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Intelligent Design
A theory of an intelligently guided invisible hand wins the
Nobel prize

WHAT on earth is mechanism design? was the

typical reaction to this year’s Nobel prize in

economics, announced on October 15th.

[...]
In fact, despite its dreary name, mechanism

design is a hugely important area of economics,

and underpins much of what dismal scientists do

today. It goes to the heart of one of the

biggest challenges in economics: how to arrange

our economic interactions so that, when everyone

behaves in a self-interested manner, the result

is something we all like.

(The Economist, Oct. 18th, 2007)
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Decision Problems

Decision problem for n players:

set D of decisions,

for each player i a set of (private) types Θi

and a utility function

vi : D ×Θi →R.

Intuitions

Type is some private information known only to the player
(e.g., player’s valuation of the item for sale),

vi(d, θi) represents the benefit to player i of type θi from
the decision d ∈ D.

Assume the individual types are θ1, . . ., θn. Then
∑n

i=1 vi(d, θi) is the social welfare from d ∈ D.
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Decision Rules

Decision rule is a function

f : Θ1 × . . .×Θn →D.

Decision rule f is efficient if

n
∑

i=1

vi(f(θ), θi) ≥

n
∑

i=1

vi(d, θi)

for all θ ∈ Θ and d ∈ D.

Intuition f is efficient if it always maximizes the social welfare.
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Set up

Each player i receives/has a type θi,

each player i submits to the central authority a type θ′i,

the central authority computes decision

d := f(θ′1, . . ., θ
′
n),

and communicates it to each player i.

Basic problem How to ensure that θ′i = θi.
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Example 1: Sealed-Bid Auction

Set up There is a single object for sale. Each player is a buyer.
The decision is taken by means of a sealed-bid auction. The
object is sold to the highest bidder.

D = {1, . . . , n},

each Θi is R+,

vi(d, θi) :=

{

θi if d = i

0 otherwise

Let argsmax θ := µi(θi = maxj∈{1,...,n} θj).

f(θ) := argsmax θ.

Note f is efficient.

Payments will be treated later.
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Example 2: Public Project Problem

Each person is asked to report his or her

willingness to pay for the project, and

the project is undertaken if and only if

the aggregate reported willingness to pay

exceeds the cost of the project.

(15 October 2007, The Royal Swedish Academy of Sciences,
Press Release, Scientific Background)
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Public Project Problem, formally

c: cost of the public project (e.g., building a bridge),

D = {0, 1},

each Θi is R+,

vi(d, θi) := d(θi −
c
n
),

f(θ) :=

{

1 if
∑n

i=1 θi ≥ c

0 otherwise

Note f is efficient.
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Ex. 3: Reversed Sealed-bid Auction

Set up Each player offers the same service. The decision is
taken by means of a sealed-bid auction. The service is
purchased from the lowest bidder.

D = {1, . . . , n},

each Θi is R−;
−θi is the price player i offers,

vi(d, θi) :=

{

θi if d = i

0 otherwise

f(θ) := argsmax θ.

Example f(−8,−5,−4,−6) = 3. That is, given the offers 8, 5, 4, 6,
the service is bought from player 3.
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Ex. 4: Buying a Path in a Network

Set up Given a graph G := (V,E).

• Each edge e ∈ E is owned by player e.

• Two distinguished vertices s, t ∈ V .

• Each player e submits the cost θe of using the edge e.

• The central authority selects the shortest s− t path in G.

D = {p | p is a s− t path in G},

each Θi is R+,

vi(p, θi) :=

{

−θi if i ∈ p

0 otherwise

f(θ) := p, where p is the shortest s− t path in G.
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Manipulations

Example An optimal strategy for player i in public project
problem:

if θi ≥
c
n

submit θ′i = c.

if θi <
c
n

submit θ′i = 0.

For example, assume c = 30.

player type

A 6

B 7

C 25

Players A and B should submit 0. Player c should submit 30.
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Revised Set-up: Direct Mechanisms

Each player i receives/has a type θi,

each player i submits to the central authority a type θ′i;

this yields θ′ := (θ′1, . . ., θ
′
n),

the central authority computes decision

d := f(θ′),

and taxes

t(θ′) := (t1(θ
′), . . ., tn(θ

′)) ∈ R
n,

and communicates to each player i both d and ti(θ
′).

final utility function for player i:
ui : D × R

n ×Θi → R defined by

ui((f, t)(θ), θi) := vi(f(θ), θi) + ti(θ).
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Direct Mechanisms, ctd

When the received (true) type of player i is θi and his
announced type is θ′i, his final utility is

ui((f, t)(θ
′
i, θ−i), θi) = vi(f(θ

′
i, θ−i), θi) + ti(θ

′
i, θ−i),

where θ−i are the types announced by the other players.

Direct mechanism (f, t) is incentive compatible if
for all θ ∈ Θ, i ∈ {1, . . ., n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ
′
i, θ−i), θi).

Intuition Submitting false type (so θ′i 6= θi) does not pay off.

Direct mechanism (f, t) is feasible if
∑n

i=1 ti(θ) ≤ 0 for all θ.

Intuition External financing is never needed.
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Groves Mechanisms

ti(θ) :=
∑

j 6=i vj(f(θ), θj) + hi(θ−i), where

hi : Θ−i → R is an arbitrary function.

Note

ui((f, t)(θ), θi) =
∑n

j=1 vj(f(θ), θj) + hi(θ−i).

Intuitions

Player i cannot manipulate the value of hi(θ−i).

Suppose hi(θ−i) = 0.
When the individual types are θ1, . . ., θn
ui((f, t)(θ), θi) is the social welfare from decision f(θ).
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Groves Theorem

Theorem (Groves ’73)
Suppose f is efficient. Then each Groves mechanism is
incentive compatible.

Proof.
For all θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) =

n
∑

j=1

vj(f(θi, θ−i), θj) + hi(θ−i)

(f is efficient) ≥

n
∑

j=1

vj(f(θ
′
i, θ−i), θj) + hi(θ−i)

= ui((f, t)(θ
′
i, θ−i), θi).
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Special Case: Pivotal Mechanism

hi(θ−i) := −maxd∈D
∑

j 6=i vj(d, θj).

Then

ti(θ) :=
∑

j 6=i

vj(f(θ), θj)−max
d∈D

∑

j 6=i

vj(d, θj) ≤ 0.

Note Pivotal mechanism is feasible.
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Re: Sealed-Bid Auction

Note In the pivotal mechanism

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

So the pivotal mechanism is Vickrey auction (Vickrey ’61):
the winner pays the 2nd highest bid.
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Example

player bid tax to authority util.

A 18 0 0

B 24 −21 3

C 21 0 0

Social welfare: 0 + 0 + 3 = 3.
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Maximizing Social Welfare

Question: Does Vickrey auction maximize social welfare?

Notation θ∗: the reordering of θ is descending order.

Example For θ = (1, 4, 2, 3, 1) we have
θ−2 = (1, 2, 3, 0),
(θ−2)

∗ = (3, 2, 1, 0),
so (θ−2)

∗
2 = 2.

Intuition (θ−2)
∗
2 is the second highest bid among other bids.
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Bailey-Cavallo Mechanism

(Bailey ’97, Cavallo ’06)

Assume n ≥ 3.

ti(θ) := tpi (θ) +
(θ−i)

∗
2

n

Note Bailey-Cavallo mechanism is a Groves mechanism.

Example

player bid tax to authority util. why?

A 18 0 7 (= 1/3 of 21)

B 24 −2 9 (= 3 + (1/3 of 18))

C 21 0 6 (= 1/3 of 18)
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Bailey-Cavallo Mechanism, ctd

Note Bailey-Cavallo mechanism is feasible.

Proof. For all i and θ, (θ−i)
∗
2 ≤ θ∗2, so

n
∑

i=1

ti(θ) = −θ∗2 +

n
∑

i=1

(θ−i)
∗
2

n
=

n
∑

i=1

−θ∗2 + (θ−i)
∗
2

n
≤ 0.

Bailey-Cavallo mechanism is not an auction, because the losers
may receive a payment.
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Re: Public Project Problem

Assume the pivotal mechanism.
Examples Suppose c = 30 and n = 3.

player type tax ui

A 6 0 −4

B 7 0 −3

C 25 −7 8

Social welfare can be negative.

player type tax ui

A 4 −5 −5

B 3 −6 −6

C 22 0 0
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Formally

Note In the pivotal mechanism

ti(θ) =



















0 if
∑

j 6=i θj ≥
n−1
n

c and
∑n

j=1 θj ≥ c
∑

j 6=i θj −
n−1
n

c if
∑

j 6=i θj <
n−1
n

c and
∑n

j=1 θj ≥ c

0 if
∑

j 6=i θj ≤
n−1
n

c and
∑n

j=1 θj < c
n−1
n

c−
∑

j 6=i θj if
∑

j 6=i θj >
n−1
n

c and
∑n

j=1 θj < c

This is the mechanism essentially proposed in Clarke ’71).
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Optimality Result (1)

Theorem (Apt, Conitzer, Guo and Markakis ’08)
Consider the sealed bid auction.
No tax-based mechanism exists that is

feasible,

incentive compatible,

‘better’ than Bailey-Cavallo mechanism.
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Optimality Result (2)

Theorem (Apt, Conitzer, Guo and Markakis ’08)
Consider the public project problem.
No tax-based mechanism exists that is

feasible,

incentive compatible,

‘better’ than Clarke’s tax.
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However . . .

Pivotal mechanism is not optimal in the public project problem

when the payments per player can differ.
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Re: Reversed Sealed-Bid Auction

Take

ti(θ) :=
∑

j 6=i

vj(f(θ), θj)− max
d∈D\{i}

∑

j 6=i

vj(d, θj).

Note

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

So in this mechanism the winner receives the amount equal to
the 2nd lowest offer.

Example Consider Θ = (−8,−5,−4,−6). The service is bought
from player 3 who receives for it 5.
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Re: Buying a Path in a Network

(Nisan, Ronen ’99)
Take

ti(θ) :=
∑

j 6=i

vj(f(θ), θj)− max
p∈D(G\{i})

∑

j 6=i

vj(p, θj).

Note

ti(θ) =

{

cost(p2)− cost(p1 − {i}) if i ∈ p1

0 otherwise

where

p1 is the shortest s− t path in G(θ),
p2 is the shortest s− t path in (G \ {i})(θ−i).
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Example

Consider the player owning the edge e.
To compute the payment he receives

determine the shortest s− t path. Its length is 7. It contains e.

determine the shortest s− t path that does not include e. Its
length is 12.

So player e receives 12− (7− 4) = 9.
His final utility is 9− 4 = 5.
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Pre-Bayesian Games
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Pre-Bayesian Games

(Hyafil, Boutilier ’04, Ashlagi, Monderer, Tennenholtz ’06,)

In a strategic game after each player selected his strategy
each player knows all the payoffs
(complete information).

In a pre-Bayesian game after each player selected his
strategy each player knows only his payoff
(incomplete information).

This is achieved by introducing (private) types.
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Pre-Bayesian Games: Definition

Pre-Bayesian game for n ≥ 2 players:

(possibly infinite) set Ai of actions,

(possibly infinite) set Θi of (private) types,

payoff function pi : A1 × . . .×An ×Θi →R,

for each player i.

Basic assumptions:

Nature moves first and provides each player i with a θi,

players do not know the types received by other players,

players choose their actions simultaneously,

each player is rational (wants to maximize his payoff),

players have common knowledge of the game and of each
others’ rationality.
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Ex-post Equilibrium

A strategy for player i:

si(·) ∈ AΘi

i .

Joint strategy s(·) is an ex-post equilibrium if each si(·) is a

best response to s−i(·):

∀θ ∈ Θ ∀i ∈ {1, . . ., n} ∀s′i(·) ∈ AΘi

i

pi(si(θi), s−i(θ−i), θi) ≥ pi(s
′
i(θi), s−i(θ−i), θi).

Note: For each θ ∈ Θ we have one strategic game.
s(·) is an ex-post equilibrium if for each θ ∈ Θ the joint action
(s1(θ1), . . ., sn(θn)) is a Nash equilibrium in the θ-game.
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Quiz

Θ1 = {U,D}, Θ2 = {L,R},

A1 = A2 = {F,B}.

U

L

F B
F 2, 1 2, 0
B 0, 1 2, 1

R

F B
F 2, 0 2, 1
B 0, 0 2, 1

D

F B
F 3, 1 2, 0
B 5, 1 4, 1

F B
F 3, 0 2, 1
B 5, 0 4, 1

Which strategies form an ex-post equilibrium?
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Answer

Θ1 = {U,D}, Θ2 = {L,R},

A1 = A2 = {F,B}.

U

L

F B
F 2, 1 2, 0
B 0, 1 2, 1

R

F B
F 2, 0 2, 1
B 0, 0 2, 1

D

F B
F 3, 1 2, 0
B 5, 1 4, 1

F B
F 3, 0 2, 1
B 5, 0 4, 1

Strategies
s1(U) = F, s1(D) = B,
s2(L) = F, s2(R) = B
form an ex-post equilibrium.
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But . . .

Ex-post equilibrium does not need to exist in mixed extensions of
finite pre-Bayesian games.

Example: Mixed extension of the following game.

Θ1 = {U,B}, Θ2 = {L,R},

A1 = A2 = {C,D}.

U

L

C D
C 2, 2 0, 0
D 3, 0 1, 1

R

C D
C 2, 1 0, 0
D 3, 0 1, 2

B

C D
C 1, 2 3, 0
D 0, 0 2, 1

C D
C 1, 1 3, 0
D 0, 0 2, 2

Mechanism Design – p. 38/41



Safety-level Equilibrium

Strategy si(·) for player i is a safety-level best response to
s−i(·) if for all strategies s′i(·) of player i and all θi ∈ Θi

min
θ
−i∈Θ−i

pi(si(θi), s−i(θ−i), θi) ≥ min
θ
−i∈Θ−i

pi(s
′
i(θi), s−i(θ−i), θi).

Intuition minθ
−i∈Θ−i

pi(si(θi), s−i(θ−i), θi) is the guaranteed

payoff to player i when his type is θi and s(·) are the selected
strategies.

Joint strategy s(·) is a safety-level equilibrium if each si(·) is a
safety-level best response to s−i(·).

Theorem (Ashlagi, Monderer, Tennenholtz ’06)
Every mixed extension of a finite pre-Bayesian game has a
safety-level equilibrium.
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Relation to Mechanism Design

Strategy si(·) is dominant if for all a ∈ A and θi ∈ Θi

∀a ∈ A pi(si(θi), a−i, θi) ≥ pi(ai, a−i, θi).

A pre-Bayesian game is of a revelation-type if Ai = Θi for all
i ∈ {1, . . ., n}.

So in a revelation-type pre-Bayesian game the strategies of
player i are the functions on Θi.

A strategy for player i is called truth-telling if it is the identity
function πi(·).
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Relation to Mechanism Design, ctd

Mechanism design (as discussed here) can be viewed as an
instance of the revelation-type pre-Bayesian games.

With each direct mechanism (f, t) we can associate a
revelation-type pre-Bayesian game:

Each Θi as in the mechanism,

Each Ai = Θi,

pi(θ
′
i, θ−i, θi) := ui((f, t)(θ

′
i, θ−i), θi).

Note Direct mechanism (f, t) is incentive compatible iff in the
associated pre-Bayesian game for each player truth-telling is
a dominant strategy.

Conclusion In the pre-Bayesian game associated with a
Groves mechanism, (π1(·), . . ., πi(·)) is a dominant strategy
ex-post equilibrium.
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