Social Network Games with Obligatory Product Selection

Krzysztof R. Apt

CWI and University of Amsterdam

Joint work with Sunil Simon
Social networks

Essential components of our model

- Finite set of agents.
- Influence of “friends”.
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.
Social networks

Essential components of our model

- Finite set of agents.
- Influence of “friends”.
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.
Social networks

Essential components of our model

- Finite set of agents.
- Influence of “friends”.
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.
Social networks

Essential components of our model

- Finite set of agents.
- Influence of “friends”.
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.

![Diagram showing social network connections and resistance levels.](image-url)
The model

Social network [Apt, Markakis 2011]

- **Weighted directed graph:** \(G = (V, \rightarrow, w)\), where
 - \(V\): a finite set of agents,
 - \(w_{ij} \in (0, 1]\): weight of the edge \(i \rightarrow j\).
- **Products:** A finite set of products \(P\).
- **Product assignment:** \(P : V \rightarrow 2^P \setminus \{\emptyset\}\);
 - assigns to each agent a non-empty set of products.
- **Threshold function:** \(\theta(i, t) \in (0, 1]\), for each agent \(i\) and product \(t \in P(i)\).

- **Neighbours** of node \(i\): \(\{j \in V \mid j \rightarrow i\}\).
- **Source nodes:** Agents with no neighbours.
The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set $P(i)$.

Social network games

- **Players:** Agents in the network.
- **Strategies:** Set of strategies for player i is $P(i)$.
- **Payoff:** Fix $c_0 > 0$.
 Given a joint strategy s and an agent i,

Krzysztof R. Apt

Social Network Games with Obligatory Product Selection
The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set $P(i)$.

Social network games

- **Players:** Agents in the network.
- **Strategies:** Set of strategies for player i is $P(i)$.
- **Payoff:** Fix $c_0 > 0$.

Given a joint strategy s and an agent i,

- if $i \in \text{source}(S)$,

 $$p_i(s) = c_0$$
The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set $P(i)$.

Social network games

- **Players:** Agents in the network.
- **Strategies:** Set of strategies for player i is $P(i)$.
- **Payoff:** Fix $c_0 > 0$.

Given a joint strategy s and an agent i,

- if $i \in \text{source}(S)$,
 \[p_i(s) = c_0 \]

- if $i \notin \text{source}(S)$,
 \[p_i(s) = \sum_{j \in \mathcal{N}_i^t(s)} w_{ji} - \theta(i, t) \text{ if } s_i = t \text{ for some } t \in P(i) \]

\(\mathcal{N}_i^t(s)\): the set of neighbours of i who adopted in s the product t.
Example

Threshold is 0.3 for all the players.

\[P = \{ \bullet, \bullet, \bullet \} \]
Example

Threshold is 0.3 for all the players.

\[\mathcal{P} = \{\bullet, \bullet, \bullet\} \]

Payoff:

\[p_4(s) = p_5(s) = p_6(s) = c \]
Threshold is 0.3 for all the players.

\[\mathcal{P} = \{\cdot, \cdot, \cdot\} \]

Payoff:

- \(p_4(s) = p_5(s) = p_6(s) = c \)
- \(p_1(s) = 0.4 - 0.3 = 0.1 \)
Example

Threshold is 0.3 for all the players.

\[\mathcal{P} = \{\bullet, \bullet, \bullet\} \]

Payoff:
- \[p_4(s) = p_5(s) = p_6(s) = c \]
- \[p_1(s) = 0.4 - 0.3 = 0.1 \]
- \[p_2(s) = 0.5 - 0.3 = 0.2 \]
- \[p_3(s) = 0.4 - 0.3 = 0.1 \]
Social network games

Properties

- **Graphical game:** The payoff for each player depends only on the choices made by his neighbours.

- **Join the crowd property:** The payoff of each player weakly increases if more players choose the same strategy.
Solution concept – Nash equilibrium

Best response

A strategy \(s_i \) of player \(i \) is a **best response** to a joint strategy \(s_{-i} \) if for all \(s_i' \),

\[
p_i(s_i', s_{-i}) \leq p_i(s_i, s_{-i}).
\]

Nash equilibrium

A strategy profile \(s \) is a Nash equilibrium if for all players \(i \), \(s_i \) is the best response to \(s_{-i} \).
Nash equilibrium: simple cycles

Does a Nash equilibrium always exist?
Nash equilibrium: simple cycles

Does a Nash equilibrium always exist?

No
Nash equilibrium: simple cycles

Does a Nash equilibrium always exist?

No

Theorem Consider a social network S whose underlying graph is a simple cycle. It takes $O(n \cdot |P|^4)$ time to decide whether the game $G(S)$ has a Nash equilibrium.
Nash equilibrium: arbitrary case

Theorem Deciding whether for a social network S the game $G(S)$ has a Nash equilibrium is NP-complete.

Proof idea.
Nash equilibrium: arbitrary case

Theorem Deciding whether for a social network S the game $G(S)$ has a Nash equilibrium is NP-complete.

Proof idea.
1. Use a specific social network game with no Nash equilibrium.
Nash equilibrium: arbitrary case

Theorem Deciding whether for a social network S the game $G(S)$ has a Nash equilibrium is NP-complete.

Proof idea.
1. Use a specific social network game with no Nash equilibrium.

The preceding example of a social network.
Nash equilibrium: arbitrary case

Theorem Deciding whether for a social network S the game $G(S)$ has a Nash equilibrium is NP-complete.

Proof idea.
1. Use a specific social network game with no Nash equilibrium.

The preceding example of a social network.
2. Use a specific NP-complete problem.
Nash equilibrium: arbitrary case

Theorem Deciding whether for a social network S the game $G(S)$ has a Nash equilibrium is NP-complete.

Proof idea.
1. Use a specific social network game with no Nash equilibrium.
2. Use a specific NP-complete problem.

The PARTITION problem

Input: n positive rational numbers (a_1, \ldots, a_n) such that $\sum_i a_i = 1$.

Question: Is there a set $S \subseteq \{1, 2, \ldots, n\}$ such that

$$\sum_{i \in S} a_i = \sum_{i \notin S} a_i = \frac{1}{2}.$$
Weakly acyclic games (1)

(Young '93, Milchtaich '96)

- s'_i is a better response given s if $p_i(s'_i, s_{-i}) > p_i(s_i, s_{-i})$.
- A profitable deviation: a pair (s, s') of joint strategies such that $s' = (s'_i, s_{-i})$ for some s'_i and $p_i(s') > p_i(s)$.
- An improvement path: a maximal sequence of profitable deviations.
- G is weakly acyclic if for any joint strategy there exists a finite improvement path that starts at it.
Weakly acyclic games (2)

- For an arbitrary network S, deciding whether the game $\mathcal{G}(S)$ is weakly acyclic is co-NP hard.
- For a network S whose underlying graph has no source nodes, deciding whether the game $\mathcal{G}(S)$ is weakly acyclic is also co-NP hard.
The more options one has, the more possibilities for experiencing conflict arise, and the more difficult it becomes to compare the options. There is a point where more options, products, and choices hurt both seller and consumer.
Paradox 1: vulnerable networks

Addition of a product to a social network can affect negatively everybody.

More specifically: a social network exists such that for some Nash equilibrium s an addition of a product will trigger a sequence of changes that will always lead the agents from s to a new Nash equilibrium that is worse for everybody.
Example

Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue.
Example

Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue.

The weights and thresholds are so chosen that this is a Nash equilibrium.
Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue.

This is not a Nash equilibrium.
Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue.

This is not a Nash equilibrium.
Example

Nodes 1 and 2 prefer **red** over **brown**, and nodes 3 and 4 prefer **green** over **blue**.

This is **not** a Nash equilibrium.
Example

Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue.

This is not a Nash equilibrium.
Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue. This is not a Nash equilibrium.
Example

Nodes 1 and 2 prefer red over brown, and nodes 3 and 4 prefer green over blue.

This is a Nash equilibrium. The payoff to each player is now strictly worse.
Paradox 2: inefficient networks

Removal of a product from a social network can affect positively everybody.

More specifically: a social network exists such that for some Nash equilibrium s a removal of a product will trigger a sequence of changes that will always lead the agents from s to a new Nash equilibrium that is better for everybody.
Cost θ is product independent.

The weight of each edge is w, where $w > \theta$.

Note Each node has two incoming edges.
Cost θ is product independent.
The weight of each edge is w, where $w > \theta$.
This is a Nash equilibrium. The payoff to each player is $w - \theta$.
Cost θ is product independent.
The weight of each edge is w, where $w > \theta$.
This is not a legal joint strategy.
Cost θ is product independent.

The weight of each edge is w, where $w > \theta$.

This is not a Nash equilibrium.
Example

- Cost θ is product independent.
- The weight of each edge is w, where $w > \theta$.
- This is a Nash equilibrium. The payoff to each player is $2w - \theta$.

Krzysztof R. Apt
Social Network Games with Obligatory Product Selection
Other Paradoxes

- A social network S is **fragile** if $G(S)$ has a Nash equilibrium while for some expansion S' of S, $G(S')$ does not.
- A social network S **unsafe** if $G(S)$ has a Nash equilibrium, while for some contraction S' of S, $G(S')$ does not.
Thank you
Molte grazie
Dziękuję za uwagę