Assignment 1

In Chapter 2 of the lecture notes the following two systems of linear equations are considered:

- for all $i \in\{1, \ldots, n\}$

$$
s_{i}=\frac{1-\sum_{j \neq i} s_{j}}{2}
$$

It is claimed there that this system of n linear equations has a unique solution $s_{i}=\frac{1}{n+1}$ for $i \in\{1, \ldots, n\}$.

- for all $i \in\{1, \ldots, n\}$

$$
s_{i}=\frac{a-c}{2 b}-\frac{\sum_{j \neq i} s_{j}}{2}
$$

It is claimed that this system of n linear equations has a unique solution $s_{i}=\frac{a-c}{(n+1) b}$ for $i \in\{1, \ldots, n\}$.
(In both cases the sum is taken over all $j \in\{1, \ldots, n\} \backslash\{i\}$.) Prove both claims.

