Nash Equilibria and Pareto Efficient Outcomes

Krzysztof R. Apt

CWI, Amsterdam, the Netherlands,
University of Amsterdam
Basic Concepts
Overview

- Best response.
- Nash equilibrium.
- Pareto efficient outcomes.
- Social welfare.
- Social optima.
- Examples.
Strategic Games: Definition

Strategic game for $n \geq 2$ players:

- (possibly infinite) set S_i of strategies,
- payoff function $p_i : S_1 \times \ldots \times S_n \rightarrow \mathbb{R}$, for each player i.

Basic assumptions:

- players choose their strategies simultaneously,
- each player is rational: his objective is to maximize his payoff,
- players have common knowledge of the game and of each others’ rationality.
Three Examples

Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2, 2</td>
<td>0, 3</td>
</tr>
<tr>
<td>D</td>
<td>3, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

The Battle of the Sexes

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1, −1</td>
<td>−1, 1</td>
</tr>
<tr>
<td>T</td>
<td>−1, 1</td>
<td>1, −1</td>
</tr>
</tbody>
</table>
Main Concepts

- **Notation**: \(s_i, s'_i \in S_i, s, s', (s_i, s_{-i}) \in S_1 \times \ldots \times S_n. \)

- \(s_i \) is a **best response** to \(s_{-i} \) if

 \[
 \forall s'_i \in S_i \ p_i(s_i, s_{-i}) \geq p_i(s'_i, s_{-i}).
 \]

- \(s \) is a **Nash equilibrium** if \(\forall i \ s_i \) is a best response to \(s_{-i} \):

 \[
 \forall i \in \{1, \ldots, n\} \ \forall s'_i \in S_i \ p_i(s_i, s_{-i}) \geq p_i(s'_i, s_{-i}).
 \]

- \(s \) is **Pareto efficient** if for no \(s' \)

 \[
 \forall i \in \{1, \ldots, n\} \ p_i(s') \geq p_i(s), \quad \exists i \in \{1, \ldots, n\} \ p_i(s') > p_i(s).
 \]

- **Social welfare** of \(s \): \(\sum_{j=1}^{n} p_j(s) \).

- \(s \) is a **social optimum** if \(\sum_{j=1}^{n} p_j(s) \) is maximal.
Nash Equilibrium

Prisoner’s Dilemma: 1 Nash equilibrium

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>D</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

The Battle of the Sexes: 2 Nash equilibria

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Matching Pennies: no Nash equilibrium

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1,−1</td>
<td>−1,1</td>
</tr>
<tr>
<td>T</td>
<td>−1,1</td>
<td>1,−1</td>
</tr>
</tbody>
</table>
Prisoner’s Dilemma

- 1 Nash equilibrium: \((D, D)\),
- 3 Pareto efficient outcomes: \((C, C)\), \((C, D)\), \((D, C)\),
- 1 social optimum: \((C, C)\).
Prisoner’s Dilemma for n Players

- $n > 1$ players,
- two strategies: 1 (formerly C), 0 (formerly D).

$$p_i(s) := \begin{cases}
2 \sum_{j \neq i} s_j + 1 & \text{if } s_i = 0 \\
2 \sum_{j \neq i} s_j & \text{if } s_i = 1
\end{cases}$$

For $n = 2$ we get the original Prisoner’s Dilemma game.

Let $1 = (1, \ldots, 1)$ and $0 = (0, \ldots, 0)$.

0 is the unique Nash equilibrium, with social welfare n.

Social optimum: 1, with social welfare $2n(n - 1)$.

Nash Equilibria and Pareto Efficient Outcomes – p. 9/1
Common resources: goods that are not *excludable* (people cannot be prevented from using them) but are *rival* (one person’s use of them diminishes another person’s enjoyment of it).

Examples: congested toll-free roads, fish in the ocean, the environment, . . . ,

Problem: Overuse of such common resources leads to their destruction.

This phenomenon is called the *tragedy of the commons* (Hardin ’81).
Tragedy of the Commons I

(Gardner '95)

- $n > 1$ players,
- two strategies: 1 (use the resource), 0 (don't use),
- payoff function:

$$p_i(s) := \begin{cases} 0.1 & \text{if } s_i = 0 \\ F(m)/m & \text{otherwise} \end{cases}$$

where $m = \sum_{j=1}^{n} s_j$ and

$$F(m) := 1.1m - 0.1m^2.$$
Tragedy of the Commons I, ctd

payoff function:

\[p_i(s) := \begin{cases}
0.1 & \text{if } s_i = 0 \\
F(m)/m & \text{otherwise}
\end{cases} \]

where \(m = \sum_{j=1}^{n} s_j \) and \(F(m) := 1.1m - 0.1m^2 \).

Note: \(F(m)/m \) is strictly decreasing, \(F(9)/9 = 0.2, F(10)/10 = 0.1, F(11)/11 = 0 \).

Nash equilibria:
\(n < 10 \): all players use the resource,
\(n \geq 10 \): 9 or 10 players use the resource,
Social optimum: 5 players use the resource.
Tragedy of the Commons II

(Osborne ’04)

- $n > 1$ players,
- strategies: $[0, 1]$,
- payoff function:

\[p_i(s) := \begin{cases}
 s_i(1 - \sum_{j=1}^{n} s_j) & \text{if } \sum_{j=1}^{n} s_j \leq 1 \\
 0 & \text{otherwise}
\end{cases} \]
payoff function:

\[p_i(s) := \begin{cases}
 s_i(1 - \sum_{j=1}^{n} s_j) & \text{if } \sum_{j=1}^{n} s_j \leq 1 \\
 0 & \text{otherwise}
\end{cases} \]

‘Best’ Nash equilibrium: when each \(s_i = \frac{1}{n+1} \),
with social welfare \(\frac{n}{(n+1)^2} \) and \(\sum_{j=1}^{n} s_j = \frac{n}{n+1} \).

Social optimum, when \(\sum_{j=1}^{n} s_j = \frac{1}{2} \),
with social welfare \(\frac{1}{4} \).

For all \(n > 1 \), \(\frac{n}{(n+1)^2} < \frac{1}{4} \).

\[\lim_{n \to \infty} \frac{n}{(n+1)^2} = 0 \text{ and } \lim_{n \to \infty} \frac{n}{n+1} = 1. \]