
Chapter 8

Repeated Games

In the games considered so far the players took just a single decision: a
strategy they selected. In this chapter we consider a natural idea of playing
a given strategic game repeatedly. We assume that the outcome of each
round is known to all players before the next round of the game takes place.

8.1 Finitely repeated games

In the first approach we shall assume that the same game is played a fixed
number of times. The final payoff to each player is simply the sum of the
payoffs obtained in each round.

Suppose for instance that we play the Prisoner’s Dilemma game, so

C D

C 2, 2 0, 3
D 3, 0 1, 1

twice. It seems then that the outcome is the following game in which we
simply add up the payoffs from the first and second round:

CC CD DC DD

CC 4, 4 2, 5 2, 5 0, 6
CD 5, 2 3, 3 3, 3 1, 4
DC 5, 2 3, 3 3, 3 1, 4
DD 6, 0 4, 1 4, 1 2, 2
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However, this representation is incorrect since it erronously assumes that
the decisions taken by the players in the first round have no influence on
their decisions taken in the second round. For instance, the option that the
first player chooses C in the second round if and only iff the second player
chose C in the first round is not listed. In fact, the set of strategies available
to each player is much larger.

In the first round each player has two strategies. However, in the second
round each player’s strategy is a function f : {C, D} × {C, D}→ {C, D}.
So in the second round each player has 24 = 16 strategies and consequently
in the repeated game each player has 2 × 16 = 32 strategies. Each such
strategy has two components, one of each round. It is clear how to compute
the payoffs for so defined strategies. For instance, if the first player chooses
in the first round C and in the second round the function

f1(s) :=



















C if s = (C, C)

D if s = (C, D)

C if s = (D, C)

D if s = (D, D)

and the second player chooses in the first round D and in the second round
the function

f2(s) :=



















C if s = (C, C)

D if s = (C, D)

D if s = (D, C)

C if s = (D, D)

then the corresponding payoffs are:

• in the first round: (0, 3) (corresponding to the joint strategy (C, D)),

• in the second round: (1, 1) (corresponding to the joint strategy (D, D)).

So the overall payoffs are: (1, 4), which corresponds to the joint strategy
(CD, DD) in the above bimatrix.

Let us consider now the general setup. The strategic game that is repeat-
edly played is called the stage game. Given a stage game (S1, . . . , Sn, p1, . . . , pn)
the repeated game with k rounds (in short: a repeated game), where
k ≥ 1, is defined by first introducing the set of histories . This set H is
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defined inductively as follows, where ε denotes the empty sequence, t ≥ 1,
and, as usual, S = S1 × . . . × Sn:

H0 := {ε},
H1 := S,

Ht+1 := Ht × S,

H :=
⋃k−1

t=0
Ht.

So h ∈ H0 iff h = ε and for t ∈ {1, . . ., k − 1}, h ∈ Ht iff h ∈ St. That is,
a history is a (possibly empty) sequence of joint strategies of the stage game
of length at most k − 1.

Then a strategy for player i in the repeated game is a function σi :
H→ Si. In particular σi(ε) is a strategy in the stage game chosen in the first
round.

We denote the set of strategies of player i in the repeated game by Σi

and the set of joint strategies in the repeated game by Σ.
The outcome of the repeated game corresponding to a joint strategy

σ = (σ1, . . ., σn) ∈ Σ of the players is the history that consists of k joint
strategies selected in the consecutive stages of the underlying stage game.
This history (o1(σ), . . ., ok(σ)) ∈ Hk is defined as follows:

o1(σ) := (σ1(ε), . . ., σn(ε)),
o2(σ) := (σ1(o

1(σ)), . . ., σn(o1(σ))),
. . .

ok(σ) := (σ1(o
1(σ), . . ., ok−1(σ)), . . ., σn(o1(σ), . . ., ok−1(σ)).

In particular ok(σ) is obtained by applying each of the strategies σ1, . . ., σn

to the already defined history (o1(σ), . . ., ok−1(σ)) ∈ Hk−1.
Finally, the payoff function Pi of player i in the repeated game is

defined as

Pi(σ) :=
k

∑

t=1

pi(o
t(σ)).

So the payoff for each player is the sum of the payoffs he received in each
round.

Now that we defined formally a repeated game let us return to the Pris-
oner’s Dilemma game and assume that it is played k rounds. We can now
define the following natural strategies:1

1These definitions are incomplete in the sense that the strategies are not defined for all
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• cooperate: select at every stage C,

• defect : select at every stage D,

• tit for tat : first select C, then repeatly select the last strategy played
by the opponent,

• grim (or trigger): select C as long as the opponent selects C; if he
selects D select D from now on.

For example, it does not matter if one chooses tit for tat or grim strategy
against a grim strategy: in both cases each player repeatedly selects C.
However, if one selects C in the odd rounds and D in the even rounds, then
against the tit for tat strategy the following sequence of stage strategies
results:

• for player 1: C, D, C, D, C, . . .,

• for player 2: C, C, D, C, D, . . .

while against the grim strategy we obtain:

• for player 1: C, D, C, D, C, . . .,

• for player 2: C, C, D, D, D, . . .

Using the concept of strictly dominant strategies we could predict that
the outcome of the Prisoner’s dilemma game is (D, D). A natural question
arises whether we can also predict the outcome in the repeated version of
this game. To do this we first extend the relevant notions to the repeated
games.

Given a stage game G we denote the repeated game with k rounds by
G(k). After the obvious identification of σi : H0 → Si with σi(ε) we can
identify G(1) with G.

In general we can view G(k) as a strategic game (Σ1, . . ., Σn, P1, . . ., Pn),
where the strategy sets Σi and the payoff functions Pi are defined above. This
allows us to apply the basic notions, for example that of Nash equilibrium,
to the repeated game.

As a first result we establish the following.

histories. However, the specified parts completely determine the outcomes that can arise

against any strategy of the opponent.
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Theorem 24 Consider a stage game G and k ≥ 1.

(i) If s is a Nash equilibrium of G, then the joint strategy σ, where for all
i ∈ {1, . . ., n} and h ∈ H

σi(h) := si,

is a Nash equilibrium of G(k).

(ii) If s is a unique Nash equilibrium of G, then for each Nash equilibrium
of G(k) the outcome corresponding to it consists of s repeated k times.

Proof.
(i) The outcome corresponding to σ consists of s repeated k times. That is,
in each round of G(k) the Nash equilibrium is selected and the payoff to each
player i is pi(s), where G := (S1, . . . , Sn, p1, . . . , pn).

Suppose that σ is not a Nash equilibrium in G(k). Then for some player i

a strategy τi yields a higher payoff than σi when used against σ−i. So in some
round of G(k) player i receives a strictly larger payoff than pi(s). But in this
(and every other) round every other player j selects sj . So the strategy of
player i selected in this round yields a strictly higher payoff against s−i than
si, which is a contradiction.

(ii) We proceed by induction on k. Since we identified G(1) with G, the
claim holds for k = 1. Suppose it holds for k ≥ 1.

Take a Nash equilibrium σ in G(k + 1). Consider the last joint strategy
of the considered outcome. It constitutes the Nash equilibrium of the stage
game. Indeed, otherwise some player i did not select a best response in the
last round and thus can obtain a strictly higher payoff in G by switching in
the last round of G(k + 1) to another strategy s′i in G. The corresponding
modification of σi according to which in the last round s′i is selected yields
against σ−i a strictly higher payoff than σi. This contradicts the assumption
that σ is a Nash equilibrium in G(k + 1).

Now redistribute for each player his payoff in the last round evenly over
the previous k rounds, by modifying appropriately the payoff functions, and
subsequently remove this last round. The resulting game is a repeated game
G′(k) such that s is a unique Nash equilibrium of G′, so we can apply to
it the induction hypothesis. Moreover, by the above observation each Nash
equilibrium of G(k + 1) consists of a Nash equilibrium of G′(k) augmented
with s selected in the last round (i.e., in each Nash equilibrium of G(k + 1)
each player i selects si in the last round). So the claim holds for k + 1.
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The claim now holds by induction. 2

The definition of a strategy in a repeated game determines player’s choice
for each history, in particular for histories that cannot be outcomes of the
repeated game. As a result the joint strategy from item (i) is not a unique
Nash equilibrium of G(k) when players have two or more strategies in the
stage game.

As an example consider the Prisoner’s Dilemma game played twice. Then
the pair of defect strategies is a Nash equilibrium. Moreover, the pair of
strategies according to which one selects D in the first round and C in the
second round iff the first round equals (C, C) is also a Nash equilibrium.
These two pairs differ though they yield the same outcome.

Note, further that if a player has a strictly dominant strategy in the stage
game then he does not necessarily have a strictly dominant strategy in the
repeated game. In particular, choosing in each round the strictly dominant
strategy in the stage game does not need to yield a maximal payoff in the
repeated game.

Example 16 Take the Prisoner’s Dilemma game played twice.
Consider first a best response against the tit for tat strategy. In it C is

selected in the first round and D in the second round. In contrast, in each
best response against the cooperate strategy in both rounds D is selected.
So for each player no single best response strategy exists, that is, no player
has a strictly dominant strategy.

In contrast, in the stage game strategy D is strictly dominant for both
players. Note also that in our first, incorrect, representation of the Prisoner’s
Dilemma game played twice strategy DD is strictly dominant for both play-
ers, as well. 2

In the one shot version of the Prisoner’s Dilemma game we could predict
that both players will select the defect (D) strategy on the basis that it is a
strictly dominant strategy. The above theorem shows that when Prisoner’s
Dilemma game is played repeatedly cooperation still won’t occur. However,
this prediction is weaker, in the sense that selecting D repeatedly is not
anymore a strictly dominant strategy. We can only conclude that in any
Nash equilibrium in every round each player selects D.

The above theorem actually shows more: when the stage game has exactly
one Nash equilibrium, then in each Nash equilibrium of the repeated game
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the players select their equilibrium strategies. So in each round their payoff
is simply their payoff in the Nash equilibrium of the stage game.

However, when the stage game has more than one Nash equilibrium the
situation changes. In particular, players can achieve in a Nash equilibrium
of the repeated game a higher average payoff than the one achieved in any
Nash equilibrium of the stage game.

Example 17 Consider the following stage game:

A B C

A 5, 5 0, 0 12, 0
B 0, 0 2, 2 0, 0
C 0, 12 0, 0 10, 10

This game has two Nash equilibria (A, A) and (B, B). So when the game
is played once the highest payoff in a Nash equilibrium is 5 for each player.
However, when the game is played twice a Nash equilibrium exists with
a higher average payoff. Namely, consider the following strategy for each
player:

• select C in the first round,

• if the other player selected C in the first round, select A in the second
round and otherwise select M .

If each player selects this strategy, they both select in the first round C

and A in the second round. This yields payoff 15 for each player.
We now prove that this pair of strategies forms a Nash equlibrium. The

only way a player, say the first one, can receive a larger payoff than 15 is by
selecting A in the first round. But then the second player selects B in the
second round. So in the first round the first player receives the payoff 12 but
in the second round he receives the payoff of at most 2. Consequently by
switching to another strategy the first player can secure at best payoff 14. 2

The above example shows that playing a given game repeatedly can lead
to some form of coordination that can be beneficial to all players. This
coordination is possible because crucially the choices made by the players in
the previous rounds are commonly known.

Exercise 10 Compute the strictly and weakly dominated strategies in the
Prisoner’s Dilemma game played twice. 2
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8.2 Infinitely repeated games

In this section we consider infinitely repeated games. To define them we need
to modify appropriately the approach of the previous section.

First, to ensure that the payoffs are well defined we assume that in the
underlying stage game the payoff functions are bounded (from above and
below). Then we redefine the set of histories by putting

H :=
⋃

∞

t=0
Ht,

where each Ht is defined as before.
The notion of a strategy of a player remains the same: it is a function

from the set of all histories to the set of his strategies in the stage game. An
outcome corresponding to a joint strategy σ is now the infinite set of joint
strategies of the stage game o1(σ), o2(σ), . . . where each ot(σ) is defined as
before.

Finally, to define the payoff function we first introduce a discount ,
which is a number δ ∈ (0, 1). Then we put

Pi(σ) := (1 − δ)
∞

∑

t=1

δt−1pi(o
t(σ)).

This definition requires some explanations. First note that this payoff
function is well-defined and always yields a finite value. Indeed, the original
payoff functions are assumed to be bounded and δ ∈ (0, 1), so the sequence
(
∑t

t=1
δt−1pi(o

t(σ)))t=1,2,. . . converges.
Note that the payoff in each round t is discounted by δt−1, which can be

viewed as the accumulated depreciation. So discounted payoffs in each round
are summed up and subsequently multiplied by the factor 1 − δ. Note that

∞
∑

t=1

δt−1 = 1 + δ

∞
∑

t=1

δt−1,

hence
∞

∑

t=1

δt−1 =
1

1 − δ
.

So if in each round the players select the same joint strategy s, then their
respective payoffs in the stage game and the repeated game coincide. This
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explains the adjustment factor 1− δ in the definition of the payoff functions.
Further, since the payoffs in the stage game are bounded, the payoffs in the
repeated game are finite.

Given a stage game G and a discount δ we denote the infinitely repeated
game defined above by G(δ).

We observed in the previous section that in each Nash equilibrium of the
finitely repeated Prisoner’s Dilemma game the players select in each round
the defect (D) strategy. So finite repetition does not allow us to induce
cooperation, i.e., the selection of the C strategy. We now show that in the
infinitely repeated game the situation dramatically changes. Namely, the
following holds.

Theorem 25 (Prisoner’s Dilemma) Take as G the Prisoner’s Dilemma
game. Then for all δ ∈ (1

2
, 1) the pair of trigger strategies forms a Nash

equilibrium of G(δ).

Note that the outcome corresponding to the pair of trigger strategies
consists of the infinite sequence of (C, C), that is, in the claimed Nash equi-
librium of G(δ) both players repeatedly select C, i.e., always cooperate.

Proof. Suppose that, say, the first player deviates from his trigger strategy
while the other player remains at his trigger strategy. Let t be the first
stage in which the first player selects D. Consider now his payoffs in the
consecutive rounds of the stage game:

• in the rounds 1, . . ., t − 1 they equal 2,

• in the round t it equals 3,

• in the rounds t + 1, . . ., they equal at most 1.

So the payoff in the repeated game is bounded from above by

(1 − δ)(2
∑t−1

j=1
δj−1 + 3δt−1 +

∑

∞

j=t+1
δj−1)

= (1 − δ)(21−δt−1

1−δ
+ 3δt−1 + δt

1−δ
)

= 2(1 − δt−1) + 3δt−1(1 − δ) + δt

= 2 + δt−1 − 2δt.

Since δ > 0, we have

δt−1 − 2δt < 0 iff 1 − 2δ < 0 iff δ > 1

2
.
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So when the first player deviates from his trigger strategy and δ > 1

2
, his

payoff in the repeated game is less than 2. In contrast, when he remains at
the trigger strategy, his payoff is 2.

This concludes the proof. 2

This theorem shows that cooperation can be achieved by repeated inter-
action, so it seems to carry a positive message. However, repeated selection
of the defect strategy D by both players still remains a Nash equilibrium and
there is an obvious coordination problem between these two Nash equilibria.

Moreover, the above result is a special case of a much more general theo-
rem. To formulate it we shall use the minmaxi value introduced in Section
5.2 that, given a game (S1, . . . , Sn, p1, . . . , pn) was defined by

minmaxi := min
s−i∈S−i

max
si∈Si

pi(si, s−i).

The following result is called Folk theorem since some version of it has
been known before it was recorded in a journal paper. From now on we
abbreviate (p1(s), . . ., pn(s)) to p(s) and similarly with the Pi payoff functions.

Theorem 26 (Folk Theorem) Consider a stage game G := (S1, . . . , Sn,

p1, . . . , pn) with the bounded payoff functions.
Take some s′ ∈ S and suppose r := p(s′) is such that for i ∈ {1, . . ., n}

we have ri > minmaxi. Then δ0 ∈ (0, 1) exists such that for all δ ∈ (δ0, 1)
the repeated game G(δ) has a Nash equilibrium σ with P (σ) = r.

Note that this theorem is indeed a generalization of the Prisoner’s Dilemma
Theorem 25 since for the Prisoner’s Dilemma game we have minmax1 =
minmax2 = 1, while for the joint strategy (C, C) the payoff to each player is
2. Now, the only way to achieve this payoff for both players in the repeated
game is by repeatedly selecting C.

Proof. The argument is analogous to the one we used in the proof of the
Prisoner’s Dilemma Theorem 25. Let the strategy σi consist of selecting in
each round s′i. Note that P (σ) = r.

We first define an analogue of the trigger strategy. Let s∗
−i be such that

maxsi
pi(si, s

∗

−i) = minmaxi. That is, s∗
−i is the joint strategy of the oppo-

nents of player i that when selected by them results in a minimum possible
payoff to player i. The idea behind the strategies defined below is that the
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opponents of the deviating player jointly switch forever to s∗
−i to ‘inflict’ on

player i the maximum ‘penalty’.
Recall that a history h is a finite sequence of joint strategies in the stage

game. Below a deviation in h refers to the fact that a specific player i did
not select s′i in a joint strategy from h.

Given h ∈ H and j ∈ {1, . . ., n} we put

σj(h) :=















s′j if no player i 6= j deviated in h from s′i unilaterally

s∗j otherwise, where i is the first player who deviated in h from

s′i unilaterally

We now claim that σ is a Nash equilibrium for appropriate δs. Suppose
that some player i deviates from his strategy σi while the other players remain
at σ−i. Let t be the first stage in which player i selects a strategy s′′i different
from s′i. Consider now his payoffs in the consecutive rounds of the stage
game:

• in the rounds 1, . . ., t − 1 they equal ri,

• in the round t it equals pi(s
′′

i , s
′

−i),

• in the rounds t + 1, . . ., they equal at most minmaxi.

Let r∗i > pi(s) for all s ∈ S. The payoff of player i in the repeated game
G(δ) is bounded from above by

(1 − δ)(ri

∑t−1

j=1
δj−1 + r∗i δ

t−1 + minmaxi

∑

∞

j=t+1
δj−1)

= (1 − δ)(ri
1−δt−1

1−δ
+ r∗i δ

t−1 + minmaxi
δt

1−δ
)

= ri − δt−1ri + (1 − δ)δt−1r∗i + δtminmaxi

= ri + δt−1(−ri + (1 − δ)r∗i + δ minmaxi).

Since δ > 0 and r∗i ≥ ri > minmaxi, we have

δt−1(−ri + (1 − δ)r∗i + δ minmaxi) < 0
iff r∗i − ri − δ(r∗i − minmaxi) < 0

iff
r∗
i
−ri

r∗
i
−minmaxi

< δ.

But r∗i > ri > minmaxi implies that δ0 :=
r∗
i
−ri

r∗
i
−minmaxi

∈ (0, 1). So when

δ > δ0 and player i selects in some round a strategy different than s′i, while
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every other player j keeps selecting s′j, player’s i payoff in the repeated game
is less than ri. In contrast, when he remains selecting s′i his payoff is ri.

So σ is indeed a Nash equilibrium. 2

The above result can be strengthened to a much larger set of payoffs.
Recall that a set of points A ⊆ R

n is called convex if for any x,y ∈ A and
α ∈ [0, 1] we have αx + (1 − α)y ∈ A. Given a subset A ⊆ R

k denote the
smallest convex set that contains A by conv(A).

Then the above theorem holds not only for r ∈ {p(s) | s ∈ S}, but also
for all r ∈ conv({p(s) | s ∈ S}). In the case of the Prisoner’s Dilemma game
G we get that for any

r ∈ conv({(2, 2), (3, 0), (0, 3), (1, 1)})∩ {r′ | r′1 > 1, r′2 > 1}

there is δ0 ∈ (0, 1) such that for all δ ∈ (δ0, 1) the repeated game G(δ) has
a Nash equilibrium σ with P (σ) = r. In other words, cooperation can be
achieved in a Nash equilibrium, but equally well many other outcomes.

Such results belong to a class of similar theorems collectively called Folks
theorems. The considered variations allow for different sets of payoffs achiev-
able in an equilibrium, different ways of computing the payoff, different forms
of equilibria, and different types of repeated games.
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