Common Knowledge in Email Exchanges

Krzysztof R. Apt
CWI, Amsterdam, the Netherlands,
University of Amsterdam

based on joint work with
Floor Sietsma, CWI
COMMON, something that belongs to all alike, in contradistinction to proper, peculiar.

KNOWLEDGE is defined, by Mr Locke, to be the perception of the connection and agreement, or disagreement and repugnancy, or our ideas.

Encyclopaedia Britannica
By a Society of GENTLEMEN in Scotland
Edinburgh
MDCCLXXI
p. 192: “As for the diplomatic informer, he worked, of course for the Deuxième Bureau, and the chief instructed us that we should carefully stick to the fiction that we didn’t know that he knew that we knew it.

p.2: “The final section, Economics, will deal with A thinks B thinks ... reasoning in formal games.”

p. 279: “It is common knowledge that if you plant a flag on a hitherto uncharted island or territory, you have staked a claim to that territory on behalf of the nation which the flag represents.”
4. Introduction

This paper will discuss who thinks what, and so what, from various perspectives. First, a mathematical language will be developed for "A thinks B thinks A thinks..." type propositions. This will eliminate their interrelatedness and make explicit some assumptions used in dealing with them. It will begin to allow one to avoid the mental strain associated with such propositions. The next sections, on Structure and Dynamics, will discuss substantive topics, especially the power of perceived expectations over the individual. The final section, Economics, will deal with "A thinks B thinks... reasoning in tautal games."

The reader will notice that the mathematical sections are limited in applicability by their specialized assumptions and vocabulary, while the substantive sections tend to be conversational. This paper may be considered to represent the two ends of a bridge whose middle part has not yet been constructed. However, it may be instructive to demonstrate the possibility of formalization in what has been one of the "softest" areas in sociology. This will perhaps lead to greater clarity and thus to greater refutability for the theoretical apparatus in this area.

1. Statements like, "Celui qui a lait ne peut pas boire; il est étrange qu'un ver ait son d'uranie; si cambié, toi c'est aussi le regarder, chercher à se peiner dans l'âme, c'est encore le retrouver," (1469) have long since served their purpose. Compare Shakespeare: "Property was thus appropriated that the self was not the same; Single nature's double name, neither two nor one was called."

Story 1: Why BCC is Useful

FYI: Wouter Bos knows Trijntje Oosterhuis.

Source: *Wouter Bos e-mailt per ongeluk zijn netwerk rond.*
NRC Handelsblad, 7th October 2010.
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.

I forwarded it to Floor.
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.

I forwarded it to Floor.

Floor replied to my forward to Bo and Helen with a BCC to me.
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.

I forwarded it to Floor.

Floor replied to my forward to Bo and Helen with a BCC to me.

I forwarded the last email to Helen and Bo with a BCC to Floor.
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.

I forwarded it to Floor.

Floor replied to my forward to Bo and Helen with a BCC to me.

I forwarded the last email to Helen and Bo with a BCC to Floor.

Do we all have common knowledge of Floor’s reply?
Agents: finite set Ag,
Notes: further unspecified.

- $s(i, l, G)$; message containing note l, sent by agent i to group G,
- $f(i, l.m, G)$; forwarding by i of message m with added note l, sent to group G,

$S(m) = \{\text{sender of } m\}$, $R(m) = \text{receivers of } m$.

Special cases:

- reply: $f(i, l.m, G)$, with $G = S(m)$, where $i \in R(m)$,
- reply-all: $f(i, l.m, G)$, with $G = S(m) \cup R(m)$, where $i \in R(m)$.
Email: \(m_B \), with

\(m \) a message,

\(B \subseteq Ag \) a set of BCC recipients.

Examples

- Passing a note further:
 \(s(i, l, G)_{B}, s(j, l, G')_{B'} \), where \(j \in G \cup B \),

- Forwarding an email:
 \(m_B, f(i, l.m, G)_C \), where \(i \in R(m) \cup B \),

- Forwarding one’s own email:
 \(m_B, f(i, l.m, G)_C \), where \(S(m) = \{i\} \),

- BCC reply-all (grrr ...):
 \(m_B, f(i, l.m, G)_C \), where \(i \in B \) and \(G = S(m) \cup R(m) \).
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.

\[e := m_\emptyset, \text{ where } m := s(H, l, \{B, K\}) , \]
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.
\[e := m_\emptyset, \text{ where } m := s(H, l, \{B, K\}), \]

I *forwarded* it to Floor.
\[e' := m'_\emptyset, \text{ where } m' := f(K, m, F), \]
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.
\[e := m_\emptyset, \text{ where } m := s(H, l, \{B, K\}), \]

I forwarded it to Floor.
\[e' := m'_\emptyset, \text{ where } m' := f(K, m, F), \]

Floor replied to my forward to Bo and Helen with a BCC to me.
\[e'' := m''_{\{K\}}, \text{ where } m'' := f(F, m', \{B, H\}), \]
I got an email from my Chinese postdoc Helen with a CC to her husband Bo.
\[e := m_{\emptyset}, \text{ where } m := s(H, l, \{B, K\}), \]

I forwarded it to Floor.
\[e' := m_{\emptyset}', \text{ where } m' := f(K, m, F), \]

Floor replied to my forward to Bo and Helen with a BCC to me.
\[e'' := m_{\{K\}'}, \text{ where } m'' := f(F, m', \{B, H\}), \]

I forwarded the last email to Helen and Bo with a BCC to Floor.
\[f(K, m'', \{H, B\})_{\{F\}}. \]
Assumptions

Each agent
- has his set of notes,
- can send/forward his notes,
- also can send/forward notes he received,
- also can forward messages he received.
Some Considerations

Are all sets of emails meaningful?
Some Considerations

- Are all sets of emails meaningful?
- No: you can’t forward a note you did not receive.
Some Considerations

- Are all sets of emails meaningful?
- **No**: you can’t forward a note you did not receive.
- If one sends/forwards somebody’s else note, then one should have received it.
Some Considerations

- Are all sets of emails meaningful?
 - No: you can’t forward a note you did not receive.
 - If one sends/forwards somebody’s else note, then one should have received it.
 - If one forwards a message, then one should have received it.
Factual information:

\[
FI(s(i, l, G)) := \{l\},
FI(f(i, l.m, G)) := FI(m) \cup \{l\}.
\]

State: \(s = (E, L)\), where
- \(E\): set of emails,
- \(L = (L_1, \ldots, L_k)\): sets of agents’ notes.
Legal state:

\[s = (E, L), \text{ such that for some partial ordering } \prec \text{ on } E \]

- for each \(s(i, l, G)_B \in E, \text{ where } l \notin L_i, \)
 - \(m_C \in E \) exists such that
 - \(m_C \prec s(i, l, G)_B, i \in R(m) \cup C \) and \(l \in FI(m) \),
Legal State:
\[s = (E, L), \text{ such that for some partial ordering } \prec \text{ on } E \]

- for each \(s(i, l, G)_B \in E \), where \(l \not\in L_i \),
 \(m_C \in E \) exists such that
 \(m_C \prec s(i, l, G)_B, i \in R(m) \cup C \) and \(l \in FI(m) \),

- for each \(f(i, l.m, G)_B \in E \), where \(l \not\in L_i \),
 some \(m'_C \in E \) exists such that
 \(m'_C \prec f(i, l.m, G)_B, i \in R(m') \cup C \) and \(l \in FI(m') \),
Legal state:
$s = (E, L)$, such that for some partial ordering \prec on E

- for each $s(i, l, G)_B \in E$, where $l \notin L_i$,
 $m_C \in E$ exists such that
 $m_C \prec s(i, l, G)_B$, $i \in R(m) \cup C$ and $l \in FI(m)$,

- for each $f(i, l.m, G)_B \in E$, where $l \notin L_i$,
 some $m'_C \in E$ exists such that
 $m'_C \prec f(i, l.m, G)_B$, $i \in R(m') \cup C$ and $l \in FI(m')$,

- for each $f(i, l.m, G)_B \in E$
 some $m_C \in E$ exists such that
 $m_C \prec f(i, l.m, G)_B$ and $i \in S(m) \cup R(m) \cup C$.
Language to Discuss Emails

\[\varphi ::= \text{true} | \text{false} | \neg \varphi | \varphi \land \varphi \]

Abbreviation:

\[m_B ::= \text{true} \land \bigwedge_{i \in S(m) \cup R(m) \cup B} \text{true} \land \bigwedge_{i \notin S(m) \cup R(m) \cup B} \neg \text{true} \]

Semantics Take \(s = (E, L) \).

\[
\begin{align*}
 s \models m & \text{ iff } \exists B : m_B \in E \\
 s \models i \rhd m & \text{ iff } \exists B : m_B \in E \text{ and } i \in S(m) \cup R(m) \cup B \\
 s \models \neg \varphi & \text{ iff } s \not\models \varphi \\
 s \models \varphi \land \psi & \text{ iff } s \models \varphi \text{ and } s \models \psi
\end{align*}
\]
Add $C_A \varphi$ to the language discussing emails.

Intuition: $C_A \varphi$ iff group A commonly knows φ.

Semantics Take $s = (E, L)$.

$$s \models C_A \varphi \iff s' \models \varphi \text{ for any legal } s' \text{ s.t. } s \sim_A s'.$$

\sim_G is the reflexive, transitive closure of $\bigcup_{i \in A} \sim_i$.

How to define \sim_i?
\(m_B \sim_i m'_{B'} \)

iff

- \(i \in S(m), B = B' \) and \(m = m' \), or
- \(i \in R(m) \setminus S(m) \) and \(m = m' \), or
- \(i \in B \cap B' \) and \(m = m' \).

Example If \(i \in B \cap B' \), then \(i \) cannot distinguish \(m_B \) from \(m'_{B'} \).
(E, L) \sim_i (E', L')

iff

1. \(L_i = L'_i \),
2. \(\forall m_B \in E \ (i \in S(m) \cup R(m) \cup B \rightarrow \exists m_{B'} \in E' \ m_B \sim_i m_{B'}) \),
3. \(\forall m_{B'} \in E' \ (i \in S(m) \cup R(m) \cup B' \rightarrow \exists m_B \in E \ m_B \sim_i m_B) \).
Common Knowledge of a Message

Theorem

\[s \models C_A m \iff \]

there is an email shared by the group \(A \) that proves the existence of \(m \).

Formally:

\[E_A := \{ m_B \in E \mid A \subseteq S(m) \cup R(m) \text{ or } \exists j \in B : (A \subseteq S'(m) \cup \{j\}) \} . \]

\(E_A \) is the set of emails that group \(A \) shared.

\[s \models C_A m \iff \exists m'_B \in E_A : m' \rightarrow m \text{ is valid.} \]
Theorem Assume $|A| \geq 3$.

$s \models C_A m_B$ iff

- there is an email shared by the group A that proves the existence of m,

$$s \models C_A m \iff \exists m'_B \in E_A : m' \rightarrow m \text{ is valid.}$$

- for every agent $j \in B$ there is an email shared by A that proves that j forwarded m,

$$\forall j \in B \exists m'_B \in E_A : m' \rightarrow j \blacktriangleleft m \text{ is valid.}$$

- m_B involves all agents,

$$Ag = S(m) \cup R(m) \cup B.$$
We have

\[s \not\models C_{\{B,H,K,F\}} f(F, m', \{B, H\})\{K\}, \]

where

\[m' := f(K, m, F), \]
\[m := s(H, l, \{B, K\}). \]

I forwarded Floor’s reply to Helen and Bo with a BCC to Floor:

\[f(K, m'', \{H, B\})\{F\}, \]

where \[m'' := f(F, m', \{B, H\}), \]

I should have forwarded Floor’s reply to Helen and Bo and Floor:

\[f(K, m'', \{H, B, F\})\emptyset. \]
Can one Simulate BCC?

Yes and No.
Yes and No.

Yes:

\[m_B \equiv m, f(i, m, j_1), \ldots, f(i, m, j_k), \]

where \(S(m) = \{i\} \) and \(B = \{j_1, \ldots, j_k\} \).
Can one Simulate BCC?

- Yes and No.

- Yes:

 \[m_B \equiv m, f(i, m, j_1), \ldots, f(i, m, j_k), \]

 where \(S(m) = \{i\} \) and \(B = \{j_1, \ldots, j_k\} \).

- No: the mailboxes of the BCC recipients differ. So for \(j \in B \)

 \(m_B, f(j, m, G) \) is legal, while

 \(m, f(i, m, j_1), \ldots, f(i, m, j_k), f(j, m, G) \) not.
Can one Simulate BCC? (ctd)

- Take state s with

$$E_s = \{ s(1, l, 2) \}.$$

Then $s \models K_3 \neg K_2 K_3 s(1, l, 2)$.

- Take the simulation state t. So

$$E_t = \{ s(1, l, 2), f(1, s(1, l, 2), 3) \}.$$

Then $t \not\models K_3 \neg K_2 K_3 s(1, l, 2)$.

- This observation can be made more general.
Current Research

- Decidability of semantics.
- Sound and complete axiomatization.
- Operational semantics.
THANK YOU
Dziękuję za uwagę