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Mixed Extension of a Finite Game

Probability distribution over a finite non-empty set A:

π : A → [0, 1]

such that
∑

a∈A π(a) = 1.

Notation: ∆A.

Fix a finite strategic game G := (S1, . . ., Sn, p1, . . ., pn).

Mixed strategy of player i in G: mi ∈ ∆Si.

Joint mixed strategy: m = (m1, . . .,mn).
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Mixed Extension of a Finite Game (2)

Mixed extension of G:

(∆S1, . . .,∆Sn, p1, . . ., pn),

where
m(s) := m1(s1) · . . . · mn(sn)

and
pi(m) :=

∑

s∈S

m(s) · pi(s).

Theorem (Nash ’50) Every mixed extension of a finite
strategic game has a Nash equilibrium.
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Kakutani’s Fixed Point Theorem
Theorem (Kakutani ’41)
Suppose A is a compact and convex subset of R

n and

Φ : A →P(A)

is such that

Φ(x) is non-empty and convex for all x ∈ A,

for all sequences (xi, yi) converging to (x, y)

yi ∈ Φ(xi) for all i ≥ 0,

implies that
y ∈ Φ(x).

Then x∗ ∈ A exists such that x∗ ∈ Φ(x∗).
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Proof of Nash Theorem
Fix (S1, . . ., Sn, p1, . . ., pn). Define

besti : Πj 6=i∆Sj →P(∆Si)

by

besti(m−i) := {m′
i ∈ ∆Si | pi(m

′
i,m−i) attains the maximum}.

Then define

best : ∆S1 × . . .∆Sn →P(∆S1 × . . . × ∆Sn)

by
best(m) := best1(m−1) × . . . × best1(m−n).

Note m is a Nash equilibrium iff m ∈ best(m).
best(·) satisfies the conditions of Kakutani’s Theorem.
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Comments

First special case of Nash theorem: Cournot (1838).

Nash theorem generalizes von Neumann’s Minimax
Theorem (’28).

An alternative proof (also by Nash) uses Brouwer’s
Fixed Point Theorem.

Search for conditions ensuring existence of Nash
equilibrium.
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2 Examples

Matching Pennies
H T

H 1,−1 −1, 1
T −1, 1 1,−1

(1

2
· H + 1

2
· T, 1

2
· H + 1

2
· T ) is a Nash equilibrium.

The payoff to each player in the Nash equilibrium: 0.

The Battle of the Sexes
F B

F 2, 1 0, 0
B 0, 0 1, 2

(2/3 · F + 1/3 · B, 1/3 · F + 1/3 · B) is a Nash equilibrium.

The payoff to each player in the Nash equilibrium: 2/3.
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Dominance by a Mixed Strategy

Example

X Y Z
A 2,− 0,− 1,−
B 0,− 2,− 1,−
C 1,− 1,− 0,−
D 1,− 0,− 0,−

D is weakly dominated by A,

C is weakly dominated by 1

2
· A + 1

2
· B,

D is strictly dominated by 1

2
· A + 1

2
· C.
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Iterated Elimination of Strategies
Consider weak dominance by a mixed strategy.

X Y Z
A 2, 1 0, 1 1, 0
B 0, 1 2, 1 1, 0
C 1, 1 1, 0 0, 0
D 1, 0 0, 1 0, 0

D is weakly dominated by A,

Z is weakly dominated by X,

C is weakly dominated by 1

2
· A + 1

2
· B.

By eliminating them we get the final outcome:

X Y
A 2, 1 0, 1
B 0, 1 2, 1
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Relative Strength of Strategy Elimination

Weak dominance by a pure strategy is less powerful
than weak dominance by a mixed strategy, but

iterated elimination using weak dominance by a pure
strategy (Wω) can be more powerful than iterated
elimination using weak dominance by a mixed strategy
(MWω).

In general (Apt ’07):

WM

SM

S

W Wω

Sω

SMω

WMω
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Best responses to Mixed Strategies

si is a best response to m−i if

∀s′i ∈ Si pi(si,m−i) ≥ pi(s
′
i,m−i).

support(mi) := {a ∈ Si | mi(a) > 0}.

Theorem (Pearce ’84) In a 2-player finite game

si is strictly dominated by a mixed strategy iff it is not
a best response to a mixed strategy.
si is weakly dominated by a mixed strategy iff it is not
a best response to a mixed strategy with full support.
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IESDMS

Theorem

If G′ is an outcome of IESDMS starting from G, then m
is a Nash equilibrium of G′ iff it is a Nash equilibrium of
G.

If G is solved by IESDMS, then the resulting joint
strategy is a unique Nash equilibrium of G.

(Osborne, Rubinstein, ’94) Outcome of IESDMS is
unique (order independence).
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IESDMS: Example

Beauty-contest game

each set of strategies = {1, . . ., 100},

payoff to each player:
1 is split equally between the players whose submitted
number is closest to 2

3
of the average.

This game is solved by IESDMS, in 99 steps.

Hence it has a unique Nash equilibrium, (1, . . ., 1).
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IEWDMS

Theorem

If G′ is an outcome of IEWDMS starting from G and m is
a Nash equilibrium of G′, then m is a Nash equilibrium
of G.

If G is solved by IEWDMS, then the resulting joint
strategy is a Nash equilibrium of G.

Outcome of IEWDS does not need to be unique (no
order independence).

Every mixed extension of a finite strategic game has a
Nash equilibrium in which no pure strategy is weakly
dominated by a mixed strategy.
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Rationalizable Strategies

Introduced in Bernheim ’84 and Pearce ’84.

Strategies in the outcome of IENBRM.

Subtleties in the definition . . .

Theorem

(Bernheim ’84) If G′ is an outcome of IENBRM starting
from G, then m is a Nash equilibrium of G′ iff it is a
Nash equilibrium of G.

If G is solved by IESDMS, then the resulting joint
strategy is a unique Nash equilibrium of G.

(Apt ’05) Outcome of IENBRM is unique (order
independence).
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