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Intelligent Design
A theory of an intelligently guided invisible hand wins
the Nobel prize

WHAT on earth is mechanism design? was the
typical reaction to this year’s Nobel prize
in economics, announced on October 15th.
[...]
In fact, despite its dreary name, mechanism
design is a hugely important area of
economics, and underpins much of what dismal
scientists do today. It goes to the heart
of one of the biggest challenges in
economics: how to arrange our economic
interactions so that, when everyone behaves
in a self-interested manner, the result is
something we all like.
(The Economist, Oct. 18th, 2007)
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Decision Problems
Decision problem for n players:

set D of decisions,

for each player i a set of (private) types Θi

and a utility function

vi : D × Θi →R.

Intuitions

Type is some private information known only to the
player (e.g., player’s valuation of the item for sale),
vi(d, θi) represents the benefit to player i of type θi

from the decision d ∈ D.

Assume the individual types are θ1, . . ., θn. Then
∑n

i=1 vi(d, θi) is the social welfare from d ∈ D.
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Decision Rules

Decision rule is a function

f : Θ1 × . . . × Θn → D.

Decision rule f is efficient if

n
∑

i=1

vi(f(θ), θi) ≥

n
∑

i=1

vi(d, θi)

for all θ ∈ Θ and d ∈ D.

Intuition f is efficient if it always maximizes the social
welfare.
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Set up

Each player i receives/has a type θi,

each player i submits to the central authority a type θ′i,

the central authority computes decision

d := f(θ′1, . . ., θ
′
n),

and communicates it to each player i.

Basic problem How to ensure that θ′i = θi.
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Example 1: Sealed-Bid Auction

Set up There is a single object for sale. Each player is a
buyer. The decision is taken by means of a sealed-bid
auction. The object is sold to the highest bidder.

D = {1, . . . , n},

each Θi is R+,

vi(d, θi) :=

{

θi if d = i

0 otherwise

Let argsmax θ := µi(θi = maxj∈{1,...,n} θj).

f(θ) := argsmax θ.

Note f is efficient.

Payments will be treated later.
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Example 2: Public Project Problem

Each person is asked to report his or
her willingness to pay for the
project, and the project is undertaken
if and only if the aggregate reported
willingness to pay exceeds the cost of
the project.

(15 October 2007, The Royal Swedish Academy of
Sciences, Press Release, Scientific Background)
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Public Project Problem, formally

c: cost of the public project (e.g., building a bridge),

D = {0, 1},

each Θi is R+,

vi(d, θi) := d(θi −
c
n
),

f(θ) :=

{

1 if
∑n

i=1 θi ≥ c

0 otherwise

Note f is efficient.
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Example 3: Reversed Sealed-bid Auction

Set up Each player offers the same service. The decision is
taken by means of a sealed-bid auction. The service is
purchased from the lowest bidder.

D = {1, . . . , n},

each Θi is R−;
−θi is the price player i offers,

vi(d, θi) :=

{

θi if d = i

0 otherwise

f(θ) := argsmax θ.

Example f(−8,−5,−4,−6) = 3. That is, given the offers
8, 5, 4, 6, the service is bought from player 3.
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Example 4: Buying a Path in a Network

Set up Given a graph G := (V,E).

• Each edge e ∈ E is owned by player e.

• Two distinguished vertices s, t ∈ V .

• Each player e submits the cost θe of using the edge e.

• The central authority selects the shortest s − t path in G.

D = {p | p is a s − t path in G},

each Θi is R+,

vi(p, θi) :=

{

−θi if i ∈ p

0 otherwise

f(θ) := p, where p is the shortest s − t path in G.
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Manipulations

Example An optimal strategy for player i in public project
problem:

if θi ≥
c
n

submit θ′i = c.

if θi < c
n

submit θ′i = 0.

For example, assume c = 30.

player type
A 6

B 7

C 25

Players A and B should submit 0. Player c should submit 30.
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Revised Set-up: Direct Mechanisms

Each player i receives/has a type θi,

each player i submits to the central authority a type θ′i,

the central authority computes decision

d := f(θ′1, . . ., θ
′
n),

and taxes

(t1, . . ., tn) := g(θ′1, . . ., θ
′
n) ∈ R

n,

and communicates to each player i both d and ti.

final utility function for player i:

ui(d, θi) := vi(d, θi) + ti.
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Direct Mechanisms, ctd

Direct mechanism (f, t) is incentive compatible if
for all θ ∈ Θ, i ∈ {1, . . ., n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Intuition Submitting false type (so θ′i 6= θi) does not pay
off.

Direct mechanism (f, t) is feasible if
∑n

i=1 ti(θ) ≤ 0 for all θ.

Intuition External financing is never needed.
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Groves Mechanisms

ti(θ) :=
∑

j 6=i vj(f(θ), θj) + hi(θ−i), where

hi : Θ−i → R is an arbitrary function.

Note

ui((f, t)(θ), θi) =
∑n

j=1 vj(f(θ), θj) + hi(θ−i).

Intuitions

Player i cannot manipulate the value of hi(θ−i).
Suppose hi(θ−i) = 0.
When the individual types are θ1, . . ., θn

ui((f, t)(θ), θi) is the social welfare from f(θ).
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Groves Theorem

Theorem (Groves ’73)
Suppose f is efficient. Then each Groves mechanism is
incentive compatible.

Proof.
For all θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) =
n

∑

j=1

vj(f(θi, θ−i), θj) + hi(θ−i)

(f is efficient) ≥
n

∑

j=1

vj(f(θ′i, θ−i), θj) + hi(θ−i)

= ui((f, t)(θ′i, θ−i), θi).
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Special Case: Pivotal Mechanism

hi(θ−i) := −maxd∈D

∑

j 6=i vj(d, θj).

Then

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
d∈D

∑

j 6=i

vj(d, θj) ≤ 0.

Note Pivotal mechanism is feasible.
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Re: Sealed-Bid Auction

Note In the pivotal mechanism

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

So the pivotal mechanism is Vickrey auction:
the winner pays the 2nd highest bid.
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Example

player bid tax to authority util.
A 18 0 0

B 24 −21 3

C 21 0 0

Social welfare: 0 + 0 + 3 = 3.
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Maximizing Social Welfare

Question: Does Vickrey auction maximize social welfare?

Notation θ∗: the reordering of θ is descending order.

Example For θ = (1, 4, 2, 3, 1) we have
θ−2 = (1, 2, 3, 0),
(θ−2)

∗ = (3, 2, 1, 0),
so (θ−2)

∗
2 = 2.

Intuition (θ−2)
∗
2 is the second highest bid among other bids.
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Bailey-Cavallo Mechanism

Bailey-Cavallo mechanism (n ≥ 3):

ti(θ) := tpi (θ) +
(θ−i)

∗
2

n

Note Bailey-Cavallo mechanism is a Groves mechanism.

Example

player bid tax to authority util. why?
A 18 0 7 (= 1/3 of 21)
B 24 −2 9 (= 24 − 2 − 7 − 6)
C 21 0 6 (= 1/3 of 18)
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Bailey-Cavallo Mechanism, ctd

Note Bailey-Cavallo mechanism is feasible.

Proof. For all i and θ, (θ−i)
∗
2 ≤ θ∗2, so

n
∑

i=1

ti(θ) = −θ∗2 +

n
∑

i=1

(θ−i)
∗
2

n
=

n
∑

i=1

−θ∗2 + (θ−i)
∗
2

n
≤ 0.

Theorem In the case of sealed-bid auctions
Bailey-Cavallo mechanism maximizes social welfare.
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Re: Public Project Problem

Assume the pivotal mechanism.
Examples Suppose c = 30 and n = 3.

player type tax ui

A 6 0 −4

B 7 0 −3

C 25 −7 8

Social welfare can be negative.

player type tax ui

A 4 −5 −5

B 3 −6 −6

C 22 0 0
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Formally

Note In the pivotal mechanism

ti(θ) =



















0 if
∑

j 6=i θj ≥
n−1
n

c and
∑n

j=1 θj ≥ c
∑

j 6=i θj −
n−1
n

c if
∑

j 6=i θj < n−1
n

c and
∑n

j=1 θj ≥ c

0 if
∑

j 6=i θj ≤
n−1
n

c and
∑n

j=1 θj < c
n−1
n

c −
∑

j 6=i θj if
∑

j 6=i θj > n−1
n

c and
∑n

j=1 θj < c

Theorem In the case of the public project problem
the pivotal maximizes social welfare.
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Re: Reversed Sealed-Bid Auction

Take

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
d∈D\{i}

∑

j 6=i

vj(d, θj).

Note

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

So in this mechanism the winner receives the amount equal
to the 2nd lowest offer.

Example Consider Θ = (−8,−5,−4,−6). The service is
bought from player 3 who receives for it 5.
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Re: Buying a Path in a Network

Take

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
p∈D(G\{i})

∑

j 6=i

vj(p, θj).

Note

ti(θ) =

{

cost(p2) − cost(p1 − {i}) if i ∈ p1

0 otherwise

where

p1 is the shortest s − t path in G(θ),
p2 is the shortest s − t path in (G \ {i})(θ−i).
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Example

Consider the player owning the edge e.
To compute the payment he receives

determine the shortest s − t path. Its length is 7. It
contains e.

determine the shortest s − t path that does not include
e. Its length is 12.

So player e receives 12 − (7 − 4) = 9.
His final utility is 9 − 4 = 5.
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