Coordination Games on Graphs

Krzysztof R. Apt

CWI and University of Amsterdam

Based on joint work with Mona Rahn, Guido Schäfer and Sunil Simon
Coordination Games on Graphs: Definition

- Assume a finite graph.
- Each node has a set of colours available to it.
- Suppose that each node selects a colour from its set of colours.
- The payoff to a node is the number of neighbours who chose the same colour.
Example

A graph with a colour assignment.
Example, ctd

Consider the red joint strategy.

- The payoffs to the nodes on the square: 2, 1, 2, 1.
- The payoffs to each source node: 1.
Motivation

- The idea behind coordination in strategic games is that players are rewarded for choosing common strategies.
Motivation

- The idea behind *coordination* in strategic games is that players are rewarded for choosing common strategies.
- Coordination games on graphs are specific coordination games in the absence of common strategies.

Krzysztof R. Apt Coordination Games on Graphs
Motivation

- The idea behind coordination in strategic games is that players are rewarded for choosing common strategies.
- Coordination games on graphs are specific coordination games in the absence of common strategies.
- They also capture the idea of influence. Each node influences its neighbours to follow its choice.
The idea behind coordination in strategic games is that players are rewarded for choosing common strategies.

Coordination games on graphs are specific coordination games in the absence of common strategies.

They also capture the idea of influence. Each node influences its neighbours to follow its choice.

The purpose of cluster analysis is to partition in a meaningful way the nodes of a graph.
Motivation

- The idea behind coordination in strategic games is that players are rewarded for choosing common strategies.
- Coordination games on graphs are specific coordination games in the absence of common strategies.
- They also capture the idea of influence. Each node influences its neighbours to follow its choice.
- The purpose of cluster analysis is to partition in a meaningful way the nodes of a graph.
- Suppose the colours as the names of the clusters. Then a Nash equilibrium corresponds to a ‘satisfactory’ clustering.
Strategic Games: Definition

<table>
<thead>
<tr>
<th>Strategic game for (n \geq 2) players</th>
</tr>
</thead>
<tbody>
<tr>
<td>- a non-empty set (S_i) of strategies,</td>
</tr>
<tr>
<td>- payoff function (p_i : S_1 \times \cdots \times S_n \to \mathbb{R}),</td>
</tr>
<tr>
<td>for each player (i).</td>
</tr>
</tbody>
</table>

- **Notation:** \((S_1, \ldots, S_n, p_1, \ldots, p_n)\).
- **Basic assumption:** the players choose their strategies simultaneously.
Related Classes of Games

- **Graphical Games** *(Kearns, Littman, Singh ’01)*
 - Given is a graph on the set of players.
 - Payoff for player i is a function
 \[
 p_i : \times_{j \in \text{neigh}(i) \cup \{i\}} S_j \to \mathbb{R}.
 \]
 - **Intuition.**
 The payoff of each player depends only on his strategy and the strategies of its neighbours.

- **Polymatrix Games** *(Janovskaya ’68)*
 - $(S_1, \ldots, S_n, p_1, \ldots, p_n)$ is called polymatrix if for all pairs of players i and j there exists a partial payoff function p_{ij} such that
 \[
 p_i(s_i) := \sum_{j \neq i} p_{ij}(s_i, s_j).
 \]
 - **Intuition.**
 Each pair of players plays a separate game. The payoffs in the main game aggregate the payoffs in these separate games.

Krzysztof R. Apt

Coordination Games on Graphs
Related Classes of Games

- **Graphical Games** *(Kearns, Littman, Singh ’01)*
 - Given is a graph on the set of players.
 - Payoff for player i is a function

 \[p_i \colon \times_{j \in \text{neigh}(i) \cup \{i\}} S_j \rightarrow \mathbb{R}. \]
 - **Intuition.**
 The payoff of each player depends only on his strategy and the strategies of its neighbours.

- **Polymatrix Games** *(Janovskaya ’68)*
 - $(S_1, \ldots, S_n, p_1, \ldots, p_n)$ is called *polymatrix* if for all pairs of players i and j there exists a partial payoff function p^{ij} such that

 \[p_i(s) := \sum_{j \neq i} p^{ij}(s_i, s_j). \]
 - **Intuition.**
 Each pair of players plays a separate game. The payoffs in the main game aggregate the payoffs in these separate games.
Some Properties of Games

Reminder

- $s_{-i} := (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$.
- We sometimes write (s_i, s_{-i}) for s.

- **Positive Population Monotonicity (PPM)** (Konishi, Le Breton ’97)
 - $(S_1, \ldots, S_n, p_1, \ldots, p_n)$ satisfies the positive population monotonicity (PPM) if for all s and players i, j
 \[
 p_i(s) \leq p_i(s_i, s_{-j}).
 \]
 - Intuition.
 If more players (here player j) choose player’s i strategy, then player’s i payoff weakly increases.

- **Join the crowd property** (Simon, Apt ’13)
 - A game satisfies the join the crowd property if the payoff of each player weakly increases when more players choose his strategy.
 - Note.
 Every join the crowd game satisfies PPM.
Reminder: Nash Equilibrium

Best response

A strategy s_i of player i is a best response to a joint strategy $s_{−i}$ if for all s'_i, $p_i(s'_i, s_{−i}) \leq p_i(s_i, s_{−i})$.

Nash equilibrium

A joint strategy s is a Nash equilibrium if for all players i, s_i is the best response to $s_{−i}$.
Exact Potentials

- Assume $G := (S_1, \ldots, S_n, p_1, \ldots, p_n)$.
- A **profitable deviation**: a pair (s, s') of joint strategies such that $p_i(s') > p_i(s)$, where $s' = (s'_i, s_{-i})$.
- An **exact potential** for G: a function

\[P : S_1 \times \cdots \times S_n \rightarrow \mathbb{R} \]

such that for every profitable deviation (s, s'), where $s' = (s'_i, s_{-i})$,

\[P(s') - P(s) = p_i(s') - p_i(s). \]

Note

Every finite game with an exact potential has a Nash equilibrium.
Price of Anarchy and of Stability

- Social welfare: $SW(s) = \sum_{j=1}^{n} p_j(s)$.
- Price of anarchy
 \[
 \frac{\max_{s \in S} SW(s)}{\min_{s \in S, s \text{ is a NE}} SW(s)}
 \]
- Price of stability
 \[
 \frac{\max_{s \in S} SW(s)}{\max_{s \in S, s \text{ is a NE}} SW(s)}
 \]
Price of Anarchy and of Stability

Theorem

(i) Every coordination game on a graph has an exact potential.

(ii) The price of stability is 1.

(iii) For every graph there is a colour assignment such that the price of anarchy of the corresponding coordination game is ∞.

Proof.

(i) $F(s) := \frac{1}{2} SW(s)$ is an exact potential.

(ii) Assign to each node in a graph (V, E) two colours: one private and one common.

The maximal social welfare is $2|E|$.

A bad Nash equilibrium: each node chooses a private node. The resulting social welfare is then 0.
Strong Equilibrium

- A **coalition**: a non-empty set of players.
- Given a joint strategy s and $K = \{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$ we abbreviate $(s_{k_1}, \ldots, s_{k_m})$ to s_K.
- $p_K(s') > p_K(s)$: $p_i(s') > p_i(s)$ for all $i \in K$.
- Coalition K can profitably deviate from s if for some s' such that
 - $s'_i \neq s_i$ for $i \in K$ and
 - $s'_i = s_i$ for $i \notin K$,
 $$p_K(s') > p_K(s).$$
- Notation: $s^K \rightarrow s'$.
- s is a **strong equilibrium** if no coalition of players can profitably deviate from s.
- G has the **c-FIP** if every sequence of profitable deviations by coalitions is finite.
Generalized Ordinal c-Potentials

- A generalized ordinal c-potential for G: a function

$$P : S_1 \times \cdots \times S_n \rightarrow A$$

such that for some strict partial ordering $(P(S_1 \times \cdots \times S_n), \succ)$

if $s^K \rightarrow s'$ for some K, then $P(s') \succ P(s)$.

Note

If a finite game has a generalized ordinal c-potential, then it has the c-FIP.
Crucial Lemma

Take a coordination game on \(G := (V, E) \) and a joint strategy \(s \).

- \(E_s^+ \) is the set of edges \((i, j) \in E \) such that \(s_i = s_j \). These are the unicolour edges.
- An edge set \(F \subseteq E \) is a feedback edge set of \(G \) if \(G \setminus F \) is acyclic.
- For \(K \subseteq V \), \(G[K] \) is the subgraph of \(G \) induced by \(K \).

Lemma

Suppose \(s \xrightarrow{K} s' \) is a profitable deviation. Let \(F \) be a feedback edge set of \(G[K] \). Then

\[
SW(s') - SW(s) > 2|F \cap E_s^+| - 2|F \cap E_{s'}^+|.
\]
Consequences

Fix a graph $G := (V, E)$.

Corollary 1
Suppose $s^K \rightarrow s'$ is a profitable deviation such that $G[K]$ is a forest. Then $SW(s') > SW(s)$.

Corollary 2
Suppose $s^K \rightarrow s'$ is a profitable deviation such that $G[K]$ is a connected graph with exactly one cycle. Then $SW(s') \geq SW(s)$.
The case of a ring

Example.

Social welfare: $6 \cdot 1 = 6$.

After the profitable deviation of the nodes on the triangle to d the social welfare remains 6.
Can the social welfare decrease?

Example.

The payoffs to the nodes on the square: 2, 1, 2, 1.

Social welfare: $6 \cdot 1 + 2 + 1 + 2 + 1 = 12$.
Example, ctd

From the previous joint strategy the nodes on the square can all profitably deviate to e:

- The payoffs to the nodes on the square: 3, 2, 3, 2.
- Social welfare is now $3 + 2 + 3 + 2 = 10$, so it decreased.
Strong Equilibria in Coordination Games

- A **pseudoforest**: a graph in which each connected component contains at most one cycle.

Theorem
Consider a coordination game on a graph that is a pseudoforest. Then the game has the c-FIP.

Proof.
- Consider $P(s) := (SW(s), \sum_{C \text{ is a cycle in } G} SW_C(s))$.
- P is a generalized ordinal c-potential when we take the lexicographic ordering $>_\text{lex}$ on pairs of reals.
Other Positive Results

Theorem

Every coordination game in which only two colours are used has the c-FIP.

Proof.

SW is a generalized ordinal c-potential.

Theorem

Every coordination game whose underlying graph is complete has the c-FIP.

Proof.

- Given a sequence \(\theta \in \mathbb{R}^n \) let \(\theta^* \) be its reordering from the largest to the smallest element.
- Consider \(P(s) := (p_1(s), \ldots, p_n(s))^* \).
- \(P \) is a generalized ordinal c-potential when we take the lexicographic ordering \(>_{lex} \) on the sequences of reals.
General Case

Strong equilibria do not need to exist.

Example.
c-Weakly Acyclic Games

- A c-improvement path: a maximal sequence of profitable deviations of coalitions of players.
- A game is c-weakly acyclic if for every joint strategy there exists a finite c-improvement path that starts at it.

Note
There exist colouring games that do not have the c-FIP but are c-weakly acyclic.

Proof. In the last example add to each player a new colour d.
Strong Price of Anarchy

Theorem

For all \(k > 1 \), the \(k \)-price of anarchy is between \(\frac{n-1}{k-1} \) and \(2 \frac{n-1}{k-1} \).

The strong price of anarchy is 2.

Proof idea.

- An example that uses a complete graph shows that the \(k \)-price of anarchy is at least \(\frac{n-1}{k-1} \).
- Suppose that a game has a \(k \)-equilibrium \(s \). Let \(\sigma \) be a social optimum. Choose a coalition \(K \) of size \(k \).
- **Step 1.** Show that \(SW_K(\sigma) \leq 2SW_K(s) + |E_\sigma^+ \cap \delta(K)| \).
- **Step 2.** Summing over all \(K \) of size \(k \) one gets

 \[
 \binom{n-1}{k-1}SW(\sigma) \leq 2\binom{n-1}{k-1}SW(s) + \binom{n-2}{k-1}SW(\sigma).
 \]
- **Step 3.** This implies that the \(k \)-price of anarchy is at most

 \[
 \frac{2(n-1)}{(n-1) - \binom{n-2}{k-1}} = 2 \frac{n-1}{k-1}.
 \]
Final Comment
Thank you