + a) derived from
Denniston’s maximal arcs (subsets of size qa− q+ a of PG(2, q) such that the projective lines
meet it in either 0 or a points).

B. Strongly resolvable 2-designs

A resolution of a 2-(v, k, λ) design with b blocks, r on each point, is a partition
of the set of blocks into classes that are 1-designs. The number of classes of
a resolution is at most b − v + 1. When equality holds, each class has the
same size m, and there are constants x, y such that blocks in different classes
meet in x points, and blocks from the same class meet in y points (Hughes &
Piper [446]). Such designs are called strongly resolvable. One has x = k2

v and
y = x− r−λ

m and m(b− v + 1) = b.
For example, the planes in AG(3, q) form a strongly resolvable design with

v = q3, k = q2, λ = q+ 1, r = q2 + q+ 1, b = q(q2 + q+ 1), m = q, x = q, y = 0.
The corresponding strongly regular graphs are imprimitive (complete mul-

tipartite, or union of cliques).
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C. Residuals of biplanes

Let (X,B) be a symmetric 2-(v, k, λ) design, and fix B0 ∈ B. The derived
design of (X,B) at B0 is the 2-(k, λ, λ− 1) design (B0, {B ∩B0 | B ∈ B, B 6=
B0}). The residual design of (X,B) at B0 is the 2-(v − k, k − λ, λ)-design
(X \B0, {B \B0 | B ∈ B, B 6= B0}).2 For example, the residual of PG(2, n) is
AG(2, n).

A biplane is a symmetric 2-(v, k, λ) design with λ = 2. A biplane has v =
1 +
(
k
2

)
. Biplanes are known for k = 2, 3, 4, 5, 6, 9, 11, 13 ([12], [19], [450], [483]).

The residual of a biplane is a 2-(
(
k−1

2

)
, k−2, 2) design with block intersection

numbers 1 and 2, hence is quasi-symmetric. By Hall & Connor [399], any
such design can be extended to a biplane.

D. Quasi-symmetric designs from 5-designs

In §6.2.1 we made quasi-symmetric designs with parameters 2-(21, 6, 4), 2-(22, 6,
5) (with x = 2, y = 0), and 2-(21, 7, 12), 2-(22, 7, 16), 2-(23, 7, 21) (with x = 3,
y = 1) from the Steiner system S(5, 8, 24) (with intersection numbers 0, 2, 4).

Tonchev [703] observed that one can also start from a 5-(48,12,8) design
(with intersection numbers 0, 2, 4, 6) and shorten three times to obtain a quasi-
symmetric 2-(45, 9, 8) design with intersection numbers 1, 3.

E. Codimension 2 subspaces of projective spaces

Let V be a vector space of dimension n over Fq. Any two subspaces of dimension
n− 2 meet in either an (n− 4)- or an (n− 3)-space.

For example, the planes in PG(4, 2) give a quasi-symmetric 2-(31,7,7) design
with x = 3, y = 1.

F. Designs with the symmetric difference property

Kantor [477] says that a design has the symmetric difference property when
the symmetric difference B∆C ∆D of any three blocks is either a block or the
complement of a block. He shows that a symmetric design with the symmetric
difference property has parameters 2-(22m, 22m−1 + ε2m−1, 22m−2 + ε2m−1),
where the complement of a design with ε = 1 has ε = −1.

An example of such designs is given by the tensor product of m copies of
the Hadamard matrix J4 − 2I4 of order 4, if one interprets this matrix as the
point-block incidence matrix with ε (−ε) denoting incidence (nonincidence). Let
V be a 2m-dimensional vector space over F2, and Q a nondegenerate quadratic
form with maximal (minimal) Witt index for ε = 1 (ε = −1). Let B be the set
of singular vectors of Q. This same design can also be constructed by taking
V as the point set, and the translates B + v (v ∈ V ) as blocks. Its group of
automorphisms is 22m.Sp(2m, 2).

The derived and residuals of these designs are quasi-symmetric (Cameron).
For example, from 2-(64, 28, 12) one obtains quasi-symmetric 2-(28, 12, 11) and
2-(36, 16, 12) designs. Quasi-symmetry follows from the symmetric difference

2These are not to be confused with the derived/residual of a t-design, which are (t − 1)-
designs; in t-design terminology, the designs here are the dual of the derived/residual of the
dual.
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property: given three blocks B,C,D where |B ∩ C ∩ D| = a one finds that
|B∆C ∆D| = 12 + 4a so that a ∈ {4, 6}.

8.5.5 Classification
Neumaier [589] defines the block graph of a quasi-symmetric design with
intersection numbers x, y where x > y, as the graph with the blocks as vertices,
adjacent when they meet in x points. He shows:

Proposition 8.5.7 (i) A quasi-symmetric design with disconnected block graph
is a multiple (union of identical copies) of a symmetric design.

(ii) A quasi-symmetric design with complete multipartite block graph is a
strongly resolvable design.

(iii) A quasi-symmetric design with intersection numbers 0, 1 is a Steiner
2-design.

(iv) A quasi-symmetric design with intersection numbers 1, 2 is the residual
of a biplane, or the 2-(5, 3, 3) design. �

8.5.6 Table
We give a small table with exceptional parameter sets, i.e., parameter sets of
quasi-symmetric designs satisfying Neumaier’s inequality and Proposition 8.5.3,
and not in one of the classes of Proposition 8.5.7. Since the complement of a
quasi-symmetric design is quasi-symmetric again, we can restrict ourselves to
the cases with k ≤ v/2. The table covers the parameters with v ≤ 100. Column
ex(istence): = graph does not exist, − design does not exist, + design exists,
! design is unique, 5 there are 5 nonisomorphic such designs.

v k λ y x V K Λ M R S ex ref
19 7 7 1 3 57 42 31 30 4 −3 = [732]
19 9 16 3 5 76 45 28 24 7 −3 = [89]
20 8 14 2 4 95 54 33 27 9 −3 = [21]
20 10 18 4 6 76 35 18 14 7 −3 = [20]
21 6 4 0 2 56 45 36 36 3 −3 ! Ex. D
21 7 12 1 3 120 77 52 44 11 −3 ! Ex. D
21 8 14 2 4 105 52 29 22 10 −3 − [165]
21 9 12 3 5 70 27 12 9 6 −3 − [165]
22 6 5 0 2 77 60 47 45 5 −3 ! Ex. D
22 7 16 1 3 176 105 68 54 17 −3 ! Ex. D
22 8 12 2 4 99 42 21 15 9 −3 − [165]
23 7 21 1 3 253 140 87 65 25 −3 ! Ex. D
24 8 7 2 4 69 20 7 5 5 −3 − [121]
28 7 16 1 3 288 105 52 30 25 −3 − [702]
28 12 11 4 6 63 32 16 16 4 −4 + Ex. F
29 7 12 1 3 232 77 36 20 19 −3 − [166]
31 7 7 1 3 155 42 17 9 11 −3 5 Ex. E, [703]
33 9 6 1 3 88 60 41 40 5 −4 − [165]
33 15 35 6 9 176 45 18 9 12 −3 ?
35 7 3 1 3 85 14 3 2 4 −3 − [165]
35 14 13 5 8 85 14 3 2 4 −3 ?
36 16 12 6 8 63 30 13 15 3 −5 + Ex. F
37 9 8 1 3 148 84 50 44 10 −4 − [415]
39 12 22 3 6 247 54 21 9 15 −3 ?
41 9 9 1 3 205 96 50 40 14 −4 ?
41 17 34 5 8 205 136 93 84 13 −4 − [166]

continued...
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v k λ y x V K Λ M R S ex ref
41 20 57 8 11 246 140 85 72 17 −4 ?
42 18 51 6 9 287 160 96 80 20 −4 ?
42 21 60 9 12 246 119 64 51 17 −4 ?
43 16 40 4 7 301 192 128 112 20 −4 ?
43 18 51 6 9 301 150 83 66 21 −4 − [166]
45 9 8 1 3 220 84 38 28 14 −4 ! Ex.D, [703], [414]
45 15 42 3 6 396 260 178 156 26 −4 ?
45 18 34 6 9 220 84 38 28 14 −4 ?
45 21 70 9 13 330 63 24 9 18 −3 ?
46 16 8 4 6 69 48 32 36 2 −6 ?
46 16 72 4 7 621 320 184 144 44 −4 ?
49 9 6 1 3 196 60 23 16 11 −4 + [445]
49 13 13 1 4 196 156 125 120 9 −4 ?
49 16 45 4 7 441 176 85 60 29 −4 ?
51 15 7 3 5 85 54 33 36 3 −6 − [165]
51 21 14 6 9 85 70 57 60 2 −5 − [166]
52 16 20 4 7 221 64 24 16 12 −4 − [166]
55 15 7 3 5 99 48 22 24 4 −6 ?
55 15 63 3 6 891 320 148 96 56 −4 ?
55 16 40 4 8 495 78 29 9 23 −3 ?
56 12 9 0 3 210 176 148 144 8 −4 − [578]
56 15 42 3 6 616 205 90 57 37 −4 − [166]
56 16 6 4 6 77 16 0 4 2 −6 + [704], [577]
56 16 18 4 8 231 30 9 3 9 −3 + [501]
56 20 19 5 8 154 105 72 70 7 −5 ?
56 21 24 6 9 176 105 64 60 9 −5 − [166]
57 9 3 1 3 133 24 5 4 5 −4 ?
57 12 11 0 3 266 220 183 176 11 −4 − [578]
57 15 30 3 6 456 140 58 36 26 −4 ?
57 21 10 7 9 76 21 2 7 2 −7 = [378]
57 21 25 6 9 190 105 60 55 10 −5 ?
57 24 23 9 12 133 44 15 14 6 −5 − [166]
57 27 117 12 17 532 81 30 9 24 −3 − [166]
60 15 14 3 6 236 55 18 11 11 −4 ?
60 30 58 14 18 236 55 18 11 11 −4 − [168]
61 21 21 6 9 183 70 29 25 9 −5 ?
61 25 160 9 13 976 300 128 76 56 −4 ?
63 15 35 3 7 651 90 33 9 27 −3 + Ex. E
63 18 17 3 6 217 150 105 100 10 −5 ?
63 24 92 8 12 651 182 73 42 35 −4 ?
64 24 46 8 12 336 80 28 16 16 −4 + [80], [472]
65 20 19 5 8 208 75 30 25 10 −5 ?
66 30 29 12 15 143 72 36 36 6 −6 + [105]
69 18 30 3 6 460 255 150 130 25 −5 ?
69 33 176 15 21 782 99 36 9 30 −3 − [165]
70 10 6 0 2 322 225 160 150 15 −5 − [168]
70 30 58 10 14 322 225 160 150 15 −5 ?
71 14 39 2 5 1065 266 103 54 53 −4 ?
71 31 93 11 15 497 310 201 180 26 −5 ?
71 35 136 15 19 568 315 186 160 31 −5 ?
72 18 34 3 6 568 279 150 124 31 −5 ?
72 32 124 12 16 639 350 205 175 35 −5 ?
72 36 140 16 20 568 279 150 124 31 −5 ?
73 10 15 1 4 876 105 38 9 32 −3 ?
73 28 126 10 16 876 105 38 9 32 −3 ?
73 32 124 12 16 657 328 179 148 36 −5 ?
75 27 117 9 15 925 108 39 9 33 −3 ?
76 16 12 1 4 285 220 171 165 11 −5 − [166]
76 26 52 6 10 456 325 236 220 21 −5 ?
76 30 116 10 14 760 345 176 140 41 −5 ?

continued...
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v k λ y x V K Λ M R S ex ref
76 36 21 16 18 95 40 12 20 2 −10 = [21]
76 36 42 16 20 190 45 12 10 7 −5 ?
76 36 105 16 21 475 96 32 16 20 −4 − [166]
77 33 24 12 15 133 88 57 60 4 −7 − [30], [78]
78 26 100 6 10 924 611 418 376 47 −5 ?
78 28 216 8 12 1716 875 490 400 95 −5 ?
78 33 64 13 18 364 66 20 10 14 −4 − [166]
78 36 30 15 18 143 70 33 35 5 −7 + [105]
79 19 57 4 9 1027 114 41 9 35 −3 ?
81 30 290 10 15 2160 476 178 84 98 −4 ?
81 39 247 18 25 1080 117 42 9 36 −3 ?
84 28 54 8 12 498 161 64 46 23 −5 ?
85 15 4 1 3 136 105 80 84 3 −7 ?
85 15 6 0 3 204 175 150 150 5 −5 ?
85 35 34 10 15 204 175 150 150 5 −5 ?
85 40 52 16 20 238 162 111 108 9 −6 ?
85 40 130 15 20 595 450 345 325 25 −5 ?
87 24 92 6 12 1247 126 45 9 39 −3 ?
88 22 14 2 6 232 198 169 168 6 −5 ?
88 28 63 8 13 638 112 36 16 24 −4 − [166]
88 33 32 8 13 232 198 169 168 6 −5 − [166]
88 40 65 16 20 319 168 92 84 14 −6 ?
91 21 18 3 6 351 210 129 120 15 −6 ?
91 26 160 6 10 2016 715 314 220 99 −5 ?
91 28 18 7 10 195 98 49 49 7 −7 − [166]
91 35 51 11 15 351 210 129 120 15 −6 ?
91 36 56 12 16 364 198 112 102 16 −6 ?
91 39 19 15 17 105 78 55 66 1 −12 − [165]
91 40 52 16 20 273 102 41 36 11 −6 ?
92 26 100 6 10 1288 429 180 124 61 −5 ?
92 27 108 7 12 1288 234 80 34 50 −4 − [166]
93 18 51 3 8 1426 135 48 9 42 −3 ?
93 30 145 9 16 1426 135 48 9 42 −3 ?
93 45 330 21 29 1426 135 48 9 42 −3 ?
93 45 825 20 25 3565 1260 555 385 175 −5 ?
96 36 42 12 16 304 108 42 36 12 −6 ?
96 40 78 16 24 456 35 10 2 11 −3 = §8.18
99 15 5 1 3 231 140 85 84 8 −7 − [165]
99 36 20 12 15 154 48 12 16 4 −8 ?
100 12 5 0 2 375 264 188 180 14 −6 ?
100 36 105 12 18 825 128 40 16 28 −4 − [166]

Table 8.2: Parameters of sporadic quasi-symmetric designs

8.5.7 Parameter conditions from coding theory
We give some of the necessary conditions used to rule out certain parameter
sets for quasi-symmetric designs. Notation is as above.

Lemma 8.5.8 (i) k = y (modx− y) and r = λ (modx− y).
(ii) If a set Z of size w meets all blocks in an even number of points, then

w(w − 1)λ− wr = 0 (mod 8).
(iii) If a set Z of size w meets all blocks in an odd number of points, then

w(w − 1)λ+ wr − b = 0 (mod 8).

Proof. (i) This follows directly since R−S = r−λ
x−y and S = −k−yx−y are integral.

(ii), (iii): Let Z meet ni blocks in i points. Then
∑
ni = b, and

∑
ini = wr,

and
∑(

i
2

)
ni =

(
w
2

)
λ. Now (ii) follows from 8 |

∑
i(i − 2)ni = w(w − 1)λ − wr

and (iii) from 8 |
∑

(i− 1)(i+ 1)ni = w(w − 1)λ+ wr − b. �
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A binary code is called doubly even when all code words have a weight
divisible by 4. A doubly even binary code is self-orthogonal. We need the
following well-known result.

Proposition 8.5.9 ([343], [538]) Let C be a doubly even binary code.
(i) If C has parameters [v, v/2], then v = 0 (mod 8).
(ii) If C has parameters [v, (v − 1)/2], then v = ±1 (mod 8). �

Proposition 8.5.10 (Calderbank [165]) Suppose r 6= λ (mod 4).
(i) If x = y = 0 (mod 2), then k = 0 (mod 4) and v = ±1 (mod 8).
(ii) If x = y = 1 (mod 2), then k = v (mod 4) and v = ±1 (mod 8).

Proof. (i) Let C be the binary code spanned by the characteristic vectors of
the blocks. Then C is self-orthogonal since k is even by part (i) of the lemma.
Let C ′ be a maximal self-orthogonal code containing C. Apply Lemma 8.5.8 (ii)
with Z the support of a code word in C ′. If w = 2 (mod 4), then r = λ (mod 4)
which was excluded. Hence C ′ is doubly even, and k = 0 (mod 4). If C ′ is
self-dual then its length v is divisible by 8, contradicting r(k − 1) = λ(v − 1)
and r 6= λ (mod 4). Hence C ′ has dimension (v − 1)/2 and v = ±1 (mod 8).

(ii) By part (i) of the lemma, k = 1 (mod 2). If v is even, then by r(k− 1) =
λ(v − 1) and r = λ (mod 2) it follows that λ = 0 (mod 4) and r = 2 (mod 4).
Let Z be the complement of a block. Then Z meets all blocks evenly, and by
part (ii) of the lemma |Z| = 0 (mod 4). Hence k = v (mod 4) and v is odd. Let
C1 be the binary code spanned by the blocks, extended by a parity check. It is
self-orthogonal, and contained in a self-dual [v+1, (v+1)/2] code. Shorten that
latter code again to obtain a self-orthogonal [v, (v−1)/2] code. Again by part (ii)
of the lemma, this code is doubly even, which shows that v = ±1 (mod 8). �

For example, there is no quasi-symmetric 2-(21, 8, 14) design with intersec-
tion numbers 2, 4, and no quasi-symmetric 2-(21, 9, 12) design with intersection
numbers 3, 5.

Proposition 8.5.11 (Calderbank & Frankl [168]) Suppose k = 2 (mod 4)
and x = y = 0 (mod 2). Then w(w−1)λ+wr− b = 0 (mod 8) has a solution w.

Proof. Let C be the binary code spanned by the characteristic vectors of the
blocks. Then C is self-orthogonal, but not doubly even. Let K be the doubly
even kernel of C. Then K is generated by the sums of two blocks, and has
codimension 1 in C. Let z ∈ K⊥ \C⊥. Then z (viewed as a set of points) meets
each block in an odd number of points. Now apply Lemma 8.5.8 (iii). �

For example, there is no 2-(70, 10, 6) design with intersection numbers 0, 2.
Here b = 2 (mod 8) and r = λ = 6 (mod 8) but 6w(w−1)+6w+6 = 6(w2 +1) 6=
0 (mod 8).

In Calderbank [166] conditions are given for the case where x, y are congruent
modulo an odd prime p. In Bagchi [30] and in Blokhuis & Calderbank [78]
conditions are given obtained by use of the Smith normal form.



8.5. QUASI-SYMMETRIC DESIGNS 203

8.5.8 Haemers cocliques
Let a Haemers coclique C in a strongly regular graph Γ be a coclique that
has equality both in the Hoffman and in the Cvetković bound. We repeat
Proposition 1.1.8, adding some detail.

Proposition 8.5.12 (Haemers [376], Theorem 2.1.7; see also [132], 9.4.1 (iii))
Let Γ be a strongly regular graph with point set X and eigenvalues k, r, s with
multiplicities 1, f, g (where k > r > s), and let C be a coclique in Γ with
|C| = 1 + v−k−1

r+1 = g. Then the graph Γ′ induced on X \ C is strongly regular
with eigenvalues k′ = k + s, r′ = r, s′ = r + s and multiplicities 1, f − g + 1,
g − 1, respectively.

The restriction 1 + v−k−1
r+1 = g enables one to express the parameters in two

variables, say r,m, where m = −s. We find

k = m(m+r)
r+1 , µ = m(m−r2)

r+1 , λ = (m−1)(m−r2−r)
r+1 , g = m2+rm−r2−r

m−r2 .

For the graph Γ′ we find

k′ = m(m−1)
r+1 , µ′ = (m−r2)(m−r−1)

r+1 , λ′ = (m−r−2)(m−r−r2)
r+1 .

In this situation one finds a quasisymmetric design (C,X \C) where a block
x ∈ X \ C is incident with a point c ∈ C when c ∼ x. The number of points
is |C| = g, the block size is m, and the intersection numbers are λ − λ′ =
m − r2 − r and µ − µ′ = m − r2. In particular, the coding theory restrictions
for quasisymmetric designs apply.

These same parameter values were derived by Shrikhande [647] under slightly different
hypotheses.

If C1, C2 are two Haemers cocliques in Γ, then |C1 ∩ C2| = r(m−1)
m−r2 . Indeed,

one finds a symmetric design (C1 \ C2, C2 \ C1) with block size m and block
intersection number m − r2 and using ‘λ(v − 1) = r(k − 1)’ in this situation
yields |C1 \ C2| = m2−r2

m−r2 , and |C1 ∩ C2| follows.
The Hoffman bound for cocliques in Γ′ is m2−r2

m−r2 which equals |C1 \ C2|, so
any point of X \C2 outside C1 \C2 is adjacent to m− r vertices of C1 \C2, and
hence to r vertices of C1 ∩ C2.

If C1, C2, C3 are three Haemers cocliques in Γ, then |C1 ∩C2 ∩C3| = r2−r
m−r2 .

Indeed, this follows from m · |C1 ∩ C2 \ C3| = r · |C3 \ (C1 ∪ C2)|.
Adm et al. [5] discuss this situation, and observe (the above, and also) that

Γ has at most g + 1 Haemers cocliques. Indeed, the characteristic functions of
these cocliques are linearly independent (their Gram matrix is nonsingular) and
live in W + 〈1〉, where W is the s-eigenspace (cf. the proof of Proposition 1.1.3),
which has dimension g + 1.

Krein graphs without triangles
Consider strongly regular graphs Σ without triangles and with q2

22 = 0. All parameters can
be expressed in terms of a single variable, say r. Let us use capitals for the parameters of
Σ. We find V = r2(r + 3)2, K = r3 + 3r2 + r, Λ = 0, M = r2 + r, R = r, S = −r2 − 2r,
F = (r2 + 2r − 1)(r2 + 3r + 1), G = r(r2 + 3r + 1). (That is, we have Smith graphs
with parameters NLr(r2 + 3r).) Since q2

22 = 0, Theorem 1.3.11 implies that each second
subconstituent Γ = Σ2(x) of Σ is strongly regular, and one finds that Γ has parameters
v = (r2 + 2r − 1)(r2 + 3r + 1), k = r3 + 2r2, λ = 0, µ = r2, r = r, s = −r2 − r,
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f = (r2 + r− 1)(r2 + 3r+ 1), g = (r+ 1)(r2 + 2r− 1) = K − 1. We see that Γ has parameters
as above (with m = r2 + r), and the sets Σ(y) \ {x} for y ∼ x form a system of g+ 1 Haemers
cocliques in Γ, so that these are the only ones. For r = 1 the graph Σ is the complement of
the Clebsch graph, for r = 2 the Higman-Sims graph, and no such graph exists for r = 3.
Nothing is known for r > 3.

Unitary two-graphs
Taylor [677] constructed unitary two-graphs (cf. §8.10.1) that after suitably switching yield a
strongly regular graph with parameters v = q3+1, k = 1

2
q(q2+1), r = 1

2
(q−1), s = − 1

2
(q2+1).

A graph with these parameters contains at most one Haemers coclique when q > 3 since the
intersection of two would have nonintegral size (q−1)2

q+1
. For q = 3 these are the parameters of

T (8) which does have g + 1 = 8 Haemers cocliques.

8.6 Partial geometries

A partial geometry pg(K,R, T ) is a partial linear space (X,L ) such that each
line has K points, each point is on R lines, and given a point x outside a line
L, there are precisely T lines on x meeting L. (In the literature one also meets
the notation pg(s, t, α), where K = s+ 1, R = t+ 1, T = α.) We shall assume
that K,R > 1 and T > 0.

The dual of a pg(K,R, T ) is a pg(R,K, T ).
The collinearity graph Γ of a pg(K,R, T ) is strongly regular (or complete)

with parameters

v = K +K(K − 1)(R− 1)/T,

k = R(K − 1),

λ = (R− 1)(T − 1) +K − 2,

µ = RT,

r = K − T − 1,

s = −R,

f =
K(K − 1)R(R− 1)

T (K +R− T − 1)
,

g =
(K − 1)(K − T )(T + (K − 1)(R− 1))

T (K +R− T − 1)
.

The lines form maximal cliques in Γ meeting the Hoffman bound: K =
1 + k/(−s). Conversely, if a strongly regular graph possesses a collection C
of cliques meeting the Hoffman bound such that each edge is in a unique such
clique, then (X,C ) is a partial geometry.

Clearly 1 ≤ T ≤ min(K,R).
If T = 1, the partial geometry is a generalized quadrangle GQ(s, t), where

K = s+ 1, R = t+ 1.
If T = K, the partial geometry is a 2-(v,K, 1) design, that is, a Steiner

system S(2,K, v), and Γ is a clique.
If T = K − 1, the partial geometry is a transversal design TD(K;R), and Γ

is complete K-partite on KR vertices.
If T = R, the partial geometry is a dual design, and the collinearity graph

Γ is the block intersection graph of the design, see §8.5.4A.
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If T = R − 1, the partial geometry is a dual transversal design (i.e., a net),
and Γ is a Latin square graph, see §8.4.2.

A strongly regular graph with the same parameters as the collinearity graph
of a pg(K,R, T ) is called pseudo-geometric. Theorem 8.6.3 below gives a suf-
ficient condition for a pseudo-geometric graph to be geometric. A very simple
criterion is the following.

Proposition 8.6.1 Let Γ be a pseudo-geometric graph with the parameters of
a pg(K,R, T ). If C is a collection of K-cliques of Γ such that each edge of Γ is
in precisely one member of C , then (VΓ,C ) is a pg(K,R, T ).

Proof. The Hoffman bound for cliques is K, so by Proposition 1.1.7 (ii) each
vertex outside any C ∈ C is collinear with T vertices inside. �

Proposition 8.6.2 ([178], Th. 7.6) For a partial geometry pg(K,R, T ) one has
(R− 1)(K − 2T ) ≤ (K − 2)(K − T )2 and (K − 1)(R− 2T ) ≤ (R− 2)(R− T )2.

Proof. Apply the second Krein inequality to pg(K,R, T ) and its dual. �

We already made the same observation (in §2.2.10) in the special case of
generalized quadrangles of order (s, t) (the case K = s + 1, R = t + 1, T = 1)
where t ≤ s2 or s = 1, and s ≤ t2 or t = 1. One may check that the first Krein
inequality does not yield nontrivial information here.

History

Partial geometries were introduced by Bose [92].

8.6.1 Examples
We give some examples of partial geometries pg(K,R, T ) with 1 < T < min(K−
1, R− 1).

(i) Thas [682] observed that ifK is a maximal n-arc in PG(2, q) (i.e., a subset
such that each line meets it in either 0 or n points), then |K| = 1+(q+1)(n−1),
and the complement of K is a pg(q + 1− n, q + 1− q

n , q + 1− n− q
n ) if we take

the n-secants as lines. Maximal arcs are known whenever q is a power of 2, and
n|q (Denniston [281]).

(ii)De Clerck, Dye &Thas [268] constructed partial geometries pg(22n−1,
22n−1+1, 22n−2). Consider a 4n-dimensional vector space V with nondegenerate
hyperbolic quadric Q. Let Σ be a spread (partition of Q into maximal totally
singular subspaces). Take as points the nonsingular 1-spaces (points), and as
lines the 2n-spaces that meet Q in an element of Σ, with natural incidence.

Different constructions for (the dual of) the n = 2 example of this series had
earlier been given by Cohen [203], and by Haemers & Van Lint [382]. For the
isomorphism of these three constructions, see [479], [701]. For nonisomorphic
partial geometries with the same parameters, see [552]. Some of these were
generalized to infinite families in [266].

(iii) Van Lint& Schrijver [524] construct a pg(6, 6, 2). Consider the
ternary code C = 〈1〉 of length 6. Partition the 35 cosets into three sets Ai
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of size 34, where Ai = {u + C |
∑
uh = i} for i ∈ F3. Let Ai be the set of

points, and Aj the set of lines, for arbitrary distinct i, j, where incidence is
having Hamming distance 1. This yields pg(6, 6, 2), in fact a system of three
linked such designs ([181]).

(iv) Haemers [377] constructs a pg(5, 18, 2) with group A7 by taking as
points the 175 edges of the Hoffman-Singleton graph Γ, adjacent when they are
disjoint and together in a pentagon, and as lines a selection of the Petersen
graphs in Γ. See §10.19.

(v) Consider a 6-dimensional vector space V over F3, and let H = PV be its
hyperplane at infinity. Let L be a set of 21 pairwise disjoint lines in H with
the property that every hyperplane of H meets their union in either 21 or 30
points. Such a set was constructed by Mathon. Let V be the set of points, and
take all translates of the 2-spaces L ∈ L as lines. This yields a pg(9, 21, 2).
(See [267], [39].)

(vi) Thas [684] constructs a pg(27, 28, 18). From a spread in a hyperbolic
quadric in PG(4h+3, 3) one obtains a pg(32h+1, 32h+1 +1, 2 ·32h). Such a spread
is known only for (h = 0 and) h = 1.

(vii) Mathon [549] and Kuijken [505] construct pg(q, 1
2 (q2 + 1), 1

2 (q − 1))
whenever q is a power of 3. The collinearity graph is the descendant (on q3

vertices) of Taylor’s unitary 2-graph, cf. §8.10.1.

8.6.2 Enumeration

There are precisely 2 nonisomorphic pg(5, 7, 3) (Mathon [546]).

8.6.3 Nonexistence

There are some sporadic nonexistence results.
s+ 1 t+ 1 α nonexistence reference
4 5 2 De Clerck [265]
5 28 2 Östergård&Soicher [598]
6 9 4 Lam, Thiel, Swiercz & McKay [507]

8.6.4 The claw bound

Let Γ be a strongly regular graph with the usual parameters. We derive a
bound on r given µ and s by showing that if r is sufficiently large then Γ is the
collinearity graph of a partial geometry, and then using standard inequalities
for its dual.

It turns out to be convenient to use the variables m = −s and n = r − s.

Theorem 8.6.3 Let Γ be a primitive strongly regular graph with integral eigen-
values r = n − m and s = −m. Let f(m,µ) = 1

2m(m − 1)(µ + 1) + m − 1.
Then

(i) (Bruck [148]) If µ = m(m−1) and n > f(m,µ) then Γ is the collinearity
graph of a partial geometry pg(K,R, T ) with T = R−1, that is, is a Latin square
graph LSm(n).
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(ii) (Bose [92]) If µ = m2 and n > f(m,µ) then Γ is the collinearity graph
of a partial geometry pg(K,R, T ) with T = R, that is, the block graph of a
2-(mn+m− n,m, 1) design.

(iii) (‘Claw bound’, Neumaier [587]) If µ 6= m(m − 1) and µ 6= m2 then
n ≤ f(m,µ).

In other words: If r + 1 > 1
2s(s+ 1)(µ+ 1) then µ = s(s+ 1) or µ = s2.

For example, form = 3 it follows that a graph with the parameters of a Latin
square graph LS3(n) is actually such a graph for n > 23, and that a graph with
the parameters of the block graph of a Steiner triple system S(2, 3, u) is actually
such a graph for n > 32, that is, for u = 2n+ 3 > 67. In [56] examples are given
of strongly regular graphs with parameters (70, 27, 12, 9) and (100, 27, 10, 6) that
are not the block graph of an S(2, 3, 21) or a Latin square graph LS3(10).

This theorem is proved below (as Theorem 8.6.15).

Strongly regular graphs with given smallest eigenvalue

A direct consequence of the claw bound and the µ-bound is

Theorem 8.6.4 (Sims, cf. [623], p. 99) The strongly regular graphs with inte-
gral smallest eigenvalue s = −m, where m ≥ 2, are

(i) complete multipartite graphs with classes of size m,
(ii) Latin square graphs LSm(n),
(iii) block graphs of Steiner systems 2-(mn+m− n,m, 1),
(iv) finitely many further graphs. �

Completing sets of MOLS

As we saw earlier, necessary for a set of m − 2 MOLS of order n to exist is
m ≤ n + 1, and if equality holds one has a projective plane of order n. The
deficiency of a set of MOLS is δ = n − m + 1, the number of MOLS missing
to have a projective plane. The complementary graph of a Latin square graph
LSm(n) has parameters LSδ(n). The above result by Bruck says that if n > f(δ)
(where f is a fixed polynomial of degree 4), then this complementary graph is
itself a Latin square graph, and one can combine the two to get a full set of
MOLS, and hence a projective plane. Metsch [562] improved Bruck’s bound,
and has a polynomial f of degree 3.

Pseudo-generalized quadrangles

The collinearity graph of a generalized quadrangle GQ(s, t) is strongly regular
with parameters (v, k, λ, µ) = (s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1). Let us call a
graph pseudo-GQ if it has these same parameters. For example, the Cameron
graph is a pseudo-GQ(10, 2). For such graphs, the Krein condition yields t ≤ s2.
The claw bound implies s ≤ 1

2 t(t + 1)(t + 2). Guo, Koolen, Markowsky &
Park [372] improve this to s ≤ tb 8

3 t+ 1c.
This rules out, e.g., (v, k, λ, µ) = (12825, 280, 55, 5), a pseudo-GQ(56, 4).
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8.6.5 Claws and cliques

The results announced above are proved using the Bruck-Bose-Laskar claw-
and-clique method ([148, 92, 94]). Let an s-claw be an induced K1,s subgraph.
Suppose we can show that each j-claw can be extended to a (j + 1)-claw in at
least M ways for j < m, but that no (m+ 1)-claw exists. It follows that the M
points that can be added to an (m− 1)-claw are mutually adjacent. In this way
one finds the large cliques that are going to be the lines of a partial geometry.

Let Γ be a connected strongly regular graph with parameters (v, k, λ, µ)
and integral eigenvalues k, r, s with s < 0. All parameters can be expressed in
terms of the variables µ, m, and n, where m = −s and n = r − s. We have
λ = µ+ n− 2m and k = µ+m(n−m).

An s-claw (a, S) is a vertex a together with an independent set S of neighbors
of a, where s = |S|. (Note that s is no longer used to denote the negative
eigenvalue −m of Γ.)

A grand clique is a maximal clique C with |C| > 1 + 1
2 (λ+µ) (= 1

2n+µ+1−
m). (The precise definition of ‘grand clique’ varies in the literature. We follow
Neumaier [588].)

Lemma 8.6.5 Each edge of Γ lies in at most one grand clique.

Proof. If the distinct maximal cliques C1 and C2 have an edge uv in common,
then C1 ∪ C2 ≤ 2 + λ and C1 ∩ C2 ≤ µ, so that |C1| + |C2| ≤ 2 + λ + µ, and
C1, C2 cannot both be grand cliques. �

Lemma 8.6.6 Any clique C contains at most k
m + 1 = n+ 1−m+ µ

m vertices,
with equality if and only if every vertex outside C is adjacent to the same number
of vertices of C, and then that number is µ

m .

(This follows by quadratic counting or by eigenvalue interlacing. It is the
Delsarte-Hoffman bound, cf. §1.1.14.)

Lemma 8.6.7 (i) If Γ contains a grand clique C, then n > 2(m− 1) µm .
(ii) In the collinearity graph of a partial geometry with n > 2(m− 1) µm , the

grand cliques are exactly the lines.

Proof. (i) 1
2n+ µ+ 1−m < |C| ≤ n+ 1−m+ µ

m .
(ii) In a partial geometry lines have size n + 1 − m + µ

m hence are grand
cliques by the proof of (i). Conversely, if C is a grand clique, it has at least two
points, so meets some line in at least an edge, but that line is a grand clique,
and the edge is in at most one grand clique, so the line coincides with C. �

Lemma 8.6.8 (a) If Γ has an (m+1)-claw, then n ≤ 1
2m(m−1)(µ+1)+m−1.

(b) Let 1 ≤ s ≤ m − 1. Then every s-claw is contained in at least M
(s+ 1)-claws, where M = n− 1− (m− 2)(µ+ 1−m).

(c) If Γ has a maximal s-claw with s ≤ m, then m ≤ µ.
(d) If (a, S) is a maximal m-claw, then there are at least m(n−2)−(m−2)µ

other m-claws (a, S′) such that |S ∩ S′| = m− 1.
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Proof. Let (a, S) be an s-claw, and let T be the set of neighbors of a not in
S. For x ∈ T , let ax be the number of neighbors of x in S. Then∑

x∈T
1 = |T | = k − s = µ+m(n−m)− s,∑

x∈T
ax = sλ = s(µ+ n− 2m),∑

x∈T
ax(ax − 1) ≤ s(s− 1)(µ− 1).

Now the four parts of the lemma follow: (a) Take s = m + 1. The desired
conclusion follows from 0 ≤

∑
x∈T (ax−1)(ax−2) ≤ m(m−1)(µ+1)+2m−2−2n.

(b) Take s ≤ m−1. The number of x ∈ T nonadjacent to all vertices in S is at
least

∑
x∈T (1−ax) = µ+m(n−m)−s(µ+n−2m+1) ≥ n−1−(m−2)(µ+1−m).

(c) Take s ≤ m. Now (m− 1)(m− µ) ≤
∑
x∈T (1− ax) ≤ 0.

(d) Take s = m. Since ax > 0 for all x ∈ T , the number of x ∈ T adjacent
to precisely one vertex in S is at least

∑
x∈T (2−ax) = m(n− 2)− (m− 2)µ. �

Lemma 8.6.9 If Γ does not have (m+ 1)-claws, and n > 2(m−1)(µ+ 1−m),
then each edge is in exactly one grand clique.

Proof. Since 1 ≤ m ≤ µ, so that 2(m−1)(µ+1−m) ≥ 1+(m−2)(µ+1−m),
each edge xy of Γ can be extended to an m-claw by Lemma 8.6.8 (b). Given the
m-claw (x, S) on the edge xy, the (m−1)-claw (x, S\y) can be extended to anm-
claw in at leastM ways and we find a clique of sizeM+1 = n−(m−2)(µ+1−m)
on the edge xy. By the hypothesis, this is contained in a grand clique. �

Lemma 8.6.10 If Γ does not have (m+1)-claws, and n > 2(m−1)(µ+1−m),
then each vertex lies in exactly m grand cliques.

Proof. Let (a, S) be an m-claw, and for y ∈ S, let Cy be the grand clique
containing the clique {a} ∪ {z | z ∼ a, (a, (S \ y) ∪ {z}) is a m-claw}. The Cy
have pairwise intersection {a} and by Lemma 8.6.8 (d) cover at least m(n−1)−
(m − 2)µ vertices. The vertex a has k = µ + m(n −m) neighbors, so at most
k− (m(n− 1)− (m− 2)µ) = (m− 1)(µ−m) are not in any Cy. If C is another
grand clique containing a, then 1

2n+ µ−m+ 1 < |C| ≤ (m− 1)(µ−m) + 1, a
contradiction. �

Lemma 8.6.11 Let Σ be a set of cliques such that each point is in exactly m
members of Σ, and each edge is in some member of Σ. Then the vertices and
members of Σ are the points and lines of a partial geometry pg(K,R, T ) with
parameters R = m, K = µ

m + n+ 1−m, T = µ
m .

Proof. By Lemma 8.6.6, K is an upper bound for the size of a clique. Since
k = m(K − 1), all members of Σ have size K, and the statement follows from
the ‘equality’ part of Lemma 8.6.6. �

Lemma 8.6.12 If Γ does not have (m+1)-claws, and n > 2(m−1)(µ+1−m),
then Γ is the collinearity graph of a partial geometry pg(K,R, T ) with parameters
as above. �
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Proposition 8.6.13 A strongly regular graph is the collinearity graph of a
generalized quadrangle if and only if µ = m and there are no (m+ 1)-claws.

Proof. A generalized quadrangle is a partial geometry pg(K,R, T ) with T = 1,
and the stated conditions are satisfied. Conversely, let Γ be a strongly regular
graph with µ = m and without (m+1)-claws. Then k = µ+m(n−m) = µ(λ+1).
Since there are no (m + 1)-claws, and the neighbors of a given point form a
regular graph of valency λ, it follows that Γ(x) ' mKλ+1 for each vertex x.
Now apply Lemma 8.6.11. �

Lemma 8.6.14 If Γ does not have (m+ 1)-claws, then either
(a) µ = m2, or
(b) µ = m(m− 1), or
(c) µ = m, n ≤ m(m− 1), or
(d) n ≤ 2(m− 1)(µ+ 1−m).

Proof. If (d) does not hold, then Γ is the collinearity graph of a pg(K,R, T )
by Lemma 8.6.12. We have m = R and µ = RT , and n > 2(m− 1)(µ+ 1−m)
can be rewritten K − T − 1 +R > 2(R− 1)(RT + 1−R).

If T = 1, then µ = m, and n ≤ m(m−1) is the inequality (K−1) ≤ (R−1)2

that follows from the Krein conditions (cf. §2.2.10) if R−1 > 1. For R = m = 2,
this case is part of (b).

If T = R− 1, then µ = m(m− 1).
If T = R, then µ = m2.
Now suppose that 1 < T < R− 1.
If R ≥ 3T , then the Krein condition (K − 1)(R − 2T ) ≤ (R − 2)(R − T )2

(Lemma 8.6.2) for the line graph yields the contradiction

(R− 2)(R− T )2 ≥ 2R(R− 1)(T − 1)(R− 2T ) ≥ R(R− 1)(T − 1)(R− T ).

Finally, if R < 3T , then the absolute bound for the line graph yields a con-
tradiction. Indeed, this line graph has v = R + R(R−1)(K−1)

T > 2R2(R−1)2(T−1)
T

and g = (R−1)(R−T )(T+(R−1)(K−1))
T (K+R−T−1) < (R−1)2(R−T )

T . Now v ≤ 1
2g(g + 3) implies

4R2T (T−1) ≤ (R−T )((R−1)2(R−T )+3T ). Since R < 3T , also 6RT (T−1) ≤
(R− 1)2(R− T ) + 3T . For R ≤ 3T − 1 this yields a contradiction. �

We prove Theorem 8.6.3, restated here.

Theorem 8.6.15 Let Γ be a strongly regular graph with integral smallest eigen-
value −m, where m ≥ 2. Let f(m,µ) = 1

2m(m−1)(µ+ 1) +m−1, and suppose
that n > f(m,µ).

(i) If µ = m(m − 1), then Γ is the collinearity graph of a partial geometry
pg(K,R, T ) with T = R − 1, that is, is the line graph of a transversal 2-design
with λ = 1.

(ii) If µ = m2, then Γ is the collinearity graph of a partial geometry pg(K,R,
T ) with T = R, that is, is the line graph of a 2-design with λ = 1.

(iii) Otherwise n ≤ 2(m− 1)(µ+ 1−m).

Proof. If Γ contains an (m+ 1)-claw, then n ≤ f(m,µ) by Lemma 8.6.8 (a),
contrary to our assumption. If we are not in case (iii), then Γ is the collinearity
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graph of a pg(K,R, T ) by Lemma 8.6.12. By Lemma 8.6.14 we may assume
µ = m, n ≤ m(m− 1), but that contradicts n > f(m,µ). �

The final case (iii) is eliminated by the following proposition.

Proposition 8.6.16 No strongly regular graph Γ has parameters satisfying
1
2m(m− 1)(µ+ 1) +m− 1 < n ≤ 2(m− 1)(µ+ 1−m).

Proof. The inequality immediately implies 1
2m < 2, i.e., m = 2 or m = 3.

A somewhat messy computation using the absolute bound and divisibility con-
ditions eliminates m = 2, 3. �

8.7 Semipartial geometries

Debroey & Thas [272] introduced the concept of semipartial geometry, gen-
eralizing that of partial geometry. A semipartial geometry spg(s+ 1, t+ 1, α, µ)
is a partial linear space (X,L ) such that (i) each line has s+ 1 points, (ii) each
point is on t + 1 lines, (iii) given a point x outside a line L, there are either 0
or α lines on x meeting L, and (iv) any two noncollinear points x, y are both
collinear with µ points.

Because of (iv), the collinearity graph of a semipartial geometry is strongly
regular (with valency k = s(t + 1), and λ = s − 1 + (α − 1)t, and µ = µ).
A semipartial geometry with α = 1 is called a partial quadrangle (Cameron
[171]).

De Clerck & Thas [270] further generalized the concept of semipartial
geometries, and defined (0, α)-geometries as connected partial linear spaces such
that all lines have s + 1 points, and given a point x outside a line L, there are
either 0 or α lines on x meeting L. One loses the strong regularity of the
collinearity graph, but gains good inductive properties.

8.7.1 Examples of partial quadrangles

Below we give some examples of partial quadrangles (i.e., of semipartial ge-
ometries with α = 1). Let a pq(s + 1, t + 1, µ) be a spg(s + 1, t + 1, 1, µ). The
collinearity graph is strongly regular with parameters (v, k, λ, µ) = (1+s(t+1)+
s2t(t+ 1)/µ, s(t+ 1), s− 1, µ).

(i) Any strongly regular graph with λ = 0 gives a pq(2, k, µ) of which the
lines are the edges of the graph.

(ii) Any generalized quadrangle GQ(s, t) is a pq(s+ 1, t+ 1, t+ 1).
(iii) Let (X,L ) be a GQ(s, s2). Deleting x⊥ for some fixed point x yields a

pq(s, s2 + 1, s2 − s) with s4 points.
(iv) (This is case a = 1 of example (viii) in §8.7.2.)
Let V be an (n + 1)-dimensional vector space over Fq, H a hyperplane in

PV , and S a cap in H, that is, a subset such that each line meets it in 0, 1, or 2
points. Let X be the set of points of PV not in H, and let L be the collection
of lines in PV and not in H that meet S. If each point of H \ S is on the same
number h of 2-secants of S, then (X,L ) is a pq(q, |S|, 2h) with qn points. It is
a generalized quadrangle precisely if 2h = |S|, that is, if S allows no tangents
(and then S is necessarily a hyperoval in a plane).
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q n |S| v k λ µ collinearity graph
2e 3 2e + 2 23e GQ(2e − 1, 2e + 1)
q 4 q2 + 1 q4 e.g. VO−4 (q), V Sz(q), see §3.3.1
3 5 11 243 22 1 2 Berlekamp-VanLint-Seidel graph
3 6 56 729 112 1 20 Games graph
4 6 78 4096 234 2 14 Hill graph

We have seen (§7.1.1) that the construction ‘join two vectors when the line they determine
hits a fixed set S at infinity’ yields a strongly regular graph if and only if S is a two-
character set. It follows that S here is a two-character set. A two-character set yields a
partial quadrangle only if it is a cap. See also Theorem 7.1.1.

The strongly regular graph defined by S as a two-character set, or equiva-
lently, the collinearity graph of the partial quadrangle defined by S as a cap, is
rank 3 if the stabilizer of S in the automorphism group of H acts transitively
on both S and H \ S. In the above examples, this is the case for the first line
if e = 2 (see §10.24), and for the second line if S is either the quadric O−4 (q)
(the graph is VO−4 (q)) or the Suzuki-Tits ovoid (see §2.5.5; the graph is V Sz(q),
see §3.3.1).

(v) Cossidente & Penttila [233] show that when q is odd, there exists a
hemisystem in the U4(q) generalized quadrangle, that is, a hemisystem of points
in the dual GQ(q, q2). By Proposition 2.7.9 this point set induces a pq( 1

2 (q+ 1),
q2+1, 1

2 (q−1)2). Further hemisystems in the U4(q) generalized quadrangle were
constructed by Bamberg et al. [41] (for q ≤ 11) and by Bamberg et al. [44].

(vi)Bamberg et al. [40] generalize the previous example and construct hemi-
systems (with the same parameters) in flock generalized quadrangles GQ(q2, q).

8.7.2 Examples of semipartial geometries

Below we give some further examples of semipartial geometries. Many are due
to Debroey & Thas [272]. For a survey, see De Clerck & Van Maldeghem
[271].

(i) Any partial geometry pg(K,R, T ) is a semipartial geometry spg(K,R, T,
RT ).

(ii) For a Moore graph (strongly regular with λ = 0, µ = 1), one can take
the point neighborhoods as lines. In this way a Moore graph Γ with parameters
(k2 + 1, k, 0, 1) yields an spg(k, k, k− 1, (k− 1)2) of which the collinearity graph
is Γ.

(iii) Let
(
X
i

)
be the collection of all i-subsets of an m-set X. Then (

(
X
2

)
,
(
X
3

)
)

is an spg(3,m− 2, 2, 4) of which the collinearity graph is T (m).

(iv) Let
[
V
i

]
be the collection of all i-subspaces of an m-dimensional vector

space V . Then (
[
V
2

]
,
[
V
3

]
) is an spg(

[
3
1

]
,
[
m−2

1

]
, q + 1, (q + 1)2) of which the

collinearity graph is the Grassmann graph Jq(m, 2).

(v) Let V be a 2n-dimensional vector space over Fq provided with a non-
degenerate symplectic form. Let X be the collection of projective points and
L the collection of hyperbolic lines. Then (X,L ) is an spg(q+ 1, q2n−2, q, (q−
1)q2n−2) of which the collinearity graph is the complement of the symplectic
graph Sp(2n, q).
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(vi) Let V be a 2n-dimensional vector space over F2 provided with a non-
degenerate quadratic form of type ε = ±1. Let X be the collection of nonsin-
gular projective points and L the collection of elliptic lines. Then (X,L ) is
an spg(3, 22n−3−ε2n−2, 2, 22n−3−ε2n−1) of which the collinearity graph is the
complement of the graph from §3.1.2 (Wilbrink [733]).

(vii) Let V be an (n + 2)-dimensional vector space over Fq, and W an n-
dimensional subspace. Let X be the collection of 2-spaces (lines) of V missing
W and L the collection of 3-spaces (planes) of V meeting W in a single 1-space
(point). Then (X,L ) is an spg(q2,

[
n
1

]
, q, q(q + 1)) of which the collinearity

graph is the bilinear forms graph Hq(2, n) from §3.4.1.

(viii) Let V be an n-dimensional vector space over Fq, H its hyperplane
at infinity (a PG(n − 1, q)), and S a subset of H such that every line in H
meets S in either 0, 1 or a + 1 points, for some fixed a, and such that every
point of H not in S is on the same number h of (a+ 1)-secants. Let L be the
collection of lines in V of which the direction is element of S. Then (V,L ) is
an spg(q, |S|, a, a(a+ 1)h) with qn points.

We have seen (§7.1.1) that the construction ‘join two vectors when the line they determine
hits a fixed set S at infinity’ yields a strongly regular graph if and only if S is a two-character
set. It follows that S here is a two-character set (with an additional condition on the sizes of
line intersections).

For example, if n = 3, then S could be a Baer subplane of H, where |S| =
q+
√
q+ 1 and a =

√
q, or a unital, where S = q

√
q+ 1 and a =

√
q. In the first

case the collinearity graph is the bilinear forms graph H√q(2, 3). In the second
case it is the case m = 3, ε = −1 and q → √q of the graph from §3.3.1.

(ix) Let V be a 6-dimensional vector space over Fq provided with a non-
degenerate elliptic quadric Q. Let p be a nonsingular point. Let X be the set of
hyperbolic lines (2-spaces) on p, and let L be the set of planes (3-spaces) on p
that meetQ in two intersecting lines. Then (X,L ) is an spg(q, q2+1, 2, 2q(q−1))
(Metz [567]). The collinearity graph is the graph NO−5 (q), see §3.1.4.

8.8 Zara graphs

A Zara graph (with parameters m, e) is a finite graph Γ such that (Z1) every
maximal clique has cardinality m, and (Z2) for each maximal clique M each
vertex outside is adjacent to precisely e vertices of M . These graphs were first
studied by Zara [747]. A structure theory was developed by Blokhuis, Kloks
& Wilbrink [81].

Examples of Zara graphs are the polar spaces, the graphs L2(m) and T (2n),
the folded Johnson graph J (8, 4) and its complement, and the McLaughlin
graph. Also the graph on the nonsingular points of a vector space of dimension
2n over F2 provided with a hyperbolic quadratic form, adjacent when orthog-
onal. (Here m = 2n−1 and e = 2n−2.) Also the graph on a vector space of
dimension 2n over Fq provided with a hyperbolic quadratic form Q, with x ∼ y
when Q(y − x) = 0. (Here m = qn, e = qn−1.) Also the graph on the norm 1
vectors in a vector space of dimension 6 over F3 provided with a nondegenerate
symmetric bilinear form, adjacent when orthogonal. (Here m = 6, e = 2.)

Easy ways to get new Zara graphs out of old ones:
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(1) If Γi (1 ≤ i ≤ t) are Zara graphs with parameters mi, ei, and there is an
a such that ei = mi−a for all i, then their join

∨
Γi (with vertex set the disjoint

union of the vertex sets VΓi, and edges xy when xy is an edge in one of the Γi
or when x ∈ VΓi, y ∈ VΓj for i 6= j) is again a Zara graph with parameters
m =

∑
mi and e = m− a.

(2) If Γ is a Zara graph with parameters m, e, then the t-clique extension is
a Zara graph with parameters tm, te.

(3) If Γ is a Zara graph with parameters m, e, and C a clique in Γ of size c,
then C⊥ \ C is a Zara graph with parameters m− c, e− c.

Let x⊥ = {x} ∪ Γ(x) and x∗ = {y | x⊥ = y⊥}. The graph Γ is called
reduced if it is coconnected (i.e., if Γ is connected) and all equivalence classes x∗
are reduced to single vertices. Blokhuis, Kloks & Wilbrink [81] show that
reduced Zara graphs are strongly regular. Also that reduced graphs satisfying
(Z2) but not (Z1) in the definition of Zara graphs are m×m′ grids. Also that
if S is a singular subspace of a coconnected Zara graph (that is, a set of the
form S = C⊥⊥ for some clique C, or, equivalently, an intersection of maximal
cliques), then the Zara graph S⊥ \ S is coconnected.

For characterizations and related material, see [73], [83], [617], [747], [748].

8.9 Terwilliger graphs
Terwilliger [681] developed a structure theory for a certain class of graphs
called Terwilliger graphs. For regular connected Terwilliger graphs, the reduced
graphs are strongly regular. There are only few examples.

A Terwilliger graph is a non-complete graph Γ such that for any two vertices
x, y at distance two the subgraph Γ(x) ∩ Γ(y) is complete of the same size µ.

If Γ is a connected Terwilliger graph for a given µ, then its local graphs Γ(x)
are Terwilliger graphs for µ′ = µ− 1.

For arbitrary Γ, and x ∈ VΓ, let x∗ = {y | x⊥ = y⊥}. The graph Γ is
called reduced when all x∗ are single vertices. We shall write Γ∗ for the reduced
graph of Γ, that has as vertices the classes x∗, where x∗ is adjacent to y∗ when
x ∼ y. (Now Γ∗ is reduced, and Γ is a clique extension of Γ∗.) The radical of Γ
is {x | x⊥ = VΓ}.

Proposition 8.9.1 Let Γ be a regular connected Terwilliger graph. Suppose
that |Γ3(x)∩Γ(y)| = |Γ(x)∩Γ3(y)| whenever d(x, y) = 2. Then, for all p ∈ VΓ,
the graph ∆ := p⊥ \ p∗ is a coconnected regular Terwilliger graph with µ∆ =
µ− |p∗|. If µ∆ = 0, then ∆ is a union of cliques. Otherwise, it has diameter 2.

Proof. Γ is regular and connected and not a clique, so p⊥ is not a clique,
and hence ∆ is nonempty and not a clique. It follows that ∆ is a Terwilliger
graph with µ∆ = µ − |p∗|. Let ∆0 be a cocomponent of ∆ containing a pair
x, y of nonadjacent vertices. Then ∆ \ ∆0 is contained in x⊥ ∩ y⊥, hence is
a clique, hence is contained in the radical of ∆, hence is empty. It follows
that ∆ is coconnected. We show that ∆ is regular. It suffices to show that
nonadjacent vertices x, y of ∆ have the same valency in ∆. For each subset E of
x⊥∩y⊥, and for {s, t} = {x, y} define Est := {z ∈ Γ(s)∩Γ2(t) | {x, y, z}⊥ = E}.
Then |Γ(s)| = |Γ(s) ∩ Γ3(t)| + µ +

∑
E |Est | and |∆(s)| = µ∆ +

∑
E3p |Est |.

Each vertex u of Est has |E| neighbors in E, and µ − |E| neighbors in Ets, so
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|Est |(µ− |E|) = |Ets|(µ− |E|) and for |E| < µ it follows that |Exy | = |Eyx |. Since
|Γ(x)| = |Γ(y)|, it follows that |Exy | = |Eyx | also holds for E = x⊥ ∩ y⊥, and
hence |∆(x)| = |∆(y)|. �

Proposition 8.9.2 Let Γ be a regular connected Terwilliger graph of diameter
2. Then all vertex equivalence classes x∗ (x ∈ VΓ) have the same cardinality,
and Γ∗ is a strongly regular Terwilliger graph.

Proof. For p ∈ VΓ, let kp be the valency of p⊥ \p∗. If p ∼ q and p∗ 6= q∗, then
kp = |{p, q}⊥| − |p∗| − 1, so that κ := kp + |p∗| is independent of the choice of p.
Counting edges between p⊥ \p∗ and Γ2(p) we find |p⊥ \p∗| (k−κ) = (v−|p⊥|)µ,
so that (k+ 1− |p∗|)(k− κ+ µ) = (v− |p∗|)µ since |p⊥| = k+ 1. This equation
determines |p∗| uniquely, because k > κ. �

A graph Γ is called edge-regular with parameters (v, k, λ) when it has v
vertices, is regular of valency k, and each edge is in λ triangles. A graph Γ
is called amply regular with parameters (v, k, λ, µ) when it is edge-regular with
parameters (v, k, λ), and any two vertices at distance 2 are joined by µ paths
of length 2. Every strongly regular graph and every distance-regular graph is
amply regular. Let a singular line of a graph Γ be a set of the form {x, y}⊥⊥,
where x ∼ y. Singular lines are complete subgraphs. If Γ is edge-regular then
two singular lines have at most one point in common (cf. [123], 1.14.1).

Proposition 8.9.3 Let Γ be a reduced amply regular Terwilliger graph with
parameters (v, k, λ, µ), where µ > 1. Then, for any p ∈ VΓ the reduced graph
Γ(p)∗ is strongly regular with parameters v∗ = k/s, k∗ = (λ − s + 1)/s, µ∗ =
(µ − 1)/s, λ∗ = ((λ − s + 1)(λ − 2s + 1) − (µ − 1)(k − λ − 1))/(s(λ − s + 1)),
where s is the size of the equivalence classes of Γ(p). Here s is independent of
the choice of p. The singular lines of Γ have size s + 1, and every vertex is in
k/s singular lines. In particular, µ = s+ 1 or µ ≥ s2 + s+ 1. Also s ≤ λ∗ + 1.

Proof. We can apply the previous proposition since Γ(p) has diameter 2. Let
s = sp be the common cardinality of the vertex equivalence classes in the graph
Γ(p). For distinct p, q, r, the vertex r belongs to q∗ in Γ(p) when p, q, r are
contained in the singular line {p, q}⊥⊥. But then r belongs to p∗ in Γ(q). It
follows that sp is independent of p. The formulae for v∗, k∗, λ∗, µ∗ follow
by simple counting. Starting from Γ, and repeatedly taking local graphs, we
eventually arrive at a graph with µ = 1. A graph with µ∗ = 1 has lines of size
λ∗ + 2, so s ≤ λ∗ + 1. �

With µ = 1 the known examples are the pentagon, the Petersen graph, and
the Hoffman-Singleton graph. The smallest open parameter set is (400, 21, 2, 1).
(See also [93].) Collins [210] gives parameter conditions for strongly regular
Terwilliger graphs with µ = 2, and in particular shows that an example must
have v > 5.8× 1058.

8.10 Regular two-graphs
A two-graph Ω = (X,∆) is a set X provided with a collection ∆ of triples called
coherent, such that each 4-subset of X contains an even number of coherent
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triples. The relation between a two-graph and a switching class of graphs was
given in §1.1.12. The two-graph is called regular of degree a when every pair
from X is in precisely a coherent triples. Now each descendant is strongly
regular with a = k = 2µ and v + 1 = |X| = 3k − 2λ. If these descendants
have spectrum k1 rf sg, and the switching class of Ω contains a strongly regular
graph Γ, then Γ has spectrum either (k − r)1 rf+1 sg or (k − s)1 rf sg+1.

Conversely, the switching class of a strongly regular graph with parameters
(v, k, λ, µ) belongs to a regular two-graph if and only if v = |X| = 2(2k−λ−µ).
If this is the case, then it has degree a = 2(k − µ), and the descendants are
strongly regular with parameters (v − 1, 2(k − µ), k + λ− 2µ, k − µ).

The spectrum of a two-graph is the spectrum of the Seidel matrix S of any
(and then all) graph(s) in its switching class. A two-graph with v > 1 is regular
if and only if it has precisely two distinct eigenvalues. If the eigenvalues of a
regular two-graph are ρ1, ρ2, then v = 1 − ρ1ρ2 and a = − 1

2 (ρ1 + 1)(ρ2 + 1).
(Both are immediate from (S − ρ1I)(S − ρ2I) = 0.)

8.10.1 Examples

Trivial two-graphs

The two-graph (X,∆) with ∆ = ∅ is represented by the edgeless graph with
adjacency matrix A = 0, Seidel matrix S = J−I and spectrum (v−1)1 (−1)v−1.
Here a = 0.

The two-graph (X,∆) with ∆ =
(
X
3

)
, the set of all triples inX, is represented

by the complete graph Kn with adjacency matrix A = J − I, Seidel matrix
S = −(J − I) and spectrum 1v−1 (1− v)1. Here a = v − 2.

Unitary two-graphs

Let V be a 3-dimensional vector space over F = Fq2 , where q is odd, provided
with a Hermitian form h. Let U be the corresponding unital. Then |U | = q3 +1.
One obtains a regular two-graph with a = 1

2 (q−1)(q2+1) on the set U by taking
the triples {〈x〉, 〈y〉, 〈z〉} in U for which h(x, y)h(y, z)h(z, x) is a nonsquare in
F if q ≡ 1 (mod 4), and is a square if q ≡ 3 (mod 4). The spectrum of this
two-graph is q2 with multiplicity q2−q+1, and −q with multiplicity q(q2−q+1).

Proof. The condition on the quadratic character of h(x, y)h(y, z)h(z, x) does not depend
on the choice of the vectors x, y, z in their spans, and does not depend on the order of x, y, z.
The product of these triple products for the four 3-subsets of a 4-set is a square, so the triple
product is a nonsquare for an even number of triples. This shows that we have a two-graph.

Now let us compute a. Since U3(q) acts 2-transitively on U , we may fix two points 〈x〉, 〈y〉
and count the number of coherent triples containing them. The trace tr s = s + s of s ∈ F ∗
vanishes when sq−1 = −1. Such an s is a square precisely when (q + 1)/2 is even. Thus,
the condition on h(x, y)h(y, z)h(z, x) is that it has the same quadratic character as s where
tr s = 0, s 6= 0. Take the Hermitian form h defined by h(x, y) = x1y3 + x2y2 + x3y1. Take
x = (1, 0, 0) and y = (0, 0, 1). Let z = (s, t, 1). It is isotropic when s + s + t t = 0, and
h(x, y)h(y, z)h(z, x) = s. If t = 0, s 6= 0, i.e., if z ∈ 〈x, y〉, z 6= y, then all q − 1 choices for s
yield a coherent triple. If t 6= 0 then tr s 6= 0 gives 1

2
(q2 − 1)− (q − 1) choices for s with the

desired quadratic character, and q+1 choices for t given s, so that a = (q−1)+ 1
2

(q−1)2(q+1),
as desired. �

This two-graph is due to Taylor [677].
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The descendants Ω∗w of this two-graph are strongly regular with parameters
(v, k, λ, µ) and spectrum k1 rf sg, where

v = q3, r =
1

2
(q − 1),

k =
1

2
(q − 1)(q2 + 1), s = −1

2
(q2 + 1),

λ =
1

4
(q − 1)3 − 1, f = (q − 1)(q2 + 1)

µ =
1

4
(q − 1)(q2 + 1), g = q(q − 1).

This graph is pseudo-geometric with the parameters of pg(K,R, T ) where K = q, R =
1
2

(q2 + 1) and T = 1
2

(q − 1). Spence [668] showed that is is geometric for q = 3 (one gets
GQ(2, 4)), but not for q = 5, 7. Mathon [549] and Kuijken [505] showed that it is geometric
whenever q is a power of 3.

We saw that collinear triples of the unital are members of the two-graph, so
that after switching the set L \ {w} has become a clique, for each line L passing
through w. Thus, the graph Ω∗w has a partition into cliques of size q (achieving
the Hoffman bound) and any point outside such a clique has exactly 1

2 (q − 1)
neighbors in it. Consequently, if we take the union of any 1

2 (q2 + 1) of these
cliques, we get a regular subgraph of degree 1

4 (q − 1)(q2 + 3), and adding the
point w again and switching yields a strongly regular graph with parameters

v = q3 + 1, r =
1

2
(q − 1),

k =
1

2
q(q2 + 1), s = −1

2
(q2 + 1),

λ =
1

4
(q − 1)(q2 + 3), f = (q − 1)(q2 + 1)

µ =
1

4
(q + 1)(q2 + 1), g = q2 − q + 1.

The other possible valency for strongly regular graphs in the switching class
of this regular two-graph is 1

2 (q − 1)q2. For q = 5 there is such a graph (with
parameters (v, k, λ, µ) = (126, 50, 13, 24) and spectrum 501 2105 (−13)20). For
q ≡ 3 (mod 8) there is no such graph ([380]).

The regular two-graph on 276 points

Consider the graph Γ on the 23 + 253 = 276 symbols and blocks of the Steiner
system S(4, 7, 23), where the symbols form a coclique, a symbol is adjacent to
the 77 blocks containing it, and two blocks are adjacent when they meet in
precisely 1 point. This graph Γ belongs to the switching class of a regular two-
graph Ω on 276 points. The degree of Ω is 112. Its spectrum is 5523 (−5)253.
The automorphism group of Ω is Co3, acting 2-transitively. Uniqueness was
proved by Goethals & Seidel [356].

The descendants Ω∗w of Ω are McLaughlin graphs with parameters (v, k, λ, µ)
= (275, 112, 30, 56) and spectrum 1121 2252 (−28)22. (See §10.61.)

The switching class of Ω contains (many, see [593]) strongly regular graphs
with parameters (v, k, λ, µ) = (276, 140, 58, 84) and spectrum 1401 2252 (−28)23.
Theparameter set (v, k, λ, µ) = (276, 110, 28, 54)with spectrum 1101 2253 (−28)22

is ruled out by the absolute bound (and also by the Krein conditions).
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The regular two-graph on 176 points

There is a regular two-graph on 176 vertices, with spectrum 3522 (−5)154 and
a = 72. Related strongly regular graphs have parameters (i) (v, k, λ, µ) =
(175, 72, 20, 36) or (ii) (176, 70, 18, 34) or (iii) (176, 90, 38, 54). Examples of each
are known. ((i) Graph on the edges of the Hoffman-Singleton graph (§10.19),
(ii) M22 graph on 176 vertices (§10.51), (iii) Graph constructed by Haemers from
(i)+K1 by switching with respect to the union of 18 pairwise disjoint 5-cliques.)
It is unknown whether the two-graph is unique. (But graph (ii) is unique.)

The regular two-graph on 126 points

There is a regular two-graph on 126 vertices, with spectrum 2521 (−5)105 and
a = 52. Related strongly regular graphs have parameters (i) (v, k, λ, µ) =
(125, 52, 15, 26) or (ii) (126, 50, 13, 24) or (iii) (126, 65, 28, 39). Examples of each
are known. ((i), (iii): see above onder Unitary two-graphs, (ii) Goethals graph,
§10.42.) It is unknown whether the two-graph is unique. (But graph (ii) is
unique [222].)

8.10.2 Enumeration

Small regular two-graphs have been classified. The table below gives the num-
bers of nonisomorphic nontrivial regular two-graphs with eigenvalue −3 or −5
or with v ≤ 50.

v 6 10 14 16 18 26 28 30
ρ1, ρ2 ±

√
5 ±3 ±

√
13 −3, 5 ±

√
17 ±5 −3, 9 ±

√
29

# 1 1 1 1 1 4 1 6

v 36 38 42 46 50 126 176 276
ρ1, ρ2 −5, 7 ±

√
37 ±

√
41 ±

√
45 ±7 −5, 25 −5, 35 −5, 55

# 227 ≥ 191 ≥ 18 ≥ 97 ≥ 54 ≥ 1 ≥ 1 1

For v < 30, see Bussemaker et al. [161]. The case v = 30 was settled
by Spence [669] (and independently by Bussemaker). The regular two-graphs
on 36 vertices were enumerated by McKay & Spence [556]. Nonexistence of
nontrivial regular two-graphs on 76 or 96 vertices was shown by Azarija &
Marc [20, 21].

8.10.3 Completely regular two-graphs

Let (X,∆) be a two-graph. A subset C of X is called a clique when each triple
from C is coherent. If C is a clique, and x /∈ C, then x determines a partition
{Cx, C ′x} of C into two possibly empty parts such that a triple xyz with y, z ∈ C
is coherent precisely when y and z belong to the same part of the partition.

Proposition 8.10.1 (Taylor [677]) Let C be a nonempty clique of the regular
two-graph Ω with eigenvalues ρ1, ρ2, where ρ2 < 0 and ρ2 has multiplicity m.
Then

(i) |C| ≤ 1− ρ2, with equality if and only if |Cx| = |C ′x| for each x /∈ C,
and

(ii) |C| ≤ m.
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Proof. See [677], Propositions 5.2 and 5.3, or [132], Proposition 10.3.4. �

In a regular two-graph each pair is in a2 = a coherent triples, that is, in a2

3-cliques, and each coherent triple is in a3 4-cliques, where a3 is the number
of common neighbors of two adjacent vertices in any descendant, so that a3 =
− 1

4 (ρ1 + 3)(ρ2 + 3) + 1.

A completely regular two-graph is a two-graph in which there are constants ai
such that each i-clique with i ≤ −ρ2 is contained in precisely ai (i+ 1)-cliques,
where ai > 0. Neumaier [589] introduced this concept and gave parameter
restrictions strong enough to leave only a finite list of feasible parameters. There
are five examples, and two open cases. See Table 8.3 below.

# ρ1 ρ2 v a2 a3 a4 a5 a6 a7 existence
1 3 −3 10 4 1 unique
2 5 −3 16 6 1 unique
3 9 −3 28 10 1 unique
4 7 −5 36 16 6 2 1 unique [83]
5 19 −5 96 40 12 2 1 none [83]
6 25 −5 126 52 15 2 1 none [589]
7 55 −5 276 112 30 2 1 unique [356]
8 21 −7 148 66 25 8 3 2 1 none [589]
9 41 −7 288 126 45 12 3 2 1 none [73]
10 161 −7 1128 486 165 36 3 2 1 ?
11 71 −9 640 288 112 36 10 4 3 none [83]
12 351 −9 3160 1408 532 156 30 4 3 ?
13 253 −11 2784 1270 513 176 49 12 5 none [589]

Table 8.3: Parameters of completely regular two-graphs

Blokhuis & Wilbrink [83] observed that a descendant of a completely
regular two-graph is a Zara graph with m = −ρ2 and e = (m − 1)/2. In the
cases with v = 10, 16, 28 that Zara graph is a generalized quadrangle GQ(2, t)
with t = 1, 2, 4. In the case with v = 36 that Zara graph is locally 4 × 4 and
hence the folded Johnson graph J (8, 4) ([74]).

8.10.4 Covers and quotients
Taylor graphs

����1 k 1��
��
k

λ

µ µ����k
λ

1 k��
��
1
-

v = 2(k + 1)

A distance-regular antipodal double cover of a complete graph Kn is called
a Taylor graph. Such graphs have intersection array {k, µ, 1; 1, µ, k} and are
equivalent to regular 2-graphs on n = k + 1 vertices. (Taylor & Levingston
[679]).

Let X be an n-set, and fix ∞ ∈ X. The regular 2-graph (X,∆) corresponds
to the graph Γ with vertex set {x+, x− | x ∈ X} and (for x 6= y) edges xεyη
where ε = η if ∞ ∈ {x, y} or {∞, x, y} ∈ ∆, and ε = −η otherwise. Note that
the isomorphism type of Γ does not depend on the choice of ∞. Conversely,
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given Γ we find ∆ as the image of the set of triangles in Γ under the map xε 7→ x.
For a detailed discussion, see [123], §1.5.

The local graphs of Γ are the descendants of (X,∆), and hence strongly
regular.

Krein covers

����1 k 1��
��
k

λ
(t− 1)µ µ

�� ��(t− 1)k

k − µ− 1
1 k

�� ��t− 1

-
v = t(k + 1)

More generally one can look at distance-regular antipodal t-covers of Kn.
Here v = tn, n = k+1, k−1−λ = (t−1)µ. These graphs have intersection array
{k, (t−1)µ, 1; 1, µ, k} and spectrum k1 θf (−1)k (−k/θ)g where θ and −k/θ are
the solutions of θ2 +(µ−λ)θ−k = 0 with θ > 0, and f = (t−1)k(k+1)/(k+θ2),
g = θ2(t− 1)(k + 1)/(k + θ2). The Krein condition q3

33 ≥ 0 gives the inequality
k ≤ θ3 when t > 2.

Godsil [345] shows that when equality holds, the local graphs are strongly
regular, with parameters (v0, k0, λ0, µ0) and spectrum k1

0 r
f0
0 sg00 , where

v0 = k = θ3, r0 = θ − θ + 1

t
,

k0 = λ = (θ − 1)(
(θ + 1)2

t
− θ), s0 =

−λ
θ − 1

= θ − (θ + 1)2

t
,

λ0 =
(θ + 1)3

t2
− 3(θ + 1)2

t
+ 3θ, f0 = (θ − 1)((θ + 1)2 − tθ),

µ0 =
(θ + 1)3

t2
− (θ + 1)(2θ + 1)

t
+ θ, g0 = (t− 1)θ(θ − 1).

It follows that in this situation t | (θ+ 1), with equality when the local graph is
a union of cliques.

Godsil also observed that given a distance-regular antipodal t-cover Γ of Kn

and a group G preserving the fibers, acting fixpoint-freely, the quotient graph
Γ/G is a distance-regular antipodal (t/g)-cover of Kn, where g = |G|, with the
same eigenvalues as Γ. If Γ satisfied k = θ3, then so does Γ/G.

A case where this happens is that of a generalized quadrangle GQ(q, q2) with
spread. The collinearity graph Γ of that generalized quadrangle minus the lines
of the spread is a distance-regular antipodal (q+1)-cover ofKn, where n = q3+1,
with eigenvalues k = q3, θ = q, −1, and −q2 ([123], Theorem 12.5.2). There
is a cyclic group G of order q + 1 acting on the fibers. It follows that for each
t | (q + 1) the local graph of Γ/G is strongly regular with the above parameters
(with θ = q). For example, with (q, t) = (5, 3) or (8, 3) we find strongly regular
graphs with parameters (v, k, λ, µ) = (125, 28, 3, 7) or (512, 133, 24, 38). For
t = 2 we find the descendants of Taylor’s 2-graph again.

8.11 Pseudocyclic association schemes

A d-class association scheme (X,R) is called pseudocyclic when all nontrivial
multiplicities are equal, i.e., when m1 = · · · = md.
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Proposition 8.11.1 (Mathon [543]; Hollmann [439], p. 84; cf. [123], 2.2.7)
A d-class association scheme is pseudocyclic if and only if for some constant m
we have ni = m (1 ≤ i ≤ d) and

∑
i p
h
ii = m− 1 (1 ≤ h ≤ d). �

Given two association schemes (X,R) and (X ′,R′), one can take the direct
product (tensor product) in the obvious way. It has point set X × X ′ and
relations Rij = {(xx′, yy′) | (x, y) ∈ Ri and (x′, y′) ∈ R′j} with eigenvalues µν
where µ (resp. ν) runs through the eigenvalues of Ri (resp. R′j).

Proposition 8.11.2 (cf. Fujisaki [331]) Let (X,R) be a pseudocyclic associ-
ation scheme with d classes on n = dm + 1 points. In the direct product of
(X,R) with itself the three relations R =

⋃d
j=1Rjj and R

′ = R ∪
⋃d
j=1Rj0 and

R′′ = R′∪
⋃d
j=1R0j define strongly regular graphs with Latin square parameters

LSt(n), with t = m,m+ 1,m+ 2, respectively.

Proof. The eigenvalues of R are
∑d
j=1 PijPi′j for 0 ≤ i, i′ ≤ d. Using

Proposition 1.3.2 we see that this equals dm2 if i = i′ = 0, n−m if i = i′ 6= 0,
and −m if i 6= i′. The eigenvalues of R′ are

∑d
j=1(PijPi′j + Pij) which equals

dm(m + 1) if i = i′ = 0, n − m − 1 if i = 0, i′ 6= 0, and −m − 1 if i 6= 0.
The eigenvalues of R′′ are

∑d
j=1(PijPi′j +Pij +Pi′j) which equals dm(m+ 2) if

i = i′ = 0, n−m− 2 if i = 0, i′ 6= 0 or i′ = 0, i 6= 0, and −m− 2 if i, i′ 6= 0. �

Examples of pseudocyclic d-class schemes are the cyclotomic schemes on Fq.
(Let K be a subgroup of F∗q of index d with −1 ∈ K. Let a be a primitive
element. Let (x, y) ∈ Ri when y − x ∈ ai−1K (1 ≤ i ≤ d).)

Not many examples are known for non-primepower |X|. Mathon [543]
and Hollmann [440] found the two pseudocyclic 3-class association schemes
on 28 points. Hollmann [439] constructed a 3-class example on 496 points.
These generalize to examples with (d,m) = ( 1

2q − 1, q + 1) for q = 2e, and
(d,m) = ((1

2q − 1)/e, e(q + 1)) for q = 2e, e prime. See [123] p. 390 and [441].

8.12 Tensor products of skew schemes
In §1.3 we defined symmetric association schemes. More generally one can
look at association schemes that are not necessarily symmetric. One drops the
condition that the relations Ri are symmetric, and requires instead that for each
i the converse of the relation Ri is also one of the relations Rj .

In the special case of a 2-class association scheme that is not symmetric,
there are three relations: identity and R and the converse of R, so that the Bose-
Mesner algebra is generated by three matrices I, A,A> with I + A + A> = J .
The relation R describes a tournament (a directed complete graph). If the
number of points is v, then AJ = JA = kJ where v = 2k+1, and the algebra is
automatically commutative. One finds AA> = (m− 1)J +mI and k = 2m− 1
and v = 4m− 1. Let S = A−A>. Then S = −S>, and the matrix C = ( 0 1>

1 S
)

of order v + 1 is a conference matrix. (Equivalently, H = ( 1 1>

−1 S+I ) is a skew
Hadamard matrix.) Conversely, each conference matrix (or skew Hadamard
matrix) of order 4m yields a skew 2-class association scheme (cf. Theorem 8.2.1).

The tensor product of two association schemes (X,R) and (Y,S ), symmetric
or not, is the association scheme (X ×Y,T ) where the points (x, y) and (x′, y′)
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are in relation T(i,j) when (x, x′) ∈ Ri and (y, y′) ∈ Sj . The symmetrization
of a not necessarily symmetric association scheme (X,R), is the symmetric
association scheme (X,R′) where R′ = {R ∪R> | R ∈ R}.

Theorem 8.12.1 (Pasechnik [600]) Let H, H ′ be skew-symmetric Hadamard
matrices of order 4m. The symmetrization of the tensor product of the two
corresponding association schemes is an amorphic 4-class association scheme
on (4m − 1)2 points, with valencies n0 = 1, n1 = n2 = 4m − 2, n3 = n4 =
8m2 − 8m + 2. The relations R3 and R4 define strongly regular graphs with
Latin square parameters LS2m−1(4m− 1).

For example, one finds graphs with parameters (v, k, λ, µ) = (225, 98, 43, 42).

The graphs here satisfy the 4-vertex condition (cf. §8.16.1) if and only if
m = 1, hence are not rank 3 for m > 1.

8.13 Cospectral graphs

Seidel switching gives classes of graphs with the same Seidel spectrum. One also
has switching-type constructions that preserve the ordinary spectrum. In many
cases these can be used to show that a strongly regular graph is not determined
uniquely by its parameters.

8.13.1 Godsil-McKay switching

Let Γ be a graph with vertex set X, and let {C1, . . . , Ct, D} be a partition of
X such that {C1, . . . , Ct} is an equitable partition of X \ D (that is, any two
vertices in Ci have the same number of neighbors in Cj for all i, j), and for every
x ∈ D and every i ∈ {1, . . . , t} the vertex x has either 0, 1

2 |Ci| or |Ci| neighbors
in Ci. Construct a new graph Γ′ by interchanging adjacency and nonadjacency
between x ∈ D and the vertices in Ci whenever x has 1

2 |Ci| neighbors in Ci.
Then Γ and Γ′ are cospectral (Godsil & McKay [348]).

For discussion and examples, see [132], §§1.8.3, 14.2.3. For example, GM-
switching (for t = 1) with respect to a diagonal turns the 4 × 4 grid into the
Shrikhande graph. Munemasa [576] shows that the Van Dam-Koolen graphs
arise by GM-switching from Grassmann graphs. See also [3], [447], [52].

8.13.2 Wang-Qiu-Hu switching

Let Γ be a graph with vertex set X, and let {C1, C2, D} be a partition of
X, where the subgraphs induced on C1, C2, and C1 ∪ C2 are regular, and C1

and C2 have the same size and degree. Suppose that each x ∈ D either has the
same number of neighbors in C1 and C2, or satisfies Γ(x)∩(C1∪C2) ∈ {C1, C2}.
Construct a new graph Γ′ by interchanging adjacency and nonadjacency between
x ∈ D and C1 ∪ C2 when Γ(x) ∩ (C1 ∪ C2) ∈ {C1, C2}. Then Γ and Γ′ are
cospectral (Wang, Qiu & Hu [721]).

One may check that GM-switching with t = 1, |C1| = 4 is equivalent to
WQH-switching with |C1| = 2. Ihringer & Munemasa [452] construct new
strongly regular graphs by applying WQH-switching to polar graphs.
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8.14 Equiangular sets of lines

Let xi (1 ≤ i ≤ n) be unit vectors in Rd or Cd. The set of lines {〈xi〉 | 1 ≤ i ≤ n}
is called equiangular when there is a constant α such that for any two distinct
i, j one has |x∗i xj | = α. (Here x∗ = x> denotes the conjugate transpose of x.)
In Rd this says that the cosine of the angle between any two of these lines is α.

The size of a set of equiangular lines is bounded as a function of d.

Proposition 8.14.1 (See [132], §10.6.2.)
(i) (‘Absolute bound’) A set of equiangular lines in Rd has size at most

1
2d(d+ 1).

(ii) A set of equiangular lines in Cd has size at most d2.
(iii) (‘Special bound’) If {xi | 1 ≤ i ≤ n} is a set of unit vectors such that

|x∗i xj | ≤ α for any two distinct indices i, j, and α2d < 1, then n ≤ d(1−α2)
1−α2d . �

Part (i) is due to M. Gerzon3 (see [514]).
Part (ii) is due to Delsarte, Goethals & Seidel [279]. Complex systems

of lines with equality in (ii) are known as SICPOVMs (‘symmetric informa-
tionally complete positive operator-valued measures’). Examples are known for
1 ≤ d ≤ 21 and many further values of d. It is conjectured (Zauner [749],
p. 61) that they exist for all d. An example for d = 3 are the 9 vectors in C3

given by the cyclic shifts of 1√
2
(0, 1,−a) where a3 = 1. A nice example for d = 8

was given by Hoggar [437, 438].

Complex systems of lines with equality in (iii) are known as equiangular tight
frames (ETFs). Equivalently, an equiangular tight frame is a d × n matrix F
of which the columns are equiangular unit vectors, and the rows are mutually
orthogonal, all with the same length a, so that FF ∗ = aI. Now a = n

d . (See
also [132], §10.6.2.)

In the real case, equality in (iii) leads to strongly regular graphs. If G =
F>F = (x>i xj) is the Gram matrix of the set of vectors, so that G = I + αS
for a matrix S that has zero diagonal and off-diagonal entries ±1, then S is the
Seidel adjacency matrix of a graph in the switching class of a regular 2-graph
with eigenvalues n−d

αd and −1
α with multiplicities d and n− d, respectively. This

graph will be strongly regular precisely when 1 is eigenvector of G, so that
G1 = 0 or G1 = n

d1. The former happens if and only if F1 = 0. The latter if
and only if 1> lies in the row space of F .

Indeed, if F>y = 1, then G1 = F>FF>y = n
d
1.

This leads to a number of constructions.

(i) (Goethals & Seidel [355]) If there exists a Steiner system S(2, k, v)

(with b = v(v−1)
k(k−1) blocks, and r = v−1

k−1 blocks on each point), and a Hadamard
matrix H of order r + 1, then there exists an equiangular tight frame F with
d = b and n = v(r + 1) and α = 1

r , obtained by substituting rows of H for
the 1’s in the block-point incidence matrix of the design (and dividing by

√
r),

taking r distinct rows for the r 1’s in a single column.

3Michael Gerzon was an audio pioneer from Oxford. He was interested in the question
of equiangular lines in connection with the problem of sending many signals through a small
number of channels with minimal crosstalk. [PJC]
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If H is normalized to have top row 1>, and the remaining rows are used
in the substitution process, then F1 = 0, and we find a strongly regular graph
with V = v(r + 1) vertices, and eigenvalues K = (v+1)(r+1)

2 − 1, R = r−1
2 , and

S = −v+k
2 .

(ii) (Fickus et al. [324]) If there exists a Steiner system S(2, k, v) with
a parallel class, and a Hadamard matrix H of order r + 1, then there exists
a strongly regular graph with V = v(r + 1) vertices, and eigenvalues K =
(v−k+1)(r+1)

2 − 1, R = r−1
2 , and S = − v+k

2 .

Here we use the parallel class, combined with an all-1 row of H to see that 1> lies in the
row space of F .

(iii) See also [325].

The asymptotic behavior of Nα(d), the maximum number of vectors in Rd
with pairwise inner products ±α, for fixed α and large d was determined in
[465].

8.15 Spherical designs

A finite nonempty subset X of the unit sphere Ω in the Euclidean space Rm is
called a spherical t-design if for each polynomial F = F (x1, . . . , xm) of degree
at most t the average of F over Ω equals the average over the set X, i.e.,

1

|X|
∑
x∈X

F (x) =
1

vol Ω

∫
Ω

F (x)dx.

Spherical designs were introduced by Delsarte, Goethals & Seidel [278].
Many of the results stated below can be found here.

A polynomial F is called harmonic when
∑
i
∂2F
∂x2

i
= 0. Let Hom(k) be the

space of homogeneous polynomials of degree k, and Harm(k) be the subspace
of harmonic polynomials. Then dim Hom(k) =

(
k+m−1
m−1

)
and dim Harm(k) =(

k+m−1
m−1

)
−
(
k+m−3
m−1

)
.

Proposition 8.15.1 ([278], [716]) For a finite nonempty subset X of the unit
sphere in Rm, the following are equivalent.

(i) X is a spherical t-design,
(ii)

∑
x∈X F (x) = 0 for all F ∈ Harm(k) and any k with 1 ≤ k ≤ t,

(iii) for any y ∈ Rm,

1

|X|
∑
x∈X
〈x, y〉k =

{
1·3····(k−1)

m(m+2)···(m+k−2) 〈y, y〉
k/2 if k is even, 0 ≤ k ≤ t,

0 if k is odd, 0 ≤ k ≤ t.

For example, from the (distance-regular) collinearity graph of the dual polar space U6(2)
one gets (by taking the columns of the idempotent E3) a set of 891 vectors in R22 with inner
products 1, − 1

2
, 1

4
, − 1

8
with frequencies 1, 42, 336, 512. Using (iii) one sees that this is a

spherical 5-design.

For a survey, see Bannai & Bannai [46].
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8.15.1 Tight spherical designs
The set X is said to have degree s when the inner product between two distinct
elements of X takes precisely s values. Put n = |X|. If X has degree s, we have
the upper bound

n ≤
(
m+ s− 1

s

)
+

(
m+ s− 2

s− 1

)
, or n ≤ 2

(
m+ s− 2

s− 1

)
,

with the sharper inequality if X is antipodal. If X is a spherical t-design, we
have the lower bound

n ≥
(
m+ e− 1

e

)
+

(
m+ e− 2

e− 1

)
, or n ≥ 2

(
m+ e− 1

e

)
for t = 2e and t = 2e + 1, respectively. In case of equality, the spherical t-
design is called tight. For example, the set of 2

(
28
5

)
shortest vectors of the Leech

lattice in R24 is an antipodal spherical 11-design of degree 6 (with inner products
−1,− 1

2 ,−
1
4 , 0,

1
4 ,

1
2 ) and has equality in both upper and lower bound.

A spherical 2e-design is tight if and only if it has degree e. A spherical
(2e+ 1)-design is tight if and only if it has degree e+ 1 and is antipodal.

t m N inner products comment
1 m 2 −1 pair of vectors ±e
2 m m+ 1 − 1

m
simplex

3 m 2m −1, 0 cross polytope (vectors ±ei, i = 1, . . . ,m)
4 6 27 − 1

2
, 1

4
Schläfli graph

4 22 275 − 1
4
, 1

6
McLaughlin graph

5 3 12 −1,± 1√
5

icosahedron
5 7 56 −1,± 1

3
28 equiangular lines

5 23 552 −1,± 1
5

276 equiangular lines
7 8 240 −1,± 1

2
, 0 roots of E8

7 23 4600 −1,± 1
3
, 0 2300 equiangular lines (invariant under 2× Co2)

11 24 196560 −1,± 1
2
,± 1

4
, 0 shortest vectors in the Leech lattice

N−1 2 N cos 2πi
N
, 1 ≤ i ≤ 1

2
N regular N -gon

Table 8.4: Tight spherical t-designs of size N in Rm

For t 6= 4, 5, 7 all examples of tight spherical t-designs are known. Form = 2,
the tight spherical t-designs are the regular (t + 1)-gons. No tight spherical t-
designs exist in Rm with m ≥ 3 for t = 2e ≥ 6 or t = 2e+ 1 ≥ 9, except in case
m = 24, t = 11 (Bannai & Damerell [47], [48]). Uniqueness of the examples
with (t,m) = (5, 7), (7, 8), (7, 23), (11, 24) was shown in Bannai & Sloane [50].

There is a 1-1 correspondence between tight spherical 4-designs and tight spherical 5-
designs: any example X of the latter (of size N in Rm) has degree 3 and inner products
−1,−a, a, and shifting and scaling the set {x ∈ X | (x, x0) = a} for some fixed x0 ∈ X yields
a tight spherical 4-design (of size 1

2
N − 1 in Rm−1). This procedure can be reversed. Tight

spherical 4-designs are obtained from strongly regular graphs with equality in the absolute
bound, see Proposition 8.15.2 below.

Any tight spherical 5-design in Rm with m > 3 lives in dimension m = (2h+ 1)2 − 2 for
some integer h. Examples are known for h = 1, 2 and there are none for h = 3, 4. Any tight
spherical 7-design in Rm has m = 3h2−4 for some integer h. Examples are known for h = 2, 3
and there are none for h = 4, 5. These and further nonexistence results are due to Bannai,
Munemasa & Venkov [49] and Nebe & Venkov [586].

If X is a spherical t-design of degree s, and t ≥ 2s−2, then X, with the inner products as
relations, is an s-class association scheme (Delsarte, Goethals & Seidel [278], Thm. 7.4).



226 CHAPTER 8. COMBINATORIAL CONSTRUCTIONS

8.15.2 Spherical designs from association schemes

Given a d-class association scheme (X,R) with primitive idempotent E of rank
m (with EJ = 0), one can represent the point x ∈ X by the vector x̄ ∈ Rm
given by column x of E. Now 〈x̄, ȳ〉 = e>x E

>Eey = Exy. It follows thatX has
degree at most d. (See also §1.3.5.)

If (X,R) is primitive (no union of relations is a nontrivial equivalence
relation), then the map x 7→ x̄ is injective.

In particular, if (X,R) is a primitive strongly regular graph on v vertices,
then X has degree (at most) 2, and it follows that v ≤ 1

2m(m + 3) if m is the
multiplicity of an eigenvalue other than k. This is the absolute bound, see §1.3.7.
For the McLaughlin graph we have equality: v = 275, g = 22.

Since trE = m, the scaled vectors cx̄, where c =
√
|X|/m, lie on the unit

sphere. Since
∑
x∈X x̄ = 0, and

∑
x∈X〈x̄, y〉2 = y>Ey = 〈y, y〉 for arbitrary

y ∈ Rm, we always get a spherical 2-design.

Proposition 8.15.2 Let Γ be a primitive strongly regular graph, and let X be
the spherical design formed by the columns of a primitive idempotent E of rank
m > 1. Then

(i) X is always a spherical 2-design,
(ii) X is a spherical 3-design if and only if qiii = 0, where E = Ei,

(iii) X is a spherical 4-design if and only if v = 1
2m(m+ 3),

(iv) X is never a spherical 5-design.

We see that the absolute bound holds with equality if and only ifX is a tight
spherical 4-design. See also [346], [46], [132] (Chapter 10).

8.15.3 Bounds on the number of K4’s

Bondarenko et al. [89], [88] derive lower bounds for the number of K4 subgraphs
of a strongly regular graph by looking not only at the images x̄ of the vertices
but also at the images x̄ + ȳ of the edges xy. As a corollary they show nonex-
istence for strongly regular graphs with parameters (v, k, λ, µ) = (76, 30, 8, 14),
(460, 153, 32, 60), (5929, 1482, 275, 402), (6205, 858, 47, 130).

8.16 Higher regularity conditions

8.16.1 The t-vertex condition

Hestenes & Higman [419] introduced the t-vertex condition. A graph Γ is
said to satisfy the t-vertex condition, when for all triples (T, x0, y0) of a t-vertex
graph T with two distinct distinguished vertices x0, y0, and all pairs of distinct
vertices x, y of Γ, where x ∼ y if and only if x0 ∼ y0, the number n(x, y) of
isomorphic copies of T in Γ, where the isomorphism maps x0 to x and y0 to y,
does not depend on the choice of the pair x, y.

Clearly, a rank 3 graph satisfies the t-vertex condition for all t. If the graph
Γ satisfies the t-vertex condition, where Γ has v vertices and 3 ≤ t ≤ v, then
Γ also satisfies the (t − 1)-vertex condition. A graph Γ satisfies the 3-vertex
condition if and only if it is strongly regular (or complete or empty).
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Details on the parameters of graphs satisfying the 4-vertex condition (partly
due to the no longer accessible [657]) are given in [419]. In particular, one has
the simplified criterion for the 4-vertex condition:

Proposition 8.16.1 (Sims [657]) A strongly regular graph Γ with parameters
(v, k, λ, µ) satisfies the 4-vertex condition, with parameters (α, β), if and only if
the number of edges in Γ(x)∩Γ(y) is α (resp. β) whenever the vertices x, y are
adjacent (resp. nonadjacent). In this case, k(

(
λ
2

)
− α) = β(v − k − 1).

It immediately follows that the collinearity graph of a generalized quadrangle
satisfies the 4-vertex condition (with α =

(
λ
2

)
and β = 0).

Reichard [625] shows that the collinearity graph of a generalized quadran-
gle satisfies the 5-vertex condition (but not necessarily the 6-vertex condition)
and that the collinearity graph of a generalized quadrangle GQ(s, s2) satisfies
the 7-vertex condition (but not necessarily the 8-vertex condition).

One conjectures that graphs that satisfy the t-vertex condition for sufficiently
large t must be rank 3.

Higman [421] and Kaski et al. [485] show that the block graph of a Steiner
triple system satisfies the 4-vertex condition precisely for PG(n, 2) and AG(2, 3).

For two infinite series of graphs satisfying the 5-vertex condition, see [459],
[134], [460], [624].

Below a table with parameters of small rank 4 graphs satisfying the 4-vertex
condition.

v k λ µ α β group ref
144 55 22 20 87 90 M12.2 §10.46
280 36 8 4 1 4 HJ.2 §10.32
300 104 28 40 78 160 PGO5(5) §3.1.4, NO−5 (5)

325 144 68 60 1153 900 PGO5(5) §3.1.4, NO+
5 (5)

512 196 60 84 420 840 29.ΓL3(8) §8.4.3
729 112 1 20 0 0 36.2.L3(4).2 §10.75
1120 729 468 486 69498 74358 PSp6(3).2 §3.2.4
1849 462 131 110 2980 1845 432 : (42× D22) §7.4.5, e = 4

Brouwer, Ihringer & Kantor (2021, unpublished) showed for several infinite
series of strongly regular graphs that they satisfy the 4-vertex condition, and
also provided a prolific construction of such graphs (with the parameters of the
symplectic polar graphs).

8.16.2 t-Isoregularity
A graph is said to be t-tuple regular (Cameron & Van Lint [182], pp. 112–113)
when for any set S of vertices with |S| ≤ t the size of S⊥ (the set of all vertices
adjacent to each vertex in S) depends on the isomorphism type of S only.
Elsewhere, this same concept is called t-isoregularity.

A graph Γ is t-isoregular if and only if its complement Γ is.
For t = 1 we find the regular graphs. For t = 2 we find the graphs that are

strongly regular or complete or edgeless. For t = 3 we find the graphs that are
strongly regular with strongly regular subconstituents, or complete, or edgeless.
For t = 4 we find the graphs aKm and their complements Ka×m, 3 × 3, and
the graphs with equality in the absolute bound. For t = 5 we find the graphs
aKm and their complements Ka×m, the pentagon, and 3 × 3. (See Buczak
[153], Cameron [172] (Note added in proof), and [182] (8.21).) This result is
independently due to Ya. Yu. Gol’fand. See also [624], [625].
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8.17 Asymptotics

8.17.1 Graph isomorphism
The problem of testing whether two graphs are isomorphic is of both theoretical
and practical importance. On the practical side McKay’s nauty works well (and
improvements exist). See [555]. On the theoretical side it is unknown whether
a polynomial-time algorithm exists. Babai has claimed a quasipolynomial-time
algorithm, retracted the claim after Helfgott pointed out a flaw, and repaired his
proof again, a few days later. Babai & Helfgott currently claim an algorithm
that runs in time exp(O(log v)3) for graphs on v vertices. This result is so
far unpublished. See [25], [26], [416]. For graphs of bounded valency, and for
graphs with bounded eigenvalue multiplicity, graph isomorphism can be decided
in polynomial time (Luks [527], Babai, Grigor’ev & Mount [27]).

For the graph isomorphism problem, the most difficult cases are graphs that
are very similar without being isomorphic, and strongly regular graphs with the
same parameters are good test cases. They have the same spectrum, and vertices
or pairs of adjacent or nonadjacent vertices cannot be distinguished by counting
neighbors or common neighbors. There is literature about isomorphism testing
in this special case. See [22], [671], [23], [24].

Since quantum computation may be more powerful than classical computation, people
have been searching for efficient quantum algorithms for the isomorphism problem. One type
of attempt is getting an invariant from quantum walks. For example, [306] defines an invariant
(the spectrum of a certain matrix of order vk in case of a regular graph of valency k on v
vertices) and conjectures that it distinguishes nonisomorphic strongly regular graphs. Godsil,
Guo & Myklebust [347] give a counterexample, and show that it does not distinguish two
strongly regular graphs with parameters (756, 130, 4, 26), the collinearity graphs of two
different generalized quadrangles GQ(5, 25).

8.17.2 Pseudo-randomness
Pyber [622] proves that large connected strongly regular graphs other than the
complete multipartite graphs or block graphs of Steiner 2-designs or Latin square
graphs have a big eigenvalue gap, that is, that max(|r|, |s|) is much smaller than
k. It follows that these graphs are highly pseudo-random. And, for example,
are Hamiltonian.

A graph Γ is called pseudo-random when it sufficiently resembles a random graph, say, a
graph on v vertices where edges are chosen independently with some probability p.

A first precise definition was given by Thomason [698, 699], who introduced the concept
of jumbled graph. A graph is (p, α)-jumbled when for every h-subset H of its vertex set the
number e(H) of edges contained in H satisfies |e(H)− p

(h
2

)
| ≤ αh.

Chung, Graham & Wilson [196] consider weak pseudo-randomness for a series of graphs
with increasing number of vertices v, while p is fixed, and show the equivalence of many
properties, one of which is e(H) = p

(h
2

)
+ o(v2) for each subset H.

Let a (v, k,M)-graph be a regular graph of valency k on v vertices, with eigenvalues
k = θ1 ≥ · · · ≥ θv where |θi| ≤ M for i > 1. If M is much smaller than k, such graphs have
good randomness properties. For example, if S, T are two subsets of the vertex set of sizes
s, t, respectively, and e(S, T ) ordered edges xy have x ∈ S, y ∈ T , then |e(S, T ) − kst

v
|2 ≤

M2st(1− s
v

)(1− t
v

). (See [132], 4.3.2.)
A survey of pseudo-random graphs is given by Krivelevich & Sudakov [504].

Let Γ be a primitive strongly regular graph with parameters (v, k, λ, µ) and
spectrum k1 rf sg, where r > 0 > s. Let m := −s, and M := max(r,m).

Lemma 8.17.1 M < k1/2v1/4.
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Proof. By Proposition 1.3.14, v ≤ 1
2f(f+3) and v ≤ 1

2g(g+3). It follows that
f >

√
v and g >

√
v for v > 5. Since k2 + fr2 + gs2 = trA2 = kv, it follows

that M < k1/2v1/4. �

Proposition 8.17.2 |λ− µ| < v3/4.

Proof. By the lemma, |λ− µ| = |r + s| < M < k1/2v1/4 < v3/4. �

Proposition 8.17.3 m
k < 2v−1/6.

Proof. By the lemma, M < k1/2v1/4. This certainly suffices in case k > 1
4v.

So suppose k ≤ 1
4v. We have m = −s = r + µ − λ ≤ r + µ. Also v =

1 +k+ k(k−1−λ)
µ ≤ k2 + 1. If r ≥ µ, then m ≤ 2r. Since rm = −rs = k−µ ≤ k,

it follows that m ≤
√

2k, and the conclusion follows from k ≥
√
v − 1. So

suppose r < µ. Then m ≤ r + µ < 2µ = 2k(k−1−λ)
v−k−1 < 2k2

v−k so that m
k < 2k

v−k .
Also m4 ≤M4 < vk2, so that (mk )4 < v

k2 . Hence (mk )6 < v
k2 ( 2k

v−k )2 < 64
v . �

Proposition 8.17.4 If Γ is not a Latin square graph or the block graph of a
Steiner 2-design, then r

k < v−1/10.

Proof. In the half case, v = 4t + 1, k = 2t, and r = 1
2 (−1 +

√
v), and the

conclusion holds. So, we may assume that r, s are integral, and s ≤ −2. If
k > v7/10, the conclusion follows from the lemma. Since k = rm + µ, we
have k > rm, and if m > v1/10, the conclusion follows. By the Claw Bound
(Theorem 8.6.3), we have r ≤ 1

2s(s+1)(µ+1)−1. If m ≥ µ, then
√
v − 1 ≤ k =

rm+µ ≤ 1
2m

2(m−1)(µ+1)−m+µ < 1
2m

4 so that m > v1/8, and we are done.
Remains the case k ≤ v7/10, m ≤ v1/10, m < µ. Then v ≥ 210 and v ≥ 8k.
Now we have k = rm+ µ ≤ 1

2m
2(m− 1)(µ+ 1)−m+ µ ≤ 1

2 (m3 + 2)µ. Since
µ = k(k−λ−1)

v−k−1 < k2

v−k , this yields k ≤
1
2 (m3 +2) k2

v−k , so that 2(v−k) ≤ (m3 +2)k

and 2( 7
8v) ≤ m3+2

m3 (km3) ≤ 10
8 v, a contradiction. �

Theorem 8.17.5 Let Γ be a primitive strongly regular graph. If Γ is not a Latin
square graph or the block graph of a Steiner 2-design, then M/k < 2v−1/10. �

Let us call the graphs of the theorem, just here, general, and mention two
applications.

Brouwer [118] showed that the toughness t of a connected non-complete
regular graph satisfies t > k/M −2. So general strongly regular graphs are very
tough.

Krivelevich & Sudakov [503] showed that a (v, k,M)-graph is Hamilto-
nian if v is sufficiently large and M/k ≤ (log log v)2

1000 log v(log log log v) . So large general
strongly regular graphs are Hamiltonian.

The above estimates and results were due to Pyber. Other bounds are due
to Spielman [671] and Babai & Wilmes [28]. For example, the latter show
that

λ+ 1 < max {4
√

2v,
6√

13− 1

√
k(µ− 1)}

for edge-regular graphs where v, k, λ have the usual meaning, and µ is an upper
bound for the number of common neighbors of two vertices at distance 2.
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8.18 Conditions in case µ = 1 or µ = 2

In a strongly regular graph with µ = 1, the local graphs are unions of cliques,
so that the graph is the collinearity graph of a partial linear space with lines of
size λ+ 1. The number of lines on each point is k/(λ+ 1). The total number of
lines is vk/(λ+ 1)(λ+ 2). In particular, these numbers are integers.

For example, there is no strongly regular graph with parameters (v, k, λ, µ) =
(209, 16, 3, 1) or (726, 29, 4, 1).

If µ = 2, then in the local graph two vertices at distance 2 have a unique
common neighbor, so that the local graph is the collinearity graph of a partial
linear space. This yields a lower bound on k.

Theorem 8.18.1 (Brouwer & Neumaier [139]) A connected partial linear
space with girth at least 5 and more than one line (lines possibly of varying size)
in which every point has λ neighbors, contains k ≥ 1

2λ(λ+ 3) points.

This can be applied to the connected components of the local graph. If
(λ + 1) - k then not every component can be a single line, and there must
be a big component. For example, there are no strongly regular graphs with
parameters (v, k, λ, µ) = (456, 35, 10, 2) or (736, 42, 8, 2). The first of these also
fails the claw bound. Slightly more information is available, which rules out the
parameter set (1944, 67, 10, 2).

Bagchi [31] slightly strengthened these results and showed for µ = 1 that
k ≥ (λ + 1)(λ + 2), eliminating, e.g., the parameter sets (1666, 45, 8, 1) and
(2745, 56, 7, 1), and for µ = 2 that the graph is either a grid graph or satisfies
k ≥ 1

2λ(λ+ 3).

8.19 Coloring

We sketch what is known about the chromatic number χ(Γ) of strongly regular
graphs Γ. Eigenvalue methods provide lower bounds. For more detail, see [132],
§3.6, and [323]. Explicit constructions provide upper bounds.

Proposition 8.19.1 (Hoffman [434]) If the graph Γ is not edgeless, and has
largest eigenvalue θmax and smallest eigenvalue θmin, then χ(Γ) ≥ 1−θmax/θmin.

When equality holds, the coloring is called a Hoffman coloring. Since clearly
χ(Γ) ≥ |VΓ|/α(Γ), where α(Γ) is the independence number of Γ, a Hoffman
coloring of a regular graph is a partition of its vertex set into cocliques reaching
the Hoffman bound. Haemers & Tonchev [385] investigate strongly regular
graphs with a Hoffman coloring, and give a table with the examples on at most
100 vertices. Their smallest open case was settled in [163].

Proposition 8.19.2 (Haemers [376], 2.2.2) If the graph Γ on v vertices has
eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θv, and θ2 > 0, and θv has multiplicity m, then
χ(Γ) ≥ min(m, 1− θv/θ2).

Corollary 8.19.3 If the strongly regular graph Γ with distinct eigenvalues k >
r > s is not the pentagon and not complete multipartite, then χ(Γ) ≥ 1− s/r.
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Haemers [376] determined all primitive strongly regular graphs with chro-
matic number at most 4. There are three examples with χ(Γ) = 3:

v k λ µ graph
5 2 0 1 pentagon
9 4 1 2 L2(3)
10 3 0 1 Petersen graph

and 18 examples with χ(Γ) = 4:
v k λ µ graph
15 6 1 3 T (6)
16 5 0 2 complement of the Clebsch graph
16 6 2 2 L2(4)
16 6 2 2 Shrikhande graph
16 9 4 6 L2(4)
50 7 0 1 Hoffman-Singleton graph
56 10 0 2 Gewirtz graph
64 18 2 6 11 incidence graphs of triples of linked designs.

Here the graphs with parameters (64,18,2,6) are derived from the systems of
three linked 2-(16,6,2) designs.

Linked designs A system of linked designs (Cameron [170]) is a particular type
of coherent configuration (or of Buekenhout-Tits geometry). One has sets of objects
X0, . . . , Xr−1 and incidence relations between Xi and Xj for i 6= j, such that (i) each
pair (Xi, Xj) with i 6= j determines a square (a.k.a symmetric, or projective) 2-design,
and (ii) for any three sets Xi, Xj , Xk the number of x ∈ Xi incident with both y ∈ Xj
and z ∈ Xk depends only on whether y and z are incident. Such a system is called a
system of r − 1 linked designs (where one arbitrarily chooses one set X0 as the point
set, and views the remaining Xi as the sets of blocks for r − 1 designs).

Cameron describes systems of linked designs derived from Sp(2m, q), where q = 2n,
and systems (due to Goethals) derived from Kerdock codes, and the construction of
systems of linked 2-(16,6,2) designs from the Steiner system S(5, 8, 24). Mathon [545]
analyzes the case of linked 2-(16,6,2) designs and finds that there are 3 pairs, 12 triples,
and unique 4-, 5-, 6- and 7-sets of such designs. The 12 nonisomorphic triples lead
to 11 nonisomorphic 4-colorable strongly regular graphs with parameters (64,18,2,6).
See also [385], [250] (§5.4), [495], [612].

Fiala & Haemers [323] show that a strongly regular Γ with χ(Γ) = 5 has
one of 43 parameter sets, and completely settle 34 of these 43 cases.

Edge coloring

The edge-chromatic number of strongly regular graphs is studied in Cioabă,
Guo & Haemers [200]. By Vizing’s theorem the edge chromatic number of a
graph is either the maximum degree, or one more, and the corresponding graphs
are called of Vizing class 1 and 2, respectively. A regular graph of valency k
is of Vizing class 1 when it has an edge coloring with k colors, that is, when it
has a 1-factorization. Such a graph necessarily has an even number of vertices.
These authors conjecture that every connected strongly regular graph with an
even number of vertices is of Vizing class 1, except for the Petersen graph. This
is true if the valency is at most 18, and for several infinite families of graphs.
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8.20 Graphs that are locally strongly regular
Let ∆ be a fixed graph. A graph Γ is called locally ∆ when the induced subgraph
on each vertex neighborhood Γ(x) is isomorphic to ∆. Let D be a class of graphs.
A graph Γ is called locally D when each vertex neighborhood Γ(x) is isomorphic
to a member of D . We met this concept earlier, and saw that a Fischer graph
is locally Fischer, and looked, e.g., at locally cotriangular graphs.

Weetman [722] showed that if ∆ is regular of degree > 1 and has girth at
least 6 then there exist infinite graphs Γ that are locally ∆. The typical example
is the triangulation of the plane that is locally a hexagon.

Conversely, Weetman [723] shows that in many cases if ∆ is strongly
regular, the diameter of Γ is bounded.

Theorem 8.20.1 (Weetman [723]) Let ∆ be strongly regular with parameters
(v, k, λ, µ). If (i) v ≤ 2k + 1, or (ii) µ > λ, or (iii) ∆ is the collinearity graph
of a partial geometry, then any locally ∆ graph has diameter at most k + 1.

Weetman conjectures that any graph that is locally strongly regular (with
µ > 0) is finite. It is true that any graph that is locally ∆, where ∆ is strongly
regular on at most 195 vertices (with µ > 0), is finite ([117]).

8.21 Dropping regularity
A frequently rediscovered result says what happens if we drop the regularity
condition from the definition of strongly regular graph.

Proposition 8.21.1 (Bose & Dowling [93]) Let Γ be a graph, not complete,
not edgeless, such that any two adjacent (resp. nonadjacent) vertices have λ
(resp. µ) common neighbors. Then either Γ is strongly regular, or µ = 0 and Γ
is the disjoint union of complete subgraphs of sizes 1 or λ+ 2, or µ = 1 and Γ
is the union of complete subgraphs of size λ+ 2 with a single common vertex.

The particular case λ = µ = 1 of this proposition in known as the friendship
problem. See also [412].

8.22 Directed strongly regular graphs
A directed strongly regular graph (dsrg) is a (0,1)-matrix A with zero diagonal
such that the linear span of I, J and A is closed under matrix multiplication.
This concept was defined by Duval [298], and most of the theory is due to him.
The matrix A is the adjacency matrix of a directed graph without loops, so that
xy is an edge when Axy = 1.

One defines (integral) parameters (v, k, t, λ, µ) by: v is the number of ver-
tices, k is the constant indegree and outdegree (that is, AJ = JA = kJ), and
A2 = tI+λA+µ(J−I−A). If we regard an undirected edge as the combination
of two oppositely directed edges, then t is the number of undirected edges on
each vertex.

These dsrg’s come in complementary pairs: together with A also J − I −A
satisfies the definition. If the first one has parameters (v, k, t, λ, µ) then its
complement has parameters (v, v−k−1, v−2k−1+t, v−2k−2+µ, v−2k+λ).
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For a given set of parameters, dsrg’s also come in pairs: together with A also
its transpose A> satisfies the definition. (One arises from the other by reversing
all arrows.) The corresponding dsrg’s may or may not be isomorphic.

If the graph is undirected (A = A>), then we have a strongly regular graph
(and t = k). Let us assume that the graph is not undirected, that is, that A is
not symmetric. Then t < k < v − 1.

Spectrum
Since the case A = J − I was excluded, the algebra spanned by I, A and J is
3-dimensional. It follows that A has precisely 3 distinct eigenvalues, say k, r, s,
with multiplicities 1, f and g, respectively.

The eigenvalues r, s different from k are roots of x2 +(µ−λ)x+µ− t = 0 so
are algebraic integers. We distinguish two cases, depending on whether f = g.

Proposition 8.22.1 A directed strongly regular graph with f 6= g has integral
eigenvalues k, r, s with r ≥ 0 and s < 0, and satisfies µ ≤ t and t 6= 0.

Proof. If f 6= g, we can solve r, s from r + s = λ − µ and fr + gs = −k to
find that r and s are rational numbers, and therefore integers.

At least one of r, s is negative since trA = 0. But J − I −A has eigenvalues
v− 1− k, −1− s, −1− r, and also has a negative eigenvalue, so we may assume
that r ≥ 0 and s < 0. In particular, r 6= s, some linear combination of A, I
and J is a projection, and A is diagonalizable. Moreover, rs ≤ 0, so µ ≤ t, and
hence t 6= 0. �

Proposition 8.22.2 Directed strongly regular graphs with t = 0 are equivalent
to Hadamard matrices of order 4µ that have 1’s on the diagonal and are skew-
symmetric off-diagonal.

Proof. Suppose H is a Hadamard matrix as described. By suitably multiply-
ing rows and columns by −1, we may assume that H has an all-1 top row. Let
B be the matrix obtained by deleting the first row and column from H. From
HH> = 4µI, we find BJ = J and B +B> = 2I and BB> = 4µI − J . Now let
A = 1

2 (J−B). Then A is a (0,1)-matrix with zero diagonal satisfying A+A> =
J − I and AJ = JA = v−1

2 J and A2 + A = µ(J − I), so that this is a directed
strongly regular graph with parameters (v, k, t, λ, µ) = (4µ−1, 2µ−1, 0, µ−1, µ).

Conversely, let a directed strongly regular graphs satisfy t = 0. By the above,
f = g = (v − 1)/2. From (λ − µ)(v − 1)/2 = −k it follows that k = (v − 1)/2
and µ = λ+ 1. From k2 = t+ λk + µ(v − 1− k) we see k = 2µ− 1. The graph
is a tournament: A> = J − I − A, and bordering the (1,−1) matrix J − 2A
first with a first column of all −1’s and then with a top row of all 1’s we find a
Hadamard matrix H as desired. �

In the below we exclude the case t = 0.

The 2-dimensional case
An important subclass is that where already the linear span of A and J is
closed under matrix multiplication. This happens when t = µ, and then A2 =
(λ−µ)A+µJ so that the eigenvalues of A are k, λ−µ, and 0. Conversely, when
A has eigenvalue 0, we are in this case. Put d = µ− λ. Then the multiplicities
of the eigenvalues k, −d, 0 are 1, k/d and v − 1− k/d, respectively.
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The 1-dimensional case
If A is a 0-1 matrix, then B = J − 2A is a ±1 matrix, and it is possible that
the 1-space generated by B is closed under matrix multiplication. This happens
when t = µ and 1

2v = 2k − λ− µ, and then k − µ ∈ {λ, µ}. Conversely, if B is
a ±1 matrix with constant row sums and 1’s on the diagonal such that B2 is
a multiple of B, then A = (J − B)/2 is the adjacency matrix of a dsrg in this
subcase. Note that the set of such ±1 matrices B is closed under taking tensor
products.

Combinatorial parameter conditions
We already saw that 0 < µ ≤ t. (If µ = 0 then A = J − I, which was excluded.)
Also, that 0 ≤ λ < t < k < v. (Indeed, λ < t, since λ+1−t = (r+1)(s+1) ≤ 0.)

Duval gave one more condition. We have −2(k − t− 1) ≤ µ− λ ≤ 2(k − t).
(Indeed, consider a directed edge from x to y. Paths of length 2 from x to
y contribute to λ, paths in the opposite direction to µ. Thus, the difference
between µ and λ is counted by the at most 2(k − t) paths that cannot be
reversed. The other inequality follows similarly, or by applying the first to the
complementary graph.)

No Abelian Cayley graphs
From the spectrum we can draw one more useful conclusion (Klin et al. [493]).
Let us write A = As + Aa where As is the symmetric 0-1 matrix (with row
sums t) describing adjacency via an undirected edge, and Aa is the 0-1 matrix
describing the remaining, directed, edges (with row sums k − t). Since Aa has
a nonzero real eigenvalue, namely k − t, and its square has trace zero, Aa must
also have non-real eigenvalues. On the other hand, both A and As only have real
eigenvalues. It follows that A and As cannot be diagonalized simultaneously,
so that As and Aa do not commute. But then these matrices do not describe
differences in the same Abelian group. Thus, a directed strongly regular graph
cannot be a Cayley graph of an Abelian group.

Examples
There are many constructions, and we just give a few random examples.

(i) If there exists a dsrg A with parameters (v, k, t, λ, µ), and t = µ, then for
any m ≥ 1 there is also a dsrg with parameters (mv,mk,mt,mλ,mµ), obtained
by taking A⊗ J , where J is of order m ([298]).

(ii) Let m ≥ 1 be an integer. Then there exists a dsrg with parameters
(v, k, t, λ, µ) = (4m + 2, 2m,m,m − 1,m) found by taking the vertices xi and
yi (0 ≤ i ≤ 2m, indices mod 2m + 1), and directed edges xi → xi+j , yi+j ,
yi → xi−j , yi−j where 1 ≤ j ≤ m ([493]).

(iii) Let µ, k be positive integers such that µ|(k−1). Then there exists a dsrg
with parameters (v, k, t, λ, µ) = ((k2 − 1)/µ, k, µ + 1, µ, µ) found by taking as
vertices the integers mod v and letting x→ y be an edge when x+ky = 1, 2, ..., k
(mod v) ([470]).

(iv) If there exists a strongly regular graph with parameters (v, k, λ, µ) where
µ = λ+ 1, then there is a dsrg with parameters (v′, k′, t′, λ′, µ′) = (vk, (v − k −
1)k, (v − k − 1)(k − µ), (v − k − 2)(k − µ), (v − k − 1)(k − µ)). Construction:
take the edges of the srg, and let xy → uv when u is at distance 2 from y. For
example, the Petersen graph produces a dsrg(30, 18, 12, 10, 12).

Further constructions abound. Surveys can be found elsewhere.



Chapter 9

p-Ranks

Let M be an integral matrix. The p-rank of M , denoted rkpM , is the rank of
M over the field Fp.

Designs or graphs with the same parameters can sometimes be distinguished
by considering the p-rank of associated matrices. For example, there are three
nonisomorphic 2-(16,6,2) designs, with point-block incidence matrices of 2-rank
6, 7 and 8, respectively.

Tight bounds on the occurrence of certain configurations are sometimes
obtained by computing a rank in some suitable field, since p-ranks of integral
matrices may be smaller than their ranks over R. For example, the Blokhuis-
Moorhouse theorem (Theorem 2.6.2) gives good bounds on the size of partial
ovoids in an orthogonal polar space.

9.1 Points and hyperplanes of a projective space

The following result was found independently by Goethals &Delsarte [352]
and by MacWilliams &Mann [533]. A nicer proof was given by Smith [662].

Theorem 9.1.1 Let A be the 0-1 incidence matrix of points and hyperplanes
of PG(d, q), where q = pe. Then rkpA =

(
d+p−1
d

)e
+ 1.

We already encountered the special case of PG(2, 4) in Theorem 6.2.2.
More generally, Hamada [402, 403] determined the p-rank of the incidence

matrix of points and i-subspaces in PG(d, q).
See also Assmus & Key [17] and [145], §4.

9.2 Graphs

On the 2-rank

Let A be a symmetric integral matrix with zero diagonal. Then rk2A is even.

The diagonal of a symmetric (0,1)-matrix A (written as row vector) is element
of its F2-rowspan 〈A〉2.

235
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Adding a multiple of J

Let M be an integral matrix of order v with row sums k. Given a field F , let
rkF (M) be the rank of M over F , that is the dimension of the row space 〈M〉F .
Consider rkF (M + bJ) for integral b. Since J has rank 1, all matrices M + bJ
differ in rank by at most 1, so either all have the same rank r, or two ranks r,
r + 1 occur, and in the latter case rank r + 1 occurs whenever 1 ∈ 〈M + bJ〉F .

If 1 6∈ 〈M〉 and 1 ∈ 〈M + bJ〉 for some b 6= 0, then 1 ∈ 〈M + bJ〉 for all
b 6= 0. Thus, either rkF (M + bJ) is independent of b, or there is precisely one
value of b (in F ) for which this rank is lower.

Now let F = Fp. The matrix M + bJ has row sums k + bv.
If p - v, then 1 ∈ 〈M + bJ〉p when k+ bv 6≡ 0 (mod p). On the other hand, if

k+bv ≡ 0 (mod p), then all rows have zero row sum (mod p) while 1 has not, so
that 1 6∈ 〈M + bJ〉p. Thus, we are in the second case, where the smaller p-rank
occurs for b = −k/v only.

If p | v and p - k, then all row sums are nonzero (mod p) for all b, and we are in
the former case: the rank is independent of b, and 〈M + bJ〉p always contains 1.

Finally, if p|v and also p|k, then further inspection is required.

9.3 Strongly regular graphs

For strongly regular graphs the interesting primes p are those with p | (r − s).
All other ranks are already determined by the parameters.

Let Γ be a strongly regular graph with adjacency matrix A, and assume
that A has integral eigenvalues k, r, s with multiplicities 1, f, g, respectively. We
investigate the p-rank of a linear combination of A, I and J .

The following proposition shows that only the case p|(r − s) is interesting.
More detail is given in [126]. See also [132], Ch. 13.

Proposition 9.3.1 Let M = A+ bJ + cI where b, c are integers. Then M has
eigenvalues θ0 = k + bv + c, θ1 = r + c, θ2 = s+ c, with multiplicities m0 = 1,
m1 = f , m2 = g, respectively.

(i) If none of the θi vanishes (mod p), then rkpM = v.
(ii) If precisely one θi vanishes (mod p), then M has p-rank v −mi.

Put e := µ+ b2v + 2bk + b(µ− λ).
(iii) If θ0 ≡ θ1 ≡ 0 (mod p), θ2 6≡ 0 (mod p), then rkpM = g if and only if

p|e, and rkpM = g + 1 otherwise.
(iii)′ If θ0 ≡ θ2 ≡ 0 (mod p), θ1 6≡ 0 (mod p), then rkpM = f if and only if

p|e, and rkpM = f + 1 otherwise.
(iv) In particular, if k ≡ r ≡ 0 (mod p) and s 6≡ 0 (mod p), then rkpA = g.

And if k ≡ s ≡ 0 (mod p) and r 6≡ 0 (mod p), then rkpA = f .
(v) If θ1 ≡ θ2 ≡ 0 (mod p), then rkpM ≤ min(f + 1, g + 1).

Proof. See [132], §13.7. �

Idempotents

If p | (r − s) then Proposition 9.3.1 only says that rkpM ≤ min(f + 1, g + 1).
Looking at the idempotents sometimes improves this bound by 1: We have
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E1 = 1
r−s (A − sI − k−s

v J) and E2 = 1
s−r (A − rI − k−r

v J). Thus, if k − s and
v are divisible by the same power of p (so that k−s

v can be interpreted in Fp),
then rkp(A− sI − k−s

v J) ≤ rkE1 = f , and, similarly, if k− r and v are divisible
by the same power of p then rkp(A− rI − k−r

v J) ≤ rkE2 = g.
For M = A+ bJ + cI and p|(r+ c), p|(s+ c) we have ME1 = JE1 = 0 (over

Fp) so that rkp〈M,1〉 ≤ g + 1, and hence rkpM ≤ g (and similarly rkpM ≤ f)
in case 1 /∈ 〈M〉.

The half case
If r, s are nonintegral, we are in the half case, with (v, k, λ, µ) = (4t+1, 2t, t−1, t)
and r, s = (−1±

√
v)/2. The analog of Proposition 9.3.1 for this case is

Proposition 9.3.2 Let M = A + cI where c is an integer. Then M has
eigenvalues θ0 = k + c, θ1, θ2 = 1

2 (−1 ±
√
v) + c, with multiplicities m0 = 1

and m1 = m2 = (v − 1)/2, so that θ1θ2 = c2 − c− µ. Let p be a prime.
(i) If p - θ0θ1θ2, then rkpM = v.
(ii) If p - θ1θ2 but p|θ0, then rkpM = v − 1.

Now suppose that p|(c2 − c− µ). If p = 2, this does not happen when µ is odd,
and happens for all c when µ is even. If p > 2, then p|(c2−c−µ) is equivalent to
(2c−1)2 ≡ v (mod p), and there are 0, 1 or 2 solutions for c (mod p), depending
on whether v is a nonsquare, zero or a square (mod p).

(iii) If µ ≡ 0 (mod p), then p | c(c−1), and rkpA = (v−1)/2 and rkp(A+I) =
(v + 1)/2.

(iv) If v is a nonzero square (mod p) and v 6≡ 1 (mod p), then rkpM =
(v + 1)/2 for the two values of c satisfying (2c− 1)2 ≡ v (mod p).

Proof. See [126], §4. �

This proposition covers all cases except that where p | v where p is odd. In
that case we only know rkpM ≤ (v+1)/2, with equality in case p || v (Proposition
9.3.5). For Paley and Peisert graphs the precise values are given in Propositions
9.3.3 and 9.3.4.

Table
In the table below we give for a few strongly regular graphs for each prime p
dividing r−s the p-rank of A−sI and the unique b0 such that rkp(A−sI−b0J) =
rkp(A − sI − bJ) − 1 for all b 6≡ b0 (mod p), or ‘-’ in case rkp(A − sI − bJ) is
independent of b.

(When p - v we are in the former case, and b0 = (k − s)/v follows from the
parameters. When p | v and p - µ, we are in the latter case.)

Since A = J − I − A for the complementary graph, the table line for the
complement would have the same minimal p-rank, and b0 = 1− b0.

This table extends that in [126].

Name ref v k λ µ rf sg p rkp(A− sI) b0
3× 3, Paley(9) §1.1.8 9 4 1 2 14 (−2)4 3 4 -
T (5) §1.1.7 10 6 3 4 14 (−2)5 3 5 2
T (6) §1.1.7 15 8 4 4 25 (−2)9 2 4 0
Folded 5-cube §10.7 16 5 0 2 110 (−3)5 2 6 -
4× 4 §1.1.8 16 6 2 2 26 (−2)9 2 6 -

continued...
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Name ref v k λ µ rf sg p rkp(A− sI) b0
T (7) §1.1.7 21 10 5 4 36 (−2)14 5 7 2
5× 5 §1.1.8 25 8 3 2 38 (−2)16 5 8 -
Paley(25) §1.1.9 25 12 5 6 212 (−3)12 5 9 -
Schläfli §10.10 27 16 10 8 46 (−2)20 2 6 0

3 7 -
T (8) §1.1.7 28 12 6 4 47 (−2)20 2 6 0

3 8 2
3 Chang graphs §10.11 28 12 6 4 47 (−2)20 2 8 -

3 8 2
J (8, 4) §10.13 35 16 6 8 220 (−4)14 2 6 0

3 14 1
6× 6 §1.1.8 36 10 4 2 410 (−2)25 2 10 -

3 10 -
G2(2) §10.14 36 14 4 6 221 (−4)14 2 8 -

3 14 -
T (9) §1.1.7 36 14 7 4 58 (−2)27 7 9 2
NO−6 (2) §10.15 36 15 6 6 315 (−3)20 2 7 1

3 15 1
Sp4(3) §10.16 40 12 2 4 224 (−4)15 2 16 -

3 11 1
O5(3) §10.16 40 12 2 4 224 (−4)15 2 10 -

3 15 1
U4(2) §10.17 45 12 3 3 320 (−3)24 2 15 1

3 15 2
T (10) §1.1.7 45 16 8 4 69 (−2)35 2 8 0
Paley(49) §1.1.9 49 24 11 12 324 (−4)24 7 16 -
Hoffman-Singleton §10.19 50 7 0 1 228 (−3)21 5 21 -
Gewirtz §10.20 56 10 0 2 235 (−4)20 2 20 -

3 20 1
Sp6(2) §10.21 63 30 13 15 335 (−5)27 2 7 1
GQ(3, 5) §10.24 64 18 2 6 245 (−6)18 2 14 -
26 : O−6 (2) §10.25 64 27 10 12 336 (−5)27 2 8 -
Halved folded 8-cube §10.26 64 28 12 12 428 (−4)35 2 8 -
M22 §10.27 77 16 0 4 255 (−6)21 2 20 0
Brouwer-Haemers §10.28 81 20 1 6 260 (−7)20 3 19 -
Paley(81) §1.1.9 81 40 19 20 440 (−5)40 3 16 -
Higman-Sims §10.31 100 22 0 6 277 (−8)22 2 22 -

5 23 -
Hall-Janko §10.32 100 36 14 12 636 (−4)63 2 36 0

5 23 -
Flags of PG(2, 4) §10.33 105 32 4 12 284 (−10)20 2 18 0

3 20 2
GQ(3, 9) §10.34 112 30 2 10 290 (−10)21 2 22 -

3 20 1
NO+

6 (3) §10.35 117 36 15 9 926 (−3)90 2 27 1
3 21 -

001... in S(5, 8, 24) §10.37 120 42 8 18 299 (−12)20 2 20 -
7 20 5

NO+
8 (2) §10.39 120 56 28 24 835 (−4)84 2 8 0

3 36 2
S10 §10.40 126 25 8 4 735 (−3)90 2 27 1

5 36 3
NO−6 (3) §10.41 126 45 12 18 390 (−9)35 2 27 1

3 36 -
Goethals §10.42 126 50 13 24 2105 (−13)20 3 21 -

5 20 3
O+

8 (2) §10.43 135 70 37 35 750 (−5)84 2 9 1
3 50 -

Faradžev-Klin-Muzychuk §10.45 144 39 6 12 3104 (−9)39 2 40 -
3 32 -

Sp4(5) 156 30 4 6 490 (−6)65 2 66 -
5 36 1

2nd sub McL §10.48 162 56 10 24 2140 (−16)21 2 20 0
3 21 -
continued...
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Name ref v k λ µ rf sg p rkp(A− sI) b0
Edges of Ho-Si 175 72 20 36 2153 (−18)21 2 20 0

5 21 -
01... in S(5, 8, 24) §10.51 176 70 18 34 2154 (−18)21 2 22 -

5 22 3
A switched version 176 90 38 54 2153 (−18)22 2 22 -
of the previous graph 5 22 3

Cameron §10.54 231 30 9 3 955 (−3)175 2 55 1
3 56 1

Berlekamp-Van Lint-Seidel §10.55 243 22 1 2 4132 (−5)110 3 67 -
Delsarte 243 110 37 60 2220 (−25)22 3 22 -
S(4, 7, 23) §10.56 253 112 36 60 2230 (−26)22 2 22 0

7 23 5
VO−8 (2) §10.59 256 119 54 56 7136 (−9)119 2 10 -
VO+

8 (2) §10.60 256 120 56 56 8120 (−8)135 2 10 -
McLaughlin §10.61 275 112 30 56 2252 (−28)22 2 22 0

3 22 1
5 23 -

A switched version 276 140 58 84 2252 (−28)23 2 24 -
of the previous graph 3 23 2
plus isolated point 5 24 3

Mathon-Rosa §10.62 280 117 44 52 5195 (−13)84 2 68 -
3 42 1

NO−⊥7 (3) §10.66 351 126 45 45 9168 (−3)182 2 79 1
3 27 0

G2(4) §10.68 416 100 36 20 2065 (−4)350 2 38 -
3 65 1

P (232), P∗(232), P∗∗(232) §10.70 529 264 131 132 11264 (−12)264 23 144 -
U6(2) 693 180 51 45 15252 (−9)440 2 35 1

3 231 -
Games §10.75 729 112 1 20 4616 (−23)112 3 98 -
NO+

8 (3) §10.78 1080 351 126 108 27260 (−9)819 2 261 1
3 36 2

Dodecads mod 1 §10.80 1288 792 476 504 81035 (−36)252 2 22 0
11 230 3

U6(2) on 1408 §10.81 1408 567 246 216 39252 (−9)1155 2 22 -
3 229 0

Suz §10.83 1782 416 100 96 20780 (−16)1001 2 638 0
3 66 -

211.M24, k = 276 §10.84 2048 276 44 36 20759 (−12)1288 2 112 -
211.M24, k = 759 §10.85 2048 759 310 264 55276 (−9)1771 2 24 -
Co2 §10.88 2300 891 378 324 63275 (−9)2024 2 23 1

3 275 0
Fi22 §10.90 3510 693 180 126 63429 (−9)3080 2 79 1

3 351 0
Ru §10.91 4060 1755 730 780 153276 (−65)783 2 29 1

5 784 4
Fi22 on 14080 §10.94 14080 3159 918 648 279429 (−9)13650 2 352 -

3 351 0

Table 9.1: p-ranks of some strongly regular graphs

Some graph families

Lattice graphs

For n×n the interesting primes are those dividing n. For p |n we have rkp(A+
2I − bJ) = 2n− 2 for all b.

Triangular graphs

For T (n) the interesting primes are those dividing n− 2. For p | (n− 2), p odd,
n ≥ 3 we have rkp(A+ 2I − bJ) = n if b 6= 2, and rkp(A+ 2I − 2J) = n− 1.
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For p = 2, n even, n ≥ 2 we have rk2(A) = n− 2 and rk2(A+ J) = n− 1.

p-rank of Paley and Peisert graphs

Proposition 9.3.3 (Brouwer & van Eijl [126]) Let q = pe where p is prime
and q ≡ 1 (mod 4), and let A be the adjacency matrix of P (q), the Paley graph
of order q. Then

rkp(2A+ I) = (
p+ 1

2
)e.

Proposition 9.3.4 (Weng, Qiu, Wang & Xiang [725]) Let q = pe where p
is prime, p ≡ 3 (mod 4) and e = 2t is even. Let A be the adjacency matrix of
P ∗(q), the Peisert graph of order q. Then

rkp(2A+ I) = 2(3t − 1)(
p+ 1

4
)2t.

(For e > 4 this p-rank is smaller than that of the previous proposition, so in
that sense P ∗(q) is nicer than P (q).)

More generally, [126] gives the p-ranks of arbitrary strongly regular graph
with ‘half case’ parameters for all p not dividing v, but only rkp(2A + I) ≤
(v + 1)/2 when p | v. Equality holds if p || v (that is, p | v, p2 - v):

Proposition 9.3.5 (Peeters [611]) Let A be the adjacency matrix of a strongly
regular graph with ‘half case’ parameters (v, k, λ, µ) = (4t + 1, 2t, t − 1, t). If p
is prime, and p || v, then rkp(2A+ I) = (v + 1)/2.

Symplectic graphs

For Sp(n, q), n = 2m we have r, s = −1± qm−1, so the interesting primes are 2
and p, where q = pe. For the p-rank: rkp(A+ I − J) = rkp(A+ I − bJ)− 1 for
b 6= 1 (mod p), that is b0 = 1. And rkp(A + I) =

(
p+n−2
n−1

)e
+ 1 since A + I is

just the point-hyperplane incidence matrix of PG(n− 1, q).
In particular, for Sp(n, 2) we have rk2(A+ I) = n+ 1 and rk2(J − I −A) = n. Peeters

[611] showed that the corresponding graphs are characterized by their parameters and 2-rank.
Abiad & Haemers [3] constructed graphs with the same parameters and varying 2-rank.
Godsil & Royle [351] show that any graph Γ of which the adjacency matrix has 2-rank 2m
and does not have zero rows or repeated rows, can be embedded in the noncollinearity graph
Σ of Sp(n, 2). Since χ(Σ) = 2m + 1 (by the existence of symplectic spreads) it follows that
χ(Γ) ≤ 2m + 1.

For the 2-rank, if p is odd: rk2(A) = rk2(J − A) (one sees 1 ∈ 〈A〉 since
1 is the sum of the rows indexed by x ∈ L for a t.i. line L). If n = 4, then
rk2(A) = rk2(J −A) = 1

2q(q
2 + 1) + 1 ([33]).

Generalized quadrangles and orthogonal polar spaces

In Bagchi, Brouwer &Wilbrink [33] it is shown that rk2〈A〉 = q3−q2+q+1
for the collinearity graph of any GQ(q, q2) with odd q. Also, that rk2〈A〉 = q2+1
for the O5(q) generalized quadrangle with odd q. More generally, for orthogonal
polar spaces with odd q we have the 2-ranks given in the table below.

O2m+1(q) Oε
2m(q)

m even q2m−1
q2−1

q(q2m−2−1)
q2−1 + εqm−1

m odd q2m−1
q2−1 − 1 q(q2m−2−1)

q2−1 + ε(qm−1 − 1)
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Intersecting flats

Sin [658] determines the p-rank of the 0-1 matrix M with rows and columns
indexed by the c-flats and d-flats in a vector space of dimension n+ 1 over Fq,
where q = pe, with 1-entry when they intersect nontrivially. Let N = J −M be
the disjointness matrix. Since M1 = 1 (mod p) and N1 = 0 (mod p), we see
rkpM = 1 + rkpN .

The formula for rkpN is nicest when c + d = n + 1. In that case rkpN =

(
∑
i≥0(−1)i

(
n+1
i

)(
n+c(p−1)−ip

n

)
)
e. For example, for lines in PG(3, q), adjacent

when disjoint, one finds rkpA = ( 1
3p(2p

2 + 1))e.

Binary codes

The binary codes spanned by the rows of A or A+ I, where A is the adjacency
matrix of a strongly regular graph, were investigated in [383]. (The dimension
of these codes is rk2A, which was studied in the above. In loc. cit. in some cases
also the weight enumerators are given.) See also [513].

9.4 Smith normal form

Let us write M ∼ N for integral matrices M,N , not necessarily square, if there
are integral square invertible matrices P,Q such that N = PMQ. Then ∼ is an
equivalence relation. Let M be an integral matrix. The Smith normal form of
M is a diagonal matrix S(M) with S(M) ∼ M such that the diagonal entries
si := S(M)ii satisfy si | si+1 for all i. These entries are uniquely determined up
to sign, and satisfy si = di/di−1 for all i, where di is the g.c.d. of all minors of
order i ofM (so that d0 = 1). The si are called elementary divisors or invariant
factors. The p-rank rkp(M) equals the number of si not divisible by p, and the
Q-rank rk(M) equals the number of nonzero si. In particular, rkp(M) ≤ rk(M).
If M is square of order n, then

∏
i si = detS(M) = ±detM . If pe||detM , then

rkpM ≥ n− e.

Let 〈M〉 denote the row space ofM over Z. By the fundamental theorem for
finitely generated abelian groups, the group Zn/〈M〉 is isomorphic to a direct
sum Zs1 ⊕ · · · ⊕ Zsm ⊕ Zs for certain s1, . . . , sm, s, where s1| · · · |sm. Since
Zn/〈M〉 ' Zn/〈S(M)〉, we see that diag(s1, . . . , sm, 0

t) is the Smith normal
form of M , when M has r rows and n = m+ s columns, and t = min(r, n)−m.

The Laplacian matrix L of a graph equals D − A, where D is the diagonal
matrix of vertex degrees, and A is the ordinary adjacency matrix. Thus, for
a regular graph L = kI − A. The Laplacian is positive semidefinite, and the
multiplicity of its eigenvalue 0 equals the number of connected components of
the graph. For a connected graph one has Zn/〈L〉 ' Zs1⊕· · ·⊕Zsn−1

⊕Z with a
single Z summand. Now the group Zs1 ⊕· · ·⊕Zsn−1

is called the sandpile group
or critical group of the graph. The product s1s2 . . . sn−1 equals the number of
spanning trees of the graph.

In the above, Zs denotes Z/sZ. In an expression S(M) = diag (1a, . . .) the
1’s are written, but summands Z/Z are invisible in a direct sum.
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SNF and spectrum

Some detail about Smith normal form and spectrum can be found in [132], §13.8.
We quote two results.

Proposition 9.4.1 Let A be an integral square matrix with integral eigenvalue
a of (geometric) multiplicity m. Then the number of invariant factors of A
divisible by a is at least m.

Proposition 9.4.2 Let A be the adjacency matrix of a strongly regular graph
with v vertices and eigenvalues k, r, s, k > r > s. Let p be prime, and suppose
that p - v, pa||k, pb||r, pc||s, where a ≥ b+ c. Let ei be the number of invariant
factors sj of A such that pi||sj. Then ei = 0 for min(b, c) < i < max(b, c) and
for b+ c < i < a and for i > a. Moreover, eb+c−i = ei for 0 ≤ i < min(b, c).

Diagonal form

Sometimes a diagonal form of a matrix is almost as good as the Smith normal
form. If D is a diagonal matrix, and M ∼ D, then S(M) is obtained by
factoring the diagonal entries of D into prime powers, sorting the result for
each separate prime, and multiplying again. So if D = diag (4, 6, 8, 10), we find
S(M) = S(D) = diag (2, 2, 4, 120).

Wilson [737] proved the beautiful result that the
(
v
t

)
×
(
v
k

)
matrix Wtk, the

0-1 inclusion matrix of t-subsets against k-subsets of a fixed v-set, has (for t ≤
min(k, v−k)) the diagonal form consisting of the entries

(
k−i
t−i
)
with multiplicity(

v
i

)
−
(
v
i−1

)
(0 ≤ i ≤ t), where

(
v
−1

)
= 0. As an immediate corollary one finds

the p-rank of Wtk.
A diagonal form for many related matrices is given by

Theorem 9.4.3 (Wilson [738]) Let X be a v-set. Let M be an integral matrix
whose

(
v
t

)
rows are indexed by the t-subsets of X and which has the property that

the set of column vectors of M is invariant under the action of the symmetric
group Sv acting on the t-subsets of X. Further assume that for each column c
of M there is a t-set T such that cS 6= 0 implies S ∩ T = ∅. Let di be the g.c.d.
of all entries of WitM , i = 0, . . . , t. Then a diagonal form for M is given by
the diagonal entries di with multiplicity

(
v
i

)
−
(
v
i−1

)
, i = 0, 1, . . . , t.

Let us say that a graph has the ‘miraculous SNF property’ when it has
integral eigenvalues θi (0 ≤ i ≤ v − 1) and diag (θ0, . . . , θv−1) is a diagonal
form for its adjacency matrix. For example, the Petersen graph has spectrum
31 15 (−2)4, and S(A) = diag (16, 23, 6).

Corollary 9.4.4 The Kneser graph K(v, t) (with the t-subsets of a fixed v-set
as vertices, adjacent when they are disjoint) has the miraculous SNF property.

One finds the diagonal form consisting of the numbers
(
v−t−i
t−i

)
with multiplic-

ities
(
v
i

)
−
(
v
i−1

)
(0 ≤ i ≤ t), The spectrum consists of the numbers (−1)i

(
v−t−i
t−i

)
with these same multiplicities.

In particular this gives the Smith normal form for the graphs T (n).
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Some graph families
Complete graphs

The complete graph Kn has adjacency matrix Jn − In (where the subscript indicates
the size). We have S(Jn+ cIn) = diag (1, cn−2, c(c+n)) for integral c. More generally,
S(bJn + cIn) = diag (g, cn−2, (bn + c)c/g) where g = gcd(b, c) and exponents denote
multiplicities. See [126].

Lattice graphs

Let A be the adjacency matrix of the n× n grid graph. Then

S(A) = diag (12n−2, 2(n−2)2 , (2n− 4)2n−3, 2(n− 1)(n− 2)).

More generally,

A+ (c+ 2)I ∼ diag (In, (Jn + cIn)n−2, (n+ c)(2Jn + cIn)),

so that for example S(A + 2I) = diag (12n−2, 2n, 0(n−1)2) and S(A − (n − 2)I) =

diag (12n−2, n(n−2)2 , 02n−2).
The Shrikhande graph is cospectral with the 4×4 grid graph (both have spectrum

61 26 (−2)9). Some of the Smith normal forms distinguish them.
name S(A) S(A+ 2I) S(A− 2I) rk2A

4× 4 diag (16, 24, 45, 12) diag (16, 81, 09) diag (16, 44, 06) 6
Shrikhande diag (16, 24, 45, 12) diag (16, 21, 09) diag (16, 21, 42, 81, 06) 6
See [126].

Triangular graphs

Let A be the adjacency matrix of the triangular graph T (n), n ≥ 2. Then

S(A) =


diag (1n−2, 2

1
2

(n−2)(n−3), (2n− 8)n−2, (n− 2)(n− 4)) if n is even
diag (1n−1, 2

1
2

(n−1)(n−4), (2n− 8)n−2, 2(n− 2)(n− 4)) if n is odd
diag (12, 2) for n = 3

and

S(A+ 2I) =

{
diag (1n−2, 22, 0

1
2
n(n−3)) if n is even, n ≥ 4

diag (1n−1, 41, 0
1
2
n(n−3)) if n is odd.

(Compare the spectrum (2n− 4)1 (n− 4)n−1 (−2)
1
2
n(n−3) of A.)

The three Chang graphs are cospectral with T (8) (with spectrum 121 47 (−2)20).
name S(A) S(A+ 2I) S(A− 4I) rk2A

T (8) diag (16, 215, 86, 24) diag (16, 22, 020) diag (16, 22, 613, 07) 6
Chang diag (18, 212, 87, 24) diag (18, 020) diag (18, 612, 241, 07) 8

See [126]. The Smith normal form of the Laplacian of T (n) was computed in [297].
Values like S(A) do not follow from Theorem 9.4.3 since the condition on the support
of the columns is not satisfied. Wilson & Wong [739] develop a more general theory
in which the value of S(A) for the triangular graph follows.

Paley graphs

Consider Paley(q), where q = 4t + 1 is a prime power. Chandler, Sin & Xiang
[190] showed that its adjacency matrix A satisfies S(A) = (12t, t2t, 2t). They also
determined S(L), where L = 2tI −A is the Laplacian of this graph.
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Peisert graphs

Sin [659] showed for the Peisert graphs P ∗(q) of order q, where q = 4t+ 1 is a
prime power, that S(A) = (12t, t2t, 2t), the same as for the Paley graphs. There
is also information about S(L), where L = 2tI − A. Here Paley(q) and P ∗(q)
may have different behavior. For example, for Paley(81) one has

Z81/〈L〉 ' Z⊕ Z40
20 ⊕ (Z16

3 ⊕ Z18
9 ⊕ Z16

27 ⊕ Z14
81 ),

while P ∗(81) has

Z81/〈L〉 ' Z⊕ Z40
20 ⊕ (Z20

3 ⊕ Z10
9 ⊕ Z20

27 ⊕ Z14
81 ),

where Zs abbreviates Z/sZ. On the other hand, if q = p2 where p ≡ 3 (mod 4),
then for Paley(q) and P ∗(q) all matrices A + bJ + cI have the same spectrum
and Smith normal form.

For q = 232, the three graphs Paley(q), P ∗(q), and the sporadic Peisert graph
P ∗∗(q) all have the same S(A), and the same S(L) = (01, 1144, 23120, 3036122,
69828142), where 3036 = 11 · 12 · 23 and 69828 = 11 · 12 · 232, that is, Zq/〈L〉 '
Z⊕ Z264

132 ⊕ (Z242
23 ⊕ Z122

232 ).
In all cases, the p′-part of Zq/〈L〉 is Z2t

t for q = 4t+ 1.

Van Lint-Schrijver graphs

Recall from §7.3.1 the definition of the Van Lint-Schrijver graphs Γp,e,t. Let p
be prime, and e an odd prime such that p is primitive mod e. Let t ≥ 1. Put
q = p(e−1)t. Then Γp,e,t is the Cayley graph with vertex set Fq and the set of
nonzero e-th powers as difference set D. Pantangi [614] determined S(L). If
e = 3 and p ≡ 2 (mod 3), then rkp(L) = (2t+1 − 2)(p+1

3 )2t.

Skew lines

Consider the graph on the lines of PG(3, q), adjacent when they are skew. This
graph is strongly regular with eigenvalues q4, −q2 and q, so all elementary
divisors will be powers of p (where q = pe). The Smith normal form was
determined in [125]. For example, for q = 2: S(A) = (16, 214, 48, 86, 16). For
the graph on the lines in PG(n− 1, q), see [296].



Chapter 10

Individual graph descriptions

We describe the sporadic rank 3 graphs, and further interesting graphs that
have special properties not shared by the other graphs in the infinite families to
which they belong. Part of the information given here was obtained using the
computer algebra system GAP [333] and its package GRAPE [666] (with Nauty
[555]).

10.1 The pentagon

����1 2 1����2- 1 1����2
1

v = 5

There is a unique strongly regular graph on 5 vertices. It has parameters
(v, k, λ, µ) = (5, 2, 0, 1) and eigenvalues 2 (with multiplicity 1) and (−1±

√
5)/2

(with multiplicity 2 each). The full automorphism group is D10 with point
stabilizer 2.

This is the pentagon, the Paley graph of order 5. It is self-complementary.

Regular two-graph
The disjoint union K1 +C5 of a single point and a pentagon is a graph in the switching class of
a regular two-graph (X,∆) (cf. p. 8 and p. 215). If the underlying set is X = {0, 1, 2, 3, 4, 5},
then the set of triples ∆ can be taken to be (omitting commas and parentheses) 012, 023, 034,
045, 015, 124, 235, 134, 245, 135, which is up to isomorphism the unique 2-(6, 3, 2) design.
Every 4-set contains 2 coherent triples. The pentagon is the descendant of (X,∆) (at any
vertex).

Locally pentagon graphs
The unique connected locally pentagon graph is the icosahedron. Up to isomorphism, there
are three connected locally icosahedron graphs, namely the point graph of the 600-cell on 120
vertices, and quotients on 60 and 40 vertices ([77]).

245
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10.2 The 3× 3 grid

����1 4 1����4
1

2 2����4
2

v = 9

There is a unique primitive strongly regular graph on 9 vertices. It has parame-
ters (v, k, λ, µ) = (9, 4, 1, 2) and spectrum 41 14 (−2)4 (with exponents denoting
multiplicities). The full automorphism group is (S3×S3).2 with point stabilizer
D8.

This graph is the Paley graph of order 9. It is the 3×3 grid, the line graph of
K3,3. It is the collinearity graph of the unique generalized quadrangle GQ(2, 1),
the hyperbolic polar space O+

4 (2). It is also the affine graph VO+
2 (3).

It is self-complementary, like any Paley graph.
There are precisely two connected locally 3 × 3 grid graphs, on 16 and 20

vertices, namely 4× 4 and J(6, 3).

The imprimitive strongly regular graphs on 9 vertices are 3K3 with pa-
rameters (9, 2, 1, 0) and spectrum 23 (−1)6, and its complement K3×3 with
parameters (9, 6, 3, 6) and spectrum 61 06 (−3)2.

10.3 The Petersen graph

����1 3 1����3- 2 1����6
2

v = 10

There is a unique strongly regular graph with parameters (v, k, λ, µ) = (10, 3, 0,
1). Its spectrum is 31 15 (−2)4. The full group of automorphisms is S5 acting
rank 3 with point stabilizer 2× S3.

This graph was found by the Danish mathematician Julius Petersen (1839–
1910), who constructed this graph in [618] as the smallest counterexample
against the claim that a connected bridgeless cubic graph has an edge coloring
with three colors.

This graph is the complement of the triangular graph T (5), and not sporadic,
but it plays a role in the construction of many sporadic graphs.

Cocliques

The largest cocliques have size 4. There are 5 of them, corresponding to the 5
symbols of T (5). The complement of a 4-coclique is a subgraph 3K2. It follows
that the chromatic number is 3. The edge-chromatic number is 4.

Cycles

There are 12 pentagons, 10 hexagons, 0 heptagons, 15 octagons, 20 nonagons
and 0 decagons. The binary code spanned by the (edges of the) cycles is a
[15,6,5]-code. The 64 code words are the zero word, the 12 + 10 + 15 + 20 = 57
cycles, and the 6 unions of two disjoint pentagons.
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Decomposition of K10

An old question is whether K10 can be decomposed into three edge-disjoint
copies of the Petersen graph. From the spectrum one sees that the answer is
No: the result of removing two edge-disjoint copies of the Petersen graph from
K10 is connected and bipartite (cf. [132], 1.5.1).

Locally Petersen graphs
Hall [388] showed that there are precisely three connected locally Petersen
graphs, namely (i) T (7) on 21 vertices, and (ii) a triple cover, on 63 vertices,
distance-regular with intersection array {10, 6, 4, 1; 1, 2, 6, 10} and group 3 · S7,
and (iii) a graph on 65 vertices, distance-regular with intersection array {10, 6, 4;
1, 2, 5} with group PΣL(2, 25) (the commuting graph of the class of nontrivial
field automorphisms). This last graph is the local graph ofNO−⊥5 (5), see §10.64.

10.4 The Paley graph on 13 vertices

����1 6 1����6
2

3 3����6
3

v = 13

There is a unique strongly regular graph on 13 vertices, namely the Paley
graph. It is the graph on F13 where two vertices are joined when their difference
is a nonzero square, see §7.4.4. For unicity, see [643].

The parameters are (v, k, λ, µ) = (13, 6, 2, 3), and the spectrum 6 (−1±
√

13
2 )6.

As all Paley graphs, this graph is self-complementary. The full group of auto-
morphisms is 13 : 6, acting rank 3.

This graph is locally a hexagon, so it is a quotient of a tiling of the plane.
(The Hoffman bound for cliques is

√
13, so the local graph does not have

triangles.)
6 7 8

2 3 4 5

11 12 0 1 2

8 9 10 11

5 6 7

10.5 GQ(2,2)

����1 6 1����6
1

4 3����8
3

v = 15

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) =
(15, 6, 1, 3). Its spectrum is 61 19 (−3)5. The full group of automorphisms is S6

acting rank 3 with point stabilizer 2× S4.
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This graph is the collinearity graph of the unique generalized quadrangle
GQ(2, 2) with 15 points and 15 lines of size 3, drawn below. It is the symplectic
polar graph Sp(4, 2).

Complement

����1 8 1����8
4

3 4����6
4

v = 15

The complementary graph is the triangular graph T (6) with parameters
(v, k, λ, µ) = (15, 8, 4, 4) and spectrum 81 25 (−2)9. We see that Γ has 20
maximal 3-cocliques, and 6 maximal 5-cocliques (ovoids), each vertex in two of
those. Since GQ(2, 2) is self-dual, there are also 6 spreads (1-factorizations of
K6), any line in two.

Regular sets

The graph Γ has 91 regular sets, of four types. We give the degree d and nexus
e of the smallest part.

H index orbitlengths sizes d e graph
a S5 6 5, 10 5, 10 0 3 ovoid, K5

b S4 × 2 15 3, 12 3, 12 2 1 line, K3

c (S3 × S3) : 2 10 6, 9 6, 9 3 2 K3,3

d S3 × 2 60 6, 3, 6 6, 9 3 2 K2 ×K3

Types (b), (d), (c) belong to 1, 2, 3 pairwise disjoint lines. Type (c) also belongs
to an orthogonal pair of hyperbolic lines.

10.6 The Shrikhande graph

����1 6 1����6
2

3 2����9
4

v = 16

Up to isomorphism, there are precisely two strongly regular graphs with
parameters (v, k, λ, µ) = (16, 6, 2, 2), namely the Hamming graph H(2, 4), that
is, the 4× 4 grid, the direct product of two 4-cliques, and the Shrikhande graph.
These graphs have spectrum 61 26(−2)9.
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Construction

The Shrikhande graph arises from the 4× 4 grid by switching w.r.t. a diagonal.
The Shrikhande graph is the Cayley graph for the group 42 with difference

set {±(0, 1),±(1, 0),±(1, 1)}. It is locally a hexagon, and hence a quotient of
the hexagonal tiling of the plane.

22 23 20 21 22

32 33 30 31 32

02 03 00 01 02

12 13 10 11 12

22 23 20 21 22

There are precisely two Latin squares of order 4, namely the addition tables
of F4 and of the cyclic group of order 4. The corresponding Latin square graphs
are the complements of H(2, 4) and the Shrikhande graph, respectively.

Group

The full group is (4×4) : D12 of order 192 with point stabilizer D12. It is sharply
transitive on ordered triangles. It acts rank 4: two vertices can be identical,
adjacent, ot nonadjacent where the two common neighbors form an edge or a
nonedge.

Designs

As mentioned earlier (p. 191), strongly regular graphs with λ = µ coexist
with symmetric (i.e., square) 2-(v, k, λ) designs together with a polarity without
absolute points. In the present case, there are three nonisomorphic symmetric 2-
(16,6,2) designs (Husain [450]). Two of these do not possess a suitable polarity.
The third has two nonequivalent polarities without absolute points, giving rise
to the two strongly regular graphs with parameters (16, 6, 2, 2) (Haemers [373]).

Cliques and cocliques

The Shrikhande graph has independence number 4 and chromatic number 4.
Its complement has independence number 3 and chromatic number 6. Both
the lattice graph H(2, 4) and its complement have independence number and
chromatic number 4.

2-Ranks and Smith normal form

The Shrikhande graph and H(2, 4) have the same p-ranks, but differ somewhat
in Smith normal form. If A is the adjacency matrix of H(2, 4), and B that
of the Shrikhande graph, and S(M) denotes the Smith normal form of the
matrixM , then S(A) = S(B) = diag(16, 24, 45, 12), S(A+2I) = diag(16, 81, 09),
S(A − 2I) = diag(16, 44, 06) while S(B + 2I) = diag(16, 21, 09), S(B − 2I) =
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diag(16, 21, 42, 81, 06) (see [126]). It follows that rk2(A) = rk2(B) = 6. Also
rk2(A+ J) = rk2(B + J) = 6.

Bipartite double

Both H(2, 4) and the Shrikhande graph are (0, 2)-graphs, and have the folded
6-cube as bipartite double.

����1 6 1����6- 5 2����15- 4 6����10- v = 32

Locally Shrikhande graphs

Makhnev & Paduchikh [537] show that there are precisely two connected
locally Shrikhande graphs, one on 80 vertices and a quotient on 40 vertices.

Dyck graph

There is a unique cubic symmetric (i.e., both vertex- and edge-transitive) con-
nected graph on 32 vertices known as the Dyck graph ([299, 490]). It is the graph
that has as vertices the triangles in the Shrikhande graph, adjacent when they
share an edge. This graph is bipartite, with spectrum (±3)1 (±

√
5)6 (±1)9, and

is uniquely determined by its spectrum. It has girth 6 and diameter 5 and full
group of order 192. The two components of the distance-2 graph are copies of
the Shrikhande graph. It has an embedding in a genus 3 surface as a cubic map
with twelve octagonal faces.

10.7 The Clebsch graph
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v = 16

The Clebsch graph is the unique strongly regular graph Γ with parameters
(v, k, λ, µ) = (16, 10, 6, 6). Its spectrum is 101 25 (−2)10. The full group of
automorphisms is 24 : S5 acting rank 3, with point stabilizer S5.

Construction

The Clebsch graph is the halved 5-cube, that is, the vertices are the binary
vectors of length 5 and even weight, joined when the Hamming distance is 2.

The Clebsch graph is the local graph of the Schläfli graph (§10.10).

Complement
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The complement of the Clebsch graph is the folded 5-cube. That is, its ver-
tices are the 16 cosets of {00000, 11111}, adjacent when the Hamming distance
is 1. It is the graph obtained by identifying antipodes in the 5-cube.

It has parameters (v, k, λ, µ) = (16, 5, 0, 2). Its spectrum is 51 110 (−3)5.
The complement of the Clebsch graph is also the graph on F16 where two

vertices are adjacent when their difference is a cube. It follows that K16 is the
edge-disjoint union of three copies of the complement of the Clebsch graph.

The complement of the Clebsch graph is also the graph VO−4 (2).
The second subconstituent is the Petersen graph.

Cliques and cocliques

The Clebsch graph has independence number 2 and chromatic number 8. The
complement of the Clebsch graph has independence number 5 and chromatic
number 4.

Regular sets

All regular sets in Γ are obtained from subgroups H of G = Aut Γ with two
orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit in Γ, the complement of the Clebsch graph.

H index orbitlengths d e graph
a D8 × S3 40 4, 12 2 1 C4

b 22 × S4 20 8, 8 3 2 3-cube
c D16 120 8, 8 3 2 Wagner graph
d 23+2:3:2 10 8, 8 1 4 4K2

The Wagner graph is the 8-gon with diagonals.

Ramsey number

Let R(3, 3, 3) be the smallest number N of vertices such that for any assignment
of three colors to the edges of KN there is a monochromatic triangle. The above
decomposition shows that R(3, 3, 3) > 16. Greenwood & Gleason [365]
proved that R(3, 3, 3) = 17. See also p. 183.

Xor-magic graphs

A connected graph on 2n vertices is called xor-magic ([656]) if the vertices can be labeled with
distinct n-bit numbers such that the label of each vertex is the bitwise XOR of the labels of
the adjacent vertices. The complement of the Clebsch graph is xor-magic since it is the graph
with vertices in F4

2 , adjacent when the difference has weight 3 or 4, and the sum of the five
neighbors of x is x again. Also the Dyck graph is xor-magic.

Name

This graph was given this name by Seidel [642] in his paper classifying the
strongly regular graphs with smallest eigenvalue −2 (for which the Seidel matrix
S = J − I − 2A has eigenvalue 3):

In terms of polytopes, the 16 vertices and 80 adjacencies of the graph {V,A} can
be identified with the 16 vertices and 80 edges of the polytope hγ5, also denoted
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by 121 (Coxeter, Regular polytopes, 2nd ed., pp. 158, 201). This remark is due
to H. S. M. Coxeter, who also points out the relation of this polytope to the
16 lines (and 80 pairs of skew lines) on Clebsch’s quartic surface (cf. Clebsch
(1868)). Therefore, {V,A} will be called the Clebsch graph.

The paper referred to is Clebsch [201]. Later some confusion has arisen,
and some authors use the name ‘Clebsch graph’ for the complement of Γ.

10.8 The Paley graph on 17 vertices
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v = 17

There is a unique strongly regular graph on 17 vertices, namely the Paley
graph. It is the graph on F17 where two vertices are joined when their difference
is a nonzero square, see §7.4.4. For unicity, see [643].

The parameters are (v, k, λ, µ) = (17, 8, 3, 4), and the spectrum 8 (−1±
√

17
2 )8.

As all Paley graphs, this graph is self-complementary. The full group of auto-
morphisms is 17 : 8, acting rank 3.

There is a unique orbit of maximal cliques, namely that of the triangles. It
follows that the Ramsey number R(4, 4) is at least 18. In fact R(4, 4) = 18.

Since the graph is self-complementary, we only need to check that there is no K4. Since
the group is edge-transitive we only need to check that there is no K4 on the edge 0–1. The
squares mod 17 are ±1,±2,±4,±8 so the three common neighbors of 0 and 1 are 2, 9, 16 and
these are mutually nonadjacent.

The local graph of Γ is the Wagner graph (the octagon with diagonals).
Sinkovic [660] shows that this graph has no weight matrix for which the

Cvetković bound would be tight: every weight matrix for this graph has at least
4 positive and at least 4 negative eigenvalues.

10.9 The Paulus-Rozenfel’d graphs
There are 4 regular two-graphs on 26 vertices. The corresponding switching
classes of graphs contain 10 isomorphism classes of strongly regular graphs with
parameters (26, 10, 3, 4) and spectrum 101 213 (−3)12.

Switching a point isolated yields 15 isomorphism classes of strongly regular
graphs with parameters (25, 12, 5, 6) and spectrum 121 212 (−3)12. These graphs
were found independently by Paulus [606], who was unable to do a complete
search, and by Rozenfel’d [632], who did an exhaustive search.
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Construction

A Steiner triple system STS(13) has 26 blocks (triples) and the graph on the
triples, adjacent when disjoint, is strongly regular with parameters (26, 10, 3, 4).

A Latin square LS(5) of order 5 yields a Latin square graph LS3(5) with
parameters (25, 12, 5, 6) (§8.4.2).

The two nonisomorphic STS(13) and the two nonisomorphic LS(5) yield
graphs in four distinct regular two-graphs of order 26 (for LS(5): after adding
an isolated point). These are the four regular two-graphs of order 26.

Let Ai (1 ≤ i ≤ 10) be the 10 graphs of order 26, and Bj (1 ≤ j ≤ 15)
the 15 graphs of order 25. The four regular two-graphs of order 26 contain the
indicated Ai, and have the indicated 26 descendants Bj , where je means that
Bj occurs e times.

name groupsize graphs descendants
A 6 A1–5 16 26 33 43 53 63 71 81

B 72 A6–7 912 1012 111 121

C 39 A8–9 1313 1413

D 15600 A10 1526

Cliques and cocliques

We give the counts of maximal cliques and cocliques of various sizes, and other
statistics in Tables 10.1 and 10.2 below. For the graphs of order 25 the Hoffman
bound for cliques and cocliques is 5. For the graphs of order 26 the Hoffman
bound for cocliques is 6.

name groupsize orbitsizes max cliques max cocliques χ(Γ)

A1 1 126 3130 4115 576 61 6
A2 2 16 210 3130 4116 576 61 6
A3 2 16 210 3122 42 4100 581 61 6
A4 6 12 34 62 3122 42 4104 581 61 6
A5 6 12 34 62 398 48 4164 524 613 6
A6 4 12 24 44 390 410 4136 570 63 5
A7 6 13 21 33 62 382 412 4124 575 63 5
A8 3 12 38 3126 41 495 581 61 6
A9 39 132 378 413 4104 539 613 6
A10 120 61 201 390 410 4210 512 613 5

Table 10.1: Strongly regular graphs with parameters (26,10,3,4)

Here A9 is the complement of the block graph of the cyclic STS(13). The
other STS(13) yields A5.

The coclique counts for Bj in Table 10.2 are the clique counts for its com-
plement. The graph B15 is the only self-complementary one. It is the Paley
graph of order 25, and LS3(5) for the cyclic LS(5). The other LS3(5) is B12.

For further detail, see [606], [726], [226]. Note that different authors use
a different numbering of these graphs. Explicit matrices with the present
numbering are given in [120].
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name complement group size orbit sizes max cliques χ(Γ)

B1 B2 1 125 37 474 53 6
B2 B1 1 125 35 474 53 6
B3 B4 2 15 210 38 472 53 6
B4 B3 2 15 210 38 472 53 6
B5 B6 2 15 210 34 474 53 6
B6 B5 2 15 210 38 474 53 6
B7 B8 6 11 34 62 314 468 53 6
B8 B7 6 11 34 62 314 468 53 6
B9 B10 6 12 21 33 62 354 458 53 6
B10 B9 6 12 21 33 62 354 458 53 6
B11 B12 72 11 122 336 464 53 5
B12 B11 72 11 122 384 44 515 6
B13 B14 3 11 38 33 475 53 6
B14 B13 3 11 38 31 475 53 6
B15 B15 600 transitive 3100 515 5

Table 10.2: Strongly regular graphs with parameters (25,12,5,6)

p-ranks

The p-ranks of the graphs involved only depend on the regular two-graph they
belong to. The seven graphs Ai and ten graphs Bj belonging to two-graphs A or
C have adjacency matrices A satisfying rk5(A− 2I+ 2J) = 12. The two graphs
Ai and four graphs Bj belonging to two-graph B have rk5(A− 2I + 2J) = 11.
The graphs A10 and B15 belonging to two-graph D have rk5(A− 2I + 2J) = 9.
For all graphs Bj the value of rk5(A − 2I + bJ) is independent of b. For all
graphs Ai the value of rk5(A−2I+ bJ) is one larger for b 6= 2. (Peeters [610])

10.10 The Schläfli graph
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The Schläfli graph is the unique strongly regular graph Γ with parameters
(v, k, λ, µ) = (27, 16, 10, 8). Its spectrum is 161 46 (−2)20. The full group of
automorphisms is W (E6) = U4(2).2 = O−6 (2).2 = O5(3).2 acting rank 3, with
point stabilizer 24 : S5.

It is the E6,1(1) graph, the local graph of the E7,7(1) (Gosset) graph. Its
local graph is the Clebsch graph.

Aside: the Gosset graph
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TheGosset graph is the unique distance-regular graph with intersection array
{27, 10, 1; 1, 10, 27}. It is distance-transitive, an antipodal double cover of K28.

This graph can be constructed as follows. The vertices are the pairs from
the 8-sets {1, 2, . . . , 8} and {1′, 2′, . . . , 8′}. Two pairs from the same set are
adjacent if they intersect in precisely one element; two pairs {a, b} and {c′, d′}
from different sets are adjacent if {a, b} and {c, d} are disjoint.

Construction: as local graph in the Gosset graph

The local structure of the Gosset graph at the vertex {7′, 8′} yields a construc-
tion of the Schläfli graph: the vertices are the pairs from the set {1, 2, . . . , 6}
together with the ‘double sixes’ 1, 2, . . . , 6 (each element a of which corresponds
to the vertex {a′, 7′} of the Gosset graph) and 1′, 2′, . . . , 6′ (each element a′ of
which corresponds to the vertex {a′, 8′} of the Gosset graph); pairs are adjacent
if they intersect in a unique element, vertices from the same 6-set are always
adjacent, vertices a and b′ from different 6-sets are adjacent if and only if a = b,
and finally a vertex a or a′ is adjacent to a pair {b, c} if and only if a /∈ {b, c}.

Construction: in the regular two-graph on 28 points

The regular two-graph on 28 vertices of which T (8) is a member has the Schläfli
graph as descendant.

Construction: in affine 3-space over F3

An explicit coordinate description in affine 3-space over F3 goes as follows:
the vertices are the ordered triples (x, y, z) ∈ F3

3 with (x1, y1, z1) adjacent to
(x2, y2, z2) if z2 − z1 6= x1y2 − y1x2 and (x1, y1) 6= (x2, y2).

Complement
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The complement Γ of Γ is strongly regular with parameters (v, k, λ, µ) = (27, 10,
1, 5). Its spectrum is 101 120 (−5)6. It is the collinearity graph of the geometry
of isotropic points and totally isotropic lines in the O−6 (2) geometry, the unique
GQ(2, 4). It is also the graph on the totally isotropic lines in the U4(2) geometry,
adjacent when they meet.

Name

This graph was given this name by Seidel [642] in his paper classifying the
strongly regular graphs with smallest eigenvalue −2 (for which the Seidel matrix
S = J − I − 2A has eigenvalue 3):

We shall refer to this graph as the Schläfli graph after its earliest describer
(cf. Coxeter [238, p. 211]).

Coxeter refers to Schläfli [636]. Schläfli does not construct a graph, but
discusses the 27 lines on a cubic surface, earlier found by Cayley [188] and
Salmon [634].
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The 27 lines on a cubic surface

A generic nonsingular cubic surface in 3-dimensional projective space contains 27
lines. The graph on these 27 lines, adjacent when they meet, is the complement
of Γ.

For example, the surface X3 + Y 3 +Z3 +W 3 = 0 in complex 3-dimensional
projective space contains the 27 lines like 〈(1,−a, 0, 0), (0, 0, 1,−b)〉 where a3 =
b3 = 1. (The values a, b can each be chosen in 3 ways, and the coordinate split
XY |ZW can be chosen in 3 ways, 27 choices altogether.)

Each of these 27 lines intersects 10 others, and these 10 intersect in pairs, so
that each of the 27 lines is in 5 coplanar triples and there are 45 coplanar triples
(that is, 45 triple tangent planes) altogether. These lines and planes form the
points and lines of the generalized quadrangle GQ(2, 4).

Cliques, cocliques and chromatic number

The maximal cliques in Γ have size 5 or 6, a single orbit of each, with stabilizers
2 × S5 and S6, respectively. The maximal cocliques in Γ have size 3. The
chromatic number of Γ is 9, and there are two essentially different ways to color
Γ with 9 colors ([144]). The chromatic number of Γ is 6.

In terms of GQ(2, 4), the 5- and 6-cliques are the sets x⊥∩y⊥ and (x⊥\y⊥)∪
{y} where x and y are noncollinear, and ⊥ denotes collinearity. The 3-cocliques
are the lines of GQ(2, 4).

Double sixes

The graph Γ has 36 subgraphs K2×K6 (‘double sixes’) forming a single orbit.
The stabilizer of one is S6× 2 with vertex orbit sizes 12 + 15. The orbits of size
15 are the subsets that carry a sub-GQ(2, 2) of GQ(2, 4). In the representation
as O−6 (2) these correspond to the nonisotropic points.

Apartment of E6

s
1
s
3
s
4
s
5
s
6

s2
E6.

The Schläfli graph Γ is the collinearity graph of the thin geometry (apart-
ment) of type E6. The objects of types 1–6 are the 27 vertices, 72 6-cliques, 216
edges, 720 triangles, 216 maximal 5-cliques and 27 subgraphs of the form Γ2(x).

Local characterizations

The Gosset graph is the unique graph that is locally Schläfli. It is the Taylor
extension TΓ of Γ. By Buekenhout & Hubaut [156], there are precisely two
graphs that are locally the complement of the Schläfli graph, namely VO−6 (2)
(see §10.25) and TΓ.
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Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 21+4:32:22 45 3, 24 0 2 3-coclique
b 2× (S3 wr 2) 360 6, 9+12 2 4 2K3

c S3 × (S3 wr 2) 120 9, 18 4 6 3× 3
d 2× S6 36 12, 15 6 8 2× 6

In case (b), the group has three orbits.
More generally, the union of t pairwise disjoint 3-cocliques (lines of GQ(2, 4))

is a regular set in Γ of size 3t, with degree d = 2(t− 1) and nexus e = 2t. Since
GQ(2, 4) admits a spread, all values of t with 1 ≤ t ≤ 8 are admissible. Every
regular set is the union of pairwise disjoint subgraphs 3K1 or 2K3.

Shannon capacity

For a graph Γ and an integer k, let Γ�k denote the graph of which the vertices are
k-tuples of vertices of Γ, where two distinct vertices (x1, . . . , xk) and (y1, . . . , yk)
are adjacent when for all i we have either xi = yi or xi ∼ yi. This is the graph
with adjacency matrix (A+ I)⊗k− I where A is the adjacency matrix of Γ, and
⊗k denotes k-th tensor power.

Let α(Γ) be the independence number of a graph Γ. The Shannon capacity
Θ(Γ) of Γ is defined as

Θ(Γ) = sup
k

k
√
α(Γ�k) = lim

k→∞

k
√
α(Γ�k).

Computation of Θ(Γ) is very difficult, even for graphs as simple as the heptagon.
Lovász [526] gave an easily computable upper bound θ(Γ) for Θ(Γ) and

used this to show that the pentagon has Shannon capacity
√

5. He asked: (i) Is
it true that θ = Θ? (ii) Is it true that Θ(Γ �∆) = Θ(Γ)Θ(∆)? (iii) Is it true
that Θ(Γ)Θ(Γ) ≥ |VΓ|?

Haemers [375] answered thrice No: Let Γ be the Schläfli graph. Then
α(Γ) = Θ(Γ) = θ(Γ) = 3 and 6 = α(Γ) ≤ Θ(Γ) ≤ 7 < 9 = θ(Γ) and Θ(Γ)Θ(Γ) ≤
21 < 27 = |VΓ| ≤ Θ(Γ� Γ). See also [374] and [132], §3.7.

10.11 T (8) and the Chang graphs
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Up to isomorphism, there are precisely four strongly regular graphs with
parameters (v, k, λ, µ) = (28, 12, 6, 4). They have spectrum 121 47 (−2)20. The
classification is due to Chang [191, 192].

One is the triangular graph T (8), that is, the Johnson graph J(8, 2). The
remaining three are called the Chang graphs. The three Chang graphs can be
obtained by Seidel switching from T (8) (the line graph of K8). Namely, switch
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w.r.t. a set of edges that induces the following subgraph of K8: (a) 4 pairwise
disjoint edges, (b) C3 + C5, (c) an 8-cycle C8.

The triangular graph T (8) does not contain 3-claws, but the three Chang
graphs do ([76]).

2-Ranks and Smith normal form

The Chang graphs can be distinguished from T (8) by their p-ranks: If A is the
adjacency matrix of T (8) and B that of one of the Chang graphs, and S(M) de-
notes the Smith normal form of the matrixM , then S(A) = diag(16, 215, 86, 241)
(and S(A + 2I) = diag(16, 22, 020), S(A − 4I) = diag(16, 22, 613, 07)), while
S(B) = diag(18, 212, 87, 241) (and S(B + 2I) = diag(18, 020), S(B − 4I) =
diag(18, 612, 241, 07), so that A and B have different 2-ranks 6 and 8 ([126]).

Cliques and cocliques

We give the counts of maximal cliques and cocliques of various sizes, and other
statistics.

name groupsize max cliques max cocliques θ(Γ) χ(Γ)

T (8) 40320 356, 78 4105 6 7
Chang1 384 432, 524, 68 3128, 473 7 7
Chang2 360 475, 530, 63 3160, 465 8 7
Chang3 96 448, 548 3160, 465 6 7

Here χ(Γ) is the chromatic number of Γ, and θ(Γ) is the clique covering number,
the chromatic number of the complementary graph.

Connectivity

One may investigate how large a disconnecting set of a strongly regular graph
must be if it does not contain a complete vertex neighborhood. Usually the
answer is 2k − λ − 2, the size of an edge neighborhood, but in T (n) there are
triangles with neighborhood of size 3n− 9 while 2k− λ− 2 = 3n− 8. It can be
shown that the Chang graphs do not show this exceptional behavior ([198]).

10.12 The strongly regular graphs on 29 vertices
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v = 29

Up to isomorphism, there are precisely 41 strongly regular graphs with
parameters (v, k, λ, µ) = (29, 14, 6, 7). Their spectrum is 14 (−1±

√
29

2 )14. These
graphs are descendants of the precisely six regular 2-graphs on 30 vertices.

The graphs and 2-graphs were found by Arlazarov et al. and others. Later,
Bussemaker and Spence independently did an exhaustive search and found that
there are no further examples. See [10], [161], [669].

One of these graphs is the Paley graph Paley(29). This is the only one that
is self-complementary. The remaining 40 fall into 20 complementary pairs. The
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Paley graph has a group of order 29 · 14 = 406. The remaining graphs have
groups of order 1 (18×), 2 (10×), 3 (10×), and 6 (2×).

The Paley graph has maximum clique and coclique sizes 4. There is one
other graph with maximum clique size 4 (and the complementary graph has
maximum coclique size 4). All others have maximum clique and coclique sizes 5.
All graphs have chromatic number 7, except for the two without 5-cocliques;
these have chromatic number 8.

10.13 The S8 graph on 35 vertices
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(35, 16, 6, 8). Its spectrum is 161 220 (−4)14. The full group of automorphisms
is S8, acting rank 3 with point stabilizer S4 wr 2.

Construction
This graph is the antipodal quotient of the Johnson graph J(8, 4). Vertices are
the 4 + 4 splits of a fixed 8-set Ω, adjacent when the common refinement has
shape 3 + 1 + 1 + 3. Equivalently, take the 3-subsets of a 7-set, adjacent when
they meet in 0 or 2 elements.

This graph is also the graph on the 35 lines in PG(3, 2), adjacent when
disjoint. This graph is also the graph on the isotropic points of the O+

6 (2)
geometry, adjacent when nonorthogonal.

Complement
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The complementary graph Γ has parameters (v, k, λ, µ) = (35, 18, 9, 9) and
spectrum 181 314 (−3)20. It is the graph on the triples from a 7-set, adjacent
when they have precisely one element in common, or on the lines of PG(3, 2),
adjacent when intersecting, or on the isotropic points of the O+

6 (2) polar space,
adjacent when collinear.

Cliques, cocliques and chromatic number
The 56 maximal cliques have size 5 and form a single orbit. (These are the 56
splits of Ω with a fixed triple on one side. In the PG(3, 2) setting these 5-cliques
are the spreads. In the O+

6 (2) setting they are the ovoids.) The stabilizer of a
maximal clique is S3 × S5.

The 30 maximal cocliques have size 7 and form a single orbit. (These are
the 30 STS(7)’s on a fixed 7-set. In the PG(3, 2) setting these are the sets of
7 lines on a point or 7 lines in a plane. In the O+

6 (2) setting these are the
maximal totally isotropic subspaces.) The stabilizer of a maximal coclique is
AGL3(2) = 23 : L3(2).
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The chromatic numbers are χ(Γ) = 6 and χ(Γ) = 7. In the PG(3, 2) setting,
a coloring of Γ with seven colors is called a packing, a partition of the set of 35
lines into 7 spreads. Up to isomorphism, there is a unique such packing.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e subgraph
a 23 : L3(2) 30 7, 28 0 4 K7

b L3(2) : 2 120 14, 21 4 8 {4, 3, 2; 1, 2, 4}
c S5 × S3 56 5, 30 4 2 K5

d S5 × S2 168 10, 20+5 6 4 T (5)
e S3 × (S2 wr 2) 840 4+6, 1+12+12 6 4
f S6 × S2 28 15, 20 8 6 T (6)

In case (b), the 14-set of triples is a 2-(7,3,2) design. There are four such
designs ([585]), and this is the unique such design without repeated blocks. The
induced graph is the nonincidence graph of the Fano plane PG(2, 2). This 14-set
is the union of two 7-cocliques (as under (a)).

Case (d) is that of ten triples in a fixed 5-set. Here the group has 3 orbits.
Case (e) has the unions of two disjoint 5-cliques. Here the group has 5 orbits.
The union of t pairwise disjoint 5-cliques is a regular set of size 5t, degree

2t+2 and nexus 2t. Since χ(Γ) = 7, all values of t with 1 ≤ t ≤ 6 are admissible.
For t = 1, 2 this gives cases (c) and (e).

Case (f) is the union of examples of (c) and (d). In the PG(3, 2) setting, case
(f) corresponds to a linear line complex, or to the set of totally isotropic lines
of the Sp4(2) geometry.

Any further regular sets have size 15 or 20.

10.14 The G2(2) graph on 36 vertices
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(36, 14, 4, 6). Its spectrum is 141 221 (−4)14. The full group of automorphisms
is G2(2) = U3(3).2 acting rank 3 with point stabilizer L2(7).2.

This graph is not determined by its parameters alone: there are precisely 180
nonisomorphic strongly regular graphs with parameters (36, 14, 4, 6) (Spence
[669], McKay & Spence [556]).

2-Ranks

The adjacency matrices of Γ and its complement both have 2-rank 8.
Peeters [611] showed that both Γ and its complement are uniquely deter-

mined by their strongly regular graph parameters and 2-rank.
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Local graph and Suzuki tower
The local graph is the point-line nonincidence graph of the Fano plane.
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Starting from the Suzuki graph (on 1782 points) and repeatedly taking local
graphs, one finds the G2(4) graph on 416 vertices, the Hall-Janko graph on 100
vertices, the present graph Γ, and the point-line nonincidence graph ∆ of the
Fano plane. Conversely, there are precisely three connected graphs that are
locally ∆ (on 36, 48, and 108 vertices, see [128]), the Hall-Janko graph is the
unique graph that is locally Γ, the G2(4) graph is the unique graph that is locally
the Hall-Janko graph, and the Suzuki graph and its triple cover are the only
graphs that are locally the G2(4) graph (Pasechnik [601]).

Construction: subhexagons of the G2(2) generalized hexagon
The classical G2(2) generalized hexagon has 36 sub-GH(1, 2)’s. Join two of these
when they have 4 points in common.

Construction: partitions into bases
As we have seen, the dual of the split Cayley hexagon G2(2) can be seen
in PG(2, 9) provided with a nondegenerate Hermitian form. The set of 63
nonisotropic points has precisely 36 partitions into 21 bases, twelve on any given
basis. Each partition meets 1, 14, 21 partitions in 21, 3, 9 bases, respectively.
Our graph is the graph on these 36 partitions where two are adjacent when they
meet in 3 bases.

Construction: 1 + 14 + 21
Take a vertex ∞, let its 14 neighbors be the 7 points and 7 lines of the Fano
plane, where a point is adjacent to a line when they are not incident, and let
the 21 nonneighbors of ∞ be the 21 flags of the Fano plane, where two flags are
adjacent when they have no element in common, but the point of one is on the
line of the other (so that the subgraph on these 21 is the distance-2 graph of
the generalized hexagon that is the flag graph of the Fano plane),
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and finally the flag (p, L) is adjacent to the three points on L and the three lines
on p. This is our graph.

K4,4 subgraphs
There are 63 K4,4 subgraphs, forming a single orbit. The stabilizer of one is
42 : D12 with vertex orbit sizes 8 + 12 + 16. In the representation inside the
generalized hexagon, these are the lines of the generalized hexagon. In the
representation in PG(2, 9) with Hermitian form, these are the orthogonal bases.
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Partitions into triangles

Let us call two disjoint or equal triangles S, T in Γ ‘parallel’ when {S, T}
is a regular partition of the subgraph induced on S ∪ T . Then each triangle
in Γ determines a unique partition of VΓ into 12 mutually parallel triangles.
There are 28 of these partitions, forming a single orbit. In the representation in
PG(2, 9) with Hermitian form, these are the isotropic points.

Cliques, cocliques and chromatic number

The maximal cliques have size 3 (since the local graph is bipartite) and form a
single orbit under Aut Γ. Since Γ has partitions into 12 triangles, the comple-
mentary graph has chromatic number 12. The maximal cocliques fall into two
orbits: there are 72 7-cocliques (namely the parts of the bipartitions of the 36
local graphs) and 126 maximal 4-cocliques (namely the parts of the bipartitions
of the 63 K4,4’s). The chromatic number is 6.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 32+1:4 112 18, 18 5 9
b 4S4:2 63 12, 24 6 4
c 32+1:D8 56 18, 18 8 6

In case (b) the graph induced on the orbit of size 12 is the 2-coclique
extension of 2× 3.

Semibiplane

The graph Γ is locally bipartite. Construct a graph on 72 vertices (x,M) where
x is a vertex of Γ and M one bipartite half of the neighbors of x. Call (x,M)
and (y,N) adjacent when x ∈ N and y ∈M . The resulting graph is a bipartite
(0,2)-graph (i.e., the incidence graph of a semibiplane) of diameter 5 and valency
7. Each vertex has distance 5 to a unique other point. Interchanging antipodes
is not an automorphism, but identifying antipodes yields the graph Γ again.
This graph has automorphism group U3(3).2 with point stabilizer L2(7). The
orbit sizes are 1 + 7 + 21 + 7 + 7 + 21 + 7 + 1, with diagram
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Cospectral graphs

McKay & Spence [556] found that there are 180 strongly regular graphs with
parameters (v, k, λ, µ) = (36, 14, 4, 6). Klin, Meszka, Reichard & Rosa [492]
found that four of these satisfy the 4-vertex condition, namely the above rank 3
one and three with groups of orders 64, 32, and 24. These three are the smallest
non-rank 3 graphs satisfying the 4-vertex condition.

10.15 NO−6 (2)
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There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(36, 15, 6, 6). Its spectrum is 151 315 (−3)20. The full group of automorphisms is
O5(3) : 2 acting rank 3 with point stabilizer 2×S6. A construction (as NO−6 (2))
was given in §3.1.2. Another construction (as NO−⊥5 (3)) was given in §3.1.4.

The local graph is the collinearity graph of GQ(2, 2), the complement of the
triangular graph T (6). The second subconstituent is the Johnson graph J(6, 3).
This graph Γ is the local graph of NO+

6 (3), see §10.35. This graph is also the
2nd subconstituent of VO−6 (2), see §10.25.

Maximal cliques have size 4, a single orbit. Maximal cocliques have sizes 3
and 5, a single orbit each.

Regular sets

Examples of regular sets are obtained from subgroupsH of Aut Γ with two orbits
on the vertex set. We give degree d, nexus e, and structure for the smallest orbit.

H index orbitlengths d e graph
a 2.(A4 × A4).22 45 12, 24 3 6 3K4

b 24 : S5 27 16, 20 5 8 folded 5-cube
c S3 wr S3 40 9, 27 6 3 K3,3,3

d 32+1 : D8 240 18, 18 9 6
Altogether, the numbers of regular sets are as follows.

(d, e) (1, 4) (3, 6) (5, 8) (6, 3) (9, 6)
# 135 1485 3699 40 240

The regular sets with (d, e) = (1, 4) are subgraphs 4K2. In the NO−6 (2) representation
these arise as the nonsingular parts of ovoids in the Sp4(2) geometry on p⊥/〈p〉 for singular
points p. The above 45 regular sets with (d, e) = (3, 6) are subgraphs 3K4 that arise as the
nonsingular part of the union of three t.i. planes on a fixed t.s. line. There are 1440 further
regular sets with (d, e) = (3, 6). The regular sets with (d, e) = (6, 3) are subgraphs K3,3,3 that
arise as unions of three pairwise orthogonal elliptic lines. In the NO−⊥5 (3) representation,
these subgraphs arise as the perps of a singular point. Each t.s. line yields a partition of VΓ
into four K3,3,3’s.

Locally GQ(2, 2) graphs

Consider the Sp(6, 2) polar graph Σ. It is strongly regular with parameters
(v, k, λ, µ) = (63, 30, 13, 15), see §10.21. There are three graphs that are locally
GQ(2, 2), on 28, 32 and 36 vertices ([156]). They can be obtained from Σ by
removing a hyperbolic quadric, a hyperplane, and an elliptic quadric, respec-
tively. The first is T (8). The second has diameter 3, and is the Taylor extension
of the GQ(2, 2) graph. The third is our present graph Γ. See also [142].
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10.16 The O5(3) graphs on 40 vertices
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There are exactly two rank 3 strongly regular graphs with parameters (v, k, λ, µ)
= (40, 12, 2, 4). Their spectrum is 121 224 (−4)15. Both have full group of
automorphisms O5(3).2. The point stabilizers are 33 : (S4 × 2) and 31+2

+ : 2S4.
There are precisely two generalized quadrangles GQ(3, 3), duals to each other

([607]). One is that on the isotropic points, the other that on the totally isotropic
lines of the O5(3) geometry, cf. §2.6.1. The latter is isomorphic to the generalized
quadrangle on the points of the Sp4(3) geometry.

Our graphs are the collinearity graphs of these generalized quadrangles. Let
these graphs be Γ and ∆, where Γ is the O5(3) graph, and ∆ the dual O5(3)
graph or Sp4(3) graph.

Construction inside the U4(2) geometry

The graph ∆ is the graph NU4(2) on the nonisotropic points of the U4(2)
geometry, adjacent when orthogonal with respect to the Hermitian form (i.e.,
when joined by a secant line).

In this setting, Γ is the graph on the Hermitian bases, adjacent when inter-
secting nontrivially.

As we saw (§3.1.6), the graph NUn(2) is locally NUn−1(2). Pasechnik [603]
showed that NU5(2) is the unique graph that is locally GQ(3, 3).

Construction inside the unique GQ(2, 4)

The vertex set of ∆ consists of the Hermitian spreads of the unique GQ(2, 4),
adjacent when sharing exactly three lines (nonadjacent spreads then share ex-
actly one line). These three lines necessarily form a regulus of a 3 × 3 grid, a
subquadrangle of order (2, 1) of GQ(2, 4).

The vertex set of Γ consists of the partitions of the point set of GQ(2, 4)
into three 3× 3 grids, adjacent when they have exactly 9 lines in common (each
grid of the first partition shares exactly one line with each grid of the second
partition; the 9 lines form a Hermitian spread).

Cliques, cocliques and chromatic number
The maximal cliques in both cases have size 4, the lines of the generalized
quadrangle. The maximal cocliques in Γ have sizes 5, 8 and 10, those in ∆ have
sizes 4 and 7, a single orbit in all cases. The 10-cocliques in Γ are ovoids. The
chromatic numbers are χ(Γ) = 5, χ(∆) = 6, χ(Γ) = 11, χ(∆) = 10.

Regular sets
Examples of regular sets in Γ and ∆ are obtained from subgroups H of their
automorphism groups with two orbits on the vertex set. We give degree d, nexus
e, and ini , where ni is the number of lines meeting the smallest orbit in i points,
and structure for the smallest orbit.
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For Γ = Γ(O5(3)):

H index orbitlengths d e line stats
a 2× S6 36 10, 30 0 4 140

b 24 : 5 : 2 324 20, 20 4 8 240

c 31+2
+ : 2S4 40 4, 36 3 1 41 112 027

d 2.(A4 × A4).22 45 16, 24 6 4 48 132

Case (a): ovoid, the perp of a minus point.
Case (b): a hemisystem of points of the O5(3) generalized quadrangle, i.e., a

set of points intersecting each line in half of its points. Here, it is not the union of
two ovoids. Both halves are conjugate. An explicit construction runs as follows:
in the GQ(2, 4) pick a point x and order the lines through x arbitrarily in a cyclic
way (say, Li, i mod 5). Then, referring to the GQ(2, 4) construction of Γ, the
hemisystem of points consists of all partitions of the point set of GQ(2, 4) into
those 3×3 grids one of which contains two consecutive lines Li, Li+1 through x.

Case (c): 4 isotropic points on a fixed t.i. line.
Case (d): 4× 4 grid, the perp of a plus point.

The union of any number of pairwise disjoint t.i. lines is a regular set (and so
is its complement). Maximal sets of disjoint lines have 4 or 7 elements (exactly
the sizes of the maximal cocliques of the dual O5(3) graph), hence there are
regular sets of size 4t with (degree, nexus)= (2 + t, t), for all t ∈ {1, 2, . . . , 9}.

For ∆ = Γ(Sp4(3)):

H index orbitlengths d e line stats
a 2× A5 432 20, 20 4 8 240

b 33 : (S4 × 2) 40 4, 36 3 1 41 112 027

c 2.(A4 × A4).22 45 8, 32 4 2 216 024

d S4 × D8 270 16, 24 6 4 44 224 012

e 2× S5 216 20, 20 7 5 4/010 2/210 1/320

Case (a): a hemisystem of points of the Sp4(3) generalized quadrangle, i.e.,
a set of points intersecting each line in half of its points. (Cf. [42], [43], [227].)
Both halves are conjugate.

These are the only regular sets with d− e = s.
Case (b): the 4 points on a fixed t.i. line
Case (c): the 8 points of a K4,4 (i.e., L ∪ L⊥ for a hyperbolic line L).
All other regular sets with (d, e) = (4, 2) are unions of two t.i. lines.
Case (d): In the O5(3) geometry, 16 t.i. lines each of them on a point of a

fixed conic of t.i. points spanning a plane which is the perp of an elliptic line
(i.e., a line containing only nonisotropic points).

All regular sets with (d, e) = (6, 4) do contain a (symplectic) t.i. line.
Case (e): In the U4(2) setting, consider a subquadrangle GQ(2, 2) of the

U4(2) generalized quadrangle and an ovoid O in GQ(2, 2) (on which S5 acts).
The nonisotropic points on the lines of PG(3, 4) joining two points of O form a
regular set.

All other regular sets with (d, e) = (7, 5) do contain a (symplectic) t.i. line.

The union of any number of pairwise disjoint (symplectic) t.i. lines is a
regular set (and so is its complement). Hence there are regular sets of size 4t
with (degree, nexus)= (2 + t, t), for all t ∈ {1, 2, . . . , 9}.
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Graph on the 20 + 20 splits
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Above we saw that Γ(Sp4(3)) has 216 splits into two regular 20-sets with
degree 7 and nexus 5. The group O5(3).2 acts on these 216 with permutation
rank 7 and subdegrees 1 + 5 + 20 + 30 + 40 + 60 + 60. The suborbit of size
40 defines a strongly regular graph with parameters (v, k, λ, µ) = (216, 40, 4, 8)
and spectrum 401 4140 (−8)75. The full group of automorphisms is O5(3).2
acting rank 7 with point stabilizer 2 × S5. This graph was discovered by
Crnković et al. [243]. See also [242].

2-Ranks
graph rk2(A) rk2(J −A) rk3(A+ I) rk3(J − I −A)

Γ 10 10 15 14
∆ 16 16 11 10

Peeters [611] showed that given their strongly regular graph parameters, the
four graphs Γ, Γ, ∆, ∆ are uniquely determined by the values 10, 10, 11, 10 of
rk2(A), rk2(A+ I), rk2(A+ I), and rk2(A), respectively.

10.17 The U4(2) graph on 45 vertices
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It was shown by Coolsaet, Degraer & Spence [223] that up to isomorphism
there are precisely 78 strongly regular graphs with parameters (v, k, λ, µ) =
(45, 12, 3, 3). Their spectrum is 121 320 (−3)24.

There is a unique rank 3 strongly regular graph Γ with these parameters. It
is Γ(U4(2)), the collinearity graph of the unique GQ(4, 2), the dual of GQ(2, 4)
discussed in §10.10. It is also NO+⊥

5 (3). Its full group of automorphisms is
O5(3) : 2 with point stabilizer ((23+2 : 32) : 2) : 2.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 31+2

+ : 2S4 40 9, 36 0 3 9K1, ovoid
b 33 : (S4 × 2) 40 18, 27 3 6 3K3,3

c 24 : S5 27 5, 40 4 1 K5, line
d 2× S6 36 15, 30 6 3 GQ(2, 2)

The union of at most five pairwise disjoint lines, or the complement thereof,
gives examples with (degree, nexus)= (3 + t, t), for 1 ≤ t ≤ 8.
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10.18 The rank 3 conference graphs on 49 ver-
tices
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There are exactly two rank 3 strongly regular graphs with parameters (v, k, λ, µ)
= (49, 24, 11, 12). Their spectrum is 241 324(−4)24. The first, let us call it Γ1, is
the Paley graph, with full group of automorphisms 72 : 24 : 2 and point stabilizer
24 : 2. The second, let us call it Γ2, is the Peisert graph, with full group of
automorphisms 72 : (3 × SL2(3)) and point stabilizer 3 × SL2(3). Both graphs
are self-complementary.

The maximal cliques of Γ1 have sizes 5 and 7, a single orbit of each type.
The maximal cliques of Γ2 have sizes 4 and 7, a single orbit of each type. Both
Γ1 and Γ2 have chromatic number 7, that is, there are partitions into 7-cliques
and partitions into 7-cocliques. Any disjoint union of 7-cliques (7-cocliques) is
a regular set with (d, e) = (6, 3) (resp. (0, 4)).

Construction

Let V be a vector space, and H = PV its hyperplane at infinity. Pick a subset
X of H. The graph Γ with vertex set V , where v ∼ w when 〈w − v〉 ∈ X is
strongly regular when the hyperplanes of H meet X in two different cardinalities
(see §7.1.1). In the special case where dimV = 2, hyperplanes are single points,
and every choice of X (other than ∅ or H) will give a strongly regular graph.
One finds nets with parameters v = q2, k = (q − 1)n, r = q − n, s = −n,
µ = n(n− 1), λ = q+n(n− 3), if the underlying field is Fq and |X| = n. These
graphs are Latin square graphs LSn(q) (see §8.4.2). They will be rank 3 when
the stabilizer of X in PΓL2(q) acting on H has the two orbits X and H \X.

In the special case q = 7, n = 4, the group PGL2(q) has two orbits (of sizes
42 and 28) on the set

(
H
4

)
of 4-sets in H. Picking X in the first orbit gives the

Paley graph Γ1. Picking X in the second orbit gives Γ2. The stabilizers of X
in these cases are D8 and A4, both with orbit lengths 4 + 4 on H.

Further self-complementary graphs

Mathon [548] found all self-complementary strongly regular graphs on at most
49 vertices. With v = 49 there are apart from Γ1 and Γ2 three further examples.

10.19 The Hoffman-Singleton graph
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There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (50, 7,
0, 1). Its spectrum is 71 228 (−3)21. The full group of automorphisms is U3(5).2
acting rank 3 with point stabilizer S7.
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This graph was found (and shown unique) by Hoffman & Singleton [436]
as example of a Moore graph, that is a graph of diameter d and girth g where
g = 2d+ 1.

Moore graphs are regular. Apart from the odd polygons only three Moore graphs are
known, namely the pentagon, the Petersen graph, and the Hoffman-Singleton graph. Any
further Moore graph must be strongly regular with parameters (v, k, λ, µ) = (3250, 57, 0, 1).
If there is such a graph, its group of automorphisms has order at most 375 ([532]). See also
[132], §11.5.1.

Construction: 5×5 + 5×5
Take five pentagons Ph and five pentagrams Qi, so that vertex j of Ph is adjacent
to vertices j−1, j+ 1 of Ph and vertex j of Qi is adjacent to vertices j−2, j+ 2
of Qi. Now join vertex j of Ph to vertex hi+ j of Qi. (All indices mod 5.)

Construction: 15 + 35

Use the identification of the 35 lines in PG(3, 2) with the 35 triples in a 7-
set where intersecting lines belong to triples meeting in precisely one element
(Proposition 6.2.9). Take as vertices the 15 points and 35 lines of PG(3, 2),
let the points form a coclique, let a point be adjacent to a line when they
are incident, and let two lines be adjacent when the corresponding triples are
disjoint.

Construction: 20 + 30

Take as vertices the 20 ternary vectors of weight 1 and the 30 ternary vectors
of length 10 and weight 4 obtained by taking in the extended ternary Golay
code all vectors of weight six starting 11... or 12... and deleting the first two
coordinates. Join two weight 1 vectors when they have distance 1; join a weight
1 and a weight 4 vector when they have distance 3; join two weight 4 vectors
when they have distance 8. This yields the Hoffman-Singleton graph, and shows
that it has a partition into a subgraph 10K2 and two 15-cocliques.

Construction: inside the Higman-Sims graph

In the Steiner system S(4, 7, 23), fix a symbol a. Construct the Higman-Sims
graph (§10.31) on 1 + 22 + 77 points by taking a point ∞, the 22 symbols
distinct from a and the 77 blocks containing a, where blocks are adjacent when
they meet in {a} only. Now let B be a block of S(4, 7, 23) not containing a. It
induces a partition (1 + 7 + 42) + (15 + 35) of the 1 + 22 + 77 (the 42 blocks
are those meeting B in one point, the 35 those meeting B in three points), and
both 1 + 7 + 42 and 15 + 35 induce a Hoffman-Singleton graph.

Edges

Since λ = 0, the maximal cliques have size 2 and are the edges. There are 175
of these, forming a single orbit. The stabilizer of one is A6.2

2 with vertex orbit
sizes 2+12+36 and edge orbit sizes 1+12+72+90. The subgraph of Γ induced
on the 36 vertices nonadjacent to a fixed edge is the Sylvester graph, the unique
distance-regular graph with intersection array {5, 4, 2; 1, 1, 4}.
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The line graph L(Γ) is the unique distance-regular graph with intersection array
{12, 6, 5; 1, 1, 4}.
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The graph on the edges, adjacent when they have distance 2 in the line graph,
is strongly regular with parameters (v, k, λ, µ) = (175, 72, 20, 36).

If a regular graph has adjacency matrix A, and v × e vertex-edge incidence matrix N ,
and the line graph has adjacency matrix L, then NN> = A + kI and N>N = L + 2I. The
spectrum of L follows since NN> and N>N have the same nonzero eigenvalues. So, in the
present case, the line graph L(Γ) has spectrum 121 728 221 (−2)125. Since Γ has girth 5, the
distance-2 graph of L(Γ) has adjacency matrix L2 where L2 = (2k − 2)I + (k − 2)L+ L2. In
the present case L2 has spectrum 721 2153 (−18)21.

This last graph is the collinearity graph of a partial geometry pg(5, 18, 2), see
§8.6.1(iv). The collinearity graph of its dual, a pg(18, 5, 2), is strongly regular
with parameters (v, k, λ, µ) = (630, 85, 20, 10).

Cocliques
The largest cocliques have size 15, and there are 100 of them, forming a single
orbit. The stabilizer of one is A7, with vertex orbit sizes 15 + 35.

The complement of a 15-coclique induces the Odd graph O4, the unique
distance-regular graph with intersection array {4, 3, 3; 1, 1, 2}, the graph on the
triples in a 7-set, adjacent when disjoint. It has full group S7, with point
stabilizer S3 × S4.

The group is twice as large as that induced by Aut Γ since this graph can be extended to
a Hoffman-Singleton graph in two ways; both occur in the Higman-Sims graph.
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A fixed 15-coclique meets 7, 35, 42, 15, 1 15-cocliques in 0, 3, 5, 8, 15
points, respectively. Meeting in 0, 5, or 15 points is an equivalence relation
with two classes of size 50. The graph on the 50 15-cocliques in one equivalence
class, where two 15-cocliques are adjacent when they are disjoint, is again the
Hoffman-Singleton graph. The graph on the 100 15-cocliques, where two 15-
cocliques are adjacent when they meet in 0 or 8 points, is the Higman-Sims
graph. We see that the Higman-Sims graph has splits into two Hoffman-
Singleton graphs.

Heawood and Coxeter subgraphs
Let C and D be two 15-cocliques that meet in 8 points. The stabilizer of
{C,D} has orbit sizes 8 + 14 + 28. The induced subgraph on the orbit of size
14 is the Heawood graph, the point-line incidence graph of the Fano plane,
the unique distance-regular graph with intersection array {3, 2, 2; 1, 1, 3}. The
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induced subgraph on the orbit of size 28 is the Coxeter graph, the graph that
Coxeter calls ‘My Graph’, the unique distance-regular graph with intersection
array {3, 2, 2, 1; 1, 1, 1, 2}. Both have full group L3(2).2.

Splits

There are 1260 pentagons, forming a single orbit. For a fixed pentagon, the 25
adjacent vertices induce 5C5, and the complement of this 5C5 also induces a
5C5. It follows that Γ has 126 splits into two 5C5 subgraphs.

For each such split, the union of a pentagon from one side and a pentagon
from the other side induces a Petersen graph. Splits and Petersen graphs
form the points and blocks of a unital S(2, 6, 126) in PG(2, 25), explaining the
structure of Aut Γ (Benson & Losey [58]).

Chromatic number

The Hoffman-Singleton graph has chromatic number 4 and edge-chromatic num-
ber 7 (that is, its line graph has chromatic number 7). Its complement has
chromatic number 25.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a A7 100 15, 35 0 3 15-coclique
b M10 350 20, 30 1 4 10K2

c 52+1:(4×2) 252 25, 25 2 5 5C5

d 2S5.2 525 10, 40 3 1 Petersen

In case (a) the subgraph induced on the orbit of size 35 is the Odd graph
O4, the graph of disjoint triples in a 7-set. In case (b) the subgraph induced on
the orbit of size 30 is Tutte’s 8-cage, the incidence graph of GQ(2, 2). In case
(d) the subgraph induced on the orbit of size 40 is the unique (6, 5)-cage.

No further regular sets occur for (d, e) 6= (4, 2). For each regular set R with
(d, e) = (4, 2) and hence |R| = 20, the complementary regular set has size 30
with (d, e) = (5, 3), and is a (5, 5)-cage, see below. There are two types: the
12600 sets R that are the disjoint union of two Petersen subgraphs, and the
2625 sets R where VΓ \R is a Meringer cage.

Paths and Cycles

The group G = Aut Γ is transitive on ordered induced paths of length at most
five. It has three orbits on ordered induced paths of length 6 (with 7 vertices).
In particular, the group is 3-arc transitive (transitive on ordered paths of length
3). This group is transitive on induced 5-cycles, 6-cycles, and 7-cycles. It has
two orbits on induced 8-cycles. Each hexagon is contained in a unique Petersen
subgraph.
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Cages

The Hoffman-Singleton graph Γ is the (7, 5)-cage, that is, the unique smallest
graph of valency 7 and girth 5. Of course every subgraph has girth at least 5.
The unique (6, 5)-cage has 40 vertices, and is found by removing the vertices
of a Petersen subgraph from Γ. The (5, 5)-cages have 30 vertices. There are
four nonisomorphic examples ([750], [558]), two of which can be found inside Γ.
Also (3, 6)-cages (the incidence graph of the Fano plane) and (3, 8)-cages (the
incidence graph of GQ(2, 2)) are found in Γ. See also [123], pp. 206–210, and
[314].

About the (5,5)-cages

There is some confusion concerning naming and properties of the (5,5)-cages, the main problem
being that nobody knows what graph is called the Robertson-Wegner graph. The four (5,5)-
cages have groups of orders 20, 30, 96, and 120. The cage with group of order 96 was
discovered by Yang & Zhang [750] and rediscovered by Meringer [558]. The survey [743]
knew about the remaining three. Its Figure 6 displays the cage with group of order 30, with
reference ‘R. M. Foster (unpublished)’. The cage with group of order 20 was discovered by
Robertson [626] (upper left corner of Figure 1.1C), later mentioned in Wegner [724] (who
refers to [626]), and is Figure 5 in [743]. It is the RobertsonWegnerGraph in Mathematica.
The cage with group of order 120 was given in Robertson [626] (Figure 1.1D), and is called
the Robertson-Wegner graph by many authors; it is Figure 4 in [743], and the WongGraph in
Mathematica.

|G| orbit sizes spectrum name
a 20 5+5+10+10 (−3)4 (−2.71)2 (−2.47)2 (−2.12)2 (−1.78)2 Robertson-Wegner

(−1)1 0.782 1.122 1.472 1.712 28 51 graph
b 30 15+15 (−2.71)4 (−2.12)4 (−1)1 1.124 Foster cage

(−1±
√

5)2 1.714 24 (±
√

5)2 51

c 96 6+24 (−3)2 (−2)3 01 (−1±
√

3)4 1
2

(−1±
√

17)3 29 51 Yang-Zhang cage /
Meringer cage

d 120 10+20 (−1)2 15 1
2

(−1±
√

21)8 (±
√

5)3 51 Robertson cage

Case (a) is obtained from the Hoffman-Singleton graph Γ by removing two Petersen
subgraphs, and as we saw in the discussion of regular sets, also case (c) is contained in Γ.
Cases (b) and (d) cannot be contained in Γ because their eigenvalue

√
5 would contradict

interlacing. In cases (a) and (d), the group size and orbit sizes were given incorrectly in [123].
A nice description of graph (d), showing its full group A5 × 2, is the following. Take the 20
vertices of the dodecahedron, and the 10 4-subsets of the dodecahedron that have all internal
distances 3; the adjacencies are the obvious ones: the dodecahedron is an induced subgraph
of valency 3, each 4-subset is adjacent to its 4 elements and to the antipodal 4-subset.

Locally Hoffman-Singleton graphs

No locally Hoffman-Singleton graphs are known. Such a graph cannot be
distance-transitive or flag-transitive (Van Bon [85]) and must have diameter at
most 6. See also [337].

Decomposition of K50

We saw that K16 can be split into three edge-disjoint Clebsch graphs, and K10

cannot be split into three edge-disjoint Petersen graphs. It is unknown whether
K50 can be split into seven edge-disjoint Hoffman-Singleton graphs. However, it
is possible to pack six edge-disjoint Hoffman-Singleton graphs into K50 ([531]).
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10.20 The Gewirtz graph
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v = 56

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (56, 10,
0, 2). Its spectrum is 101 235(−4)20. The full group of automorphisms is G =
L3(4).22 (of order 28.32.5.7) acting rank 3, with point stabilizer A6.2

2.

Construction

This is the graph on the 77 − 21 = 56 blocks of the (unique) Steiner system
S(3, 6, 22) not containing a fixed symbol, adjacent when they are disjoint. It is
also the subgraph of the Higman-Sims graph induced on the set of vertices at
distance 2 from an edge (and this construction shows the full group).

From the first construction we deduce the following explicit construction.
Vertices are the hyperovals of a PSL3(4)-orbit in PG(2, 4), adjacent if disjoint.
Since the lines not meeting a given hyperoval form a dual hyperoval, we can
see each vertex of Γ as a pair (hyperoval, dual hyperoval), which explains
the doubling of the automorphism group compared to the point stabilizer of
S(3, 6, 22). These extra automorphisms are dualities of PG(2, 4).

Uniqueness

Uniqueness is due to Gewirtz [342]. For shorter uniqueness proofs, and further
properties, see [131].

Cliques and cocliques

The maximal cliques are the 280 edges.
Maximal cocliques have sizes 7, 9, 10, 11, 12, 13 or 16. The table below gives

the number of cocliques of each given size.

size 7 9 10 11 12 13 16
# 240 2520 43960 20160 5460 1680 42

The maximum cocliques have size 16, reaching the Hoffman bound. They
form a single orbit. The stabilizer of one in G is 24.S5, with vertex orbit sizes
16 + 40. If Γ is seen as the subgraph induced on the vertices at distance 2
from an edge xy in the Higman-Sims graph ∆, these 42 16-cocliques are the
intersections VΓ∩∆(z) of VΓ with the point neighborhoods of the 42 neighbors
z of the edge xy in ∆. In the PG(2, 4)-setting, these 42 cocliques are the 21 sets
of hyperovals sharing a common point and the 21 sets of hyperovals avoiding a
common line of PG(2, 4).

Chromatic number

Γ has chromatic number 4. Its complement has chromatic number 28.
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Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 24:S5 42 16, 40 0 4 16-coclique
b M10 112 20, 36 1 5 10K2

c 22+4.3.22 105 24, 32 2 6 6C4

d L2(7) 480 28, 28 3 7 {3, 2, 2, 1; 1, 1, 1, 2}
e 2× L2(7):2 120 14, 42 4 2 {4, 3, 2; 1, 2, 4}

In case (b), the subgraph induced on the 36-set is the Sylvester graph.
Each quadrangle is contained in a unique subgraph 6C4.
Case (d) is that of splits into two Coxeter graphs. These splits can be

seen inside the Higman-Sims graph. It has splits into two Hoffman-Singleton
graphs. Choosing an edge that meets both sides we find that the subgraph of
the Higman-Sims graph far away from that edge is split into two Coxeter graphs.

Case (e) has the co-Heawood graph, the bipartite nonincidence graph of the
Fano plane.

There are no further examples of regular sets with d− e = s.

Biplane

If A is the adjacency matrix of Γ, then A+I is the point-block incidence matrix of
a biplane 2-(56,11,2) (due to Hall, Lane & Wales [400]). Up to isomorphism,
there are five biplanes with these parameters ([483]).

Hill cap

The Gewirtz graph is an induced subgraph of the O−6 (3) graph on 112 vertices
(see below), and hence can be seen as a set of points in PG(5, 3), a subset of an
elliptic quadric. Viewed in this way, it is a cap, a set of points no three of which
are collinear, and in fact is the unique largest possible cap in PG(5, 3). (Note
that lines meet the quadric in at most two points, unless they are contained in
the quadric. Hence three collinear points determine a triangle in the graph, but
the Gewirtz graph does not have triangles.) It follows that the vertex set of Γ,
viewed as subgraph of the O−6 (3) graph, defines a hemisystem of points of the
O−6 (3) generalized quadrangle.

10.21 Sp6(2)
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v = 63

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(63, 30, 13, 15). Its spectrum is 301 335 (−5)27. The full group of automorphisms
is Sp6(2) acting rank 3 with point stabilizer 25 : S6. It is the collinearity graph
of the polar space Sp6(2), cf. §2.5.
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The maximal cliques have size 7 and form a single orbit. They are the
totally isotropic planes. The maximal cocliques have size 3, 5 or 7, a single
orbit each. Those of size 3 are the hyperbolic lines. Those of size 5 are elliptic
quadrics in the perp of a hyperbolic line. Those of size 7 are the 7-cocliques in
the T (8) subgraphs (see below). The chromatic numbers of this graph and its
complement are χ(Γ) = 11 and χ(Γ) = 9.

Regular sets
Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a O5(3) : 2 28 27, 36 10 15 GQ(2, 4)
b 26 : L3(2) 135 7, 56 6 3 K7

c S8 36 28, 35 15 12 T (8)

These are all regular sets with (d, e) = (6, 3), but there are many further
regular sets with (d, e) = (10, 15), (9, 6), (12, 9), (15, 12). For example, partial
spreads provide examples with d− e = 3. No other pairs (d, e) occur.

Cospectral graphs
Ihringer [451] finds 13505292 different graphs cospectral with Γ by applying
GM-switching (§8.13.1) to it at most five times in succession. No doubt there
are many further graphs with these parameters.

10.22 The G2(2) graph on 63 vertices
There are precisely two generalized hexagons of order 2, duals of each other
(cf. p. 108). The distance 1-or-2 graph of each of these is strongly regular, with
parameters (v, k, λ, µ) = (63, 30, 13, 15) (cf. Proposition 1.3.12). In this way we
obtain two graphs. The rank 3 one was discussed above. Here we look at the
other one, which is rank 4. Its full group of automorphisms is G2(2), with point
stabilizer 4 ·S4 : 2 with orbits of sizes 1 + 6 + 24 + 32 (and it is the only strongly
regular graph with these parameters of which the full group acts rank 4).

Construction
This graph Γ is the graph NU3(3): the vertices are the nonisotropic points in
PG(2, 9) provided with a nondegenerate hermitian form, adjacent when joined
by a secant. Its complement is the graph on V Γ where vertices are adjacent
when joined by a tangent. If ∆1 is the graph on V Γ where vertices are adjacent
when orthogonal, then ∆1 is the collinearity graph of a generalized hexagon of
order 2, and Γ = ∆1 ∪∆2, where ∆2 is the distance-2 graph of ∆1. This ∆2 is
the 2nd subconstituent of the Hall-Janko graph on 100 vertices.

Cliques, cocliques and chromatic number
The maximal cliques have size 4 or 7, a single orbit of each. The 63 maximal
7-cliques Cx each consist of a vertex x and the six orthogonal vertices. The
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maximal cocliques have size 5 or 9, a single orbit of each. The 28 maximal
9-cocliques are the tangents. The chromatic numbers of this graph and its
complement are χ(Γ) = 11 and χ(Γ) = 9. A partition into nine 7-cliques is
given by the nine sets Cx where x runs over the vertices on a fixed tangent.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a [24.33] 28 9, 54 0 5 9-coclique
b L3(2) : 2 36 21, 42 12 9 GH(2, 1)1,2

Subgraphs of type (b) are the distance 1-or-2 graphs of sub-GH(2, 1)’s in the
GH(2, 2), that is, are subgraphs of Γ induced by the point set of a GH(2, 1).

10.23 The block graph of the smallest Ree unital

Above in §10.21 and §10.22 we described the two strongly regular graphs with
parameters (v, k, λ, µ) = (63, 30, 13, 15) and a group of automorphisms acting
primitively. There are many further strongly regular graphs with these param-
eters, most of them ugly. Maybe the nicest one is the complement of the block
graph of the smallest Ree unital, described below.

Given any Steiner system S(2,m, u), the block graph is the graph on the
blocks, adjacent when they meet. This graph is strongly regular, with param-
eters given in §8.5.4A. In the particular case of a S(2, 4, 28) this block graph
has parameters (63, 32, 16, 16), so that the adjacency matrices are square 2-
(63,32,16) designs. (There are many further such designs.)

Let q = 32m+1, m ≥ 0. The Ree unital of order q (Lüneburg [528]) is
a unital (S(2, q + 1, q3 + 1) design) on which the Ree group 2G2(q) of order
(q − 1)q3(q3 + 1) acts 2-transitively. It is not embedded (in PG(2, q2)).

A unital of order 3 is a Steiner system S(2, 4, 28). The two examples of such Steiner
systems with a doubly transitive group are the Hermitian unital and the Ree unital. The
4466 examples with a nontrivial group were given in [498]. The 2 + 4 + 4 + 8 = 18 examples
embedded in a projective plane of order 9 (there are four: the Desarguesian, Hall, dual Hall,
and Hughes planes) were found in [616]. The 6 resolvable S(2, 4, 28) (and 7 nonisomorphic
resolutions) were found in [484]. The 68806 examples with a blocking set were found in [7].

The Ree unital of order 3 can be embedded as a (0, 4)-set (a maximal arc)
in PG(2, 8). We find that it has 45 spreads (falling into two orbits, of sizes
9 + 36), corresponding to the 45 exterior points, and 10 resolutions (falling into
two orbits, of sizes 1 + 9), corresponding to the 10 exterior lines. The graph Γ
on the blocks, adjacent when they are disjoint is the graph on the involutions of
L2(8), adjacent when the product has order 2 or 7. The graph Γ has maximal
cliques of sizes 4, 5 and 7. Those of size 7 are the spreads. It has maximal
cocliques of sizes 5 and 9. Those of size 9 are the sets of 9 blocks on a given
point. The full group of automorphisms is PΓL2(8) seen in its natural action on
the fixed exterior line L. Its action on Γ is imprimitive: the 9 spreads determined
by the points of L form a system of imprimitivity.
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10.24 GQ(3,5) and the hexacode
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v = 64

Haemers & Spence [384] showed that there are exactly 167 strongly regular
graphs with parameters (v, k, λ, µ) = (64, 18, 2, 6). The spectrum is 181 245

(−6)18. Precisely one of these is rank 3, let us call it Γ. Its full group of
automorphisms is 26 : 3.S6 with point stabilizer 3.S6. This is the collinearity
graph of the unique GQ(3, 5).

Construction

Take the 64 words of the hexacode, and join two words when their distance is 6.
Or take the points of AG(3, 4), and join two points when the joining line hits
the PG(2, 4) plane at infinity in a fixed hyperoval (cf. §3.4.6).

Cliques, cocliques and chromatic number

The maximal cliques of Γ are the 96 lines of GQ(3, 5). They have size 4 and
meet the Hoffman bound. There are 24 cocliques of size 16, meeting the Hoffman
bound. These correspond to the planes in AG(3, 4) hitting the plane at infinity
in an external line of the hyperoval. The chromatic numbers are χ(Γ) = 4 and
χ(Γ) = 16.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 24 : (A5 : S3) 24 16, 48 0 6 16-coclique
b 25 : S5 36 32, 32 6 12 2K16

c (24+2 : 3) : 2 360 32, 32 6 12
These are all regular sets with d− e = s.

H index orbitlengths d e graph
d 22 : (3 : S5) 96 4, 60 3 1 K4

e 24 : (3S4 : 2) 60 16, 48 6 4 4× 4
f [28.3] 180 16, 48 6 4
g S4 ×D8 720 16, 48 6 4
h A5 :D8 288 24, 40 8 6
i [29.3] 90 32, 32 10 8
j [26.3] 720 32, 32 10 8
k (D8 ×D8) : 2 1080 32, 32 10 8
l 42 : 4 2160 32, 32 10 8

Case (d) is that of a line of the GQ. Case (e) is that of a plane with a secant
at infinity. Case (i) is that of two planes with a common secant at infinity.
Every union of t pairwise disjoint lines is a regular set with (d, e) = (t+ 2, t).
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2-Ranks
Peeters [611] showed that Γ is the unique strongly regular graph with its
parameters and satisfying rk2(A) = 14. Similarly, Γ is the unique strongly
regular graph with its parameters and satisfying rk2(A+ I) = 14.

Dual
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v = 96

The dual generalized quadrangle GQ(5, 3) has 96 points and 64 lines, and
the same automorphism group, acting rank 4. The collinearity graph ∆ has
parameters (v, k, λ, µ) = (96, 20, 4, 4) and spectrum 201 445 (−4)50. Maximal
cliques have size 6 (they are the lines). Maximal cocliques have sizes 10–14 and
16. There are 5 orbits of ovoids (16-cocliques) corresponding to the 5 orbits of
spreads in GQ(3, 5). The chromatic numbers are χ(∆) = 6 and χ(∆) = 16.

10.25 VO−6 (2)
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There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(64, 27, 10, 12). Its spectrum is 271 336 (−5)27. The full group of automorphisms
is 26 : (O−6 (2) : 2) acting rank 3 with point stabilizer O5(3) : 2. A construction
(as VO−6 (2)) was given in §3.3.1.

The local graph is the complement of the Schläfli graph, the collinearity
graph of GQ(2, 4). The graph induced on the second subconstituent is NO−6 (2),
strongly regular with parameters (v, k, λ, µ) = (36, 15, 6, 6) (see §10.15). The
vertices of the first subconstituent not adjacent to a fixed vertex of the second
subconstituent form a sub-GQ(2, 2) of GQ(2, 4).

Maximal cliques have size 4, and form a single orbit. Maximal cocliques
have sizes 4 or 6, a single orbit each. For the chromatic numbers of the graph
Γ and its complement, we have χ(Γ) = 11, χ(Γ) = 16.

From the local structure as given in §3.6 it is clear that Γ does not contain K5 − e (K5

minus an edge) and Γ does not contain K7 − e, giving a lower bound R(K5 − e,K7 − e) ≥ 65
for the corresponding Ramsey number. In fact R(K5 − e,K7 − e) = 65 ([516], [712]).

Ihringer [451] found 8613977 graphs cospectral with Γ by applying GM-switching.

10.26 The halved folded 8-cube and VO+
6 (2)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(64, 28, 12, 12). Its spectrum is 281 428 (−4)35. The full group of automorphisms
is 26 : S8 acting rank 3 with point stabilizer S8. It can be constructed as the
halved folded 8-cube.
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The complementary graph Γ has parameters (v, k, λ, µ) = (64, 35, 18, 20) and
spectrum 351 335 (−5)28. A construction (as VO+

6 (2)) was given in §3.3.1.
The local graph is the triangular graph T (8). The graph induced on the 2nd

subconstituent is strongly regular with parameters (v, k, λ, µ) = (35, 16, 6, 8),
the complement of O+

6 (2) (see also §10.13).
Maximal cliques have sizes 4 or 8, a single orbit each. Maximal cocliques

have size 8, a single orbit. For the chromatic numbers of the graph Γ and its
complement, we have χ(Γ) = χ(Γ) = 8.

Regular sets

Represent the vertices by vectors of even weight in F8
2 , identifying two vectors

when they differ by 1. For i = 2, 4 consider the split with an odd/even weight
in the first i bits. This yields examples (l) and (e) below. For i = 3, normalize
by taking even weight in the first i bits, and split into weight 0/2. This is
example (j). The [8, 4, 4] Hamming code modulo 1 yields example (a). The set
of 8 unit vectors (shifted over an odd weight vector) yields example (i).

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ
with two orbits on the vertex set. We give degree d, nexus e, and structure for
the smallest orbit.

H index orbitlengths d e graph
a 23 : (23 : L3(2)) 240 8, 56 0 4 K8

b [211.3] 420 16, 48 4 8
c [27.3] 6720 16, 48 4 8
d A5 :D8 5376 24, 40 8 12
e 25 × (S4 wr 2) 70 32, 32 12 16
f [29.3] 1680 32, 32 12 16
g [29] 5040 32, 32 12 16
h [26.3] 13440 32, 32 12 16
i S8 64 8, 56 7 3 K8

j S3 × (24 : S5) 224 16, 48 10 6 Clebsch
k 2× (((A4 × A4) : 2) : 2) : 2 1120 16, 48 10 6
l 2× (25 : S6) 56 32, 32 16 12
m [210.3] 840 32, 32 16 12
n [29.3] 1680 32, 32 16 12
o [26.3] 13440 32, 32 16 12

This is complete for (d, e) = (7, 3), (10, 6), not for (d, e) = (13, 9), (16, 12).
Apart from these, there are no further examples with d− e = r.

Cospectral graphs
Ihringer [451] found 11063360 graphs cospectral with Γ by applying GM-switching.

10.27 The M22 graph on 77 vertices
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There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (77, 16,
0, 4). Its spectrum is 161 255 (−6)21. The full group of automorphisms is M22.2
acting rank 3 with point stabilizer 24 : S6.

The existence of this graph is folklore. An early description (using an explicit
list of 77 blocks) was given in Mesner [560], pp. 75–83. Uniqueness is due to
Brouwer [111].

Γ is the second subconstituent of the Higman-Sims graph (§10.31).

Construction

Take the 77 blocks of S(3, 6, 22) as vertices, where two blocks are adjacent when
they are disjoint.

(Since S(3,6,22) has two block intersection numbers, 0 and 2, this is a special
case of the construction of a strongly regular graph from a quasi-symmetric
design.)

Cliques and cocliques

Since λ = 0, the maximal cliques have size 2 and are the edges. The largest
cocliques have size 21. There are 22 of those, corresponding to the 22 points
of S(3, 6, 22). On the 56 vertices outside a 21-coclique, Γ induces the Gewirtz
graph.

Maximal cocliques have sizes 7, 10, 11, 13, 14, 16 or 21. The table below
gives the number of cocliques of each given size.

size 7 10 11 13 14 16 21
# 330 216832 149184 43120 330 1309 22

The smallest maximal cocliques have size 7 and stabilizer 2 × 23:L3(2). In
the Steiner system S(5, 8, 24), let a and b be two fixed symbols, such that our
S(3, 6, 22) is the derived design at {a, b}. There are 330 octads that contain
neither a nor b, and each induces a 7 + 56 + 14 partition of VΓ, corresponding
to intersection size 0, 2, 4. The parts of sizes 7 and 14 are maximal cocliques.

Chromatic number

The chromatic number of Γ is 5. That of Γ is 39.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a L3(4):2 22 21, 56 0 6 21-coclique
b A7 352 35, 42 4 10 {4, 3, 3; 1, 1, 2}
c L2(11):2 672 22, 55 6 4 {6, 5, 3; 1, 3, 6}

In case (b) the induced subgraph on the short orbit is the Odd graph O4.
In case (c) the induced subgraph on the short orbit is the incidence graph

of the unique 2-(11,6,3) design, the complement of the 2-(11,5,2) biplane.
There are no further regular sets with d− e = s.
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10.28 The Brouwer-Haemers graph
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There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (81, 20,
1, 6). Its spectrum is 201 260 (−7)20. The full group of automorphisms is
34 : ((2× S6).2) acting rank 3 with point stabilizer (2× S6).2.

This graph was known already to Mesner [560]. Brouwer & Haemers
[130] showed uniqueness, and gave seven different descriptions of this graph.
Uniqueness is also an easy corollary of Ivanov & Shpectorov [458] (see
Theorem 3.4.1).

Construction: fourth power difference set

Take the finite field F81, where two elements are adjacent when they differ by
a fourth power. (This construction shows the affine group AΓL(1, 81) of order
34 · 80 · 4, acting rank 4.)

Construction: affine orthogonal graph

This is the affine orthogonal graph VO−4 (3), cf. §3.3.1. (This construction shows
the full group: we have O−4 (3) ' A6, which has index 2 in PGO−4 (3) ' S6,
which has index 2 in GO−4 (3) ' 2 × S6, which again has index 2 in the group
preserving the form up to a constant.)

A nice symmetric representation is found by taking 1⊥/1 in F6
3 provided

with the ‘sum of squares’, i.e., weight, quadratic form, where two vertices are
adjacent when their difference has weight 3. And instead of taking 1⊥ (i.e., sum
0), we can also take sum 1, or sum 2.

Equivalently, take the points of AG(4, 3), adjacent when the joining line hits
a fixed elliptic quadric in the hyperplane at infinity.

Construction: Hermitian forms graph

This graph is the Hermitian forms graph on F2
9 , cf. §3.4.4.

Construction: from the ternary Golay code

This graph is the coset graph of the truncated ternary Golay code.

Construction: in the O−6 (3) graph

This graph is the 2nd subconstituent of the O−6 (3) graph on 112 vertices, the
collinearity graph of the unique GQ(3, 9), cf. §10.34.

Cliques, cocliques and chromatic number

Since λ = 1, maximal cliques have size 3, and there are 270 lines of size 3, ten
on each point. The group acts rank 5 on the lines, distinguishing the relations
(i) identity, (ii) meeting, (iii) disjoint with three transversals, (iv) disjoint with
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two transversals, (v) disjoint without transversals, with subdegrees 1, 27, 18,
216, 8. The union (i)+(v) is an equivalence relation, partitioning the lines into
30 sets of size 9 that are concurrent in GQ(3, 9). It follows that Γ has a unique
embedding into GQ(3, 9).

Sizes and counts of maximal cocliques:

size 6 9 10 11 12 15
# 324 68445 338580 87480 21060 324

The 15-cocliques form a single orbit, with stabilizer S6. This stabilizer has
three vertex orbits, of sizes 15 + 60 + 6, where such orbits of size 6 are the
maximal 6-cocliques. Such cocliques are most easily seen in the representation
as ternary vectors of length 6 with sum 1, modulo 1. Each vertex has a unique
representative of weight 1, 2, or 3, and there are 6 + 15 + 60 such vectors.

This graph has chromatic number 7 (E. van Dam). Its complement has
chromatic number 27 (that is, there are spreads of lines).

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 31+4.4.23 30 27, 54 2 9 9K3

b M10 324 36, 45 5 12 {5,4,2; 1,1,4}
c 32.(4× 2).23 405 9, 72 4 2 K3 ×K3

d 2× (33:22:3).22 90 27, 54 8 6

In case (a) the short orbit corresponds to the vertices adjacent to a fixed
vertex of the first subconstituent in the O−6 (3) construction.

In case (b) the induced subgraph on the short orbit is Sylvester’s double six
graph.

In case (c) the 9 points are the points of a 4× 4 grid noncollinear to a fixed
point ∞, where Γ is the 2nd subconstituent (w.r.t. ∞) of GQ(3, 9).

In case (d), in the AG(4, 3) construction: the 27 points are those of AG(3, 3),
adjacent when the joining line hits a fixed conic at infinity.

There are no further regular sets with d− e = s.

Second subconstituent

The second subconstituent ∆ of Γ has spectrum 141 240 (−4)10 (−6)9. The
automorphism group of ∆ is (22 × S6).2, twice as large as the point stabilizer
of the automorphism group of Γ. This graph is uniquely determined by its
spectrum ([79]).
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10.29 V NO−4 (3) and the Van Lint-Schrijver par-
tial geometry

����1 30 1����30
9

20 12����50
18

v = 81

There is a unique edge-transitive graph Γ with parameters (v, k, λ, µ) =
(81, 30, 9, 12). Its spectrum is 301 350 (−6)30. The full group of automorphisms
is 34 : (2× S6) acting rank 4 with point stabilizer 2× S6.

We met this graph as V NO−4 (3). The sporadic part is that it is also the
collinearity graph of a partial geometry pg(6, 6, 2), see §8.6.1. The partial
geometry has full group 34 : S6 ([181]).

Projective two-weight codes

As a special case of the Delsarte correspondence (§7.1.2) we find a 1-1-1 cor-
respondence between subsets X of PG(3, 3) such that each plane meets it in
either 3 or 6 points, and projective [n, k, d]q = [15, 4, 9]3 codes with weights 9
and 12, and strongly regular graphs with the parameters of Γ defined on F4

3 by
a difference set D of size 30 with D = −D.

There are precisely two such graphs, namely Γ, and a graph ∆ with group
34 : (2×(32 : 4)) acting rank 6. There are precisely three [15, 4, 9]3 codes, namely
two projective codes (with weight enumerator 1 + 50X9 + 30X12) and a single
non-projective one (with weight enumerator 1 + 52X9 + 26X12 + 2X15) ([408],
[103], [311]).

Cliques and cocliques

Maximal cliques in Γ have sizes 3 and 6, a single orbit of each. The orbit of
6-cliques (of size 162) splits into two orbits of size 81 under a subgroup of index
2 in Aut Γ, and vertices together with one such orbit form a pg(6, 6, 2).

Maximal cocliques in Γ have sizes 7, 9, and 11. Maximal cliques in ∆ have
sizes 3 and 4. Maximal cocliques in ∆ have sizes 6–9.

Cospectral graphs

Krčadinac [499] constructed a different pg(6, 6, 2), with full automorphism
group 33 : (32 : 4). Its collinearity graph has the same full group, and has 108
6-cliques. Both pg(6, 6, 2) geometries are self-dual.

Almost simultaneously, Crnković, Švob & Tonchev [245], looking for
graphs invariant under a subgroup of the group of the known examples (namely
Γ and ∆ above), found twelve further graphs cospectral with Γ, one of which is
the Krčadinac example. Ihringer [451] found 3770759 examples using WQH-
switching (§8.13.2).
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10.30 The rank 3 conference graphs on 81 ver-
tices

����1 40 1����40
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v = 81

There are exactly two rank 3 strongly regular graphs with parameters (v, k, λ, µ)
= (81, 40, 19, 20). Their spectrum is 401 440(−5)40. The first, let us call it Γ1, is
the Paley graph, with full group of automorphisms 34 : 40 : 4 and point stabilizer
40 : 4. The second, let us call it Γ2, is the Peisert graph, with full group of
automorphisms 34 : (SL2(5) : 22) and point stabilizer SL2(5) : 22. Both graphs
are self-complementary.

The maximal cliques of Γ1 and Γ2 have sizes 5 and 9. The orbit sizes are:

Γ1 9 5 5 5 Γ2 9 5
# 45 648 3240 6480 # 90 3240

Both Γ1 and Γ2 have chromatic number 9, that is, there are partitions into
9-cliques and partitions into 9-cocliques.

Construction
The graph Γ1 is the Paley graph: the vertex set is F81 and two vertices are
adjacent when their difference is a square. The graph Γ2 is unusual in that it is
not determined by a set of directions in AG(2, 9) (see Theorem 11.4.3). Instead,
for both graphs the vertex set can be taken to be F4

3 , where two vertices are
adjacent when the line joining them hits the PG(3, 3) at infinity in a suitable
set of size 20 obtained as the union of two disjoint elliptic quadrics.

Any 10-cap in PG(3, 3) is an elliptic quadric (ovoid), preserved by PGO−4 (3) ' A6.22.
Up to collineation there are three pairs of disjoint elliptic quadrics, and the union of such a
pair is a 20-set that meets all planes in either 5 or 8 points. Two of the examples give rise to
our graphs Γ1 and Γ2. The third example gives a rank 5 graph Γ3. The three cases can be
distinguished by counting common tangents to the two ovoids (0, 20, and 16, respectively), or
lines contained in the union (5, 10, and 9, respectively), or by the number of ways to split the
20-set into two ovoids (1, 6, and 2, respectively) or by the group stabilizing the 20-set (20 : 4,
2× S5, and 42 : 2 : 2, respectively). These three examples (of two disjoint ovoids) occur in two
partitions of PG(3, 3) into four ovoids, of which one is a pencil. See also [302], [152].

Further examples
Hurkens & Seidel [449] construct 26 distinct conference matrices of order
82, which give rise to 175 distinct strongly regular graphs with parameters
(v, k, λ, µ) = (81, 40, 19, 20).

10.31 The Higman-Sims graph

����1 22 1����22- 21 6����77
16

v = 100

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (100,
22, 0, 6). Its spectrum is 221 277 (−8)22. The full group of automorphisms is
HS.2 acting rank 3 with point stabilizer M22.2.
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This graph was found by Higman & Sims [425], and uniqueness was proved
by Gewirtz [341]. Earlier, this graph had been constructed, and uniqueness
was shown, by Mesner [559, 560]. (Mesner was interested in the graph, and did
not determine the group of automorphisms. Higman and Sims used the graph
to construct a new sporadic group.)

Construction: 1 + 22 + 77

Take a symbol ∞, the 22 points, and the 77 blocks of S(3, 6, 22) as the 1 + 22 +
77 = 100 vertices. Let ∞ be adjacent to the points, let a point be adjacent to
the blocks containing it, and let two blocks be adjacent when they are disjoint.

Construction: 50 + 50

The Higman-Sims graph is the graph with as vertices the 100 15-cocliques of
the Hoffman-Singleton graph, adjacent when they meet in 0 or 8 points.

Or, equivalently, the Higman-Sims graph is the graph with as vertices the 50
vertices of the Hoffman-Singleton graph, and the 50 15-cocliques in one class,
with obvious adjacencies.

Leech lattice construction

Fix the two Leech lattice vectors v1 = 1√
8
(51 11 . . . 1) and v2 = 1√

8
(15 11 . . . 1).

Take the 100 norm 4 vectors with inner product 3 with both, adjacent when
their inner product is 1. The 1+22+77 vertices have the shapes 1√

8
(44 00 . . . 0),

1√
8
(11 121(−3)) and 1√

8
(22 01626).

Properties

Since λ = 0, the maximal cliques have size 2 and are the edges. The largest
cocliques have size 22 and are the point neighborhoods. The chromatic number
is 6. The chromatic number of Γ is 50.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a U3(5) 704 50, 50 7 15
b 21+6

+ : S5 5775 20, 80 6 4
c S8 × 2 1100 30, 70 8 6
d (2 × A6.2

2).2 15400 40, 60 10 8
e 52:5:(4× 2):2 44352 50, 50 12 10

Case (a) corresponds to the split 50+50 above; the induced subgraph on an
orbit is the Hoffman-Singleton graph.

In case (b) the subgraph induced on the short orbit is the 2-coclique extension
of the Petersen graph.

In case (c) the subgraph induced on the short orbit is the point-plane
nonincidence graph of PG(3, 2). The subgraph induced on the long orbit is
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the graph on the 4-subsets of an 8-set, adjacent when they meet in a single
element.

There are no further regular sets with d− e = s.

Cayley graph

The group HS.2 has (nonabelian) subgroups 52 : 4 and 5 × (5 : 4) of order 100
that act regularly on the vertices of Γ. Thus, Γ is a Cayley graph.

Spin model

In knot theory, one studies knots embedded in R3, with projections in R2

provided with over/under indications. Two knots are equivalent if and only if
the projections can be connected by a series of Reidemeister moves. In order to
distinguish inequivalent knots, one uses objects that are invariant under Reide-
meister moves, such as the Kauffman polynomial ([486]). A new invariant using
the formalism of statistical mechanics was defined by Jones [468]. Jaeger [462]
translated the requirements of these ‘spin models’ into association scheme terms,
and discovered that a new knot invariant can be defined using the Higman-Sims
graph.

10.32 The Hall-Janko graph

����1 36 1����36
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v = 100

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(100, 36, 14, 12). Its spectrum is 361 636 (−4)63. The full group of automor-
phisms is HJ.2 acting rank 3 with point stabilizer G2(2) = U3(3).2. The existence
of the group and the rank 3 permutation representation was established byHall
& Wales [401].

This graph is not determined by its parameters alone: the Latin square
graphs LS4(10) (constructed from a pair of orthogonal Latin squares of order 10)
have the same parameters, but cannot be isomorphic. This graph is the unique
connected graph that is locally the G2(2) graph on 36 vertices (Pasechnik
[601]).

Construction: 1 + 36 + 63

In the projective plane PG(2, 9) provided with a nondegenerate Hermitian form,
one has a unital with 28 points, and 63 nonisotropic points. The plane has
63 · 6 · 1/6 = 63 orthogonal bases, and the 63 points and 63 bases are the points
and lines of the dual of the classical GH(2, 2). Any apartment (hexagon) in
this GH(2, 2) determines a unique sub-GH(2, 1) (with 14 lines and 21 points)
and we find 36 GH(2, 1)’s in this way. These either coincide, or meet in a
line and the lines meeting it (4 lines and 9 points in common), or meet in two
intersecting lines (2 lines and 5 points in common), and these intersections occur
with frequencies 1, 14, 21.
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The graph Γ is obtained by taking a symbol ∞, the 36 GH(2, 1)’s and the
63 points of the GH(2, 2) as vertices, where ∞ is adjacent to the GH(2, 1)’s,
two GH(2, 1)’s are adjacent when they have 4 lines in common, a GH(2, 1) is
adjacent to a point when it contains that point, and two points are adjacent
when they have distance 2 in the GH(2, 2) (i.e., when they are not orthogonal
and the joining line is not a tangent).

Construction: 10 + 90

m1
3 1
m3
- 2 1
m6
- 2 1
m12
- 2 1
m24
- 2 2
m24
- 1 2
m12
- 1 2
m6
- 1 3
m2
-

v = 90

����1 3 1����3- 2 1����6- 2 1����12- 2 3����8- v = 30

Construct the graph Γ using two ingredients: the Foster graph F on 90 vertices,
and the Moebius plane S(3, 4, 10). The Foster graph is the unique distance-
regular graph with intersection array {3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3}, has
group 3.A6.2

2, and is an antipodal 3-cover of the unique distance-regular graph
with intersection array {3, 2, 2, 2; 1, 1, 1, 3} on 30 vertices, the incidence graph
of GQ(2, 2), and also the graph on the 30 circles (blocks) of S(3, 4, 10), adjacent
when disjoint. Let π be the folding map.

The 100 vertices of Γ are the 90 vertices of F and the 10 points of the point
set X of S(3, 4, 10). The set X is a 10-coclique in Γ, two vertices of F are
adjacent in Γ when they have distance 3, 6, 7 or 8 in F , and the point x in X
is adjacent to y in F when x is in the block π(y).

Construction: Cohen-Tits near octagon

The group HJ.2 is the full automorphism group of the Cohen-Tits near octagon
∆ of order (2, 4), see §10.68. Moreover, ∆ contains subgeometries isomorphic
to the dual of the split Cayley hexagon G2(2). The vertices of the graph Γ are
the dual split Cayley hexagons of order (2, 2) contained in ∆ as a subgeometry,
adjacent when they intersect in a subhexagon of order (2, 1) (and not adjacent
when they intersect in the seven points equal or collinear to a given point). See
[289].

Cliques and cocliques

All maximal cliques in Γ have size 4, since the local graphs have maximal cliques
of size 3. The chromatic number of Γ is 25. Maximum cocliques in Γ have size
10, reaching the Hoffman bound. The chromatic number of Γ is 10.

Maximal cocliques have sizes 4, 6, 7, 10 and fall into five orbits (there are two
orbits of maximal 7-cocliques). The group is transitive on 2-cocliques (nonedges)
but has two orbits on 3-cocliques. Below we give for each coclique C how many
triples from C belong to these two orbits (called A and B).

size 4 6 7 7 10
# 1575 100800 25200 3600 280
A 0 18 32 28 120
B 4 2 3 7 0
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The maximal cocliques of size 4 are the 100 · 63/4 = 1575 sets consisting of
a vertex and a line in the GH(2, 2) far from that vertex. The maximal cocliques
of size 7 in the 2nd orbit are the 2 · 100 · 36/2 halves of the Heawood graph on
the common neighbors of two adjacent vertices.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 3.A6.2

2 280 10, 90 0 4
b (A4 × A5) : 2 840 40, 60 12 16
c 52 : D12 4032 50, 50 16 20
d 21+4

− .S5 315 20, 80 12 6

Case (a) corresponds to a coclique of size 10. The union of t such disjoint
cocliques (or the complement of the union of (10 − t) disjoint such cocliques)
is again a regular set of size 10t with (degree, nexus)= (4(t− 1), 4t). Since the
vertex set can be partitioned into ten cocliques of size 10, this occurs for all t
with 1 ≤ t ≤ 9.

HJ on 280 points

Γ has 280 10-cocliques, called decads, on which HJ acts as a rank 4 group with
valencies (subdegrees) n0 = 1, n1 = 36, n2 = 108, n3 = 135. Decads in relations
R1 or R2 are disjoint. Decads in relation R3 meet in 2 points. The union of two
decads in relation R1 induces in Γ the extended bipartite double of the Petersen
graph, of diameter 3. The union of two decads in relation R2 induces in Γ a
graph of valency 4 and diameter 4.

The intersection matrices of the association scheme are

(pi0j) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (pi1j) =


0 36 0 0
1 8 12 15
0 4 12 20
0 4 16 16

 ,

(pi2j) =


0 0 108 0
0 12 36 60
1 12 40 55
0 16 44 48

 , (pi3j) =


0 0 0 135
0 15 60 60
0 20 55 60
1 16 48 70


and the eigenmatrices are

P =


1 36 108 135
1 −4 −12 15
1 8 −4 −5
1 −4 8 −5

 and Q =


1 63 90 126
1 −7 20 −14
1 −7 − 10

3
28
3

1 7 − 10
3
− 14

3

 .

Let D be the set of decads. Then (D,R1) is strongly regular with parameters
(v, k, λ, µ) = (280, 36, 8, 4) and spectrum 361 890 (−4)189.

����1 36 1����36
8

27 4����243

32

v = 280

And (D,R3) is strongly regular with parameters (v, k, λ, µ) = (280, 135, 70, 60)
and spectrum 1351 1563 (−5)216.
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Both graphs have full group HJ.2, acting rank 4, with point stabilizer 3.A6.2
2.

The former graph satisfies the 4-vertex condition. Its µ-graphs are 4-cycles.
Each edge is contained in a unique K4. The latter graph belongs to a regular
two-graph. It has a descendant with parameters (v, k, λ, µ) = (279, 150, 85, 75).
See also [29], [457].

Partitions into decads
VΓ has 1008 + 12096 partitions into 10 decads, falling into two orbits. Let us
call those in the orbit of size 1008 nice, the others ugly. The stabilizer of a
nice partition is (A5 × D10).2, transitive on the 100 vertices, with orbit sizes
10 + 120 + 150 on the 280 decads. The stabilizer of an ugly partition is 52 : 4,
transitive on the 100 vertices, with orbit sizes 10 + 10 + 10 + 50 + 50 + 50 + 100
on the 280 decads. It stabilizes three ugly partitions, and the union of such a
triple has stabilizer 52 : (4× S3), transitive on the 100 vertices, with orbit sizes
30 + 100 + 150 on the 280 decads. There are 2016 such triples, forming a single
orbit.

Fix a partition Π of VΓ into ten decads, and construct a new graph ∆
by turning the elements of Π into cliques. Then ∆ is strongly regular with
parameters (v, k, λ, µ) = (100, 45, 20, 20) and spectrum 451 545 (−5)54.

����1 45 1����45
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v = 100

The two choices for Π yield nonisomorphic graphs. See also [29] and [471].
The adjacency matrix for these graphs is the point-block incidence matrix

for a square 2-(100,45,20) design.

Cayley graph
We saw that HJ.2 has a (nonabelian) subgroup 52 : 4 of order 100 that acts
regularly on the vertices of Γ. Thus, Γ is a Cayley graph.

Splits
VΓ has splits into two halves, where each half is in three different ways the
union of five decads. There are 2016 of these splits, forming a single orbit. The
stabilizer of one is 52 : (4× S3), transitive on the 100 vertices.

The Jørgensen-Klin graph

����1 44 1����44
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v = 100

Jørgensen & Klin [471] constructed a strongly regular graph with param-
eters (v, k, λ, µ) = (100, 44, 18, 20) and spectrum 441 455 (−6)44.
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Graphs with these parameters can be constructed as follows. Start with
a 50 + 50 split {S, T} of VΓ, and refine it to a partition Π of VΓ into ten
decads. Construct a strongly regular graph ∆ with parameters (100, 45, 20, 20)
as above, by turning the elements of Π into cliques. Next, switch with respect to
S, which induces a regular subgraph of degree 25 in ∆. The result is a strongly
regular graph with parameters (100, 55, 30, 30). The complementary graph has
parameters (100, 44, 18, 20).

10.33 The 105 flags of PG(2,4)
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There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (105,
32, 4, 12). Its spectrum is 321 284 (−10)20. Construction is due to Goethals &
Seidel [355], uniqueness to Coolsaet [221]. The full group is Aut L3(4) acting
rank 4 with orbit sizes 1 + 32 + (8 + 64).

Construction

Take the 105 point-line flags of PG(2, 4), and let (p, L) ∼ (q,M) when p 6= q,
L 6= M and (p on M or q on L). This is the distance-2 graph of the unique
GH(4, 1).

This graph is the second subconstituent of the second subconstituent of the
McLaughlin graph, see §10.48.

Cliques and cocliques

The graph is locally bipartite, so maximal cliques have size 3. The chromatic
number of Γ is 35. Maximal cocliques have sizes 5, 8, 9, 11, 14, 20. The
chromatic number of Γ is 6.

There is a unique orbit (of size 42) of cocliques of size 20. An example is the
collection of flags (q,M) with q on a fixed line L, andM 6= L. There is a unique
orbit (of size 42) of maximal cocliques of size 5. An example is the collection of
flags (p, L) with p on a fixed line L.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a A6.2

2 168 45, 60 8 18
b 7:6× S3 960 42, 63 14 12

Case (a) is the set of flags of PG(2, 4) whose point does not belong to a fixed
hyperoval and whose line intersects the same hyperoval in exactly two points.
The induced graph is the distance 2 graph of the unique GO(2, 1).

For case (b), consider a Singer cycle g (an automorphism of PG(2, 4) of
order 21, acting cyclically on the points and lines). Then g3 has three orbits,
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partitioning the point set of PG(2, 4) into three Fano planes. Each line L hits
one of these Fano planes, say πL, in 3 points (and the other two in a single
point). The flag (P,L) belongs to the orbit of size 63 when P lies in L ∩ πL.

There are no further examples of regular sets with d− e = s.

Triple cover
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There is a unique distance-regular (but not distance-transitive) graph with
intersection array {32, 27, 8, 1; 1, 4, 27, 32}, an antipodal 3-cover of Γ. It was
constructed in Soicher [664], and uniqueness is due to Soicher [665].

10.34 The O−6 (3) graph on 112 vertices
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There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) =
(112, 30, 2, 10). Its spectrum is 301 290 (−10)21. The full group of automor-
phisms is U4(3).D8 (of order 210 · 36 · 5 · 7) acting rank 3 with point stabilizer
34 : ((2× A6).22).

Construction
Let V = F6

3 , provided with a nondegenerate quadratic form of non-maximal
Witt index. The graph Γ is the graph on the points of the corresponding elliptic
quadric in PV , adjacent when collinear, i.e., when orthogonal. This graph is the
collinearity graph of a generalized quadrangle GQ(3, 9). The group is the group
PGO−6 (3).2 of linear transformations of PV that preserve the elliptic quadric.

Uniqueness
Cameron, Goethals & Seidel [178] showed that any strongly regular graph
with the parameters of Γ must be the collinearity graph of a GQ(3, 9). Dixmier
& Zara [293, 294] showed the uniqueness of the generalized quadrangle with
parameters GQ(3, 9).

Hemisystems, Gewirtz subgraphs and splits
A hemisystem of points in GQ(3, 9) is a subset of the point set that meets every
line in half of its points, i.e., in 2 points. Segre [640] found that there are 648
hemisystems, 324 complementary pairs, forming a single orbit. The hemisystems
are precisely the Gewirtz subgraphs.

A fixed hemisystem meets any hemisystem in 0, 16, 20, 24, 28, 32, 36, 40
or 56 points (with frequencies 1, 42, 56, 105, 240, 105, 56, 42, 1, respectively).
Meeting in 20, 32 or 56 points is an equivalence relation with four equivalence
classes (O−6 (3) orbits).
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The graph Γ is the first subconstituent of the McLaughlin graph Λ (§10.61).
The full automorphism group of Γ is four times as large as the vertex stabilizer
in Λ because only hemisystems of a single equivalence class occur as µ-graphs
in Λ.

Cocliques
Maximal cocliques have sizes 7, 10, 11, 12, 13, 16. We give the counts. In case
there is just a single orbit of m-cocliques, we give the stabilizer S and the orbits
of the stabilizer on that m-coclique.

size 7 10 11 12 13 16
# 5184 766584 3447360 816480 181440 2268
S S7 22 × D8 S3 × S4 24 : S6

orbits tra 43 1 + 12 tra
The maximal 7-cocliques form a single orbit with stabilizer S7. They can be
seen by viewing the orthogonal geometry as elliptic hyperplane in the O7(3)

geometry. That latter geometry can be described using the form
∑7
i=1X

2
i , and

the point 1 is elliptic. In 1⊥ we see 112 = 7 + 35 + 70 points (7: 1111110; 35:
1110000; 70: 1112220), where the 7-set is a maximal coclique and the 35-set
induces the Odd graph O4, the unique distance-regular graph with intersection
array {4, 3, 3; 1, 1, 2}.

The maximal 16-cocliques form a single orbit with stabilizer 24 : S6. They
can be seen by choosing the quadratic form to be Q(x) =

∑6
i=1X

2
i . The

set of 32 isotropic points without zero coordinate induces the unique distance-
regular graph with intersection array {10, 9, 4; 1, 6, 10}, the distance-3 graph of
the folded 6-cube. This graph is bipartite and the two parts of its bipartition
are 16-cocliques.

Cliques and chromatic number
The maximal cliques are the lines of GQ(3, 9) and have size 4. The chromatic
number of Γ is 8. That of Γ is 28. (That is, GQ(3, 9) has spreads.)

Regular sets
Easy examples of regular sets are arbitrary unions of pairwise disjoint lines of
GQ(3, 9) (and since there exist spreads this yields regular sets of size 4t with
(degree, nexus)= (t + 2, t) for 0 < t < 28). Further (transitive) examples of
regular sets in Γ are obtained from subgroups H of G = Aut Γ with two orbits
on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a L3(4):2 648 56, 56 10 20
b 31+4

+ .21+4
− .D12 280 4, 108 3 1

c 4(S4 × S4).22 2835 16, 96 6 4
d 7 : (3× D8) 155520 28, 84 9 7
e 25.S6 1134 32, 80 10 8
f 2 × U4(2):2 252 40, 72 12 10
g 43(2× S4) 8505 48, 64 14 12
h 2 × L3(2):2 38880 56, 56 16 14

Case (a) corresponds to a hemisystem of points of GQ(3, 9).
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Case (b) corresponds to a single line of GQ(3, 9).
Case (c) corresponds to a 4× 4 grid, also the union of four disjoint lines.
Case (f) corresponds to a sub-GQ(3, 3) of GQ(3, 9) (which does not cor-

respond to a union of disjoint lines since this subquadrangle does not admit
spreads).

Case (g): a Hermitian spread of GQ(3, 9) can be structured as a linear space
by defining blocks as the reguli of 4×4 grid. This linear space is then isomorphic
to the unital consisting of the isotropic points of the U3(3) geometry, where
blocks are the intersections with secant lines in the corresponding projective
plane PG(2, 9). A Hermitian base in PG(3, 9) defines three secants which contain
in total twelve points of the unital. These correspond to twelve disjoint lines of
GQ(3, 9) (as part of the Hermitian spread). Their union gives the 48 points of
the smallest orbit of case (g).

There are no further examples of regular sets with d− e = s.

Dual generalized quadrangle

����1 36 1����36
8

27 4����243

32

v = 280

The collinearity graph of the dual generalized quadrangle GQ(9, 3) is the
unique rank 3 strongly regular with parameters (v, k, λ, µ) = (280, 36, 8, 4). Its
spectrum is 361 890 (−4)189. The full group of automorphisms is U4(3).D8

acting rank 3 with point stabilizer 31+4
+ .21+4

− .D12. This graph ∆ is not uniquely
determined by its parameters alone, we saw a graph with the same parameters
and full group HJ.2, acting rank 4.

The maximal cliques have size 10 and form a single orbit, they are the lines
of the generalized quadrangle. The largest cocliques have size 28 and are the
ovoids. In Corollary 2.7.4 we saw that χ(∆) = 10.

Examples of regular sets in ∆ are obtained from subgroups H of G = Aut ∆
with two orbits on the vertex set. We give degree d and nexus e for the
smallest orbit.

H index orbitlengths d e
a U3(3) : D8 540 28, 252 0 4
b 34 : (2× A6).22 112 10, 270 9 1
c 2×O5(3).2 126 40, 240 12 4
d S7 1296 70, 210 15 7
e 24 : A6 : 22 567 120, 160 20 12

Case (a) corresponds to a Hermitian ovoid of GQ(9, 3) (the Hermitian spread
of GQ(3, 9) mentioned in case (g) for Γ).

Case (b) corresponds to a single line of GQ(9, 3).
Case (c) corresponds to a subquadrangle GQ(3, 3) of GQ(9, 3).
Case (d) corresponds to a maximal coclique of size 7 in Γ and hence to the

union of seven pairwise disjoint lines of GQ(9, 3).
Case (e) corresponds to a maximal coclique of size 16 in Γ and hence to the

(complement of the) union of sixteen pairwise disjoint lines of GQ(9, 3).
In general, the (complement of the) union of pairwise disjoint lines is always a

regular set of size 10t, for some t ∈ {1, 2, . . . , 27}, and (degree, nexus)= (t+8, t).
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10.35 NO+
6 (3)

����1 36 1����36
15

20 9����80
27

v = 117

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(117, 36, 15, 9). Its spectrum is 361 926 (−3)90. The full group of automorphisms
is PGO+

6 (3) = L4(3) : 2 with point stabilizer 2× O5(3) : 2.

Construction

This is the graph on one orbit of nonisotropic points in the O+
6 (3) geometry,

adjacent when orthogonal, i.e., when joined by an elliptic line, cf. §3.1.3.
This is also the graph on the antiflags of PG(2, 3), two antiflags (x, L) and

(y,M) adjacent if either x ∈ M and y ∈ L, or {x, y} ∩ (L ∪M) = ∅, L 6= M ,
and L ∩M /∈ xy.

Local graph

The local graph is NO−6 (2), strongly regular with parameters (v, k, λ, µ) =
(36, 15, 6, 6), see §10.15. This is the graph on the orbit of nonisotropic points in
the O5(3) geometry that have perps that are elliptic hyperplanes, adjacent when
orthogonal, cf. §3.1.4. Its full automorphism group is O5(3) : 2, acting rank 3
with point stabilizer 2 × S6. The graph Γ is uniquely determined by its local
graph (Hall & Shult [395], Theorem 3).

Cliques, cocliques and chromatic number

The maximal cliques in Γ have size 5 and form a single orbit. They have
stabilizer 2× (24 : S5). For the quadratic form q(x) = x1x2 + x2

3 + x2
4 + x2

5 + x2
6,

a 5-clique is given by {e1 + e2, e3, e4, e5, e6}.
Maximal cocliques have sizes 5, 6, 7 and 9. There are two orbits of 9-

cocliques, reaching the Hoffman bound. One type is that of the sets C(L) of
vertices contained in L⊥, where L is a totally isotropic line. See §3.1.3.

Γ has chromatic number 13. A partition of the vertex set into 13 sets C(L)
is obtained by taking the 13 lines L in a totally isotropic plane.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e

a 31+4 : (2S4 × 2) 520 9, 108 0 3
b 34 : 2(A4 × A4).22 130 36, 81 9 12
c 2× (O5(3) : 2) 117 45, 72 12 15
d A6.2

2 8424 45, 72 12 15

Case (a) is that of the 9-cocliques of type C(L) where L is a totally isotropic
line.
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In case (b) the partition is induced by an isotropic point z. (For 81 vertices
x the line xz is hyperbolic, for 36 it is a tangent.)

In case (c) the partition is induced by a nonisotropic point of the other kind.
In case (d) the partition can be obtained by viewing V = F6

3 as F3
9 and

picking the quadratic form tr q(x) on V , where q(x) is a nondegenerate quadratic
form on F3

9 that takes a nonsquare value for the 36 interior points of the
corresponding conic in PG(2, 9). The 117 points with tr q(x) = 1 split into
72 with q(x) a square and 45 with q(x) a nonsquare.

There are no regular sets with d− e = r.

10.36 The O−8 (2) graph on 119 vertices

����1 54 1����54
21

32 27����64
27

v = 119

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(119, 54, 21, 27). Its spectrum is 541 384 (−9)34. The full group of automor-
phisms is O−8 (2) : 2 acting rank 3 with point stabilizer 26 : O−6 (2) : 2.

Cliques and cocliques

Maximal cliques have size 7 and form a single orbit. They are the totally
isotropic subspaces. Maximal cocliques have sizes 5 and 7, a single orbit each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e

a L2(16) : 4 24192 51, 68 18 27
b [29] : (S3 × L3(2)) 765 7, 112 6 3
c S8 × S3 1632 35, 84 18 15
d 2× O7(2) 136 56, 63 27 24

10.37 The L3(4).22 graph on 120 vertices

����1 42 1����42
8

33 18����77
24

v = 120

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) =
(120, 42, 8, 18). Its spectrum is 421 299 (−12)20. The full group of automor-
phisms is L(3, 4) : 22 acting rank 4, with point stabilizer 2 × (L(3, 2) : 2). Exis-
tence is due to Goethals & Seidel [354]. Uniqueness is due to Degraer &
Coolsaet [274].

Maximum cliques have size 3. Maximum cocliques have size 16. The graph
and its complement have chromatic numbers χ(Γ) = 8 and χ(Γ) = 40.
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Construction

Take the 120 heptads in S(4, 7, 23) that miss two given symbols, adjacent when
they meet in a single point. (See §8.5.4D.) This graph is an induced subgraph
of the M22 graph on 176 vertices (§10.51).

Equivalently, look at the Fano subplanes of PG(2, 4). The number of common
points of two Fano subplanes (0, 1, 2, 3, 4 or 7) equals the number of common
lines. Having an odd number of points in common is an equivalence relation
with three classes of size 120. Our graph is the graph on the Fano subplanes in
one class, adjacent when they have a single point (or, equivalently, a single line)
in common. We see that the group of the graph is twice that what is inherited
from M22 (namely PΣL3(4)), since also a polarity of PG(2, 4) acts.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 24 : S5 42 40, 80 6 18
b A6 224 60, 60 15 27
c A6.2

2 56 30, 90 12 10

Case (a) is the split determined by one of the 21 symbols (points of PG(2, 4))
or one of the 21 lines of PG(2, 4). The graph induced on the 40-orbit is the
complement of a 16-coclique in the Gewirtz graph.

Case (b) is the split determined by the intersection size (1 or 3) with one
of the 112 heptads that contains precisely one of the two given symbols. This
graph is subgraph of the M22 graph on 176 vertices in two different ways, and
in each such embedding the 56 exterior vertices determine such a split.

There are no further regular sets with d− e = s.
In case (c) the 30 vertices induce the bipartite nonincidence graph of points

and lines of GQ(2, 2).

10.38 NO−5 (4)

����1 51 1����51
18

32 24����68
27

v = 120

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(120, 51, 18, 24). Its spectrum is 511 385 (−9)34. The full group of automor-
phisms is O5(4) : 2 acting rank 3, with point stabilizer L2(16) : 4.

This is NO−5 (4), cf. §3.1.4. Maximal cliques have size 4 (2 orbits). Maximal
cocliques have sizes 6 (3 orbits), 7 or 8 (1 orbit each).

Construction in PG(2, 16)

The group PΣL2(16) acts on the 120 exterior lines of a hyperoval in PG(2, 16),
giving a 3-class association scheme with valencies 1, 17, 34, 68. Merging relations
R1 and R2 yields the graph Γ (which has a much larger group).
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Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 26 : (3× S5) 85 24, 96 3 12
b 26 : [22.32] 850 48, 72 15 24
c A5 × S5 272 60, 60 21 30
d 2× A5 16320 60, 60 21 30
e 52 : ((4× 2) : 2) 4896 20, 100 11 8
f 2× (((24 : 5) : 4) : 2) 1530 40, 80 19 16
g (A5 × A5) : 2 272 60, 60 27 24
h S6 2720 60, 60 27 24
i 22 × A5 8160 60, 60 27 24
j (5 : 4)× S3 16320 60, 60 27 24

10.39 NO+
8 (2)

����1 56 1����56
28

27 24����63
32

v = 120

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(120, 56, 28, 24). Its spectrum is 561 835 (−4)84. The full group of automor-
phisms is O+

8 (2) : 2 acting rank 3, with point stabilizer Sp(6, 2)× 2.

Construction: nonisotropic points in the O+
8 (2) geometry

The O+
8 (2) geometry has 255 projective points, 135 isotropic, 120 nonisotropic.

Γ is the graph on the nonisotropic points, adjacent when not orthogonal, that
is, when the connecting line is an elliptic line. (Cf. §3.1.2.)

Construction: split Cayley hexagons on O7(2)

The graph Γ is the graph on the 120 standard representations of the split Cayley
hexagon G2(2) on O7(2), adjacent when having exactly nine lines in common
(the nine lines of a Hermitian spread in both). (Cf. §4.8.) This provides a rank
3 representation of Γ with automorphism group Sp6(2) and point stabilizer
G2(2) ∼= U3(3) : 2.

Construction: the E8 root system

Let Φ be the root system of type E8. It has 240 vectors, and spans 120 lines
in R8. The graph Γ is the graph on these 120 lines, where lines are adjacent
when not orthogonal. The root system graph of E8 (with vertex set Φ, where
two roots are adjacent when their angle is π

3 ) is a double cover of Γ.
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v = 240

Construction: from the local graph
The local graph of Γ is the Gosset graph (see §10.10) with 28 extra edges joining
vertices at original distance 3. The graph induced on the vertices at distance
2 from a fixed vertex in Γ is a quotient of the E7,1(1) graph. This yields the
following combinatorial description of Γ.

Label a vertex∞ and consider three copies of an 8-set, sayW = {1, 2, . . . , 8},
W ′ = {1′, 2′, . . . , 8′} and W ′′ = {1′′, 2′′, . . . , 8′′}. Then the other 119 vertices
are the unordered pairs from these three sets together with the 4|4 splits of W ′′.
Two pairs from the same set are adjacent if they share exactly one element.
Two 4|4 splits are adjacent if the individual subsets intersect in an odd number
of elements. Let a, b, c, d ∈ {1, 2, . . . , 8}. Then the pairs {a, b} and {c′, d′} are
adjacent if |{a, b}∩{c, d}| ∈ {0, 2}, while {a, b} or {a′, b′} are adjacent to {c′′, d′′}
if |{a, b} ∩ {c, d}| = 1. Further, {a, b} or {a′, b′} are adjacent to a 4|4 splitting
if a and b are contained in the same subset of the splitting, while {c′′, d′′} is
adjacent to a 4|4 split if c and d are in distinct subsets of the splitting. Finally,
∞ is adjacent to all pairs of W and W ′.

In this construction, W ∪W ′′ is a regular set of size 56, with degree 24 and
nexus 28, see case (h) below under Regular sets.

The above construction is a direct consequence of the following construction of the root
system graph of E8.

The Gosset graph (see §10.10) contains 126 K6×2 subgraphs. Using the construction in
§10.10, 56 of these subgraphs are given by the pairs containing a fixed element a ∈ {1, 2, . . . , 8},
but not a fixed element b ∈ {1, 2, . . . , 8}\{a}, or containing the element b′ and not a′, and the
70 others are given by the pairs of a 4-set {a, b, c, d} ⊆ {1, 2, . . . , 8} together with the pairs of
the 4-set {1′, 2′, . . . , 8′}\{a′, b′, c′, d′}. Calling two K6×2 subgraphs adjacent if they intersect
in a 6-clique, we obtain a graph with 126 vertices, isomorphic to the E7,1(1) graph.

Then the root system graph Γ(E8) of E8 has the following combinatorial construction:
Let Γ′1 and Γ′2 be two copies of the Gosset graph Γ′ (where we denote the vertices of Γ′1 and
Γ′2 corresponding to the vertex v ∈ Γ′′ by v1 and v2, respectively). Let Γ′′ be the E7,1(1)
graph with vertices identified with K6×2 subgraphs of Γ′. Let ∞1 and ∞2 be two 1-vertex
graphs. Then Γ(E8) is the union of these two 1-vertex graphs, the copies Γ′1 and Γ′2 of the
Gosset graph, and the E7,1(1) graph Γ′′, with the following extra edges: ∞i is adjacent to
every vertex of Γ′i, i = 1, 2; every vertex v1 of Γ′1 is adjacent to the corresponding vertex v2

of Γ′2; a vertex vi of Γ′i is adjacent to a vertex v′′ of Γ′′ if v is a vertex of v′′ (recall that v′′
is a subgraph of Γ′).

Cliques, cocliques and chromatic number
Maximal cliques have sizes 3, 7, 8, a single orbit of each type. In terms of E8,
those of size 3 are the triples of coplanar lines, while the 7-cliques and 8-cliques
are the objects of types 3 and 2 in the E8 geometry. (Cf. [123], Theorem 10.2.10.)
In the E8 geometry, geodesic hexagons (i.e., hexagons with the property that
the distance between its points is the same whether measured in the hexagon
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or the geometry) correspond to maximal cliques of size 3 (after identification of
opposite points in the hexagon). The objects of type 1 are the K7×2 subgraphs.
Each maximal K7 lies in a unique K1 + K7 and is contained in precisely two
K7×2 subgraphs. Nonmaximal cliques have sizes 0–7, a single orbit of each size.

s
1
s
3
s
4
s
5
s
6

s2
s
7
s
8
s
0
e

Ẽ8.

In terms of O+
8 (2), the maximal cliques of size 3 are the elliptic lines.

In F8
2 , consider the quadratic form Q(x) =

∑
i<j xixj . We have Q(x) =

(
wt(x)

2

)
and

B(x, y) = wt(x)wt(y)−
∑
i xiyi. The nonisotropic points are the 28+56+28+8 = 120

points x with wt(x) ≡ 2, 3 (mod 4), and the 8 points of weight 7 form an 8-clique.

The maximal cocliques have size 8, reaching the Hoffman bound. They form
a single orbit. The chromatic number is 15.

Let π be a totally isotropic plane. Then π⊥/π is a hyperbolic line. Its two isotropic points
correspond to the two maximal isotropic subspaces on π, one of each kind. The third point
corresponds to a 4-space of which the 8 nonisotropic points form an 8-coclique. The 15 planes
in a totally isotropic 4-space yield 15 pairwise disjoint 8-cocliques.

Regular sets
Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a [210] : L3(2) 2025 8, 112 0 4
b S3 wr S4 11200 12, 108 2 6
c S5 wr 2 12096 20, 100 6 10
d [210] : (S3 × S3 × S3) 1575 24, 96 8 12
e S9 960 36, 84 14 18
f (25 : A5) : 22 45360 40, 80 16 20
g (A4 × A4) : [25] 75600 48, 72 20 24
h 26 : S8 135 56, 64 24 28
i S5 × S3 483840 60, 60 26 30
j (A5 × A5) : 2 48384 60, 60 32 24

Case (a): These are the 8-cocliques, discussed above.
Case (b): In F4

4 , let q(x) = wt(x). If we represent F4 by {000, 011, 101, 110},
then the weight of a single digit is x1x2 + x1x3 + x2x3, that is, is a binary
quadratic form, and we see that F4

4 with q(x) is an O+
8 (2) geometry, the ortho-

gonal sum of four elliptic lines. The nonisotropic points are the 12 vectors of
weight 1 and the 108 of weight 3. The subgraph induced on the 12-set is 4K3.

Case (c): View V = F8
2 as the orthogonal direct sum of two F4

2 provided
with elliptic quadric. The graph induced on the 20 is 2T (5).

Case (d): These are the splits induced by the totally isotropic lines: each
t.i. line is orthogonal to 24 nonisotropic points. The subgraph induced on the
24-set is 2K4,4,4.

Case (e): Take the quadratic form
∑
i<j xixj on the hyperplane 1⊥ in a

9-dimensional vector space over F2. The nonisotropic points are the 36 vectors
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of weight 2 and the 84 vectors of weight 6. The subgraph induced on the 36-set
is the triangular graph T (9).

Case (f): The subgraph induced on the 40-set here is an antipodal double
cover of K5×4 of diameter 3.

Case (h): These are the splits induced by the isotropic points: each isotropic
point is orthogonal to 56 nonisotropic points. The subgraph induced on the 56-
set is the 2-coclique extension of the triangular graph T (8). The subgraph
induced on the 64-set is strongly regular with parameters (64, 28, 12, 12), the
complement of VO+

6 (2) (see §3.3.1).
Case (j): Consider the quadratic form Q(x) = x1x2 +x3x4 on F4

4 . Then trQ
is a nondegenerate hyperbolic quadric on F8

2 . The 135 isotropic points have
trQ(x) = 0, that is, Q(x) ∈ {0, 1} (namely, 75 with Q(x) = 0 and 60 with
Q(x) = 1). The 120 nonisotropic points have Q(x) ∈ {ω, ω2} and are split into
two 60-sets according to the value of Q.

Cases (i), (j): In case (j) the two halves are interchanged by an automor-
phism, so that the group preserving the split is twice as large. In case (i) the
two halves are nonisomorphic.

Cayley graph

This graph is a Cayley graph for S5.

Complement

����1 63 1����63
30

32 36����56
27

v = 120

The complementary graph Γ of the graph described above is a Fischer
graph. It is strongly regular with parameters (v, k, λ, µ) = (120, 63, 30, 36).
Its spectrum is 631 384 (−9)35. Its local graph is the Sp6(2) graph, see §10.21.

An alternative construction of Γ is given by considering all projective lines
PG(1, 8) on a 9-set in one of the two A9-orbits, adjacent when sharing a Sylow
2-subgroup (that is, a translation group). This provides a rank 3 representation
of Γ (and hence also of Γ) with automorphism group A9 and point stabilizer
Aut PG(1, 8) ∼= PΓL2(8).

A cospectral rank 4 graph

The distance 1-or-3 graph of the Johnson graph J(10, 3) is a rank 4 strongly
regular graph with parameters (v, k, λ, µ) = (120, 56, 28, 24) and full group of
automorphisms S10 with point stabilizer S7 × S3. The suborbit sizes are 1 +

21 + 35 + 63. It is cospectral with the above NO+
8 (2) graph.

10.40 The S10 graph on 126 vertices

����1 25 1����25
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v = 126
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There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(126, 25, 8, 4). Its spectrum is 251 735 (−3)90. The full group of automorphisms
is S10, with point stabilizer S5 wr 2. This graph is locally 5× 5.

Construction

Take the 5+5 splits of a fixed 10-set, adjacent when the common refinement has
shape 4 + 1 + 1 + 4. Equivalently, take the 4-subsets of a 9-set, adjacent when
they meet in 0 or 3 elements. This is the antipodal quotient of the Johnson
graph J(10, 5).

Cliques and cocliques

Maximal cliques have size 6 and form a single orbit. They consist of the splits
containing a fixed 4-set. Maximal cocliques have sizes 7–12, with unique orbits
of maximal cocliques of sizes 7, 8, and 12.

Take the representation of the graph Γ by 4-subsets of a 9-set. A maximal 7-clique
is obtained by adjoining a fixed element to the 7 lines of the Fano plane.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a M10.2 2520 36, 90 5 8
b 32 : Q8 : 3 : 2 8400 54, 72 9 12
c S7 × S3 120 21, 105 10 3
d S8 × S2 45 56, 70 15 8

10.41 NO−6 (3)
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v = 126

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(126, 45, 12, 18). Its spectrum is 451 390 (−9)35. The full group of automor-
phisms is U4(3) : 22

122 acting rank 3 with point stabilizer 2× (O5(3) : 2).
This is the graph NO−6 (3), the graph on one class of nonisotropic points in

the O−6 (3) geometry, adjacent when orthogonal.
The maximal cliques all have size 6 and form a single orbit. (They are the

orthonormal bases.) The vertex set has a partition into maximal cliques, so
that χ(Γ) = 21. The maximal cocliques have sizes 9 (two orbits) or 10, 11, 15
(a single orbit each).

The local graph is strongly regular with parameters (v, k, λ, µ) = (45, 12, 3, 3).
It is the collinearity graph of the unique GQ(4, 2).

This graph Γ is the local graph of NO−⊥7 (3), cf. §10.66, and that latter graph
is the unique connected locally Γ graph (Pasechnik [599]).

This graph is the µ-graph of the Fi22 graph, cf. §10.90.
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Regular sets
Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e graph
a 25 : S6 567 6, 120 5 2 K6

b 31+4
+ .4S4 : 2 280 18, 108 9 6 K9,9

c S7 2592 21, 105 10 7 T (7)

d S7 2592 21, 105 10 7 T (7)
e 25 : S6 567 30, 96 13 10
f 2× (O5(3) : 2) 126 36, 90 15 12 NO−6 (2)
g A6.2

2 9072 36, 90 15 12
h 2× (L3(2) : 2) 19440 42, 84 17 14
i 34 : (2× S6) 112 45, 81 18 15

In case (e) the graph on the small orbit is the 2-clique extension of the
collinearity graph of GQ(2, 2).

In case (i) the graph on the small orbit is the 3-coclique extension of the
collinearity graph of GQ(2, 2). The maximal cocliques of size 15 arise as the
3-coclique extension of an ovoid in GQ(2, 2). The graph induced on the large
orbit is the strongly regular graph V NO−4 (3) with parameters (v, k, λ, µ) =
(81, 30, 9, 12) (cf. §3.3.2). It is the collinearity graph of a pg(6, 6, 2), cf. §8.6.1.

Triple cover
This graph has a distance-transitive antipodal 3-cover with diagram

����1 45 1����45
12

32 6����240

27
12 32����90

12
1 45����2- v = 378

constructed by Blokhuis & Brouwer (cf. [123], p. 399). Jurišić & Koolen
[473] showed that this cover is the unique distance-regular graph with these
parameters.

10.42 The Goethals graph on 126 vertices

����1 50 1����50
13

36 24����75
26

v = 126

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) =
(126, 50, 13, 24). Its spectrum is 501 2105 (−13)20. The full group of automor-
phisms is S7 acting rank 7, with point stabilizer 2 × 5:4. Existence is due to
Goethals (cf. [380]). Uniqueness is due to Coolsaet & Degraer [222].

Maximum cliques have size 4. Maximum cocliques have size 12.

Construction
As we saw above (§10.19), the graph on the edges of the Hoffman-Singleton
graph H, adjacent when they have distance 2 in the line graph L(H), is strongly
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regular with parameters (v, k, λ, µ) = (175, 72, 20, 36). Take for Γ the induced
subgraph of this latter graph on the set of 126 edges at distance 2 from a fixed
vertex of H. For a proof, see [137]. For a construction via switching in the
Hermitian 2-graph on 126 points, see [380].

10.43 The O+
8 (2) graph on 135 vertices

����1 70 1����70
37

32 35����64
35

v = 135

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(135, 70, 37, 35). Its spectrum is 701 750 (−5)84. The full group of automor-
phisms is O+

8 (2) : 2 acting rank 3, with point stabilizer 26 : S8. This is the
hyperbolic orthogonal graph Γ(O+

8 (2)).

Construction: isotropic points in the O+
8 (2) geometry

The O+
8 (2) geometry has 255 projective points, 135 isotropic, 120 nonisotropic.

Γ is the graph on the isotropic points, adjacent when orthogonal.

Cliques, cocliques and chromatic number

All maximal cliques have size 15. They are the maximal totally isotropic
subspaces of the geometry. Maximal cocliques have size 5 or 9, a single orbit of
each size, with cocliques stabilized by S5×S5 and S9, respectively. The cocliques
of size 9 are the ovoids.

The maximal cocliques of size 5 arise as follows. Let V = V1 ⊥ V2 where each Vi
is a 4-space with elliptic quadratic form. Then each Vi has 5 isotropic points, and V has
135 = 5 + 5 + 25 + 100 isotropic points (of shapes 0i and i0 and ij and mn, where i, j denote
isotropic points and m,n nonisotropic points). We see subgraphs K5,5 and 5× 5.

The chromatic number of Γ is 9. The chromatic number of Γ is 17.
The chromatic number of Γ is larger than 15: VΓ does not have a partition into 15 ovoids.

Indeed, the maximum number of pairwise disjoint ovoids is 12. Every set of 12 pairwise
disjoint ovoids leaves a copy of the complement of the Schläfli graph, which has chromatic
number 6, so that χ(Γ) ≤ 18. L. H. Soicher showed that in fact χ(Γ) = 17.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.
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H index orbitlengths d e
a S9 960 9, 126 0 5
b S3 ×O−6 (2) : 2 1120 27, 108 10 15
c S3 wr S4 11200 54, 81 25 30
d O7(2).2 120 63, 72 30 35
e 26 : A8 270 15, 120 14 7
f S8 8640 30, 105 21 14
g S6 × S3 80640 45, 90 28 21
h (A5 × A5) : 22 24192 60, 75 35 28

Case (a): Take the quadratic form
∑
i<j xixj on the hyperplane 1⊥ in a

9-dimensional vector space over F2. The isotropic points are the 126 vectors of
weight 4 and the 9 vectors of weight 8. The 9 vectors of weight 8 form an ovoid
in the O+

8 (2) polar space.
Case (b): Consider the geometry as the orthogonal direct sum of an elliptic

line and a O−6 (2) geometry. The 27-set induces Γ(O−6 (2)).
Case (c): In F4

4 , let q(x) = wt(x). As before, we see that F4
4 with q(x) is an

O+
8 (2) geometry, the orthogonal sum of four elliptic lines. The isotropic points

are the 54 vectors of weight 2 and the 81 of weight 4.
Case (d): These are the splits induced by the nonisotropic points: each

nonisotropic point is orthogonal to 63 isotropic points.
Case (e): These are the maximal totally isotropic subspaces.
Case (h): Consider the quadratic form Q(x) = x1x2 + x3x4 on F4

4 . Then
trQ is a nondegenerate hyperbolic quadric on F8

2 . The 135 isotropic points
have trQ(x) = 0, that is, Q(x) ∈ {0, 1}, namely, 75 with Q(x) = 0 and 60 with
Q(x) = 1.

10.44 NO−8 (2)

����1 63 1����63
30

32 28����72
35

v = 136

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(136, 63, 30, 28). Its spectrum is 631 751 (−5)84. The full group of automor-
phisms is O−8 (2) : 2 acting rank 3 with point stabilizer 2× O7(2).

Maximal cliques have size 8, a single orbit. Maximal cocliques have sizes 3
and 7, a single orbit each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a [29] : (L3(2)× S3) 765 24, 112 7 12
b [29] : (S5 × S3) 1071 40, 96 15 20
c 26 : (O5(3) : 2) 119 64, 72 27 32
d 17 : 8 2903040 68, 68 29 34
e L2(16) : 2 48384 68, 68 35 28
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10.45 The L3(3) graph on 144 vertices

����1 39 1����39
6

32 12����104

27

v = 144

There is a strongly regular graph Γ with parameters (v, k, λ, µ) = (144, 39, 6, 12),
with full automorphism group L3(3):2, acting rank 6, with point stabilizer 13:6.
Its spectrum is 391 3104 (−9)39. This graph was discovered by Faradžev, Klin
& Muzychuk [315].

Construction — Singer cycles and imaginary triangles

We need 144 objects on which G = PGL3(3) acts, and an adjacency relation.
One choice for the objects is that of the 144 subgroups of order 13 in PGL3(3).
The normalizer N = NG(C) of such a subgroup C has order 39. Acting by
conjugation, it has orbits of lengths 11 135 392 on the 144 objects, and precisely
one of the two orbits of size 39 is suitable as set of neighbors of C.

Let q be the power of a prime, and r = qm. Then Fr can be regarded as an m-dimensional
vector space over Fq , and multiplication by a constant is a linear transformation. One sees that
PG(m − 1, q) admits Singer cycles, linear transformations of order qm−1

q−1
that act regularly

on the points and hyperplanes.
Now let m = 3, and fix a PG(2, q) subplane π0 of the projective plane π = PG(2, q3). The

group PGL3(q) has three orbits on the points of π, namely that of the q2 + q+ 1 points of π0,
that of the q(q2−1)(q2 +q+1) points of π\π0 on a line of π0, and that of the q3(q2−1)(q−1)
remaining points. The field automorphism x 7→ xq that fixes π0 partitions these remaining
points into 1

3
q3(q2−1)(q−1) triples, known as imaginary triangles. The subgroup of PGL3(q)

pointwise fixing an imaginary triangle is generated by a Singer cycle.
For q = 3, the 144 imaginary triangles can be taken as the vertices of Γ.

Maximal cliques and cocliques

The graph induced on the common neighbors of two adjacent vertices is 2K1 +
2K2. Consequently, the maximal cliques have sizes 3 and 4. Maximal cocliques
have sizes 9–16 and 18. There is a single orbit of 9-cocliques and a single orbit
of 18-cocliques.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 32 : 8 156 72, 72 15 24
b (32 : 3) : D8 52 36, 108 12 9
c (32 : Q8) : 3 52 72, 72 21 18

This graph is a Cayley graph: the (nonabelian) group AΓL(1, 9) of order
144 acts regularly on Γ.
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10.46 Three M12.2 graphs on 144 vertices

����1 12 1����12- 11 2����66- 10 5����132

- 7 12����77- v = 288

The Leonard graph is the unique distance-regular graph with intersection
array {12, 11, 10, 7; 1, 2, 5, 12}. Existence is due to Leonard [515], uniqueness
to Brouwer [115]. The full group of automorphisms is M12.2 and has two
orbits on the vertex set. The two halved graphs are nonisomorphic strongly
regular graphs with parameters (v, k, λ, µ) = (144, 66, 30, 30), and full group
M12.2, known as the two halved Leonard graphs.

The group M12.2 has two distinct primitive permutation representations on
144 points, both rank 4 with suborbit sizes 1 + 22 + 55 + 66, and the two
graphs of valency 66 are the halved Leonard graphs. For the first of these two
representations, also the other two suborbits define strongly regular graphs, and
we find graphs with parameters (v, k, λ, µ) = (144, 22, 10, 2), (144, 55, 22, 20).
The former is the 12× 12 grid, the latter has full group M12.2.

For more detail, see [123], §11.4F and [621], pp. 48, 49.

����1 55 1����55
22

32 20����88
35

v = 144

This valency 55 graph satisfies the 5-vertex condition. Its µ-graphs have
valency 9.

10.47 The O5(5) graphs on 156 vertices

����1 30 1����30
4

25 6����125

24

v = 156

There are exactly two rank 3 strongly regular graphs with parameters (v, k, λ, µ)
= (156, 30, 4, 6). Their spectrum is 301 490 (−6)65. Both have full group of
automorphisms O5(5).2. The point stabilizers are 53 : (S5 × 4) and 51+2

+ : 4S5.
These two graphs, let us call them Γ and ∆, are the collinearity graphs of the

two known generalized quadrangles GQ(5, 5). One is that on the isotropic points,
the other, its dual, that on the totally isotropic lines of the O5(5) geometry,
cf. §2.6.1. The latter is isomorphic to the generalized quadrangle on the points
of the Sp4(5) geometry.

Maximal cliques and cocliques

In both graphs, the maximal cliques are the lines (of size 6). In Γ maximal
cocliques have sizes 13–20, 22, 24, 26 (with a single orbit for sizes 19, 20, 24,
26). Those of size 26 are the ovoids, and any two ovoids meet in 1, 6 or 26
points. The chromatic number is χ(Γ) = 7. In ∆ maximal cocliques have sizes
6, 11, 12, 14–18, with a single orbit for size 6.
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Regular sets

Examples of regular sets in Γ and ∆ are obtained from subgroups H of their
automorphism groups with two orbits on the vertex set. We give degree d, nexus
e, and ini , where ni is the number of lines meeting the smallest orbit in i points.

For Γ = Γ(O5(5)):

H index orbitlengths d e line stats
a 2× (O−4 (5) : 2) 300 26, 130 0 6 1156

b 51+2
+ : 4S5 156 6, 150 5 1 61 130 0125

c 2.(A5 × A5).22 325 36, 120 10 6 612 1144

These sets are ovoids, lines, and hyperbolic quadrics 6× 6, respectively.

For ∆ = Γ(Sp4(5)):

H index orbitlengths d e line stats
a 53 : (S5 × 4) 156 6, 150 5 1 61 130 0125

b 2.(A5 × A5).22 325 12, 144 6 2 236 0120

c S5 × S3 × 2 6500 36, 120 10 6 66 290 060

d S6 13000 36, 120 10 6 66 290 060

e 24 : S5 4875 60, 96 14 10 620 2120 016

Case (a): these are the lines, and induce K6.
Case (b): these are the unions L∪L⊥ for hyperbolic lines L, and induceK6,6.

The maximal 6-cocliques are precisely the hyperbolic lines.
Cases (c), (d): A BLT (Bader-Lunardon-Thas) set in the O5(q) generalized

quadrangle, where q is odd, is a set S of q+1 points, no two collinear, such that
every point outside S is collinear with 0 or 2 points of S. In the dual Sp4(q)
generalized quadrangle this becomes a set of q+1 pairwise disjoint lines Li such
that every other line meets either 0 or 2 of them. The union X =

⋃
Li of this

set of lines is a regular (q+1)2-set of degree d = 2q and nexus e = (q+1)/2. For
q = 5 there are up to isomorphism two examples, the linear one and the FTW
(Fisher-Thas-Walker) one ([269]), yielding examples (c) and (d), respectively.

Case (e): this is most easily seen in the dual O5(q) generalized quadrangle.
For the quadratic form

∑
X2
i , there are 20, 120, 16 isotropic points of weight

2, 4, 5, respectively. These 16 form a (non-maximal) coclique.

10.48 The U4(3) graph on 162 vertices

����1 56 1����56
10

45 24����105

32

v = 162

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) =
(162, 56, 10, 24). Its spectrum is 561 2140(−16)21. The full group of auto-
morphisms is U4(3).(22)133 (of order 29 · 36 · 5 · 7) acting rank 3, with point
stabilizer L3(4) : 22. Uniqueness is due to Cameron, Goethals & Seidel
[178]. This graph is the second subconstituent of the McLaughlin graph. Both
subconstituents of this graph are also strongly regular (§10.20, §10.33). This
graph is a subgraph of the Suzuki graph (§10.83).
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Construction

Γ can be constructed as 1+56+105 by taking a point∞, one of the three orbits
of hyperovals (of size 56) in PG(2, 4), and the 105 flags (p, L) of PG(2, 4). Here
∞ is adjacent to the 56 hyperovals; two hyperovals are adjacent when disjoint;
a hyperoval O is adjacent to a flag (p, L) when p 6∈ O and L ∩O 6= ∅; two flags
(p, L) and (q,M) are adjacent when p 6= q, and L 6= M , and p ∈M or q ∈ L.

Cliques, cocliques and chromatic number

Since the local graph does not have triangles, all maximal cliques have size 3.
Since Γ is the 2nd subconstituent of the McLaughlin graph, maximum cocliques
have size 21. The chromatic number of Γ is 10 (Soicher). That of Γ is 54.

Splits

This graph has 112 splits into two Brouwer-Haemers graphs. (Such splits can
be enumerated by searching the 21-dimensional eigenspace for eigenvectors that
are 1 on the subgraph and −1 on the complement. The result is that these 112
are the only splits of Γ into two subgraphs of valency 20.) Split halves occur as
intersections with point neighborhoods in a McLaughlin graph.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 34:M10 224 81, 81 20 36
b 21+4.32.21+3 2835 18, 144 8 6
c 2× U3(3):2 540 36, 126 14 12
d L3(4):22 162 42, 120 16 14
e 31+4.4.24 840 54, 108 20 18
f S3 × (S3×S3):2 30240 54, 108 20 18
g 2× A6.2

2 4536 72, 90 26 24

There are no further regular sets with d− e = s.

Triple cover

����1 56 1����56
10

45 8����315

32
16 45����112

10
1 56����2- v = 486

There is a unique distance-regular graph with intersection array {56, 45, 16, 1;
1, 8, 45, 56}, a triple cover of Γ. It was constructed by Soicher [664]. It is
distance-transitive with full group 3.U4(3).22 with point stabilizer L3(4).22. Its
second subconstituent is also distance-regular (but not distance-transitive), see
§10.33.
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10.49 The nonisotropic points of U5(2)

����1 40 1����40
12

27 8����135

32

v = 176

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(176, 40, 12, 8). Its spectrum is 401 855 (−4)120. The full group of automor-
phisms is PΓU5(2) acting rank 3 with point stabilizer U4(2) : S3. This is NU5(2),
the graph on the nonisotropic points in the U5(2) geometry, adjacent when
orthogonal, that is, when joined by a secant. The local graph isNU4(2) (§10.16).

The maximal cliques have size 5 (a single orbit). They are the orthogonal
bases. The maximal cocliques have sizes 9–13 (many orbits) and 16 (two orbits).
Most maximal cocliques are messy, but there is a single nice orbit of 16-cocliques
where the tangent lines induce the structure of AG(2, 4), namely the perps of
the totally isotropic lines.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a [28] : (A5 × S3) 297 16, 160 0 4
b [211.34] 165 48, 128 8 12

These are the sets of vertices in L⊥ and in p⊥ for t.i. lines L and points p,
respectively.

10.50 A polarity of Higman’s symmetric design

����1 49 1����49
12

36 14����126

35

v = 176

In Higman [426], a square 2-(176,50,14) design is constructed that has HS as
automorphism group acting 2-transitively on points and blocks. In Smith [663]
the following description is given: let the points be the octads from S(5, 8, 24)
that start 10..., and the blocks the octads that start 01.... Let the point B and
the block C be incident when |B ∩ C| ∈ {0, 4}. This design has a polarity for
which all points are absolute. This means that this design has a symmetric
point-block incidence matrix A with 1’s on the diagonal. Now A − I is the
adjacency matrix of a strongly regular graph Γ with parameters (v, k, λ, µ) =
(176, 49, 12, 14). Its spectrum is 491 598 (−7)77. The full automorphism group
of Γ is S8 with vertex orbits of sizes 8 and 168 ([110]).

10.51 The M22 graph on 176 vertices

����1 70 1����70
18

51 34����105

36

v = 176
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There is a unique strongly regular graph with parameters (v, k, λ, µ) =
(176, 70, 18, 34). Its spectrum is 701 2154 (−18)21. The full group of auto-
morphisms is M22 acting rank 3 with point stabilizer A7. Uniqueness is due to
Degraer & Coolsaet [274].

Construction

The Steiner system S(4, 7, 23) has 253 blocks, 77 on each point. The residual
design is a quasi-symmetric 3-(22,7,4) design, with 176 blocks, and block inter-
section numbers 1 and 3. Call two blocks adjacent when they meet in 1 point.

This graph is an induced subgraph of the M23 graph (§10.56) and of the
McLaughlin graph (§10.61).

Cliques, cocliques and chromatic number

All 9240 maximal cliques have size 4. The group G is transitive on i-cliques for
0 ≤ i ≤ 4. Each triangle is contained in a unique 4-clique.

Maximal cocliques have sizes 7–13, 15, 16. We describe the three orbits of
16-cocliques. Let Ω be a 24-set, and fix an S(5, 8, 24) on Ω. Fix α, β ∈ Ω,
and view the 176 vertices as the octads containing α and missing β. There
are three orbits of 16-cocliques: the 231 sets of vertices containing two fixed
elements γ, δ ∈ Ω \ {α, β}, the 462 sets of vertices containing a fixed element
γ ∈ Ω \ {α, β} and disjoint from a fixed octad B on {α, β, γ}, and the 1155
sets of vertices missing two fixed elements γ, δ ∈ Ω \ {α, β} and meeting a fixed
octad B on {α, β, γ, δ} in 4 points.

The chromatic number is 12 (Soicher [756]).

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a L3(4) 22 56, 120 10 28
b 24 : A6 77 80, 96 22 40

There are no further regular sets with d− e = s.

10.52 The nonisotropic points of U3(4)

����1 75 1����75
30

44 25����132

50

v = 208

There is a unique rank 4 strongly regular graph Γ with parameters (v, k, λ, µ) =
(208, 75, 30, 25). Its spectrum is 751 1064 (−5)143. The full automorphism group
is PΓU3(4), acting rank 4 with point stabilizer (D10 × A5) · 2 and suborbit sizes
1 + 12 + 75 + 120. It is the block graph of a unital S(2, 5, 65) in PG(2, 16).
Equivalently, it is the graph on the nonisotropic points in that projective plane,
adjacent when joined by a tangent. Maximal cliques have size 6 or 16 (reaching
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the Hoffman bound). Maximal cocliques have sizes 5 (a single orbit), 7–9, and
13 (three orbits, reaching the Hoffman bound).

At least 1778 nonisomorphic systems S(2, 5, 65) are known, and these have nonisomorphic
block graphs, all with the above parameters. Apart from the hermitian unital all have small
groups (of size at most 1200). Of these, 42 are embeddable in some projective plane of order
16 (and 13 different planes occur). For some examples, see [672], [500], [368].

10.53 A rank 16 representation of S7

����1 99 1����99
48

50 45����110

54

v = 210

Klin et al. [494] showed as application of the computer algebra package
COCO that the rank 16 scheme of S7 on the cosets of A4 × 2 has a subscheme
that is a strongly regular graph with parameters (v, k, λ, µ) = (210, 99, 48, 45).
Its spectrum is 991 977 (−6)132. The full automorphism group is S7, acting rank
16 with point stabilizer A4×2. Maximal cliques have sizes 5–8 and 10. Maximal
cocliques have sizes 5–9 and 12 (reaching the Hoffman bound).

10.54 The Cameron graph

����1 30 1����30
9

20 3����200

27

v = 231

There is a rank 4 strongly regular graph Γ with parameters (v, k, λ, µ) =
(231, 30, 9, 3). Its spectrum is 301 955 (−3)175. It is the unique strongly regular
graph with these parameters that is a gamma space with lines of size 3. The full
automorphism group is M22.2, acting rank 4 with point stabilizer 25:S5. Con-
struction is due to Cameron (cf. [178], Example 7.8), uniqueness to Brouwer
[113].

Construction

Consider a Steiner system S(3, 6, 22) on the 22-set S. Let the vertices of Γ be
the 231 pairs of symbols from S, where two vertices are adjacent when the pairs
are disjoint and contained in a common block.

Gamma space

This graph is the collinearity graph of a partial linear space with lines of size
3, namely the triples of pairs that partition a block of the Steiner system. This
geometry is a gamma space: given a line L, each point outside L is collinear to
0, 1, or 3 points of L. It has Fano subplanes, 10 on each point and 2 on each
line. The 15 lines and 10 planes on a fixed point form the edges and vertices of
the Petersen graph. We see a GQ(2, 2) subgeometry on each block.
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Cliques and cocliques

The maximal cliques in Γ all have size 7 and form a single orbit with clique
stabilizer 2 × 23 : L3(2). They are the Fano subplanes of the gamma space.
Examples of cocliques of size 21, which is the Hoffman bound, are given by the
sets of pairs containing a fixed symbol.

Triple cover

This graph has a triple cover on 693 vertices with full group 3.M22.2.

10.55 The Berlekamp-VanLint-Seidel graph

����1 22 1����22
1

20 2����220

20

v = 243

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(243, 22, 1, 2). Its spectrum is 221 4132(−5)110. The full group of automorphisms
is 35 : (2 ×M11) acting rank 3 with point stabilizer 2 ×M11. This graph was
constructed in Berlekamp, Van Lint& Seidel [59] (with one construction
per author). For example, it is the coset graph of the perfect ternary Golay
code.

Dual

The Delsarte dual (cf. §7.1.3) ∆ of Γ is a rank 3 strongly regular graph with
parameters (v, k, λ, µ) = (243, 110, 37, 60) and spectrum 1101 2220(−25)22.

Koolen-Riebeek graph

The complement of Γ (on 243 vertices with valency 220) is the halved graph
of the bipartite Koolen-Riebeek graph (distance-regular with intersection array
{45, 44, 36, 5; 1, 9, 40, 45}) constructed in [136].

Generalization

More generally, one may look at strongly regular graphs with λ = 1 and µ = 2.
Such a graph must have (2r+ 1) | 63, so that r ∈ {1, 3, 4, 10, 31} and v is one of
9, 99, 243, 6273, 494019. The only known examples have v = 9 or v = 243.

10.56 The M23 graph

����1 112 1����112

36
75 60����140

52

v = 253

There is a unique rank 3 strongly regular graph with parameters (v, k, λ, µ) =
(253, 112, 36, 60). Its spectrum is 1121 2230 (−26)22. The full group of automor-
phisms is G = M23 acting rank 3 with point stabilizer 24.A7.
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Construction

Take the blocks of the Steiner system S(4, 7, 23) as vertices, and call them
adjacent when they meet in 1 point.

Cliques, cocliques and chromatic number

All 212520 maximal cliques have size 4. The group G is transitive on i-cliques
for 0 ≤ i ≤ 4. Each triangle is contained in 5 4-cliques.

Maximal cocliques have sizes 8, 10–17, 21.
There is a unique orbit of 21-cocliques, consisting of the 253 sets of 21 blocks

containing a fixed pair of symbols.
There is a unique orbit of 8-cocliques. (It can be seen from the description

of the extended binary Golay code C using two Hamming codes (see §6.1.2). In
the notation used there, take x = 1 and a = b+ 1, to see the existence of code
words (b, b+ 1, 0) for all b ∈ H. Take the 8 vectors b starting with 1.)

The chromatic number is 15 (Soicher [756]).

Splits 77+176

The 77 blocks on any given point induce the graph with parameters (v, k, λ, µ) =
(77, 16, 0, 4), see §10.27. The remaining 176 blocks induce the graph with
parameters (v, k, λ, µ) = (176, 70, 18, 34) described in §10.51.

Apart from these, there are no further regular sets with d− e = s.

Cayley graph

M23 has a (nonabelian) subgroup 23 : 11 of order 253 that acts regularly on the
vertices of Γ. Thus, Γ is a Cayley graph.

10.57 28.S10 and 28.(A8 × S3)
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There are exactly two rank 3 strongly regular graphs with parameters (v, k, λ,
µ) = (256, 45, 16, 6). Their spectrum is 451 1345 (−3)210.

The first, let us call it Γ1, has full group of automorphisms 28 : S10 and point
stabilizer S10. It is the graph on 1⊥/〈1〉 in 210, where two vectors are adjacent
when they differ in two places, a bipartite half of the folded 10-cube. Its local
graph is the triangular graph T (10).

The second, let us call it Γ2, has full group of automorphisms 28 : (A8 × S3).
It is the graph H2(4, 2) (§3.4.1). Already 28 : (A7 × 3) acts rank 3 on Γ2.

Maximal cliques in Γ1 have sizes 4 or 10, a single orbit of each type. Maximal
cliques in Γ2 have sizes 4 or 16, a single orbit of each type.
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10.58 28.L2(17)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(256, 102, 38, 42). Its spectrum is 1021 6153 (−10)102. The full group of auto-
morphisms is 28 : L2(17) acting rank 3 with point stabilizer L2(17). Maximal
cliques have sizes 4, 5 and 8, a unique orbit of each type. Maximal cocliques
have sizes 7–13, 16 and 18, with unique orbits for sizes 12, 13, 16, 18. The
vertex set of Γ has a partition into 8-cliques, so χ(Γ) = 32.
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A semibiplane is a connected bipartite graph such that any two vertices have
0 or 2 common neighbors. The graph Γ is the halved graph of a semibiplane
of valency 18 with full group of automorphisms 29 : L2(17) acting rank 6 with
point stabilizer L2(17).

A strongly regular graph with the parameters of Γ can be obtained from the
Van Lint-Schrijver construction (apply Theorem 7.3.2 with (p, q, e, f, l, t, u) =
(2, 28, 5, 8, 2, 2, 2)), but that graph is not rank 3.

10.59 VO−8 (2)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(256, 119, 54, 56). Its spectrum is 1191 7136 (−9)119. The full group of automor-
phisms is 28 : SO−8 (2) acting rank 3 with point stabilizer SO−8 (2).

The maximal cliques have size 8, a single orbit. The maximal cocliques have
sizes 4 and 8, a single orbit of each. The chromatic number of Γ is χ(Γ) = 32.

10.60 VO+
8 (2)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(256, 120, 56, 56). Its spectrum is 1201 8120 (−8)135. The full group of automor-
phisms is 28 : SO+

8 (2) acting rank 3 with point stabilizer SO+
8 (2). Its local graph

is the O+
8 (2) graph on 120 vertices, see §10.39.
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The maximal cliques have sizes 4, 8 and 9, a single orbit of each. The
maximal cocliques have size 16, a single orbit. The chromatic number of Γ is
χ(Γ) = 16.

Complement
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The complement of Γ is VO+
8 (2), see §3.3.1. Its local graph is the O+

8 (2)
graph on 135 vertices, see §10.43.

Rank 3 action of 28 :A9

The polar space O+
8 (2) has an ovoid (see §2.6.7) on which the group A9 acts

transitively. This can be seen by taking the quadratic form
∑
i<j xixj on the

hyperplane 1⊥ in a 9-dimensional vector space over F2 (see also Case (e) of the
regular sets in §10.39). The ovoid consisting of the base points (points with
exactly one nonzero coordinate) qualifies.

Applying triality we obtain a spread S of the polar space O+
8 (2) (that is,

a partition of the point set into nine solids) on which A9 acts in the natural
way. The stabilizer in A9 of a solid Σ ∈ S is A8 ' PSL4(2), acting naturally
on Σ. Hence A9 acts transitively on the point set of O+

8 (2). Moreover, it also
acts transitively on the nonisotropic points. Hence 28 : A9 ≤ 28 : O+

8 (2) also acts
rank 3 on Γ.

The nonisotropic points are the 36 vectors of weight 2 and the 84 vectors of
weight 6. The subgraph induced on the 36-set is the triangular graph T (9).

10.61 The McLaughlin graph
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There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) = (275,
112, 30, 56). Its spectrum is 1121 2252 (−28)22. The full group of automorphisms
is G = McL.2 acting rank 3 with point stabilizer U4(3) : 2. This graph was
constructed in McLaughlin [557]. Uniqueness is due to Goethals & Seidel
[356].

Construction: 22 + 77 + 176

Take the Steiner system S(4, 7, 23) with 1+22 points and 253 = 77+176 blocks,
where the first 77 are those containing the first point. Use p,B,C to denote
one of the 22, 77, 176 objects, and let ∼ denote adjacency. Make the 22 points
a coclique, let p ∼ B when p /∈ B, let B ∼ B′ when B,B′ meet in 1 point, let
p ∼ C when p ∈ C, let B ∼ C when B,C meet in 3 points, let C ∼ C ′ when
C,C ′ meet in 1 point. This yields Γ.



10.61. (275, 112, 30, 56)—THE MCLAUGHLIN GRAPH 315

����22 ����77

����176 v = 275.

56 16

�
�
�
��

A
A
A
AA

56 80

- 16

7 35

70

We see the M22 graphs on 77 and 176 vertices as subgraphs.

Leech lattice construction
This same 22 + 77 + 176 construction is visible in the Leech lattice. Fix the
two Leech lattice vectors v1 = 1√

8
(51 11 . . . 1) and v2 = 1√

8
(44 00 . . . 0). Take

the 275 norm 4 vectors x with (x, v1) = 3 and (x, v2) = 1, adjacent when their
inner product is 1. The 22 + 77 + 176 vertices have the shapes 1√

8
(11 121(−3)),

1√
8
(3(−1) 116(−1)6) and 1√

8
(20 27015).

Construction: 50 + 50 + 175
The graph Γ has a regular partition into two Hoffman-Singleton graphs and a
copy of the graph on the edges of that graph, adjacent when they are disjoint
and lie in the same pentagon. Each part is strongly regular. The stabilizer of
the partition is U3(5):2, where the outer 2 interchanges the two parts of size 50.
(See also below under Regular Sets.)
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Conversely, Γ can be constructed in this setup: let the objects be the 100
15-cocliques and the 175 edges of the Hoffman-Singleton graph. Let two edges
be adjacent when they are disjoint and lie in a pentagon. Let two 15-cocliques
be adjacent when they meet in 0 or 3 points. Let an edge xy be adjacent to the
15-coclique C when x, y /∈ C. This yields Γ. See also [455].

Construction: 1 + 112 + 162
Let Γ1 be the collinearity graph of the unique GQ(3, 9). It contains 648 hemisys-
tems of points, i.e., subgraphs isomorphic to the Gewirtz graph, falling into
four equivalence classes (O−6 (3) orbits, see §10.34). Let Γ2 be the graph on one
equivalence class, two hemisystems being adjacent when their intersection has
size 20. Let ∞ be a new vertex. Then Γ is the union of {∞}, Γ1 and Γ2, with
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the following additional edges: ∞ is joined to every vertex of Γ1 and a vertex v1

of Γ1 is adjacent to the vertex v2 of Γ2 if the hemisystem v2 contains the point
v1. This construction is due to Cossidente & Penttila [234].

Local graph
Γ is locally the collinearity graph of the unique GQ(3, 9), see §10.34. It is the
unique such graph, by Pasechnik [605].

Cliques and cocliques
All 15400 maximal cliques have size 5. The group G is transitive on i-cliques for
0 ≤ i ≤ 5. Since in the local graph each edge is contained in a unique 4-clique,
here each triangle is contained in a unique 5-clique. The stabilizer of a 5-clique
is transitive on the 270 vertices outside.

Maximal cocliques have sizes 7, 10, 11, 13, 16, 22. There are 4050 22-
cocliques, forming a single orbit. The stabilizer of one is M22, and has orbits
of sizes 22 + 77 + 176, giving rise to the above construction. The group G is
transitive on 3-cocliques. Each 3-coclique is contained in eight 22-cocliques.

Regular sets
Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e

a 31+4
+ :4S5 15400 5, 270 4 2

b 2.S8 22275 35, 240 16 14
c U3(5):2 7128 100, 175 42 40
d 51+2

+ :24:2 299376 125, 150 52 50
In case (b) the graph induced on the orbit of size 35 is the Odd graph O4.
In case (c) the graph induced on the orbit of size 175 is the (rank 4) graph

on the edges of the Hoffman-Singleton graph, adjacent when disjoint and in the
same pentagon, strongly regular with parameters (v, k, λ, µ) = (175, 72, 20, 36)
and spectrum 721 2153 (−18)21.

In case (d) the graph induced on the orbit of size 125 is the (rank 5) graph
obtained from Taylor’s unitary two-graph for q = 5 by switching a point isolated
(cf. §8.10.1), strongly regular with parameters (v, k, λ, µ) = (125, 52, 15, 26) and
spectrum 521 2104 (−13)20.

There are no regular sets with d− e = s.

Chromatic number
This graph has chromatic number 15 or 16 (Soicher). There is a partition of VΓ
into 55 5-cliques, so that χ(Γ) = 55 ([385]).

No partial geometry
The parameters of this graph are those of the collinearity graph of a putative
pg(5, 28, 2) partial geometry. However, Östergård& Soicher [598] showed
that there is no such partial geometry.
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Uniqueness and two-graph

Goethals & Seidel [356] showed the uniqueness (up to complementation)
of the (nontrivial) regular two-graph Ω on 276 vertices (cf. §8.10.1). Its auto-
morphism group is Conway’s group .3, acting 2-transitively. Our graph Γ is
the descendant of Ω at an arbitrary vertex (obtained by switching that vertex
isolated). Conversely, Ω is the two-graph that has K1 + Γ in its switching class.

The two-graph Ω also has (many, see [593]) strongly regular graphs in its
switching class, with parameters (v, k, λ, µ) = (276, 140, 58, 84) and spectrum
1401 2252 (−28)23.
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10.62 The Mathon-Rosa graph
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There is a strongly regular graph Γ with parameters (v, k, λ, µ) = (280, 117, 44,
52). Its spectrum is 1171 5195(−13)84. The full group of automorphisms is
S9 acting rank 5 with point stabilizer S3 wr S3. This graph was discovered by
Mathon & Rosa [550] (and also by Ivanov, Klin & Faradžev [457]).

Construction

The group S9 acts transitively on the set of 280 partitions of a 9-set into three
3-sets. The point stabilizer is S3 wr S3, with orbit sizes 1, 27, 36, 54, 162. Two
partitions are in one of these relations when their common refinement has 3, 5,
9, 6, 7 parts, respectively. The orbit of size 162 defines Γ.

The eigenmatrix of the 4-class association scheme, with the relations in the given order,
is

P =


1 27 36 54 162
1 11 −12 6 −6
1 6 8 −9 −6
1 −3 2 6 −6
1 −3 −4 −6 12

 .

The multiplicities are, in the order of the rows of P : 1, 27, 48, 120, 84.

Maximal cliques and cocliques

The largest cliques have size 10. The largest cocliques have size 28. Both meet
the Hoffman bound. Maximal cliques have sizes 5–8 and 10. Maximal cocliques
have sizes 8–14, 16, and 28.

The set of all partitions containing a fixed triple is a 10-clique (and there are other 10-
cliques as well). Up to isomorphism there is a unique 28-coclique. The group PΓL2(8) acts
2-transitively on the set of 28 subgroups of order 3 contained in PGL2(8). Each such subgroup
determines a partition 33, and this set of 28 partitions is a coclique in Γ.
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Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a L2(8) : 3 240 28, 252 0 13
b 23 : L3(2) 270 112, 168 39 52
c 2× S7 36 70, 210 33 28

Godsil & Meagher [349] starts asking for the largest cocliques in (X,R2). The Delsarte
clique bound is 1 + 36/12 = 4 and hence the coclique bound is 280/4 = 70. An example
meeting the clique bound is the set of parallel classes in AG(2, 3). Examples meeting the
coclique bound are the sets of partitions for which two given elements belong to the same
part of the partition (this is case (c) here). Godsil & Newman [350] show that there are no
further examples.

10.63 The lines of U5(2)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(297, 40, 7, 5). Its spectrum is 401 7120 (−5)176. The full group of automorphisms
is PΓU5(2) acting rank 3 with point stabilizer 24+4 : (3×A5) : 2. This is the graph
on the totally isotropic lines in the U5(2) geometry, adjacent when they meet.
This graph carries the structure of a GQ(8, 4).

The maximal cliques have size 9 (a single orbit). These are the sets of 9
t.i. lines on an isotropic point. They reach the Hoffman bound. The largest co-
cliques have size 29. (In particular, the U5(2) geometry does not have spreads.)

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a [211.34] 165 9, 288 8 1
b U4(2) : S3 176 27, 270 10 3
c 34 : (2× S5) 1408 135, 162 22 15

These are the sets of vertices on a given isotropic point, in the perp of a given
nonisotropic point (i.e., in a U4(2) subspace), and in the perp of one point of a
given orthogonal base.
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10.64 NO−⊥5 (5) and NO−5 (5)
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There are unique rank 4 strongly regular graphs Γ and ∆, with parameters
(v, k, λ, µ) = (300, 65, 10, 15) and (300, 104, 28, 40), and spectra 651 5195 (−10)104

and 1041 4234 (−16)65, respectively. Their full group is G = PGO5(5), with point
stabilizer 2× PΣL(2, 25), giving a 4-class association scheme of which Γ and ∆
are two relations. The graphs Γ and ∆ are NO−⊥5 (5) and NO−5 (5), see §3.1.5
and §3.1.4, respectively.

The association scheme is that on the (nonisotropic) minus-points of O5(5).
The non-identity relations are being joined by a secant (Γ), being joined by a
tangent (∆), and being joined by an exterior line. Here the line xy is a secant
precisely when x, y are orthogonal.

The local graph Σ of Γ is distance-regular with intersection array {10, 6, 4;
1, 2, 5} and is locally Petersen.

Maximal cliques in Γ have size 4 (a single orbit), in ∆ size 5 (two orbits).
Maximal cocliques in Γ have sizes 11–28, 30 (a single orbit for sizes 27, 28, 30).
Maximal cocliques in ∆ have sizes 10–15, 17, 18, 20 (one orbit for sizes 18, 20).

The graph ∆ satisfies the 4-vertex condition.

Regular sets

Examples of regular sets in Γ and ∆ are obtained from subgroups H of G with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths dΓ eΓ d∆ e∆ comment
a 53 : (4× S5) 156 50, 250 15 10 4 20 isotropic point
b 2340 100, 200 25 20 24 40
c 3120 150, 150 35 30 44 60
A t.i. line L determines a partition of the vertex set into 6 parts of size 50

as in case (a). A pair or triple on L determines splits as in (b) or (c).

10.65 NO+⊥
5 (5) and NO+

5 (5)
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There are unique rank 4 strongly regular graphs Γ and ∆, with parameters
(v, k, λ, µ) = (325, 60, 15, 10) and (325, 144, 68, 60), and spectra 601 10104 (−5)220

and 1441 1490 (−6)234, respectively. Their full group is G = PGO5(5), with point
stabilizer 2 · (A5 ×A5).22, giving a 4-class association scheme of which Γ and ∆
are two relations. The graphs Γ and ∆ are NO+⊥

5 (5) and NO+
5 (5), see §3.1.5

and §3.1.4, respectively.
The association scheme is that on the (nonisotropic) plus-points of O5(5).

The non-identity relations are being joined by a secant (Γ), being joined by a
tangent (∆), and being joined by an exterior line. Here the line xy is a secant
precisely when x, y are orthogonal.

Maximal cliques in Γ have size 5 (a single orbit), in ∆ size 7, 15, or 25
(one orbit each). Maximal cocliques in Γ have sizes 9 (1 orbit), 11–21, and 25
(reaching the Hoffman bound, 7 orbits). Maximal cocliques in ∆ have sizes 7–10
and 13 (two orbits).

The graph ∆ satisfies the 4-vertex condition.

Regular sets

Examples of regular sets in Γ and ∆ are obtained from subgroups H of G with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths dΓ eΓ d∆ e∆ comment
a 51+2

+ : 4S5 156 25, 300 0 5 24 10 t.i. line
b 53 : (4× S5) 156 75, 250 10 15 44 30 isotropic point

Case (a) are the 25-cliques L⊥ \ L in ∆, where L is a t.i. line.

10.66 NO−⊥7 (3)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(351, 126, 45, 45). Its spectrum is 1261 9168 (−9)182. The full group of automor-
phisms is O7(3) : 2 acting rank 3 with point stabilizer 2.U4(3) : 22.

Construction

This is the graph NO−⊥7 (3), the graph on the ‘minus’ nonisotropic points in
the O7(3) geometry—the points that have perps that are elliptic hyperplanes—
adjacent when orthogonal, cf. §3.1.4.

Other rank 3 representation

Γ is also the graph on the Hermitian spreads of the generalized hexagon G2(3),
adjacent when sharing four lines (necessarily the four lines of a regulus on the
underlying quadric O7(3), or equivalently, four lines at distance one from two
give opposite points in G2(3)). This shows the rank 3 representation of Γ with
automorphism group G2(3) and point-stabilizer U3(3) : 3 ' G2(2).
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Maximal cliques and cocliques
The maximal cliques all have size 7 and form a single orbit. (They are the
orthonormal bases.) The maximal cocliques have sizes 9 (two orbits) or 10, 13,
15 (a single orbit each).

Sub- and supergraphs
The local graph is strongly regular with parameters (v, k, λ, µ) = (126, 45, 12,
18). It is NO−6 (3) and rank 3, cf. §3.1.3.

This graph is the local graph of NO+
8 (3), cf. §10.78, and that latter graph

is the unique connected locally Γ graph (Pasechnik [599]).
This graph is a subgraph of the Fi22 graph, cf. §10.90.
This graph is the µ-graph of the Fi23 graph, cf. §10.96.

Regular sets
Below a few examples of regular sets in Γ obtained from subgroups H of Aut Γ
with two orbits on the vertex set. We give degree d and nexus e for the
smallest orbit.

H index orbitlengths d e
a L2(13) 8398080 78, 273 21 30
b 2× (L4(3) : 2) 378 117, 234 36 45
c 31+6

+ : (2S4 × S4) 3640 27, 324 18 9
d O7(2) 6318 63, 288 30 21
e 35 : (2× (O5(3) : 2)) 364 108, 243 45 36

Example (b) induces NO+
6 (3) on the orbit of size 117. That orbit consists

of the vertices in y⊥, for a ‘plus’ nonisotropic point y.
Example (c) induces the 9-coclique extension of NO−⊥3 (3), that is K9,9,9, on

the orbit of size 27. That orbit consists of the vertices in L⊥, for a t.i. line L.
Example (e) induces the 3-coclique extension of NO−⊥5 (3) on the orbit of

size 108. That orbit consists of the vertices in x⊥, for an isotropic point x.

10.67 NO+⊥
7 (3)
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(378, 117, 36, 36). Its spectrum is 1171 9182 (−9)195. The full group of automor-
phisms is O7(3) : 2 acting rank 3 with point stabilizer 2× (L4(3) : 2).

This is the graphNO+⊥
7 (3), the graph on the ‘plus’ nonisotropic points in the

O7(3) geometry—the points that have perps that are hyperbolic hyperplanes—
adjacent when orthogonal, cf. §3.1.4. It is also the graph on the subhexagons of
order (1, 3) of the split Cayley hexagon G2(3), adjacent if they share exactly 4
lines (and no points). The group G2(3) acts rank 4.

The maximal cliques all have size 6 and form a single orbit. The maximal
cocliques have sizes 9–15, 21 and 27 (reaching the Hoffman bound), with a single
orbit for size 21 and two orbits for size 27.
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The local graph is strongly regular with parameters (v, k, λ, µ) = (117, 36, 15,
9). It is NO+

6 (3) and rank 3, cf. §10.35 and §3.1.3.
This graph is the local graph of NO−8 (3), cf. §10.79, and that latter graph

is the unique connected locally Γ graph (Pasechnik [599]).

Regular sets

Below a few examples of regular sets in Γ obtained from subgroups H of Aut Γ
with two orbits on the vertex set. We give degree d and nexus e for the
smallest orbit.

H index orbitlengths d e
a 33+3 :GL3(3) 1120 27, 351 0 9
b 31+6

+ : (2S4 × S4) 3640 54, 324 9 18
c 35 : (2× (O5(3) : 2)) 364 135, 243 36 45
d L3(3) : 2 816480 144, 234 39 48
e 26 : S7 28431 42, 336 21 12
f (2.U4(3)) : 22 351 126, 252 45 36
g S8 227448 168, 210 57 48

Example (a) induces a 27-coclique on the orbit of size 27. That orbit consists
of the vertices in π⊥, for a t.i. plane π.

Example (b) induces the 9-coclique extension of NO+⊥
3 (3), that is 3K9,9, on

the orbit of size 54. That orbit consists of the vertices in L⊥, for a t.i. line L.
Example (c) induces the 3-coclique extension of NO+⊥

5 (3) on the orbit of
size 135. That orbit consists of the vertices in x⊥, for an isotropic point x.

Example (e) can be seen as the split between weight 2 and weight 5 vectors
for the quadratic form

∑7
i=1x

2
i .

Example (f) induces NO−6 (3) on the orbit of size 126. That orbit consists of
the vertices in y⊥, for a ‘minus’ nonisotropic point y.

10.68 The G2(4) graph on 416 vertices
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(416, 100, 36, 20). Its spectrum is 1001 2065 (−4)350. The full group of automor-
phisms is G2(4).2 acting rank 3 with point stabilizer HJ.2.

This graph is a member of the Suzuki tower: it is the local graph of the
Suzuki graph described below, and its local graph is the Hall-Janko graph.

Construction: PG(2, 16)

Consider the projective plane PG(2, 16) provided with a nondegenerate Her-
mitian form. It has 273 points, 65 isotropic and 208 nonisotropic. There are
416 = 208 · 12 · 1/6 orthogonal bases. These are the vertices of Γ. The group
U3(4) : 4 of semilinear transformations preserving the form acts transitively on
the 416 bases, with rank 5. The suborbit sizes are 1, 15, 100, 150, 150. The
graph Γ is obtained by taking the suborbit of size 100 for adjacency.
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These suborbits can be described geometrically as follows: Given one basis
{a, b, c}, the suborbit of size 15 consists of the bases that have an element in
common with {a, b, c}. The first suborbit of size 150 consists of the bases that are
disjoint from {a, b, c} but contain a point orthogonal to one of a, b, c. Associated
with a basis {a, b, c} is the triangle consisting of the 15 isotropic points on the
three lines ab, ac, and bc. The suborbits of sizes 1, 15, 100, 150, 150 correspond
to bases with triangles having 15, 5, 3, 2, 5 points in common, respectively.
Thus, Γ can be described as the graph on the 416 triangles, adjacent when they
have 3 points in common ([241]).

Cliques and cocliques

Maximal cliques have size 5 (since the local graph has maximal cliques of size
4). The smallest clique cover has size 84. Maximal cocliques have size 16, which
is the Hoffman bound. The chromatic number is χ(Γ) = 26.

Suzuki µ-graphs

The group G acts imprimitively on the set of 65520 nonedges of Γ, it preserves a
partition into 1365 sets of 48 nonedges. Each such set induces a subgraph of size
96 isomorphic to the disjoint union of three copies of the 2-coclique extension of
the Clebsch graph. The stabilizer in G of such a subgraph is 22+8 : (3× A5) : 2.

If Γ is viewed as the neighborhood of a vertex x in the Suzuki graph Σ, then
these 1365 subgraphs of size 96 are the sets of common neighbors of x and y,
where y is a nonneighbor of x in Σ.

That these graphs are disconnected can be seen in the triple cover Σ̃ of Σ.
It plays a role in the construction of Jenrich’s Borsuk example described below.

Jenrich [463] showed that the subgraph on the 320 vertices outside such a
µ-graph can be extended by a 16-coclique to construct a strongly regular graph
with parameters (v, k, λ, µ) = (336, 80, 28, 16).

Cohen-Tits near octagon
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v = 315

There is a unique distance-regular graph ∆ with intersection array {10, 8, 8, 2;
1, 1, 4, 5}. It was constructed in Cohen [202], and uniqueness (given the inter-
section array) was proved in Cohen & Tits [205]. (See also [123], §13.6 and
[68].) It has spectrum 101 536 390 (−2)160 (−5)28. This graph is the collinearity
graph of a near polygon with lines of size 3 which we shall call the Cohen-Tits
near octagon. The second subconstituent of Γ is the distance-2 graph of ∆.
The 63-sets that are the intersection of V∆ with a vertex neighborhood in Γ,
induce a generalized hexagon GH(2, 2) in ∆, isomorphic to the dual split Cayley
hexagon G2(2).

Construction: G2(4)

By [289], the Cohen-Tits near octagon admits an embedding in the dual, say Ω,
of the split Cayley hexagon G2(4). Now Γ is the graph on all copies of this near
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octagon embedded in Ω, adjacent when the intersection contains a copy of the
dual split Cayley hexagon G2(2). This shows the rank 3 action of G2(4) on Γ.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 3.L3(4) : 22 2080 56, 360 10 14 Gewirtz graph
b 22+8 : (3× A5) : 2 1365 96, 320 20 24 Suzuki µ-graph
c 24+6 : (A5 × 3) : 2 1365 160, 256 36 40

Objects of types (b) and (c), incident when the 96-set is contained in the
160-set, are the points and lines of the dual split Cayley hexagon G2(4).

Borsuk conjecture

In 1933 Borsuk [91] asked whether each bounded set in Rn with nonzero
diameter can be divided into n+1 parts, each of smaller diameter. In 1993
Kahn & Kalai [475] showed that this is false for n = 1325 and n > 2014.
Various authors brought the smallest counterexample dimension down.

In 2013 Bondarenko [87] observed that the Euclidean representation of
the present graph Γ in its θ-eigenspace for θ = 20 yields 416 unit vectors in R65

with mutual inner products 1
5 (for adjacent vertices) and − 1

15 (for nonadjacent
vertices). The diameter of this set is the distance between the images of two
nonadjacent vertices, so that a partition into parts of smaller diameter must
correspond to a partition of VΓ into cliques. But Γ has clique number 5, so
one needs at least (in fact: precisely) d 416

5 e = 84 parts. The argument is
general: Given a strongly regular graph Γ with v vertices, where the 2nd largest
eigenvalue has multiplicity f , one finds v unit vectors in Rf such that this set
of vectors cannot be partitioned into fewer parts of smaller diameter than the
clique covering number of Γ, that is, the chromatic number of its complement.

Today the counterexample with smallest dimension is that found by Jenrich
[464] who observed that Bondarenko’s 65-dimensional example contains a 64-
dimensional example. It is a two-distance set of 352 points. Indeed, let M be
a Suzuki µ-graph in Γ, with connected components Mi, i = 1, 2, 3. The vector
u that is 1 on M1, −1 on M2, and 0 elsewhere, lies in the 65-dimensional θ-
eigenspace, and is orthogonal to the vectors representing vertices outside M1 ∪
M2. We find 352 unit vectors in the 64-space u⊥, and a partition of this set into
parts of smaller diameter needs at least 71 parts.

10.69 The O−10(2) graph on 495 vertices

����1 238 1����238

109
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v = 495

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(495, 238, 109, 119). Its spectrum is 2381 7340 (−17)154. The full group of
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automorphisms is O−10(2) : 2 acting rank 3 with point stabilizer 28 : O−8 (2) : 2.
This is the graph on the points of an O−10(2) geometry, adjacent when collinear.
The graph induced on the nonneighbors of a point is VO−8 (2) (§10.59).

Construction
In F12

2 , consider the quadratic form Q(x) =
∑
i<j xixj . We have Q(x) =

(
wt(x)

2

)
and B(x, y) = wt(x)wt(y) −

∑
i xiyi. The space 1>/〈1〉 is a 10-dimensional

elliptic orthogonal space. The isotropic points are the 495 =
(

12
4

)
cosets with

a weight 4 representative. Two 4-sets are adjacent when they meet in 0 or 2
points. Thus, this is the distance 2-or-4 graph of the Johnson graph J(12, 4).

Cliques and cocliques
Maximal cliques have size 15 and form a single orbit. They are the maximal
totally singular subspaces. Maximal cocliques have sizes 5 and 9, a single orbit
each.

Regular sets
Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d, nexus e, and structure for the
smallest orbit.

H index orbitlengths d e graph
a 26+8 : (A8 × S3) 25245 15, 480 14 7 t.s. solid
b 35 : (2× 24:S5) 53616640 90, 405 49 42 O−2 (2) wr 5
c S3 × O+

8 (2) : 2 23936 135, 360 70 63 elliptic line
d S11 1253376 165, 330 84 77 J(11, 3)2

e L2(11) : S3 12634030080 165, 330 84 77
f PSp8(2)× 2 528 240, 255 119 112 nonsg. pt

10.70 The rank 3 conference graphs on 529 ver-
tices
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v = 529

There are exactly three rank 3 strongly regular graphs with parameters
(v, k, λ, µ) = (529, 264, 131, 132) namely the Paley graph P (q), the Peisert graph
P ∗(q) and the sporadic Peisert graph P ∗∗(q), where q = 232. Their spectrum is
2641 11264(−12)264. Each has rk23(2A+ I + bJ) = 144 for all b.

Each of these graphs is self-complementary. Each has chromatic number 23,
so that there are partitions into 23-cliques and partitions into 23-cocliques. The
groups of automorphisms are 232 :S where S is the point stabilizer given in the
table below. This table also gives for each graph and each m the number of
orbits of maximal m-cliques.
graph name S 6 7 8 9 10 11 12 13 23

Γ1 Paley 264 : 2 - 85 108 80 7 9 - 4 1
Γ2 Peisert 11× (3 :Q8) 1 222 442 186 22 1 1 - 1
Γ3 sporadic 11× SL2(3) 3 362 448 87 2 1 1 - 1

Peisert
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Construction

Each of these three graphs is a Cayley graph for the additive group of F = F529.
For Γ1 the difference set D consists of the squares in F . For Γ2, D = K ∪ ωK
where K is the subgroup (of size 132) of fourth powers and ω is a primitive
element of F . For Γ3, D =

⋃
i∈I ω

iL where L is the subgroup (of size 66) of
eighth powers and I = {0, 1, 3, 5}.

These graphs are self-complementary: for Γ1 the map d 7→ ωd interchanges D and
its complement, for Γ2 and Γ3 the map d 7→ ω−1d23 works. For edge-transitivity:
for Γ1 one can multiply by a square, for Γ2 one can multiply by a fourth power and
apply d 7→ ωd23. Finally, for Γ3 one can multiply by an eighth power and apply the
F23-linear transformation that maps 1 to ω and ω to −1.

10.71 The U4(2) graphs on 540 vertices

����1 187 1����187
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v = 540

Crnković,Rukavina& Švob [243] constructed two nonisomorphic strongly
regular graphs with parameters (v, k, λ, µ) = (540, 187, 58, 68). The spectrum is
1871 7374 (−17)165. The full groups of automorphisms are 2 × (U4(2) : 2) and
2 × U4(2). These groups act transitively, with ranks 13 and 17. In both cases,
adjacency is defined by the union of 7 suborbits. In both cases, maximum cliques
have size 12, meeting the Hoffman bound. In both cases, maximum cocliques
have size 20.

10.72 The Aut(Sz(8)) graph on 560 vertices
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v = 560

There is a strongly regular graph Γ with parameters (v, k, λ, µ) = (560, 208,
72, 80). Its spectrum is 2081 8364 (−16)195. The full group of automorphisms is
Aut(Sz(8)) acting rank 7 with point stabilizer 13 : 12 and suborbit sizes 1, 39,
52, 782, 1562. The graph Γ is obtained by taking the union of the suborbit of
size 52 and one of the two suborbits of size 156. This graph was discovered by
Faradžev, Klin & Muzychuk [315].

Maximal cliques and cocliques

The maximal cliques have sizes 4–8. Those of sizes 4 and 8 form single orbits.
The maximal cocliques have sizes 9–18 and 21. Those of size 21 form a single
orbit.
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Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e

a 23+3 : (7 : 3) 65 112, 448 48 40

10.73 The rank 3 graphs on 625 vertices

There are precisely seven rank 3 strongly regular graphs on v = 625 vertices.
The parameters are as follows.

k λ µ rf sg group graph
a 48 23 2 2348 (−2)576 S25 wr 2 25× 25

b 104 3 20 4520 (−21)104 54 : 4.PΓL2(25) VO−4 (5)

c 144 43 30 19144 (−6)480 54 : (GL2(5) ◦ GL2(5)) : 2 VO+
4 (5)

d 144 43 30 19144 (−6)480 54 : 4.S6 See A below
e 208 63 72 8416 (−17)208 54 : 208 : 4 Van Lint-Schrijver
f 240 95 90 15240 (−10)384 54 : 4.(24.S6) See B below
g 312 155 156 12312 (−13)312 54 : 312 : 4 Paley

We discuss the cases of valency 144 or 240 more in detail below.

A. Valency 144

����1 144 1����144
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v = 625

There are precisely two rank 3 strongly regular graphs with parameters
(v, k, λ, µ) = (625, 144, 43, 30). Their spectrum is 1441 19144 (−6)480.

Both graphs are found on F4
5 by taking the union of the six lines of a dual

BLT set at infinity: the first graph from the linear set, the second from the
FTW set. See §10.47.

The first is VO+
4 (5), also known as H5(2, 2), also known as the graph found

on F2
25 by taking a Baer subline at infinity. See §3.3.1, §3.4.1, §3.4.5. The full

group is 54 : (GL2(5) ◦ GL2(5)) : 2.
Let us call the second graph Γ. Its full group of automorphisms is 54.4.S6

with point stabilizer 4.S6. It is due to Liebeck [517].

Cliques and cocliques

The maximal cliques in Γ have sizes 6 or 25, a single orbit of each. The maximal
cliques of size 25 reach the Hoffman bound and are planes in the underlying
vector space F4

5 . Maximum cocliques have size 25 and reach the Hoffman bound.
Both planes and non-planes occur.

B. Valency 240

����1 240 1����240
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150

v = 625
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(625, 240, 95, 90). Its spectrum is 2401 15240 (−10)384. The full group of auto-
morphisms is 54.4.(24 : S6) acting rank 3 with point stabilizer 4.(24 : S6). Exis-
tence and uniqueness is due to Liebeck [517] (using earlier work by Foulser).
It is found on F4

5 by taking a regular set of Γ(Sp4(5)) of size 60 at infinity. See
§10.47.

Construction

Let V = F4
5 and let H be the group generated by the four matrices


1 . . .
. 4 . .
. . 4 .
. . . 1

 ,


. . 1 .
. . . 4
1 . . .
. 4 . .

 ,


4 . . .
. 4 . .
. . 1 .
. . . 1

 ,


. . . 4
. . 4 .
. 1 . .
1 . . .

 .

Then H has order 32, and H/〈−I〉 is elementary abelian of order 24. This group
H/〈−I〉 has 15 orbits of size 4 and 6 orbits of size 16 on PV (which is PG(3, 5),
with 156 points). The union X of the 15 orbits of size 4 is a two-character set:
each plane of PV meets it in either 10 or 15 points. The graph Γ arises by
joining two vectors u, v ∈ V when 〈v − u〉 ∈ X.

The set X is covered by 60 lines which, via the Klein correspondence,
correspond in F6

5 , provided with the quadratic form Q(x) = x2
1 + · · ·+x2

6, to the
points of shape (000012), where 24 : S6 acts on the coordinates by permuting
them and changing an even number of signs. The same set X is covered by the
subset of 20 lines having a zero as last coordinate, and the corresponding group
24 : S5 acts transitively on X and is a subgroup of the symplectic group Sp4(5)
acting on the perp of (000001). Hence X is also a regular set (a 10-tight set) of
Sp4(5), see Case (e) in the second table of §10.47

Cliques and cocliques

The maximal cliques in Γ have sizes 6, 8, 9, 17, 25 and those of sizes 9, 17, 25
each form a single orbit. The maximal cocliques in Γ have sizes 9–17 and 25
and those of sizes 16, 25 each form a single orbit. The 750 cliques and 2400
cocliques of size 25 reach the Hoffman bound and are planes in the underlying
vector space F4

5 ; at infinity they have a line corresponding to a point of shape
(000012) and (011111), respectively. Affine solids containing either type of affine
planes are examples of regular sets of size 125 with degree 60 and 40, and nexus
45 and 50, respectively.

Cospectral graphs

There are many cospectral graphs, two of which are rank 4. One of these
is V NO+

4 (5) (see §3.3.2). The other is derived from the group generated by
x 7→ x−1 and x 7→ a3x on F25 ∪ {∞}, where a is primitive in F∗25. It has orbits
of sizes 2, 8, 16 on PG(1, 25) and gives rise to a partition of the complete graph
on F2

25 into three strongly regular graphs of valencies 48, 192, 384.
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10.74 The U6(2) graph on 693 vertices
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v = 693

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(693, 180, 51, 45). Its spectrum is 1801 15252 (−9)440. The full group of auto-
morphisms is U6(2).S3 acting rank 3 with point stabilizer 21+8

+ : (U4(2) × 3) : 2.
It is the collinearity graph of the U6(2) polar space (§2.7).

Maximal cliques have size 21, and are the maximal t.i. subspaces.
The smallest maximal cocliques have size 7 (a single orbit, with stabilizer

2× S7).
These can be seen by viewing U6(2) as 1⊥ in U7(2) defined by the form

∑7
i=1 x

3
i in F7

4 .
It contains the maximal coclique {〈1− ei〉 | 1 ≤ i ≤ 7}.

The largest maximal cocliques have size 27 (a single orbit, with stabilizer
[36] : 22). In particular, U6(2) does not contain an ovoid.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e comment
a (U5(2)× 3) : 2 672 165, 528 36 45 noniso. pt
b 29 : L3(4) : S3 891 21, 672 20 5 t.i. plane
c O7(2)× 2 19008 63, 630 30 15 Sp6(2)
d U4(3) : 22 4224 126, 567 45 30 NO−6 (3)
e M22 : 2 62208 231, 462 70 55

The action of M22 : 2 is rank 4 on the 231 pairs of a 22-set. The graph
of valency 70 is the union of the triangular graph T (22) (valency 40) and the
Cameron graph (valency 30). This situation arises in the Fi22 graph (§10.90),
as the neighborhood of a point far from a 22-clique.

10.75 The Games graph
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v = 729

There is a unique strongly regular graph Γ with parameters (v, k, λ, µ) =
(729, 112, 1, 20). Its spectrum is 1121 4616 (−23)112. The full group of automor-
phisms is 36.2.L3(4).2 acting rank 4 with point stabilizer 2.L3(4).2. Existence is
due to Games [332]. Uniqueness to Bondarenko & Radchenko [90].

Construction

There is a unique 56-cap in PG(5, 3) (that is, a set of 56 points, no three on a
line) known as the Hill cap, see Hill [427, 429]. Take as vertices the points of
AG(6, 3), adjacent when the connecting line hits the Hill cap at infinity.
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Calderbank & Kantor [169] give the following explicit construction. Let
e∞, e0, e1, e2, e3, e4 be a basis of F6

3 . A group 25 : L2(5) acts: the elements of 25

are diagonal transformations diag(±1, . . . ,±1) of determinant 1, and L2(5) acts
by permuting the coordinates. Under this group the orbit of 〈(111000)〉 has size
40, and that of 〈(111111)〉 has size 16 in PG(5, 3). The union of these two orbits
is the Hill cap. It is contained in the elliptic quadric

∑
x2
i = 0.

The stabilizer of a vertex x has orbit lengths 1 + 112 + 112 + 504, where the
second orbit of size 112 consists of the vertices z such that the line 〈x, z〉 hits
the elliptic quadric outside the Hill cap.

Since λ = 1, this graph satisfies the 4-vertex condition.

The regular sets in Γ that arise as the smallest orbit of a subgroup of Aut Γ
with two orbits on the vertex set are sets with size u, degree d, and nexus e,
where (u, d, e) = (81, 16, 12), (243, 22, 45), (243, 40, 36).

10.76 VO−6 (3)
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v = 729

The graph VO−6 (3) is the unique rank 3 strongly regular graph Γ with pa-
rameters (v, k, λ, µ) = (729, 224, 61, 72). Its spectrum is 2241 8504 (−19)224.
The full group of automorphisms is G = 36 : 2.U4(3) : D8 acting rank 3 with
point stabilizer 2.U4(3) : D8. The group G has subgroups 36 : U3(3) : 4 and H =
36 : 2.L3(4).2 that also act rank 3.

The group H is not isomorphic to the automorphism group of the Games
graph, but has a subgroup 36 : 2.L3(4) for which the edges of Γ split into the
edge-disjoint union of two copies of the Games graph.

The maximal cliques in Γ have size 9 (a single orbit, stabilized by 32 < 36).
The maximal cocliques in Γ have sizes 7 (a single orbit, with stabilizer S7), 9–19,
22, and 27 (a single orbit, with stabilizer GO5(3)).

In the representation of Γ on the affine hyperplane
∑
xi = 1 in F7

3 , with u ∼ v when
Q(v − u) = 0 for Q(x) =

∑
x2
i , the set of unit vectors is a maximal 7-coclique.

Among the regular sets in Γ that arise as an orbit of a subgroup of Aut Γ
with two orbits on the vertex set are sets with size u, degree d, and nexus e,
where e = d+ 19 and (u, d) = (81, 8), (243, 62), (324, 89), and where e = d− 8
and (u, d) = (81, 32), (243, 80).

Let the tensor product of two graphs with adjacency matrices A and B be the graph with
adjacency matrix A⊗B. Then Γ contains regular sets with (u, d, e) = (81, 32, 24) that induce
K3⊗Σ where Σ is the Schläfli graph, and each 27-coclique is contained in a unique such
regular set.

10.77 The rank 3 graphs on 961 vertices

There are precisely five rank 3 strongly regular graphs on v = 961 vertices. The
parameters are as follows.
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v k λ µ rf sg group graph
a 961 60 29 2 2960 (−2)900 S31 wr 2 31× 31
b 961 240 71 56 23240 (−8)720 312 : 30.S4

c 961 360 139 132 19360 (−12)600 312 : 30.A5

d 961 480 239 240 15480 (−16)480 312 : 240 : 2 Peisert
e 961 480 239 240 15480 (−16)480 312 : 480 : 2 Paley

In cases (b)–(e) the group has shape G = 312 :S with Z(S) ' 30.
Case (b) is from an action of S4 on PG(1, 31) with orbits of sizes 8, 24.
Case (c) is from an action of A5 on PG(1, 31) with orbits of sizes 12, 20.

Cf. §7.5.
The graph on F961 where two elements are adjacent when they differ by a 4th power, is

strongly regular with parameters (v, k, λ, µ) = (961, 240, 71, 56) and has a rank 4 group.

10.78 NO+
8 (3)
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v = 1080

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(1080, 351, 126, 108). Its spectrum is 3511 27260 (−9)819. The full group of
automorphisms is PGO+

8 (3) = O+
8 (3) : 22 acting rank 3 with point stabilizer

2× (O7(3) : 2). The local graph is the NO−⊥7 (3) graph described in §10.66.

Construction: nonisotropic points in the O+
8 (3) geometry

This is the graph on one orbit of nonisotropic points in the O+
8 (3) geometry,

adjacent when orthogonal, i.e., when joined by an elliptic line, cf. §3.1.3.

Construction: split Cayley hexagons on O7(3)

There are 2160 standard representations of G2(3) on the O7(3) polar space. The
group SO7(3) acts transitively on that set, but its index 2 subgroup O7(3) acts
with two orbits of length 1080. Then Γ is the graph on either of these orbits,
two representations being adjacent when their line sets share exactly 28 lines
(the 28 lines of a Hermitian spread in both), cf. §4.8.

Cliques, cocliques and chromatic number
The maximal cliques in Γ have size 8 and form a single orbit. They have
stabilizer (28 : A8) : 22. For the quadratic form q(x) =

∑
i x

2
i , an 8-clique is

given by {ei | 1 ≤ i ≤ 8}.
Maximal cocliques have sizes 9–15, 18, 21 and 27. There are two orbits of

27-cocliques, reaching the Hoffman bound. One type is that of the sets C(π) of
vertices contained in π⊥, where π is a totally isotropic plane. See §3.1.3.

Γ has chromatic number 40. A partition of the vertex set into 40 sets C(π)
is obtained by taking the 40 planes π in a totally isotropic solid.

Regular sets
Below a few examples of regular sets in Γ obtained from subgroups H of Aut Γ
with two orbits on the vertex set. We give degree d and nexus e for the
smallest orbit.
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H index orbitlengths d e
a ([36] : 2) : (33 : GL3(3)) 44800 27, 1053 0 9
b [210.312] 36400 108, 972 27 36
c [28.38] 11793600 216, 864 63 72
d 36 : (2× (PSL4(3) : 2)) 1120 351, 729 108 117
e 2× (O7(3) : 2) 1080 378, 702 117 126
f [27.38] 23587200 432, 648 135 144
g 3 : ((34 : S5)× S3) 113218560 540, 540 171 180
h O+

8 (2) : 2 56862 120, 960 63 36
i S9 54587520 240, 840 99 72
j (2.PSL3(4)) : 22 122821920 240, 840 99 72
k (A6 : S6) : 22 19105632 360, 720 135 108
l 3 : (S6 × S3) 1528450560 360, 720 135 108

Example (a) induces a 27-coclique on the orbit of size 27. That orbit consists
of the vertices in π⊥, for a t.s. plane π.

Example (b) induces 3K4×9 on the orbit of size 108. That orbit consists of
the vertices in L⊥, for a t.s. line L.

Example (d) induces the 3-coclique extension of NO+
6 (3) on the orbit of size

351. That orbit consists of the vertices in x⊥, for a singular point x.
Example (e) induces the rank 3 graph NO+⊥

7 (3) (with parameters (378, 117,
36, 36)) on the orbit of size 378. That orbit consists of the vertices in y⊥ for a
nonsingular non-vertex point y.

Example (h) induces the rank 3 graph NO+
8 (2) (see §10.39) on the orbit of

size 120.

10.79 NO−8 (3)
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v = 1107

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(1107, 378, 117, 135). Its spectrum is 3781 9819 (−27)287. The full group of
automorphisms is PGO−8 (3) = O−8 (3) : 2 acting rank 3 with point stabilizer
2× (O7(3) : 2). The local graph is the NO+⊥

7 (3) graph described in §10.67.

Construction: nonisotropic points in the O−8 (3) geometry
This is the graph on one orbit of nonisotropic points in the O−8 (3) geometry,
adjacent when orthogonal, i.e., when joined by an elliptic line, cf. §3.1.3.

Cliques and cocliques
The maximal cliques in Γ have size 7 and form a single orbit. They have
stabilizer 2× (26 : S7). For the quadratic form q(x) =

∑7
i=1 x

2
i + 2x2

8, a 7-clique
is given by {ei | 1 ≤ i ≤ 7}.

Maximal cocliques have sizes 13–21, 23, 27, 30, 33 and 45 (with unique orbits
for sizes 20, 21, 23, 30, 33, 45). A 45-coclique is found from a 5-coclique (ovoid)
in L⊥/L where L is a t.s. line. The cocliques of sizes 27, 30, 33, 45 are found
from cocliques of size 9, 10, 11, 15 in x⊥/〈x〉 .
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10.80 The dodecad graph
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v = 1288

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(1288, 792, 476, 504). Its spectrum is 7921 81035 (−36)252. Its complement has
parameters (v, k, λ, µ) = (1288, 495, 206, 180) and spectrum 4951 35252(−9)1035.
The full group of automorphisms is M24 acting rank 3 with point stabilizer
M12 : 2. This graph is the local graph of the 211.M24 graph of valency 1288 on
2048 vertices.

Construction

Let C be the extended binary Golay code. It has 2576 words of weight 12
(dodecads), so 1288 complementary pairs of dodecads. Given one dodecad,
there are 1, 495, 1584, 495, 1 dodecads at distance 0, 8, 12, 16, 24, respectively.
Given one complementary pair of dodecads, there are 1, 495, 792 such pairs at
distance 0, 8, 12, respectively. The graph Γ is obtained if we call two dodecad
pairs adjacent if they have distance 12.

Cliques and cocliques

Maximum cliques have size 23 (since the 211.M24 graph of valency 1288 on 2048
vertices has maximum cliques of size 24).

Maximal cocliques have sizes 9–14, 16, 24. There is a unique orbit of 24-
cocliques (of size 26565 = 759 · 35). Given an octad B and a partition {S, T} of
B into two 4-sets, one finds a 24-coclique by taking all dodecad pairs that meet
B precisely in {S, T}.

10.81 The Conway graph on 1408 vertices
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v = 1408

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(1408, 567, 246, 216). Its spectrum is 5671 39252 (−9)1155. The full group of
automorphisms is U6(2).2, acting rank 3 with point stabilizer U4(3).22. The
local graph is the distance 1-or-2 graph of the Aschbacher near hexagon, cf. [14],
[122].
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Construction

This is the graph on the lines on a fixed point in the Fi22 Fischer space, adjacent
when they span a dual affine plane. It follows that the complementary graph is
the collinearity graph of a partial linear space with lines of size 4.

Cliques and cocliques

Maximal cliques have sizes 8, 10–14, 16, 17, 22, 28, 32. There is a unique
orbit of 32-cliques. An example is obtained by taking a vertex x and a point
neighborhood p⊥ (of size 1 + 30) in the near hexagon of which Γ(x) is the
distance 1-or-2 graph. Maximal cocliques have sizes 4, 8, 9, 11.

Supergraphs

This graph is the 2nd subconstituent of the Conway graph on 2300 vertices,
(§10.88). It occurs as subgraph in the Fi22 graph on 14080 vertices (§10.94).

10.82 The Tits graph on 1600 vertices

����1 351 1����351
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v = 1600

There is a rank 4 strongly regular graph Γ with parameters (v, k, λ, µ) =
(1600, 351, 94, 72) that has as full group of automorphisms the simple Tits group
2F4(2)′ with point stabilizer L3(3) : 2 and suborbit lengths 1 + 351 + 312 + 936.
Its spectrum is 3511 31351 (−9)1248. This graph was found by Saouter [635].
It is a subgraph of the Fi22 graph on 14080 vertices.

Maximal cliques in Γ have sizes 6 (2 orbits), 7, 8 (2 orbits), 10, 12, 16. The
independence number α(Γ) satisfies 37 ≤ α(Γ) ≤ 40.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of Aut Γ with two
orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a [29] : 5 : 4 1755 320, 1280 95 64

Generalized octagon

The 1755 subgraphs of size 320 and valency 95 found above are the points of a
generalized octagon GO(2, 4) (see p. 346). Two such 320-sets have distance 0, 1,
2, 3, 4 in this GO(2, 4) when they have 320, 192, 96, 64, 60 vertices in common.
The lines of GO(2, 4) are triples of points on a common 192-set.

10.83 The Suzuki graph

����1 416 1����416
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v = 1782
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There is a unique rank 3 strongly regular graph Σ with parameters (v, k, λ, µ) =
(1782, 416, 100, 96). Its spectrum is 4161 20780 (−16)1001. The full group of
automorphisms is Suz.2 acting rank 3 with point stabilizer G2(4).2.

This is the largest member of the Suzuki tower: the local graph is the G2(4)
graph on 416 vertices (§10.68), the local graph of that is the Hall-Janko graph
on 100 vertices (§10.32), and the local graph of that is the G2(2) graph on 36
vertices (§10.14). All are rank 3 strongly regular graphs.

For a combinatorial construction, see [133].

Cliques
Maximal cliques have size 6 (since the local graph has maximal cliques of size
5) and form a single orbit. The stabilizer is a nonmaximal S6 × S3.

Each 6-clique K6 determines a unique subgraph 3K6 stabilized by 3 : (S6×S3). Each 3K6

determines a unique graph on 36 vertices of valency 20, union of two copies of 3K6, stabilized
by A6 : ((S3×S3) : 2), with a unique partition into six 6-cocliques. Each such graph determines
a unique graph on 72 vertices of valency 26, union of two of the preceding, stabilized by a
maximal subgroup of shape ((32 : 8)× A6).2 with vertex orbit sizes 72 + 270 + 1440.

Cocliques
There is a single orbit of cocliques of size 66, reaching the Hoffman bound, see
[133].

The stabilizer of one is U3(4) : 4 with vertex orbit sizes 1 + 65 + 416 + 1300. The 1716
points outside a 66-coclique all have 16 neighbors inside, and we find a 3-(66,16,21) design.
The smallest maximal cocliques have size 6 and form a single orbit stabilized by 24+6 : 3S6

with vertex orbit sizes 6 + 240 + 1536.

Nonedges and K5×4 subgraphs

The stabilizer of a nonedge is 22+8 : (S5 × S3) with orbit sizes 2 + 20 + 96 + 640 + 1024. The
96-orbit is the µ-graph. The graph induced on the 20-orbit is K5×4, pointwise stabilized by a
subgroup 22 of Aut Σ. Each vertex of the 1024-orbit has five neighbors in the K5×4, forming
a clique. Each vertex of the 640-orbit has three neighbors in the K5×4, forming a coclique.

K6,6 subgraphs

There is a single orbit of K6,6 subgraphs. The stabilizer of one is (A6 : 22 ×A5).2 with vertex
orbit sizes 12 + 150 + 720 + 900.

Nonincidence graphs of PG(2, 4)

The stabilizer of a 4-clique is (L3(2) : 2) × S4. It is nonmaximal, contained in a maximal
subgroup of shape (A4 × L3(4) : 23) : 2 with orbit sizes 42 + 480 + 1260. The graph induced
on the 42-orbit A is the diameter 3 bipartite point-line nonincidence graph of PG(2, 4). Each
vertex of the 480-orbit is adjacent to 14 vertices of A, and these induce the diameter 3 bipartite
point-line nonincidence graph of PG(2, 2). The pointwise stabilizer of A is A4 of order 12.

Second subconstituent

����1 20 1����20
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v = 1365

As we saw in §1.3.12, the distance 1-or-2 graph of the collinearity graph of a generalized
hexagon of order s is strongly regular. For s = 4 this yields a strongly regular graph with
parameters (v, k, λ, µ) = (1365, 340, 83, 85). Let Γ be the 2nd subconstituent of Σ. Then Γ
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is the distance-2 graph of the GH(4, 4) of which the distance 1-or-2 graph has automorphism
group G2(4).2. The distance 1-or-2 graph of the dual GH(4, 4) is the Sp6(4) strongly regular
graph.

Regular sets

Examples of regular sets in Σ are obtained from subgroups H of G = Aut Σ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a U3(4):4 3592512 1 + 65, 416 + 1300 0 16
b M12.2× 2 2358720 792, 990 176 192
c 21+6

− .U4(2).2 135135 54, 1728 32 12
d 32.U4(3).(22)133 22880 162, 1620 56 36
e 32+4 : 2(S4 × D8) 3203200 324, 1458 92 72

In case (a) the group H has 4 orbits. In case (c) the subgraph induced on
the short orbit is the 2-coclique extension of the Schläfli graph (§10.10). In case
(d) the subgraph induced on the short orbit is the U4(3) graph on 162 vertices
(§10.48). Here H is the normalizer of a 3A element with 162 fixed points; this
element permutes the nonfixed points in 540 triangles. In particular the long
orbit is partitioned into triples of points with the same neighbors in the short
orbit.

Triple cover

Soicher [664] showed that Σ has a distance-transitive triple cover Σ̃ with
diagram

����1 416 1����416
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on 5346 vertices. Pasechnik [601] showed that Σ and Σ̃ are the only two locally
Γ graphs, if Γ is the G2(4) graph on 416 vertices.

10.84 211.M24 on 2048 vertices with valency 276
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v = 2048

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2048, 276, 44, 36). Its spectrum is 2761 20759 (−12)1288. The full group of
automorphisms is 211.M24 acting rank 3 with point stabilizer M24.

Construction

Let C be the extended binary Golay code. Take the 2048 cosets of C in the
23-space of even weight vectors of length 24, and call two cosets adjacent when
they have distance 2.

This is the Delsarte dual of the valency 759 graph below.
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Cliques

The local graph of Γ is the triangular graph T (24). The maximal cliques fall
into two orbits, that of cliques of size 24, which is the Hoffman bound, and that
of maximal cliques of size 4. For example, the 24 cosets C and C + e1 + ei
(2 ≤ i ≤ 24) form a clique.

Cocliques

The independence number α(Γ) satisfies 72 ≤ α(Γ) ≤ 84.

Since Γ is the distance 1-or-2 graph of the coset graph of the perfect binary Golay
code C, a coclique D is equivalent to a binary code of word length 23, size |D| · 212

and minimum distance 3 that is a union of cosets of C. Four nonequivalent examples
with |D| = 72 were found by Mogilnykh [755], Krotov, Jenrich [752] and Brouwer.

Regular sets

Among the regular sets in Γ that arise as an orbit of a subgroup of Aut Γ with
two orbits on the vertex set are sets with size u, degree d, and nexus e, where
e = d + 12 and (u, d) = (256, 24), (512, 60), (1024, 132), and where e = d − 20
and (u, d) = (24, 23), (128, 36), (256, 52), (512, 84), (768, 116), (1024, 148).

10.85 211.M24 on 2048 vertices with valency 759
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v = 2048

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2048, 759, 310, 264). Its spectrum is 7591 55276 (−9)1771. Its complement Γ̄
has parameters (2048, 1288, 792, 840) and spectrum 12881 81771 (−56)276. The
full group of automorphisms is 211.M24 acting rank 3 with point stabilizer M24.
(Note that this 211.M24 is not isomorphic to the 211.M24 encountered for the
valency 276 graph above.) This graph was found by Goethals & Seidel [355].

Construction

Let C be the extended binary Golay code. Take the 2048 cosets of {0,1} in C,
and call two cosets adjacent when they have distance 8.

This graph is the Delsarte dual of the valency 276 graph above.

Subconstituents

The local graph of Γ is the distance 1-or-2 graph of the near polygon on the
blocks of S(5, 8, 24) (cf. §6.2.3). See also Cuypers [247].

The 2nd subconstituent of Γ is the complement of the dodecad graph (§10.80).
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Cliques
The maximal cliques fall into 19 orbits, with maximal cliques having sizes 12,
13, 14, 16, 17, 22, 32. There are unique orbits of 32-cliques and 22-cliques.
The stabilizer of a 32-clique is 25+4.A8 and has orbit lengths 32, 896, 1120.
The maximal 31-cliques in the local graph are the point neighborhoods in the
local near polygon. The stabilizer of a 22-clique is M21.S3 and has orbit lengths
1, 21, 168, 210, 280, 360, 1008. The maximal 21-cliques in the local graph
corresponding to the fixed point are the sets of octads on a given triple of
symbols.

Cocliques and 5-designs
The maximum-size cocliques were determined in Horiguchi et al. [442]. These
have size 24, which is the Hoffman bound, and fall into two orbits. (If we
arbitrarily pick representatives from the 24 cosets in a 24-coclique containing
the zero coset, and replace 0’s by −1’s, we get a Hadamard matrix of order
24 that spans the code C. Up to equivalence, there are two such Hadamard
matrices.) The stabilizers of the two 24-cocliques in 211.M24 are PSL2(23) and
2× PGL2(11), respectively, both acting transitively on the coclique.

Since the Hoffman bound holds with equality, each point outside a 24-
coclique X is adjacent to 9 points inside. It is shown in loc. cit. that in both
cases the 2024 blocks obtained in this way form a 5-(24,9,6) design. These
two 5-designs are the supports of the words of minimum weight of the ternary
quadratic residue codes (see [18]) and Pless symmetry codes (see [620]), both
with parameters [24, 12, 9]3. In the former case the group acts transitively on the
set of blocks. In the latter case there are three orbits, of sizes 264 + 440 + 1320.

Construction: 24 + 2024
In both 5-(24,9,6) designs, any block meets ni blocks in i points, with (ni)0≤i≤9 =
(25, 0, 540, 480, 648, 270, 60, 0, 0, 1). If we start with one of these two designs
(X,B), and call two blocks adjacent when they meet in 3 or 5 points and a
point adjacent to a block when it is in the block, we obtain the graph Γ again.

Regular sets
Among the regular sets in Γ that arise as an orbit of a subgroup of Aut Γ
with two orbits on the vertex set are sets with size u, degree d, and nexus e,
where e = d + 9 and (u, d) = (24, 0), (128, 39), (256, 87), (288, 99), (512, 183),
(768, 279), (1024, 375), and where e = d− 55 and (u, d) = (256, 143), (512, 231),
(1024, 407).

10.86 The rank 3 graphs on 2209 vertices
There are precisely five rank 3 strongly regular graphs on v = 2209 vertices.
The parameters are as follows.

v k λ µ rf sg group graph
a 2209 92 45 2 4592 (−2)2116 S47 wr 2 47× 47
b 2209 736 255 240 31736 (−16)1472 472 : 736 : 2 cubes
c 2209 1104 551 552 231104 (−24)1104 472 : 46.S4

d 2209 1104 551 552 231104 (−24)1104 472 : 552 : 2 Peisert
e 2209 1104 551 552 231104 (−24)1104 472 : 1104 : 2 Paley
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In cases (b)–(e) the group has shape G = 472 :S with Z(S) ' 46.
Graph (c) has half-case parameters, but is not self-complementary.
Cases (c), (d), (e) correspond to an action of S4, D24 and D48 on PG(1, 47)

with two orbits of size 24.

10.87 D5,5(2)
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v = 2295

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2295, 310, 85, 35). Its spectrum is 3101 55186 (−5)2108. The full group of
automorphisms is O+

10(2) acting rank 3 with point stabilizer 210 : L5(2).
This graph is the graph D5,5(2) of the t.s. 5-spaces of one kind in the polar

geometry O+
10(2), cf. §3.2.3. The local graph is the 2-clique extension of the

Grassmann graph A4,2(2) (a.k.a. J2(5, 2)) of the lines in PG(4, 2). The µ-graphs
are Grassmann graphs A3,2(2) (a.k.a. J2(4, 2)) of the lines in PG(3, 2), adjacent
when intersecting, cf. §10.13.

The maximal cliques have sizes 15 or 31 (one orbit each) and are the shadows
of objects of types 2 or 4. There are maximal cocliques of size 33. It is not known
whether Γ contains larger cocliques. The Hoffman bound is 36.

The set of vertices containing any fixed point is a regular set of size 135,
degree 70 and nexus 15 stabilized by 28 : O+

8 (2). A regular set of size 945,
degree 160 and nexus 105 is stabilized by a subgroup S10.

10.88 The Conway graph on 2300 vertices
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2300, 891, 378, 324). Its spectrum is 8911 63275 (−9)2024. The full group of
automorphisms is Co2 acting rank 3 with point stabilizer U6(2) : 2.

Construction in the Leech lattice

Let Λ be the Leech lattice as defined before. Fix z = 1√
8
(42 022) and look at all

pairs x, y of lattice vectors of norm 4 with x + y = z. Omitting the 1√
8
, these

are 44 pairs (40 (±4)021), (04 (∓4)021), 1024 pairs (31 (±1)22), (13 (∓1)22), and
77 · 32 / 2 = 1232 pairs (22 (±2)6016), (22 (∓2)6016), altogether 2300 pairs. Call
two pairs adjacent when the inner product of (arbitrarily chosen) representatives
is even. This yields Γ.

1st subconstituent

The 1st subconstituent of Γ is the distance 1-or-2 graph of the near polygon
that is the dual polar space for U6(2).
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v = 891

2nd subconstituent

The 2nd subconstituent of Γ is the Conway graph on 1408 vertices, cf. §10.81.

Cliques and cocliques

Maximal cliques have sizes 11, 14, 16, 23, 28, 44. There are unique orbits of
m-cocliques for m = 11, 28, 44. A 44-clique can be seen in the Leech lattice
description as the set of pairs containing the vectors 1√

8
(40 (±4)021). In the 1st

subconstituent one sees a 43-clique as a point neighborhood p⊥ in the U6(2)
polar graph.

Maximal cocliques have sizes 5, 9, 10, 12. Since the 2nd subconstituent is a
rank 3 graph, G is transitive on 3-cocliques.

Line system and norm 3 vectors

The above construction in Λ was centered at 1
2z. Shifting by − 1

2z yields a
set Σ of 4600 vectors of norm 3 with mutual inner products 3, 1, 0,−1,−3. The
system is tetrahedrally closed: if u, v, w ∈ Σ have mutual inner products −1, then
x = −u−v−w ∈ Σ and u, v, w, x have mutual inner products −1. The graph Γ̃
on these 4600 vectors, adjacent when the inner product is −1, is a double cover
of Γ. This graph is locally the above near polygon on 891 vertices, and in the
local graph distances 0, 1, 2, 3 correspond to inner product 3, −1, 1, 0. That
explains why Γ̃ is locally a near polygon, and Γ is locally the distance 1-or-2
graph of this near polygon.

See also Cuypers [247].

10.89 The rank 3 graphs on 2401 vertices

There are precisely ten rank 3 strongly regular graphs on v = 2401 vertices.
The parameters are as follows.

k λ µ rf sg group graph
a 96 47 2 4796 (−2)2304 S49 wr 2 49× 49
b 240 59 20 44240 (−5)2160 74 : 6.O5(3) See A below
c 300 5 42 62100 (−43)300 74 : 6.PΓL2(49) VO−4 (7)

d 384 89 56 41384 (−8)2016 74 : (GL2(7) ◦ GL2(7)) : 2 VO+
4 (7)

e 480 119 90 39480 (−10)1920 74 : 480 : 4 Van Lint-Schrijver
f 480 119 90 39480 (−10)1920 74 : 6.(24:S5) See B below
g 720 229 210 34720 (−15)1680 74 : 6.S7 See C below
h 960 389 380 29960 (−20)1440 74 : 48.S5 See D below
i 1200 599 600 241200 (−25)1200 74 : 1200 : 4 Paley
j 1200 599 600 241200 (−25)1200 74 : 600 : 4 Peisert

We discuss the cases b, f, g and h more in detail below.
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A. Valency 240
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v = 2401

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2401, 240, 59, 20). Its spectrum is 2401 44240 (−5)2160. The full group of
automorphisms is G = 74 :S acting rank 3 with point stabilizer S = 6.O5(3).

For a construction, see p. 144.

Cliques and cocliques

Maximal cliques in Γ have sizes 7–9, a single orbit for each size. Maximum
cocliques have size 49, attaining the Hoffman bound. Among these are planes
in the underlying AG(4, 7). It follows that χ(Γ) = 49.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 72 : (3× 2.S4) 52920 49, 2352 0 5
b 72 : (3× SL2(3))× 7:6 2520 343, 2058 30 35
c 3× (73 : (2× (32+1:Q8:3))) 280 343, 2058 72 28

Case (a): these are the affine planes which are maximum cocliques.
Case (b): these are the affine solids with at infinity a plane that intersects

the copolar space HSp4(3) in exactly five points (see p. 144).
Case (c): these are the affine solids with at infinity a plane that intersects

the copolar space HSp4(3) in the twelve points of a dual affine plane AG(2, 3)∗

(see p. 144).

B. Valency 480
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v = 2401

There are precisely two rank 3 strongly regular graphs with parameters
(v, k, λ, µ) = (2401, 480, 119, 90). Their spectrum is 4801 39480 (−10)1920.

The first is the Van Lint-Schrijver graph on F2401 where two vertices are
adjacent when their difference is a fifth power. See §7.3.1. The full group is
74 : 480 : 4.

Let us call the second graph Γ. Its full group of automorphisms is G = 74 :S
with point stabilizer S = 6.(24:S5).

Construction

The projective space PG(3, 7) has a unique spread with full automorphism group
of order 1920 (namely 24:S5). This group has two orbits on the spread, of sizes
10 + 40, and on the space, of sizes 80 + 320. Construct Γ by taking F4

7 as vertex
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set and joining two vertices when the connecting line meets the orbit of size 80
at infinity.

A classification of all spreads of PG(3, 7) was given by Mathon & Royle [551] and by
Charnes & Dempwolff [193]. The translation plane corresponding to our spread was found
by Mason & Ostrom [541]. A nice description of the spread was given by Mason & Shult
[542]. Via the Klein correspondence it corresponds to the ovoid in F6

7 provided with the
quadratic form Q(x) = x2

1 + · · ·+ x2
5 − x2

6 given by the 10 + 40 points of shapes (00001; 1) or
(00022; 1), where the 24 : S5 acts on the first five coordinates by permuting them or changing
an even number of signs.

Cliques and cocliques

Maximal cliques in Γ have sizes 6, 8, 9, 17, 49, a single orbit for the last three
sizes. Maximum cocliques have size 49, attaining the Hoffman bound. Among
these are planes in the underlying AG(4, 7). It follows that χ(Γ) = χ(Γ) = 49.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 2× (72 : (3× 2.S4)) 1960 49, 2352 0 10
b 72 : (3× 2.S4) 3920 49, 2352 0 10
c 72 : (3×Q16) 11760 49, 2352 0 10

72 : 6 : D12 7840 49, 588, 1764 0 10
d 73 : 62 2240 343, 2058 60 70
e 72 : (3× (Q8 : 2.S4)) 490 49, 2352 48 9
f 73 : (6× SL2(3)) 560 343, 2058 102 63

Cases (a), (b) and (c): These are the affine planes which are maximum
cocliques; the lines at infinity of these planes correspond to the points of shapes
(0, 0, 0, 2, 2; 1), (0, 3, 3, 3, 3; 1) and (0, 0, 2, 3, 3; 1), respectively.

Case (d): These are the affine solids containing a maximum coclique.
Case (e): These are the affine planes which are the maximum cliques; they

have a line at infinity corresponding to a point of shape (0, 0, 0, 0, 1; 1).
Case (f): These are the affine solids containing a maximum clique.
The fourth line of the table shows another type of maximum cocliques: affine

planes with at infinity a line corresponding to a point of shape (1, 1, 1, 3, 3; 0).
Their stabilizer has three orbits on the vertex set.

C. Valency 720
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v = 2401

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2401, 720, 229, 210). Its spectrum is 7201 34720 (−15)1680. The full group of
automorphisms is G = 74 :S acting rank 3 with point stabilizer S = 6.S7.
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Construction

A construction is found by taking 1⊥/〈1〉 in F7
7 provided with the quadratic form

q(x) =
∑
x2
i . The isotropic vectors of shape (1, 2, 4, 0, 0, 0, 0) define 70 points of

the O5(7) generalized quadrangle which, under (inverse) Klein correspondence,
correspond to a set L of 70 lines of the Sp4(7) generalized quadrangle with the
property that every point of the quadrangle is contained in 0 or 2 such lines.
Let Pi be the set of points contained in exactly i members of L , i = 0, 2. With
the point set P0 at infinity of F4

7 , we find Γ.
The point set P2 is doubly covered by the members of L . It is also 6-fold

covered by the members of a set L ′ of 210 nonsingular lines, forming a single
orbit under the action of S7, and which can be found as follows. The eight
points (1-spaces) of F7

7 obtained by applying the symmetric group S4 on the
first four coordinates of the vector (1, 2, 4, 0, 0, 0, 0) correspond under inverse
Klein correspondence to the eight lines of a regulus in PG(3, 7). The opposite
regulus contains exactly two singular lines (corresponding to (0, 0, 0, 0, 1, 2, 4)
and (0, 0, 0, 0, 1, 4, 2)); the other six lines consist of points of P2 only and are
nonsingular with respect to the Sp4(7) geometry. Letting S7 act, we obtain
6.
(

7
4

)
= 210 nonsingular lines covering P2.

The sets P0 and P2 are complementary (exceptional) two-character sets of
PG(3, 7); planes intersect P0 in either 15 (the perp of a point in P2) or 22 (the
perp of a point in P0) points.

Cliques and cocliques

Maximal cliques in Γ have sizes 6–10, 12, 17, a single orbit for sizes 6, 12, 17.
Maximum cocliques have size 49, attaining the Hoffman bound. There are two
orbits. These cocliques are the planes in the underlying AG(4, 7) with a member
of L (first orbit) or L ′ (second orbit) at infinity. It follows that χ(Γ) = 49.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e
a 3× (72 : (3× 2.S4)) 3430 49, 2352 0 15
b 72 : (3× 2.S4) 10290 49, 2352 0 15
c 73 : (3× 6× S3) 1960 343, 2058 90 105
d 72+2 : 62 840 343, 2058 132 98

Cases (a), (b): these are the affine planes with a member of L (resp. L ′)
at infinity.

Cases (c), (d): these are the affine solids with the perp of a point in P2

(resp. P0) at infinity.

D. Valency 960

����1 960 1����960

389
570 380����1440

580

v = 2401
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There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(2401, 960, 389, 380). Its spectrum is 9601 29960 (−20)1440. The full group of
automorphisms is G = 74 :S acting rank 3 with point stabilizer S = 48.S5.

Construction

The group PSL2(49) has a maximal subgroup A5 with orbit lengths 20 + 30 on
PG(1, 49) (cf. §7.5). In PΣL2(49) the stabilizer of this partition is S5. Take F2

49

with the orbit of length 20 at infinity.

Cliques and cocliques

Maximal cliques in Γ have sizes 7–20, 22, 49, a single orbit for sizes 18–20, 22,
and two orbits for size 49. Maximum cocliques have size 49. There are two
orbits. The (co)cliques of size 49 are lines and Baer subplanes of AG(2, 49), and
attain the Hoffman bound. It follows that χ(Γ) = χ(Γ) = 49.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e

a 2× (72 : (3× QD32)) 1470 49, 2352 0 20
b 73 : (6× 22) 1680 343, 2058 120 140
c 3× (72 : (3× QD32)) 980 49, 2352 48 19
d 72 : (3× 2.S4) 1960 49, 2352 48 19
e 73 : 62 1120 343, 2058 162 133

Case (a): these are the maximum cocliques that are affine lines of AG(2, 49).
Cases (c), (d): these are the maximum cliques corresponding to the affine

lines and the affine Baer subplanes of AG(2, 49), respectively.
For (b) and (e), view F2

49 as F4
7 . The orbit of A5 of length 20 becomes a set

S of 20 lines (partial spread) at infinity of an AG(4, 7). Then (b) are the affine
solids of AG(4, 7) with at infinity a plane that does not contain any member
of S , whereas (e) are the affine solids of AG(4, 7) with at infinity a plane that
contains a unique member of S .

10.90 The Fi22 graph

����1 693 1����693
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v = 3510

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(3510, 693, 180, 126). Its spectrum is 6931 63429 (−9)3080. The full group of
automorphisms is G = Fi22.2 acting rank 3 with point stabilizer 2.U6(2).2.

The local graph is the polar graph for U6(2) (§10.74). It follows from
Pasechnik [602] and De Bruyn [261] that Γ is the unique connected graph
that is locally the polar graph for U6(2).

The µ-graphs of Γ are NO−6 (3) graphs (see §10.41).
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Cliques

The group G is transitive on triangles. Maximal cliques all have size 22, and
form a single orbit. The stabilizer in G of a maximal clique M is 210:M22:2
with three orbits of sizes 22, 2464, 1024. Each vertex in the second orbit has 6
neighbors in M and each such 6-set occurs 32 times in this way. These 6-sets
form the Steiner system S(3, 6, 22). Diagram:

����22
21

672 6����2464

495
192 462����1024

231

v = 3510

The subgraph induced on the 1024 vertices nonadjacent to M is distance-
transitive with intersection array {231, 160, 6; 1, 48, 210}, the distance-2 graph
of the coset graph of the truncated Golay code (cf. [123], §11.3F).

����1 231 1����231

70
160 48����770

177
6 210����22

21

v = 1024

Cocliques

The smallest maximal cocliques have size 9 and come in two kinds. The first
kind consists of the affine subplanes AG(2, 3) of the Fischer space. Each such
9-coclique is contained in a unique K9,9,9 stabilized by a maximal subgroup
31+6

+ : 23+4 : 32 : 22 of G. The second kind consists of the 9-cocliques each
contained in a unique subgraph T (10) stabilized by a maximal subgroup S10.

Enright [307] gives a construction of Fi22 in terms of this S10.
For the independence number of Γ we have 33 ≤ α(Γ) ≤ 45.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e graph
a O+

8 (2) : (S3 × 2) 61776 360, 3150 63 72 3NO+
8 (2)

b O7(3) 28160 351, 3159 126 63 NO−⊥7 (3)

Under (a), the graph induced on the orbit of size 360 is the disjoint union
of three copies of NO+

8 (2).

10.91 The Rudvalis graph

����1 1755 1����1755
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1024 780����2304

975

v = 4060

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(4060, 1755, 730, 780). Its spectrum is 17551 153276 (−65)783. The full group of
automorphisms is Ru acting rank 3 with point stabilizer 2F4(2). Construction
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of graph and group is due to Conway & Wales [218], after Rudvalis provided
evidence for the existence of both.

Construction
Coolsaet [220] gave a construction starting with the Hoffman-Singleton graph
Σ. Let Σ have adjacency matrix A. Then A has spectrum 71 228 (−3)21, and
E = −1

25 (A − 7I)(A + 3I) = 1
25 (5A + 15I − J) is the projection on the 28-

dimensional eigenspace of A. Let ex be the unit vector corresponding to vertex
x of Σ, and define T = E

∑
x∈T ex for any set T of vertices of Σ. One has (x̄, ȳ) =

Exy, which is 14
25 ,

4
25 ,
−1
25 when x = y, x ∼ y, and x 6∼ y, respectively. This works

over any field of characteristic different from 5. Look at this representation over
F2. Then (x̄, ȳ) = 0 if x = y or x ∼ y, and (x̄, ȳ) = 1 if x 6∼ y. Let the
175 + 1260 + 2625 = 4060 vertices of Γ be the 175 edges, the 1260 pentagons,
and the 2625 hexads of Σ, where a hexad is the complement of a 4-coclique
inside a Petersen subgraph. Two distinct vertices S, T of Γ are adjacent when
(S, T ) = 0. This yields the Rudvalis graph.

Local graph

����1 10 1����10
1

8 1����80
1

8 1����640

1
8 5����1024

5

v = 1755

The 2F4(2) generalized octagon has the above diagram. The local graph of the
Rudvalis graph is the distance 1-or-2-or-3 graph of this generalized octagon.

A generalized octagon GO(s, t) (with lines of size s+ 1 and t+ 1 lines on each point), has
eigenmatrix

P =


1 s(t+ 1) s2t(t+ 1) s3t2(t+ 1) s4t3

1 s− 1 +
√

2st (s− 1)
√

2st+ st− s −s
√

2st+ s2t− st −s2t
1 s− 1 −st− s −s2t+ st s2t

1 s− 1−
√

2st −(s− 1)
√

2st+ st− s s
√

2st+ s2t− st −s2t
1 −t− 1 t2 + t −t2 − t3 t3


so that its distance-4 matrix has fewer eigenvalues than the distance-1 matrix, and the latter
cannot be a polynomial in the former. In particular, in our case GO(2, 4) the distance 1-or-
2-or-3 graph has spectrum 7301 151026 (−17)650 (−65)78. Does it determine the generalized
octagon? The answer is yes, as one sees combinatorially (or from the group). There are 2925
27-cliques, corresponding to the 2925 lines of the generalized octagon.

Cliques
The largest cliques in Γ have size 28, and there are 424125 of them, forming a
single orbit. The stabilizer of one is 23+8 : L3(2) with vertex orbit sizes 28+448+
3584. An example is found by picking a vertex ∞, and in its local generalized
octagon a line and the 24 points adjacent to it. The stabilizer of a 28-clique is
transitive on the 28 vertices. Each vertex outside a 28-clique is adjacent to 12
vertices inside.

Cocliques
The largest cocliques in Γ have size 28, and there are 24128000 of them, forming
a single orbit. The stabilizer of one is U3(3) with vertex orbit sizes 28 + 63 +
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189 + 756 + 1008 + 2016. The stabilizer of the orbit of size 2016 is a maximal
subgroup (26 : U3(3)) : 2 of Ru with orbit sizes 252 + 1792 + 2016.

µ-graphs

Let x, y be nonadjacent vertices and let M be the set of common neighbors.
Then |M | = µ = 780. Consider M as a subset of the generalized octagon on
the neighbors of x. Every line meets M in 0 or 2 points, so M is a hyperplane
complement, where the hyperplane has 975 points and 975 lines, 3 points/line
and 3 lines/point. In the Rudvalis graph, these µ-graphs are disconnected, and
have two connected components of size 390 each.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. Also the three orbits of subgroups (26 : U3(3)) : 2
are regular sets. We give degree d and nexus e for the smallest orbit.

H index orbitlengths d e

a (22 × Sz(8)) : 3 417600 1820, 2240 795 780
b (26 : U3(3)) : 2 188500 252, 1792+2016 123 108

1792, 252+2016 783 768
2016, 252+1792 879 864

10.92 212.HJ.S3 on 4096 vertices

����1 1575 1����1575
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960 600����2520

975

v = 4096

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(4096, 1575, 614, 600). Its spectrum is 15751 391575 (−25)2520. The full group of
automorphisms is 212 : (3× HJ) : 2 with point stabilizer (3× HJ) : 2.

It arises because HJ, acting on PV for V = F6
4 via HJ < G2(4) < PSp6(4), has

orbits of sizes 525 and 840 on the 1365 points ([517]), giving two-character sets.

Construction

The dual Ω of the Cohen-Tits near octagon is a geometry with 525 points and
315 lines. It is fully embedded in the generalized hexagon G2(4), which has an
embedding in the polar space Sp6(4), which in turn is embedded in the projective
space PG(5, 4). The automorphism group HJ : 2 of Ω acts transitively on Ω and
on its complement in G2(4). Let V be a 6-dimensional vector space over F4 with
PV = PG(5, 4). Then Γ is the graph on the vectors of V , adjacent when their
difference belongs to Ω.

As a set of 525 points, Ω is a two-character set of PG(5, 4). Taking perps
with respect to the symplectic form associated to Sp6(4), the perp of a point in
Ω intersects Ω in 141 points and the perp of a point outside Ω has 125 points
in common with Ω.
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Maximal cliques and cocliques

The maximal cliques in Γ have sizes 7–14, 16, 18, 20, 24, 25, 64 with unique
orbits for sizes 20, 24, 25, 64. The Hoffman bound is 64, and 64-cliques have
stabilizer 26 : G2(2). These arise as vector spaces over F2 in V whose 1-spaces
(viewed as vector lines over F4) belong to a fixed subhexagon of Ω isomorphic
to the split Cayley hexagon G2(2) (Ω has 100 such subhexagons, which can be
taken as the vertices of the Hall-Janko graph on 100 vertices, see §10.32).

Maximum cocliques have size 40 and fall into three orbits with stabilizers of
orders 30, 50, and 150.

Regular sets

Among the regular sets in Γ that arise as an orbit of a subgroup of Aut Γ with
two orbits on the vertex set are sets with size u, degree d, and nexus e, where
e = d+25 and (u, d) = (256, 75), (512, 175), (1024, 375), (1536, 575), (2048, 775),
and where e = d − 39 and (u, d) = (64, 63), (256, 135), (512, 231), (1024, 423),
(1536, 615), (1792, 711), (2048, 807).

10.93 The 38.21+6.O−6 (2).2 graph on 6561 vertices
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v = 6561

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(6561, 1440, 351, 306). Its spectrum is 14401 631440 (−18)5120. The full group is
38 : 21+6.O−6 (2).2, acting rank 3 with point stabilizer 21+6.O−6 (2).2.

For a construction, see p. 144.
Maximum cliques have size 81 (a single orbit); they are subspaces AG(3, 4).

Maximum cocliques have size 81.

Regular sets

Among the regular sets in Γ that arise as an orbit of a subgroup of Aut Γ with
two orbits on the vertex set are sets with size u, degree d, and nexus e, where
e = d + 18 and (u, d) = (81, 0), (729, 144), (2187, 468), and where e = d − 63
and (u, d) = (81, 80), (729, 216), (2187, 522).

The case (81, 0) corresponds to affine spaces of dimension 4 with at infinity a solid disjoint
from X (hence contained in X′, see p. 144 for a construction).

The case (729, 144) corresponds to affine spaces of dimension 6 with at infinity a 5-
dimensional subspace containing a solid entirely contained in X, and intersecting X in the
union of 18 lines in the orbit of the members of S (see 〈L, S〉 on p. 144 for a construction).

The case (2187, 468) corresponds to affine spaces of dimension 7 with at infinity a hyper-
plane intersecting X in 234 points.

The case (81, 80) corresponds to affine spaces of dimension 4 with at infinity a solid
contained in X.

The case (729, 216) corresponds to affine spaces of dimension 6 with at infinity a 5-
dimensional subspace intersecting X in three solids not containing a common point (this
can be realized by considering Σ′ and an arbitrary member of S ).

The case (2187, 522) corresponds to affine spaces of dimension 7 with at infinity a hyper-
plane intersecting X in 261 points.
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10.94 The Fi22 graph on 14080 vertices
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v = 14080

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(14080, 3159, 918, 648). Its spectrum is 31591 279429 (−9)13650. The full group
of automorphisms is G = Fi22 acting rank 3 with point stabilizer O7(3). (The
group G has two conjugacy classes of subgroups of index 14080 isomorphic to
O7(3), merged in Fi22.2. One of these has orbits of sizes 1, 3159, and 10920 on
its own conjugacy class, and 364, 1080, and 12636 on the other.)

Construction

This is the graph on the lines on a fixed point in the Fi23 Fischer space, adjacent
when they span a dual affine plane. It follows that the complementary graph is
the collinearity graph of a partial linear space with lines of size 4.

The Rudvalis-Hunt design

Rudvalis and Hunt (cf. [183] or [621], p. 112) observed that the design of which
the points are the subgroups in one conjugacy class of subgroups O7(3) and the
blocks the subgroups in the other conjugacy class, incident when one lies in an
orbit of size 364 or 1080 of the other, is a square 2-(14080,1444,148) design. See
also [280].

Maximal cliques and cocliques

The largest cliques have size 64. They form a single orbit, and the stabilizer of
one is a maximal subgroup 26 : Sp6(2) with orbits of lengths 64, 5376, and 8640.
Maximal cliques have sizes 10–14, 16, 18, 20, 22, 25, 28, 64.

The largest cocliques have size 40, reaching the Hoffman bound. There are
several nonequivalent examples. One is invariant under a group 33+3 :L3(3).

1408-vertex subgraphs

Γ has 3510 subgraphs isomorphic to the Conway graph on 1408 vertices (§10.81).
Each is fixed by a Fischer transposition. The stabilizer of one in G is a nonsplit
extension 2.U6(2). Each vertex outside such a subgraph has 288 neighbors inside.
Distinct such subgraphs meet in 112 or 256 vertices. The graph with these 3510
subgraphs as vertices, adjacent when they have 256 vertices in common, is the
Fi22 graph.

Regular sets

Examples of regular sets in Γ are obtained from subgroups H of G = Aut Γ with
two orbits on the vertex set. We give degree d and nexus e for the smallest orbit.
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H index orbitlengths d e graph
a 2F4(2)′ 3592512 1600, 12480 351 360 Tits, §10.82
b O+

8 (2) : S3 61776 2880, 11200 639 648
c 2.PSU6(2) 3510 1408, 12672 567 288 Conway, §10.81
d 210 : M22 142155 2816, 11264 855 576

10.95 The 56.4.HJ.2 graph on 15625 vertices
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v = 15625

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(15625, 7560, 3655, 3660). Its spectrum is 75601 608064 (−65)7560. The full group
of automorphisms is 56 : (2.HJ) : 4.

It arises because HJ, acting on PV for V = F6
5 via 2.HJ < Sp6(5), has orbits

of sizes 1890 and 2016 on the 3906 points ([517]), giving two-character sets.

10.96 The Fi23 graph
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v = 31671

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(31671, 3510, 693, 351). Its spectrum is 35101 351782 (−9)30888. The full group
of automorphisms is G = Fi23 acting rank 3 with point stabilizer 2.Fi22.

The local graph is the Fi22 graph, and Γ is the unique connected locally Fi22

graph (Pasechnik [602]). The µ-graphs are NO−⊥7 (3) graphs (see §10.66).

Cliques

The group G is transitive on triangles and 4-cliques. Maximal cliques all have
size 23, and form a single orbit. The stabilizer in G of a maximal clique M
is a nonsplit extension 211.M23 with three orbits of sizes 23, 8096, 23552. Each
vertex in the second orbit has 7 neighbors in M and each such 7-set occurs 32
times in this way. These 7-sets form the Steiner system S(4, 7, 23). Each vertex
in the third orbit has a unique neighbor in M . Diagram:
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��
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2464 7��
��
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2368 814��
��
23552

�
�

2695
1

v = 31671

Regular sets

Given two nonadjacent vertices x, y in the Fi24 graph ∆, we see a split of Γ =
∆(y) into the µ-graph ∆(x)∩∆(y), and the rest. This yields a regular partition
fixed by O+

8 (3) : S3:



10.97. (137632, 28431, 6030, 5832) 351
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v = 31671

The µ-graph is disconnected, with three components of size 1080. For a
construction of Fi23 via this partition, see Wilson [735], p. 243.

10.97 The Fi23 graph on 137632 vertices
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v = 137632

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(137632, 28431, 6030, 5832). Its spectrum is 284311 27930888 (−81)106743. The
full group of automorphisms is G = Fi23 acting rank 3 with point stabilizer
O+

8 (3) : S3.

Construction

This is the graph on the lines on a fixed point in the Fi24 Fischer space, adjacent
when they span a dual affine plane. It follows that the complementary graph is
the collinearity graph of a partial linear space with lines of size 4.

Maximal cliques

The largest cliques have size 136. They form a single orbit, and the stabilizer
of one is a maximal subgroup Sp(8, 2) with orbits of lengths 136, 45696, and
91800.

14080-vertex subgraphs

Γ has 31671 subgraphs isomorphic to the Fi22 graph on 14080 vertices (§10.94).
Each is fixed by a Fischer transposition. The stabilizer of one in G is a nonsplit
extension 2.Fi22. Each vertex outside such a subgraph has 2880 neighbors inside.
Distinct such subgraphs meet in 1408 or 1444 vertices. The graph with these
31671 subgraphs as vertices, adjacent when they have 1408 vertices in common,
is the Fi23 graph.

The first subconstituent

The first subconstituent of Γ has full group of automorphisms O+
8 (3) : S3 acting

rank 4 with suborbit sizes 1 + 2880 + 3150 + 22400. The graphs induced
by the suborbits of sizes 2880 and 3150 are strongly regular with parameters
(v, k, λ, µ) = (28431, 2880, 324, 288) and (28431, 3150, 621, 315), both with the
same full group, as was found in [244].



352 CHAPTER 10. INDIVIDUAL GRAPH DESCRIPTIONS

��
��

1
2880 1��
��
2880

324

2555 288��
��
25550

2592
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This latter graph is a subgraph of the Fi23 graph, see p. 350. The valency
2880 and 3150 graphs have clique numbers 9 and 21, respectively.

10.98 The E6(2) graph
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v = 139503

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(139503, 4590, 621, 135). Its spectrum is 45901 4952482 (−9)137020. The full
group of automorphisms is E6(2) acting rank 3 with point stabilizer 216 : O+

10(2).
The local graphs are 2-clique extensions of the strongly regular D5,5(2) graph

with parameters (2295, 310, 85, 35) (see §2.2.12).
The µ-graphs are strongly regular O+

8 (2) graphs with parameters (135, 70, 37,
35) (see §10.43).

Maximal cliques have sizes 31 and 63. (If the vertices are the objects of type
1 in the E6 geometry, then these maximal cliques are the objects of types 5 and
2, respectively.)

There are maximal cocliques of size 256 (= 1+51+204, union of three orbits
of the normalizer of an element of order 17). It is not known whether Γ contains
larger cocliques. The Hoffman bound is 273.

The maximal subgroup F4(2) has two orbits, of lengths 69615 and 69888.
The smallest orbit has degree d = 2286 and nexus e = 2295, see also §4.9.2.

The maximal subgroup (7× 3D4(2)) : 3 has two orbits, of lengths 17199 and
122304. The smallest orbit has degree d = 558 and nexus e = 567, see also
§4.9.2.

10.99 The Fi24 graph
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v = 306936

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(306936, 31671, 3510, 3240). Its spectrum is 316711 35157477 (−81)249458. The
full group of automorphisms is G = Fi24 acting rank 3 with point stabilizer
2× Fi23.
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The local graph is the Fi23 graph. The µ-graphs are disconnected, with
three connected components, each carrying a copy of the NO+

8 (3) graph with
parameters (v, k, λ, µ) = (1080, 351, 126, 108) (§10.78).

Cliques
The group G is transitive on i-cliques for i ≤ 5. Maximal cliques all have size 24,
and form a single orbit. The stabilizer in G of a maximal clique M is a nonsplit
extension 212.M24 with three orbits of sizes 24, 24288, 282624. Each vertex in
the second orbit has 8 neighbors in M and each such 8-set occurs 32 times in
this way. These 8-sets form the Steiner system S(5, 8, 24). Diagram:
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v = 306936

Triple cover
This graph Γ has a distance-transitive antipodal 3-cover 3Γ with diagram
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1
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1 31671��
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on v = 920808 vertices, cf. Norton [592]. The graphs Γ and 3Γ are the only
connected locally Fi23 graphs (Pasechnik [602]).

10.100 The Suz graph on 531441 vertices

��
��

1
65520 1��
��
65520

8559

56960 8010��
��
465920

57510

v = 531441 = 312

There is a unique rank 3 strongly regular graph Γ with parameters (v, k, λ, µ) =
(531441, 65520, 8559, 8010). Its spectrum is 655201 63965520 (−90)465920. The
full group of automorphisms is G = 312.2.Suz.2 acting rank 3 with point stabi-
lizer 2.Suz.2. See also §6.3.3.

Cliques
The largest cliques have size 81 and form a single orbit. The stabilizer of one is a
group of shape 34 : ((22+6.O5(3)) : 2) with orbit sizes 81+116640+414720, acting
2-transitively on the 81-clique. Points outside have either 8 or 17 neighbors
inside an 81-clique.

These 81-cliques are subspaces of the socle V = F12
3 of G, so that χ(Γ) = 38.
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Chapter 11

Classification of rank 3 graphs

The classification of rank 3 graphs is due to Foulser, Kallaher, Kantor, Liebler,
Liebeck, Saxl and others. The result is described in the following pages. We give
all pairs (Γ, G), with Γ a strongly regular graph and G a group of automorphisms
of Γ acting rank 3. Two such pairs (Γ, G) and (Γ′, G′) are called equivalent if
there is an isomorphism α : Γ→ Γ′ such that G′α = αG.

11.1 Primitive rank 3 permutation groups

The O’Nan-Scott theorem (cf. [518]) immediately implies

Theorem 11.1.1 Let Γ be a primitive strongly regular graph with parameters
(v, k, λ, µ), and G a primitive rank 3 permutation group acting as a group of
automorphisms of Γ. Then we have one of the following cases.

(i) T × T C G ≤ T0 wr 2, where T0 is a 2-transitive group of degree v0, the
socle T of T0 is simple and v = v2

0.
(ii) The socle L of G is simple.
(iii) G is an affine group, that is, G has a regular elementary abelian normal

subgroup and v is a power of a prime.

Hence, the classification must handle these three cases.
For (i), see the classification of doubly transitive groups (Theorem 11.2.1

below). The graphs here are the lattice graphs.
For (ii), if L is alternating, see Bannai [45] (Theorem 11.3.1 below). If L is

classical, see Kantor & Liebler [481] (Theorems 11.3.2, 11.3.3 below). If L is
exceptional, see Liebeck & Saxl [520] (Theorem 11.3.4 below). For sporadic
L the list was determined by Brouwer, Soicher and Wilson and given in [520]
(Theorem 11.3.5 below).

For (iii), see Liebeck [517] (Theorem 11.4.1 below).

11.2 Wreath product

This case depends on the classification of doubly transitive groups. We follow
Cohen & Zantema [206].

355
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Theorem 11.2.1 Let G be a doubly transitive permutation group on a finite
set Ω. Then we have one of the cases in Table 11.1.

G |Ω| Ω restrictions
Sn, An n n symbols n ≥ 2, n ≥ 4

PSLn(q) ≤ G ≤ PΓLn(q) qn−1
q−1 points of PG(n− 1, q) n ≥ 2

PSU3(q) ≤ G ≤ PΓU3(q) q3 + 1 points of a Hermitian unital
2G2(q) ≤ G ≤ Aut(2G2(q)) q3 + 1 points of a Ree unital q = 32m+1, m ≥ 0
2B2(q) ≤ G ≤ Aut(2B2(q)) q2 + 1 points of a Suzuki ovoid q = 22m+1, m ≥ 1

Sp2m(2) 2m−1(2m ± 1) nondegenerate quadrics m ≥ 3
PSL2(11) 11 2-(11, 5, 2)

A7 15 points of PG(3, 2)
M11 11 S(4, 5, 11)
M11 12 3-(12, 6, 2)
M12 12 S(5, 6, 12)

M22, Aut(M22) 22 S(3, 6, 22)
M23 23 S(4, 7, 23)
M24 24 S(5, 8, 24)
HS 176 2-(176, 50, 14)
Co3 276 2-(276, 100, 2 · 36)

SLd(q) ≤ G0 ≤ ΓLd(q) qd d ≥ 1

Sp2d(q)EG0 q2d d ≥ 2
G2(q)′EG0 q6 q = 2a

21+2EG0 q2 q = 3, 5, 7, 11, 23

21+4EG0 34

G
(∞)
0 ' SL2(5) q2 SL2(5) < SL2(q) q = 9, 11, 19, 29, 59
G0 ' A6 24 A6 ' Sp4(2)′

G0 ' A7 24 A7 < A8 ' SL4(2)
G0 ' SL2(13) 36 SL2(13) < Sp6(3)

Table 11.1: The doubly transitive permutation groups G acting on a set Ω. In
the second part of the table, Ω is elementary abelian, and 0 ∈ Ω ≤ G. Here
G

(∞)
0 is the last term of the commutator series of G0.

For the first part of this table (G without regular normal subgroup), see
[173], [476]. For the second part, see [417], [418]. For the application to rank 3
groups, only the first part is used.1 The only rank 3 graphs this describes are
the grids (lattice graphs) n × n (with full automorphism group Sn wr 2). For
a given n × n lattice graph Γ and doubly transitive group T0 of degree n with
nonabelian simple socle T , a group G with T ×T CG ≤ T0 wr 2 acts as a rank 3
automorphsm group on Γ if and only if G contains an element (not necessarily
of order 2) that interchanges the two partitions of V Γ in maximal cliques (the
two ‘directions’ of the lattice).

11.3 Simple socle

11.3.1 Alternating socle

Theorem 11.3.1 (Bannai [45])
Let G be either Sn or An, and let H be a maximal subgroup of G, such that

the permutation representation of G on the cosets of H is rank 3. Then we have
one of

(i) H is the stabilizer of a pair of symbols (of index
(
n
2

)
). The corresponding

graph is the triangular graph T (n) (or its complement). Parameters are v =

1The lattice graphs with doubly transitive groups of affine type acting are contained in
(iii), see (2) of Theorem 11.4.1.
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n(n − 1)/2, k = 2(n − 2), λ = n − 2, µ = 4, r = n − 4, s = −2, f = n − 1,
g = n(n− 3)/2.

(ii) n = 6 and H is the stabilizer of a partition of the 6 symbols into three
pairs. The graph is T (6), with (v, k, λ, µ) = (15, 6, 1, 3).

(iii) n = 8 and H is the stabilizer of a partition of the 8 symbols into two
4-sets. Parameters are (v, k, λ, µ) = (35, 16, 6, 8).

(iv) n = 10 and H is the stabilizer of a partition of the 10 symbols into two
5-sets. Parameters are (v, k, λ, µ) = (126, 25, 8, 4).

(v) n = 4 and G = A4 and H = 22. The graph is K3.
(vi) n = 9 and G = A9 and H is PΓL2(8) (two classes). Parameters are

(v, k, λ, µ) = (120, 56, 28, 24).

The graph from case (vi) is the graph NO+
8 (2).

For the triangular graphs, see §1.1.7. Case (ii) is equivalent to Case (i) for
n = 6. For the graphs from cases (iii), (iv), (vi), see §10.13, §10.40, §10.39.

11.3.2 Classical simple socle
Theorem 11.3.2 (Kantor & Liebler [481])

Let M be one of the groups Sp2m−2(q), Ω±2m(q), Ω2m−1(q) or SUm(q) for
m ≥ 3 and let q be a prime power. Let MEG with G/Z(M) ≤ Aut(M/Z(M)).
Assume that G acts as a primitive rank 3 permutation group on the set X of
cosets of a subgroup K of G. Then at least one of the following holds up to
conjugacy under Aut(M/Z(M)).

(i) X is an M -orbit of singular (or isotropic) points.
(ii) X is an M -orbit of maximal totally singular (or isotropic) subspaces and

M is one of Sp4(q), SU4(q), SU5(q), Ω−6 (q), Ω+
8 (q) or Ω+

10(q).
(iii) X is any M -orbit of nonsingular points and M is one of SUm(2),

Ω±2m(2), Ω±2m(3) or Ω2m−1(3).
(iv) X is either orbit of nonsingular hyperplanes for M = Ω2m−1(4) or

M = Ω2m−1(8), where in the latter case G = Ω2m−1(8).3.
(v) M = SU3(3) and K ∩M = PSL3(2).
(vi) M = SU3(5) and K ∩M = 3.A7.
(vii) M = SU4(3) and K ∩M = 4.PSL3(4).
(viii) M = Sp6(2) and K = G2(2).
(ix) M = Ω7(3) and K ∩M = G2(3).
(x) M = SU6(2) and K ∩M = 3.PSU4(3).2.

The graphs here are in case (i) the polar graphs (with parameters given
in Theorem 2.2.12 (in terms of the order (q, t), and orders given in Theorem
2.3.6), in case (ii) given in Theorem 2.2.19 and Theorem 2.2.20, in case (iii)
in §3.1.6, §3.1.2, §3.1.3, §3.1.4, in case (iv) in §3.1.4. In cases (v)–(x) the
graphs have parameters (v, k, λ, µ) = (36, 14, 4, 6) (§10.14), (50, 7, 0, 1) (§10.19),
(162, 56, 10, 24) (§10.48), (120, 56, 28, 24) (§10.39), (1080, 351, 126, 108) (§10.78)
and (1408, 567, 246, 216) (§10.81). Hence the graphs of (viii) and (ix) are already
contained in (iii).

Theorem 11.3.3 (Kantor & Liebler [481])
Let M = PSLn(q) ≤ G ≤ AutM . Assume that G acts as a primitive rank 3

permutation group on the set X of cosets of a subgroup K of G. Then at least
one of the following occurs up to conjugacy under AutM .
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(i) X is the set of lines for M , n ≥ 4.
(ii) M = PSL2(4) ' PSL2(5), |X| =

(
5
2

)
, or

M = PSL2(9) ' A6, |X| =
(

6
2

)
, or

M = PSL4(2) ' A8, |X| =
(

8
2

)
, or

G = PΓL2(8), |X| =
(

9
2

)
.

(iii) M = PSL3(4), M ∩K ' A6.
(iv) M = PSL4(3), M ∩K = PSp4(3).

The graphs here are (i) those of §3.5.1, (ii) the triangular graphs T (m),
m = 6, 8, 9, (iii) the Gewirtz graph (§10.20), (iv) the NO+

6 (3) graph (§10.35).

11.3.3 Exceptional simple socle
Theorem 11.3.4 (Liebeck & Saxl [520])

Let G be a finite primitive rank 3 permutation group of degree v. Assume
that the socle L of G is a simple group of exceptional Lie type, and let H be
the stabilizer in L of a point. Then either L = E6(q), H is a parabolic D5(q),
and v = (q12−1)(q9−1)

(q4−1)(q−1) , k = q(q3 + 1) q
8−1
q−1 , f = q(q4 + 1)(q6 + q3 + 1), g =

q2(q6 + 1)(q4 + 1) q
5−1
q−1 (see Proposition 4.9.1; two classes), or L, H and the

parameters of Γ are as in Table 11.2 below. The comment ‘two classes’ means
that there are two classes of such rank 3 representations of L, interchanged by
a graph automorphism.

v k, l L H graph
351 126, 224 G2(3) U3(3).2 NO−⊥7 (3), §10.66

two classes
416 100, 315 G2(4) HJ §10.68
2016 975, 1040 G2(4) U3(4).2 NO−7 (4), §3.1.4

130816 32319, 98496 G2(8) SU3(8).2 NO−7 (8), §3.1.4
G = G2(8).3

Table 11.2: Rank 3 graphs with exceptional simple socle. Here l = v − k − 1.

In the cases of G2(q) of degree q3(q3 − 1)/2 the full automorphism group of
the graph contains O7(q). (See also [519].) Hence the corresponding strongly
regular graphs are contained in the classes (iii) and (iv) of Theorem 11.3.2. See
also §3.1.4 for a construction of these graphs exhibiting the rank 3 action of
G2(3), G2(4) and G2(8).3.

11.3.4 Sporadic simple socle
The list of rank 3 representations of the sporadic simple groups other than BM
had been determined by Brouwer, and Soicher and R. A. Wilson checked that
there are no further examples. The proof is by inspection of the Atlas [215].

Theorem 11.3.5 Let G be a finite primitive rank 3 permutation group of degree
v. Assume that the socle L of G is a sporadic simple group, and let H be the
stabilizer in L of a point. Then we have one of the cases in Table 11.3 below.

We see two graphs for M23 on 253 vertices with the same permutation
character but nonisomorphic permutation representations.
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v k, l L H ref comment
55 18,36 M11 M9.2 §11.3.5 T (11)
66 20,45 M12 M10.2 §11.3.5 T (12)

two classes
77 16,60 M22 24.A6 §10.27 S(3, 6, 22)
100 22,77 HS M22 §10.31
100 36,63 HJ U3(3) §10.32
176 70,105 M22 A7 §10.51 S(4, 7, 23) \ S(3, 6, 22)

two classes
253 42,210 M23 M21.2 §11.3.5 T (23)
253 112,140 M23 24.A7 §10.56 S(4, 7, 23)
275 112,162 McL U4(3) §10.61
276 44,231 M24 M22.2 §11.3.5 T (24)
1288 495,792 M24 M12.2 §10.80
1782 416,1365 Suz G2(4) §10.83
2300 891,1408 Co2 U6(2).2 §10.88
3510 693,2816 Fi22 2.U6(2) §10.90
4060 1755,2304 Ru 2F4(2) §10.91
14080 3159,10920 Fi22 Ω7(3) §10.94

two classes
31671 3510,28160 Fi23 2.Fi22 §10.96
137632 28431,109200 Fi23 PΩ+

8 (3).S3 §10.97
306936 31671,275264 Fi′24 Fi23 §10.99

Table 11.3: Rank 3 graphs with sporadic simple socle

11.3.5 Triangular graphs

If G acts 4-transitively on a set Ω, then G will act as a rank 3 group on the set(
Ω
2

)
of unordered pairs from Ω. The corresponding graphs are triangular graphs

T (m), where m = |Ω|. These graphs have
(
m
2

)
vertices, and full automorphism

group Sm (if m > 4).
For sporadic G this happens with M11, M12, M23 and M24 acting on 11, 12,

23 and 24 points, respectively. The corresponding graphs have 55, 66, 253 and
276 vertices, respectively.

11.4 The affine case

The affine case was finished by Liebeck after substantial earlier work by Foulser
and Kallaher.

Theorem 11.4.1 (Liebeck [517])
Let G be a finite primitive affine permutation group of rank 3 and of degree

v = pd, with socle V , where V ' (Zp)
d for some prime p, and let G0 be the

stabilizer of the zero vector in V . Then G0 belongs to one of the following classes
(and, conversely, each of the possibilities listed below does give rise to a rank 3
affine group).

(A) Infinite classes. These are:
(1) G0 ≤ ΓL1(pd). This case is handled in Foulser & Kallaher [330], §3.

(See Theorem 11.4.2 below.)
(2) G0 imprimitive: G0 stabilizes a pair {V1, V2} of subspaces of V , where

V = V1 ⊕ V2 and dimV1 = dimV2; moreover, (G0)Vi
is transitive on Vi \ 0 for

i = 1, 2 (and hence G0 is determined by Hering [418]; see Table 11.1 above).
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(3) Tensor product case: for some a, q with qa = pd, consider V as a vector
space Va(q) of dimension a over Fq; then G0 stabilizes a decomposition of Va(q)

as a tensor product V1 ⊗ V2 where dimFq
V1 = 2; moreover, GV2

0 B SL(V2), or
GV2

0 = A7 < SL4(2) (and p = q = 2, d = a = 8), or dimFq
V2 ≤ 3.

(4) G0 B SLa(q) and pd = q2a.
(5) G0 B SL2(q) and pd = q6.
(6) G0 B SUa(q) and pd = q2a.
(7) G0BΩ±2a(q) and pd = q2a (and if q is odd, G0 contains an automorphism

interchanging the two orbits of Ω±2a(q) on nonsingular 1-spaces).
(8) G0 B SL5(q) and pd = q10 (from the action of SL5(q) on the exterior

square of V5(q)).
(9) G0/Z(G0)B Ω7(q).Z(2,q−1) and pd = q8 (from the action of B3(q) on a

spin module).
(10) G0/Z(G0)BPΩ+

10(q) and pd = q16 (from the action of D5(q) on a spin
module).

(11) G0 B Sz(q), q = 22m+1, and pd = q4 (from the embedding Sz(q) <
Sp4(q)).

(B) ‘Extraspecial’ classes. Here G0 ≤ NGLd(p)(R) where R is an r-group,
irreducible on V . Either r = 3 and R ' 31+2 (extraspecial of order 27) or r = 2
and |R/Z(R)| = 22m with m = 1 or 2. If r = 2, then either |Z(R)| = 2 and R
is one of the two extraspecial groups Rm1 , Rm2 of order 21+2m, or |Z(R)| = 4,
when we write R = Rm3 . The possibilities are listed in Table 11.5. (Note that
this includes all the soluble rank 3 groups from Foulser [329].)

(C) ‘Exceptional classes’. Here the socle L of G0/Z(G0) is simple, and the
possibilities are listed in Table 11.6.

In part (B) the groups are Rm1 = 21+2m
+ , Rm2 = 21+2m

− and Rm3 = Z4 ◦21+2m.

case v = pd k, l ref
(A2) p2m 2(pm − 1), (pm − 1)2 L2(pm)

(A3) q2m (q + 1)(qm − 1), q(qm − 1)(qm−1 − 1) Hq(2,m), §3.4.1
(A4) q2a (q + 1)(qa − 1), q(qa − 1)(qa−1 − 1) Baer subspace, §3.4.5
(A5) q6 (q + 1)(q3 − 1), q(q3 − 1)(q2 − 1) cube root subspace, §3.4.5
(A6) q2a (qa − ε)(qa−1 + ε), qa−1(q − 1)(qa − ε) ε = (−1)a, §3.3.1
(A7) q2a (qa − ε)(qa−1 + ε), qa−1(q − 1)(qa − ε) VOε

2a(q), §3.3.1
(A8) q10 (q5 − 1)(q2 + 1), q2(q5 − 1)(q3 − 1) §3.4.2
(A9) q8 (q4 − 1)(q3 + 1), q3(q4 − 1)(q − 1) VO+

8 (q), §3.3.1
(A10) q16 (q8 − 1)(q3 + 1), q3(q8 − 1)(q5 − 1) VD5,5(q), §3.3.3
(A11) q4 (q2 + 1)(q − 1), q(q2 + 1)(q − 1) VSz(q), §8.7.1(iv)

Table 11.4: Infinite classes

r v = pd k, l R ref
3 64 = 26 27,36 31+2 §10.25
2 m2 (m = 7, 13, 17, 19, 23, 29, 31, 47), see R1

1 or R1
2 §7.5.2

or 34 or 36 Thm. 11.4.4 (i.e., D8 or Q8)
2 81 = 34 32,48 R2

1 or R2
2 VO+

4 (3), §3.3.1
81 = 34 16,64 R2

2 9× 9
625 = 54 240,384 R2

2 or R2
3 §10.73B

2401 = 74 480,1920 R2
2 §10.89B

6561 = 38 1440,5120 R3
2 §10.93

Table 11.5: Extraspecial classes

Case (A1) above is in more detail:
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L v = pd k, l embedding of L ref
A5 34 or 74 or m2 see Thm. 11.4.3 A5 < PSL2(pd/2) §10.30, §10.89D

(m = 31, 41, 71, 79, 89) §7.5
A6 64 = 26 18,45 A6 < PSL3(4) §10.24

M11 243 = 35 22,220 M11 < PSL5(3) §10.55
M11 243 = 35 110,132 M11 < PSL5(3) §10.55
A7 256 = 28 45,210 A7 < PSL4(4) §10.57
A10 256 = 28 45,210 A10 < Sp8(2) §10.57

PSL2(17) 256 = 28 102,153 PSL2(17) < Sp8(2) §10.58
A9 256 = 28 120,135 A9 < Ω+

8 (2) §10.60
A6 625 = 54 144,480 A6 < PSp4(5) §10.73A

PSL3(4) 729 = 36 224,504 PSL3(4) < PΩ−6 (3) §10.76
M24 2048 = 211 276,1771 M24 < PSL11(2) §10.84
M24 2048 = 211 759,1288 M24 < PSL11(2) §10.85

PSU4(2) 2401 = 74 240,2160 PSU4(2) < PSL4(7) §10.89A
A7 2401 = 74 720,1680 A7 < PSp4(7) §10.89C
HJ 4096 = 212 1575,2520 HJ < G2(4) < Sp6(4) §10.92
HJ 15625 = 56 7560,8064 HJ < PSp6(5) §10.95

G2(4), Suz 531441 = 312 65520,465920 G2(4) < Suz < PSp12(3) §6.3.3, §10.100

Table 11.6: Exceptional classes

Theorem 11.4.2 (Foulser & Kallaher [330], §3) Let q = pr be a prime
power. Let G = AΓL(1, q), the group consisting of the semilinear maps x 7→
axσ + b on Fq. Let T be the subgroup of size q consisting of the translations
x 7→ x+b. Let G0 = ΓL1(q), so that G = G0T . Let H be a subgroup of G0. Then
HT acts as a rank 3 group on Fq precisely when H has two orbits on F∗q . The
possible H are found in Theorem 7.4.5 (the case where H < GL1(q)), Theorem
7.4.6 (the case where H has two orbits of different sizes), and Theorem 7.4.7
(the case where H has two orbits of equal size).

The graphs here were determined by Muzychuk [581], and are the Paley,
Peisert and VanLint-Schrijver graphs.

The case of A5 in Case (C) above was described in [330], Theorem 5.3.

Theorem 11.4.3 (Foulser & Kallaher [330]; see also §7.5) Let q = pr be a
prime power. Let TH be a rank 3 collineation group of the Desarguesian affine
plane AG(2, q), where T is the translation group of order q2 and H̄∩PSL(2, q) '
A5, where H̄ is the image of H under the homomorphism that maps ΓL2(q) onto
PΓL2(q). Then either pr = 32, or H̄ has two orbits on l∞ of lengths a and b,
and (pr, a, b) is one of (24, 5, 12), (52, 6, 20), (31, 12, 20), (41, 12, 30), (72, 20, 30),
(26, 5, 60), (71, 12, 60), (79, 20, 60), (89, 30, 60), (53, 6, 120). If pr = 32, then H̄
is transitive on (the 10 points of) l∞, but H has two orbits of size 40 on the
nonzero vectors.

The graphs here have v = q2 and k = (q − 1)a, l = (q − 1)b.

In [330] also the possibility (pr, a, b) = (119, 60, 60) was listed, but, as Liebeck noted,
the authors overlooked there that 119 is not a prime power. The cases (pr, a, b) = (16, 5, 12),
(25,6,20), (64,5,60), and (125,6,120) are not listed in Table 11.6 because A5 ' L2(4) ' L2(5),
so that these occur under the cases (A4) and (A5) of Theorem 11.4.1.

Table 14 of [517] gives subdegrees 105, 150 for the case L = A9 in Case (C), but Table 12
of [159] corrects that to 120, 135.

The solvable primitive permutation groups of low rank were determined in
Foulser [329]. In particular:

Theorem 11.4.4 (Foulser [329])
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Let G be a maximal solvable primitive permutation group of degree v. Then
G0 is a semilinear group on a vector space V over a field Fpm . Suppose G has
rank 3, and let k, l be the lengths of the nontrivial orbits of G0. Then we have
one of the following cases.

(i) G is a collineation group of affine lines.

(ii) G is vector space primitive and has an irreducible minimal normal non-
abelian subgroup N which is a q-group for some prime q, such that |N/Z(N)| =
q2a for some a, and one of the following cases applies.

(a) qa = 3, pm = 4, v = 26, |G0| = 24 · 34, and (k, l) = (27, 36).

(b) qa = 2, v = p2m, |G0| = 24m(pm − 1), and (pm, k, l) occurs among
(32, 32, 48), (13, 72, 96), (17, 96, 192), (19, 144, 216), (33, 104, 624), (29, 168, 672),
(31, 240, 720), (47, 1104, 1104).

(c) qa = 4, pm = 3, v = 34, |G0| = 28 · 32, and (k, l) = (32, 48).

(d) qa = 4, pm = 7, v = 74, |G0| = 27 · 3 · 5, and (k, l) = (480, 1920).

(iii) G is imprimitive and there exists a decomposition V = V1⊕V2 of V into
minimal imprimitivity subspaces for G0, and G0|Vi is transitive on the nonzero
elements of Vi (i = 1, 2) (hence G0|Vi is determined by Huppert’s theorem).
Moreover, the nontrivial orbits of G0 are V1 ∪ V2 \ {0} and V \ (V1 ∪ V2).

Some of the groups mentioned contain proper rank 3 subgroups. Moreover,
there exist two cases in which exceptional doubly transitive groups have proper
rank 3 subgroups. Here G is as in (ii), qa = 2, v = p2m = 2k+1, and (pm, |G0|)
is either (7, 23 · 32) or (23, 23 · 3 · 11).

For the cases in (ii)(b), and those of the last sentence, see §7.5.2.

11.5 Rank 3 parameter index
Below we index the parameters of the rank 3 graphs found above not as part of
an infinite family, and refer to the theorem or table where they occur.

v k λ µ rf sg ref
15 6 1 3 19 (−3)5 Thm. 11.3.1

8 4 4 25 (−2)9

35 16 6 8 220 (−4)14 Thm. 11.3.1
18 9 9 314 (−3)20

36 14 4 6 221 (−4)14 Thm. 11.3.2 (v)
21 12 12 314 (−3)21

49 24 11 12 324 (−4)24 Thm. 11.4.4
50 7 0 1 228 (−3)21 Thm. 11.3.2 (vi)

42 35 36 221 (−3)28

55 18 9 4 710 (−2)44 Table 11.3
36 21 28 144 (−8)10

56 10 0 2 235 (−4)20 Thm. 11.3.3 (iii)
45 36 36 320 (−3)35

64 18 2 6 245 (−6)18 Table 11.6
45 32 30 518 (−3)45

64 27 10 12 336 (−5)27 Thm. 11.4.4, Table 11.5
36 20 20 427 (−4)36

continued...
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v k λ µ rf sg ref
66 20 10 4 811 (−2)54 Table 11.3

45 28 36 154 (−9)11

77 16 0 4 255 (−6)21 Table 11.3
60 47 45 521 (−3)55

81 16 7 2 716 (−2)64 Table 11.5
64 49 56 164 (−8)16

81 32 13 12 532 (−4)48 Thm. 11.4.4, Table 11.5
48 27 30 348 (−6)32

81 40 19 20 440 (−5)40 Thm. 11.4.3
100 22 0 6 277 (−8)22 Table 11.3

77 60 56 722 (−3)77

100 36 14 12 636 (−4)63 Table 11.3
63 38 42 363 (−7)36

120 56 28 24 835 (−4)84 Thm. 11.3.1
63 30 36 384 (−9)35

126 25 8 4 735 (−3)90 Thm. 11.3.1
100 78 84 290 (−8)35

162 56 10 24 2140 (−16)21 Thm. 11.3.2 (vii)
105 72 60 1521 (−3)140

169 72 31 30 772 (−6)96 Thm. 11.4.4
96 53 56 596 (−8)72

176 70 18 34 2154 (−18)21 Table 11.3
105 68 54 1721 (−3)154

243 22 1 2 4132 (−5)110 Table 11.6
220 199 200 4110 (−5)132

243 110 37 60 2220 (−25)22 Table 11.6
132 81 60 2422 (−3)220

253 42 21 4 1922 (−2)230 Table 11.3
210 171 190 1230 (−20)22

253 112 36 60 2230 (−26)22 Table 11.3
140 87 65 2522 (−3)230

256 45 16 6 1345 (−3)210 Table 11.6 (twice)
210 170 182 2210 (−14)45

256 75 26 20 1175 (−5)180 Thm. 11.4.3
180 124 132 4180 (−12)75

256 102 38 42 6153 (−10)102 Table 11.6
153 92 90 9102 (−7)153

256 120 56 56 8120 (−8)135 Table 11.6
135 70 72 7135 (−9)120

275 112 30 56 2252 (−28)22 Table 11.3
162 105 81 2722 (−3)252

276 44 22 4 2023 (−2)252 Table 11.3
231 190 210 1252 (−21)23

289 96 35 30 1196 (−6)192 Thm. 11.4.4
192 125 132 5192 (−12)96

351 126 45 45 9168 (−9)182 Table 11.2
224 142 144 8182 (−10)168

361 144 59 56 11144 (−8)216 Thm. 11.4.4
216 127 132 7216 (−12)144

416 100 36 20 2065 (−4)350 Table 11.2
315 234 252 3350 (−21)65

529 264 131 132 11264 (−12)264 Thm. 11.4.4
625 144 43 30 19144 (−6)480 Table 11.6, Thm. 11.4.3

480 365 380 5480 (−20)144

625 240 95 90 15240 (−10)90 Table 11.5
384 233 240 9384 (−16)240

729 104 31 12 23104 (−4)624 Thm. 11.4.4
624 531 552 3624 (−24)104

729 224 61 72 8504 (−19)224 Table 11.6
504 351 342 18224 (−9)504

841 168 47 30 23168 (−6)672 Thm. 11.4.4
continued...
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v k λ µ rf sg ref
672 533 552 5672 (−24)168

961 240 71 56 23240 (−8)720 Thm. 11.4.4
720 535 552 7720 (−24)240

961 360 139 132 19360 (−12)600 Thm. 11.4.3
600 371 380 11600 (−20)360

1288 495 206 180 35252 (−9)1035 Table 11.3
792 476 504 81035 (−36)252

1408 567 246 216 39252 (−9)1155 Thm. 11.3.2 (x)
840 488 520 81155 (−40)252

1681 480 149 132 29480 (−12)1200 Thm. 11.4.3
1200 851 870 111200 (−30)480

1782 416 100 96 20780 (−16)1001 Table 11.3
1365 1044 1050 151001 (−21)780

2016 975 462 480 151365 (−33)650 Table 11.2
1040 544 528 32650 (−16)1365

2048 276 44 36 20759 (−12)1288 Table 11.6
1771 1530 1540 111288 (−21)759

2048 759 310 264 55276 (−9)1771 Table 11.6
1288 792 840 81771 (−56)276

2209 1104 551 552 231104 (−24)1104 Thm. 11.4.4
2300 891 378 324 63275 (−9)2024 Table 11.3

1408 840 896 82024 (−64)275

2401 240 59 20 44240 (−5)2160 Table 11.6
2160 1939 1980 42160 (−45)240

2401 480 119 90 39480 (−10)1920 Thm. 11.4.4, Table 11.5
1920 1529 1560 91920 (−40)480

2401 720 229 210 34720 (−15)1680 Table 11.6
1680 1169 1190 141680 (−35)720

2401 960 389 380 29960 (−20)1440 Thm. 11.4.3
1440 859 870 191440 (−30)960

3510 693 180 126 63429 (−9)3080 Table 11.3
2816 2248 2304 83080 (−64)429

4060 1755 730 780 153276 (−65)783 Table 11.3
2304 1328 1280 64783 (−16)3276

4096 315 74 20 59315 (−5)3780 Thm. 11.4.3
3780 3484 3540 43780 (−60)315

4096 1575 614 600 391575 (−25)2520 Table 11.6
2520 1544 1560 242520 (−40)1575

5041 840 179 132 59840 (−12)4200 Thm. 11.4.3
4200 3491 3540 114200 (−60)840

6241 1560 419 380 591560 (−20)4680 Thm. 11.4.3
4680 3499 3540 194680 (−60)1560

6561 1440 351 306 631440 (−18)5120 Table 11.5
5120 3985 4032 175120 (−64)1440

7921 2640 899 870 592640 (−30)5280 Thm. 11.4.3
5280 3509 3540 295280 (−60)2640

14080 3159 918 648 279429 (−9)13650 Table 11.3
10920 8408 8680 813650 (−280)429

15625 744 143 30 119744 (−6)14880 Thm. 11.4.3
14880 14165 14280 514880 (−120)744

15625 7560 3655 3660 608064 (−65)7560 Table 11.6
8064 4163 4160 647560 (−61)8064

31671 3510 693 351 351782 (−9)30888 Table 11.3
28160 25000 25344 830888 (−352)782

130816 32319 7742 8064 63112347 (−385)18468 Table 11.2
98496 74240 73920 38418468 (−64)112347

137632 28431 6030 5832 27930888 (−81)106743 Table 11.3
109200 86600 86800 80106743 (−280)30888

306936 31671 3510 3240 35157477 (−81)249458 Table 11.3
275264 246832 247104 80249458 (−352)57477

531441 65520 8559 8010 63965520 (−90)465920 Table 11.6
465920 408409 408960 89465920 (−640)65520

Table 11.7: Parameters of rank 3 graphs
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11.6 Small rank 3 graphs
Below we give the parameters of the primitive rank 3 graphs with v ≤ 1024. The
full group of automorphisms is G, the point stabilizer S. Of a complementary
pair of graphs only the one with smallest k is given.

v k λ µ G S ref graph
5 2 1 1 D10 2 §10.1 Paley
9 4 1 2 32 : D8 D8 §10.2 Paley, 3× 3

10 3 0 1 S5 D12 §10.3 T (5), Petersen
13 6 2 3 13 : 6 6 §10.4 Paley
15 6 1 3 S6 2× S4 §10.5 T (6), GQ(2, 2)

16 5 0 2 24 : S5 S5 §10.7 VO−4 (2), Clebsch, cubes
16 6 2 2 (S4 × S4) : 2 (S3 × S3) : 2 VO+

4 (2), 4× 4
17 8 3 4 17 : 8 8 §10.8 Paley
21 10 5 4 S7 2× S5 T (7)
25 8 3 2 (S5 × S5) : 2 (S4 × S4) : 2 5× 5, cubes
25 12 5 6 52 : (4× S3) 4× S3 Paley
27 10 1 5 O5(3) : 2 24 : S5 §10.10 O−6 (2), GQ(2, 4), Schläfli
28 12 6 4 S8 2× S6 §10.11 T (8)
29 14 6 7 29 : 14 14 §10.12 Paley
35 16 6 8 S8 (S4 × S4) : 2 §10.13 J (8, 4)
36 10 4 2 (S6 × S6) : 2 (S5 × S5) : 2 6× 6
36 14 4 6 U3(3) : 2 L3(2) : 2 §10.14
36 14 7 4 S9 2× S7 T (9)

36 15 6 6 O5(3) : 2 2× S6 §10.15 NO−6 (2)
37 18 8 9 37 : 18 18 Paley
40 12 2 4 O5(3) : 2 33 : (S4 × 2) §10.16 O5(3), GQ(3, 3)

40 12 2 4 O5(3) : 2 31+2
+ : 2S4 §10.16 Sp4(3), GQ(3, 3)

41 20 9 10 41 : 20 20 Paley
45 12 3 3 O5(3) : 2 ((23+2 : 32) : 2) : 2 §10.17 U4(2), GQ(4, 2)
45 16 8 4 S10 2× S8 T (10)
49 12 5 2 (S7 × S7) : 2 (S6 × S6) : 2 7× 7
49 24 11 12 72 :S 3× D16 §10.18 Paley
49 24 11 12 72 :S 3× SL2(3) §10.18 Peisert
50 7 0 1 U3(5) : 2 S7 §10.19 Hoffman-Singleton
53 26 12 13 53 : 26 26 Paley
55 18 9 4 S11 2× S9 T (11)
56 10 0 2 L3(4) : 22 A6 : 22 §10.20 Gewirtz
61 30 14 15 61 : 30 30 Paley
63 30 13 15 O7(2) 25 : S6 §10.21 Sp6(2)
64 14 6 2 (S8 × S8) : 2 (S7 × S7) : 2 8× 8
64 18 2 6 26 :S 3S6 §10.24 GQ(3, 5)
64 21 8 6 26 :S L3(2)× S3 §3.4.1 H2(2, 3), cubes
64 27 10 12 26 :S O5(3) : 2 §10.25 VO−6 (2)

64 28 12 12 26 :S S8 §10.26 VO+
6 (2)

66 20 10 4 S12 2× S10 T (12)
73 36 17 18 73 : 36 36 Paley
77 16 0 4 M22 : 2 24 : S6 §10.27
78 22 11 4 S13 2× S11 T (13)
81 16 7 2 (S9 × S9) : 2 (S8 × S8) : 2 9× 9

81 20 1 6 34 :S (2× S6) : 2 §10.28 VO−4 (3)

81 32 13 12 34 :S (23+2 : 32) : D8 VO+
4 (3)

81 40 19 20 34 :S 40 : 4 §10.30 Paley
81 40 19 20 34 :S SL2(5) : 22 §10.30 Peisert
85 20 3 5 O5(4) : 2 26 : (A5 : S3) Sp4(4)
89 44 21 22 89 : 44 44 Paley
91 24 12 4 S14 2× S12 T (14)
97 48 23 24 97 : 48 48 Paley
100 18 8 2 S10 wr 2 S9 wr 2 10× 10
100 22 0 6 HS : 2 M22 : 2 §10.31 Higman-Sims
100 36 14 12 HJ : 2 U3(3) : 2 §10.32 Hall-Janko

continued...
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v k λ µ G S ref graph
101 50 24 25 101 : 50 50 Paley
105 26 13 4 S15 2× S13 T (15)
109 54 26 27 109 : 54 54 Paley
112 30 2 10 U4(3) : D8 34 : ((2× A6).22) §10.34 GQ(3, 9)
113 56 27 28 113 : 56 56 Paley
117 36 15 9 L4(3) : 2 2× (O5(3) : 2) §10.35 NO+

6 (3)

119 54 21 27 O−8 (2) : 2 26 : (O5(3) : 2) §10.36 O−8 (2)
120 28 14 4 S16 2× S14 T (16)

120 51 18 24 O5(4) : 2 L2(16) : 4 §10.38 NO−5 (4)

120 56 28 24 O+
8 (2) : 2 2× O7(2) §10.39 NO+

8 (2)
121 20 9 2 S11 wr 2 S10 wr 2 11× 11
121 40 15 12 112 :S 40 : 2 §7.4.5 cubes
121 60 29 30 112 :S 5× D24 Paley
121 60 29 30 112 :S 5× (3 : 4) Peisert
125 62 30 31 53 :S 2× (31 : 3) Paley
126 25 8 4 S10 S5 wr 2 §10.40
126 45 12 18 U4(3) : 22 2× (O5(3) : 2) §10.41 NO−6 (3)

130 48 20 16 O+
6 (3) : 22 [28.36] O+

6 (3)

135 64 28 32 O+
8 (2) : 2 26 : S8 §10.43

136 30 15 4 S17 2× S15 T (17)

136 60 24 28 O5(4) : 2 (A5 × A5) : 22 NO+
5 (4)

136 63 30 28 O−8 (2) : 2 2× O7(2) §10.44 NO−8 (2)
137 68 33 34 137 : 68 68 Paley
144 22 10 2 S12 wr 2 S11 wr 2 12× 12
149 74 36 37 149 : 74 74 Paley
153 32 16 4 S18 2× S16 T (18)
155 42 17 9 L5(2) 26 : (L3(2)× S3) §3.5 J2(5, 2)
156 30 4 6 O5(5) : 2 53 : (4× S5) §10.47 O5(5), GQ(5, 5)

156 30 4 6 O5(5) : 2 51+2
+ : 4S5 §10.47 Sp4(5), GQ(5, 5)

157 78 38 39 157 : 78 78 Paley
162 56 10 24 U4(3) : 22 L3(4) : 22 §10.48
165 36 3 9 PΓU5(2) 21+6

− : 31+2
+ : 2S4 U5(2), GQ(4, 8)

169 24 11 2 S13 wr 2 S12 wr 2 13× 13
169 72 31 30 132 :S 3× (SL2(3) : 4) §7.5.2
169 84 41 42 132 :S 84 : 2 Paley
171 34 17 4 S19 2× S17 T (19)
173 86 42 43 173 : 86 86 Paley
176 40 12 8 U5(2) : 2 U4(2) : S3 §10.49
176 70 18 34 M22 A7 §10.51
181 90 44 45 181 : 90 90 Paley
190 36 18 4 S20 2× S18 T (20)
193 96 47 48 193 : 96 96 Paley
196 26 12 2 S14 wr 2 S13 wr 2 14× 14
197 98 48 49 197 : 98 98 Paley
210 38 19 4 S21 2× S19 T (21)
225 28 13 2 S15 wr 2 S14 wr 2 15× 15
229 114 56 57 229 : 114 114 Paley
231 40 20 4 S22 2× S20 T (22)
233 116 57 58 233 : 116 116 Paley
241 120 59 60 241 : 120 120 Paley
243 22 1 2 35 :S 2×M11 §10.55 Berlekamp-VanLint-Seidel
243 110 37 60 35 :S 2×M11 §10.55 Delsarte dual of BvLS
253 42 21 4 S23 2× S21 T (23)
253 112 36 60 M23 24 : A7 §10.56 S(4, 7, 23)
255 126 61 63 O9(2) 27 : O7(2) Sp8(2)
256 30 14 2 S16 wr 2 S15 wr 2 16× 16
256 45 16 6 28 :S A8 × S3 §10.57
256 45 16 6 28 :S S10 §10.57
256 51 2 12 28 :S (3× SL2(16)) : 4 VO−4 (4)

256 75 26 20 28 :S (A5 × A5) : D12 VO+
4 (4)

256 85 24 30 28 :S 85 : 8 §7.4.5 cubes
256 102 38 42 28 :S L2(17) §10.58

continued...
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v k λ µ G S ref graph
256 119 54 56 28 :S O−8 (2) : 2 §10.59 VO−8 (2)

256 120 56 56 28 :S O+
8 (2) : 2 §10.60 VO+

8 (2)
257 128 63 64 257 : 128 128 Paley
269 134 66 67 269 : 134 134 Paley
275 112 30 56 McL : 2 U4(3) : 2 §10.61 McLaughlin
276 44 22 4 S24 2× S22 T (24)
277 138 68 69 277 : 138 138 Paley
280 36 8 4 U4(3) : D8 [27.36] GQ(9, 3)
281 140 69 70 281 : 140 140 Paley
289 32 15 2 S17 wr 2 S16 wr 2 17× 17
289 96 35 30 172 :S 96 : 2 §7.4.5 cubes
289 96 35 30 172 :S 8.S4 : 2 §7.5.2
289 144 71 72 172 :S 144 : 2 Paley
293 146 72 73 293 : 146 146 Paley
297 40 7 5 PΓU5(2) [28] : (A5 : S3) §10.63 U5(2), GQ(8, 4)
300 46 23 4 S25 2× S23 T (25)
313 156 77 78 313 : 156 156 Paley
317 158 78 79 317 : 158 158 Paley
324 34 16 2 S18 wr 2 S17 wr 2 18× 18
325 48 24 4 S26 2× S24 T (26)

325 68 3 17 U4(4) : 4 28 : (L2(16) : (3 : 4)) O−6 (4), GQ(4, 16)
337 168 83 84 337 : 168 168 Paley
349 174 86 87 349 : 174 174 Paley
351 50 25 4 S27 2× S25 T (27)

351 126 45 45 O7(3) : 2 (2.U4(3)) : 22 §10.66 NO−⊥7 (3)
353 176 87 88 353 : 176 176 Paley
357 100 35 25 L4(4) : 22 28 : (A5 × A4) :D12) O+

6 (4)
361 36 17 2 S19 wr 2 S18 wr 2 19× 19
361 144 59 56 192 :S 9× GL2(3) §7.5.2
361 180 89 90 192 :S 180 : 2 Paley
361 180 89 90 192 :S 9× (5 : 4) Peisert
364 120 38 40 O7(3) : 2 35 : (2× (O5(3) : 2)) O7(3)
364 120 38 40 PSp6(3) : 2 [35] : (2.O5(3) : 2) Sp6(3)
373 186 92 93 373 : 186 186 Paley
378 52 26 4 S28 2× S26 T (28)

378 117 36 36 O7(3) : 2 2× (L4(3) : 2) §10.67 NO+⊥
7 (3)

389 194 96 97 389 : 194 194 Paley
397 198 98 99 397 : 198 198 Paley
400 38 18 2 S20 wr 2 S19 wr 2 20× 20
400 56 6 8 O5(7) : 2 73 : (6× (L3(2) : 2)) O5(7), GQ(7, 7)

400 56 6 8 O5(7) : 2 71+2
+ : GL2(7) Sp4(7), GQ(7, 7)

401 200 99 100 401 : 200 200 Paley
406 54 27 4 S29 2× S27 T (29)
409 204 101 102 409 : 204 204 Paley
416 100 36 20 G2(4) : 2 HJ : 2 §10.68
421 210 104 105 421 : 210 210 Paley
433 216 107 108 433 : 216 216 Paley
435 56 28 4 S30 2× S28 T (30)
441 40 19 2 S21 wr 2 S20 wr 2 21× 21
449 224 111 112 433 : 449 224 Paley
457 228 113 114 457 : 228 228 Paley
461 230 114 115 461 : 230 230 Paley
465 58 29 4 S31 2× S29 T (31)
484 42 20 2 S22 wr 2 S21 wr 2 22× 22

495 238 109 119 O−10(2) : 2 28 : (O−8 (2) : 2) §10.69 O−10(2)
496 60 30 4 S32 2× S30 T (32)

496 240 120 112 O+
10(2) : 2 2× O9(2) §3.1.2 NO+

10(2)

509 254 126 127 509 : 254 254 Paley
521 260 129 130 521 : 260 260 Paley
527 256 120 128 O+

10(2) : 2 28 : O+
8 (2) : 2 §2.6.1 Γ(O+

10(2))

528 62 31 4 S33 2× S31 T (33)

528 255 126 120 O−10(2) : 2 2× O9(2) §3.1.2 NO−10(2)

continued...
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v k λ µ G S ref graph
529 44 21 2 S23 wr 2 S22 wr 2 23× 23
529 176 63 56 232 :S 176 : 2 §7.4.5 cubes
529 264 131 132 232 :S 264 : 2 §10.70 Paley
529 264 131 132 232 :S 11× (3 :Q8) §10.70 Peisert
529 264 131 132 232 :S 11× SL2(3) §10.70 sporadic Peisert
541 270 134 135 541 : 270 270 Paley
557 278 138 139 557 : 278 278 Paley
561 64 32 4 S34 2× S32 T (34)
569 284 141 142 569 : 284 284 Paley
576 46 22 2 S24 wr 2 S23 wr 2 24× 24
577 288 143 144 577 : 288 288 Paley
585 72 7 9 PΓO5(8) 29 : ΓL2(8) GQ(8, 8)
593 296 147 148 593 : 296 296 Paley
595 66 33 4 S35 2× S33 T (35)
601 300 149 150 601 : 300 300 Paley
613 306 152 153 613 : 306 306 Paley
617 308 153 154 617 : 308 308 Paley
625 48 23 2 S25 wr 2 S24 wr 2 25× 25

625 104 3 20 54 :S L2(25) : (8 : 2) §3.3.1 VO−4 (5)

625 144 43 30 54 :S 4.(S5 wr 2) §3.4.1 VO+
4 (5)

625 144 43 30 54 :S 4.S6 §10.73A
625 208 63 72 54 :S 208 : 4 §7.4.5 cubes
625 240 95 90 54 :S 4.(24 : S6) §10.73B
625 312 155 156 54 :S 312 : 4 Paley
630 68 34 4 S36 2× S34 T (36)
641 320 159 160 641 : 320 320 Paley
651 90 33 9 L6(2) 28 : (A8 × S3) §3.5 J2(6, 2)
653 326 162 163 653 : 326 326 Paley
661 330 164 165 661 : 330 330 Paley
666 70 35 4 S37 2× S35 T (37)
672 176 40 48 U6(2) : S3 U5(2) : S3 NU6(2)
673 336 167 168 673 : 336 336 Paley
676 50 24 2 S26 wr 2 S25 wr 2 26× 26
677 338 168 169 677 : 338 338 Paley
693 180 51 45 U6(2)× S3 21+8

+ : (O5(3) : S3) §10.74 U6(2)
701 350 174 175 701 : 350 350 Paley
703 72 36 4 S38 2× S36 T (38)
709 354 176 177 709 : 354 354 Paley
729 52 25 2 S27 wr 2 S26 wr 2 27× 27
729 104 31 12 36 :S L3(3)× GL2(3) §3.4.1 H3(2, 3)

729 224 61 72 36 :S 2.U4(3) : D8 §3.3.1 VO−6 (3)

729 260 97 90 36 :S 2.L4(3) : 22 §3.3.1 VO+
6 (3)

729 364 181 182 36 :S 364 : 6 Paley
729 364 181 182 36 :S 182 : 6 Peisert
733 366 182 183 733 : 366 366 Paley
741 74 37 4 S39 2× S37 T (39)
756 130 4 26 U4(5) : 22 54 : (L2(25) : (8 : 2)) GQ(5, 25)
757 378 188 189 757 : 378 378 Paley
761 380 189 190 761 : 380 380 Paley
769 384 191 192 769 : 384 384 Paley
773 386 192 193 773 : 386 386 Paley
780 76 38 4 S40 2× S38 T (40)
784 54 26 2 S28 wr 2 S27 wr 2 28× 28
797 398 198 199 797 : 398 398 Paley
806 180 54 36 L4(5) : D8 54 : 2.(A5 × A5).2.2.4 O+

6 (5)
809 404 201 202 809 : 404 404 Paley
820 78 39 4 S41 2× S39 T (41)
820 90 8 10 O5(9) : 22 36 : (A6.2 : QD16) GQ(9, 9)
820 90 8 10 O5(9) : 22 [36] : SL(2, 9) : QD16 GQ(9, 9)
821 410 204 205 821 : 410 410 Paley
829 414 206 207 829 : 414 414 Paley
841 56 27 2 S29 wr 2 S28 wr 2 29× 29
841 168 47 30 292 :S 7× (SL2(3) : 4) §7.5.2
841 280 99 90 292 :S 280 : 2 §7.4.5 cubes

continued...
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v k λ µ G S ref graph
841 420 209 210 292 :S 420 : 2 Paley
853 426 212 213 853 : 426 426 Paley
857 428 213 214 857 : 428 428 Paley
861 80 40 4 S42 2× S40 T (42)
877 438 218 219 877 : 438 438 Paley
881 440 219 220 881 : 440 440 Paley
900 58 28 2 S30 wr 2 S29 wr 2 30× 30
903 82 41 4 S43 2× S42 T (43)
929 464 231 232 929 : 464 464 Paley
937 468 233 234 937 : 468 468 Paley
941 470 234 235 941 : 470 470 Paley
946 84 42 4 S44 2× S42 T (44)
953 476 237 238 953 : 476 476 Paley
961 60 29 2 S31 wr 2 S30 wr 2 31× 31
961 240 71 56 312 :S 15× 2.S4 §10.77
961 360 139 132 312 :S 15× SL2(5) §10.77
961 480 239 240 312 :S 480 : 2 Paley
961 480 239 240 312 :S 240 : 2 Peisert
977 488 243 244 977 : 488 488 Paley
990 86 43 4 S45 2× S43 T (45)
997 498 248 249 997 : 498 498 Paley
1009 504 251 252 1009 : 504 504 Paley
1013 506 252 253 1013 : 506 506 Paley
1021 510 254 255 1021 : 510 510 Paley
1023 510 253 255 O11(2) 29 : O9(2) Sp10(2)
1024 62 30 2 S32 wr 2 S31 wr 2 32× 32
1024 93 32 6 210 :S L5(2)× S3 H2(2, 5)
1024 155 42 20 210 :S L5(2) §3.4.2
1024 341 120 110 210 :S 341 : 10 §7.4.5 cubes
1024 495 238 240 210 :S O−10(2) : 2 VO−10(2)

1024 496 240 240 210 :S O+
10(2) : 2 VO+

10(2)

Table 11.8: Small rank 3 graphs

11.7 Small rank 4–10 strongly regular graphs
Below we give the parameters of the strongly regular with v ≤ 1024 with a full
automorphism group acting primitively of rank 4–10.

For rank 3 graphs the group action is imprimitive if and only if the graph is imprimitive
(aKm or its complement Ka×m). For r ≥ 4, a primitive strongly regular graph can have an
automorphism group that acts imprimitively with rank r. For example, the graph on the lines
of AG(3, q) has a rank 4 group with imprimitive action, preserving parallelism.

Since there are very many graphs with Latin square parameters LSn(q) (that
is, v = q2, k = (q − 1)n, λ = q + n(n − 3), µ = n(n − 1)) where q is a prime
power, we omit those.

The full group of automorphisms is G, the rank is ‘rk’, and ‘#’ gives the
number of nonisomorphic such graphs. Of a complementary pair of graphs only
the one with smallest k is given.

v k λ µ # rk G suborbit sizes ref
63 30 13 15 1 4 PSU3(3).2 1, 6, 24, 32 §10.22
81 30 9 12 1 4 34 : (2× S6) 1, 20, 30, 30 §10.29
105 32 4 12 1 4 L3(4).D12 1, 8, 32, 64 §10.33
120 42 8 18 1 4 L3(4).22 1, 21, 42, 56 §10.37
120 56 28 24 1 4 S10 1, 21, 35, 63 p. 299
120 56 28 24 1 7 S7 1, 7, 14, 14, 21, 21, 42
144 39 6 12 1 6 L3(3).2 1, 13, 26, 26, 39, 39 §10.45
144 55 22 20 1 4 M12.2 1, 22, 55, 66 §10.46
144 66 30 30 2 4 M12.2 1, 22, 55, 66 §10.46
175 72 20 36 1 4 PΣU3(5) 1, 12, 72, 90 p. 269
208 75 30 25 1 4 PΓU3(4) 1, 12, 75, 120 NU3(4)
231 30 9 3 1 4 M22.2 1, 30, 40, 160 §10.54
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v k λ µ # rk G suborbit sizes ref
256 68 12 20 1 4 AΣL2(16) 1, 51, 68, 136
256 102 38 42 1 4 28 : (3× (17 : 4)) 1, 51, 102, 102 §10.58
280 36 8 4 1 4 HJ.2 1, 36, 108, 135 p. 287
280 117 44 52 1 5 S9 1, 27, 36, 54, 162 §10.62
280 135 70 60 1 4 HJ.2 1, 36, 108, 135 p. 287
300 65 10 15 1 4 PGO5(5) 1, 65, 104, 130 NO−⊥5 (5)

300 104 28 40 1 4 PGO5(5) 1, 65, 104, 130 NO−5 (5)

325 60 15 10 1 4 PGO5(5) 1, 60, 120, 144 NO+⊥
5 (5)

325 144 68 60 1 4 PGO5(5) 1, 60, 120, 144 NO+
5 (5)

330 63 24 9 1 5 S11 1, 28, 35, 126, 140 p. 26
525 144 48 36 1 6 PΓU3(5) 1, 20, 120, 120, 120, 144 NU3(5)
540 224 88 96 1 4 PSU4(3).D8 1, 63, 224, 252 NU4(3)
560 208 72 80 1 7 PSz(8).3 1, 39, 52, 78, 78, 156, 156 §10.72
625 208 63 72 1 4 54 : (13 : (16 : 2)) 1, 208, 208, 208
625 208 63 72 1 5 54 : (13 : (8 : 4)) 1, 104, 104, 208, 208
625 208 63 72 1 7 54 : (4.(4× 4).6) 1, 16, 64, 96, 128, 128, 192

625 260 105 110 1 4 54 : 4.PGO−4 (5) 1, 104, 260, 260 V NO−4 (5)
729 112 1 20 1 4 36 : 2.L3(4).2 1, 112, 112, 504 §10.75
729 168 27 42 1 8 36 : 2.S5 1, 40, 40, 48, 120, 120, 120, 240
729 224 61 72 1 7 36 : 2.PΓL2(9) 1, 80, 90, 90, 144, 144, 180

729 252 81 90 1 4 36 : 2.PGO−6 (3) 1, 224, 252, 252 V NO−6 (3)
729 252 81 90 1 7 36 : 2.PΓL2(9) 1, 72, 72, 80, 144, 180, 180
729 252 81 90 2 10 36 : 2.PGL2(9) 1, 72, 72, 72, 72, 80, 90, 90, 90, 90
729 280 103 110 2 5 G 1, 24, 192, 256, 256
729 280 103 110 2 8 36 : 2.S5 1, 40, 40, 48, 120, 120, 120, 240
729 336 153 156 2 8 G 1, 24, 48, 48, 96, 128, 192, 192
729 336 153 156 1 9 G 1, 24, 48, 48, 64, 64, 96, 192, 192
729 336 153 156 1 10 G 1, 24, 32, 48, 48, 96, 96, 96, 96, 192
775 150 45 25 1 8 L3(5).2 1, 30, 48, 96, 120, 120, 120, 240
784 243 82 72 1 4 L2(8)2.6 1, 54, 243, 486 §8.11
784 297 116 110 1 4 L2(8)2.6 1, 54, 243, 486 §8.11
1024 363 122 132 1 9 G 1, 22, 55, 55, 66, 110, 165, 220, 330
1024 495 238 240 1 9 G 1, 22, 55, 55, 66, 110, 165, 220, 330

Table 11.9: Small primitive rank 4–10 non-LS strongly regular graphs



Chapter 12

Parameter table

In this chapter we give a table with the feasible parameter sets of arbitrary
strongly regular graphs on at most 512 vertices, and add comments about the
known examples.

The columns are:
(i) Existence: A number indicates the precise number of nonisomorphic examples. ‘ !’ when

there is a unique such graph, ‘+’ when there is a known example, ‘−’ when no example
exists (the reason is indicated after ‘†’), and ‘?’ otherwise.

(ii) The parameters v, k, λ, µ: the number of vertices, the valency, the number of common
neighbors of two adjacent vertices, and the number of common neighbors of two nonadjacent
vertices, respectively.

(iii) The spectrum of the adjacency matrix: k (with multiplicity 1), r (with multiplicity f), and s
(with multiplicity g). Eigenvalues are integral, except when (v, k, λ, µ) = (4t+ 1, 2t, t− 1, t)
for some t, in which case r, s = (−1±

√
v)/2, and we give an approximation.

(iv) Comments.

The symbol ‘↓’ labels a descendant of a regular 2-graph on v + 1 vertices.
The symbol ‘↑’ labels a graph in the switching class of a regular 2-graph.
‘[n, k]q (wts w1, w2)’ indicates a projective two-weight code.
The parameters of a partial geometry are written pg(K,R, T ) (not pg(s, t, α)).
The label OA(2m+ 1,m)∗ refers to the construction of p. 194.
The labels ‘ConfMat(2m+ 2)2’ and ‘ConfMat(2m+ 2)2∗’refer to the construction of p. 190.
Labels are postfixed ‘?’ when the corresponding object is unknown.

ex v k λ µ rf sg comment
! 5 2 0 1 0.622 −1.622 §10.1; pentagon; Paley(5); ↓
! 9 4 1 2 14 −24 §10.2; Paley(9); 3× 3; ↓
! 10 3 0 1 15 −24 §10.3; Petersen graph; NO−4 (2); NO−⊥3 (5);

OA(3, 2)∗; ↑
6 3 4 14 −25 T (5); ↑

! 13 6 2 3 1.306 −2.306 §10.4; Paley(13); ↓
! 15 6 1 3 19 −35 §10.5; O5(2); Sp4(2); NO−4 (3); GQ(2, 2); ↓

8 4 4 25 −29 T (6); ↓
! 16 5 0 2 110 −35 q222 = 0; vanLint-Schrijver, §7.3.1; VO−4 (2);

[5, 4]2 (wts 2, 4); RSHCD−; ↑
10 6 6 25 −210 §10.7; Clebsch graph; q111 = 0;

vanLint-Schrijver, §7.3.1; ↑
2! 16 6 2 2 26 −29 §10.6; Shrikhande graph; 4× 4;

vanLint-Schrijver, §7.3.1; Wallis [718]; [6, 4]2
(wts 2, 4); RSHCD+; ↑

9 4 6 19 −36 OA(4, 3); H2(2, 2); vanLint-Schrijver, §7.3.1;
Wallis [718]; Goethals-Seidel [355]; VO+

4 (2); ↑
! 17 8 3 4 1.568 −2.568 §10.8; Paley(17); ↓
! 21 10 3 6 114 −46

10 5 4 36 −214 T (7)
− 21 10 4 5 1.7910 −2.7910 † v 6= a2 + b2

continued...
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ex v k λ µ rf sg comment
! 25 8 3 2 38 −216 5× 5; vanLint-Schrijver, §7.3.1

16 9 12 116 −48 OA(5, 4); vanLint-Schrijver, §7.3.1
15! 25 12 5 6 212 −312 §10.9; Paulus-Rozenfel’d; Paley(25); OA(5, 3);

↓
10! 26 10 3 4 213 −312 §10.9; Paulus-Rozenfel’d; OA(5, 3)∗; ↑

15 8 9 212 −313 S(2,3,13); ↑
! 27 10 1 5 120 −56 q222 = 0; O−6 (2); Godsil [345]; GQ(2, 4); ↓

16 10 8 46 −220 §10.10; Schläfli graph; q111 = 0; ↓
− 28 9 0 4 121 −56 † q222 < 0; † Absolute bound

18 12 10 46 −221 † q111 < 0; † Absolute bound
4! 28 12 6 4 47 −220 §10.11; Chang graphs; T (8); Wallis [718]; ↑

15 6 10 120 −57 NO+
6 (2); Goethals-Seidel [355]; no pg(4,5,2)

(De Clerck); Taylor ↑
41! 29 14 6 7 2.1914 −3.1914 §10.12; Enumerated by Bussemaker and by

Spence; Paley(29); ↓
− 33 16 7 8 2.3716 −3.3716 † v 6= a2 + b2

3854! 35 16 6 8 220 −414 §10.13; Enumerated by McKay & Spence [556];
no pg(5,4,2) (De Clerck); ↓

18 9 9 314 −320 S(2,3,15); lines in PG(3, 2); O+
6 (2); ↓

! 36 10 4 2 410 −225 6× 6
25 16 20 125 −510 OA(6,5) does not exist (Tarry)

180! 36 14 4 6 221 −414 §10.14; U3(3).2/L2(7).2 - subconstituent of
Hall-Janko graph; Enumerated by McKay &
Spence [556]; RSHCD−; ↑

21 12 12 314 −321 ↑
! 36 14 7 4 58 −227 T (9)

21 10 15 127 −68

32548! 36 15 6 6 315 −320 §10.15; Enumerated by McKay & Spence [556];
OA(6, 3); NO−6 (2); RSHCD+; ↑

20 10 12 220 −415 NO−5 (3); OA(6,4) does not exist (Tarry); ↑
+ 37 18 8 9 2.5418 −3.5418 see McKay & Spence [556]; Crnković &

Maksimović [240]; Maksimović & Rukavina
[754]; Paley(37); ↓

28! 40 12 2 4 224 −415 §10.16; Enumerated by Spence [670]; O5(3);
Sp4(3); GQ(3, 3)

27 18 18 315 −324 NU4(2)
+ 41 20 9 10 2.7020 −3.7020 Maksimović & Rukavina [754]; Paley(41); ↓
78! 45 12 3 3 320 −324 §10.17; Enumerated by Coolsaet, Degraer &

Spence [223]; U4(2); Wallis [718]; GQ(4, 2)

32 22 24 224 −420 NO+
5 (3)

! 45 16 8 4 69 −235 T (10)
28 15 21 135 −79 pg(5,7,3)

+ 45 22 10 11 2.8522 −3.8522 Mathon [544]; ↓
! 49 12 5 2 512 −236 7× 7

36 25 30 136 −612 OA(7, 6)
− 49 16 3 6 232 −516 † Bussemaker-Haemers-Mathon-Wilbrink [162]

32 21 20 416 −332

+ 49 18 7 6 418 −330 Behbahani-Lam [55]; Crnkovic-Maksimovic
[240]; OA(7, 3); Pasechnik (§8.12)

30 17 20 230 −518 OA(7, 5)
+ 49 24 11 12 324 −424 §10.18; Paley(49); OA(7, 4); ↓
! 50 7 0 1 228 −321 §10.19; Hoffman-Singleton graph

42 35 36 221 −328

− 50 21 4 12 142 −97 † Absolute bound
28 18 12 87 −242 † Absolute bound

+ 50 21 8 9 325 −424 OA(7, 4)∗; ConfMat(8)2∗; ↑
28 15 16 324 −425 S(2,4,25); ↑

+ 53 26 12 13 3.1426 −4.1426 Paley(53); ↓
! 55 18 9 4 710 −244 T (11)

36 21 28 144 −810

! 56 10 0 2 235 −420 §10.20; Gewirtz graph; Cossidente-Penttila
[233]
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ex v k λ µ rf sg comment
45 36 36 320 −335 qs 2-(21,6,4)

− 56 22 3 12 148 −107 † q222 < 0; † Absolute bound
33 22 15 97 −248 † q111 < 0; † Absolute bound

− 57 14 1 4 238 −518 † Wilbrink-Brouwer [732]
42 31 30 418 −338

+ 57 24 11 9 518 −338 S(2,3,19)
32 16 20 238 −618

− 57 28 13 14 3.2728 −4.2728 † v 6= a2 + b2

+ 61 30 14 15 3.4130 −4.4130 Paley(61); ↓
− 63 22 1 11 155 −117 † q222 < 0; † Absolute bound

40 28 20 107 −255 † q111 < 0; † Absolute bound
+ 63 30 13 15 335 −527 §10.21; §10.22; §10.23; qs 2-(36,16,12); O7(2);

Sp6(2); pg(7,5,3); ↓
32 16 16 427 −435 S(2,4,28); qs 2-(28,12,11); NU3(3); ↓

! 64 14 6 2 614 −249 8× 8; [14, 6]2 (wts 4, 8)
49 36 42 149 −714 OA(8, 7)

167! 64 18 2 6 245 −618 §10.24; Enumerated by Haemers & Spence
[384]; GQ(3, 5); [6, 3]4 (wts 4, 6); [18, 6]2 (wts
8, 12)

45 32 30 518 −345

− 64 21 0 10 156 −117 † q222 < 0; † Absolute bound
42 30 22 107 −256 † q111 < 0; † Absolute bound

+ 64 21 8 6 521 −342 OA(8, 3); H2(2, 3); vanLint-Schrijver, §7.3.1;
[7, 3]4 (wts 4, 6); Brouwer [112]; [21, 6]2 (wts
8, 12)

42 26 30 242 −621 OA(8, 6); vanLint-Schrijver, §7.3.1
+ 64 27 10 12 336 −527 §10.25; Mesner; [9, 3]4 (wts 6, 8); VO−6 (2);

RSHCD−; ↑
36 20 20 427 −436 ↑

+ 64 28 12 12 428 −435 §10.26; OA(8, 4); Wallis [718]; [28, 6]2 (wts
12, 16); RSHCD+; ↑

35 18 20 335 −528 OA(8, 5); Wallis [718]; Goethals-Seidel [355];
VO+

6 (2); ↑
− 64 30 18 10 108 −255 † Absolute bound

33 12 22 155 −118 † Absolute bound
+ 65 32 15 16 3.5332 −4.5332 Gritsenko [366]; ↓
! 66 20 10 4 811 −254 T (12)

45 28 36 154 −911 no pg(6,9,4) (Lam et al.)
? 69 20 7 5 523 −345

48 32 36 245 −623 no S(2,6,46) [443]
− 69 34 16 17 3.6534 −4.6534 † v 6= a2 + b2

+ 70 27 12 9 620 −349 S(2,3,21)
42 23 28 249 −720 pg(7,7,4)?

+ 73 36 17 18 3.7736 −4.7736 Paley(73); ↓
− 75 32 10 16 256 −818 † Azarija-Marc [20]

42 25 21 718 −356

− 76 21 2 7 256 −719 † Haemers [378]
54 39 36 619 −356

− 76 30 8 14 257 −818 † Bondarenko, Prymak & Radchenko [89]
45 28 24 718 −357

− 76 35 18 14 719 −356

40 18 24 256 −819 † no ↑
! 77 16 0 4 255 −621 §10.27; S(3,6,22); Mesner [560]; unique by

[111]; qs 2-(56,16,6)
60 47 45 521 −355 Witt: qs 2-(22,6,5)

− 77 38 18 19 3.8938 −4.8938 † v 6= a2 + b2

! 78 22 11 4 912 −265 T (13)
55 36 45 165 −1012

! 81 16 7 2 716 −264 9× 9; [8, 4]3 (wts 3, 6)
64 49 56 164 −816 OA(9, 8); vanLint-Schrijver, §7.3.1

! 81 20 1 6 260 −720 §10.28; Mesner [560]; Brouwer-Haemers;
VO−4 (3); [10, 4]3 (wts 6, 9)
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ex v k λ µ rf sg comment
60 45 42 620 −360

+ 81 24 9 6 624 −356 OA(9, 3); Wallis [718]; V NO+
4 (3); [12, 4]3 (wts

6, 9)
56 37 42 256 −724 OA(9, 7)

+ 81 30 9 12 350 −630 §10.29; Mesner [560]; Van Lint & Schrijver
pg(6,6,2); V NO−4 (3); [15, 4]3 (wts 9, 12)

50 31 30 530 −450

+ 81 32 13 12 532 −448 OA(9, 4); H3(2, 2); vanLint-Schrijver, §7.3.1;
Wallis [718]; VO+

4 (3); [16, 4]3 (wts 9, 12)
48 27 30 348 −632 OA(9, 6); vanLint-Schrijver, §7.3.1

− 81 40 13 26 172 −148 † Absolute bound
40 25 14 138 −272 † Absolute bound

+ 81 40 19 20 440 −540 §10.30; Paley(81); OA(9, 5); ↓
+ 82 36 15 16 441 −540 OA(9, 5)∗; ↑

45 24 25 440 −541 S(2,5,41); ↑
? 85 14 3 2 434 −350

70 57 60 250 −534

+ 85 20 3 5 350 −534 O5(4); Sp4(4); GQ(4, 4)
64 48 48 434 −450

? 85 30 11 10 534 −450

54 33 36 350 −634 S(2,6,51)?
? 85 42 20 21 4.1142 −5.1142 ↓?
? 88 27 6 9 355 −632

60 41 40 532 −455

+ 89 44 21 22 4.2244 −5.2244 Paley(89); ↓
! 91 24 12 4 1013 −277 T (14)

66 45 55 177 −1113 pg(7,11,5)?
− 93 46 22 23 4.3246 −5.3246 † v 6= a2 + b2

− 95 40 12 20 275 −1019 † Azarija-Marc [21]
54 33 27 919 −375

+ 96 19 2 4 357 −538 Haemers [376, (6.2.3), q = 4]; Muzychuk [580];
Brouwer-Koolen-Klin [135];
Golemac-Mandić-Vučičić [358]

76 60 60 438 −457

+ 96 20 4 4 445 −450 Wallis [718]; GQ(5, 3); Brouwer-Koolen-Klin
[135]; Golemac-Mandić-Vučičić [358]

75 58 60 350 −545

? 96 35 10 14 363 −732 pg(6,7,2)?
60 38 36 632 −463

− 96 38 10 18 276 −1019 † Degraer [273]
57 36 30 919 −376

− 96 45 24 18 920 −375

50 22 30 275 −1020 † no ↑
+ 97 48 23 24 4.4248 −5.4248 Paley(97); ↓
? 99 14 1 2 354 −444

84 71 72 344 −454

? 99 42 21 15 921 −377

56 28 36 277 −1021

+ 99 48 22 24 454 −644 no pg(9,6,4) (Lam et al.); ↓
50 25 25 544 −554 S(2,5,45); ↓

! 100 18 8 2 818 −281 10× 10
81 64 72 181 −918

! 100 22 0 6 277 −822 §10.31; Higman-Sims graph; q222 = 0
77 60 56 722 −377 q111 = 0

+ 100 27 10 6 727 −372 OA(10, 3)
72 50 56 272 −827 OA(10, 8)?

? 100 33 8 12 366 −733

66 44 42 633 −466

+ 100 33 14 9 824 −375 S(2,3,25)
66 41 48 275 −924

− 100 33 18 7 1311 −288 † Absolute bound
66 39 52 188 −1411 † Absolute bound
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ex v k λ µ rf sg comment
+ 100 36 14 12 636 −463 §10.32; Hall-Janko graph; OA(10, 4)

63 38 42 363 −736 OA(10, 7)?
+ 100 44 18 20 455 −644 Jørgensen-Klin graph [471]; RSHCD−; ↑

55 30 30 544 −555 ↑
+ 100 45 20 20 545 −554 OA(10, 5)?; RSHCD+; ↑

54 28 30 454 −645 OA(10, 6)?; ↑
+ 101 50 24 25 4.5250 −5.5250 Paley(101); ↓
! 105 26 13 4 1114 −290 T (15)

78 55 66 190 −1214

! 105 32 4 12 284 −1020 §10.33; flags of PG(2, 4), unique by [221]
72 51 45 920 −384

? 105 40 15 15 548 −556

64 38 40 456 −648

? 105 52 21 30 284 −1120

52 29 22 1020 −384

− 105 52 25 26 4.6252 −5.6252 † v 6= a2 + b2

+ 109 54 26 27 4.7254 −5.7254 Paley(109); ↓
? 111 30 5 9 374 −736

80 58 56 636 −474

+ 111 44 19 16 736 −474 S(2,4,37)
66 37 42 374 −836

! 112 30 2 10 290 −1021 §10.34; unique by [178]; subconstituent of
McLaughlin graph; q222 = 0; O−6 (3); GQ(3, 9)

81 60 54 921 −390 q111 = 0
? 112 36 10 12 463 −648 pg(7,6,2)?

75 50 50 548 −563

+ 113 56 27 28 4.8256 −5.8256 Paley(113); ↓
? 115 18 1 3 369 −545

96 80 80 445 −469

+ 117 36 15 9 926 −390 §10.35; S(2,3,27); NO+
6 (3); lines in AG(3, 3)

(rk 4); Wallis [718]
80 52 60 290 −1026 pg(9,10,6)?

? 117 58 28 29 4.9158 −5.9158 ↓?
+ 119 54 21 27 384 −934 §10.36; O−8 (2); pg(7,9,3)?; ↓

64 36 32 834 −484 ↓
! 120 28 14 4 1215 −2104 T (16)

91 66 78 1104 −1315 pg(8,13,6)?
? 120 34 8 10 468 −651

85 60 60 551 −568

? 120 35 10 10 556 −563 pg(8,5,2) does not exist (no dual)
84 58 60 463 −656

! 120 42 8 18 299 −1220 §10.37; Baer subplanes of PG(2, 4), unique by
[274]

77 52 44 1120 −399 qs 2-(21,7,12)
+ 120 51 18 24 385 −934 §10.38; NO−5 (4); ↑

68 40 36 834 −485 Fickus et al. [324]; ↑
+ 120 56 28 24 835 −484 §10.39; Wallis [718]; ↑

63 30 36 384 −935 dist. 2 in J(10,3); NO+
8 (2); Goethals-Seidel

[355]; Cohen pg(8,9,4); see also [266]; ↑
! 121 20 9 2 920 −2100 11× 11

100 81 90 1100 −1020 OA(11, 10)
+ 121 30 11 6 830 −390 OA(11, 3)

90 65 72 290 −930 OA(11, 9)
? 121 36 7 12 384 −836

84 59 56 736 −484

+ 121 40 15 12 740 −480 OA(11, 4); vanLint-Schrijver, §7.3.1
80 51 56 380 −840 OA(11, 8); vanLint-Schrijver, §7.3.1

? 121 48 17 20 472 −748

72 43 42 648 −572

+ 121 50 21 20 650 −570 OA(11, 5); Pasechnik (§8.12)
70 39 42 470 −750 OA(11, 7)

− 121 56 15 35 1112 −218 † Absolute bound
continued...
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ex v k λ µ rf sg comment
64 42 24 208 −2112 † Absolute bound

+ 121 60 29 30 560 −660 Paley(121); OA(11, 6); ↓
+ 122 55 24 25 561 −660 OA(11, 6)∗; ConfMat(12)2∗; ↑

66 35 36 560 −661 S(2,6,61)?; ↑
+ 125 28 3 7 384 −740 Godsil [345]; GQ(4, 6)

96 74 72 640 −484

− 125 48 28 12 1810 −2114 † Absolute bound
76 39 57 1114 −1910 † Absolute bound

+ 125 52 15 26 2104 −1320 Godsil [345]; pg(5,13,2)?; ↓
72 45 36 1220 −3104 ↓

+ 125 62 30 31 5.0962 −6.0962 Paley(125); ↓
+ 126 25 8 4 735 −390 §10.40; dist. 1 or 4 in J(9,4)

100 78 84 290 −835

+ 126 45 12 18 390 −935 §10.41; NO−6 (3); pg(6,9,2)?
80 52 48 835 −490

! 126 50 13 24 2105 −1320 §10.42; Goethals; unique by [222]; ↑
75 48 39 1220 −3105 ↑

+ 126 60 33 24 1221 −3104 ↑
65 28 39 2104 −1321 pg(6,13,3)?; Taylor ↑

− 129 64 31 32 5.1864 −6.1864 † v 6= a2 + b2

+ 130 48 20 16 839 −490 S(2,4,40); lines in PG(3, 3); O+
6 (3)

81 48 54 390 −939 pg(10,9,6)?
? 133 24 5 4 556 −476 GQ(6, 3) does not exist (Dixmier & Zara [294])

108 87 90 376 −656

? 133 32 6 8 476 −656

100 75 75 556 −576

? 133 44 15 14 656 −576

88 57 60 476 −756

− 133 66 32 33 5.2766 −6.2766 † v 6= a2 + b2

+ 135 64 28 32 484 −850 Cohen pg(9,8,4); see also [266]; ↓
70 37 35 750 −584 §10.43; O+

8 (2); from ETF (Fickus et al. [325]);
↓

? 136 30 8 6 651 −484

105 80 84 384 −751

! 136 30 15 4 1316 −2119 T (17)
105 78 91 1119 −1416

+ 136 60 24 28 485 −850 ↑
75 42 40 750 −585 NO+

5 (4); from ETF (Fickus et al. [325]); ↑
+ 136 63 30 28 751 −584 §10.44; NO−8 (2); ↑

72 36 40 484 −851 ↑
+ 137 68 33 34 5.3568 −6.3568 Paley(137); ↓
− 141 70 34 35 5.4470 −6.4470 † v 6= a2 + b2

+ 143 70 33 35 577 −765 qs 2-(78,36,30); pg(11,7,5)?; ↓
72 36 36 665 −677 S(2,6,66); qs 2-(66,30,29); ↓

! 144 22 10 2 1022 −2121 12× 12
121 100 110 1121 −1122 OA(12, 11)?

+ 144 33 12 6 933 −3110 OA(12, 3)
110 82 90 2110 −1033 OA(12, 10)?

+ 144 39 6 12 3104 −939 §10.45; L3(3) (rk 8)
104 76 72 839 −4104

+ 144 44 16 12 844 −499 OA(12, 4)
99 66 72 399 −944 OA(12, 9)?

? 144 52 16 20 491 −852

91 58 56 752 −591

+ 144 55 22 20 755 −588 §10.46; OA(12, 5)
88 52 56 488 −855 OA(12, 8)?

− 144 65 16 40 1135 −258 † q222 < 0; † Absolute bound
78 52 30 248 −2135 † q111 < 0; † Absolute bound

+ 144 65 28 30 578 −765 RSHCD−; ↑
78 42 42 665 −678 Fickus et al. [324]; ↑

+ 144 66 30 30 666 −677 OA(12, 6); Wallis [718]; RSHCD+; ↑
77 40 42 577 −766 OA(12, 7); Wallis [718]; Goethals-Seidel [355];

↑
continued...
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? 145 72 35 36 5.5272 −6.5272 ↓?
? 147 66 25 33 3110 −1136 pg(7,11,3)?; ↓?

80 46 40 1036 −4110 ↓?
? 148 63 22 30 3111 −1136 ↑?

84 50 44 1036 −4111 ↑?
? 148 70 36 30 1037 −4110 ↑?

77 36 44 3110 −1137 ↑?
+ 149 74 36 37 5.6074 −6.6074 Paley(149); ↓
! 153 32 16 4 1417 −2135 T (18)

120 91 105 1135 −1517 pg(9,15,7)
? 153 56 19 21 584 −768 pg(9,7,3)?

96 60 60 668 −684

? 153 76 37 38 5.6876 −6.6876 ↓?
? 154 48 12 16 498 −855 pg(7,8,2)?

105 72 70 755 −598

− 154 51 8 21 2132 −1521 † q222 < 0
102 71 60 1421 −3132 † q111 < 0

? 154 72 26 40 2132 −1621

81 48 36 1521 −3132

+ 155 42 17 9 1130 −3124 S(2,3,31); lines in PG(4, 2)
112 78 88 2124 −1230

+ 156 30 4 6 490 −665 §10.47; O5(5); Sp4(5); GQ(5, 5)
125 100 100 565 −590

+ 157 78 38 39 5.7678 −6.7678 Paley(157); ↓
? 160 54 18 18 675 −684 pg(10,6,3) does not exist (no dual)

105 68 70 584 −775

− 161 80 39 40 5.8480 −6.8480 † v 6= a2 + b2

? 162 21 0 3 3105 −656

140 121 120 556 −4105

? 162 23 4 3 569 −492

138 117 120 392 −669

? 162 49 16 14 763 −598

112 76 80 498 −863

! 162 56 10 24 2140 −1621 §10.48; U4(3); q222 = 0
105 72 60 1521 −3140 unique by Cameron, Goethals & Seidel [178];

subconstituent of McLaughlin graph; q111 = 0
? 162 69 36 24 1523 −3138

92 46 60 2138 −1623

+ 165 36 3 9 3120 −944 U5(2); GQ(4, 8)
128 100 96 844 −4120

− 165 82 40 41 5.9282 −6.9282 † v 6= a2 + b2

! 169 24 11 2 1124 −2144 13× 13
144 121 132 1144 −1224 OA(13, 12)

+ 169 36 13 6 1036 −3132 OA(13, 3)
132 101 110 2132 −1136 OA(13, 11)

? 169 42 5 12 3126 −1042

126 95 90 942 −4126

+ 169 48 17 12 948 −4120 OA(13, 4)
120 83 90 3120 −1048 OA(13, 10)

? 169 56 15 20 4112 −956

112 75 72 856 −5112

+ 169 60 23 20 860 −5108 OA(13, 5)
108 67 72 4108 −960 OA(13, 9)

? 169 70 27 30 598 −870

98 57 56 770 −698

+ 169 72 31 30 772 −696 OA(13, 6)
96 53 56 596 −872 OA(13, 8)

+ 169 84 41 42 684 −784 Paley(169); OA(13, 7); ↓
+ 170 78 35 36 685 −784 OA(13, 7)∗; ↑

91 48 49 684 −785 S(2,7,85)?; ↑
! 171 34 17 4 1518 −2152 T (19)

136 105 120 1152 −1618

? 171 50 13 15 595 −775

continued...
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120 84 84 675 −695

? 171 60 15 24 3132 −1238 pg(6,12,2)?
110 73 66 1138 −4132

+ 173 86 42 43 6.0886 −7.0886 Paley(173); ↓
+ 175 30 5 5 584 −590 Wallis [718]; GQ(6, 4)

144 118 120 490 −684

? 175 66 29 22 1142 −4132

108 63 72 3132 −1242 pg(10,12,6)?
+ 175 72 20 36 2153 −1821 p. 269; edges of Hoffman-Singleton; Haemers

pg(5,18,2); ↓
102 65 51 1721 −3153 ↓

? 176 25 0 4 3120 −755

150 128 126 655 −4120

+ 176 40 12 8 855 −4120 §10.49; pg(11,4,2) does not exist (no dual)
135 102 108 3120 −955 NU5(2)

+ 176 45 18 9 1232 −3143 S(2,3,33)
130 93 104 2143 −1332 pg(11,13,8)?

+ 176 49 12 14 598 −777 §10.50; Higman symmetric 2-design; pg(8,7,2)?
126 90 90 677 −698

! 176 70 18 34 2154 −1821 §10.51; S(4, 7, 23) \ S(3, 6, 22); M22/A7; ↑
105 68 54 1721 −3154 Witt: qs 2-(22,7,16); ↑

? 176 70 24 30 4120 −1055 pg(8,10,3)?
105 64 60 955 −5120

− 176 70 42 18 2610 −2165 † Absolute bound
105 52 78 1165 −2710 † Absolute bound

+ 176 85 48 34 1722 −3153 p. 218; Haemers; ↑
90 38 54 2153 −1822 pg(6,18,3)?; ↑

− 177 88 43 44 6.1588 −7.1588 † v 6= a2 + b2

+ 181 90 44 45 6.2390 −7.2390 Paley(181); ↓
? 183 52 11 16 4122 −960

130 93 90 860 −5122

+ 183 70 29 25 960 −5122 S(2,5,61)
112 66 72 4122 −1060

− 184 48 2 16 2160 −1623 † q222 < 0
135 102 90 1523 −3160 † q111 < 0

? 185 92 45 46 6.3092 −7.3092 ↓?
? 189 48 12 12 690 −698 pg(9,6,2)?

140 103 105 598 −790

? 189 60 27 15 1528 −3160

128 82 96 2160 −1628 pg(9,16,6)?
? 189 88 37 44 4132 −1156 pg(9,11,4)?; ↓?

100 55 50 1056 −5132 ↓?
− 189 94 46 47 6.3794 −7.3794 † v 6= a2 + b2

! 190 36 18 4 1619 −2170 T (20)
153 120 136 1170 −1719 pg(10,17,8)?

? 190 45 12 10 775 −5114 pg(10,5,2) does not exist (no dual)
144 108 112 4114 −875

? 190 84 33 40 4133 −1156 ↑?
105 60 55 1056 −5133 ↑?

+ 190 84 38 36 875 −6114 S(2,6,76)
105 56 60 5114 −975

? 190 90 45 40 1057 −5132 ↑?
99 48 55 4132 −1157 pg(10,11,5)?; ↑?

+ 193 96 47 48 6.4596 −7.4596 Paley(193); ↓
+ 195 96 46 48 6104 −890 pg(13,8,6)?; ↓

98 49 49 790 −7104 S(2,7,91); ↓
! 196 26 12 2 1226 −2169 14× 14

169 144 156 1169 −1326 OA(14, 13)?
? 196 39 2 9 3147 −1048

156 125 120 948 −4147

+ 196 39 14 6 1139 −3156 OA(14, 3)
156 122 132 2156 −1239 OA(14, 12)?

? 196 45 4 12 3150 −1145

continued...
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150 116 110 1045 −4150

+ 196 52 18 12 1052 −4143 OA(14, 4)
143 102 110 3143 −1152 OA(14, 11)?

+ 196 60 14 20 4135 −1060 Huang-Huang-Lin, §8.4.3; pg(7,10,2)?
135 94 90 960 −5135

+ 196 60 23 16 1148 −4147 S(2,4,49); Huffman-Tonchev [445]: qs
2-(49,9,6)

135 90 99 3147 −1248

+ 196 65 24 20 965 −5130 OA(14, 5)
130 84 90 4130 −1065 OA(14, 10)?

? 196 75 26 30 5120 −975

120 74 72 875 −6120

+ 196 78 32 30 878 −6117 OA(14, 6)
117 68 72 5117 −978 OA(14, 9)?

? 196 81 42 27 1824 −3171

114 59 76 2171 −1924 pg(7,19,4)?
− 196 85 18 51 1187 −348 † q222 < 0; † Absolute bound

110 75 44 338 −2187 † q111 < 0; † Absolute bound
? 196 90 40 42 6105 −890 RSHCD−?; ↑?

105 56 56 790 −7105 ↑?
+ 196 91 42 42 791 −7104 OA(14, 7)?; RSHCD+; ↑

104 54 56 6104 −891 OA(14, 8)?; ↑
+ 197 98 48 49 6.5298 −7.5298 Paley(197); ↓
− 201 100 49 50 6.59100 −7.59100 † v 6= a2 + b2

? 204 28 2 4 4119 −684

175 150 150 584 −5119

? 204 63 22 18 968 −5135

140 94 100 4135 −1068 S(2,10,136)?
? 205 68 15 26 3164 −1440

136 93 84 1340 −4164

? 205 96 50 40 1440 −4164

108 51 63 3164 −1540

? 205 102 50 51 6.66102 −7.66102 ↓?
? 208 45 8 10 5117 −790

162 126 126 690 −6117

+ 208 75 30 25 1064 −5143 §10.52; S(2,5,65); NU3(4)
132 81 88 4143 −1164 pg(13,11,8)?

? 208 81 24 36 3168 −1539

126 80 70 1439 −4168

− 209 16 3 1 576 −3132 † µ = 1
192 176 180 2132 −676

? 209 52 15 12 876 −5132

156 115 120 4132 −976

+ 209 100 45 50 5132 −1076 pg(11,10,5)?; ↓
108 57 54 976 −6132 ↓

− 209 104 51 52 6.73104 −7.73104 † v 6= a2 + b2

? 210 33 0 6 3154 −955

176 148 144 855 −4154

! 210 38 19 4 1720 −2189 T (21)
171 136 153 1189 −1820

? 210 76 26 28 6114 −895

133 84 84 795 −7114

? 210 77 28 28 799 −7110

132 82 84 6110 −899

? 210 95 40 45 5133 −1076 ↑?
114 63 60 976 −6133 ↑?

+ 210 99 48 45 977 −6132 §10.53; Klin et al. [494], S7; ↑
110 55 60 5132 −1077 pg(12,10,6)?; ↑

− 213 106 52 53 6.80106 −7.80106 † v 6= a2 + b2

+ 216 40 4 8 4140 −875 p. 266; Crnković et al. [243], O−6 (2)
175 142 140 775 −5140

? 216 43 10 8 786 −5129

172 136 140 4129 −886

continued...
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− 216 70 40 14 2812 −2203 † Absolute bound

145 88 116 1203 −2912 † Absolute bound
? 216 75 18 30 3175 −1540 pg(6,15,2)?

140 94 84 1440 −4175

? 216 86 40 30 1443 −4172

129 72 84 3172 −1543

? 216 90 39 36 980 −6135 S(2,6,81)?
125 70 75 5135 −1080

? 217 66 15 22 4154 −1162 pg(7,11,2)?
150 105 100 1062 −5154

? 217 88 39 33 1162 −5154

128 72 80 4154 −1262

− 217 108 53 54 6.87108 −7.87108 † v 6= a2 + b2

? 220 72 22 24 6120 −899 pg(10,8,3)?
147 98 98 799 −7120

+ 220 84 38 28 1444 −4175 Tonchev [703]: qs 2-(45,9,8)
135 78 90 3175 −1544 pg(10,15,6)?

+ 221 64 24 16 1251 −4169 S(2,4,52)
156 107 117 3169 −1351 pg(13,13,9)

? 221 110 54 55 6.93110 −7.93110 ↓?
+ 222 51 20 9 1436 −3185 S(2,3,37)

170 127 140 2185 −1536

! 225 28 13 2 1328 −2196 15× 15
196 169 182 1196 −1428 OA(15, 14)?

+ 225 42 15 6 1242 −3182 OA(15, 3)
182 145 156 2182 −1342 OA(15, 13)?

? 225 48 3 12 3176 −1248

176 139 132 1148 −4176

− 225 56 1 18 2200 −1924 † q222 < 0
168 129 114 1824 −3200 † q111 < 0

+ 225 56 19 12 1156 −4168 OA(15, 4)
168 123 132 3168 −1256 OA(15, 12)?

? 225 64 13 20 4160 −1164

160 115 110 1064 −5160

+ 225 70 25 20 1070 −5154 OA(15, 5)
154 103 110 4154 −1170 OA(15, 11)?

? 225 80 25 30 5144 −1080 pg(9,10,3)?
144 93 90 980 −6144

+ 225 84 33 30 984 −6140 OA(15, 6)
140 85 90 5140 −1084 OA(15, 10)?

− 225 96 19 57 1216 −398 † q222 < 0; † Absolute bound
128 88 52 388 −2216 † q111 < 0; † Absolute bound

? 225 96 39 42 6128 −996

128 73 72 896 −7128

? 225 96 51 33 2124 −3200

128 64 84 2200 −2224

+ 225 98 43 42 898 −7126 OA(15, 7)?; Pasechnik (§8.12)
126 69 72 6126 −998 OA(15, 9)?

+ 225 112 55 56 7112 −8112 ConfMat(16)2; OA(15, 8)?; ↓
+ 226 105 48 49 7113 −8112 ConfMat(16)2∗; ↑

120 63 64 7112 −8113 S(2,8,113)?; ↑
+ 229 114 56 57 7.07114 −8.07114 Paley(229); ↓
+ 231 30 9 3 955 −3175 §10.54; Cameron graph

200 172 180 2175 −1055

! 231 40 20 4 1821 −2209 T (22)
190 153 171 1209 −1921 pg(11,19,9)?

? 231 70 21 21 7110 −7120 pg(11,7,3)?
160 110 112 6120 −8110

? 231 90 33 36 6132 −998 pg(11,9,4)?
140 85 84 898 −7132

? 232 33 2 5 4144 −787

198 169 168 687 −5144

? 232 63 14 18 5144 −987 pg(8,9,2)?
continued...
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168 122 120 887 −6144

? 232 77 36 20 1928 −3203

154 96 114 2203 −2028

? 232 81 30 27 987 −6144

150 95 100 5144 −1087 S(2,10,145)?
+ 233 116 57 58 7.13116 −8.13116 Paley(233); ↓
? 235 42 9 7 794 −5140

192 156 160 4140 −894

? 235 52 9 12 5140 −894

182 141 140 794 −6140

? 236 55 18 11 1159 −4176

180 135 144 3176 −1259 S(2,12,177)?
− 237 118 58 59 7.20118 −8.20118 † v 6= a2 + b2

? 238 75 20 25 5153 −1084

162 111 108 984 −6153

+ 241 120 59 60 7.26120 −8.26120 Paley(241); ↓
+ 243 22 1 2 4132 −5110 §10.55; Berlekamp-vanLint-Seidel; [11, 5]3 (wts

6, 9)
220 199 200 4110 −5132

? 243 66 9 21 3198 −1544

176 130 120 1444 −4198

− 243 88 52 20 3411 −2231 † Absolute bound
154 85 119 1231 −3511 † Absolute bound

+ 243 110 37 60 2220 −2522 p. 311; Delsarte; [55, 5]3 (wts 36, 45)
132 81 60 2422 −3220

? 243 112 46 56 4182 −1460 pg(9,14,4)?; ↓?
130 73 65 1360 −5182 ↓?

? 244 108 42 52 4183 −1460 ↑?
135 78 70 1360 −5183 ↑?

? 244 117 60 52 1361 −5182 ↑?
126 60 70 4182 −1461 ↑?

? 245 52 3 13 3195 −1349

192 152 144 1249 −4195

? 245 64 18 16 8100 −6144

180 131 135 5144 −9100

? 245 108 39 54 3204 −1840 pg(7,18,3)?; ↓?
136 81 68 1740 −4204 ↓?

? 245 122 60 61 7.33122 −8.33122 ↓?
? 246 85 20 34 3204 −1741 pg(6,17,2)?

160 108 96 1641 −4204

? 246 105 36 51 3205 −1840 ↑?
140 85 72 1740 −4205 ↑?

? 246 119 64 51 1741 −4204 ↑?
126 57 72 3204 −1841 ↑?

+ 247 54 21 9 1538 −3208 S(2,3,39)
192 146 160 2208 −1638 pg(13,16,10)?

? 249 88 27 33 5165 −1183

160 104 100 1083 −6165

− 249 124 61 62 7.39124 −8.39124 † v 6= a2 + b2

? 250 81 24 27 6144 −9105 pg(10,9,3)?
168 113 112 8105 −7144

? 250 96 44 32 1645 −4204

153 88 102 3204 −1745 pg(10,17,6)?
! 253 42 21 4 1922 −2230 T (23)

210 171 190 1230 −2022

− 253 90 17 40 2230 −2522 † q222 < 0
162 111 90 2422 −3230 † q111 < 0

+ 253 112 36 60 2230 −2622 §10.56; S(4, 7, 23); M23

140 87 65 2522 −3230 Witt: qs 2-(23,7,21)
− 253 126 62 63 7.45126 −8.45126 † v 6= a2 + b2

+ 255 126 61 63 7135 −9119 O9(2); Sp8(2); pg(15,9,7); ↓
128 64 64 8119 −8135 S(2,8,120); ↓

! 256 30 14 2 1430 −2225 16× 16; [10, 4]4 (wts 4, 8); [30, 8]2 (wts 8, 16)
continued...
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225 196 210 1225 −1530 OA(16, 15)

+ 256 45 16 6 1345 −3210 §10.57; OA(16, 3); H2(2, 4); Brouwer [112];
[15, 4]4 (wts 8, 12); [45, 8]2 (wts 16, 24)

210 170 182 2210 −1445 OA(16, 14)

+ 256 51 2 12 3204 −1351 vanLint-Schrijver, §7.3.1; VO−4 (4); [17, 4]4 (wts
12, 16)

204 164 156 1251 −4204 vanLint-Schrijver, §7.3.1
+ 256 60 20 12 1260 −4195 Jenrich (rk 4); OA(16, 4); Wallis [718]; [20, 4]4

(wts 12, 16); Brouwer [112]; [60, 8]2 (wts 24, 32)
195 146 156 3195 −1360 OA(16, 13)

− 256 66 2 22 2231 −2224 † q222 < 0
189 144 126 2124 −3231 † q111 < 0

+ 256 68 12 20 4187 −1268 Brouwer [112]; [68, 8]2 (wts 32, 40)
187 138 132 1168 −5187

+ 256 75 26 20 1175 −5180 OA(16, 5); H4(2, 2); Wallis [718]; VO+
4 (4);

[25, 4]4 (wts 16, 20); [75, 8]2 (wts 32, 40)
180 124 132 4180 −1275 OA(16, 12)

+ 256 85 24 30 5170 −1185 vanLint-Schrijver, §7.3.1; [85, 8]2 (wts 40, 48)
170 114 110 1085 −6170 vanLint-Schrijver, §7.3.1

+ 256 90 34 30 1090 −6165 OA(16, 6); [30, 4]4 (wts 20, 24); [90, 8]2 (wts
40, 48)

165 104 110 5165 −1190 OA(16, 11)
+ 256 102 38 42 6153 −10102 §10.58; Liebeck 28.L2(17) (rk 3);

vanLint-Schrijver, §7.3.1; [34, 4]4 (wts 24, 28)
153 92 90 9102 −7153 vanLint-Schrijver, §7.3.1

+ 256 105 44 42 9105 −7150 OA(16, 7); [35, 4]4 (wts 24, 28); Brouwer [112];
[105, 8]2 (wts 48, 56)

150 86 90 6150 −10105 OA(16, 10)

+ 256 119 54 56 7136 −9119 §10.59; VO−8 (2); [119, 8]2 (wts 56, 64);
RSHCD−; ↑

136 72 72 8119 −8136 Fickus et al. [324]; ↑
+ 256 120 56 56 8120 −8135 §10.60; OA(16, 8); Wallis [718]; [40, 4]4 (wts

28, 32); [120, 8]2 (wts 56, 64); RSHCD+; ↑
135 70 72 7135 −9120 OA(16, 9); Wallis [718]; Goethals-Seidel [355];

VO+
8 (2); ↑

+ 257 128 63 64 7.52128 −8.52128 Paley(257); ↓
? 259 42 5 7 5147 −7111

216 180 180 6111 −6147

? 260 70 15 20 5168 −1091 pg(8,10,2)?
189 138 135 991 −6168

? 261 52 11 10 7116 −6144

208 165 168 5144 −8116

? 261 64 14 16 6144 −8116 pg(9,8,2)?
196 147 147 7116 −7144

? 261 80 25 24 8116 −7144

180 123 126 6144 −9116

? 261 84 39 21 2129 −3231

176 112 132 2231 −2229 pg(9,22,6)?
? 261 130 64 65 7.58130 −8.58130 ↓?
? 265 96 32 36 6159 −10105

168 107 105 9105 −7159

? 265 132 65 66 7.64132 −8.64132 ↓?
? 266 45 0 9 3209 −1256

220 183 176 1156 −4209

+ 269 134 66 67 7.70134 −8.70134 Paley(269); ↓
? 273 72 21 18 9104 −6168 pg(13,6,3)?

200 145 150 5168 −10104

? 273 80 19 25 5182 −1190

192 136 132 1090 −6182

+ 273 102 41 36 1190 −6182 S(2,6,91)
170 103 110 5182 −1290

? 273 136 65 70 6168 −11104
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136 69 66 10104 −7168

− 273 136 67 68 7.76136 −8.76136 † v 6= a2 + b2

! 275 112 30 56 2252 −2822 §10.61; q222 = 0; no pg(5,28,2)
(Östergård-Soicher [598]); ↓

162 105 81 2722 −3252 McLaughlin graph, §10.61; q111 = 0; ↓
! 276 44 22 4 2023 −2252 T (24)

231 190 210 1252 −2123 pg(12,21,10)?
? 276 75 10 24 3230 −1745

200 148 136 1645 −4230

? 276 75 18 21 6160 −9115

200 145 144 8115 −7160

− 276 110 28 54 2253 −2822 † q222 < 0; † Absolute bound
165 108 84 2722 −3253 † q111 < 0; † Absolute bound

? 276 110 52 38 1845 −4230

165 92 108 3230 −1945

+ 276 135 78 54 2723 −3252 p. 317; Conway / Goethals&Seidel; ↑
140 58 84 2252 −2823 pg(6,28,3)?; ↑

+ 277 138 68 69 7.82138 −8.82138 Paley(277); ↓
+ 279 128 52 64 4216 −1662 pg(9,16,4)?; ↓

150 85 75 1562 −5216 ↓
+ 280 36 8 4 890 −4189 p. 287; HJ.2 / 3.A6.2

2 (rk 4); U4(3); GQ(9, 3)
243 210 216 3189 −990

? 280 62 12 14 6155 −8124

217 168 168 7124 −7155

? 280 63 14 14 7135 −7144 pg(10,7,2)?
216 166 168 6144 −8135

+ 280 117 44 52 5195 −1384 §10.62; pg(10,13,4)?
162 96 90 1284 −6195 Mathon-Rosa S9 (rk 5)

? 280 124 48 60 4217 −1662 ↑?
155 90 80 1562 −5217 ↑?

+ 280 135 70 60 1563 −5216 p. 287; HJ.2 / 3.A6.2
2 (rk 4); ↑

144 68 80 4216 −1663 pg(10,16,5)?; ↑
+ 281 140 69 70 7.88140 −8.88140 Paley(281); ↓
? 285 64 8 16 4209 −1275

220 171 165 1175 −5209

− 285 142 70 71 7.94142 −8.94142 † v 6= a2 + b2

? 286 95 24 35 4220 −1565

190 129 120 1465 −5220

? 286 125 60 50 1565 −5220

160 84 96 4220 −1665 pg(11,16,6)?
? 287 126 45 63 3245 −2141 pg(7,21,3)?; ↓?

160 96 80 2041 −4245 ↓?
? 288 41 4 6 5164 −7123

246 210 210 6123 −6164

? 288 42 6 6 6140 −6147

245 208 210 5147 −7140

? 288 105 52 30 2527 −3260

182 106 130 2260 −2627 pg(8,26,5)?
? 288 112 36 48 4224 −1663 pg(8,16,3)?

175 110 100 1563 −5224

? 288 123 42 60 3246 −2141 ↑?
164 100 84 2041 −4246 ↑?

? 288 140 76 60 2042 −4245 ↑?
147 66 84 3245 −2142 pg(8,21,4)?; ↑?

! 289 32 15 2 1532 −2256 17× 17
256 225 240 1256 −1632 OA(17, 16)

+ 289 48 17 6 1448 −3240 OA(17, 3)
240 197 210 2240 −1548 OA(17, 15)

− 289 54 1 12 3234 −1454 † Bondarenko-Radchenko [90]
234 191 182 1354 −4234

+ 289 64 21 12 1364 −4224 OA(17, 4)
224 171 182 3224 −1464 OA(17, 14)

? 289 72 11 20 4216 −1372
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216 163 156 1272 −5216

+ 289 80 27 20 1280 −5208 OA(17, 5)
208 147 156 4208 −1380 OA(17, 13)

? 289 90 23 30 5198 −1290

198 137 132 1190 −6198

+ 289 96 35 30 1196 −6192 OA(17, 6); vanLint-Schrijver, §7.3.1
192 125 132 5192 −1296 OA(17, 12); vanLint-Schrijver, §7.3.1

? 289 108 37 42 6180 −11108

180 113 110 10108 −7180

+ 289 112 45 42 10112 −7176 OA(17, 7)
176 105 110 6176 −11112 OA(17, 11)

− 289 120 21 70 1280 −508 † q222 < 0; † Absolute bound
168 117 70 498 −2280 † q111 < 0; † Absolute bound

? 289 126 53 56 7162 −10126

162 91 90 9126 −8162

+ 289 128 57 56 9128 −8160 OA(17, 8)
160 87 90 7160 −10128 OA(17, 10)

+ 289 144 71 72 8144 −9144 Paley(289); OA(17, 9); ↓
+ 290 136 63 64 8145 −9144 OA(17, 9)∗; ↑

153 80 81 8144 −9145 S(2,9,145)?; ↑
+ 293 146 72 73 8.06146 −9.06146 Paley(293); ↓
+ 297 40 7 5 7120 −5176 §10.63; lines in U5(2); GQ(8, 4)

256 220 224 4176 −8120

? 297 104 31 39 5208 −1388 pg(9,13,3)?
192 126 120 1288 −6208

? 297 128 64 48 2044 −4252

168 87 105 3252 −2144 pg(9,21,5)?
− 297 148 73 74 8.12148 −9.12148 † v 6= a2 + b2

? 300 26 4 2 6117 −4182

273 248 252 3182 −7117

! 300 46 23 4 2124 −2275 T (25)
253 210 231 1275 −2224

+ 300 65 10 15 5195 −10104 §10.64; NO−⊥5 (5)
234 183 180 9104 −6195

? 300 69 18 15 9115 −6184

230 175 180 5184 −10115

− 300 92 10 36 2276 −2823 † q222 < 0; † Absolute bound
207 150 126 2723 −3276 † q111 < 0; † Absolute bound

+ 300 104 28 40 4234 −1665 §10.64; NO−5 (5)
195 130 120 1565 −5234

? 300 115 50 40 1569 −5230

184 108 120 4230 −1669

? 300 117 60 36 2726 −3273

182 100 126 2273 −2826

+ 301 60 23 9 1742 −3258 S(2,3,43)
240 188 204 2258 −1842

? 301 108 27 45 3258 −2142

192 128 112 2042 −4258

? 301 150 65 84 3258 −2242

150 83 66 2142 −4258

− 301 150 74 75 8.17150 −9.17150 † v 6= a2 + b2

+ 304 108 42 36 1295 −6208 S(2,6,96)
195 122 130 5208 −1395 pg(16,13,10)?

+ 305 76 27 16 1560 −4244 S(2,4,61)
228 167 180 3244 −1660

? 305 152 75 76 8.23152 −9.23152 ↓?
? 306 55 4 11 4220 −1185

250 205 200 1085 −5220

? 306 60 10 12 6170 −8135

245 196 196 7135 −7170

− 309 154 76 77 8.29154 −9.29154 † v 6= a2 + b2

+ 313 156 77 78 8.35156 −9.35156 Paley(313); ↓
+ 317 158 78 79 8.40158 −9.40158 Paley(317); ↓

continued...
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? 319 150 65 75 5231 −1587 pg(11,15,5)?; ↓?

168 92 84 1487 −6231 ↓?
? 320 87 22 24 7174 −9145

232 168 168 8145 −8174

? 320 88 24 24 8154 −8165

231 166 168 7165 −9154

? 320 99 18 36 3275 −2144

220 156 140 2044 −4275

? 320 132 46 60 4255 −1864

187 114 102 1764 −5255

? 320 145 60 70 5232 −1587 ↑?
174 98 90 1487 −6232 ↑?

? 320 154 78 70 1488 −6231 ↑?
165 80 90 5231 −1588 pg(12,15,6)?; ↑?

− 321 160 79 80 8.46160 −9.46160 † v 6= a2 + b2

? 322 96 20 32 4252 −1669 pg(7,16,2)?
225 160 150 1569 −5252

+ 323 160 78 80 8170 −10152 pg(17,10,8)?; ↓
162 81 81 9152 −9170 S(2,9,153)?; ↓

! 324 34 16 2 1634 −2289 18× 18
289 256 272 1289 −1734 OA(18, 17)?

+ 324 51 18 6 1551 −3272 OA(18, 3)
272 226 240 2272 −1651 OA(18, 16)?

− 324 57 0 12 3266 −1557 † Gavrilyuk & Makhnev [336]; † Kaski &
Östergård [483]

266 220 210 1457 −4266

? 324 68 7 16 4243 −1380

255 202 195 1280 −5243

+ 324 68 22 12 1468 −4255 OA(18, 4)
255 198 210 3255 −1568 OA(18, 15)?

? 324 76 10 20 4247 −1476

247 190 182 1376 −5247

+ 324 85 28 20 1385 −5238 OA(18, 5)
238 172 182 4238 −1485 OA(18, 14)?

? 324 95 22 30 5228 −1395

228 162 156 1295 −6228

+ 324 95 34 25 1480 −5243 S(2,5,81)
228 157 168 4243 −1580

+ 324 102 36 30 12102 −6221 OA(18, 6)
221 148 156 5221 −13102 OA(18, 13)?

? 324 114 36 42 6209 −12114

209 136 132 11114 −7209

+ 324 119 46 42 11119 −7204 OA(18, 7)
204 126 132 6204 −12119 OA(18, 12)?

− 324 133 22 77 1315 −568 † q222 < 0; † Absolute bound
190 133 80 558 −2315 † q111 < 0; † Absolute bound

? 324 133 52 56 7190 −11133

190 112 110 10133 −8190

? 324 136 58 56 10136 −8187 OA(18, 8)?
187 106 110 7187 −11136 OA(18, 11)?

+ 324 152 70 72 8171 −10152 RSHCD−; ↑
171 90 90 9152 −9171 ↑

+ 324 153 72 72 9153 −9170 OA(18, 9)?; RSHCD+; ↑
170 88 90 8170 −10153 OA(18, 10)?; ↑

! 325 48 24 4 2225 −2299 T (26)
276 231 253 1299 −2325 pg(13,23,11)?

? 325 54 3 10 4234 −1190

270 225 220 1090 −5234

+ 325 60 15 10 10104 −5220 §10.65; NO+⊥
5 (5); Wallis [718]; pg(13,5,2)?

264 213 220 4220 −11104

+ 325 68 3 17 3272 −1752 q222 = 0; O−6 (4); GQ(4, 16)
256 204 192 1652 −4272 q111 = 0

? 325 72 15 16 7168 −8156 pg(10,8,2)?
continued...
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252 195 196 7156 −8168

− 325 108 63 22 4312 −2312 † Absolute bound
216 129 172 1312 −4412 † Absolute bound

+ 325 144 68 60 1490 −6234 §10.65; NO+
5 (5)

180 95 105 5234 −1590 pg(13,15,7)?
? 325 162 80 81 8.51162 −9.51162 ↓?
? 329 40 3 5 5188 −7140

288 252 252 6140 −6188

− 329 164 81 82 8.57164 −9.57164 † v 6= a2 + b2

+ 330 63 24 9 1844 −3285 dist. 1 or 4 in J(11,4) - Mathon; S(2,3,45)
266 211 228 2285 −1944 pg(15,19,12)?

? 330 105 40 30 1577 −5252

224 148 160 4252 −1677 pg(15,16,10)?
? 330 140 58 60 8175 −10154 pg(15,10,6)?

189 108 108 9154 −9175

? 333 166 82 83 8.62166 −9.62166 ↓?
+ 336 80 28 16 1663 −4272 Jenrich, p. 323; S(2,4,64); qs 2-(64,24,46); lines

in AG(3, 4) (rk 4); Wallis [718]
255 190 204 3272 −1763 pg(16,17,12)?

? 336 125 40 50 5245 −1590

210 134 126 1490 −6245

? 336 135 54 54 9160 −9175 pg(16,9,6)?
200 118 120 8175 −10160

+ 337 168 83 84 8.68168 −9.68168 Paley(337); ↓
? 340 108 30 36 6220 −12119 pg(10,12,3)?

231 158 154 11119 −7220

? 341 70 15 14 8154 −7186 pg(11,7,2)?
270 213 216 6186 −9154

? 341 84 19 21 7186 −9154

256 192 192 8154 −8186

? 341 102 31 30 9154 −8186

238 165 168 7186 −10154

− 341 170 84 85 8.73170 −9.73170 † v 6= a2 + b2

? 342 33 4 3 6152 −5189

308 277 280 4189 −7152

? 342 66 15 12 9132 −6209 pg(12,6,2)?
275 220 225 5209 −10132

+ 343 54 5 9 5216 −9126 Godsil [345]; GQ(6, 8)
288 242 240 8126 −6216

− 343 96 54 16 4014 −2328 † Absolute bound
246 165 205 1328 −4114 † Absolute bound

? 343 102 21 34 4272 −1770 pg(7,17,2)?
240 171 160 1670 −5272

? 343 114 45 34 1676 −5266

228 147 160 4266 −1776

+ 343 150 53 75 3300 −2542 Godsil [345]; pg(7,25,3)?; ↓
192 116 96 2442 −4300 ↓

? 343 162 81 72 1590 −6252

180 89 100 5252 −1690

? 344 147 50 72 3301 −2542 ↑?
196 120 100 2442 −4301 ↑?

+ 344 168 92 72 2443 −4300 ↑
175 78 100 3300 −2543 pg(8,25,4)?; Taylor ↑

? 345 120 35 45 5252 −1592 pg(9,15,3)?
224 148 140 1492 −6252

? 345 128 46 48 8184 −10160

216 135 135 9160 −9184

− 345 172 85 86 8.79172 −9.79172 † v 6= a2 + b2

+ 349 174 86 87 8.84174 −9.84174 Paley(349); ↓
? 351 50 13 6 1190 −4260

300 255 264 3260 −1290

! 351 50 25 4 2326 −2324 T (27)
300 253 276 1324 −2426

continued...
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? 351 70 13 14 7182 −8168

280 223 224 7168 −8182

? 351 110 37 33 11130 −7220

240 162 168 6220 −12130

? 351 112 43 32 1678 −5272

238 157 170 4272 −1778

+ 351 126 45 45 9168 −9182 §10.66
224 142 144 8182 −10168 NO−7 (3)

? 351 140 49 60 5260 −1690

210 129 120 1590 −6260

? 351 140 73 44 3226 −3324

210 113 144 2324 −3326

− 351 150 81 51 3325 −3325 † Absolute bound
200 100 132 2325 −3425 † Absolute bound

? 351 160 64 80 4285 −2065 pg(9,20,4)?; ↓?
190 109 95 1965 −5285 ↓?

? 352 26 0 2 4208 −6143

325 300 300 5143 −5208

? 352 36 0 4 4231 −8120

315 282 280 7120 −5231

? 352 39 6 4 7143 −5208

312 276 280 4208 −8143

? 352 108 44 28 2054 −4297

243 162 180 3297 −2154

? 352 117 36 40 7208 −11143

234 156 154 10143 −8208

? 352 126 50 42 1499 −6252

225 140 150 5252 −1599 pg(16,15,10)?
− 352 130 78 30 5011 −2340 † Absolute bound

221 120 170 1340 −5111 † Absolute bound
? 352 156 60 76 4286 −2065 ↑?

195 114 100 1965 −5286 ↑?
? 352 171 90 76 1966 −5285 ↑?

180 84 100 4285 −2066 pg(10,20,5)?; ↑?
+ 353 176 87 88 8.89176 −9.89176 Paley(353); ↓
+ 357 100 35 25 1584 −5272 S(2,5,85); lines in PG(3, 4); O+

6 (4)
256 180 192 4272 −1684 pg(17,16,12)?

− 357 178 88 89 8.95178 −9.95178 † v 6= a2 + b2

! 361 36 17 2 1736 −2324 19× 19
324 289 306 1324 −1836 OA(19, 18)

+ 361 54 19 6 1654 −3306 OA(19, 3)
306 257 272 2306 −1754 OA(19, 17)

+ 361 72 23 12 1572 −4288 OA(19, 4)
288 227 240 3288 −1672 OA(19, 16)

? 361 80 9 20 4280 −1580

280 219 210 1480 −5280

+ 361 90 29 20 1490 −5270 OA(19, 5)
270 199 210 4270 −1590 OA(19, 15)

? 361 100 21 30 5260 −14100

260 189 182 13100 −6260

+ 361 108 37 30 13108 −6252 OA(19, 6)
252 173 182 5252 −14108 OA(19, 14)

? 361 120 35 42 6240 −13120

240 161 156 12120 −7240

+ 361 126 47 42 12126 −7234 OA(19, 7)
234 149 156 6234 −13126 OA(19, 13)

? 361 140 51 56 7220 −12140

220 135 132 11140 −8220

+ 361 144 59 56 11144 −8216 OA(19, 8)
216 127 132 7216 −12144 OA(19, 12)

− 361 150 93 40 5510 −2350 † Absolute bound
210 99 154 1350 −5610 † Absolute bound

? 361 160 69 72 8200 −11160

continued...
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200 111 110 10160 −9200

+ 361 162 73 72 10162 −9198 OA(19, 9); Pasechnik (§8.12)
198 107 110 8198 −11162 OA(19, 11)

− 361 168 95 63 3524 −3336 † Absolute bound
192 86 120 2336 −3624 † Absolute bound

+ 361 180 89 90 9180 −10180 Paley(361); OA(19, 10); ↓
+ 362 171 80 81 9181 −10180 OA(19, 10)∗; ConfMat(20)2∗; ↑

190 99 100 9180 −10181 S(2,10,181)?; ↑
? 363 170 73 85 5272 −1790 pg(11,17,5)?; ↓?

192 106 96 1690 −6272 ↓?
? 364 33 2 3 5195 −6168

330 299 300 5168 −6195

? 364 66 20 10 1477 −4286

297 240 252 3286 −1577

? 364 88 12 24 4286 −1677

275 210 200 1577 −5286

+ 364 120 38 40 8195 −10168 O7(3); Sp6(3); pg(13,10,4)?
243 162 162 9168 −9195

? 364 121 48 36 1777 −5286

242 156 170 4286 −1877

? 364 165 68 80 5273 −1790 ↑?
198 112 102 1690 −6273 ↑?

? 364 176 90 80 1691 −6272 ↑?
187 90 102 5272 −1791 ↑?

? 365 182 90 91 9.05182 −10.05182 ↓?
? 369 184 91 92 9.10184 −10.10184 ↓?
+ 371 120 44 36 14105 −6265 S(2,6,106)

250 165 175 5265 −15105

? 372 56 10 8 8155 −6216

315 266 270 5216 −9155

+ 373 186 92 93 9.16186 −10.16186 Paley(373); ↓
− 375 22 5 1 7110 −3264 † µ = 1

352 330 336 2264 −8110

? 375 66 9 12 6220 −9154

308 253 252 8154 −7220

? 375 68 13 12 8170 −7204

306 249 252 6204 −9170

? 375 102 45 21 2734 −3340

272 190 216 2340 −2834

? 375 110 25 35 5275 −1599

264 188 180 1499 −6275

? 375 136 44 52 6255 −14119

238 153 147 13119 −7255

? 375 154 53 70 4308 −2166

220 135 120 2066 −5308

? 375 170 85 70 2068 −5306

204 103 120 4306 −2168

? 375 176 94 72 2644 −4330

198 93 117 3330 −2744

? 375 182 85 91 7234 −13140 pg(15,13,7)?; ↓?
192 100 96 12140 −8234 ↓?

? 376 105 32 28 11140 −7235

270 192 198 6235 −12140

? 376 175 78 84 7235 −13140 ↑?
200 108 104 12140 −8235 ↑?

? 376 180 88 84 12141 −8234 ↑?
195 98 104 7234 −13141 ↑?

? 377 180 81 90 6260 −15116 pg(13,15,6)?; ↓?
196 105 98 14116 −7260 ↓?

? 377 188 93 94 9.21188 −10.21188 ↓?
+ 378 52 1 8 4273 −11104 Cossidente-Penttila [233]

325 280 275 10104 −5273

! 378 52 26 4 2427 −2350 T (28)
continued...
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325 276 300 1350 −2527 pg(14,25,12)?

+ 378 116 34 36 8203 −10174 Muzychuk [580]
261 180 180 9174 −9203

+ 378 117 36 36 9182 −9195 §10.67; Wallis [718]; pg(14,9,4)?
260 178 180 8195 −10182 NO+

7 (3)
? 378 174 75 84 6261 −15116 ↑?

203 112 105 14116 −7261 ↑?
? 378 182 91 84 14117 −7260 ↑?

195 96 105 6260 −15117 pg(14,15,7)?; ↑?
? 381 114 29 36 6254 −13126

266 187 182 12126 −7254

? 381 140 55 49 13126 −7254 S(2,7,127)?
240 148 156 6254 −14126

− 381 190 94 95 9.26190 −10.26190 † v 6= a2 + b2

? 385 60 5 10 5252 −10132

324 273 270 9132 −6252

? 385 168 77 70 14120 −7264

216 117 126 6264 −15120

− 385 192 95 96 9.31192 −10.31192 † v 6= a2 + b2

+ 389 194 96 97 9.36194 −10.36194 Paley(389); ↓
? 391 140 39 56 4322 −2168

250 165 150 2068 −5322

? 391 182 93 77 2168 −5322

208 102 120 4322 −2268

? 392 46 0 6 4276 −10115

345 304 300 9115 −5276

? 392 51 10 6 9136 −5255

340 294 300 4255 −10136

+ 392 69 26 9 2048 −3343 S(2,3,49)
322 261 280 2343 −2148

? 392 115 18 40 3345 −2546 q222 = 0
276 200 180 2446 −4345 q111 = 0

? 392 136 60 40 2451 −4340

255 158 180 3340 −2551

? 392 153 54 63 6272 −15119

238 147 140 14119 −7272

− 392 184 66 104 2368 −4023 † Absolute bound
207 126 90 3923 −3368 † Absolute bound

− 393 196 97 98 9.41196 −10.41196 † v 6= a2 + b2

? 396 135 30 54 3351 −2744 pg(6,27,2)?
260 178 156 2644 −4351

? 396 150 51 60 6275 −15120 pg(11,15,4)?
245 154 147 14120 −7275

+ 397 198 98 99 9.46198 −10.46198 Paley(397); ↓
+ 399 198 97 99 9209 −11189 pg(19,11,9)?; ↓

200 100 100 10189 −10209 S(2,10,190)?; ↓
? 400 21 2 1 5175 −4224

378 357 360 3224 −6175

! 400 38 18 2 1838 −2361 20× 20
361 324 342 1361 −1938 OA(20, 19)?

+ 400 56 6 8 6224 −8175 O5(7); Sp4(7); GQ(7, 7)
343 294 294 7175 −7224

+ 400 57 20 6 1757 −3342 OA(20, 3)
342 290 306 2342 −1857 OA(20, 18)?

+ 400 76 24 12 1676 −4323 OA(20, 4)
323 258 272 3323 −1776 OA(20, 17)?

? 400 84 8 20 4315 −1684

315 250 240 1584 −5315

+ 400 95 30 20 1595 −5304 OA(20, 5)
304 228 240 4304 −1695 OA(20, 16)?

− 400 102 2 34 2374 −3425 † q222 < 0; † Absolute bound
297 228 198 3325 −3374 † q111 < 0; † Absolute bound

? 400 105 20 30 5294 −15105 pg(8,15,2)?
continued...
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294 218 210 14105 −6294

− 400 114 8 42 2375 −3624 † q222 < 0; † Absolute bound
285 212 180 3524 −3375 † q111 < 0; † Absolute bound

+ 400 114 38 30 14114 −6285 OA(20, 6)
285 200 210 5285 −15114 OA(20, 15)?

? 400 126 34 42 6273 −14126 pg(10,14,3)?
273 188 182 13126 −7273

? 400 133 42 45 8224 −11175

266 177 176 10175 −9224

? 400 133 48 42 13133 −7266 OA(20, 7)?
266 174 182 6266 −14133 OA(20, 14)?

? 400 147 50 56 7252 −13147

252 160 156 12147 −8252

? 400 152 60 56 12152 −8247 OA(20, 8)?
247 150 156 7247 −13152 OA(20, 13)?

? 400 156 74 52 2648 −4351

243 138 162 3351 −2748 pg(10,27,6)?
− 400 161 24 92 1391 −698 † q222 < 0; † Absolute bound

238 168 102 688 −2391 † q111 < 0; † Absolute bound
? 400 168 68 72 8231 −12168 pg(15,12,6)?

231 134 132 11168 −9231

? 400 171 74 72 11171 −9228 OA(20, 9)?
228 128 132 8228 −12171 OA(20, 12)?

+ 400 189 88 90 9210 −11189 RSHCD−; ↑
210 110 110 10189 −10210 Fickus et al. [324]; ↑

− 400 189 108 72 3924 −3375 † Absolute bound
210 92 130 2375 −4024 † Absolute bound

+ 400 190 90 90 10190 −10209 OA(20, 10)?; Wallis [718]; RSHCD+; ↑
209 108 110 9209 −11190 OA(20, 11)?; Wallis [718]; Goethals-Seidel

[355]; ↑
+ 401 200 99 100 9.51200 −10.51200 Paley(401); ↓
− 405 84 3 21 3350 −2154 † q222 < 0

320 256 240 2054 −4350 † q111 < 0
? 405 96 18 24 6264 −12140 pg(9,12,2)?

308 235 231 11140 −7264

? 405 132 63 33 3330 −3374

272 172 204 2374 −3430 pg(9,34,6)?
? 405 196 91 98 7260 −14144 pg(15,14,7)?; ↓?

208 109 104 13144 −8260 ↓?
? 405 202 100 101 9.56202 −10.56202 ↓?
! 406 54 27 4 2528 −2377 T (29)

351 300 325 1377 −2628

? 406 108 30 28 10174 −8231

297 216 220 7231 −11174

? 406 165 68 66 11174 −9231

240 140 144 8231 −12174 S(2,12,232)?
? 406 189 84 91 7261 −14144 ↑?

216 117 112 13144 −8261 ↑?
? 406 195 96 91 13145 −8260 ↑?

210 105 112 7260 −14145 ↑?
+ 407 126 45 36 15110 −6296 S(2,6,111)

280 189 200 5296 −16110

? 408 110 28 30 8220 −10187 pg(12,10,3)?
297 216 216 9187 −9220

? 408 176 70 80 6288 −16119 pg(12,16,5)?
231 134 126 15119 −7288

+ 409 204 101 102 9.61204 −10.61204 Paley(409); ↓
? 411 130 45 39 13137 −7273

280 188 196 6273 −14137 S(2,14,274)?
? 413 112 36 28 14118 −6294

300 215 225 5294 −15118 S(2,15,295)?
− 413 206 102 103 9.66206 −10.66206 † v 6= a2 + b2

? 414 63 12 9 9161 −6252

continued...
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350 295 300 5252 −10161

− 414 140 22 60 2390 −4023 † q222 < 0; † Absolute bound
273 192 156 3923 −3390 † q111 < 0; † Absolute bound

+ 416 100 36 20 2065 −4350 §10.68; G2(4) in Suz tower
315 234 252 3350 −2165 pg(16,21,12)?

? 416 165 64 66 9220 −11195 pg(16,11,6)?
250 150 150 10195 −10220

− 417 208 103 104 9.71208 −10.71208 † v 6= a2 + b2

? 418 147 56 49 14132 −7285 S(2,7,133)?
270 171 180 6285 −15132 pg(19,15,12)?

+ 421 210 104 105 9.76210 −10.76210 Paley(421); ↓
? 424 99 26 22 11159 −7264

324 246 252 6264 −12159

+ 425 72 27 9 2150 −3374 S(2,3,51)
352 288 308 2374 −2250 pg(17,22,14)?

? 425 160 60 60 10204 −10220 pg(17,10,6)?
264 163 165 9220 −11204

? 425 212 105 106 9.81212 −10.81212 ↓?
? 428 112 21 32 5320 −16107 pg(8,16,2)?

315 234 225 15107 −6320

? 429 108 27 27 9208 −9220 pg(13,9,3)?
320 238 240 8220 −10208

− 429 214 106 107 9.86214 −10.86214 † v 6= a2 + b2

? 430 39 8 3 9129 −4300

390 353 360 3300 −10129

? 430 135 36 45 6300 −15129 pg(10,15,3)?
294 203 196 14129 −7300

? 430 165 68 60 15129 −7300

264 158 168 6300 −16129

+ 433 216 107 108 9.90216 −10.90216 Paley(433); ↓
! 435 56 28 4 2629 −2405 T (30)

378 325 351 1405 −2729 pg(15,27,13)?
? 435 154 53 55 9231 −11203 pg(15,11,5)?

280 180 180 10203 −10231

? 435 182 73 78 8260 −13174 pg(15,13,6)?
252 147 144 12174 −9260

? 437 100 15 25 5322 −15114

336 260 252 14114 −6322

− 437 218 108 109 9.95218 −10.95218 † v 6= a2 + b2

+ 438 92 31 16 1972 −4365 S(2,4,73)
345 268 285 3365 −2072

! 441 40 19 2 1940 −2400 21× 21
400 361 380 1400 −2040 OA(21, 20)?

+ 441 56 7 7 7216 −7224 Wallis [718]; GQ(8, 6)
384 334 336 6224 −8216

+ 441 60 21 6 1860 −3380 OA(21, 3)
380 325 342 2380 −1960 OA(21, 19)?

+ 441 80 25 12 1780 −4360 OA(21, 4)
360 291 306 3360 −1880 OA(21, 18)?

? 441 88 7 20 4352 −1788

352 283 272 1688 −5352

? 441 88 35 13 2544 −3396

352 276 300 2396 −2644

+ 441 100 31 20 16100 −5340 OA(21, 5)
340 259 272 4340 −17100 OA(21, 17)?

? 441 110 19 30 5330 −16110

330 249 240 15110 −6330

− 441 120 15 39 3392 −2748 † q222 < 0
320 238 216 2648 −4392 † q111 < 0

+ 441 120 39 30 15120 −6320 OA(21, 6)
320 229 240 5320 −16120 OA(21, 16)?

− 441 128 10 48 2416 −4024 † q222 < 0; † Absolute bound
312 231 195 3924 −3416 † q111 < 0; † Absolute bound
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? 441 132 33 42 6308 −15132

308 217 210 14132 −7308

+ 441 140 49 42 14140 −7300 OA(21, 7)
300 201 210 6300 −15140 OA(21, 15)?

? 441 152 43 57 5342 −1998 pg(9,19,3)?
288 192 180 1898 −6342

? 441 154 49 56 7286 −14154

286 187 182 13154 −8286

? 441 160 61 56 13160 −8280 OA(21, 8)?
280 175 182 7280 −14160 OA(21, 14)?

− 441 176 25 100 1432 −768 † q222 < 0; † Absolute bound
264 187 114 758 −2432 † q111 < 0; † Absolute bound

? 441 176 67 72 8264 −13176

264 159 156 12176 −9264

? 441 176 85 60 2948 −4392

264 147 174 3392 −3048

? 441 180 75 72 12180 −9260 OA(21, 9)?
260 151 156 8260 −13180 OA(21, 13)?

? 441 184 87 69 2372 −5368

256 140 160 4368 −2472

? 441 190 89 76 1998 −6342

250 135 150 5342 −2098

? 441 198 87 90 9242 −12198

242 133 132 11198 −10242

? 441 200 91 90 11200 −10240 OA(21, 10)?
240 129 132 9240 −12200 OA(21, 12)?

? 441 220 95 124 3396 −3244

220 123 96 3144 −4396

+ 441 220 109 110 10220 −11220 Mathon [544]; OA(21, 11)?; ↓
− 442 105 8 30 3390 −2551 † q222 < 0

336 260 240 2451 −4390 † q111 < 0
? 442 210 99 100 10221 −11220 ↑?

231 120 121 10220 −11221 S(2,11,221)?; ↑?
? 445 222 110 111 10.05222 −11.05222 ↓?
? 448 150 50 50 10216 −10231 pg(16,10,5)?

297 196 198 9231 −11216

? 448 162 66 54 18105 −6342

285 176 190 5342 −19105 pg(16,19,10)?
+ 449 224 111 112 10.09224 −11.09224 Paley(449); ↓
? 451 130 33 39 7286 −13164 pg(11,13,3)?

320 228 224 12164 −8286

? 451 156 57 52 13164 −8286

294 189 196 7286 −14164 S(2,14,287)?
− 453 226 112 113 10.14226 −11.14226 † v 6= a2 + b2

− 456 35 10 2 1195 −3360 † µ = 2
420 386 396 2360 −1295

? 456 65 10 9 8208 −7247

390 333 336 6247 −9208

? 456 80 4 16 4360 −1695

375 310 300 1595 −5360

− 456 91 2 22 3399 −2356 † q222 < 0
364 294 276 2256 −4399 † q111 < 0

? 456 104 22 24 8247 −10208

351 270 270 9208 −9247

? 456 130 24 42 4380 −2275

325 236 220 2175 −5380

? 456 140 40 44 8266 −12189

315 218 216 11189 −9266

? 456 140 58 36 2656 −4399

315 210 234 3399 −2756

? 456 175 78 60 2375 −5380

280 164 184 4380 −2475

? 456 182 73 72 11208 −10247

continued...
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ex v k λ µ rf sg comment
273 162 165 9247 −12208

? 456 195 74 90 5360 −2195

260 154 140 2095 −6360

+ 457 228 113 114 10.19228 −11.19228 Paley(457); ↓
? 459 208 82 104 4390 −2668 pg(9,26,4)?; ↓?

250 145 125 2568 −5390 ↓?
? 460 85 18 15 10184 −7275

374 303 308 6275 −11184

? 460 99 18 22 7275 −11184 pg(10,11,2)?
360 282 280 10184 −8275

? 460 147 42 49 7299 −14160

312 213 208 13160 −8299

− 460 153 32 60 3414 −3145 † Bondarenko et al. [88]
306 212 186 3045 −4414

? 460 204 78 100 4391 −2668 ↑?
255 150 130 2568 −5391 ↑?

? 460 216 116 88 3245 −4414

243 114 144 3414 −3345

? 460 225 120 100 2569 −5390 ↑?
234 108 130 4390 −2669 pg(10,26,5)?; ↑?

+ 461 230 114 115 10.24230 −11.24230 Paley(461); ↓
! 465 58 29 4 2730 −2434 T (31)

406 351 378 1434 −2830

? 465 144 43 45 9248 −11216

320 220 220 10216 −10248

? 465 192 72 84 6340 −18124

272 163 153 17124 −7340

− 465 232 115 116 10.28232 −11.28232 † v 6= a2 + b2

− 469 234 116 117 10.33234 −11.33234 † v 6= a2 + b2

? 470 126 27 36 6329 −15140

343 252 245 14140 −7329

− 473 236 117 118 10.37236 −11.37236 † v 6= a2 + b2

? 474 165 52 60 7315 −15158

308 202 196 14158 −8315

? 475 90 25 15 15114 −5360 pg(19,5,3) does not exist (no dual)
384 308 320 4360 −16114

+ 475 96 32 16 2075 −4399 S(2,4,76)
378 297 315 3399 −2175 pg(19,21,15)?

? 476 133 42 35 14152 −7323

342 243 252 6323 −15152

? 476 133 60 28 3534 −3441

342 236 270 2441 −3634

? 477 140 31 45 5371 −19105

336 240 228 18105 −6371

? 477 168 57 60 9264 −12212

308 199 198 11212 −10264

? 477 238 118 119 10.42238 −11.42238 ↓?
? 481 240 119 120 10.47240 −11.47240 ↓?
? 483 240 118 120 10252 −12230 pg(21,12,10)?; ↓?

242 121 121 11230 −11252 S(2,11,231)?; ↓?
! 484 42 20 2 2042 −2441 22× 22

441 400 420 1441 −2142 OA(22, 21)?
+ 484 63 22 6 1963 −3420 OA(22, 3)

420 362 380 2420 −2063 OA(22, 20)?
+ 484 84 26 12 1884 −4399 OA(22, 4)

399 326 342 3399 −1984 OA(22, 19)?
? 484 92 6 20 4391 −1892

391 318 306 1792 −5391

? 484 105 14 25 5363 −16120

378 297 288 15120 −6363

+ 484 105 32 20 17105 −5378 OA(22, 5)
378 292 306 4378 −18105 OA(22, 18)?

? 484 115 18 30 5368 −17115

continued...
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ex v k λ µ rf sg comment
368 282 272 16115 −6368

? 484 126 40 30 16126 −6357 OA(22, 6)?
357 260 272 5357 −17126 OA(22, 17)?

− 484 135 18 45 3435 −3048 † q222 < 0
348 257 232 2948 −4435 † q111 < 0

? 484 138 32 42 6345 −16138

345 248 240 15138 −7345

+ 484 138 47 36 17120 −6363 S(2,6,121)
345 242 255 5363 −18120

? 484 147 50 42 15147 −7336 OA(22, 7)?
336 230 240 6336 −16147 OA(22, 16)?

? 484 161 48 56 7322 −15161

322 216 210 14161 −8322

? 484 168 62 56 14168 −8315 OA(22, 8)?
315 202 210 7315 −15168 OA(22, 15)?

? 484 184 66 72 8299 −14184

299 186 182 13184 −9299

? 484 189 76 72 13189 −9294 OA(22, 9)?
294 176 182 8294 −14189 OA(22, 14)?

? 484 207 86 90 9276 −13207

276 158 156 12207 −10276

? 484 210 92 90 12210 −10273 OA(22, 10)?
273 152 156 9273 −13210 OA(22, 13)?

? 484 230 108 110 10253 −12230 RSHCD−?; ↑?
253 132 132 11230 −11253 ↑?

? 484 231 110 110 11231 −11252 OA(22, 11)?; RSHCD+?; ↑?
252 130 132 10252 −12231 OA(22, 12)?; ↑?

? 485 242 120 121 10.51242 −11.51242 ↓?
? 486 97 16 20 7291 −11194

388 310 308 10194 −8291

? 486 100 22 20 10210 −8275

385 304 308 7275 −11210

− 486 165 36 66 3440 −3345 † Makhnev [534]
320 220 192 3245 −4440

? 486 194 67 84 5388 −2297

291 180 165 2197 −6388

? 486 210 99 84 21100 −6385

275 148 165 5385 −22100

− 489 244 121 122 10.56244 −11.56244 † v 6= a2 + b2

? 490 144 28 48 4414 −2475 pg(7,24,2)?
345 248 230 2375 −5414

? 490 165 56 55 11225 −10264

324 213 216 9264 −12225

? 490 192 92 64 3249 −4440

297 168 198 3440 −3349 pg(10,33,6)?
? 493 246 122 123 10.60246 −11.60246 ↓?
? 494 85 12 15 7285 −10208

408 337 336 9208 −8285

? 495 38 1 3 5285 −7209

456 420 420 6209 −6285

+ 495 78 29 9 2354 −3440 S(2,3,55)
416 346 368 2440 −2454

? 495 104 28 20 14143 −6351

390 305 315 5351 −15143

? 495 190 53 85 3450 −3544

304 198 168 3444 −4450

? 495 190 85 65 2576 −5418

304 178 200 4418 −2676

? 495 208 86 88 10260 −12234

286 165 165 11234 −11260

− 495 208 130 56 7610 −2484 † Absolute bound
286 133 209 1484 −7710 † Absolute bound

? 495 234 93 126 3450 −3644

continued...
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ex v k λ µ rf sg comment
260 151 120 3544 −4450

+ 495 238 109 119 7340 −17154 §10.69; O−10(2); pg(15,17,7)?; ↓
256 136 128 16154 −8340 ↓

? 496 54 4 6 6279 −8216

441 392 392 7216 −7279

! 496 60 30 4 2831 −2464 T (32)
435 378 406 1464 −2931 pg(16,29,14)?

? 496 110 18 26 6341 −14154

385 300 294 13154 −7341

? 496 135 38 36 11216 −9279 pg(16,9,4)?
360 260 264 8279 −12216

− 496 165 80 42 4130 −3465 † Absolute bound
330 206 246 2465 −4230 † Absolute bound

? 496 198 80 78 12216 −10279

297 176 180 9279 −13216

? 496 231 102 112 7341 −17154 ↑?
264 144 136 16154 −8341 ↑?

+ 496 240 120 112 16155 −8340 Wallis [718]; ↑
255 126 136 7340 −17155 NO+

10(2); Goethals-Seidel [355]; pg(16,17,8)?; ↑
? 497 186 55 78 4426 −2770

310 201 180 2670 −5426

? 497 240 127 105 2770 −5426

256 120 144 4426 −2870

− 497 248 123 124 10.65248 −11.65248 † v 6= a2 + b2

? 498 161 64 46 2383 −5414

336 220 240 4414 −2483

− 501 250 124 125 10.69250 −11.69250 † v 6= a2 + b2

? 505 84 3 16 4404 −17100

420 351 340 16100 −5404

+ 505 120 39 25 19100 −5404 S(2,5,101)
384 288 304 4404 −20100

? 505 180 53 70 5404 −22100

324 213 198 21100 −6404

? 505 224 108 92 22100 −6404

280 147 165 5404 −23100

? 505 252 125 126 10.74252 −11.74252 ↓?
? 506 100 18 20 8275 −10230 pg(11,10,2)?

405 324 324 9230 −9275

? 507 44 1 4 5308 −8198

462 421 420 7198 −6308

? 507 46 5 4 7230 −6276

460 417 420 5276 −8230

? 507 138 49 33 2192 −5414

368 262 280 4414 −2292

? 507 154 41 49 7338 −15168

352 246 240 14168 −8338

? 507 176 70 56 20110 −6396

330 209 225 5396 −21110

− 507 184 36 84 2483 −5023 † q222 < 0; † Absolute bound
322 221 175 4923 −3483 † q111 < 0; † Absolute bound

? 507 184 71 64 15168 −8338 S(2,8,169)?
322 201 210 7338 −16168

? 507 198 57 90 3462 −3644

308 199 168 3544 −4462

? 507 230 121 90 3546 −4460

276 135 168 3460 −3646

? 507 240 106 120 6380 −20126 pg(13,20,6)?; ↓?
266 145 133 19126 −7380 ↓?

? 508 234 100 114 6381 −20126 ↑?
273 152 140 19126 −7381 ↑?

? 508 247 126 114 19127 −7380 ↑?
260 126 140 6380 −20127 ↑?

+ 509 254 126 127 10.78254 −11.78254 Paley(509); ↓
continued...
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ex v k λ µ rf sg comment
? 511 68 15 8 12146 −5364

442 381 390 4364 −13146

? 511 78 5 13 5364 −13146

432 366 360 12146 −6364

+ 512 70 6 10 6315 −10196 GQ(7, 9); [10, 3]8 (wts 8, 10)
441 380 378 9196 −7315

+ 512 73 12 10 9219 −7292 Fiedler-Klin [326]; [73, 9]2 (wts 32, 40)
438 374 378 6292 −10219

− 512 126 70 18 5416 −2495 † Absolute bound
385 276 330 1495 −5516 † Absolute bound

+ 512 133 24 38 5399 −19112 Godsil [345]; pg(8,19,2)?
378 282 270 18112 −6399

− 512 189 96 54 4528 −3483 † Absolute bound
322 186 230 2483 −4628 † Absolute bound

+ 512 196 60 84 4441 −2870 pg(8,28,3); [28, 3]8 (wts 24, 28)
315 202 180 2770 −5441

+ 512 219 106 84 2773 −5438 Fiedler-Klin [326]; [219, 9]2 (wts 96, 112)
292 156 180 4438 −2873

Table 12.1: Parameters of strongly regular graphs



Bibliography

[1] R. J. R. Abel, C. J. Colbourn & J. H. Dinitz, Mutually orthogonal Latin squares
(MOLS), pp. 160–193 in: Handbook of Combinatorial Designs, 2nd ed., C. J. Colbourn
& J. H. Dinitz (eds.), Chapman & Hall/CRC, Boca Raton, 2007. (p. 193)

[2] R. J. R. Abel & M. Greig, BIBDs with small block size, Chapter II.3, pp. 72–79 in:
Handbook of Combinatorial Designs, 2nd ed., C. J. Colbourn & J. H. Dinitz (eds.),
Chapman & Hall/CRC, Boca Raton, 2007. (p. 197)

[3] A. Abiad & W. H. Haemers, Switched symplectic graphs and their 2-ranks, Des. Codes
Cryptogr. 81 (2016) 35–41. (pp. 222, 240)

[4] P. Abramenko & K. S. Brown, Buildings, Theory and Applications, GTM 248, Springer,
New York, 2008. (p. 115)

[5] M. Adm, R. Bergen, F. Ihringer, S. Jaques, K. Meagher, A. Purdy & B. Yang, Ovoids
of generalized quadrangles of order (q, q2−q) and Delsarte cocliques in related strongly
regular graphs, J. Combin. Designs 26 (2018) 249–263. (p. 203)

[6] R. W. Ahrens & G. Szekeres, On a combinatorial generalization of 27 lines associated
with a cubic surface, J. Austral. Math. Soc. 10 (1969) 485–492. (p. 104)

[7] A. Al-Azemi, A. Betten & D. Betten, Unital designs with blocking sets, Discr. Appl.
Math. 163 (2014) 102–112. (p. 275)

[8] M. R. Alfuraidan, I. O. Sarumi & S. Shpectorov, On the non-existence of srg(76, 21,
2, 7), Graphs Combin. 35 (2019) 847–854. (p. 15)

[9] C. Amarra, Wei Jin & C. E. Praeger, On locally n×n grid graphs, arXiv:1903.07931,
Mar. 2019. (p. 141)

[10] В. Л. Арлазаров, А. А. Леман & М. З. Розенфельд (V. L. Arlazarov, A. A. Lehman
& M. Z. Rozenfel’d), Построение и исследование на ЭВМ графов с 25, 26 и 29
вершинами (The construction and analysis by a computer of the graphs on 25, 26 and
29 vertices) (Russian), preprint, 58 pp., Institute of Control Theory, Moscow (1975).
(p. 258)

[11] O. Arslan & P. Sin, Some simple modules for classical groups and p-ranks of orthogonal
and Hermitian geometries, J. Algebra 327 (2011) 141–169. (p. 63)

[12] M. Aschbacher, On collineation groups of symmetric block designs, J. Combin. Th. 11
(1971) 272–281. (p. 198)

[13] M. Aschbacher, 3-Transposition Groups, Cambridge Univ. Press, Cambridge, 1997.
(p. 137)

[14] M. Aschbacher, Flag structures on Tits geometries, Geom. Dedicata 14 (1983) 21–32.
(p. 333)

[15] M. Aschbacher, The 27-dimensional module for E6, I, Invent. Math. 89 (1987) 159–
195. (p. 126)

[16] M. Aschbacher & S. Smith, Tits geometries over GF(2) defined by groups over GF(3),
Comm. Algebra 11 (1983) 1675–1684. (p. 118)

[17] E. F. Assmus, jr. & J. D. Key, Designs and their Codes, Cambridge Univ. Press,
Cambridge, 1992. (p. 235)

[18] E. F. Assmus, jr. & H. F. Mattson, jr., New 5-designs, J. Combin. Th. 6 (1969) 122–151.
(p. 338)

[19] E. F. Assmus, jr., J. A. Mezzaroba & C. J. Salwach, Planes and biplanes, pp. 205–212
in: Higher Combinatorics, Proc. NATO Advanced Study Inst. (Berlin 1976), Reidel,
Dordrecht, 1977. (p. 198)

[20] J. Azarija & T. Marc, There is no (75,32,10,16) strongly regular graph, Lin. Alg.
Appl. 557 (2018) 62–83. (pp. 15, 199, 218, 373)

[21] J. Azarija & T. Marc, There is no (95,40,12,20) strongly regular graph, J. Combin.
Designs 28 (2020) 294–306. (pp. 15, 199, 201, 218, 374)

397



398 BIBLIOGRAPHY

[22] L. Babai, On the complexity of canonical labeling of strongly regular graphs, SIAM J.
Comput. 9 (1980) 212–216. (p. 228)

[23] L. Babai, On the automorphism groups of strongly regular graphs I, pp. 359–368 in:
Proc. Conf. Innovations Theor. Comp. Sci. (Princeton, 2014), ACM, 2014. (p. 228)

[24] L. Babai, On the automorphism groups of strongly regular graphs II, J. Algebra 421
(2015) 560–578. (p. 228)

[25] L. Babai, Graph isomorphism in quasipolynomial time, arXiv:1512.03547, Jan. 2016.
(p. 228)

[26] L. Babai, Graph isomorphism in quasipolynomial time (extended abstract), pp. 684–
697 in: STOC’16—Proc. 48th ACM SIGACT Symp. Theor. Computing (Cambridge,
MA, 2016), D. Wichs & Y. Mansour (eds.), ACM, New York, 2016. (p. 228)

[27] L. Babai, D. Yu. Grigoryev & D. M. Mount, Isomorphism of graphs with bounded
eigenvalue multiplicity, pp. 310–324 in: Proc. 14th ACM Symp. Theor. Computing
(San Francisco, 1982), ACM, New York, 1982. (p. 228)

[28] L. Babai & J. Wilmes, Asymptotic Delsarte cliques in distance-regular graphs, J. Alg.
Combin. 43 (2016) 771–782. (p. 229)

[29] B. Bagchi, A regular two-graph admitting the Hall-Janko-Wales group, pp. 35–45 in:
Combinatorial Mathematics and Applications (Calcutta, 1988), Sankhyā (Ser. A) 54
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RIMS Kōkyūroku No. 607 (1987) 52–69. (p. 172)

[406] N. Hamada & T. Helleseth, A characterization of some q-ary codes (q > (h− 1)2, h ≥
3) meeting the Griesmer bound, Math. Japon. 38 (1993) 925–939. (p. 172)

[407] N. Hamada & T. Maekawa, A characterization of some q-ary codes (q > (h−1)2, h ≥
3) meeting the Griesmer bound: Part 2, Math. Japon. 46 (1997) 241–252. (p. 172)

[408] N. Hamada & T. Helleseth, A characterization of some {3v2 + v3, 3v1 + v2; 3, 3}-
minihypers and some [15, 4, 9; 3]-codes with B2 = 0, J. Stat. Plann. Infer. 56 (1996)
129–146. (p. 282)

[409] H. Hämäläinen & S. Rankinen, Upper bounds for football pool problems and mixed
covering codes, J. Combin. Th. (A) 56 (1991) 84–95. (p. 148)

[410] N. Hamilton, Strongly regular graphs from differences of quadrics, Discr. Math. 256
(2002) 465–469. (p. 169)

[411] N. Hamilton & R. Mathon, Existence and non-existence of m-systems of polar spaces,
Europ. J. Combin. 22 (2001) 51–61. (p. 38)

[412] J. M. Hammersley, The friendship theorem and the love problem, pp. 31–54 in:
Surveys in Combinatorics (E. Keith Lloyd, ed.), LMS Lecture Note Ser. 82, Cambridge
Univ. Press 1983. (p. 232)

[413] B. Hanson & G. Petridis, Refined estimates concerning sumsets contained in the roots
of unity, Proc. London Math. Soc. (3) 122 (2021) 353–358. (p. 182)

[414] M. Harada, A. Munemasa & V. D. Tonchev, A characterization of designs related to
an extremal doubly-even self-dual code of length 48, Ann. Comb. 9 (2005) 189–198.
(p. 200)

[415] M. Harada, A. Munemasa & V. D. Tonchev, Self-dual codes and the nonexistence of
a quasi-symmetric 2-(37,9,8) design with intersection numbers 1 and 3, J. Combin.
Designs 25 (2017) 469–476. (p. 199)

[416] H. A. Helfgott, Isomorphismes de graphes en temps quasi-polynomial [d’après Babai
et Luks, Weisfeiler-Leman, ...], Séminaire Bourbaki. Vol. 2016/2017. Exposé 1125,
Astérisque 407 (2019) 135–182. (p. 228)

[417] C. Hering, Transitive linear groups and linear groups which contain irreducible
subgroups of prime order, Geom. Dedicata 2 (1974) 425–460. (p. 356)

[418] C. Hering, Transitive linear groups and linear groups which contain irreducible
subgroups of prime order, II, J. Algebra 93 (1985) 151–164. (pp. 356, 359)

[419] M. D. Hestenes & D. G. Higman, Rank 3 groups and strongly regular graphs, pp. 141–
159 in: Computers in Algebra and Number Theory (Proc. New York Symp., 1970),
G. Birkhoff & M. Hall, jr. (eds.), SIAM-AMS Proc., Vol IV, Providence, RI, 1971.
(pp. 2, 6, 226–227)

[420] D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964) 145–156. (p. 4)
[421] D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs,

pp. 263–293 in: Atti del Convegno di Geometria Combinatoria e sue Applicazioni
(Perugia, 1970), Univ. of Perugia, 1971. (p. 227)



412 BIBLIOGRAPHY

[422] D. G. Higman, Invariant relations, coherent configurations and generalized polygons,
pp. 27–43 in: Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974),
Part 3: Combinatorial group theory, Math. Centre Tracts 57, Math. Centrum,
Amsterdam, 1974. (p. 24)

[423] D. G. Higman, Coherent configurations, Part I, Geom. Dedicata 4 (1975) 1–32. Part
II, Geom. Dedicata 5 (1976) 413–424. (p. 29)

[424] D. G. Higman, Coherent algebras, Lin. Alg. Appl. 93 (1987) 209–239. (p. 29)
[425] D. G. Higman & C. C. Sims, A simple group of order 44,352,000, Math. Z. 105 (1968)

110–113. (p. 284)
[426] G. Higman, On the simple group of D. G. Higman and C. C. Sims, Illinois J. Math.

13 (1969) 74–80. (p. 308)
[427] R. Hill, On the largest size of cap in S5,3, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.

Mat. Natur. (8) 54 (1973) 378–384. (pp. 171, 173, 329)
[428] R. Hill, Caps and groups, pp. 389–394 in: Proc. Rome 1973, Atti dei Convegni Lincei,

1976. (pp. 171, 173, 176)
[429] R. Hill, Caps and codes, Discr. Math. 22 (1978) 111–137. (p. 329)
[430] S. A. Hobart, Krein conditions for coherent configurations, Lin. Alg. Appl. 226–228

(1995) 499–508. (p. 196)
[431] S. A. Hobart, Bounds on subsets of coherent configurations, Michigan Math. J. 58

(2009) 231–239. (p. 29)
[432] A. J. Hoffman, On the uniqueness of the triangular association scheme, Ann. Math.

Statist. 31 (1960) 492–497. (p. 16)
[433] A. J. Hoffman, −1−

√
2?, pp. 173–176 in: Combinatorial Structures and their

Applications, Proc. Conf. Calgary 1969, R. Guy, H. Hanani, N. Sauer & J. Schönheim
(eds.), Gordon and Breach, New York, 1970. (p. 28)

[434] A. J. Hoffman, On eigenvalues and colorings of graphs, pp. 79–91 in: Graph Theory
and its Applications (B. Harris, ed.), Acad. Press, New York, 1970. (p. 230)

[435] A. J. Hoffman, Eigenvalues of graphs, pp. 225–245 in: Studies in Graph Theory, part
II, D.R. Fulkerson (ed.), Math. Assoc. Amer., 1975. (p. 28)

[436] A. J. Hoffman & R. R. Singleton, On Moore graphs with diameters 2 and 3, IBM J.
Res. Develop. 4 (1960) 497–504. (pp. 15, 268)

[437] S. G. Hoggar, Two quaternionic 4-polytopes, pp. 219–230 in: The Geometric Vein, The
Coxeter Festschrift, C. Davis et al. (eds.), Springer, Berlin, 1981. (p. 223)

[438] S. G. Hoggar, 64 Lines from a quaternionic polytope, Geom. Dedicata 69 (1998) 287–
289. (p. 223)

[439] H. D. L. Hollmann, Association schemes, M. Sc. Thesis, Eindhoven Univ. of Techno-
logy, 1982. (p. 221)

[440] H. D. L. Hollmann, Pseudocyclic 3-class association schemes of 28 points, Discr.
Math. 52 (1984) 209–224. (p. 221)

[441] H. D. L. Hollmann & Qing Xiang, Pseudocyclic association schemes arising from the
actions of PGL(2, 2m) and PΓL(2, 2m), J. Combin. Th. (A) 113 (2006) 1008–1018.
(p. 221)

[442] Naoyuki Horiguchi, Masaaki Kitazume & Hiroyuki Nakasora, On the maximum
cocliques of the rank 3 graph of 211:M24, J. Combin. Designs 17 (2009) 323–332.
(p. 338)

[443] S. K. Houghten, L. H. Thiel, J. Janssen & C. W. H. Lam, There is no (46, 6, 1) block
design, J. Combin. Designs 9 (2001) 60–71. (p. 373)

[444] T. Huang, L. Huang & M.-I. Lin, On a class of strongly regular designs and quasi-
semisymmetric designs, pp. 129–153 in: Recent Developments in Algebra and Related
Areas (Proc. Beijing 2007), Chongying Dong et al. (eds.), Adv. Lect. Math. (ALM) 8,
Higher Education Press and Int. Press, Beijing-Boston, 2009. (p. 194)

[445] W. C. Huffman & V. D. Tonchev, The existence of extremal self-dual [50, 25, 10]
codes and quasi-symmetric 2-(49, 9, 6) designs, Des. Codes Cryptogr. 6 (1995) 97–106.
(pp. 200, 379)

[446] D. R. Hughes & F. C. Piper, On resolutions and Bose’s theorem, Geom. Dedicata 5
(1976) 129–133. (p. 197)

[447] A. M. W. Hui & B. G. Rodrigues, Switched graphs of some strongly regular graphs
related to the symplectic graph, Des. Codes Cryptogr. 86 (2018) 179–194. (p. 222)

[448] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Univ. Press,
Cambridge, 1990. (p. 111)

[449] C. A. J. Hurkens & J. J. Seidel, Conference matrices from projective planes of order
9, Europ. J. Combin. 6 (1985) 49–57. (p. 283)



BIBLIOGRAPHY 413

[450] Q. M. Husain, On the totality of the solutions for the symmetrical incomplete block
designs: λ = 2, k = 5 or 6, Sankhyā 7 (1945) 204–208. (pp. 198, 249)
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I. A. Faradžev), Примитивные представления неабелевых простых групп порядка
меньше 106 (Primitive representations of nonabelian simple groups of order less than
106) (Russian), Part I: 40 pp (1982), Part II: 76 pp (1984), preprint, Institute for System
Studies, Moscow. (pp. 288, 317)

[458] A. A. Ivanov & S. V. Shpectorov, A characterization of the association schemes of
Hermitian forms, J. Math. Soc. Japan 43 (1991) 25–48. (pp. 102, 280)

[459] A. V. Ivanov, Non rank 3 strongly regular graphs with the 5-vertex condition,
Combinatorica 9 (1989) 255–260 (p. 227)

[460] A. V. Ivanov, Two families of strongly regular graphs with the 4-vertex condition, Discr.
Math. 127 (1994) 221–242. (p. 227)

[461] K. Iwasawa, Über die Einfachheit der speziellen projectiven Gruppen, Proc. Imp. Acad.
Tokyo 17 (1941) 57–59. (p. 134)

[462] F. Jaeger, Strongly regular graphs and spin models for the Kauffman model, Geom.
Dedicata 44 (1992) 23–52. (p. 285)

[463] T. Jenrich, New strongly regular graphs derived from the G2(4) graph,
arXiv:1409.3520, Sep. 2014. (p. 323)

[464] T. Jenrich & A. E. Brouwer, A 64-dimensional counterexample to Borsuk’s conjecture,
Electr. J. Combin. 21 (2014) P4.29. (p. 324)

[465] Zilin Jiang, Jonathan Tidor, Yuan Yao, Shentong Zhang & Yufei Zhao, Equiangular
lines with a fixed angle, arXiv:1907.12466v3, Jun. 2020. (p. 224)

[466] D. M. Johnson, A. L. Dulmage & N. S. Mendelsohn, Orthomorphisms of groups of
orthogonal Latin squares, I, Canad. J. Math. 13 (1961) 356–372. (p. 193)

[467] G. A. Jones, Paley and the Paley graphs, pp. 155–183 in: Isomorphisms, Symmetry
and Computations in Algebraic Graph Theory (Proc. Pilsen, 2016), G. A. Jones,
I. Ponomarenko & J. Širáň (eds.), Springer 2020. (p. 183)

[468] V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacif.
J. Math. 137 (1989) 311–334. (p. 285)

[469] C. Jordan, Traité des substitutions et des équations algébriques, Paris, 1870. (p. 157)
[470] L. K. Jørgensen, Directed strongly regular graphs with µ = λ, Discr. Math. 231 (2001)

289–293. (p. 234)
[471] L. K. Jørgensen & M. Klin, Switching of edges in strongly regular graphs. I. A family

of partial difference sets on 100 vertices, Electr. J. Combin. 10 (2003) R17. (pp. 189,
288, 375)

[472] D. Jungnickel & V. D. Tonchev, Maximal arcs and quasi-symmetric designs, Des.
Codes Cryptogr. 77 (2015) 365–374. (p. 200)

[473] A. Jurišić & J. Koolen, Classification of the family AT4(qs, q, q) of antipodal tight
graphs, J. Combin. Th. (A) 118 (2011) 842–852. (p. 301)

[474] S. Kageyama, G. M. Saha & A. D. Das, Reduction of the number of association classes
of hypercubic association schemes, Ann. Inst. Stat. Math. 30 (1978) 115–123. (p. 92)

[475] J. Kahn & G. Kalai, A counterexample to Borsuk’s conjecture, Bull. Amer. Math. Soc.
(New Series) 29 (1993) 60–62. (p. 324)

[476] W. M. Kantor, 2-Transitive designs, pp. 44–97 in: Combinatorics (Proc. NATO
Advanced Study Inst., Breukelen, 1974), Part 3: Combinatorial group theory, Math.
Centre Tracts 57, Math. Centrum, Amsterdam, 1974. (p. 356)

[477] W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33
(1975) 43–58. (p. 198)



414 BIBLIOGRAPHY

[478] W. M. Kantor, Ovoids and translation planes, Canad. J. Math. 34 (1982) 1195–1207.
(p. 63)

[479] W. M. Kantor, Strongly regular graphs defined by spreads, Israel J. Math. 41 (1982)
298–312. (p. 205)

[480] W. M. Kantor, Spreads, translation planes and Kerdock sets, I, SIAM J. Alg. Disc.
Meth. 3 (1982) 151–165. (p. 69)

[481] W. M. Kantor & R. A. Liebler, The rank 3 permutation representations of the finite
classical groups, Trans. Amer. Math. Soc. 271 (1982) 1–71. (pp. 355, 357)

[482] P. Kaski & P. R. J. Östergård, The Steiner triple systems of order 19, Math. Comp. 73
(2004) 2075–2092. (p. 152)

[483] P. Kaski & P. R. J. Östergård, There are exactly five biplanes with k = 11, J. Combin.
Designs 16 (2008) 117–127. (pp. 16, 198, 273, 385)

[484] P. Kaski & P. R. J. Östergård, Classification of resolvable balanced incomplete block
designs—the unitals on 28 points, Math. Slovaca 59 (2009) 121–136. (p. 275)

[485] P. Kaski, M. Khatirinejad & P. R. J. Östergård, Steiner triple systems satisfying the
4-vertex condition, Des. Codes Cryptogr. 62 (2012) 323–330. (p. 227)

[486] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990)
417–471. (p. 285)

[487] P. Keevash, The existence of designs, arXiv:1401.3665, Jan. 2014; v3, Aug. 2019.
(p. 152)

[488] P. Keevash, Counting Steiner triple systems, pp. 459–481 in: Europ. Congress of
Mathematics, Europ. Math. Soc., Zürich, 2018. (p. 152)

[489] J. B. Kelly, A characteristic property of quadratic residues, Proc. Amer. Math. Soc. 5
(1954) 38–46. (p. 182)

[490] R. B. King, Novel highly symmetric trivalent graphs which lead to negative curvature
carbon and boron nitride chemical structures, Discr. Math. 244 (2002) 203–210.
(p. 250)

[491] A. Klein, Partial ovoids in classical finite polar spaces, Des. Codes Cryptogr. 31 (2004)
221–226. (p. 64)

[492] M. Klin, M. Meszka, S. Reichard & A. Rosa, The smallest non-rank 3 strongly regular
graphs which satisfy the 4-vertex condition, Bayreuther Mathematische Schriften 74
(2005) 145–205. (p. 263)

[493] M. Klin, A. Munemasa, M. Muzychuk & P.-H. Zieschang, Directed strongly regular
graphs from coherent algebras, Lin. Alg. Appl. 377 (2004) 83–109. (p. 234)

[494] M. H. Klin, C. Pech, S. Reichard, A. Woldar & M. Zvi-Av, Examples of computer
experimentation in algebraic combinatorics, Ars Mathematica Contemporanea 3 (2010)
237–258. (pp. 310, 379)

[495] B. D. Kodalen, Linked systems of symmetric designs, Alg. Combin. 2 (2019) 119–147.
(p. 231)

[496] A. Kohnert, Constructing two-weight codes with prescribed groups of automorphisms,
Discr. Appl. Math. 155 (2007) 1451–1457. (p. 173)

[497] J. H. Koolen & V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001)
47–52. (p. 188)

[498] V. Krčadinac, Steiner 2-designs S(2, 5, 28) with nontrivial automorphisms, Glasnik
Matematički 37(57) (2002) 259–268. (p. 275)

[499] V. Krčadinac, A new partial geometry pg(5, 5, 2), J. Combin. Th. (A) 183 (2021)
105493. Also arXiv:2009.07946, 16 Sep. 2020. (p. 282)

[500] V. Krčadinac, A. Nakić & M. O. Pavčević, The Kramer-Mesner method with tactical
decompositions: some new unitals on 65 points, J. Combin. Designs 19 (2011) 290–303.
(p. 310)

[501] V. Krčadinac & R. Vlahović, New quasi-symmetric designs by the Kramer-Mesner
method, Discr. Math. 339 (2016) 2884–2890. (p. 200)
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Parameter Index

Index of the numerical parameter sets (v, k, λ, µ) for strongly regular graphs
mentioned in the text. A dagger (†) denotes that no such graph exists, a question
mark (?) that none is known. See also

Table 1.1 Number of nonisomorphic strongly regular graphs p. 14
Table 1.2 Sporadic parameter sets for which no srg exists p. 15
Table 7.2 Small two-weight codes and graphs p. 172
Table 7.3 Sporadic two-weight codes and graphs p. 173
Table 7.4 Independence and chromatic numbers of Paley graphs p. 182
Table 7.5 Strongly regular power residue graphs p. 184
Table 8.2 Parameter sets of sporadic quasi-symmetric designs p. 199
Table 9.1 p-ranks of some strongly regular graphs p. 237
Table 11.7 Parameters of rank 3 graphs p. 362
Table 11.8 Small rank 3 graphs p. 365
Table 11.9 Small rank 4–10 strongly regular graphs p. 369
Table 12.1 Parameters of strongly regular graphs p. 371

(5, 2, 0, 1), 245
(9, 4, 1, 2), 246
(10, 3, 0, 1), 5, 246
(13, 6, 2, 3), 247
(15, 6, 1, 3), 357
(16, 5, 0, 2), 251
(16, 6, 2, 2), 5, 248
(16, 10, 6, 6), 5, 250
(17, 8, 3, 4), 252
(21, 10, 4, 5)†, 190
(25, 12, 5, 6), 252
(26, 10, 3, 4), 252
(27, 10, 1, 5), 255
(27, 16, 10, 8), 5, 254
(28, 9, 0, 4)†, 14
(28, 12, 6, 4), 4, 5, 257
(33, 16, 7, 8)†, 190
(35, 16, 6, 8), 27, 259, 278, 357
(35, 18, 9, 9), 259
(36, 14, 4, 6), 260, 263, 357
(36, 15, 6, 6), 263, 277, 293
(40, 12, 2, 4), 264
(45, 12, 3, 3), 266, 300
(45, 22, 10, 11), 190
(49, 24, 11, 12), 267
(50, 7, 0, 1), 267, 357
(56, 10, 0, 2), 14, 272
(63, 30, 13, 15), 263, 273–275

(63, 32, 16, 16), 275
(64, 18, 2, 6), 276
(64, 27, 10, 12), 277
(64, 28, 12, 12), 277, 299
(64, 30, 18, 10)†, 6
(64, 35, 18, 20), 278
(65, 32, 15, 16), 190
(76, 30, 8, 14)†, 226
(77, 16, 0, 4), 12, 14, 279, 312
(81, 20, 1, 6), 280
(81, 30, 9, 12), 282, 301
(81, 40, 19, 20), 283
(96, 20, 4, 4), 277
(99, 14, 1, 2)?, 16, 311
(100, 22, 0, 6), 283
(100, 36, 14, 12), 285
(100, 44, 18, 20), 288
(100, 45, 20, 20), 288
(105, 32, 4, 12), 289
(112, 30, 2, 10), 14, 290
(117, 36, 15, 9), 293, 322
(119, 54, 21, 27), 294
(120, 42, 8, 18), 294
(120, 51, 18, 24), 295
(120, 56, 28, 24), 27, 296, 299, 357
(120, 63, 30, 36), 299
(125, 28, 3, 7), 220
(125, 52, 15, 26), 218, 316
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(126, 25, 8, 4), 27, 300, 357
(126, 45, 12, 18), 300, 321
(126, 50, 13, 24), 217, 218, 301
(126, 65, 28, 39), 218
(135, 70, 37, 35), 302, 352
(136, 63, 30, 28), 303
(144, 22, 10, 2), 305
(144, 39, 6, 12), 304
(144, 55, 22, 20), 305
(144, 66, 30, 30), 305
(156, 30, 4, 6), 305
(162, 56, 10, 24), 306, 357
(175, 72, 20, 36), 218, 269, 302, 316
(176, 40, 12, 8), 308
(176, 49, 12, 14), 308
(176, 70, 18, 34), 218, 309, 312
(176, 90, 38, 54), 218
(196, 91, 42, 42), 188
(196, 135, 94, 90), 194
(208, 75, 30, 25), 309
(209, 16, 3, 1)†, 230
(210, 99, 48, 45), 310
(216, 40, 4, 8), 266
(220, 84, 38, 28), 200
(225, 98, 43, 42), 222
(226, 105, 48, 49), 190
(231, 30, 9, 3), 310
(235, 42, 9, 7)?, 12
(243, 22, 1, 2), 212, 311
(243, 110, 37, 60), 311
(253, 112, 36, 60), 311
(253, 140, 87, 65), 195
(256, 45, 16, 6), 312
(256, 102, 38, 42), 313
(256, 119, 54, 56), 313
(256, 120, 56, 56), 313
(275, 112, 30, 56), 217, 314
(276, 110, 28, 54)†, 217
(276, 140, 58, 84), 217, 317
(279, 150, 85, 75), 288
(280, 36, 8, 4), 287, 292
(280, 117, 44, 52), 317
(280, 135, 70, 60), 287
(297, 40, 7, 5), 318
(300, 65, 10, 15), 319
(300, 104, 28, 40), 319
(325, 60, 15, 10), 320
(325, 144, 68, 60), 320
(330, 63, 24, 9), 27
(336, 80, 28, 16), 323
(351, 126, 45, 45), 320
(378, 117, 36, 36), 321, 332
(400, 21, 2, 1)?, 215
(416, 100, 36, 20), 322
(456, 35, 10, 2)†, 230
(460, 153, 32, 60)†, 226
(495, 238, 109, 119), 324
(495, 256, 136, 128), 27
(512, 133, 24, 38), 220
(529, 264, 131, 132), 325
(540, 187, 58, 68), 326
(560, 208, 72, 80), 326
(625, 144, 43, 30), 327

(625, 240, 95, 90), 327, 328
(630, 85, 20, 10), 269
(693, 180, 51, 45), 329
(726, 29, 4, 1)†, 230
(729, 112, 1, 20), 212, 329
(729, 224, 61, 72), 330
(736, 42, 8, 2)†, 230
(756, 130, 4, 26), 228
(784, 116, 0, 20)?, 16
(841, 200, 87, 35)†, 27
(961, 240, 71, 56), 331
(1080, 351, 126, 108), 331, 353, 357
(1107, 378, 117, 135), 332
(1288, 495, 206, 180), 333
(1288, 792, 476, 504), 333
(1344, 221, 88, 26)?, 13
(1365, 340, 83, 85), 335
(1408, 567, 246, 216), 333, 357
(1600, 351, 94, 72), 334
(1666, 45, 8, 1)†, 230
(1716, 882, 456, 450), 27
(1782, 416, 100, 96), 335
(1944, 67, 10, 2)†, 230
(2048, 276, 44, 36), 336
(2048, 759, 310, 264), 337
(2048, 1288, 792, 840), 337
(2295, 310, 85, 35), 339, 352
(2300, 891, 378, 324), 339
(2401, 240, 59, 20), 144, 341
(2401, 480, 119, 90), 341
(2401, 720, 229, 210), 342
(2401, 960, 389, 380), 343, 344
(2745, 56, 7, 1)†, 230
(2950, 891, 204, 297)†, 25
(3250, 57, 0, 1)?, 16, 268
(3510, 693, 180, 126), 344
(3999, 1950, 925, 975), 191
(4000, 774, 148, 150), 191
(4000, 775, 150, 150), 191
(4000, 1935, 910, 960), 191
(4000, 1984, 1008, 960), 191
(4060, 1755, 730, 780), 345
(4096, 234, 2, 14), 176, 212
(4096, 1575, 614, 600), 347
(5929, 1482, 275, 402)†, 226
(6205, 858, 47, 130)†, 226
(6273, 112, 1, 2)?, 311
(6561, 1440, 351, 306), 144, 348
(11124, 882, 45, 72)?, 12
(12825, 280, 55, 5)†, 207
(14080, 3159, 918, 648), 349
(15625, 7560, 3655, 3660), 350
(23276, 1330, 372, 58)†, 13
(28431, 2880, 324, 288), 351
(28431, 3150, 621, 315), 351
(31671, 3510, 693, 351), 350
(137632, 28431, 6030, 5832), 351
(139503, 4590, 621, 135), 352
(306936, 31671, 3510, 3240), 352
(494019, 994, 1, 2)?, 311
(531441, 65520, 8559, 8010), 164, 353
(16777216, 98280, 4600, 552), 164
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Foster, Ronald M., 271
Foulser, David A., 177, 178, 328, 359–361
Frankl, Peter, 202
Fujisaki, Tatsuya, 221

Games, Richard Alan, 329
Gavrilyuk, Alexander L., 15, 72
Ge, Gennian, 177
Gebremichel, Brhane, 16
Gerzon, Michael, 223
Gewirtz, Allan, 15, 272, 284
Gleason, Andrew M., 251
Godsil, Christopher D., 220, 222, 228,

240, 318
Goethals, Jean-Marie, 7, 15, 25, 151, 188,

190, 195, 217, 223–225, 231,
235, 289, 290, 294, 301, 306,
314, 317, 337

Golay, Marcel J. E., 148
Gol’fand, Yakov Yur’evich, 227
Govaert, Eline, 125
Govaerts, Patrick, 65, 66
Graham, Ronald Lewis, 183, 228
Greaves, Gary R. W., 12
Greenwood, Robert E., jr., 251
Grigor’ev, Dmitrii Yur’evich, 228
Gritsenko, Oleg, 190
Gunawardena, Athula D. A., 66
Guo, Ivan, 207
Guo, Krystal, 228, 231

Haemers, Willem H., 11, 12, 15, 189, 197,
203, 205, 206, 218, 230, 231,
240, 249, 257, 276, 280

Hall, Jonathan I., 4, 135, 139, 140, 142,
157, 247, 293

Hall, Marshall, jr., 138, 198, 273, 285
Hamada, Noboru, 172, 235
Hamilton, Nicholas A., 169
Hasse, Helmut, 175
Helfgott, Harald Andrés, 228
Hering, Christoph H., 359
Hestenes, Marshall D., 226
Higman, Donald Gordon, 4, 29, 141, 226,

227, 284
Higman, Graham, 9, 308
Hill, Raymond, 176, 329
Hirschfeld, James William Peter, 64
Hobart, Sylvia A., 29, 196
Hoffman, Alan J., 11, 15, 16, 28, 208,

230, 268
Hoggar, Stuart G., 223
Hollmann, Henk D. L., 221
Horiguchi, Naoyuki, 338
Hu, Yulin, 222
Huang, Lingling, 194
Huang, Tayuan, 194
Hubaut, Xavier L., 141, 256
Hughes, Daniel R., 197
Humphreys, James E., 111
Hunt, David C., 349
Hurkens, Cornelius Antonius Josephus,

283
Husain, Qazi Motahar, 249

Ihringer, Ferdinand, 70, 203, 222, 227,
274, 277, 278, 282

Ikuta, Takuya, 177
Ivanov, Aleksandr Anatol’evich, 102, 280,

317

Jaeger, François, 285
Jaques, Sam, 203
Jenrich, Thomas, 323, 324, 337
Jones, Gareth A., 183
Jones, Vaughan Frederick Randal, 285
Jordan, Camille, 157
Jørgensen, Leif Kjær, 189, 288
Jurišić, Aleksandar, 301

Kahn, Jeff, 324
Kalai, Gil, 324
Kallaher, Michael J., 177, 178, 359, 361
Kantor, William M., 63, 69, 166, 198,

227, 330, 355, 357
Kaski, Petteri, 16, 227
Kauffman, Louis Hirsch, 285
Keevash, Peter, 152
Key, Jennifer D., 235
Khatirinejad, Mahdad, 227
Kim, Kijung, 13
Kitazume, Masaaki, 338
Kleidman, Peter B., 63, 68



AUTHOR INDEX 429

Klein, Andreas, 64
Klin, Mikhail H., 27, 189, 234, 263, 288,

304, 310, 317, 326
Kloks, Antonius J. J., 213, 214
Koolen, Jacobus Hendricus, 12, 13,

16–18, 207, 301
Kovács, István, 181
Krčadinac, Vedran, 282
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locally GQ(3, 3), 264
locally grid, 140
locally Hoffman-Singleton, 271
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order (of a polar space), 36
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orthogonal group, 48
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parallel class, 152
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parameters (of a code), 147
parameters (of a d.r.g.), 16
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parity check, 150
partial difference set, 165
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partial linear space, 31
partial m-system, 38
partial ovoid, 63
partial quadrangle, 211
Pasechnik graphs, 222
Paulus-Rozenfel’d graphs, 252
PBIBD, 20
Peisert graph, 177, 181, 240, 244, 267,

283, 325, 340
pentagon, 25, 28, 215, 245
perfect code, 150
permutation group, 3
permutation rank, 3
Petersen graph, 4, 5, 136, 140, 206, 215,

231, 234, 242, 246, 247, 251,
268, 270, 271, 284, 287, 310

plane (of a Fischer space), 131
plane ovoid, 76
Plücker coordinates, 125
point graph, 31
polar rank, 33
polar space, 31
polarity, 56
polygon, 19
p-rank, 235
primitive association scheme, 22
primitive permutation group, 3
projective code, 166
projective plane, 152
projective space, 32
pseudo Latin square graph, 193
pseudocyclic association scheme, 220
pseudo-geometric graph, 205, 217
pseudo-GQ graph, 207
pseudo-random, 228
punctured code, 150

quad, 157
quadrangle, 6
quadratic forms graph, 102
quadratic residue code, 149
quadratic space, 59
quadric, 59
σ-quadric, 73
quasideterminant, 49
quasigroup, 139
quasi-symmetric design, 195
quotient matrix, 9, 10
quotient space, 134
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radical (of a polar space), 33
radical (of a symmetric bilinear form), 59
radical (of a symplectic form), 53
Ramsey number, 183, 251, 252, 277
rank (of a Coxeter system), 110
rank (of a geometry), 107
rank (of a permutation group), 3, 29
rank (of a polar space), 33
reduced copolar space, 142
reduced cotriangular graph, 139
reduced graph, 214
reduced Zara graph, 214
Ree unital, 275
Reed-Muller code, 185
Ree-Tits ovoids, 65
reflexive form, 49
regular graph, 1
regular Hadamard matrix, 187
regular partition, 9
regular set, 9, 39, 196
regular spread, 129
regular two-graph, 9, 216, 223, 245, 288
Reidemeister moves, 285
replication number, 195
residual design, 153, 198
residually connected geometry, 107
residue, 42, 107
resolution, 197
resolvable design, 152
restricted eigenvalue, 1
Robertson (5,5)-cage, 271
Robertson-Wegner graph, 271
root vectors, 162
RSHCD, 187
Rudvalis graph, 345
Rudvalis-Hunt design, 349

sandpile group, 241
SBIBD, 152
Schläfli graph, 5, 25, 28, 61, 115, 126,

254, 255, 257, 277, 302, 330
Schurian coherent configuration, 29
Seidel matrix, 7
Seidel switching, see switching
self-complementary design, 156
self-complementary graph, 177, 267, 283
self-dual code, 150
self-dual lattice, 163
self-dual strongly regular graph, 166
semibiplane, 262, 313
semipartial geometry, 101, 211
sesquilinear, 50
sextet, 155, 158
shadow geometry, 110
Shannon capacity, 257
shortened code, 148
Shrikhande graph, 5, 8, 222, 231, 243,

248–250
SICPOVM, 223
Singer cycle, 304

singular line, 215
singular subspace, 31, 34, 214
skew Hadamard matrix, 221
skew-symmetric form, 50
small unitary polar spaces, 74
Smith graph, 25, 28
Smith graphs, 203
Smith normal form, 202, 241, 249, 258
Sp4(3) graph, 264
space, 52
spectrum, 1
spectrum of a two-graph, 216
spherical building, 117
spherical t-design, 224
split Cayley algebra, 122
split Cayley hexagon, 65, 124
split composition algebra, 122
split octonion algebra, 122
sporadic Peisert graph, 177, 244, 325
spread, 38, 57, 121, 205
spread of a generalized hexagon, 65, 71
spread of a generalized quadrangle, 129
square design, 152, 191, 349
standard apartment, 116
standard involution, 123
standard parabolic subgroup of a Coxeter

group, 113
standard parameters, 170
Steiner system, 151, 152, 197, 204, 223,

224, 275
Steiner triple system, 138, 139, 207, 253
Steiner triple systems, 152
strongly regular graph, 1
strongly resolvable design, 197
STS, 152
subconstituent, 4
subgeometry, 107
subscheme, 26
subspace, 31, 34, 131
support, 147
Suzuki graph, 261, 323, 334
Suzuki tower, 261, 335
Suzuki-Tits ovoid, 56
switching, 7
switching class, 7
switching equivalent, 7
switching set, 9
Sylvester graph, 268, 273
symmetric association scheme, 29
symmetric design, 152, 191, 349
symmetric difference property, 198
symmetric form, 50
symmetric graph, 177, 250
symmetrization of a scheme, 222
symplectic form, 50, 53
symplectic graph, 53
symplectic group, 48, 54
symplectic polar space, 53

tangent, 45
T -anticode, 23
T -antidesign, 23
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Taylor double, 19
Taylor extension, 19, 105, 183, 256
Taylor graph, 19, 219
T -code, 23
TD, 192
T -design, 23
t-design, 152
tensor product, 330
tensor product of schemes, 221
ternary code, 147
ternary Golay code, 148, 164, 171, 311
Terwilliger graph, 214
tetrad, 155
tetrahedrally closed, 340
thick geometry, 107
thin geometry, 107
tight set, see i-tight set
tight spherical design, 225
t-isoregularity, 227
Tits graph, 334
Tits group, 334
totally isotropic, 49
totally isotropic subspace, 53, 73
totally singular subspace, 59
toughness, 229
tournament, 221
transitive, 3
transversal design, 192, 204
triality, 89, 122
triangular graph, 4, 5
t-tuple regular, 227
t-vertex condition, 222, 226
twisted Grassmann graphs, 18
two-character set, 57, 85, 166, 212, 213
two-graph, 8, 215, 317
two-weight code, 166
type (of a RSHCD), 187
type function, 107
Type I unimodular lattice, 163
Type II unimodular lattice, 163
types (of objects), 107

unimodular lattice, 163
unital, 45, 85, 143, 158, 159, 161, 197,

213, 216, 217, 270, 275, 285,
292, 309

unitary graph, 74
unitary group, 48
unitary polar space, 73

valency, 1
van Dam-Koolen graphs, 18, 222
van Lint-Schrijver graph, 176, 181, 244,

313, 340, 341
van Lint-Schrijver partial geometry, 205,

282
VD, 95
vertex connectivity, 13
Vizing class, 231
Vizing’s theorem, 231
VNO, 95
VO, 92

Wagner graph, 251, 252
Walsh transform, 185
Wang-Qiu-Hu switching, see

WQH-switching
weight, 106
weight enumerator, 150
weight of a vector, 147
Weisfeiler-Leman algorithm, 30
Witt designs, 153
Witt index of a Hermitian form, 73
Witt index of a quadratic form, 59
Witt’s theorem, 52
WQH-switching, 222, 282

xor-magic, 251

Yang-Zhang cage, 271

Zara graph, 213, 219
Zariski closure, 129


