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Abstract

One of the natural objectives of the field of the social networks is to
predict agents’ behaviour. To better understand the spread of various
products through a social network [1] introduced a threshold model, in
which the nodes influenced by their neighbours can adopt one out of sev-
eral alternatives. To analyze the consequences of such product adoption
we associate here with each such social network a natural strategic game
between the agents.

In these games the payoff of each player weakly increases when more
players choose his strategy, which is exactly opposite to the congestion
games. The possibility of not choosing any product results in two special
types of (pure) Nash equilibria.

We show that such games may have no Nash equilibrium and that
determining an existence of a Nash equilibrium, also of a special type,
is NP-complete. This implies the same result for a more general class
of games, namely polymatrix games. The situation changes when the
underlying graph of the social network is a DAG, a simple cycle, or, more
generally, has no source nodes. For these three classes we determine the
complexity of an existence of (a special type of) Nash equilibria.

We also clarify for these categories of games the status and the com-
plexity of the finite best response property (FBRP) and the finite im-
provement property (FIP). Further, we introduce a new property of the
uniform FIP which is satisfied when the underlying graph is a simple cy-
cle, but determining it is co-NP-hard in the general case and also when
the underlying graph has no source nodes. The latter complexity results
also hold for the property of being a weakly acyclic game. A preliminary
version of this paper appeared as [5].

Keywords: Social networks, strategic games, Nash equilibrium, finite im-
provement property, complexity.
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1 Preliminaries

1.1 Strategic games

Assume a set {1, . . . , n} of players, where n > 1. A strategic game for n
players, written as (S1, . . . , Sn, p1, . . . , pn), consists of a non-empty set Si of
strategies and a payoff function pi : S1 × . . .× Sn → R, for each player i.

Fix a strategic game G := (S1, . . . , Sn, p1, . . . , pn). We denote S1 × · · · × Sn
by S, call each element s ∈ S a joint strategy, denote the ith element of s by
si, and abbreviate the sequence (sj)j 6=i to s−i. Occasionally we write (si, s−i)
instead of s.

We call a strategy si of player i a best response to a joint strategy s−i of
his opponents if ∀s′i ∈ Si pi(si, s−i) ≥ pi(s

′
i, s−i). We call a joint strategy s a

Nash equilibrium if each si is a best response to s−i, that is, if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i).

Further, we call a strategy s′i of player i a better response given a joint strategy
s if pi(s

′
i, s−i) > pi(si, s−i).

Given a joint strategy s we call the sum SW (s) =
∑n

j=1 pj(s) the social

welfare of s. When the social welfare of s is maximal we call s a social

optimum. Recall that, given a finite game that has a Nash equilibrium, its

price of anarchy (respectively, price of stability) is the ratio SW (s)
SW (s′) where

s is a social optimum and s′ is a Nash equilibrium with the lowest (respectively,
highest) social welfare. In the case of division by zero, we interpret the outcome
as ∞.

Following the terminology of [4], a path in S is a sequence (s1, s2, . . .) of joint
strategies such that for every k > 1 there is a player i such that sk = (s′i, s

k−1
−i )

for some s′i 6= s
k−1
i . A path is called an improvement path if it is maximal

and for all k > 1, pi(s
k) > pi(s

k−1) where i is the player who deviated from
sk−1. If an improvement path satisfies the additional property that ski is a best
response to sk−1

−i for all k > 1 then it is called a best response improvement

path.
The last condition simply means that each deviating player selects a better

(best) response. A game has the finite improvement property (FIP), (re-
spectively, the finite best response property (FBRP)) if every improvement
path (respectively, every best response improvement path) is finite. Obviously,
if a game has the FIP or the FBRP, then it has a Nash equilibrium — it is the
last element of each path. Finally, a game is called weakly acyclic (see [6, 3])
if for every joint strategy there exists a finite improvement path that starts at
it.

1.2 Social networks

We are interested in specific strategic games defined over social networks. In
what follows we focus on a model of the social networks recently introduced in
[1].
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Let V = {1, . . . , n} be a finite set of agents and G = (V,E,w) a weighted
directed graph with wij ∈ [0, 1] being the weight of the edge (i, j). We assume
that G does not have self loops, i.e., for all i ∈ {1, . . . , n}, (i, i) 6∈ E. We often
use the notation i → j to denote (i, j) ∈ E and write i →∗ j if there is a path
from i to j in the graph G. Given a node i of G we denote by N(i) the set
of nodes from which there is an incoming edge to i. We call each j ∈ N(i) a
neighbour of i in G. We assume that for each node i such that N(i) 6= ∅,
∑

j∈N(i) wji ≤ 1. An agent i ∈ V is said to be a source node in G if N(i) = ∅.

Let P be a finite set of alternatives or products. By a social network (from
now on, just network) we mean a tuple S = (G,P , P, θ), where P assigns to
each agent i a non-empty set of products P (i) from which it can make a choice.
θ is a threshold function that for each i ∈ V and t ∈ P (i) yields a value
θ(i, t) ∈ (0, 1].

Given a network S we denote by source(S) the set of source nodes in the
underlying graph G. One of the classes of the networks we shall study are the
ones with source(S) = ∅. We call a network equitable if the weights are defined
as wji = 1

|N(i)| for all nodes i and j ∈ N(i).

1.3 Social network games

Fix a network S = (G,P , P, θ). Each agent can adopt a product from his
product set or choose not to adopt any product. We denote the latter choice by
t0.

With each network S we associate a strategic game G(S). The idea is that
the nodes simultaneously choose a product or abstain from choosing any. Sub-
sequently each node assesses his choice by comparing it with the choices made
by his neighbours. Formally, we define the game as follows:

• the players are the agents,

• the set of strategies for player i is Si := P (i) ∪ {t0},

• for i ∈ V , t ∈ P (i) and a joint strategy s, let N ti (s) := {j ∈ N(i) | sj = t},
i.e., N ti (s) is the set of neighbours of i who adopted the product t in s.

The payoff function is defined as follows, where c0 is some positive constant
given in advance:

– for i ∈ source(S),

pi(s) :=

{

0 if si = t0
c0 if si ∈ P (i)

– for i 6∈ source(S),

pi(s) :=







0 if si = t0
(
∑

j∈N t
i

(s)

wji)− θ(i, t) if si = t, for some t ∈ P (i)
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Let us explain the underlying motivations behind the above definition. In
the first item we assume that the payoff function for the source nodes is constant
only for simplicity. In the last section of the paper we explain that the obtained
results hold equally well in the case when the source nodes have arbitrary posi-
tive utility for each product.

The second item in the payoff definition is motivated by the following con-
siderations. When agent i is not a source node, his ‘satisfaction’ from a joint
strategy depends positively on the accumulated weight (read: ‘influence’) of
his neighbours who made the same choice as he did, and negatively from his
threshold level (read: ‘resistance’) to adopt this product. The assumption that
θ(i, t) > 0 reflects the view that there is always some resistance to adopt a prod-
uct. So when this resistance is high, it can happen that the payoff is negative.
Of course, in such a situation not adopting any product, represented by the
strategy t0, is a better alternative.

The presence of this possibility allows each agent to refrain from choosing a
product. This refers to natural situations, such as deciding not to purchase a
smartphone or not going on vacation. In the last section we refer to an initiated
research on social network games in which the strategy t0 is not present. Such
games capture situations in which the agents have to take some decision, for
instance selecting a secondary school for their children.

By definition the payoff of each player depends only on the strategies chosen
by his neighbours, so social network games are related to graphical games of
[2]. However, the underlying dependence structure of a social network game is
a directed graph and the presence of the special strategy t0 available to each
player makes these games more specific. Also, these games satisfy the join the

crowd property that we define as follows:

Each payoff function pi depends only on the strategy chosen by
player i and the set of players who also chose his strategy. Moreover,
the dependence on this set is monotonic.

In what follows for t ∈ P ∪ {t0} we use the notation t to denote the joint
strategy s where sj = t for all j ∈ V . This notation is legal only if for all agents
i it holds that t ∈ P (i).

The presence of the strategy t0 motivates the introduction and study of
special types of Nash equilibria. We say that a Nash equilibrium s is

• determined if for all i, si 6= t0,

• non-trivial if for some i, si 6= t0,

• trivial if for all i, si = t0, i.e., s = t0.

2 Nash equilibria: general case

The first natural question that we address is that of the existence of Nash
equilibria in social network games. We have the following example.
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Example 1. Consider the network given in Figure 1, where the product set of
each agent is marked next to the node denoting it and the weights are labels
on the edges. The source nodes are represented by the unique product in the
product set.

{t1}

w1

���
��
��

1

w2

$$IIIIIIIII
{t1,t2}

{t2}
w1

//______ 3

w2

::uuuuuuuuu
{t2,t3}

2
w2

oo_________________
{t1,t3}

{t3}
w1

oo_______

Figure 1: A network with no Nash equilibrium

So the weights on the edges from the nodes {t1}, {t2}, {t3} are marked by
w1 and the weights on the edges forming the triangle are marked by w2. We
assume that each threshold is a constant θ, where θ < w1 < w2. So it is more
profitable to a player residing on the triangle to adopt the product adopted by
his neighbour residing on a triangle than by the other neighbour who is a source
node. For convenience we represent each joint strategy as a triple of strategies
of players 1, 2 and 3.

It is easy to check that in the game associated with this network no joint
strategy is a Nash equilibrium. Indeed, each agent residing on the triangle can
secure a payoff of at least w1−θ > 0, so it suffices to analyze the joint strategies
in which t0 is not used. There are in total eight such joint strategies. Here is
their listing, where in each joint strategy we underline the strategy that is not
a best response to the choice of other players: (t1, t1, t2), (t1, t1, t3), (t1, t3, t2),
(t1, t3, t3), (t2, t1, t2), (t2, t1, t3), (t2, t3, t2), (t2, t3, t3). ✷

The social network in Example 1 used three products. The following re-
sult shows that to construct a social network S such that G(S) has no Nash
equilibrium in fact at least three products are required.

Theorem 2. For a network S, if there exists a non-empty set X ⊆ P such
that |X | ≤ 2 and for all i ∈ source(S), P (i) ∩ X 6= ∅ then G(S) has a Nash
equilibrium.

In particular G(S) has a Nash equilibrium when all nodes i have the same
set of two products.

Proof. Given an initial joint strategy we call a maximal sequence of best re-
sponse deviations to a given strategy t (in an arbitrary order) a t-phase. Let
S = (G,P , P, θ) where G = (V,E,w).

First, suppose that |X | = 1, say X = {t1}. Let s be the resulting joint
strategy after performing a t1-phase starting in the joint strategy t0. We show
that s is a Nash equilibrium. First note that sj = t1 for every j ∈ source(S).
Further, in the t1-phase, if a joint strategy s2 is obtained from s1 by having some
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nodes switch to product t1 and t1 is a best response for a node i to s1−i, then
t1 remains a best response for i to s2−i. Indeed, by the join the crowd property
pi(t1, s

2
−i) ≥ pi(t1, s

1
−i) and pi(t1, s

1
−i) ≥ pi(t0, s

1
−i), so pi(t1, s

2
−i) ≥ pi(t0, s

2
−i).

Consequently after the first t1-phase, in the resulting joint strategy s, each node
that has the strategy t1 plays a best response. If for some j, sj = t0 then by
the definition of the t1-phase, j is playing his best response as well. Therefore
s is a Nash equilibrium.

Now suppose that |X | = 2, say X = {t1, t2}. Let Vt1 = {j ∈ source(S) | t1 ∈
P (j)} and V t1 = {j ∈ source(S) | t1 6∈ P (j)}. Let St1 = (Gt1 ,P , P, θ), where
Gt1 is the induced subgraph of G on the nodes V \V t1 . Let st1 be the resulting
joint strategy in St1 after performing a t1-phase starting in t0. By the previous
argument, st1 is a Nash equilibrium in G(St1 ). Now consider the joint strategy
s in G(S) defined as follows:

si =

{

t0 if i ∈ V t1
st1i otherwise

Starting at s, we repeatedly perform a t2-phase followed by a t0-phase. We
claim that this process terminates in a Nash equilibrium in G(S).

First note that if a joint strategy s2 is obtained from s1 by having some
nodes switch to product t2 and t2 is a best response for a node i to s1−i, then
t2 remains a best response for i to s2−i. The argument is analogous to the one
in the previous case. Therefore after the first t2-phase each node that has the
strategy t2 plays a best response. Call the outcome of the first t2-phase s′′.

Now consider a node i that deviated to t0 starting at s′′ by means of a
best response. By the observation just made, node i deviated from product
t1. So, again by the join the crowd property, this deviation does not affect the
property that the nodes that selected t2 in s′′ play a best response. Iterating
this reasoning we conclude that after the first t0-phase each node that has the
strategy t2 continues to play a best response.

By the same reasoning subsequent t2 and t0-phases have the same effect on
the set of nodes that have the strategy t2, namely that each of these nodes
continues to play a best response.

Moreover, this set continues to weakly increase. Consequently these repeated
applications of the t2-phase followed by the t0-phase terminate, say in a joint
strategy s′. Now suppose that a node i does not play a best response to s′−i.
Then clearly i 6∈ source(S). If s′i = t0, then by the construction t2 is not a best
response, so t1 is a best response.

Suppose si = t0. Consider the joint strategy st1 which is a Nash equilibrium
in G(St1 ). We have pi(t1, s

t1
−i) ≤ pi(t0, s

t1
−i). Since i 6∈ source(S), we have

si = st1i . Since for all j ∈ V t1 , t1 6∈ P (j) we have pi(t1, s−i) ≤ pi(t0, s−i) as
well. By the join the crowd property pi(t1, s

′
−i) ≤ pi(t1, s−i), so pi(t1, s

′
−i) ≤

pi(t0, s
′
−i), which yields a contradiction. Hence node i deviated to t0 from some

intermediate joint strategy s1 by selecting a best response. So pi(t1, s
1
−i) ≤

pi(t0, s
1
−i). Moreover, by the join the crowd property pi(t1, s

′
−i) ≤ pi(t1, s

1
−i),

so pi(t1, s
′
−i) ≤ pi(t0, s

′
−i), which yields a contradiction, as well.
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Further, by the construction s′i 6= t2, so the only alternative is that s′i = t1.
But then either t0 or t2 is a best response, which contradicts the construction
of s′. We conclude that s′ is a Nash equilibrium in G(S).

3 Nash equilibria: special cases

In view of the fact that in general Nash equilibria may not exist we now consider
networks with special properties of the underlying directed graph. We focus on
three natural classes.

3.1 Directed acyclic graphs

We consider first networks whose underlying graph is a directed acyclic graph
(DAG). Intuitively, such networks correspond to hierarchical organizations. This
restriction leads to a different outcome in the analysis of Nash equilibria.

Given a DAG G := (V,E), we use a fixed level by level enumeration rank()
of its nodes so that for all i, j ∈ V

if rank(i) < rank(j), then there is no path in G from j to i. (1)

Theorem 3. Consider a network S whose underlying graph is a DAG. Then
G(S) always has a non-trivial Nash equilibrium.

Proof. We proceed by assigning to each node a strategy following the order
determined by (1). Given a node we assign to it a best response to the sequence
of strategies already assigned to all his neighbours. (By definition the strategies
of other players have no influence on the choice of a best response.) This yields
a non-trivial Nash equilibrium.

Note that when the underlying graph is a DAG all Nash equilibria are non-
trivial. Further, in the procedure described in the above proof, in general more
than one best response can exist. In that case multiple Nash equilibria exist.

The above procedure uses the set of best responses BRi(sN(i)) of player i to
the joint strategy sN(i) of his neighbours in G(S). This set is defined directly in
terms of sN(i) and S as follows, where S = (G,P , P, θ).

Let

Z>0
i (sN(i)) := {t ∈ P (i) |

∑

k∈N(i),sk=t

wki − θ(i, t) > 0},

Z=0
i (sN(i)) := {t0} ∪ {t ∈ P (i) |

∑

k∈N(i),sk=t

wki − θ(i, t) = 0}.

Then

BRi(sN(i)) :=







argmax
t∈Z>0

i
(sN(i))

(
∑

k∈N(i),sk=t

wki − θ(i, t)
)

if Z>0
i (sN(i)) 6= ∅

Z=0
i (sN(i)) otherwise

Finally, we consider the price of anarchy and the price of stability for the
considered class of games. The following simple result holds.
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Theorem 4. The price of anarchy and the price of stability for the games
associated with the networks whose underlying graph is a DAG is unbounded.

Proof. Consider the network depicted in Figure 2.

i
wij //_________

{t1}
j

wjk //_________
{t2}

k
{t2}

Figure 2: A network with a high price of anarchy and stability

Choose an arbitrary value r > 0. Suppose first that there exists weights and
thresholds such that wjk − (θ(j, t2) + θ(k, t2)) > rc0. (Recall that the payoff of
player i is c0.)

The game associated with this network has a unique Nash equilibrium,
namely the joint strategy (t1, t0, t0) assigned to the sequence (i, j, k) of nodes.
Its social welfare is c0. In contrast, the social optimum is achieved by the joint
strategy (t1, t2, t2) and equals

c0 + wjk − (θ(j, t2) + θ(k, t2)) > rc0.

So for every value r > 0 there is a network whose game has price of anarchy
and price of stability higher than r.

Suppose now that the inequality wjk − (θ(j, t2) + θ(k, t2)) > rc0 does not
hold for any choice of weights and thresholds. (This is for instance the case
when rc0 ≥ 1, which can be the case as c0 and r are arbitrary.) In that case,
we modify the above social network as follows. First, we replace the node k by
⌈rc0 + 1⌉ nodes, all direct descendants of node j and each with the product set
{t2}. Then we choose the weights and the thresholds in such a way that the
sum of all these weights minus the sum of all the thresholds for the product t2
exceeds rc0. In the resulting game, by the same argument as above, both the
price of anarchy and price of stability are higher than r.

3.2 Simple cycles

Next, we consider networks whose underlying graph is a simple cycle. To fix
the notation suppose that the underlying graph is 1 → 2 → . . . → n → 1. We
assume that the counting is done in cyclic order within {1, . . . , n} using the
increment operation i ⊕ 1 and the decrement operation i ⊖ 1. In particular,
n⊕ 1 = 1 and 1⊖ 1 = n. The payoff functions can then be rewritten as follows:

pi(s) :=











0 if si = t0

wi⊖1 i − θ(i, si) if si = si⊖1 and si ∈ P (i)

−θ(i, si) otherwise

Clearly t0 is a trivial Nash equilibrium. The following observation clarifies
when other Nash equilibria exist.
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Theorem 5. Consider a network S whose underlying graph is a simple cycle.
Then s is a non-trivial (respectively, determined) Nash equilibrium of the game
G(S) iff s is of the form t̄ for some product t and for all i, pi(s) ≥ 0.

Proof. (⇒ ) Consider a non-trival Nash equilibrium s. Suppose that si = t for a
product t. We have pi(s) ≥ pi(t0, s−i) = 0, so si⊖1 = t. Iterating this reasoning
we conclude that s = t̄.

(⇐ ) Straightforward.

Next, we consider the price of anarchy and the price of stability. We have
the following counterpart of Theorem 4.

Theorem 6. The price of anarchy and the price of stability for the games asso-
ciated with the networks whose underlying graph is a simple cycle is unbounded.

Proof. Choose an arbitrary value r > 0 and let ǫ be such that ǫ < min(1
4 ,

1
2(r+1)).

Then both 1− 2ǫ > 2ǫ and 1−2ǫ
2ǫ > r.

Consider the network depicted in Figure 3.

1
)){t1,t2}

2ii
{t1,t2}

Figure 3: Another network with a high price of anarchy and stability

We assume that

w12 − θ(2, t2) = 1− ǫ, w21 − θ(1, t2) = −ǫ, w12 − θ(2, t1) = ǫ, w21 − θ(1, t1) = ǫ.

Then the social optimum is achieved in the joint strategy (t2, t2) and equals
1 − 2ǫ. There are two Nash equilibria, (t1, t1) and the trivial one, with the
respective social welfare 2ǫ and 0.

In the case of the price of anarchy we deal with the division by zero. We
interpret the outcome as∞. The price of stability equals 1−2ǫ

2ǫ , so is higher than
r.

3.3 Graphs with no source nodes

Finally, we consider the case when the underlying graphG = (V,E) of a network
S has no source nodes, i.e., for all i ∈ V , N(i) 6= ∅. Intuitively, such a network
corresponds to a ‘circle of friends’: everybody has a friend (a neighbour).

Here and elsewhere we only consider subgraphs that are induced and identify
each such subgraph with its set of nodes. (Recall that (V ′, E′) is an induced
subgraph of (V,E) if V ′ ⊆ V and E′ = E ∩ (V ′ × V ′).)

We say that a (non-empty) strongly connected subgraph (in short, SCS) Ct
of G is self-sustaining for a product t if for all i ∈ Ct,

• t ∈ P (i),
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•
∑

j∈N(i)∩Ct

wji ≥ θ(i, t).

An easy observation is that if S is a network with no source nodes, then it
always has a trivial Nash equilibrium, t0. The following lemma states that for
such networks every non-trivial Nash equilibrium satisfies a structural property
which relates it to the set of self- sustaining SCSs in the underlying graph. We
use the following notation: for a joint strategy s and a product t, At(s) := {i ∈
V | si = t} and P (s) := {t | ∃i ∈ V with si = t}.

Lemma 7. Let S = (G,P , P, θ) be a network whose underlying graph has no
source nodes. If s 6= t0 is a Nash equilibrium in G(S), then for all products
t ∈ P (s) \ {t0} and i ∈ At(s) there exists a self-sustaining SCS Ct ⊆ At(s) for
t and a j ∈ Ct such that j →∗ i.

Proof. Suppose s 6= t0 is a Nash equilibrium. Take any product t 6= t0 and
an agent i such that si = t (by assumption, at least one such t and i exists).
Recall that N ti (s) is the set of neighbours of i who adopted the product t in s.
Consider the set of nodes Pred :=

⋃

m∈N
Predm, where

• Pred0 := {i},

• Predm+1 := Predm ∪
⋃

j∈Predm
N tj (s).

By construction for all j ∈ Pred, sj = t and N tj (s)⊆ Pred. Moreover, since
s is a Nash equilibrium, we also have

∑

k∈N t
j

(s)

wkj ≥ θ(j, t).

Consider the partial ordering < between the strongly connected components
of the graph induced by Pred defined by: C < C′ iff j → k for some j ∈ C and
k ∈ C′. Now take some SCS Ct induced by a strongly connected component
that is minimal in the < ordering. Then for all k ∈ Ct we have N tk(s)⊆ Ct and
hence N tk(s)⊆N(k) ∩Ct. This shows that Ct is self-sustaining.

Moreover, by the construction of Pred for all j ∈ Pred, and a fortiori for all
j ∈ Ct, we also have j →∗ i. Since the choice of t and i was arbitrary, the claim
follows.

Using Lemma 7, we can now provide a necessary and sufficient condition for
the existence of non-trivial Nash equilibria for the considered networks.

Theorem 8. Let S = (G,P , P, θ) be a network whose underlying graph has no
source nodes. The joint strategy t0 is a unique Nash equilibrium in G(S) iff
there does not exist a product t and a self-sustaining SCS Ct for t in G.

Proof. (⇐) By Lemma 7.
(⇒) Suppose there exists a self-sustaining SCS Ct for a product t. Let R be the
set of nodes reachable from Ct which eventually can adopt product t. Formally,
R :=

⋃

m∈N
Rm where

• R0 := Ct,
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• Rm+1 := Rm ∪ {j | t ∈ P (j) and
∑

k∈N(j)∩Rm

wkj ≥ θ(j, t)}.

Let s be the joint strategy such that for all j ∈ R, we have sj = t and for
all k ∈ V \R, we have sk = t0. It follows directly from the definition of R that
s satisfies the following properties:

(P1) for all i ∈ V , si = t0 or si = t,

(P2) for all i ∈ V , si 6= t0 iff i ∈ R,

(P3) for all i ∈ V , if i ∈ R then pi(s) ≥ 0.

We show that s is a Nash equilibrium. Consider first any j such that sj = t
(so sj 6= t0). By (P2) j ∈ R and by (P3) pj(s) ≥ 0. Since pj(s−j , t0) =
0 ≤ pj(s), player j does not gain by deviating to t0. Further, by (P1), for
all k ∈ N(j), sk = t or sk = t0 and therefore for all products t′ 6= t we have
pj(s−j , t

′) < 0 ≤ pj(s). Thus player j does not gain by deviating to any product
t′ 6= t either.

Next, consider any j such that sj = t0. We have pj(s) = 0 and from (P2) it
follows that j 6∈ R. By the definition of R we have

∑

k∈N(j)∩R

wkj < θ(j, t). Thus

pj(s−j , t) < 0. Moreover, for all products t′ 6= t we also have pj(s−j , t
′) < 0 for

the same reason as above. So player j does not gain by a unilateral deviation.
We conclude that s is a Nash equilibrium.

Next, for a product t ∈ P , we define the set Xt :=
⋂

m∈N
Xmt , where

• X0
t := {i ∈ V | t ∈ P (i)},

• Xm+1
t := {i ∈ V |

∑

j∈N(i)∩Xm
t
wji ≥ θ(i, t)}.

We also have the following characterization result.

Theorem 9. Let S be a network whose underlying graph has no source nodes.
There exists a non-trivial Nash equilibrium in G(S) iff there exists a product t
such that Xt 6= ∅.

Proof. Suppose S = (G,P , P, θ).
(⇒) It follows directly from the definitions that if there is a self-sustaining SCS
Ct for product t, then Ct ⊆ Xt. Suppose now that for all t, Xt = ∅. Then for
all t, there is no self-sustaining SCS for t. So by Theorem 8, t0 is a unique Nash
equilibrium.
(⇐) Suppose there exists t such that Xt 6= ∅. Let s be the joint strategy defined
as follows:

si :=

{

t if i ∈ Xt

t0 if i 6∈ Xt

By the definition of Xt, for all i ∈ Xt, pi(s) ≥ 0. So no player i ∈ Xt gains
by deviating to t0 (as then his payoff would become 0) or to a product t′ 6= t (as
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then his payoff would become negative since no player adopted t′). Also, by the
definition of Xt and of the joint strategy s, for all i 6∈ Xt and for all t′ ∈ P (i),
pi(t
′, s−i) < 0. Therefore, no player i 6∈ Xt gains by deviating to a product t′

either. It follows that s is a Nash equilibrium.

4 Finite best response improvement property:

special cases

As in the case of Nash equilibria we now analyze the FBRP for social network
games whose underlying graph satisfies certain properties.

4.1 Directed acyclic graphs

We begin with social network games whose underlying graph is a DAG. Then
the following positive result holds.

Theorem 10. Consider a network S whose underlying graph is a DAG. Then
the game G(S) has the FBRP.

This is a direct consequence of a stronger result, Theorem 13 of Section 5.1.

4.2 Simple cycles

The property that the game has the FBRP does not hold anymore when the
underlying graph is a simple cycle. To see this consider Figure 4(a). Suppose
that t̄ is a Nash equilibrium in which each player gets a strictly positive payoff.
Figure 4(b) then shows an infinite best response improvement path. In each
strategy profile, we underline the strategy that is not a best response to the
choice of other players.

1

��<
<<

<<
<<
{t}

{t}

3

AA�������{t}

2oo__________

(t,t,t0) +3___ ___ (t0,t,t0) +3___ ___ (t0,t,t)

��
��
�
��
�

(t,t0,t0)

KS���
���

(t,t0,t)ks ______ (t0,t0,t)ks ______

(a) (b)

Figure 4: A network with an infinite best response improvement path

Next consider Figure 5(a). Suppose that both t1 and t2 are Nash equilibria.
Then Figure 5(b) shows an infinite best response improvement path.

One can easily generalize the above two examples to simple cycles with more
than three nodes. We now show that when the game does not have the FBRP,
the network is necessarily of one of the above two types.

Theorem 11. Let S be a network whose underlying graph is a simple cycle.
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AA�������{t1,t2}

2oo__________

(t1,t1,t2) +3___ ___ (t2,t1,t2) +3___ ___ (t2,t1,t1)

��
��
�
��
�

(t1,t2,t2)

KS���
���
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(a) (b)

Figure 5: Another network with an infinite best response improvement path

(i) Suppose that S has 2 nodes. Then the game G(S) has the FBRP.

(ii) Suppose that S has at least 3 nodes. Then the game G(S) does not have
the FBRP iff either it has a determined Nash equilibrium s such that for
all i, pi(s) > 0 or it has two determined Nash equilibria.

Proof. (i) A simple analysis, which we leave to the reader, shows that the longest
possible improvement path is of length five and is of the form (t1, t2), (t0, t2),
(t2, t2), (t2, t0), (t0, t0).

(ii) (⇒ ) Consider an infinite best response improvement path ξ. Some node
changes his strategy in ξ infinitely often. This means that some node, say i,
selects in ξ some product t infinitely often. Indeed, otherwise from some moment
on in each strategy profile in ξ its strategy would be t0, which is not the case.

Each time node i switches in ξ to the product t, it selects a best response, so
its payoff becomes at least 0. Consequently, at the moment of such a switch its
predecessor i⊖ 1’s strategy is necessarily t as well. So if from some moment on
node i⊖1 does not switch from the strategy t, then node i does not switch from
t either. This shows that node i⊖ 1 also selects in ξ product t infinitely often.
Iterating this reasoning we conclude that each node selects in ξ the product t
infinitely often. Therefore, for all i, t ∈ P (i). Since the payoff of i depends only
on the choice of i⊖ 1, we also have that pi(t) ≥ 0 for all i. By Theorem 5, t̄ is
a Nash equilibrium.

This shows that if a node selects in ξ some product t1 infinitely often, then
all nodes select in ξ the product t1 infinitely often and t1 is a Nash equilibrium.
Suppose now that t̄ is a unique determined Nash equilibrium. This means that
all other products are selected in ξ finitely often. So from some moment on in ξ
nodes select only t or t0. In this suffix η of ξ each node selects t infinitely often.
Further, each switch to t from t0 is a better response. Hence each time a node
switches in η to t its payoff becomes > 0. This shows that t̄ is a determined
Nash equilibrium such that for all i, pi(t̄) > 0.

(⇐ ) Suppose first that the game G(S) has a determined Nash equilibrium s
such that for all i, pi(s) > 0. By Theorem 5 s is of the form t̄ for some product
t. Then consider the following strategy profile:

s := (t, . . ., t, t0).

First schedule node 1 that has a better response, namely t0. Next, schedule
node n for which t is a best response. After these two steps the strategy profile
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becomes a rotation of s by 1. Iterating this selection procedure we obtain an
infinite best response improvement path.

Next, suppose that the game G(S) has two determined Nash equilibria. By
Theorem 5 they are of the form t1 and t2 for some products t1 and t2. Then
consider the following strategy profile:

s := (t1, . . ., t1, t2).

First schedule node 1 for which t2 is a best response. Next, schedule node n for
which t1 is a best response. After these two steps the strategy profile becomes a
rotation of s by 1. Iterating this selection procedure we obtain an infinite best
response improvement path.

5 Finite improvement property: special cases

In this section we clarify whether the special classes of social network games
have the FIP.

In what follows we make use of the following simple observation.

Note 12. Consider a game G(S). If a node i is infinitely often selected in an
improvement path, then so is a node j ∈ N(i). ✷

5.1 Graphs with special strongly connected components

We begin with the strategic games associated with the networks whose under-
lying graph is a DAG. Then the following positive result holds.

Theorem 13. Consider a network S whose underlying graph is a DAG. Then
the game G(S) has the FIP.

Proof. Suppose not. Then by repeatedly using Note 12 we obtain an infinite
path in the underlying graph. This yields a contradiction.

We now generalize this result to a larger class of directed graphs. First we
consider the case of two player games.

Theorem 14. Every two player social network game has the FIP.

Proof. By Theorem 13 we can assume that the underlying graph is a cycle, say
1→ 2→ 1. Consider an improvement path ρ. By removing, if necessary, some
steps we can assume that the players alternate their moves in ρ.

In what follows given an element of ρ (that is not the last one) we underline
the strategy of the player who moves, i.e., selects a better response. We call
each element of ρ of the type (t, t) or (t, t) a match and use ⇒ to denote the
transition between two consecutive joint strategies in ρ. Further, we shorten the
statement “each time player i switches his strategy his payoff strictly increases
and it never decreases when his opponent switches strategy” to “player i’s payoff
steadily goes up”.
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Consider now two successive matches in ρ, based respectively on the strate-
gies t and t1. The corresponding segment of ρ is one of the following four types.
Type 1. (t, t)⇒∗ (t1, t1).

The fragment of ρ that starts at (t, t) and finishes at (t1, t1) has the following
form:

(t, t)⇒ (t2, t)⇒
∗ (t1, t3)⇒ (t1, t1).

Note that player 1’s payoff can drop in a segment of ρ only if this segment
contains a transition of the form (t′, t′)⇒ (t′, t1). So in the considered segment
player 1’s payoff steadily goes up. Additionally, in the step (t1, t3)⇒ (t1, t1) his
payoff increases by w21.

In turn, in the step (t, t)⇒ (t2, t) player 2’s payoff decreases by w12 and in
the remaining steps his payoff steadily goes up. So p1(t̄) + w21 < p1(t1) and
p2(t̄)− w12 < p2(t1).

Type 2. (t, t)⇒∗ (t1, t1).
For the analogous reason as above player 1’s payoff steadily goes up. In

turn, in the first step of (t, t)⇒∗ (t1, t1) the payoff of player 2 decreases by w12,
while in the last step (in which player 1 moves) his payoff increases by w12. So
these two payoff changes cancel each other. Additionally, in the remaining steps
player 2’s payoff steadily goes up. So p1(t̄) < p1(t1) and p2(t̄) < p2(t1).

Type 3. (t, t)⇒∗ (t1, t1).
This type is symmetric to Type 2, so p1(t̄) < p1(t1) and p2(t̄) < p2(t1).

Type 4. (t, t)⇒∗ (t1, t1).
This type is symmetric to Type 1, so p1(t̄)−w21 < p1(t1) and p2(t̄) +w12 <

p2(t1).

We summarize in Table 1 the changes in the payoffs p1 and p2 between the
considered two matches.

Type p1 p2

1 increases decreases
by > w21 by < w12

2, 3 increases increases
4 decreases increases

by < w21 by > w12

Table 1: Changes in p1 and p2

Consider now a match (t, t) in ρ and a match (t1, t1) that appears later in
ρ. Let Ti denote the number of internal segments of type i that occur in the
fragment of ρ that starts with (t, t) and ends with (t1, t1).

Case 1. T1 ≥ T4.
Then Table 1 shows that the aggregate increase in p1 in segments of type 1

exceeds the aggregate decrease in segments of type 4. So p1(t̄) < p1(t1).
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Case 2. T1 < T4.
Then analogously Table 1 shows that p2(t̄) < p2(t1).

We conclude that t 6= t1. By symmetry the same conclusion holds if the
considered matches are of the form (t, t) and (t1, t1). This proves that each
match occurs in ρ at most once. So in some suffix η of ρ no match occurs. But
each step in η increases the social welfare, so η is finite, and consequently ρ
is.

In social network games the players share at least one strategy, t0, that
ensures each of them the zero payoff. Also, the weights and thresholds are
drawn from specific intervals. However, these properties are not used in the
above proof. As a result the above proof shows that each of the following two
player games has the FIP.

• The set of strategies of player i is a finite set Si,

• the payoff function is defined by pi(s) := fi(si) + ai(si = s−i), where
fi : Si → R, ai > 0 and (si = s−i) is defined by

(si = s−i) :=

{

1 if si = s−i

0 otherwise

Intuitively, ai can be viewed as a bonus for player i for coordinating with his
opponent.

We can now draw a conclusion about a larger class of social network games.

Theorem 15. Consider a network S such that each strongly connected compo-
nent of the underlying graph is a cycle of length 2. Then the game G(S) has the
FIP.

Proof. Suppose S = (G,P , P, θ). Consider the condensation of G, i.e., the DAG
G′ resulting from contracting each cycle of G to a single node. We enumerate
the nodes of G using the function rank() (introduced in Subsection 3.1) such
that if rank(i) < rank(j), then there is no path in G from j to i, and subse-
quently modify it to an enumeration rank′() of the nodes of G′, by replacing
each contraction of a cycle by its two nodes.

Suppose now that an infinite improvement path ρ in G(S) exists. Choose
the first node i in the enumeration rank′() that is infinitely often selected in ρ.
By Note 12 i lies on a cycle, say i→ i′ → i, in G. Consider a suffix of ρ in which
the nodes that precede i in rank′() do not appear anymore. In particular, by the
choice of i, the neighbours of i or i′ precede i in rank′(), so they do not appear
in this suffix either. Delete from each element of this suffix the strategies of the
nodes that differ from i and i′. We obtain in this way an infinite improvement
path in the two player game G′ associated with the weighted directed graph
related to the cycle i→ i′ → i, which contradicts Theorem 14.

There is a small subtlety in the last step that we should clarify. The payoff
functions in the game G′ need to take into account the weights of the edges from
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all the neighbours of i and i′ and the final strategies chosen by these neighbours.
For instance, in the case of the directed graph from Figure 6 the game G′ has
the players i and i′ but the weights of the edges k → i and k → i′ and the
final strategy of node k need to be taken into account in the computation of the
payoff functions for, respectively, nodes i and i′.

k
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��:
::

::
::

i
))
i′ii

Figure 6: A directed graph

So the game G′ is not exactly the social network game associated with the
weighted directed graph related to i→ i′ → i. However, the observation stated
after the proof of Theorem 14 allows us to conclude that G′ does have the
FIP.
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