Assignment 1

In Chapter 2 of the lecture notes the following two systems of linear equations are considered:

• for all $i \in \{1, \ldots, n\}$

$$s_i = \frac{1 - \sum_{j \neq i} s_j}{2}$$

It is claimed there that this system of n linear equations has a unique solution $s_i = \frac{1}{n+1}$ for $i \in \{1, \ldots, n\}$.

• for all $i \in \{1, \ldots, n\}$

$$s_i = \frac{a-c}{2b} - \frac{\sum_{j \neq i} s_j}{2}.$$

It is claimed that this system of n linear equations has a unique solution $s_i = \frac{a-c}{(n+1)b}$ for $i \in \{1, \ldots, n\}$.

(In both cases the sum is taken over all $j \in \{1, \ldots, n\} \setminus \{i\}$.) Prove both claims.