
Chapter 2

Nash Equilibria and Pareto
Efficient Outcomes

To discuss strategic games in a meaningful way we need to introduce further,
natural, concepts. Fix a strategic game (S1, . . . , Sn, p1, . . . , pn).

We call a joint strategy s a Pareto efficient outcome if for no joint
strategy s′

∀i ∈ {1, . . . , n} pi(s
′) ≥ pi(s) and ∃i ∈ {1, . . . , n} pi(s

′) > pi(s).

That is, a joint strategy is a Pareto efficient outcome if no joint strategy is
both a weakly better outcome for all players and a strictly better outcome
for some player.

Further, given a joint strategy s we call the sum
∑n

j=1 pj(s) the social

welfare of s. Next, we call a joint strategy s a social optimum if the
social welfare of s is maximal.

Clearly, if s is a social optimum, then s is Pareto efficient. The converse
obviously does not hold. Indeed, in the Prisoner’s Dilemma game the joint
strategis (C, D) and (D, C) are both Pareto efficient, but their social welfare
is not maximal. Note that (D, D) is the only outcome that is not Pareto
efficient. The social optimum is reached in the strategy profile (C, C). In
contrast, the social welfare is smallest in the Nash equlibrium (D, D).

This discrepancy between Nash equilibria and Pareto efficient outcomes
is absent in the Battle of Sexes game. Indeed, here both concepts coincide.

The tension between Nash equlibria and Pareto efficient outcomes present
in the Prisoner’s Dilemma game occurs in several other natural games. It
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forms one of the fundamental topics in the theory of strategic games. In this
chapter we shall illustrate this phenomenon by a number of examples.

Example 3 (Prisoner’s Dilemma for n players)
First, the Prisoner’s Dilemma game can be easily generalized to n players as
follows. It is convenient to assume that each player has two strategies, 1, rep-
resenting cooperation, (formerly C) and 0, representing defection, (formerly
D). Then, given a joint strategy s−i of the opponents of player i,

∑

j 6=i sj

denotes the number of 1 strategies in s−i. Denote by 1 the joint strategy in
which each strategy equals 1 and similarly with 0.

We put

pi(s) :=

{

2
∑

j 6=i sj + 1 if si = 0

2
∑

j 6=i sj if si = 1

Note that for n = 2 we get the original Prisoner’s Dilemma game.
It is easy to check that the strategy profile 0 is the unique Nash equilib-

rium in this game. Indeed, in each other strategy profile a player who chose
1 (cooperate) gets a higher payoff when he switches to 0 (defect).

Finally, note that the social welfare in 1 is 2n(n − 1), which is strictly
more than n, the social welfare in 0. We now show that 2n(n − 1) is the
social optimum. To this end it suffices to note that if a single player switches
from 0 to 1, then his payoff decreases by 1 but the payoff of each other player
increases by 2, and hence the social welfare increases. 2

The next example deals with the depletion of common resources ,
which in economics are goods that are not excludable (people cannot be
prevented from using them) but are rival (one person’s use of them dimin-
ishes another person’s enjoyment of it). Examples are congested toll-free
roads, fish in the ocean, or the environment. The overuse of such common
resources leads to their destruction. This phenomenon is called the tragedy

of the commons .
One way to model it is as a Prisoner’s dilemma game for n players. But

such a modeling is too crude as it does not reflect the essential characteristics
of the problem. We provide two more adequate modeling of it, one for the
case of a binary decision (for instance, whether to use a congested road or
not), and another one for the case when one decides about the intensity of
using the resource (for instance on what fraction of a lake should one fish).

Example 4 (Tragedy of the commons I)
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Assume n > 1 players, each having to its disposal two strategies, 1 and 0
reflecting, respectively, that the player decides to use the common resource or
not. If he does not use the resource, he gets a fixed payoff. Further, the users
of the resource get the same payoff. Finally, the more users of the common
resource the smaller payoff for each of them gets, and when the number of
users exceeds a certain threshold it is better for the other players not to use
the resource.

The following payoff function realizes these assumptions:

pi(s) :=

{

0.1 if si = 0

F (m)/m otherwise

where m =
∑n

j=1 sj and

F (m) := 1.1m − 0.1m2.

Indeed, the function F (m)/m is strictly decreasing. Moreover, F (9)/9 =
0.2, F (10)/10 = 0.1 and F (11)/11 = 0. So when there are already ten or
more users of the resource it is indeed better for other players not to use the
resource.

To find a Nash equilibrium of this game, note that given a strategy profile
s with m =

∑n
j=1 sj player i profits from switching from si to another strategy

in precisely two circumstances:

• si = 0 and F (m + 1)/(m + 1) > 0.1,

• si = 1 and F (m)/m < 0.1.

In the first case we have m + 1 < 10 and in the second case m > 10.
Hence when n < 10 the only Nash equilibrium is when all players use the

common resource and when n ≥ 10 then s is a Nash equilibrium when either
9 or 10 players use the common resource.

Assume now that n ≥ 10. Then in a Nash equilibrium s the players who
use the resource receive the payoff 0.2 (when m = 9) or 0.1 (when m = 10).
So the maximum social welfare that can be achieved in a Nash equilibrium
is 0.1(n − 9) + 1.8 = 0.1n + 0.9.

To find a strategy profile in which social optimum is reached with the
largest social welfare we need to find m for which the function 0.1(n−m) +
F (m) reaches the maximum. Now, 0.1(n − m) + F (m) = 0.1n + m − 0.1m2
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and by elementary calculus we find that m = 5 for which 0.1(n−m)+F (m) =
0.1n+2.5. So the social optimum is achieved when 5 players use the common
resource. 2

Example 5 (Tragedy of the commons II)
Assume n > 1 players, each having to its disposal an infinite set of strategies
that consists of the real interval [0, 1]. View player’s strategy as its chosen
fraction of the common resource. Then the following payoff function reflects
the fact that player’s enjoyment of the common resource depends positively
from his chosen fraction of the resource and negatively from the total fraction
of the common resource used by all players:

pi(s) :=

{

si(1 −
∑n

j=1 sj) if
∑n

j=1 sj ≤ 1

0 otherwise

The second alternative reflects the phenomenon that if the total fraction
of the common resource by all players exceeds a feasible level, here 1, then
player’s enjoyment of the resource becomes zero. We can write the payoff
function in a more compact way as

pi(s) := max(0, si(1 −

n
∑

j=1

sj)).

To find a Nash equilibrium of this game, fix i ∈ {1, . . ., n} and s−i and
denote

∑

j 6=i sj by t. Then pi(si, s−i) = max(0, si(1 − t − si)).

By elementary calculus player’s i payoff becomes maximal when si = 1−t
2

.
This implies that when for all i ∈ {1, . . ., n} we have

si =
1 −

∑

j 6=i sj

2
,

then s is a Nash equilibrium. This system of n linear equations has a unique
solution si = 1

n+1
for i ∈ {1, . . ., n}. In this strategy profile each player’s

payoff is 1−n/(n+1)
n+1

= 1
(n+1)2

, so its social welfare is n
(n+1)2

.

There are other Nash equilibria. Indeed, suppose that for all i ∈ {1, . . ., n}
we have

∑

j 6=i sj ≥ 1, which is the case for instance when si = 1
n−1

for
i ∈ {1, . . ., n}. It is straightforward to check that each such strategy profile
is a Nash equilibrium in which each player’s payoff is 0 and hence the social
welfare is also 0. It is easy to check that no other Nash equilibria exist.
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To find a strategy profile in which social optimum is reached fix a strategy
profile s and let t :=

∑n
j=1 sj. First note that if t > 1, then the social welfare

is 0. So assume that t ≤ 1. Then
∑n

j=1 pj(sj) = t(1 − t). By elementary

calculus this expression becomes maximal precisely when t = 1
2

and then it
equals 1

4
.

Now, for all n > 1 we have n
(n+1)2

< 1
4
. So the social welfare of each

solution for which
∑n

j=1 sj = 1
2

is superior to the social welfare of the Nash
equilibria. In particular, no such strategy profile is a Nash equilibrium.

In conclusion, the social welfare is maximal, and equals 1
4
, when precisely

half of the common resource is used. In contrast, in the ‘best’ Nash equilib-
rium the social welfare is n

(n+1)2
and the fraction n

n+1
of the common resource

is used. So when the number of players increases, the social welfare of the
best Nash equilibrium becomes arbitrarily small, while the fraction of the
common resource being used becomes arbitrarily large. 2

The analysis carried out in the above two examples reveals that for the
adopted payoff functions the common resource will be overused, to the detri-
ment of the players (society). The same conclusion can be drawn for a much
larger of class payoff functions that properly reflect the characteristics of
using a common resource.

Example 6 (Cournot competition)
This example deals with a situation in which n companies independently
decide their production levels of a given product. The price of the product
is a linear function that depends negatively on the total output.

We model it by means of the following strategic game. We assume that
for each player i:

• his strategy set is R+,

• his payoff function is defined by

pi(s) := si(a − b

n
∑

j=1

sj) − csi

for some given a, b, c, where a > c and b > 0.
Let us explain this payoff function. The price of the product is represented

by the expression a − b
∑n

j=1 sj, which, thanks to the assumption b > 0,
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indeed depends negatively on the total output,
∑n

j=1 sj. Further, csi is the
production cost corresponding to the production level si. So we assume for
simplicity that the production cost functions are the same for all companies.

Further, note that if a ≤ c, then the payoffs would be always negative or
zero, since pi(s) = (a− c)si − bsi

∑n
j=1 sj . This explains the assumption that

a > c. For simplicity we do allow a possibility that the prices are negative,
but see Exercise 4. The assumption c > 0 is obviously meaningful but not
needed.

To find a Nash equilibrium of this game fix i ∈ {1, . . ., n} and s−i and
denote

∑

j 6=i sj by t. Then pi(si, s−i) = si(a − c − bt − bsi). By elementary
calculus player’s i payoff becomes maximal iff

si =
a − c

2b
−

t

2
.

This implies that s is a Nash equilibrium iff for all i ∈ {1, . . ., n}

si =
a − c

2b
−

∑

j 6=i sj

2
.

One can check that this system of n linear equations has a unique solution,
si = a−c

(n+1)b
for i ∈ {1, . . ., n}. So this is a unique Nash equilibrium of this

game.
Note that for these values of sis the price of the product is

a − b
n

∑

j=1

sj = a − b
n(a − c)

(n + 1)b
=

a + nc

n + 1
.

To find the social optimum let t :=
∑n

j=1 sj. Then
∑n

j=1 pj(s) = t(a −
c − bt). By elementary calculus this expression becomes maximal precisely
when t = a−c

2b
. So s is a social optimum iff

∑n
j=1 sj = a−c

2b
. The price of the

product in a social optimum is a − ba−c
2b

= a+c
2

.
Now, the assumption a > c implies that a+c

2
> a+nc

n+1
. So we see that the

price in the social optimum is strictly higher than in the Nash equilibrium.
This can be interpreted as a statement that the competition between the
producers of the product drives its price down, or alternatively, that the
cartel between the producers leads to higher profits for them (i.e., higher
social welfare), at the cost of a higher price. So in this example reaching the
social optimum is not a desirable state of affairs. The reason is that in our
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analysis we focussed only on the profits of the producers and omitted the
customers.

As an aside also notice that when n, so the number of companies, in-
creases, the price a+nc

n+1
in the Nash equilibrium decreases. This corresponds

to the intuition that increased competition is beneficial for the customers.
Note also that in the limit the price in the Nash equilibrium converges to the
production cost c. 2

While the last two examples refer to completely different scenarios, their
mathematical analysis is very similar. Their common characteristics is that
in both examples the payoff functions can be written as f(si,

∑n
j=1 sj), where

f is increasing in the first argument and decreasing in the second argument.

Exercise 3 Prove that in the game discussed in Example 5 indeed no other
Nash equilibria exist apart of the mentioned ones. 2

Exercise 4 Modify the game from Example 6 by considering the following
payoff functions:

pi(s) := si max(0, a − b
n

∑

j=1

sj) − csi.

Compute the Nash equilibria of this game.
Hint. Proceed as in Example 5. 2

16


