
Chapter 4

Weak Dominance and Never
Best Responses

Let us return now to our analysis of an arbitrary strategic game G :=
(S1, . . . , Sn, p1, . . . , pn). Let si, s

′

i
be strategies of player i. We say that

si weakly dominates s′
i
(or equivalently, that s′

i
is weakly dominated by

si) if

∀s−i ∈ S−i pi(si, s−i) ≥ pi(s
′

i
, s−i) and ∃s−i ∈ S−i pi(si, s−i) > pi(s

′

i
, s−i).

Further, we say that si is weakly dominant if it weakly dominates all
other strategies of player i.

4.1 Elimination of weakly dominated strate-

gies

Analogous considerations to the ones concerning strict dominance can be
carried out for the elimination of weakly dominated strategies. To this end
we consider the reduction relation →W on the restrictions of G, defined by

R→W R′

when R 6= R′, R′ ⊆ R and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R
′

i
∃s′

i
∈ Ri si is weakly dominated in R by s′

i
.
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Below we abbreviate iterated elimination of weakly dominated strategies
to IEWDS .

However, in the case of IEWDS some complications arise. To illustrate
them consider the following game that results from equipping each player in
the Matching Pennies game with a third strategy E (for Edge):

H T E

H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Note that

• (E,E) is its only Nash equilibrium,

• for each player E is the only strategy that is weakly dominated.

Any form of elimination of these two E strategies, simultaneous or iter-
ated, yields the same outcome, namely the Matching Pennies game, that, as
we have already noticed, has no Nash equilibrium. So during this eliminating
process we ‘lost’ the only Nash equilibrium. In other words, part (i) of the
IESDS Theorem 2 does not hold when reformulated for weak dominance.

On the other hand, some partial results are still valid here. As before we
prove first a lemma that clarifies the situation.

Lemma 8 (Weak Elimination) Given a finite strategic game G consider
two restrictions R and R′ of G such that R→WR′. Then if s is a Nash
equilibrium of R′, then it is a Nash equilibrium of R.

Proof. Suppose s is a Nash equilibrium of R′ but not a Nash equilibrium of
R. Then for some i ∈ {1, . . . , n} the set

A := {s′
i
∈ Ri | pi(s

′

i
, s−i) > pi(s)}

is non-empty.
Weak dominance is a strict partial ordering (i.e. an irreflexive transitive

relation) and A is finite, so some strategy s′
i
in A is not weakly dominated in

R by any strategy in A. But each strategy in A is eliminated in the reduction

29



R→WR′ since s is a Nash equilibrium of R′. So some strategy s∗
i
∈ Ri weakly

dominates s′
i
in R. Consequently

pi(s
∗

i
, s−i) ≥ pi(s

′

i
, s−i)

and as a result s∗
i
∈ A. But this contradicts the choice of s′

i
. ✷

This brings us directly to the following result.

Theorem 9 (IEWDS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IEWDS from G and s is a Nash equilibrium of
G′, then s is a Nash equilibrium of G.

(ii) If G is solved by IEWDS, then the resulting joint strategy is a Nash
equilibrium of G.

Proof. By the Weak Elimination Lemma 8. ✷

Corollary 10 (Weak Dominance) Consider a finite strategic game G.
Suppose that s is a joint strategy such that each si is a weakly dominant

strategy. Then it is a Nash equilibrium of G.

Proof. By the IEWDS Theorem 9(ii). ✷

Note that in contrast to the Strict Dominance Note 3 we do not claim
here that s is a unique Nash equilibrium of G. In fact, such a stronger claim
does not hold. Indeed, consider the game

L R

T 1, 1 1, 1
B 1, 1 0, 0

Here T is a weakly dominant strategy for the player 1, L is a weakly dominant
strategy for player 2 and, as prescribed by the above Note, (T, L), is a Nash
equilibrium. However, this game has two other Nash equilibria, (T,R) and
(B,L).

In particular, in contrast to the IESDS Theorem 2 we cannot claim in part
(ii) of the IEWDS Theorem 9 that the resulting joint strategy is a unique
Nash equilibrium. Further, in contrast to strict dominance, an iterated elim-
ination of weakly dominated strategies can yield several outcomes.

The following example reveals even more peculiarities of this procedure.
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Example 10 Consider the following game:

L M R

T 0, 1 1, 0 0, 0
B 0, 0 0, 0 1, 0

It has three Nash equilibria, (T, L), (B,L) and (B,R). This game can be
solved by IEWDS but only if in the first round we do not eliminate all weakly
dominated strategies, which are M and R. If we eliminate only R, then we
reach the game

L M

T 0, 1 1, 0
B 0, 0 0, 0

that is solved by IEWDS by eliminating B and M . This yields

L

T 0, 1

So not only IEWDS is not order independent; in some games it is advanta-
geous not to proceed with the deletion of the weakly dominated strategies
‘at full speed’. One can also check that the second Nash equilibrium, (B,L),
can be found using IEWDS, as well, but not the third one, (B,R). ✷

It is instructive to see where the proof of order independence given in the
Appendix of the previous chapter breaks down in the case of weak dominance.
This proof crucially relied on the fact that the relation of being strictly
dominated is hereditary. In contrast, the relation of being weakly dominated
is not hereditary.

To summarize, the iterated elimination of weakly dominated strategies

• can lead to a deletion of Nash equilibria,

• does not need to yield a unique outcome,

• can be too restrictive if we stipulate that in each round all weakly
dominated strategies are eliminated.

Finally, note that the above IEWDS Theorem 9 does not hold for infinite
games. Indeed, Example 9 applies here, as well.
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4.2 Elimination of never best responses

Iterated elimination of strictly or weakly dominated strategies allow us to
solve various games. However, several games cannot be solved using them.

For example, consider the following game:

X Y

A 2, 1 0, 0
B 0, 1 2, 0
C 1, 1 1, 2

Here no strategy is strictly or weakly dominated. On the other hand C

is a never best response, that is, it is not a best response to any strategy
of the opponent. Indeed, A is a unique best response to X and B is a
unique best response to Y . Clearly, the above game is solved by an iterated
elimination of never best responses. So this procedure can be stronger than
IESDS and IEWDS.

Formally, we introduce the following reduction notion between the re-
strictions R and R′ of a given strategic game G:

R→N R′

when R 6= R′, R′ ⊆ R and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R
′

i
¬∃s−i ∈ R−i si is a best response to s−i in R.

That is, R→N R′ when R′ results from R by removing from it some strategies
that are never best responses. Note that in contrast to strict and weak
dominance there is now no ‘witness’ strategy that acounts for a removal of a
strategy.

We now focus on the iterated elimination of never best responses, in short
IENBR, obtained by using the → ∗

N
relation. The following counterpart of

the IESDS Theorem 2 holds.

Theorem 11 (IENBR) Suppose that G′ is an outcome of IENBR from a
strategic game G.

(i) If s is a Nash equilibrium of G, then it is a Nash equilibrium of G′.

(ii) If G is finite and s is a Nash equilibrium of G′, then it is a Nash
equilibrium of G.
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(iii) If G is finite and solved by IENBR, then the resulting joint strategy is
a unique Nash equilibrium.

Proof. Analogous to the proof of the IESDS Theorem 2 and omitted. ✷

Further, we have the following analogue of the Hereditarity I Lemma 7.

Lemma 12 (Hereditarity II) The relation of never being a best response
is hereditary on the set of restrictions of a given finite game.

Proof. Suppose a strategy si ∈ R′

i
is a never best response in R and R→N R′.

Assume by contradiction that for some s−i ∈ R′

−i
, si is a best response to

s−i in R′, i.e.,
∀s′

i
∈ R′

i
pi(si, s−i) ≥ pi(s

′

i
, s−i).

The initial game is finite, so there exists a best response s′
i
to s−i in R.

Then s′
i
is not eliminated in the step R→N R′ and hence is a strategy in R′

i
.

But si is not a best response to s−i in R, so

pi(s
′

i
, s−i) > pi(si, s−i),

so we reached a contradiction. ✷

This leads us to the following analogue of the Order Independence I The-
orem 4.

Theorem 13 (Order Independence II) Given a finite strategic game all
iterated eliminations of never best responses yield the same outcome.

Proof. By Theorem 5 and the Hereditarity II Lemma 12. ✷

In the case of infinite games we encounter the same problems as in the
case of IESDS. Indeed, Example 9 readily applies to IENBR, as well, since in
this game no strategy is a best response. In particular, this example shows
that if we solve an infinite game by IENBR we cannot claim that we obtained
a Nash equilibrium. Still, IENBR can be useful in such cases.

Example 11 Consider the following infinite variant of the location game
considered in Example 8. We assume that the players choose their strategies
from the open interval (0, 100) and that at each real in (0, 100) there resides
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one customer. We have then the following payoffs that correspond to the
intuition that the customers choose the closest vendor:

pi(si, s−i) :=



















si + s−i

2
if si < s−i

100−
si + s−i

2
if si > s−i

50 if si = s−i

In this game each strategy 50 is a best response (namely to strategy 50
of the opponent) and no other strategies are best responses. So this game is
solved by IENBR, in one step.

We cannot claim automatically that the resulting joint strategy (50, 50)
is a Nash equilibrium, but it is clearly so since each strategy 50 is a best
response to the ‘other’ strategy 50. Moreover, by the IENBR Theorem 11(i)
we know that this is a unique Nash equilibrium. ✷

Exercise 7 Show that the beauty contest game from Example 2 is solved
by IEWDS. What is the outcome?

This allows us to conclude by the IEWDS Theorem 9 that this game has
a Nash equilibrium, though not necessarily a unique one. We shall return to
this matter in a later chapter. ✷

Exercise 8 Show that in the location game from Example 11 no strategy is
strictly or weakly dominant. ✷

Exercise 9 Given a game G := (S1, . . . , Sn, p1, . . . , pn) we say that that a
strategy si of player i is dominant if for all strategies s′

i
of player i

pi(si, s−i) ≥ pi(s
′

i
, s−i).

Suppose that s is a joint strategy such that each si is a dominant strategy.
Prove that it is a Nash equilibrium of G. ✷
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