
Chapter 9

Mixed Extensions

We now study a special case of infinite strategic games that are obtained in
a canonic way from the finite games, by allowing mixed strategies. Below
[0, 1] stands for the real interval {r ∈ R | 0 ≤ r ≤ 1}. By a probability

distribution over a finite non-empty set A we mean a function

π : A → [0, 1]

such that
∑

a∈A π(a) = 1. We denote the set of probability distributions over
A by ∆A.

9.1 Mixed strategies

Consider now a finite strategic game G := (S1, . . . , Sn, p1, . . . , pn). By a
mixed strategy of player i in G we mean a probability distribution over Si.
So ∆Si is the set of mixed strategies available to player i. In what follows,
we denote a mixed strategy of player i by mi and a joint mixed strategy of
the players by m.

Given a mixed strategy mi of player i we define

support(mi) := {a ∈ Si | mi(a) > 0}

and call this set the support of mi. In specific examples we write a mixed
strategy mi as the sum

∑

a∈A mi(a) · a, where A is the support of mi.
Note that in contrast to Si the set ∆Si is infinite. When referring to the

mixed strategies, as in the previous chapters, we use the ‘−i’ notation. So for
m ∈ ∆S1 × . . . × ∆Sn we have m−i = (mj)j 6=i, etc.
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We can identify each strategy si ∈ Si with the mixed strategy that puts
‘all the weight’ on the strategy si. In this context si will be called a pure

strategy . Consequently we can view Si as a subset of ∆Si and S−i as a
subset of ×j 6=i∆Sj .

By a mixed extension of (S1, . . . , Sn, p1, . . . , pn) we mean the strategic
game

(∆S1, . . . , ∆Sn, p1, . . . , pn),

where each function pi is extended in a canonic way from S := S1 × . . .× Sn

to M := ∆S1 × . . . × ∆Sn by first viewing each joint mixed strategy m =
(m1, . . . , mn) ∈ M as a probability distribution over S, by putting for s ∈ S

m(s) := m1(s1) · . . . · mn(sn),

and then by putting

pi(m) :=
∑

s∈S

m(s) · pi(s).

Example 18 Reconsider the Battle of the Sexes game from Chapter 1. Sup-
pose that player 1 (man) chooses the mixed strategy 1

2
F + 1

2
B, while player

2 (woman) chooses the mixed strategy 1
4
F + 3

4
B. This pair m of the mixed

strategies determines a probability distribution over the set of joint strategies,
that we list to the left of the bimatrix of the game:

F B

F 1
8

3
8

B 1
8

3
8

F B

F 2, 1 0, 0
B 0, 0 1, 2

To compute the payoff of player 1 for this mixed strategy m we multiply
each of his payoffs for a joint strategy by its probability and sum it up:

p1(m) =
1

8
2 +

3

8
0 +

1

8
0 +

3

8
1 =

5

8
.

Analogously

p2(m) =
1

8
1 +

3

8
0 +

1

8
0 +

3

8
2 =

7

8
.

2

This example suggests the computation of the payoffs in two-player games
using matrix multiplication. First, we view each bimatrix of such a game as
a pair of matrices (A,B). The first matrix represents the payoffs to player 1
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and the second one to player 1. Assume now that player 1 has k strategies
and player 2 has ℓ strategies. Then both A and B are k×ℓ matrices. Further,
each mixed strategy of player 1 can be viewed as a row vector p of length k

(i.e., a 1 × k matrix) and each mixed strategy of player 2 as a row vector q
of length ℓ (i.e., a 1 × ℓ matrix). Since p and q represent mixed strategies,
we have p ∈ ∆k−1 and q ∈ ∆ℓ−1, where for all m ≥ 0

∆m−1 := {(x1, . . ., xm) |

m
∑

i=1

xi = 1 and ∀i ∈ {1, . . ., m} xi ≥ 0}.

∆m−1 is called the (m − 1)-dimensional unit simplex .
In the case of our example we have

p =
(

1
2

1
2

)

,q =
(

1
4

3
4

)

,A =

(

2 0
0 1

)

,B =

(

1 0
0 2

)

.

Now, the payoff functions can be defined as follows:

p1(p,q) =

k
∑

i=1

ℓ
∑

j=1

piqjAij = pAqT

and

p2(p,q) =

k
∑

i=1

ℓ
∑

j=1

piqjBij = pBqT .

9.2 Nash equilibria in mixed strategies

In the context of a mixed extension we talk about a pure Nash equlibrium ,
when each of the constituent strategies is pure, and refer to an arbitrary
Nash equilibrium of the mixed extension as a Nash equilibrium in mixed

strategies of the initial finite game. In what follows, when we use the letter
m we implicitly refer to the latter Nash equilibrium.

Below we shall need the following notion. Given a probability distribution
π over a finite non-empty multiset1 A of reals, we call

∑

r∈A

π(r) · r

1This reference to a multiset is relevant.
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a convex combination of the elements of A. For instance, given the
multiset A := {{4, 2, 2}}, 1

3
4 + 1

3
2 + 1

3
2, so 8

3
, is a convex combination of the

elements of A.
To see the use of this notion when discussing mixed strategies note that

for every joint mixed strategy m we have

pi(m) =
∑

si∈support(mi)

mi(si) · pi(si, m−i).

That is, pi(m) is a convex combination of the elements of the multiset

{{pi(si, m−i) | si ∈ support(mi)}}.

We shall employ the following simple observations on convex combina-
tions.

Note 27 (Convex Combination) Consider a convex combination

cc :=
∑

r∈A

π(r) · r

of the elements of a finite multiset A of reals. Then

(i) max A ≥ cc,

(ii) cc ≥ max A iff

• cc = r for all r ∈ A such that π(r) > 0,

• cc ≥ r for all r ∈ A such that π(r) = 0.

2

Lemma 28 (Characterization) Consider a finite strategic game

(S1, . . . , Sn, p1, . . . , pn).

The following statements are equivalent:

(i) m is a Nash equilibrium in mixed strategies, i.e.,

pi(m) ≥ pi(m
′
i, m−i)

for all i ∈ {1, . . . , n} and all m′
i ∈ ∆Si,
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(ii) for all i ∈ {1, . . . , n} and all si ∈ Si

pi(m) ≥ pi(si, m−i),

(iii) for all i ∈ {1, . . . , n} and all si ∈ support(mi)

pi(m) = pi(si, m−i)

and for all i ∈ {1, . . . , n} and all si 6∈ support(mi)

pi(m) ≥ pi(si, m−i).

Note that the equivalence between (i) and (ii) implies that each Nash
equilibrium of the initial game is a pure Nash equilibrium of the mixed ex-
tension. In turn, the equivalence between (i) and (iii) provides us with
a straightforward way of testing whether a joint mixed strategy is a Nash
equilibrium.
Proof.
(i) ⇒ (ii) Immediate.
(ii) ⇒ (iii) We noticed already that pi(m) is a convex combination of the
elements of the multiset

A := {{pi(si, m−i) | si ∈ support(mi)}}.

So this implication is a consequence of part (ii) of the Convex Combination
Note 27.
(iii) ⇒ (i) Consider the multiset

A := {{pi(si, m−i) | si ∈ Si}}.

But for all m′
i ∈ ∆Si, in particular mi, the payoff pi(m

′
i, m−i) is a convex

combination of the elements of the multiset A.
So by the assumptions and part (ii) of the Convex Combination Note 27

pi(m) ≥ max A,

and by part (i) of the above Note

max A ≥ pi(m
′
i, m−i).
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Hence pi(m) ≥ pi(m
′
i, m−i). 2

We now illustrate the use of the above theorem by finding in the Battle
of the Sexes game a Nash equilibrium in mixed strategies, in addition to the
two pure ones exhibited in Chapter 3. Take

m1 := r1 · F + (1 − r1) · B,

m2 := r2 · F + (1 − r2) · B,

where 0 < r1, r2 < 1. By definition

p1(m1, m2) = 2 · r1 · r2 + (1 − r1) · (1 − r2),
p2(m1, m2) = r1 · r2 + 2 · (1 − r1) · (1 − r2).

Suppose now that (m1, m2) is a Nash equilibrium in mixed strategies.
By the equivalence between (i) and (iii) of the Characterization Lemma 28
p1(F, m2) = p1(B, m2), i.e., (using r1 = 1 and r1 = 0 in the above formula
for p1(·)) 2 · r2 = 1 − r2, and p2(m1, F ) = p2(m1, B), i.e., (using r2 = 1 and
r2 = 0 in the above formula for p2(·)) r1 = 2 · (1− r1). So r2 = 1

3
and r1 = 2

3
.

This implies that for these values of r1 and r2, (m1, m2) is a Nash equi-
librium in mixed strategies and we have

p1(m1, m2) = p2(m1, m2) = 2
3
.

9.3 Nash theorem

We now establish a fundamental result about games that are mixed exten-
sions. In what follows we shall use the following result from the calculus.

Theorem 29 (Extreme Value Theorem) Suppose that A is a non-empty
compact subset of R

n and
f : A → R

is a continuous function. Then f attains a minimum and a maximum. 2

The example of the Matching Pennies game illustrated that some strategic
games do not have a Nash equilibrium. In the case of mixed extensions the
situation changes and we have the following fundamental result established
by J. Nash in 1950.
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Theorem 30 (Nash) Every mixed extension of a finite strategic game has
a Nash equilibrium.

In other words, every finite strategic game has a Nash equilibrium in
mixed strategies. In the case of the Matching Pennies game it is straightfor-
ward to check that (1

2
· H + 1

2
· T, 1

2
· H + 1

2
· T ) is such a Nash equilibrium.

In this equilibrium the payoffs to each player are 0.
Nash Theorem follows directly from the following result.2

Theorem 31 (Kakutani) Suppose that A is a non-empty compact and con-
vex subset of R

n and
Φ : A →P(A)

such that

• Φ(x) is non-empty and convex for all x ∈ A,

• the graph of Φ, so the set {(x, y) | y ∈ Φ(x)}, is closed.

Then x∗ ∈ A exists such that x∗ ∈ Φ(x∗). 2

Proof of Nash Theorem. Fix a finite strategic game (S1, . . . , Sn, p1, . . . , pn).
Define the function besti : ×j 6=i∆Sj →P(∆Si) by

besti(m−i) := {mi ∈ ∆Si | mi is a best response to m−i}.

Then define the function best : ∆S1 × . . . × ∆Sn →P(∆S1 × . . . × ∆Sn) by

best(m) := best1(m−1) × . . . × bestn(m−n).

It is now straightforward to check that m is a Nash equilibrium iff m ∈
best(m). Moreover, one easily can check that the function best(·) satisfies
the conditions of Kakutani Theorem. The fact that for every joint mixed
strategy m, best(m) is non-empty is a direct consequence of the Extreme
Value Theorem 29. 2

Ever since Nash established his celebrated Theorem, a search has contin-
ued to generalize his result to a larger class of games. A motivation for this
endevour has been existence of natural infinite games that are not mixed ex-
tensions of finite games. As an example of such an early result let us mention
the following theorem stablished independently in 1952 by Debreu, Fan and
Glickstein.

2Recall that a subset A of R
n is called compact if it is closed and bounded.
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Theorem 32 Consider a strategic game such that

• each strategy set is a non-empty compact convex subset of R
n,

• each payoff function pi is continuous and quasi-concave in the ith ar-
gument.3

Then a Nash equilibrium exists.

More recent work in this area focused on existence of Nash equilibria in
games with non-continuous payoff functions.

9.4 Minimax theorem

Let us return now to strictly competitive games that we studied in Chapter
6. First note the following lemma.

Lemma 33 Consider a strategic game (S1, . . . , Sn, p1, . . . , pn) that is a mixed
extension. Then

(i) For all si ∈ Si, mins
−i∈S

−i
pi(si, s−i) exists.

(ii) maxsi∈Si
mins

−i∈S
−i

pi(si, s−i) exists.

(iii) For all s−i ∈ S−i, maxsi∈Si
pi(si, s−i) exists.

(iv) mins
−i∈S

−i
maxsi∈Si

pi(si, s−i) exists.

Proof. It is a direct consequence of the Extreme Value Theorem 29. 2

This lemma implies that we can apply the results of Chapter 6 to each
strictly competitive game that is a mixed extension. Indeed, it ensures that
the minima and maxima the existence of which we assumed in the proofs
given there always exist. However, equipped with the knowledge that each
such game has a Nash equilibrium we can now draw additional conclusions.

Theorem 34 Consider a strictly competitive game that is a mixed extension.
For i = 1, 2 we have maxmini = minmaxi.

3Recall that the function pi : S → R is quasi-concave in the ith argument if the
set {s′

i
∈ Si | pi(s

′

i
, s−i) ≥ pi(s)} is convex for all s ∈ S.
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Proof. By the Nash Theorem 30 and the Strictly Competitive Games The-
orem 18(ii). 2

The formulation ‘a strictly competitive game that is a mixed extension’ is
rather awkward and it is tempting to write instead ‘the mixed extension of a
strictly competitive game’. However, one can show that the mixed extension
of a strictly competitive game does not need to be a strictly competitive
game, see Exercise 11.

On the other hand we have the following simple observation.

Note 35 (Mixed Extension) The mixed extension of a zero-sum game is
a zero-sum game.

Proof. Fix a finite zero-sum game (S1, S2, p1, p2). For each joint strategy m

we have

p1(m)+p2(m) =
∑

s∈S

m(s)p1(s)+
∑

s∈S

m(s)p2(s) =
∑

s∈S

m(s)(p1(s)+p2(s)) = 0.

2

This means that for finite zero-sum games we have the following result,
originally established by von Neumann in 1928.

Theorem 36 (Minimax) Consider a finite zero-sum game G := (S1, S2, p1, p2).
Then for i = 1, 2

max
mi∈Mi

min
m
−i∈M

−i

pi(mi, m−i) = min
m
−i∈M

−i

max
mi∈Mi

pi(mi, m−i).

Proof. By the Mixed Extension Note 35 the mixed extension of G is zero-
sum, so strictly competitive. It suffices to use Theorem 34 and expand the
definitions of minmaxi and maxmini. 2

Finally, note that using the matrix notation we can rewrite the above
equalities as follows, where A is an arbitrary k× ℓ matrix (that is the reward
matrix of a zero-sum game):

max
p∈∆k−1

min
q∈∆ℓ−1

pAqT = min
q∈∆ℓ−1

max
p∈∆k−1

pAqT .
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So the Minimax Theorem can be alternatively viewed as a theorem about
matrices and unit simplices. This formulation of the Minimax Theorem has
been generalized in many ways to a statement

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y),

where X and Y are appropriate sets replacing the unit simplices and f :
X × Y → R is an appropriate function replacing the payoff function. Such
theorems are called Minimax theorems.

Exercise 11 Find a 2 × 2 strictly competitive game such that its mixed
extension is not a strictly competitive game.

Exercise 12 Prove that the Matching Pennies game has exactly one Nash
equilibrium in mixed strategies. 2
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