
Potential Games
Krzysztof R. Apt

CWI, Amsterdam, the Netherlands,

University of Amsterdam

Potential Games – p. 1/47



Overview
Best response dynamics.

Potentials.

Congestion games.

Fair cost sharing games.

Braess Paradox.

Price of Stability.
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Best Response Dynamics

Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

Best response dynamics:
an algorithm to find a Nash equilibrium:

choose s ∈ S1 × · · · × Sn;
while s is not a NE do

choose i ∈ {1, . . ., n} such that
si is not a best response to s−i;

si := a best response to s−i

od
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Best Response Dynamics, ctd

Note Assume a game for n players.
Suppose every player has a strictly dominant strategy. Then all
best response dynamics terminate after at most n steps and their
outcomes is unique.
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Best Response Dynamics, ctd

Note Best response dynamics may miss a Nash equilibrium.

Example

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1
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Potentials
(Monderer and Shapley ’96)

Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

Function P : S1 × · · · × Sn → R is a potential function for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i) − pi(s
′
i, s−i) = P (si, s−i) − P (s′i, s−i).

Intuition: P tracks the changes in the payoff when some
player deviates.

Potential game: a game that has a potential function.
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Example 1

Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

Potential

C D
C 0 1
D 1 2

Intuition: potential counts the number of defecting players.
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Example 2
Prisoner’s dilemma for n players.

pi(s) :=

{

2
∑

j 6=i sj + 1 if si = 0

2
∑

j 6=i sj if si = 1

1 (formerly C),
0 (formerly D).

For i = 1, 2

pi(0, s−i) − pi(1, s−i) = 1.

So P (s) := n −
∑n

j=1 sj is a potential function.

Intuition: potential counts the number of defecting players.
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Potential Games

Note For finite potential games all best response dynamics
terminate.

Proof. Along each best response path the potential strictly
increases.
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Ordinal Potentials

Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

Function P : S1 × · · · × Sn → R is an ordinal potential for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i) − pi(s
′
i, s−i) > 0 iff P (si, s−i) − P (s′i, s−i) > 0.
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Example

Modified Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 2

This game has no potential.

Ordinal potential

C D
C 0 1
D 1 2
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Finite Improvement Property (FIP)
Fix a game (S1, . . ., Sn, p1, . . ., pn).
S := S1 × · · · × Sn.

s′i is a better response given s if pi(s
′
i, s−i) > pi(si, s−i).

A path in S is a sequence (s1, s2, . . .) of joint strategies such
that

∀k > 1 ∃i ∃s′i 6= sk
i sk+1 = (s′i, s

k
−i).

A path is an improvement path if it is maximal and for all
k > 1, pi(s

k+1) > pi(s
k), where i deviated from sk.

G has the finite improvement property (FIP), if every
improvement path is finite.

Note If G has the FIP, then it has a Nash equilibrium.
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Ordinal Potentials vs FIP

Example

L R
T 1, 0 2, 0
B 2, 0 0, 1

This game has the FIP.

It does not have an ordinal potential.

Proof. Every ordinal potential has to satisfy

P (T, L) < P (B,L) < P (B,R) < P (T,R).

But p2(T, L) = p2(T,R), so P (T, L) = P (T,R).
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Generalized Ordinal Potentials
Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

Function P : S1 × · · · × Sn → R is a generalized ordinal
potential for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i) − pi(s
′
i, s−i) > 0 implies P (si, s−i) − P (s′i, s−i) > 0.

Example

L R
T 1, 0 2, 0
B 2, 0 0, 1

Generalized Ordinal Potential

C D
C 0 3
D 1 2
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Generalized Ordinal Potentials vs FIP

Theorem (Monderer and Shapley ’96)
Every finite game has a generalized ordinal potential iff it has the
FIP.

Proof. ( ⇒ )
The generalized ordinal potential increases along every
improvement path.

( ⇐ ) (Sketch).
An improvement sequence: a prefix of an improvement path.
Assign to each joint strategy s the number of improvement
sequences that terminate in it.
Because the game has the FIP this number is finite.
This defines a generalized ordinal potential.
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Payoff Functions vs Cost Functions

Until now we associated with each player a payoff function pi.

An alternative: associate with each player a cost function ci.

Objective: minimize the cost.

Translation:

pi(s) := −ci(s).
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Congestion Games
n > 1 players,

Finite set E of facilities (road segments, primary production
factors, . . .),

each strategy is a non-empty subset of E,

each player has a possibly different set of strategies,

we use here cost functions ci instead of payoff functions pi,

dj : {1, . . ., n} → R is the delay function for using j ∈ E,

dj(k) is the delay for using j when there are k users of j,

xj(s) := |{r ∈ {1, . . ., n} | j ∈ sr}| is the number of users of
facility j given s,

ci(s) :=
∑

j∈si
dj(xj(s)).
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Example
5 drivers.

Each driver chooses a road from Katowice to Gliwice,

More drivers choose the same road: more delays.
(1/4/5 ≡ d(1) = 1, d(2) = 4, d(3) = 5, etc.)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

Potential Games – p. 18/47



Example as a Congestion Game
5 players,

3 facilities (roads),

each strategy: (a singleton set consisting of) a road,

cost function:

ci(s) :=







































1 if si = 1 and |{j | sj = 1}| = 1

2 if si = 1 and |{j | sj = 1}| = 2

3 if si = 1 and |{j | sj = 1}| ≥ 3

1 if si = 2 and |{j | sj = 2}| = 1

. . .

6 if si = 3 and |{j | sj = 3}}| ≥ 3
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Possible Evolution (1)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Possible Evolution (2)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Possible Evolution (3)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Possible Evolution (4)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

We reached a Nash equilibrium using the best response
dynamics.
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Congestion Games, ctd

Theorem (Rosenthal, ’73)
Every congestion game is a potential game.

Proof for the example game.
Define P (s) to be the sum of the accumulated delays on all
roads.

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

Here P (s) :=
1(for left road) + 1 + 4(for middle road) + 1 + 5(for right road) = 12.
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Congestion Games, ctd

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

Here P (s) = 12.

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

Here P (s) = 12 − 5 + 2 = 9.

So both the switching player’s cost function and the potential
decreased by 3. Potential Games – p. 25/47



Congestion Games, ctd

General argument.

P (s) :=
∑

j∈s1∪. . .∪sn

xj(s)
∑

k=1

dj(k),

where (recall) xj(s) = |{r ∈ {1, . . ., n} | j ∈ sr}|,

is a potential function.
(For the proof see the last page of the pages from S. Tijs,
Introduction to Game Theory on the home page of the course
http://homepages.cwi.nl/~apt/stra13/.)

Conclusion Every congestion game has a Nash equilibrium.
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Fair Cost Sharing Games

A special case of congestion games.

cj ∈ R is the cost of facility j ∈ E.

Recall: xj(s) is the number of players using facility j in s.

Use dj(xj(s)) := cj

xj(s)
in the definition of the congestion game.

So the cost of facility j ∈ E is evenly shared. Consequently

ci(s) :=
∑

j∈si

cj

xj(s)
.
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Example

2 drivers.

Each driver chooses a route from BEGIN to his own depot.

Fair congestion game, so the costs are equally divided.

BEGIN

DEPOT1 DEPOT2

4
5

8

11
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Possible Evolution (1)

BEGIN

DEPOT1 DEPOT2

4
5

8

11
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Possible Evolution (2)

BEGIN

DEPOT1 DEPOT2

4
5

8

11
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Possible Evolution (3)

BEGIN

DEPOT1 DEPOT2

4
5

8

11

A Nash equilibrium is reached.
It is a unique Nash equilibrium and also a social optimum.
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Multiple Nash Equilibria
Two players.

BEGIN

DEPOT

2 3

Two Nash equilibria.
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Another Example

BEGIN

DEPOT1 DEPOT2

11

3 5
5

Unique Nash equilibrium, with the social cost 8.

Cost of the social optimum: 7.
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Another Example: Congestion Game
Assumptions:

4000 drivers drive from A to B.

Each driver has 2 options (strategies).

T/100

T/100

45

 U

R

B

45

A

Problem: Find a Nash equilibrium (T = number of drivers).
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Nash Equilibrium

T/100

T/100

45

 U

R

B

45

A

Answer: 2000/2000.

Travel time: 2000/100 + 45 = 45 + 2000/100 = 65.
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Braess Paradox
Add a fast road from U to R.

Each driver has now 3 options (strategies):
A - U - B,
A - R - B,
A - U - R - B.

T/100

T/100

45

 U

R

B

45

A 0

Problem: Find a Nash equilibrium.
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Nash Equilibrium

T/100

T/100

45

 U

R

B

45

A 0

Answer: Every driver will choose the road A - U - R - B.

Why?: The road A - U - R - B is a strictly dominant strategy. So
every best response dynamics terminates after ≤ 4000 steps and
has a unique outcome.
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Small Complication

T/100

T/100

45

 U

R

B

45

A 0

Travel time: 4000/100 + 4000/100 = 80!

Braess paradox: Adding a new road results in strictly longer
travel times.

Formally: adding a new strategy resulted in a game with a
unique Nash equilibrium that is strictly worse for everybody
that the original unique Nash equilibrium.
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Does it happen?
from Wikipedia (‘Braess Paradox’):

In Seoul, South Korea, a speeding-up in traffic around the
city was seen when a motorway was removed as part of the
Cheonggyecheon restoration project.

In Stuttgart, Germany after investments into the road
network in 1969, the traffic situation did not improve until a
section of newly-built road was closed for traffic again.

In 1990 the closing of 42nd street in New York City reduced
the amount of congestion in the area.

In 2008 Youn, Gastner and Jeong demonstrated specific
routes in Boston, New York City and London where this
might actually occur and pointed out roads that could be
closed to reduce predicted travel times.
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Price of Stability

Definition Price of Stability (PoS):

social cost of the best Nash equilibrium
social cost of the social optimum

Here:

best Nash equilibrium: one with the minimum social cost.
Social optimum: joint strategy with the minimum social cost.

Question: What is the price of stability for the congestion games
and for the fair cost sharing games?
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Example

B

x

n

A

n - (even) number of players.
x - number of drivers on the bottom road.

Two Nash equilibria
1/(n − 1), with the social cost n + (n − 1)2.
0/n, with the social cost n2.

Social optimum
Take f(x) = x · x + (n − x) · n = x2 − n · x + n2.
We want to find a minimum of f .
f ′(x) = 2x − n, so f ′(x) = 0 if x = n

2 .
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Example

B

x

n

A

Best Nash equilibrium
1/(n − 1), with social cost n + (n − 1)2.

Social optimum
f(x) = x2 − n · x + n2.
Social optimum = f(n

2 ) = 3
4n2.

PoS = (n + (n − 1)2)/3
4n2 = 4

3
n+(n−1)2

n2 .

limn→∞ PoS = 4
3 .
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Price of Stability I

Theorem (Roughgarden and Tárdos, 2002)
Suppose delay functions (e.g., T/100) are linear.
Then the price of stability for the congestion games is ≤ 4

3 .
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Harmonic Numbers

H(n) =
∑n

i=1
1
n
.

Theorem (Oresme, around 1350) limn→∞ H(n) = ∞.

Theorem (Euler, 1734) For some constant γ

lim
n→∞

(H(n) − ln(n)) = γ.
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Proof (Nicolas Oresme)

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + . . .

= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + . . .

> 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + . . .

= 1 + 1/2 + 1/2 + 1/2 + . . .
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Harmonic Numbers: An Application

Problem: Build the longest ‘trampoline’ from the books:

Question: How many books one needs to double the length?
Answer: smallest n such that 1

2H(n) ≥ 2.
1
2H(30) = 1.99749, 1

2H(31) = 2.01362.
So the answer is 31.
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Price of Stability II

Theorem (Anshelevich et al, 2004)
The price of stability for the fair cost sharing games is
≤ H(n).
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