
Chapter 7

Sealed-bid Auctions

An auction is a procedure used for selling and buying items by offering them
up for bid. Auctions are often used to sell objects that have a variable price
(for example oil) or an undetermined price (for example radio frequencies).
There are several types of auctions. In its most general form they can involve
multiple buyers and multiple sellers with multiple items being offered for
sale, possibly in succession. Moreover, some items can be sold in fractions,
for example oil.

Here we shall limit our attention to a simple situation in which only one
seller exists and offers one object for sale that has to be sold in its entirety
(for example a painting). So in this case an auction is a procedure that
involves

• one seller who offers an object for sale,

• n bidders, each bidder i having a valuation vi ≥ 0 of the object.

The procedure we discuss here involves submission of sealed bids . More
precisely, the bidders simultaneously submit their bids in closed envelopes
and the object is allocated, in exchange for a payment, to the bidder who
submitted the highest bid (the winner). Such an auction is called a sealed-

bid auction . To keep things simple we assume that when more than one
bidder submitted the highest bid the object is allocated to the highest bidder
with the lowest index.

To formulate a sealed-bid auction as a strategic game we consider each
bidder as a player. Then we view each bid of player i as his possible strategy.
We allow any nonnegative real as a bid.

54



We assume that the valuations vi are fixed and publicly known. This
is an unrealistic assumption to which we shall return in a later chapter.
However, this assumption is necessary, since the valuations are used in the
definition of the payoff functions and by assumption the players have common
knowledge of the game and hence of each others’ payoff functions. When
defining the payoff functions we consider two options, each being determined
by the underlying payment procedure.

Given a sequence b := (b1, . . . , bn) of reals, we denote the least l such
that bl = maxk∈{1,...,n} bk by argsmax b. That is, argsmax b is the smallest
index l such that bl is a largest element in the sequence b. For example,
argsmax (6, 7, 7, 5) = 2.

7.1 First-price auction

The most commonly used rule in a sealed-bid auction is that the winner i

pays to the seller the amount equal to his bid. The resulting mechanism is
called the first-price auction .

Assume the winner is bidder i, whose bid is bi. Since his value for the
sold object is vi, his payoff (profit) is vi − bi. For the other players the payoff
(profit) is 0. Note that the winner’s profit can be negative. This happens
when he wins the object by overbidding , i.e., submitting a bid higher than
his valuation of the object being sold. Such a situation is called the winner’s

curse.
To summarize, the payoff function pi of player i in the game associated

with the first-price auction is defined as follows, where b is the vector of the
submitted bids:

pi(b) :=

{

vi − bi if i = argsmax b

0 otherwise

Let us now analyze the resulting game. The following theorem provides
a complete characterization of its Nash equilibria.

Theorem 21 (Characterization I) Consider the game associated with the
first-price auction with the players’ valuations v. Then b is a Nash equilib-
rium iff for i = argsmax b

(i) bi ≤ vi
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(the winner does not suffer from the winner’s curse),

(ii) maxj 6=i vj ≤ bi

(the winner submitted a sufficiently high bid),

(iii) bi = maxj 6=i bj

(another player submitted the same bid as player i).

These three conditions can be compressed into the single statement

max
j 6=i

vj ≤ max
j 6=i

bj = bi ≤ vi,

where i = argsmaxb. Also note that (i) and (ii) imply that vi = max v, which
means that in every Nash equilibrium a player with the highest valuation is
the winner.
Proof.
( ⇒ )
(i) If bi > vi, then player’s i payoff is negative and it increases to 0 if he
submits the bid equal to vi.

(ii) If maxj 6=i vj > bi, then player j such that vj > bi can win the object
by submitting a bid in the open interval (bi, vj), say vj − ǫ. Then his payoff
increases from 0 to ǫ.

(iii) If bi > maxj 6=i bj , then player i can increase his payoff by submitting a
bid in the open interval (maxj 6=i bj , bi), say bi − ǫ. Then his payoff increases
from vi − bi to vi − bi + ǫ.

So if any of the conditions (i) − (iii) is violated, then b is not a Nash
equilibrium.

( ⇐ ) Suppose that a vector of bids b satisfies (i)−(iii). Player i is the winner
and by (i) his payoff is non-negative. His payoff can increase only if he bids
less, but then by (iii) another player (the one who initially submitted the
same bid as player i) becomes the winner, while player’s i payoff becomes 0.

The payoff of any other player j is 0 and can increase only if he bids
more and becomes the winner. But then by (ii), maxj 6=i vj < bj , so his payoff
becomes negative.

So b is a Nash equilibrium. 2
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As an illustration of the above theorem suppose that the vector of the
valuations is (1, 6, 5, 2). Then the vectors of bids (1, 5, 5, 2) and (1, 5, 2, 5)
satisfy the above three conditions and are both Nash equilibria. The first
vector of bids shows that player 2 can secure the object by bidding the second
highest valuation. In the second vector of bids player 4 overbids but his payoff
is 0 since he is not the winner.

By the truthful bidding we mean the vector b of bids, such that for
each player i we have bi = vi, i.e., each player bids his own valuation. Note
that by the Characterization Theorem 21 truthful bidding, i.e., v, is a Nash
equilibrium iff the two highest valuations coincide.

Further, note that for no player i such that vi > 0 his truthful bidding is
a dominant strategy. Indeed, truthful bidding by player i always results in
payoff 0. However, if all other players bid 0, then player i can increase his
payoff by submitting a lower, positive bid.

Observe that the above analysis does not allow us to conclude that in each
Nash equlibrium the winner is the player who wins in the case of truthful
bidding. Indeed, suppose that the vector of valuations is (0, 5, 5, 5), so that
in the case of truthful bidding by all players player 2 is the winner. Then
the vector of bids (0, 4, 5, 5) is a Nash equilibrium with player 3 being the
winner.

Finally, notice the following strange consequence of the above theorem:
in no Nash equilibrium the last player, n, is a winner. The reason is that we
resolved the ties in the favour of a bidder with the lowest index. Indeed, by
item (iii) in every Nash equilibrium b we have argsmax b < n.

7.2 Second-price auction

We consider now an auction with the following payment rule. As before the
winner is the bidder who submitted the highest bid (with a tie broken, as
before, to the advantage of the bidder with the smallest index), but now he
pays to the seller the amount equal to the second highest bid. This sealed-
bid auction is called the second-price auction . It was proposed by W.
Vickrey and is alternatively called Vickrey auction . So in this auction in
the absence of ties the winner pays to the seller a lower price than in the
first-price auction.

Let us formalize this auction as a game. The payoffs are now defined as
follows:
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pi(b) :=

{

vi − maxj 6=i bj if i = argsmax b

0 otherwise

Note that bidding vi always yields a non-negative payoff but can now lead
to a strictly positive payoff, which happens when vi is a unique winning bid.
However, when the highest two bids coincide the payoffs are still the same as
in the first-price auction, since then for i = argsmaxb we have bi = maxj 6=i bj .
Finally, note that the winner’s curse still can take place here, namely when
vi < bi and some other bid is in the open interval (vi, bi).

The analysis of the second-price auction as a game leads to different
conclusions that for the first-price auction. The following theorem provides
a complete characterization of the Nash equilibria of the corresponding game.

Theorem 22 (Characterization II) Consider the game associated with
the second-price auction with the players’ valuations v. Then b is a Nash
equilibrium iff for i = argsmax b

(i) maxj 6=i vj ≤ bi

(the winner submitted a sufficiently high bid),

(ii) maxj 6=i bj ≤ vi

(the winner’s valuation is sufficiently high).

Proof.
( ⇒ )
(i) If maxj 6=i vj > bi, then player j such that vj > bi can win the object by
submitting a bid in the open interval (bi, vj). Then his payoff increases from
0 to vj − bi.

(ii) If maxj 6=i bj > vi, then player’s i payoff is negative, namely vi−maxj 6=i bj ,
and can increase to 0 if player i submits a losing bid.

So if condition (i) or (ii) is violated, then b is not a Nash equilibrium.

( ⇐ ) Suppose that a vector of bids b satisfies (i) and (ii). Player i is the
winner and by (ii) his payoff is non-negative. By submitting another bid he
either remains a winner, with the same payoff, or becomes a loser with the
payoff 0.
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The payoff of any other player j is 0 and can increase only if he bids
more and becomes the winner. But then his payoff becomes vj − bi, so by (i)
becomes negative.

So b is a Nash equilibrium. 2

This characterization result shows that several Nash equilibria exist. We
now exhibit three specific ones that are of particular interest. In each case it
is straightforward to check that conditions (i) and (ii) of the above theorem
hold.

Truthful bidding

Recall that in the case of the first-price auction truthful bidding is a Nash
equilibrium iff for the considered sequence of valuations the auction coincides
with the second-price auction. Now truthful bidding, so v, is always a Nash
equilibrium. Below we prove another property of truthful bidding in second-
price auction.

Wolf and sheep Nash equilibrium

Suppose that i = argsmaxv, i.e., player i is the winner in the case of truthful
bidding. Consider the strategy profile in which player i bids vi and everybody
else bids 0. This Nash equilibrium is called wolf and sheep , where player
i plays the role of a wolf by bidding aggressively and scaring the sheep being
the other players who submit their minimal bids.

Yet another Nash equilibrium

Finally, we exhibit a Nash equilibrium in which the player with the uniquely
highest valuation is not a winner. This is in contrast with what we observed
in the case of the first-price auction. Suppose that the two highest bids are vj

and vi, where i < j and vj > vi > 0. Then the strategy profile in which player
i bids vj , player j bids vi and everybody else bids 0 is a Nash equilibrium.

In both the first-price and the second-price auctions overbidding, i.e.,
submitting a bid above one’s valuation of the object looks risky and therefore
not credible. Note that the bids that do not exceed one’s valuation are exactly
the security strategies.
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So when we add the following additional condition to each characteriza-
tion theorem:

• for all j ∈ {1, . . ., n}, bj ≤ vj ,

we characterize in each case Nash equilibria in the security strategies.

7.3 Incentive compatibility

So far we discussed two examples of sealed-bid auctions. A general form
of such an auction is determined by fixing for each bidder i the payment
procedure payi which given a sequence b of bids such that bidder i is the
winner yields his payment.

In the resulting game, that we denote by Gpay,v, the payoff function is
defined by

pi(b) :=

{

vi − payi(b) if i = argsmax b

0 otherwise

Intuitively, bidding 0 means that the bidder is not interested in the object.
So if all players bid 0 then none of them is interested in the object. According
to our definition the object is then allocated to the first bidder. We assume
that then his payment is 0. That is, we stipulate that pay1(0, . . ., 0) = 0.

When designing a sealed-bid auction it is natural to try to induce the
bidders to bid their valuations. This leads to the following notion.

We call a sealed-bid auction with the payment procedures pay1, . . ., payn

incentive compatible if for all sequences v of players’ valuations for each
bidder i his valuation vi is a dominant strategy in the corresponding game
Gpay,v.

While dominance of a strategy does not guarantee that a player will
choose it, it ensures that deviating from it is not profitable. So dominance of
each valuation vi can be viewed as a statement that in the considered auction
lying does not pay off.

We now show that the condition of incentive compatibility fully charac-
terizes the corresponding auction. More precisely, the following result holds.

Theorem 23 (Second-price auction) A sealed-bid auction is incentive com-
patible iff it is the second-price auction.
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Proof. Fix a sequence of the payment procedures pay1, . . ., payn that deter-
mines the considered sealed-bid auction.
( ⇒ ) Choose an arbitrary sequence of bids that for the clarity of the argument
we denote by (vi, b−i). Suppose that i = argsmax (vi, b−i). We establish the
following four claims.

Claim 1. payi(vi, b−i) ≤ vi.
Proof. Suppose by contradiction that payi(vi, b−i) > vi. Then in the corre-
sponding game Gpay,v we have pi(vi, b−i) < 0. On the other hand pi(0, b−i) ≥
0. Indeed, if i 6= argsmax (0, b−i), then pi(0, b−i) = 0. Otherwise all bids
in b−i are 0 and i = 1, and hence pi(0, b−i) = vi, since by assumption
pay1(0, . . ., 0) = 0.

This contradicts the assumption that vi is a dominant strategy in the
corresponding game Gpay,v.

Claim 2. For all bi ∈ (maxj 6=i bj , vi) we have payi(vi, b−i) ≤ payi(bi, b−i).
Proof. Suppose by contradiction that for some bi ∈ (maxj 6=i bj , vi) we have
payi(vi, b−i) > payi(bi, b−i). Then i = argsmax (bi, b−i) so

pi(vi, b−i) = vi − payi(vi, b−i) < vi − payi(bi, b−i) = pi(bi, b−i).

This contradicts the assumption that vi is a dominant strategy in the corre-
sponding game Gpay,v.

Claim 3. payi(vi, b−i) ≤ maxj 6=i bj .
Proof. Suppose by contradiction that payi(vi, b−i) > maxj 6=i bj . Take some
v′

i ∈ (maxj 6=i bj , payi(vi, b−i)). By Claim 1 v′
i < vi, so by Claim 2 payi(vi, b−i) ≤

payi(v
′
i, b−i). Further, by Claim 1 for the sequence (v′

i, v−i) of valuations we
have payi(v

′
i, b−i) ≤ v′

i.
So payi(vi, b−i) ≤ v′

i, which contradicts the choice of v′
i.

Claim 4. payi(vi, b−i) ≥ maxj 6=i bj .
Proof. Suppose by contradiction that payi(vi, b−i) < maxj 6=i bj . Take an
arbitrary v′

i ∈ (payi(vi, b−i), maxj 6=i bj). Then pi(v
′
i, b−i) = 0, while

pi(vi, b−i) = vi − payi(vi, b−i) > vi − max
j 6=i

bj ≥ 0.

This contradicts the assumption that v′
i is a dominant strategy in the corre-

sponding game Gpay,(v′
i
,v−i).

So we proved that for i = argsmax (vi, b−i) we have payi(vi, b−i) =
maxj 6=i bj , which shows that the considered sealed-bid auction is second price.
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( ⇐ ) We actually prove a stronger claim, namely that all sequences of valu-
ations v each vi is a weakly dominant strategy for player i.

To this end take a vector b of bids. By definition pi(bi, b−i) = 0 or
pi(bi, b−i) = vi − maxj 6=i bj ≤ pi(vi, b−i). But 0 ≤ pi(vi, b−i), so

pi(bi, b−i) ≤ pi(vi, b−i).

Consider now a bid bi 6= vi. If bi < vi, then take b−i such that each
element of it lies in the open interval (bi, vi). Then bi is a losing bid and vi

is a winning bid and

pi(bi, b−i) = 0 < vi − max
j 6=i

bj = pi(vi, b−i).

If bi > vi, then take b−i such that each element of it lies in the open
interval (vi, bi). Then bi is a winning bid and vi is a losing bid and

pi(bi, b−i) = vi − max
j 6=i

bj < 0 = pi(vi, b−i).

So we proved that each strategy bi 6= vi is weakly dominated by vi, i.e.,
that vi is a weakly dominant strategy. As an aside, recall that each weakly
dominant strategy is unique, so we characterized bidding one’s valuation in
the second-price auction in game theoretic terms. 2

Exercise 9 Prove that the game associated with the first-price auction with
the players’ valuations v has no Nash equilibrium iff vn is the unique highest
valuation. 2
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