
Chapter 3

Strict Dominance

Let us return now to our analysis of an arbitrary strategic game (S1, . . . , Sn,

p1, . . . , pn). Let si, s
′

i
be strategies of player i. We say that si strictly

dominates s′
i
(or equivalently, that s′

i
is strictly dominated by si) if

∀s−i ∈ S−i pi(si, s−i) > pi(s
′

i
, s−i).

Further, we say that si is strictly dominant if it strictly dominates all
other strategies of player i.

Clearly, a rational player will not choose a strictly dominated strategy. As
an illustration let us return to the Prisoner’s Dilemma. In this game for each
player C (cooperate) is a strictly dominated strategy. So the assumption of
players’ rationality implies that each player will choose strategy D (defect).
That is, we can predict that rational players will end up choosing the joint
strategy (D, D) in spite of the fact that the Pareto efficient outcome (C, C)
yields for each of them a strictly higher payoff.

The same holds in the Prisoner’s Dilemma game for n players, where
for all players i strategy 1 is strictly dominated by strategy 0, since for all
s−i ∈ S−i we have pi(0, s−i) − pi(1, s−i) = 1.

We assumed that each player is rational. So when searching for an out-
come that is optimal for all players we can safely remove strategies that are
strictly dominated by some other strategy. This can be done in a number of
ways. For example, we could remove all or some strictly dominated strate-
gies simultaneously, or start removing them in a round Robin fashion starting
with, say, player 1. To discuss this matter more rigorously we introduce the
notion of a restriction of a game.
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Given a game G := (S1, . . . , Sn, p1, . . . , pn) and (possibly empty) sets
of strategies R1, . . . , Rn such that Ri ⊆ Si for i ∈ {1, . . . , n} we say that
R := (R1, . . . , Rn, p1, . . . , pn) is a restriction of G. Here of course we view
each pi as a function on the subset R1 × . . . × Rn of S1 × . . . × Sn.

In what follows, given a restriction R we denote by Ri the set of strategies
of player i in R. Further, given two restrictions R and R′ of G we write R′ ⊆ R

when ∀i ∈ {1, . . . , n} R′

i
⊆ Ri. We now introduce the following notion of

reduction between the restrictions R and R′ of G:

R →S R′

when R 6= R′, R′ ⊆ R and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \ R′

i ∃s′i ∈ Ri si is strictly dominated in R by s′i.

That is, R →S R′ when R′ results from R by removing from it some strictly
dominated strategies.

We now clarify whether a one-time elimination of (some) strictly domi-
nated strategies can affect Nash equilibria.

Lemma 1 (Strict Elimination) Given a strategic game G consider two
restrictions R and R′ of G such that R →SR′. Then

(i) if s is a Nash equilibrium of R, then it is a Nash equilibrium of R′,

(ii) if G is finite and s is a Nash equilibrium of R′, then it is a Nash
equilibrium of R.

At the end of this chapter we shall clarify why in (ii) the restriction to
finite games is necessary.

Proof.
(i) For each player the set of his strategies in R′ is a subset of the set of his
strategies in R. So to prove that s is a Nash equilibrium of R′ it suffices
to prove that no strategy constituting s is eliminated. Suppose otherwise.
Then some si is eliminated, so for some s′

i
∈ Ri

pi(s
′

i
, s′′

−i
) > pi(si, s

′′

−i
) for all s′′

−i
∈ R−i.

In particular
pi(s

′

i
, s−i) > pi(si, s−i),
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so s is not a Nash equilibrium of R.

(ii) Suppose s is not a Nash equilibrium of R. Then for some i ∈ {1, . . . , n}
strategy si is not a best response of player i to s−i in R.

Let s′
i
∈ Ri be a best response of player i to s−i in R (which exists since

Ri is finite). The strategy s′i is eliminated since s is a Nash equilibrium of
R′. So for some s∗

i
∈ Ri

pi(s
∗

i , s
′′

−i) > pi(s
′

i, s
′′

−i) for all s′′
−i ∈ R−i.

In particular
pi(s

∗

i
, s−i) > pi(s

′

i
, s−i),

which contradicts the choice of s′
i
. ✷

In general an elimination of strictly dominated strategies is not a one step
process; it is an iterative procedure. Its use is justified by the assumption of
common knowledge of rationality.

Example 7 Consider the following game:

L M R

T 3, 0 2, 1 1, 0
C 2, 1 1, 1 1, 0
B 0, 1 0, 1 0, 0

Note that B is strictly dominated by T and R is strictly dominated by
M . By eliminating these two strategies we get:

L M

T 3, 0 2, 1
C 2, 1 1, 1

Now C is strictly dominated by T , so we get:

L M

T 3, 0 2, 1

In this game L is strictly dominated by M , so we finally get:

M

T 2, 1
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✷

This brings us to the following notion, where given a binary relation →
we denote by → ∗ its transitive reflexive closure. Consider a strategic game
G. Suppose that G → ∗

S
R, i.e., R is obtained by an iterated elimination of

strictly dominated strategies, in short IESDS , starting with G.

• If for no restriction R′ of G, R →SR′ holds, we say that R is an out-

come of IESDS from G.

• If each player is left in R with exactly one strategy, we say that G is

solved by IESDS .

The following result then clarifies the relation between the IESDS and
Nash equilibrium.

Theorem 2 (IESDS) Suppose that G′ is an outcome of IESDS from a
strategic game G.

(i) If s is a Nash equilibrium of G, then it is a Nash equilibrium of G′.

(ii) If G is finite and s is a Nash equilibrium of G′, then it is a Nash
equilibrium of G.

(iii) If G is finite and solved by IESDS, then the resulting joint strategy is a
unique Nash equilibrium.

Proof. By the Strict Elimination Lemma 1. ✷

We also have the following observation.

Note 3 (Strict Dominance) Consider a strategic game G.
Suppose that s is a joint strategy such that each si is a strictly dominant

strategy. Then it is a unique Nash equilibrium of G.

Proof. By assumption s is a Nash equilibrium. Take now some s′ 6= s. For
some i we have s′i 6= si. By assumption pi(si, s

′

−i) > pi(s
′

i, s
′

−i), where pi is
the payoff function of player i. So s′ is not a Nash equilibrium. ✷
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Example 8 A nice example of a game that is solved by IESDS is the loca-

tion game. Assume that that the players are two vendors who simultane-
ously choose a location. Then the customers choose the closest vendor. The
profit for each vendor equals the number of customers it attracted.

To be more specific we assume that the vendors choose a location from
the set {1, . . . , n} of natural numbers, viewed as points on a real line, and
that at each location there is exactly one customer. For example, for n = 11
we have 11 locations:

and when the players choose respectively the locations 3 and 8:

3

8

we have p1(3, 8) = 5 and p2(3, 8) = 6. When the vendors ‘share’ a customer,
for instance when they both choose the location 6:

6

they end up with a fractional payoff, in this case p1(6, 6) = 5.5 and p1(6, 6) =
5.5.

In general, we have the following game:

• each set of strategies consists of the set {1, . . . , n},

• each payoff function pi is defined by:

pi(si, s−i) :=























si + s−i − 1

2
if si < s−i

n −
si + s−i − 1

2
if si > s−i

n

2
if si = s−i

22



It is easy to check that for n = 2k + 1 this game is solved by k rounds
of IESDS, and that each player is left with the ‘middle’ strategy k. In each
round both ‘outer’ strategies are eliminated, so first 1 and n, then 2 and
n − 1, and so on. ✷

There is one more natural question that we left so far unanswered. Is the
outcome of an iterated elimination of strictly dominated strategies unique,
or in the game theory parlance: is strict dominance order independent?
The answer is positive.

Theorem 4 (Order Independence I) Given a finite strategic game all it-
erated eliminations of strictly dominated strategies yield the same outcome.

Proof. See the Appendix of this Chapter. ✷

The above result does not hold for infinite strategic games.

Example 9 Consider a game in which the set of strategies for each player is
the set of natural numbers. The payoff to each player is the number (strategy)
he selected.

Note that in this game every strategy is strictly dominated. Consider
now three ways of using IESDS:

• by removing in one step all strategies that are strictly dominated,

• by removing in one step all strategies different from 0 that are strictly
dominated,

• by removing in each step exactly one strategy, for instance the least
even strategy.

In the first case we obtain the restriction with the empty strategy sets,
in the second one we end up with the restriction in which each player has
just one strategy, 0, and in the third case we obtain an infinite sequence of
reductions. ✷

The above example also shows that in the limit of an infinite sequence
of reductions different outcomes can be reached. So for infinite games the
definition of the order independence has to be modified.

23



The above example also shows that in the Strict Elimination 1(ii) and the
IESDS Theorem 2(ii) and (iii) we cannot drop the assumption that the game
is finite. Indeed, the above infinite game has no Nash equilibria, while the
game in which each player has exactly one strategy has a Nash equilibrium.

Exercise 6

(i) What is the outcome of IESDS in the location game with an even
number of locations?

(ii) Modify the location game from Example 8 to a game for three players.
Prove that this game has no Nash equilibrium.

(iii) Define a modification of the above game for three players to the case
when the set of possible locations (both for the vendors and the cus-
tomers) forms a circle. Find the set of Nash equilibria. ✷

Appendix

We provide here the proof of the Order Independence I Theorem 4. Concep-
tually it is useful to carry out these consideration in a more general setting.
We assume an initial strategic game

G := (G1, . . ., Gn, p1, . . ., pn).

By a dominance relation D we mean a function that assigns to each
restriction R of G a subset DR of

⋃

n

i=1
Ri. Instead of writing si ∈ DR we say

that si is D-dominated in R.
Given two restrictions R and R′ we write R →D R′ when R 6= R′, R′ ⊆ R

and
∀i ∈ {1, . . . , n} ∀si ∈ Ri \ R′

i si is D-dominated in R.

Clearly being strictly dominated by another strategy is an example of a
dominance relation and →S is an instance of →D.

An outcome of an iteration of →D starting in a game G is a restriction
R that can be reached from G using →D in finitely many steps and such
that for no R′, R →D R′ holds.

We call a dominance relation D

24



• order independent if for all initial finite games G all iterations of
→D starting in G yield the same final outcome,

• hereditary if for all initial games G, all restrictions R and R′ such
that R →D R′ and a strategy si in R′

si is D-dominated in R implies that si is D-dominated in R′.

We now establish the following general result.

Theorem 5 Every hereditary dominance relation is order independent.

To prove it we introduce the notion of an abstract reduction system .
It is simply a pair (A, → ) where A is a set and → is a binary relation on
A. Recall that →∗ denotes the transitive reflexive closure of → .

• We say that b is a → -normal form of a if a →∗ b and no c exists
such that b → c, and omit the reference to → if it is clear from the
context. If every element of A has a unique normal form, we say that
(A, → ) (or just → if A is clear from the context) satisfies the unique

normal form property .

• We say that → is weakly confluent if for all a, b, c ∈ A

a

ւ ց
b c

implies that for some d ∈ A

b c

ց∗ ∗ ւ
d

We need the following crucial lemma.

Lemma 6 (Newman) Consider an abstract reduction system (A, → ) such
that
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• no infinite → sequences exist,

• → is weakly confluent.

Then → satisfies the unique normal form property.

Proof. By the first assumption every element of A has a normal form. To
prove uniqueness call an element a ambiguous if it has at least two different
normal forms. We show that for every ambiguous a some ambiguous b exists
such that a → b. This proves absence of ambiguous elements by the first
assumption.

So suppose that some element a has two distinct normal forms n1 and
n2. Then for some b, c we have a → b →∗ n1 and a → c →∗ n2. By weak
confluence some d exists such that b →∗ d and c →∗ d. Let n3 be a normal
form of d. It is also a normal form of b and of c. Moreover n3 6= n1 or
n3 6= n2. If n3 6= n1, then b is ambiguous and a → b. And if n3 6= n2, then c

is ambiguous and a → c. ✷

Proof of Theorem 5.
Take a hereditary dominance relation D. Consider a restriction R. Sup-

pose that R →D R′ for some restriction R′. Let R′′ be the restriction of R

obtained by removing all strategies that are D-dominated in R.
We have R′′ ⊆ R′. Assume that R′ 6= R′′. Choose an arbitrary strategy

si such that si ∈ R′

i
\ R′′

i
. So si is D-dominated in R. By the hereditarity of

D, si is also D-dominated in R′. This shows that R′ →D R′′.
So we proved that either R′ = R′′ or R′ →D R′′, i.e., that R′ → ∗

D
R′′. This

implies that →D is weakly confluent. It suffices now to apply Newman’s
Lemma 6. ✷

To apply this result to strict dominance we establish the following fact.

Lemma 7 (Hereditarity I) The relation of being strictly dominated is hered-
itary on the set of restrictions of a given finite game.

Proof. Suppose a strategy si ∈ R′

i is strictly dominated in R and R →S R′.
The initial game is finite, so there exists in Ri a strategy s′

i
that strictly dom-

inates si in R and is not strictly dominated in R. Then s′
i
is not eliminated

in the step R →S R′ and hence is a strategy in R′

i. But R′ ⊆ R, so s′i also
strictly dominates si in R′. ✷
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The promised proof is now immediate.

Proof of the Order Independence I Theorem 4.
By Theorem 5 and the Hereditarity I Lemma 7. ✷
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