Assignment 1: Solution

Denote $\sum_{i=1}^{n} s_{i}$ by t. Assume that for all $i \in\{1, \ldots, n\}$

$$
s_{i}=\frac{d-\sum_{j \neq i} s_{j}}{2}
$$

where d is some constant.
By adding the considered equations for all $i \in\{1, \ldots, n\}$ we obtain the equality

$$
t=\frac{n d-(n-1) t}{2}
$$

from which it follows that $2 t=n d-(n-1) t$. So

$$
t=\frac{n d}{n+1}
$$

Further, for all $i \in\{1, \ldots, n\}$

$$
\sum_{j \neq i} s_{j}=t-s_{i},
$$

so each original equation can be rewritten as

$$
s_{i}=\frac{d-t+s_{i}}{2}
$$

From this it follows that for all $i \in\{1, \ldots, n\}$

$$
s_{i}=d-t,
$$

that is all $s_{i} \mathrm{~S}$ are equal. Consequently for all $i \in\{1, \ldots, n\} s_{i}=\frac{t}{n}$, that is

$$
s_{i}=\frac{d}{n+1}
$$

We obtain the solution to the first problem by using $d=1$ and to the second problem by using $d=\frac{a-c}{b}$.

