
Chapter 10

Mechanism Design

Mechanism design is one of the important areas of economics. The 2007
Nobel prize in Economics went to three economists who laid its foundations.
To quote from the article Intelligent design, published in The Economist,
October 18th, 2007, mechanism design deals with the problem of ‘how to
arrange our economic interactions so that, when everyone behaves in a self-
interested manner, the result is something we all like.’ So these interactions
are supposed to yield desired social decisions when each agent is interested
in maximizing only his own utility.

In mechanism design one is interested in the ways of inducing the players
to submit true information. To discuss it in more detail we need to introduce
some basic concepts.

10.1 Decision problems

Assume a set of decisions D, a set {1, . . . , n} of players, and for each player

• a set of types Θi, and

• an initial utility function vi : D × Θi → R.

In this context a type is some private information known only to the player,
for example, in the case of an auction, player’s valuation of the items for sale.

As in the case of strategy sets we use the following abbreviations:

• Θ := Θ1 × . . . × Θn,

82



• Θ−i := Θ1 × . . .×Θi−1 ×Θi+1 × . . .×Θn, and similarly with θ−i where
θ ∈ Θ,

• (θ′i, θ−i) := θ1 × . . . × θi−1 × θ′i × θi+1 × . . . × θn.

In particular (θi, θ−i) = θ.
A decision rule is a function f : Θ → D. We call the tuple

(D, Θ1, . . . , Θn, v1, . . . , vn, f)

a decision problem .
Decision problems are considered in the presence of a central authority

who takes decisions on the basis of the information provided by the play-
ers. Given a decision problem the desired decision is obtained through the
following sequence of events, where f is a given, publicly known, decision
rule:

• each player i receives (becomes aware of) his type θi ∈ Θi,

• each player i announces to the central authority a type θ′i ∈ Θi; this
yields a type vector θ′ := (θ′1, . . ., θ

′
n),

• the central authority then takes the decision d := f(θ′) and communi-
cates it to each player,

• the resulting initial utility for player i is then vi(d, θi).

The difficulty in taking decisions through the above described sequence
of events is that players are assumed to be rational , that is they want to
maximize their utility. As a result they may submit false information to
manipulate the outcome (decision). We shall return to this problem in the
next section. But first, to better understand the above notion let us consider
some natural examples.

Given a sequence a := (a1, . . . , aj) of reals denote the least l such that
al = maxk∈{1,...,j} ak by argsmax a.

Additionally, for a function g : A → R we define

argmaxx∈Ag(x) := {y ∈ A | g(y) = max
x∈A

g(x)}.

So a ∈ argmaxx∈Ag(x) means that a is a maximum of the function g on the
set A.
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Example 18 [Sealed-bid auction]
We consider a sealed-bid auction in which there is a single object for

sale. Each player (bidder) simultaneously submits to the central authority
his type (bid) in a sealed envelope and the object is allocated to the highest
bidder.

We view each player’s valutation as his type. More precisely, we model
this type of auction as the following decision problem (D, Θ1, . . . , Θn, v1, . . . , vn, f):

• D = {1, . . . , n},

• for all i ∈ {1, . . ., n}, Θi = R+;

θi ∈ Θi is player’s i valuation of the object,

• vi(d, θi) :=

{

θi if d = i

0 otherwise

• f(θ) := argsmax θ.

Here decision d ∈ D indicates to which player the object is sold. Note
that at this stage we only modeled the fact that the object is sold to
the highest bidder (with the ties resolved in the favour of a bidder with
the lowest index). We shall return to the problem of payments in the
next section. ✷

Example 19 [Public project problem]
This problem deals with the task of taking a joint decision concerning

construction of a public good 1, for example a bridge.
It is explained as follows in the Scientific Background of the Royal Swedish

Academy of Sciences Press Release that accompanied the Nobel prize in
Economics in 2007:

Each person is asked to report his or her willingness to pay for the
project, and the project is undertaken if and only if the aggregate
reported willingness to pay exceeds the cost of the project.

1In Economics public goods are so-called not excludable and nonrival goods. To quote

from the book N.G. Mankiw, Principles of Economics, 2nd Editiona, Harcourt, 2001:

“People cannot be prevented from using a public good, and one person’s enjoyment of a

public good does not reduce another person’s enjoyment of it.”
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So there are two decisions: to carry out the project or not. In the termi-
nology of the decision problems each player reports to the central authority
his appreciation of the gain from the project when it takes place. If the sum
of the appreciations exceeds the cost of the project, the project takes place.
We assume that each player has to pay then the same fraction of the cost.
Otherwise the project is cancelled.

This leads to the following decision problem:

• D = {0, 1},

• each Θi is R+,

• vi(d, θi) := d(θi −
c
n
),

• f(θ) :=

{

1 if
∑n

i=1 θi ≥ c

0 otherwise

Here c is the cost of the project. If the project takes place (d = 1), c
n

is
the cost share of the project for each player. ✷

Example 20 [Taking an efficient decision] We assume a finite set of de-
cisions. Each player submits to the central authority a function that describes
his satisfaction level from each decision if it is taken. The central authority
then chooses a decision that yields the maximal overall satisfaction.

This problem corresponds to the following decision problem:

• D is the given finite set of decisions,

• each Θi is {f | f : D → R},

• vi(d, θi) := θi(d),

• the decision rule f is a function such that for all θ, f(θ) ∈ argmaxd∈D

∑n

i=1 θi(d).

✷

Example 21 [Reversed sealed-bid auction]
In the reversed sealed-bid auction each player offers the same service,

for example to construct a bridge. The decision is taken by means of a sealed-
bid auction. Each player simultaneously submits to the central authority his
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type (bid) in a sealed envelope and the service is purchased from the lowest
bidder.

We model it in exactly the same way as the sealed-bid auction, with the
only exception that for each player the types are now non-positive reals. So
we consider the following decision problem:

• D = {1, . . . , n},

• for all i ∈ {1, . . ., n}, Θi = R− (the set of non-positive reals);

−θi, where θi ∈ Θi, is player’s i offer for the service,

• vi(d, θi) :=

{

θi if d = i

0 otherwise

• f(θ) := argsmax θ.

Here decision d ∈ D indicates from which player the service is bought. So
for example f(−8,−5,−4,−6) = 3, that is, given the offers 8, 5, 4, 6 (in that
order), the service is bought from player 3, since he submitted the lowest
bid, namely 4. As in the case of the sealed-bid auction, we shall return to
the problem of payments in the next section. ✷

Example 22 [Buying a path in a network]
We consider a communication network, modelled as a directed graph

G := (V, E) (with no self-cycles or parallel edges). We assume that each
edge e ∈ E is owned by a player, also denoted by e. So different edges are
owned by different players. We fix two distinguished vertices s, t ∈ V . Each
player e submits the cost θe of using the edge e. The central authority selects
on the basis of players’ submissions the shortest s − t path in G.

Below we denote by G(θ) the graph G augmented with the costs of edges
as specified by θ. That is, the cost of each edge i in G(θ) is θi.

This problem can be modelled as the following decision problem:

• D = {p | p is a s − t path in G},

• each Θi is R+;

θi is the cost incurred by player i if the edge i is used in the selected
path,
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• vi(p, θi) :=

{

−θi if i ∈ p

0 otherwise

• f(θ) := p, where p is the shortest s − t path in G(θ).

In the case of multiple shortest paths we select, say, the one that is
alphabetically first.

Note that in the case an edge is selected, the utility of its owner be-
comes negative. This reflects the fact we focus on incurring costs and not on
benefits. In the next section we shall introduce taxes and discuss a scheme
according to which each owner of a selected path is paid by the central au-
thority an amount exceeding the incurred costs. ✷

Let us return now to the decision rules. We call a decision rule f efficient

if for all θ ∈ Θ and d′ ∈ D

n
∑

i=1

vi(f(θ), θi) ≥

n
∑

i=1

vi(d
′, θi),

or alternatively

f(θ) ∈ argmaxd∈D

n
∑

i=1

vi(d, θi).

This means that for all θ ∈ Θ, f(θ) is a decision that maximizes the
initial social welfare, defined by

∑n

i=1 vi(d, θi).
It is easy to check that the decision rules used in Examples 18–22 are

efficient. Take for instance Example 22. For each s − t path p we have
∑n

i=1 vi(p, θi) = −
∑

j∈p θj , so
∑n

i=1 vi(p, θi) reaches maximum when p is a
shortest s − t path in G(θ), which is the choice made by the decision rule f

used there.

10.2 Direct mechanisms

Let us return now to the subject of manipulations. A problem with our
description of the sealed-bid auction is that we intentionally neglected the
fact that the winner should pay for the object for sale. Still, we can imagine
in this limited setting that player i with a strictly positive valuation of the
object somehow became aware of the types (that is, bids) of the other players.
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Then he should just submit a type strictly larger than the other types. This
way the object will be allocated to him and his utility will increase from 0
to θi.

The manipulations are more natural to envisage in the case of the public
project problem. A player whose type (that is, appreciation of the gain
from the project) exceeds c

n
, the cost share he is to pay, should manipulate

the outcome and announce the type c. This will guarantee that the project
will take place, irrespectively of the types announced by the other players.
Analogously, player whose type is lower than c

n
should submit the type 0 to

minimize the chance that the project will take place.
To prevent such manipulations we use taxes. This leads to mechanisms

that are constructed by combining decision rules with taxes (transfer pay-
ments). Each such mechanism is obtained by modifying the initial decision
problem (D, Θ1, . . ., Θn, v1, . . ., vn, f) to the following one:

• the set of decisions is D × R
n,

• the decision rule is a function (f, t) : Θ → D × R
n, where t : Θ → R

n

and (f, t)(θ) := (f(θ), t(θ)),

• the final utility function for player i is a function ui : D × R
n ×

Θi → R defined by

ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti.

(So defined utilities are called quasilinear .)

We call (D×R
n, Θ1, . . ., Θn, u1, . . ., un, (f, t)) a direct mechanism and refer

to t as the tax function .
So when the received (true) type of player i is θi and his announced type

is θ′i, his final utility is

ui((f, t)(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi) + ti(θ
′
i, θ−i),

where θ−i are the types announced by the other players.
In each direct mechanism, given the vector θ of announced types, t(θ) :=

(t1(θ), . . ., tn(θ)) is the vector of the resulting payments that the players have
to make. If ti(θ) ≥ 0, player i receives from the central authority ti(θ), and
if ti(θ) < 0, he pays to the central authority |ti(θ)|.
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The following definition then captures the idea that taxes prevent manip-
ulations. We say that a direct mechanism with tax function t is incentive

compatible if for all θ ∈ Θ, i ∈ {1, . . ., n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Intuitively, this means that announcing one’s true type (θi) is better than an-
nouncing another type (θ′i). That is, false announcements, i.e., manipulations
do not pay off.

From now on we focus on specific incentive compatible direct mechanisms.
Each Groves mechanism is a direct mechanism obtained by using a tax
function t := (t1, . . ., tn), where for all i ∈ {1, . . ., n}

• ti : Θ → R is defined by ti(θ) := gi(θ) + hi(θ−i), where

• gi(θ) :=
∑

j 6=i vj(f(θ), θj),

• hi : Θ−i → R is an arbitrary function.

Note that vi(f(θ), θi)+gi(θ) =
∑n

j=1 vj(f(θ), θj) is simply the initial social
welfare from the decision f(θ). In this context the final social welfare

is defined as
∑n

i=1 ui((f, t)(θ), θi), so it equals the sum of the initial social
welfare and all the taxes.

The importance of Groves mechanisms is then revealed by the following
crucial result due to T. Groves.

Theorem 45 Consider a decision problem (D, Θ1, . . ., Θn, v1, . . ., vn, f) with
an efficient decision rule f . Then each Groves mechanism is incentive com-
patible.

Proof. The proof is remarkably straightforward. Since f is efficient, for all
θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi we have

ui((f, t)(θi, θ−i), θi) =

n
∑

j=1

vj(f(θi, θ−i), θj) + hi(θ−i)

≥
n

∑

j=1

vj(f(θ′i, θ−i), θj) + hi(θ−i)

= ui((f, t)(θ′i, θ−i), θi).
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✷

When for a given direct mechanism for all θ′ we have
∑n

i=1 ti(θ
′) ≤ 0, the

mechanism is called feasible (which means that it can be realized without
external financing) and when for all θ′ we have

∑n

i=1 ti(θ
′) = 0, the mecha-

nism is called budget balanced (which means that it can be realized without
a deficit).

Each Groves mechanism is uniquely determined by the functions h1, . . .,
hn. A special case, called pivotal mechanism is obtained by using

hi(θ−i) := −max
d∈D

∑

j 6=i

vj(d, θj).

So then

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
d∈D

∑

j 6=i

vj(d, θj).

Hence for all θ and i ∈ {1, . . . , n} we have ti(θ) ≤ 0, which means that
each player needs to make the payment |ti(θ)| to the central authority. In
particular, the pivotal mechanism is feasible.

10.3 Back to our examples

When applying Theorem 45 to a specific decision problem we need first to
check that the used decision rule is efficient. We noted already that this is
the case in Examples 18–22. So in each example Theorem 45 applies and in
particular the pivotal mechanism can be used. Let us see now the details of
this and other Groves mechanisms for these examples.

Sealed-bid auction

To compute the taxes we use the following observation.

Note 46 In the sealed-bid auction we have for the pivotal mechanism

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

✷
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So the highest bidder wins the object and pays for it the amount maxj 6=i θj ,
i.e., the second highest bid. This shows that the pivotal mechanism for the
sealed-bid auction is simply the second-price auction proposed by W. Vickrey.
By the above considerations this auction is incentive compatible.

In contrast, the first-price sealed-bid auction, in which the winner pays
the price he offered, is not incentive compatible. Indeed, suppose that the
true types are (4,5,7) and that players 1 and 2 bid truthfully. If player 3
bids truthfully, he wins the object and his payoff is 0. But if he bids 6, he
increases his payoff to 1.

Bailey-Cavallo mechanism

Second-price auction is a natural approach in the set up when the central
authority is a seller, as the tax corresponds then to payment for the object for
sale. But we can also use the initial decision problem simply to determine
which of the player values the object most. In such a set up the central
authority is merely an arbiter and it is meaningful then to reach the decision
with limited taxes.

Below, given a sequence θ ∈ R
n of reals we denote by θ∗ its reordering

from the largest to the smallest element. So for example, for θ = (1, 4, 2, 3, 0)
we have (θ−2)

∗
2 = 2 since θ−2 = (1, 2, 3, 0) and (θ−2)

∗ = (3, 2, 1, 0).
In the case of the second-price auction the final social welfare, i.e.,

∑n

j=1 uj((f, t)(θ), θj),
equals θi−maxj 6=i θj , where i = argsmaxθ, so it equals the difference between
the highest bid and the second highest bid.

We now discuss a modification of the second-price auction which yields a
larger final social welfare. To ensure that it is well-defined we need to assume
that n ≥ 3. This modification, called Bailey-Cavallo mechanism , is
achieved by combining each tax t′i(θ) to be paid in the second-price auction
with

h′
i(θ−i) :=

(θ−i)
∗
2

n
,

that is, by using
ti(θ) := t′i(θ) + h′

i(θ−i).

Note that this yields a Groves mechanism since by the definition of the
pivotal mechanism for specific functions h1, . . . , hn

t′i(θ) =
∑

j 6=i

vj(f(θ), θj) + hi(θ−i),
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and consequently

ti(θ) =
∑

j 6=i

vj(f(θ), θj) + (hi + h′
i)(θ−i).

In fact, this modification is a Groves mechanism if we start with an arbi-
trary Groves mechanism. In the case of the second-price auction the resulting
mechanism is feasible since for all i ∈ {1, . . ., n} and θ we have (θ−i)

∗
2 ≤ θ∗2

and as a result, since maxj 6=i θj = θ∗2,
n

∑

i=1

ti(θ) =

n
∑

i=1

t′i(θ) +

n
∑

i=1

h′
i(θ−i) =

n
∑

i=1

−θ∗2 + (θ−i)
∗
2

n
≤ 0.

Let, given the sequence θ of submitted bids (types), π be the permutation
of 1, . . . , n such that θπ(i) = θ∗i for i ∈ {1, . . ., n} (where we break the ties
by selecting players with the lower index first). So the ith highest bid is by
player π(i) and the object is sold to player π(1). Note that then

• (θ−i)
∗
2 = θ∗3 for i ∈ {π(1), π(2)},

• (θ−i)
∗
2 = θ∗2 for i ∈ {π(3), . . . , π(n)},

so the above mechanism boils down to the following payments by player π(1):

•
θ∗
3

n
to player π(2),

•
θ∗
2

n
to players π(3), . . . , π(n),

• θ∗2 −
2
n
θ∗3 −

n−2
n

θ∗2 = 2
n
(θ∗2 − θ∗3) to the central authority.

To illustrate these payments assume that there are three players, A, B,
and C whose true types (valuations) are 18, 21, and 24, respectively. When
they bid truthfully the object is allocated to player C. In the second-price
auction player’s C tax is 21 and the final social welfare is 24 − 21 = 3.

In constrast, in the case of the Bailey-Cavallo mechanism we have for the
vector θ = (18, 21, 24) of submitted types θ∗2 = 21 and θ∗3 = 18, so player C
pays

• 6 to player B,

• 7 to player A,

• 2 to the tax authority.

So the final social welfare is now 24 − 2 = 22. Table 10.1 summarizes the
situation.
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player type tax ui

A 18 7 7
B 21 6 6
C 24 −15 9

Table 10.1: The Bailey-Cavallo mechanism

Public project problem

Let us return now to Example 19. To compute the taxes in the case of the
pivotal mechanism we use the following observation.

Note 47 In the public project problem we have for the pivotal mechanism

ti(θ) =















0 if
∑

j 6=i θj ≥
n−1

n
c and

∑n

j=1 θj ≥ c
∑

j 6=i θj −
n−1

n
c if

∑

j 6=i θj < n−1
n

c and
∑n

j=1 θj ≥ c

0 if
∑

j 6=i θj ≤
n−1

n
c and

∑n

j=1 θj < c
n−1

n
c −

∑

j 6=i θj if
∑

j 6=i θj > n−1
n

c and
∑n

j=1 θj < c

✷

To illustrate the pivotal mechanism suppose that there are three players,
A, B, and C whose true types are 6, 7, and 25, and c = 30, respectively. When
these types are announced the project takes place and Table 10.2 summarizes
the taxes that players need to pay and their final utilities. The taxes were
computed using Note 47.

player type tax ui

A 6 0 −4
B 7 0 −3
C 25 −7 8

Table 10.2: The pivotal mechanism for the public project problem

Suppose now that the true types of players are 4, 3 and 22, respectively
and, as before, c = 30. When these types are also the announced types, the
project does not take place. Still, some players need to pay a tax, as Table
10.3 illustrates.
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player type tax ui

A 4 −5 −5
B 3 −6 −6
C 22 0 0

Table 10.3: The pivotal mechanism for the public project problem

Reversed sealed-bid auction

Note that the pivotal mechanism is not appropriate here. Indeed, we noted
already that in the pivotal mechanism all players need to make a payment
to the central authority, while in the context of the reversed sealed-bid auc-
tion we want to ensure that the lowest bidder receives a payment from the
authority and other bidders neither pay nor receive any payment.

This can be realized by using the Groves mechanism with the following
tax definition:

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
d∈D\{i}

∑

j 6=i

vj(d, θj).

The crucial difference between this mechanism and the pivotal mechanism
is that in the second expression we take a maximum over all decisions in the
set D \ {i} and not D.

To compute the taxes in the reversed sealed-bid auction with the above
mechanism we use the following observation.

Note 48

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise
✷

This is identical to Note 46 in which the taxes for the pivotal mechanism
for the sealed bid auction were computed. However, because we use here
negative reals as bids the interpretation is different. Namely, the taxes are
now positive, i.e., the players now receive the payments. More precisely, the
winner, i.e., player i such that i = argsmax θ, receives the payment equal to
the second lowest offer, while the other players pay no taxes.

For example, when θ = (−8,−5,−4,−6), the service is bought from
player 3 who submitted the lowest bid, namely 4. He receives for it the
amount 5. Indeed, 3 = argsmax θ and −maxj 6=3 θj = −(−5) = 5.
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Buying a path in a network

As in the case of the reversed sealed-bid auction the pivotal mechanism is
not appropriate here since we want to ensure that the players whose edge was
selected receive a payment. Again, we achieve this by a simple modification
of the pivotal mechanism. We modify it to a Groves mechanism in which

• the central authority is viewed as an agent who procures an s− t path
and pays the players whose edges are used,

• the players have an incentive to participate: if an edge is used, then
the final utility of its owner is ≥ 0.

Recall that in the case of the pivotal mechanism we have

t′i(θ) =
∑

j 6=i

vj(f(θ), θj) − max
p∈D(G)

∑

j 6=i

vj(p, θj),

where we now explicitly indicate the dependence of the decision set on the
underlying graph, i.e., D(G) := {p | p is a s − t path in G}.

We now put instead

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
p∈D(G\{i})

∑

j 6=i

vj(p, θj).

The following note provides the intuition for the above tax. We abbreviate
here

∑

j∈p θj to cost(p).

Note 49

ti(θ) =

{

cost(p2) − cost(p1 − {i}) if i ∈ p1

0 otherwise

where p1 is the shortest s − t path in G(θ) and p2 is the shortest s − t path
in (G \ {i})(θ−i).

Proof. Note that for each s − t path p we have

−
∑

j 6=i

vj(p, θj) =
∑

j∈p−{i}

θj .
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Recall now that f(θ) is the shortest s − t path in G(θ), i.e., f(θ) = p1. So
∑

j 6=i vj(f(θ), θj) = −cost(p1 − {i}).
To understand the second expression in the definition of ti(θ) note that

for each p ∈ D(G \ {i}), so for each s − t path p in G \ {i}, we have

−
∑

j 6=i

vj(p, θj) =
∑

j∈p−{i}

θj =
∑

j∈p

θj ,

since the edge i does not belong to the path p. So −maxp∈D(G\{i})

∑

j 6=i vj(p, θj)
equals the length of the shortest s − t path in (G \ {i})(θ−i), i.e., it equals
cost(p2). ✷

So given θ and the above definitions of the paths p1 and p2 the central
authority pays to each player i whose edge is used the amount cost(p2) −
cost(p1 − {i}). The final utility of such a player is then −θi + cost(p2) −
cost(p1 − {i}), i.e., cost(p2) − cost(p1). So by the choice of p1 and p2 it is
positive. No payments are made to the other players and their final utilities
are 0.

Consider an example. Take the communication network depicted in Fig-
ure 10.1.

Figure 10.1: A communication network

This network has nine edges, so it corresponds to a decision problem with
nine players. We assume that each player submitted the depicted length of
the edge. Consider the player who owns the edge e, of length 4. To compute
the payment he receives we need to determine the shortest s − t path and
the shortest s − t path that does not include the edge e. The first path is
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the upper path, depicted in Figure 10.1 in bold. It contains the edge e and
has the length 7. The second path is simply the edge connecting s and t and
its length is 12. So, assuming that the players submit the costs truthfully,
according to Note 49 player e receives the payment 12− (7− 4) = 9 and his
final utility is 9 − 4 = 5.

10.4 Green and Laffont result

Until now we studied only one class of incentive compatible direct mecha-
nisms, namely Groves mechanisms. Are there any other ones? J. Green and
J.-J. Laffont showed that when the decision rule is efficient, under a natu-
ral assumption no other incentive compatible direct mechanisms exist. To
formulate the relevant result we introduce the following notion.

Given a decision problem (D, Θ1, . . ., Θn, v1, . . ., vn, f), we call the utility
function vi complete if

{v | v : D → R} = {vi(·, θi) | θi ∈ Θi},

that is, if each function v : D → R is of the form vi(·, θi) for some θi ∈ Θi.

Theorem 50 Consider a decision problem (D, Θ1, . . ., Θn, v1, . . ., vn, f) with
an efficient decision rule f . Suppose that each utility function vi is complete.
Then each incentive compatible direct mechanism is a Groves mechanism.

To prove it first observe that each direct mechanism originating from a
decision problem (D, Θ1, . . ., Θn, v1, . . ., vn, f) can be written in a ’Groves-
like’ way, by putting

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) + hi(θ),

where each function hi is defined on Θ and not on Θ−i, as in the Groves
mechanisms.

Lemma 51 For each incentive compatible direct mechanism

(D × R
n, Θ1, . . ., Θn, u1, . . ., un, (f, t)),

given the above representation, for all i ∈ {1, . . ., n}

f(θi, θ−i) = f(θ′i, θ−i) implies hi(θi, θ−i) = hi(θ
′
i, θ−i).
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Proof. Fix i ∈ {1, . . ., n}. We have

ui((f, t)(θi, θ−i), θi) =

n
∑

j=1

vj(f(θi, θ−i)), θj) + hi(θi, θ−i)

and

ui((f, t)(θ′i, θ−i), θi) =

n
∑

j=1

vj(f(θ′i, θ−i)), θj) + hi(θ
′
i, θ−i),

so, on the account of the incentive compatibility, f(θi, θ−i) = f(θ′i, θ−i) im-
plies hi(θi, θ−i) ≥ hi(θ

′
i, θ−i). By symmetry hi(θ

′
i, θ−i) ≥ hi(θi, θ−i), as well.

✷

Proof of Theorem 50.
Consider an incentive compatible direct mechanism

(D × R
n, Θ1, . . ., Θn, u1, . . ., un, (f, t))

and its ’Groves-like’ representation with the functions h1, . . ., hn. We need to
show that no function hi depends on its ith argument. Suppose otherwise.
Then for some i, θ and θ′i

hi(θi, θ−i) > hi(θ
′
i, θ−i).

Choose an arbitrary ǫ from the open interval (0, hi(θi, θ−i) − hi(θ
′
i, θ−i)) and

consider the following function v : D → R:

v(d) :=

{

ǫ −
∑

j 6=i vj(d, θj) if d = f(θ′i, θ−i)

−
∑

j 6=i vj(d, θj) otherwise

By the completeness of vi for some θ′′i ∈ Θi

v(d) = vi(d, θ′′i )

for all d ∈ D.
Since hi(θi, θ−i) > hi(θ

′
i, θ−i), by Lemma 51 f(θi, θ−i) 6= f(θ′i, θ−i), so by

the definition of v

vi(f(θi, θ−i), θ
′′
i ) +

∑

j 6=i

vj(f(θi, θ−i), θj) = 0. (10.1)
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Further, for each d ∈ D the sum vi(d, θ′′i ) +
∑

j 6=i vj(d, θj) equals either 0
or ǫ. This means that by the efficiency of f

vi(f(θ′′i , θ−i), θ
′′
i ) +

∑

j 6=i

vj(f(θ′′i , θ−i), θj) = ǫ. (10.2)

Hence, by the definition of v we have f(θ′′i , θ−i) = f(θ′i, θ−i), and consequently
by Lemma 51

hi(θ
′′
i , θ−i) = hi(θ

′
i, θ−i). (10.3)

We have now by (10.1)

ui((f, t)(θi, θ−i), θ
′′
i )

= vi(f(θi, θ−i), θ
′′
i ) +

∑

j 6=i

vj(f(θi, θ−i), θj) + hi(θi, θ−i)

= hi(θi, θ−i).

In turn, by (10.2) and (10.3),

ui((f, t)(θ′′i , θ−i), θ
′′
i )

= vi(f(θ′′i , θ−i), θ
′′
i ) +

∑

j 6=i

vj(f(θ′′i , θ−i), θj) + hi(θ
′′
i , θ−i)

= ǫ + hi(θ
′
i, θ−i).

But by the choice of ǫ we have hi(θi, θ−i) > ǫ + hi(θ
′
i, θ−i), so

ui((f, t)(θi, θ−i), θ
′′
i ) > ui((f, t)(θ′′i , θ−i), θ

′′
i ),

which contradicts the incentive compatibility for the joint type (θ′′i , θ−i). ✷
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Chapter 11

Pre-Bayesian Games

Mechanism design, as introduced in the previous chapter, can be explained
in game-theoretic terms using pre-Bayesian games In strategic games, after
each player selected his strategy, each player knows the payoff of every other
player. This is not the case in pre-Bayesian games in which each player has
a private type on which he can condition his strategy. This distinguishing
feature of pre-Bayesian games explains why they form a class of games with

incomplete information . Formally, they are defined as follows.
Assume a set {1, . . . , n} of players, where n > 1. A pre-Bayesian game

for n players consists of

• a non-empty set Ai of actions ,

• a non-empty set Θi of types ,

• a payoff function pi : A1 × . . . × An × Θi → R,

for each player i.
Let A := A1 × . . . × An. In a pre-Bayesian game Nature (an external

agent) moves first and provides each player i with a type θi ∈ Θi. Each
player knows only his type. Subsequently the players simultaneously select
their actions. The payoff function of each player now depends on his type, so
after all players selected their actions, each player knows his payoff but does
not know the payoffs of the other players. Note that given a pre-Bayesian
game, every joint type θ ∈ Θ uniquely determines a strategic game, to which
we refer below as a θ-game.

A strategy for player i in a pre-Bayesian game is a function si : Θi → Ai.
A strategy si(·) for player i is called
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• best response to the joint strategy s−i(·) of the opponents of i if for
all ai ∈ Ai and θ ∈ Θ

pi(si(θi), s−i(θ−i), θi) ≥ pi(ai, s−i(θ−i), θi),

• dominant if for all a ∈ A and θi ∈ Θi

pi(si(θi), a−i, θi) ≥ pi(ai, a−i, θi),

Then a joint strategy s(·) is called an ex-post equilibrium if each si(·) is a
best response to s−i(·). Alternatively, s(·) := (s1(·), . . . , sn(·)) is an ex-post
equilibrium if

∀θ ∈ Θ ∀i ∈ {1, . . . , n} ∀ai ∈ Ai pi(si(θi), s−i(θ−i), θi) ≥ pi(ai, s−i(θ−i), θi),

where s−i(θ−i) is an abbreviation for the sequence of actions (sj(θj))j 6=i.
So s(·) is an ex-post equilibrium iff for every joint type θ ∈ Θ the sequence

of actions (s1(θ1), . . . , sn(θn)) is a Nash-equilibrium in the corresponding θ-
game. Further, si(·) is a dominant strategy of player i iff for every type
θi ∈ Θi, si(θi) is a dominant strategy of player i in every (θi, θ−i)-game.

We also have the following immediate observation.

Note 52 (Dominant Strategy) Consider a pre-Bayesian game G. Sup-
pose that s(·) is a joint strategy such that each si(·) is a dominant strategy.
Then it is an ex-post equilibrium of G. ✷

Example 23 As an example of a pre-Bayesian game, suppose that

• Θ1 = {U, D}, Θ2 = {L, R},

• A1 = A2 = {F, B},

and consider the pre-Bayesian game uniquely determined by the following
four θ-games. Here and below we marked the payoffs in Nash equilibria in
these θ-games in bold.

U

L

F B

F 2, 1 2, 0
B 0, 1 2, 1

R

F B

F 2, 0 2, 1
B 0, 0 2, 1
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D

F B

F 3, 1 2, 0
B 5, 1 4, 1

F B

F 3, 0 2, 1
B 5, 0 4, 1

This shows that the strategies s1(·) and s2(·) such that

s1(U) := F, s1(D) := B, s2(L) = F, s2(R) = B

form here an ex-post equilibrium. ✷

However, there is a crucial difference between strategic games and pre-
Bayesian games. We call a pre-Bayesian game finite if each set of actions and
each set of types is finite. By the mixed extension of a finite pre-Bayesian
game

(A1, . . . , An, Θ1, . . . , Θn, p1, . . . , pn)

we mean below the pre-Bayesian game

(∆A1, . . . , ∆An, Θ1, . . . , Θn, p1, . . . , pn).

Example 24 Consider the following pre-Bayesian game:

• Θ1 = {U, B}, Θ2 = {L, R},

• A1 = A2 = {C, D},

U

L

C D

C 2, 2 0, 0
D 3, 0 1, 1

R

C D

C 2, 1 0, 0
D 3, 0 1, 2

B

C D

C 1, 2 3, 0
D 0, 0 2, 1

C D

C 1, 1 3, 0
D 0, 0 2, 2

Even though each θ-game has a Nash equilibrium, they are so ‘positioned’
that the pre-Bayesian game has no ex-post equilibrium. Even more, if we
consider a mixed extension of this game, then the situation does not change.
The reason is that no new Nash equilibria are then added to the original
θ-games.
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Indeed, each of these original θ-games is solved by IESDS and hence by
the IESDMS Theorem 33(ii) has a unique Nash equilibrium. This shows
that a mixed extension of a finite pre-Bayesian game does not need to have
an ex-post equilibrium, which contrasts with the existence of Nash equilibria
in mixed extensions of finite strategic games. ✷

This motivates the introduction of a new notion of an equilibrium. A
strategy si(·) for player i is called safety-level best response to the joint
strategy s−i(·) of the opponents of i if for all strategies s′i(·) of player i and
all θi ∈ Θi

min
θ−i∈Θ−i

pi(si(θi), s−i(θ−i), θi) ≥ min
θ−i∈Θ−i

pi(s
′
i(θi), s−i(θ−i), θi).

Then a joint strategy s(·) is called a safety-level equilibrium if each
si(·) is a safety-level best response to s−i(·).

The following theorem was established by Monderer and Tennenholz.

Theorem 53 Every mixed extension of a finite pre-Bayesian game has a
safety-level equilibrium. ✷

We now relate pre-Bayesian games to mechanism design. To this end we
need one more notion. We say that a pre-Bayesian game is of a revelation-

type if Ai = Θi for all i ∈ {1, . . . , n}. So in a revelation-type pre-Bayesian
game the strategies of a player are the functions on his set of types. A
strategy for player i is called then truth-telling if it is the identity function
πi(·) on Θi.

Now mechanism design can be viewed as an instance of the revelation-type
pre-Bayesian games. Indeed, we have the following immediate, yet revealing
observation.

Theorem 54 Given a direct mechanism

(D × R
n, Θ1, . . . , Θn, u1, . . . , un, (f, t))

associate with it a revelation-type pre-Bayesian game, in which each payoff
function pi is defined by

pi((θ
′
i, θ−i), θi) := ui((f, t)(θ′i, θ−i), θi).

Then the mechanism is incentive compatible iff in the associated pre-Bayesian
game for each player truth-telling is a dominant strategy.
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By Groves Theorem 45 we conclude that in the pre-Bayesian game as-
sociated with a Groves mechanism, (π1(·), . . . , πn(·)) is a dominant strategy
ex-post equilibrium.
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