
Chapter 13

Alternative Concepts

In the presentation until now we heavily relied on the definition of a strategic
game and focused several times on the crucial notion of a Nash equlibrium.
However, both the concept of an equilibrium and of a strategic game can be
defined in alternative ways. Here we discuss some alternative definitions and
explain their consequences.

13.1 Other equilibria notions

Nash equilibrium is a most popular and most widely used notion of an equi-
librium. However, there are many other natural alternatives. In this section
we briefly discuss three alternative equilibria notions. To define them fix a
strategic game (S1, . . . , Sn, p1, . . . , pn).

Strict Nash equilibrium We call a joint strategy s a strict Nash equi-
librium if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si \ {si} pi(si, s−i) > pi(s
′
i, s−i).

So a joint strategy is a strict Nash equilibrium if each player achieves a strictly

lower payoff by unilaterally switching to another strategy.
Obviously every strict Nash equilibrium is a Nash equilibrium and the

converse does not need to hold.
Consider now the Battle of the Sexes game. Its pure Nash equilibria that

we identified in Chapter 1 are clearly strict. However, its Nash equilibrium
in mixed strategy we identified in Example 18 of Section 9.1 is not strict.
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Indeed, the following simple observation holds.

Note 59 Consider a mixed extension of a finite strategic game. Every strict

Nash equilibrium is a Nash equilibrium in pure strategies.

Proof. It is a direct consequence of the Characterization Lemma 28. 2

Consequently each finite game with no Nash equilibrium in pure strate-
gies, for instance the Matching Pennies game, has no strict Nash equilibrium
in mixed strategies. So the analogue of Nash theorem does not hold for strict
Nash equilibria, which makes this equilibrium notion less useful.

ǫ-Nash equilibrium The idea of an ǫ-Nash equilibrium formalizes the in-
tuition that a joint strategy can be also be satisfactory for the players when
each of them can gain only very little from deviating from his strategy.

Let ǫ > 0 be a small positive real. We call a joint strategy s an ǫ-Nash
equilibrium if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i) − ǫ.

So a joint strategy is an ǫ-Nash equilibrium if no player can gain more
than ǫ by unilaterally switching to another strategy. In this context ǫ can be
interpreted either as the amount of uncertainty about the payoffs or as the
gain from switching to another strategy.

Clearly, a joint strategy is a Nash equilibrium iff it is an ǫ-Nash equilib-
rium for every ǫ > 0. However, the payoffs in an ǫ-Nash equilibrium can be
substantially lower than in a Nash equilibrium. Consider for example the
following game:

L R

T 1, 1 0, 0
B 1 + ǫ, 1 100, 100

This game has a unique Nash equilibrium (B, R), which obviously is also
an ǫ-Nash equilibrium. However, (T, L) is also an ǫ-Nash equilibrium.
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Strong Nash equilibrium Another variation of the notion of a Nash
equilibrium focusses on the concept of a coalition, by which we mean a non-
empty subset of all players.

Given a subset K := {k1, . . . , km} of N := {1, . . . , n} we abbreviate the
sequence (sk1

, . . . , skm
) of strategies to sK and Sk1

× . . . × Skm
to SK .

We call a joint strategy s a strong Nash equilibrium if for all coalitions
K there does not exist s′K ∈ SK such that

pi(s
′
K , sN\K) > pi(sK , sN\K) for all i ∈ K.

So a joint strategy is a strong Nash equilibrium if no coalition can profit
from deviating from it, where by “profit from” we mean that each member of
the coalition gets a strictly higher payoff. The notion of a strong Nash equi-
librium generalizes the notion of a Nash equilibrium by considering possible
deviations of coalitions instead of individual players.

Note that the unique Nash equilibrium of the Prisoner’s Dilemma game
is strict but not strong. For example, if both players deviate from D to C,
then each of them gets a strictly higher payoff.

Correlated equilibrium The final concept of an equilibrium that we in-
troduce is a generalization of Nash equilibrium in mixed strategies. Recall
from Chapter 9 that given a finite strategic game G := (S1, . . . , Sn, p1, . . . , pn)
each joint mixed strategy m = (m1, . . . , mn) induces a probability distribu-
tion over S, defined by

m(s) := m1(s1) · . . . · mn(sn),

where s ∈ S.
We have then the following observation.

Note 60 (Nash Equilibrium in Mixed Strategies) Consider a finite strate-

gic game (S1, . . . , Sn, p1, . . . , pn).
Then m is a Nash equilibrium m in mixed strategies iff for all i ∈ {1, . . . , n}

and all s′i ∈ Si

∑

s∈S

m(s) · pi(si, s−i) ≥
∑

s∈S

m(s) · pi(s
′
i, s−i).
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Proof. Fix i ∈ {1, . . . , n} and choose some s′i ∈ Si. Let

m′
i(si) :=







1 if si = s′i

0 otherwise

So m′
i is the mixed strategy that represents the pure strategy s′i.

Let now m′ := (m1, . . ., mi−1, m
′
i, mi+1, . . ., mn). We have

pi(m) =
∑

s∈S

m(s) · pi(si, s−i)

and
pi(s

′
i, m−i) =

∑

s∈S

m′(s) · pi(si, s−i).

Further, one can check that

∑

s∈S

m′(s) · pi(si, s−i) =
∑

s∈S

m(s) · pi(s
′
i, s−i).

So the claim is a direct consequence of the equivalence between items (i)
and (ii) of the Characterization Lemma 28. 2

We now generalize the above inequality to an arbitrary probability distri-
bution over S. This yields the following equilibrium notion. We call a proba-
bility distribution π over S a correlated equilibrium if for all i ∈ {1, . . . , n}
and all s′i ∈ Si

∑

s∈S

π(s) · pi(si, s−i) ≥
∑

s∈S

π(s) · pi(s
′
i, s−i).

By the above Note every Nash equilibrium in mixed strategies is a corre-
lated equilibrium. To see that the converse is not true consider the Battle of
the Sexes game:

F B

F 2, 1 0, 0
B 0, 0 1, 2

It is easy to check that the following probability distribution forms a
correlated equilibrium in this game:
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F B

F 1
2

0

B 0 1
2

Intuitively, this equilibrium corresponds to a situation when an external ob-
serves flips a fair coin and gives each player a recommendation which strategy
to choose.

Exercise 14 Check the above claim. 2

13.2 Variations on the definition of strategic

games

The notion of a strategic game is quantitative in the sense that it refers
through payoffs to real numbers. A natural question to ask is: do the payoff
values matter? The answer depends on which concepts we want to study. We
mention here three qualitative variants of the definition of a strategic game
in which the payoffs are replaced by preferences. By a preference relation
on a set A we mean here a linear ordering on A.

In Osborne and Rubinstein [1994] a strategic game is defined as a sequence

(S1, . . . , Sn,�1, . . . ,�n),

where each �i is player’s i preference relation defined on the set S1× . . .×Sn

of joint strategies.
In Apt, Rossi and Venable [2008] another modification of strategic games

is considered, called a strategic game with parametrized preferences .
In this approach each player i has a non-empty set of strategies Si and a
preference relation �s

−i
on Si parametrized by a joint strategy s−i of his

opponents. In Apt, Rossi and Venable [2008] only strict preferences were
considered and so defined finite games with parametrized preferences were
compared with the concept of CP-nets (Conditional Preference nets), a
formalism used for representing conditional and qualitative preferences, see,
e.g., Boutilier et al. [2004].

Next, in Roux, Lescanne and Vestergaard [2008] conversion/preference
games are introduced. Such a game for n players consists of a set S of sit-

uations and for each player i a preference relation �i on S and a conversion

relation → i on S. The definition is very general and no conditions are
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placed on the preference and conversion relations. These games are used to
formalize gene regulation networks and some aspects of security.

Another generalization of strategic games, called graphical games , in-
troduced in Kearns, Littman and Singh [2001]. These games stress the local-
ity in taking decision. In a graphical game the payoff of each player depends
only on the strategies of its neighbours in a given in advance graph struc-
ture over the set of players. Formally, such a game for n players with the
corresponding strategy sets S1, . . . , Sn is defined by assuming a neighbour
function N that given a player i yields its set of neighbours N(i). The payoff
for player i is then a function pi from ×j∈N(i)∪{i}Sj to R.

In all mentioned variants it is straightforward to define the notion of a
Nash equilibrium. For example, in the conversion/preferences games it is
defined as a situation s such that for all players i, if s → is

′, then s′ 6≻i s.
However, other introduced notions can be defined only for some variants.
In particular, Pareto efficiency cannot be defined for strategic games with
parametrized preferences since it requires a comparison of two arbitrary joint
strategies. In turn, the notions of dominance cannot be defined for the con-
version/preferences games, since they require the concept of a strategy for a
player.

Various results concerning finite strategic games, for instance the IESDS
Theorem 2, carry over directly to the the strategic games as defined in Os-
borne and Rubinstein [1994] or in Apt, Rossi and Venable [2008]. On the
other hand, in the variants of strategic games that rely on the notion of a
preference we cannot consider mixed strategies, since the outcomes of playing
different strategies by a player cannot be aggregated.
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