Paradoxes in Social Networks with Multiple Products

Krzysztof R. Apt

CWI & and University of Amsterdam

Joint work with Evangelos Markakis and Sunil Simon

Paradox of Choice (B. Schwartz, 2005)

[Gut Feelings, G. Gigerenzer, 2008]

The more options one has, the more possibilities for experiencing conflict arise, and the more difficult it becomes to compare the options. There is a point where more options, products, and choices hurt both seller and consumer.

Plan

- Objective: To understand this paradox.
- Tools:
 - social networks with multiple products,
 - ► strategic games.

- Finite set of agents.
- Influence of "friends".
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.

- Finite set of agents.
- Influence of "friends".
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.

- Finite set of agents.
- Influence of "friends".
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.

- Finite set of agents.
- Influence of "friends".
- Finite product set for each agent.
- Resistance level in (threshold for) adopting a product.

The model

Social network [Apt, Markakis 2011]

- Weighted directed graph: $G = (V, \rightarrow, w)$, where V: a finite set of agents, $w_{ij} \in (0,1]$: weight of the edge $i \rightarrow j$.
- ullet Products: A finite set of products \mathcal{P} .
- Product assignment: P: V → 2^P \ {∅};
 assigns to each agent a non-empty set of products.
- Threshold function: $\theta(i, t) \in (0, 1]$, for each agent i and product $t \in P(i)$.

The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set P(i) or choose not to adopt any product (t_0) .

Social network games

- Players: Agents in the network.
- Strategies: Set of strategies for player i is $P(i) \cup \{t_0\}$.
- Payoff: Fix c > 0. Given a joint strategy s and an agent i,

The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set P(i) or choose not to adopt any product (t_0) .

Social network games

- Players: Agents in the network.
- Strategies: Set of strategies for player i is $P(i) \cup \{t_0\}$.
- Payoff: Fix c > 0. Given a joint strategy s and an agent i,

$$\text{if } i \in source(S), \quad p_i(s) = \begin{cases} 0 & \text{if } s_i = t_0 \\ c & \text{if } s_i \in P(i) \end{cases}$$

The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set P(i) or choose not to adopt any product (t_0) .

Social network games

- Players: Agents in the network.
- Strategies: Set of strategies for player i is $P(i) \cup \{t_0\}$.
- Payoff: Fix c > 0. Given a joint strategy s and an agent i,

$$\text{if } i \in source(S), \quad p_i(s) = \begin{cases} 0 & \text{if } s_i = t_0 \\ c & \text{if } s_i \in P(i) \end{cases}$$

if
$$i \notin source(S)$$
, $p_i(s) = \begin{cases} 0 & \text{if } s_i = t_0 \\ \sum_{j \in \mathcal{N}_i^t(s)} w_{ji} - \theta(i, t) & \text{if } s_i = t, \text{ for some } t \in P(i) \end{cases}$

 $\mathcal{N}_i^t(s)$: the set of neighbours of i who adopted in s the product t.

Vulnerability

Given: a strategic game $(S_1, \ldots, S_n, p_1, \ldots, p_n)$.

- s and s': joint strategies. s > s' if for all i, $p_i(s) > p_i(s')$.
- Social network S' is an expansion of S if it results from adding a product to the product set of a node in S.
- We say then that S is a contraction of S'.
- S is vulnerable if for some Nash equilibrium s in G(S), an expansion S' of S exists such that
 - some improvement path in $\mathcal{G}(\mathcal{S}')$ leads from s to a Nash equilibrium s' in $\mathcal{G}(\mathcal{S}')$ such that s > s'.

Vulnerable Networks (1)

Threshold θ is constant, $0 < \theta < 0.1$.

is a vulnerable network.

Vulnerable Networks (2)

Take the Nash equilibrium $(t_3,t_3,t_1,t_1,t_2,t_2)$ of the initial network. The addition of product t_2 to node 4 triggers the best response improvement path

$$4: t_2, 3: t_3, 5: t_3, 6: t_0, 2: t_2, 1: t_0, 4: t_0, 2: t_0, 3: t_0, 5: t_0.$$

It ends in a Nash equilibrium in which each strategy equals t_0 ,

Inefficiency

• \mathcal{S} is inefficient if for some Nash equilibrium s in $\mathcal{G}(\mathcal{S})$, a contraction \mathcal{S}' of \mathcal{S} exists such that each improvement path in $\mathcal{G}(\mathcal{S}')$ leads from s to a Nash

equilibrium s' in $\mathcal{G}(\mathcal{S}')$ such that s' > s.

Inefficient Network (1)

The weight of each edge is w.

Threshold θ is product independent.

For all nodes $w > \theta$.

is an inefficient network.

Inefficient Network (2)

 $w > \theta$.

Take the Nash equilibrium (t_2, t_2, t_1, t_1) of the initial network with payoff equal to $w - \theta$ for all nodes.

Remove t_1 from the product set of node 3.

All improvement paths then lead to the Nash equilibrium (t_2, t_2, t_2, t_2) with payoff equal $2w - \theta$ for all nodes.

Example: $3: t_2, 4: t_0, 4: t_2$.