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Abstract

We introduce a new measure of the discrepancy in strategic games between
the social welfare in a Nash equilibrium and in a social optimum, that we call
selfishness level. 1t is the smallest fraction of the social welfare that needs to
be offered to each player to achieve that a social optimum is realized in a pure
Nash equilibrium. The selfishness level is unrelated to the price of stability and the
price of anarchy and in contrast to these notions is invariant under positive linear
transformations of the payoff functions. Also, it naturally applies to other solution
concepts and other forms of games.

We study the selfishness level of several well-known strategic games. This al-
lows us to quantify the implicit tension within a game between players’ individual
interests and the impact of their decisions on the society as a whole. Our analysis
reveals that the selfishness level often provides more refined insights into the game
than other measures of inefficiency, such as the price of stability or the price of
anarchy.

In particular, the selfishness level of finite games that have a generalized ordinal
potential games is finite, while that of weakly acyclic games can be infinite. We
derive explicit bounds on the selfishness level of fair cost sharing games and linear
congestion games, which depend on specific parameters of the underlying game but
are independent of the number of players. Further, we show that the selfishness
level of the n-players Prisoner’s Dilemma is 1/(2n — 3), that of the n-players public
goods game is (1 — £)(c — 1), where c is the public good multiplier, and that of the
Traveler’s Dilemma game is % Finally, the selfishness level of Cournot competition
(an example of an infinite potential game), Tragedy of the Commons, and Bertrand
competition is infinite.
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1 Selfishness level

1.1 Definition

A strategic game (in short, a game) G = (N,{S;}ien,{pitien) is given by a set
N = {1,...,n} of n > 1 players, a non-empty set of strategies S; for every player
1 € N, and a payoff function p; for every player i € N with p; : S1x---x 5, — R. The
players choose their strategies simultaneously and every player ¢ € N aims at choosing
a strategy s; € S; so as to maximize his individual payoff p;(s), where s = (s1,...,$p).

We call s € S x --- x S, a joint strategy, denote its ith element by s;, denote
(S1,.--48i—1,8i+1,---,5n) by s—; and similarly with S_;. Further, we write (s}, s_;) for
(S1,--+8i—1, 8}, Si+1,- .-, 5p), Where we assume that s, € S;. Sometimes, when focussing
on player i we write (s;, s_;) instead of s.

A strategic game G = (N, {S;}ien, {pitien) is symmetric if all players have the
same set of strategies and the payoff for playing a particular strategy only depends on the
strategies played by the other players (but not on their identities); more formally, S; =
S; for every i,j € N, i # j, and for every joint strategy s = (s1,...,sy), for every i € N
and every permutation 7 of {1,...,n}, we have p;(s1,...,51) = Dr(i)(Sx(1)s - - -5 Sn(n))-

A joint strategy s is a Nash equilibrium if for all i € {1,...,n} and s, € S;,
pi(8i,5—i) > pi(st,s—;). Further, given a joint strategy s we call the sum SW(s) :=
> iy pi(s) the social welfare of s. When the social welfare of s is maximal we call s
a soctal optimum.

Given a strategic game G := (N, {S;}ien, {pi}icn) and a > 0 we define the game
G(a) := (N,{Si}ien,{ri}ien) by putting r;(s) := p;(s) + aSW (s). So when a > 0 the
payoff of each player in the G(a) game depends on the social welfare of the players.
G(«) is then an altruistic version of the game G.

Suppose now that for some a > 0 a pure Nash equilibrium of G(«) is a social
optimum of G(«). Then we say that G is a-selfish. We define the selfishness level of
G as

inf{a € Ry | G is a-selfish}. (1)

Here we adopt the convention that the infimum of an empty set is co. Further, we
stipulate that the selfishness level of G is denoted by o™ iff the selfishness level of G is
a € Ry but G is not a-selfish (equivalently, the infimum does not belong to the set). We
show below (Theorem 2) that pathological infinite games exist for which the selfishness
level is of this kind; none of the other studied games is of this type.

We give some remarks before we proceed.

1. The above definitions refer to strategic games in which each player ¢ maximizes
his payoff function p; and the social welfare of a joint strategy s is given by
SW (s). These definitions apply similarly to strategic games in which every player
1 minimizes his cost function ¢; and the social cost of a joint strategy s is defined

as SC(s) ==Y " ci(s).

2. Other definitions of an altruistic version of a game are conceivable and, depending
on the underlying application, might seem more natural than the one we use here.



However, we show in Section 1.3 that our definition is equivalent to several other
models of altruism that have been proposed in the literature.

3. The selfishness level refers to the smallest o such that some Nash equilibrium
in G(a) is also a social optimum. Alternatively, one might be interested in the
smallest « such that every Nash equilibrium in G(«) corresponds to a social
optimum. However, as argued in Section 1.2, this alternative notion is not very
meaningful.

Note that the social welfare of a joint strategy s in G(«) equals (1 + an)SW (s), so
the social optima of G and G(«) coincide. Hence we can replace in the above definition
the reference to a social optimum of G(«) by one to a social optimum of G. This is
what we shall do in the proofs below.

Intuitively, a low selfishness level means that the share of the social welfare needed
to induce the players to choose a social optimum is small. This share can be viewed
as an ‘incentive’ needed to realize a social optimum. Let us illustrate this definition on
various simple examples.

Example 1. Prisoner’s Dilemma

C D C D
c [22 ] 03 c [66 | 3,6
D [ 30 1,1 D [63 | 33

Consider the Prisoner’s Dilemma game G (on the left) and the resulting game G(«)
for a =1 (on the right). In the latter game the social optimum, (C,C), is also a Nash
equilibrium. One can easily check that for a < 1, (C,C) is also a social optimum of
G(a) but not a Nash equilibrium. So the selfishness level of this game is 1.

Example 2. Battle of the Sexes

F [ 21 0,0
B | 0,0 1,2

Here each Nash equilibrium is also a social optimum, so the selfishness level of this
game is 0.

Example 3. Matching Pennies

H T
H 1,-1 1, 1
T | -1, 1 1,—1

Since the social welfare of each joint strategy is 0, for each « the game G(«) is
identical to the original game in which no Nash equilibrium exists. So the selfishness
level of this game is co. More generally, the selfishness level of a constant sum game is
0 if it has a Nash equilibrium and otherwise it is co.



Example 4. Game with a bad Nash equilibrium The following game results from
equipping each player in the Matching Pennies game with a third strategy E (for edge):

H T E
H 1,—1 | -1, 1 | —-1,—1
T | -1, 1 1,-1 | —-1,—-1
E | —-1,-1 | —-1,-1 —1,-1

Its unique Nash equilibrium is (E, E). It is easy to check that the selfishness level
of this game is co. (This is also an immediate consequence of Theorem 4 (iii) below.)

Example 5. Game with no Nash equilibrium Consider a game G on the left and
the resulting game G(«) for a = 1 on the right.

C D C D
c [22 ] 20 c [6,6 | 42
D [ 30 | 1,1 D |63 | 33

The game G has no Nash equilibrium, while in the game G(1) the social optimum,
(C,C), is also a Nash equilibrium. As in the Prisoner’s Dilemma game one can easily
check that for a < 1, (C, C) is also a social optimum of G(«) but not a Nash equilibrium.
So the selfishness level of the game G is 1.

1.2 Properties

Recall that, given a finite game G that has a Nash equilibrium, its price of stability
is the ratio SW(s)/SW (s') where s is a social optimum and s’ is a Nash equilibrium
with the highest social welfare in G. The price of anarchy is defined as the ratio
SW(s)/SW(s") where s is a social optimum and s’ is a Nash equilibrium with the
lowest social welfare in G.

So the price of stability of G is 1 iff its selfishness level is 0. However, in general
there is no relation between these two notions. The following observation also shows
that the selfishness level of a finite game can be an arbitrary real number.

Theorem 1. For every finite a > 0 and B > 1 there is a finite game whose selfishness
level is o and whose price of stability is 3.

Proof. Consider the following generalized form, which we denote by PD(«, [3), of the

Prisoner’s Dilemma game G with z = ;25
C D
C 1,1 0,z +1
T 1
D xr + 1, 0 B, B

In this game and in each game G(v) with v > 0, (C, C) is the unique social optimum.
To compute the selfishness level we need to consider a game G(v) and stipulate that
(C,C) is its Nash equilibrium. This leads to the inequality 142y > (y+1)(z+1), from
which it follows that v > 1%, i.e., ¥ > a. So the selfishness level of G is a. Moreover,
its price of stability is 3. O



We defined the selfishness level of a game as the smallest « such that the price of
stability of G(«) is 1. Alternatively, one might want to define the selfishness level as
the smallest o such that the price of anarchy of G(a) is 1. But as it turns out, this
notion is not very informative. Namely, as noted already above, the social welfare of a
joint strategy s in G(a) equals (1+an)SW (s). So if for two joint strategies s and s’ we
have SW(s) < SW(s') in G, then this inequality remains valid when using the social
welfare in G(a). Hence, for no « the joint strategy s can be a social optimum in G(«).
In particular, this also holds if s and s’ are Nash equilibria. Thus, with this alternative
definition, the only possible levels would be 0 (when all Nash equilibria of G have the
same social welfare) or oo (otherwise).

Further, in contrast to the price of stability and the price of anarchy the notion
of the selfishness level is invariant under simple payoff transformations. It is a direct
consequence of the following observation, where given a game GG and a value a we denote
by G +a (respectively, aGG) the game obtained from G by adding to each payoff function
the value a (respectively, by multiplying each payoff function by a).

Proposition 1. Consider a game G and o > 0.
(i) For every a, G is a-selfish iff G + a is a-selfish.
(ii) For every a >0, G is a-selfish iff aG is a-selfish.

Proof. (i) It suffices to note that r[al;(s) = r;(s) + aan + a, where r; and r[a]; are the
payoff functions of player i in the games G(«) and (G+a)(«). So for every joint strategy
s

e s is a Nash equilibrium of G(«) iff it is a Nash equilibrium of (G + a)(«),

e s is social optimum of G(«) iff it is a social optimum of (G + a)(«).

(ii) It suffices to note that for every a > 0, r[al;(s) = ar;(s), where this time r[al; is
the payoff function of player i in the game (aG)(«), and argue as above. O

In particular, for symmetric games Proposition 1 implies that the selfishness level is
invariant under affine transformations of the payoff functions.

Note that the selfishness level is not invariant under a multiplication of the payoff
functions by a value a < 0. Indeed, for a = 0 each game aG has the selfishness level 0.
For a < 0 take the game G from Example 4 whose selfishness level is co. In the game
aG the joint strategy (F, E) is both a Nash equilibrium and a social optimum, so the
selfishness level of aG is 0.

The above proposition also allows us to frame the notion of selfishness level in the
following way. Suppose the original n-player game G is given to a game designer who
has a fixed budget of S (s) for each joint strategy s and that the selfishness level of G
is w < 0o. How should the game designer then distribute the budget of SW(s) for each
joint strategy s among the players such that the resulting game has a Nash equilibrium
that coincides with a social optimum? By scaling G(«) by the factor a := 1/(1 + an)
we ensure that for each joint strategy s its social welfare in the original game G and in
aG(a) is the same. Using Proposition 1, we conclude that « is the smallest non-negative



real such that aG(«) has a Nash equilibrium that is a social optimum. The game aG(«)
can then be viewed as the intended transformation of GG. That is, each payoff function
p; of the game G is transformed into the payoff function
1 o
i\S
1—|—anp( )+ 1+an

ri(s) = SW (s).

Let us return now to the ‘borderline case’ of the selfishness level that we denoted by
a™. We have the following result.

Theorem 2. For every o > 0 there exists a game whose selfishness level is a™.

Proof. We first prove the result for « = 0. That is, we show that there exists a game
that is a-selfish for every a > 0, but is not O-selfish. To this end we use the games
PD(a, 3) defined in the proof of Theorem 1.

We construct a strategic game G = (N, {S;}ien, {pi}ien) with two players N =
{1,2} by combining, for an arbitrary but fixed 8 > 1, infinitely many PD(«, 3) games
with a > 0 as follows: For each o > 0 we rename the strategies of the PD(«, 3) game
to, respectively, C(c) and D(a) and denote the corresponding payoff functions by pf.
The set of strategies of each player i € N is S; = {C(«) | @ > 0} U{D(«a) | @ > 0} and
the payoff of 7 is defined as

p(siys—i) if {si,s—} C{C(a), D(cv)} for some a >0
pi(si,5—i) 1= .
0 otherwise.

Every social optimum of G is of the form (C'(a), C(«)), where a > 0. (Note that we
exploit that 3 > 1 here.) By the argument given in the proof of Theorem 1, (C(«), C(«))
with @ > 0 is a Nash equilibrium in the game G(«) because the deviations from C(«)
to a strategy C(v) or D(v) with v # « yield a payoff of 0. Thus, G is a-selfish for every
a > 0. Finally, observe that G is not 0-selfish because every Nash equilibrium of G is
of the form (D(«), D(«)), where a > 0.

To deal with the general case we prove two claims that are of independent interest.

Claim 1. For every game G and o > 0 there is a game G’ such that G'(a) = G.

Proof. We define the payoff of player i in the game G’ by
e

1+ na

where p; is his payoff in the game G. Denote by SW'(s) the social welfare of a joint

strategy s in the game G’ and by r} the payoff function of player i in the game G'(«).
Then

pi(s) = pi(s) SW(s),

ri(s) = pi(s) + aSW'(s)
o
14+ na

no
14+ na

= pi(s) — SW(s) + a <SW(5) - SW(5)>

no

~ o)+ (a2 ) swis

1+ na 1 + na
= pi(s)-



Claim 2. For every game G and o, 3 >0

_ B
Proof. Denote by SW'(s) the social welfare of a joint strategy s in the game G(«), by
pi,r; and 1’ the payoff functions of player i in the games G, G(«), and G(a)(lfm).
Then

ri(s) := pi(s) + aSW (s),

SO
ri(s) = 7i(s) + 1 —fna SW'(s)
=pi(s) + aSW(s) + (SW(s) + naSW(s))
1+ na
B pna

=pi(s) + <a + T+ na + 1 +na> SW (s)

=pi(s) + (a+ B)SW(s),
which proves the claim. O

To prove the general case fix @ > 0 and 3 > 0 and take a game G whose selfishness
level is 07. By Claim 1 there is a game G’ such that G'(a) = G. Then G’ is not
a-selfish, since G is not O-selfish.

Further, by Claim 2

G'(a+p) =G () <1 fna> = <1 fna) '

But by its choice the game G is 1 fna—selﬁsh, so G’ is a + fB-selfish, which concludes the

proof. O

1.3 Alternative definitions

Our definition of the selfishness level depends on the way the altruistic versions of
the original game are defined. Three other models of altruism were proposed in the
literature. As before, let G := (N, {S;}ien, {pi}icn) be a strategic game. Consider the
following four definitions of altruistic versions of G:

Model A ([6]): For every a >0, G(a) := (N, {S;}ien, {r }ien) with

ri'(s) = pi(s) + aSW(s) Vie N. (2)

Model B ([5]): For every 8 € [0,1], G(8) := (N,{S; Yien, {r’ }ien) with

rP(s) = (1= B)pi(s) + gsvv(s) Vi € N. (3)

)



Model C ([4]): For every 7 € [0, 1], G() := (N, {S: }ien, {r] bien) with
r7(s) = (1 — y)pi(s) + vSW(s) Vi€ N. (4)

Model D ([3]): For every § € [0,1], G(8) := (N, {S; }ien {r? }ien) with
r7(s) = (1= 8)pi(s) + 6(SW(s) — ps(s)) Vi€ N. (5)

Our selfishness level notion for Model A extends to Models B, C and D in the obvious
way: We say that G is (-selfish for some § € [0,1] iff a pure Nash equilibrium of the
altruistic version G(/3) is also a social optimum. The selfishness level of G with respect
to Model B is then defined as the infimum over all § € [0,1] such that G is (-selfish.
The respective notions for Models C and D are defined analogously.

The following theorem shows that the selfishness level of a game with respect to
Models A, B, C and D relate to each other via simple transformations. (Note that for
Model D this transformation only applies for § € [0, %])

Theorem 3. Consider a strategic game G := (N,{S;}icn,{pi}ien) and its altruistic
versions defined according to Models A, B, C and D above.

(i) G is a-selfish with o € Ry iff G is B-selfish with 8 = 1$0— € [0,1].
(ii) G is a-selfish with o € Ry iff G is y-selfish with v = 3= € [0,1].
(iii) G is a-selfish with o € Ry iff G is §-selfish with 6 = 755 € [0, 3.

Proof. We prove the following more general claim. Fix x,y > 0. For every A\ € [0, %]7
define G(A) == (N, {Si}ien, {r} }ien) with

A

rMs) = (1 — zX\)pi(s) + ZSW(S). (6)
We show that G is a- selﬁsh for @ > 0 iff G is A-selfish for A = 1+a$y €[0,1]
By substituting A = 5 +axy in (6), we obtain
1 «a 1
A «
ri(s) 1+ axyp (s) + 1+ axy () 1+ axyrl ()
As a consequence, since 7 Jézy > 0 for every a > 0 the pure Nash equilibria and social

optima, respectively, of G(A) and 1 wyG( a) coincide Thus, G is A-selfish iff 1 wyG is
a-selfish. Also, it follows from Proposition 1 that ; G is a-selfish iff G is a-selfish.

Further, note that

ay 1 .
lim = 1— lim =
a—oo 1 + aa:y T a—oo 1 4+ axy
That is, the selfishness level of G with respect to Model A is oo iff the selfishness level
of G with respect to G(\) is 1.
Now, (i) follows from the above with x = 1 and y = n, (ii) follows with z =y = 1
and (iii) follows with x = 2 and y = 1. O

1
s



2 A characterization result

We now characterize the games with a finite selfishness level. To this end we shall need
the following notion. We call a social optimum s stable if for all i € N and s, € S; the
following holds:

if (s}, s_;) is a social optimum, then p;(s;, s_;) > p;(s;, s_;).

In other words, a social optimum is stable if no player is better off by unilaterally
deviating to another social optimum.

It will turn out that to determine the selfishness level of a game we need to consider
deviations from its stable social optima. Consider a deviation s/ of player i from a stable
social optimum s. If player i is better off by deviating to s}, then by definition the social
welfare decreases, i.e., SW(s;,s_;) — SW(s},s_;) > 0. If this decrease is small, while
the gain for player i is large, then strategy s is an attractive and socially acceptable
option for player i. We define player i’s appeal factor of strategy s, given the social
optimum s as

(875 5—i) — P83, 5-i)
AFy(s;, s) = Sé?/z v - .
(8i,8-i) — SW (s, 5_;)

In what follows we shall characterize the selfishness level in terms of bounds on the
appeal factors of profitable deviations from a stable social optimum. First, note the
following properties of social optima.

Lemma 1. Consider a strategic game G := (N, {S; }ien, {pi}tien) and o > 0.

(i) If s is both a Nash equilibrium of G(«) and a social optimum of G, then s is a
stable social optimum of G.

(ii) If s is a stable social optimum of G, then s is a Nash equilibrium of G(«) iff for
alli € N and s; € Ui(s), a > AF;(s),s), where

Ui(s) == {s; € Si | pi(sj,5-1) > pi(si,5-4)}- (7)

The set U;(s), with the “>” sign replaced by “>”, is called an upper contour set, see,
e.g., [12, page 193]. Note that if s is a stable social optimum, then s, € U;(s) implies
that SW (s, s_;) > SW(s],s_;).

Proof. (i) Suppose that s is both a Nash equilibrium of G(«) and a social optimum of
G. Consider some joint strategy (s}, s—;) that is a social optimum. By the definition of
a Nash equilibrium

Di(si,5-i) + aSW (si, i) > pi(si, s-i) + aSW (s, 5-),
S0 pi(si,s—i) > pi(s),s—;), as desired.
(ii) Suppose that s is a stable social optimum of G. Then s is a Nash equilibrium

of G(o) iff for all i € N and s} € S;

pi(8iy5—i) + aSW (s, 5-;) > pi(sh,s—i) + aSW (s}, s_;). (8)



If pi(si,s—i) > pi(s},s—;), then (8) holds for all & > 0 since s is a social opti-
mum. If p;(s},s_;) > pi(si,s_;), then, since s is a stable social optimum of G, we have
SW(SZ‘, Sfi) > SW(SQ, S,i).

So (8) holds for all i € N and s} € S; iff

pi(8,5-3) — pi(si,53) ’
> 7 — AFZ )
a> SW(sns 1) = SW (s s (s}, 5)

holds for all i € N and s} € U;(s). O
This leads us to the following result.
Theorem 4. Consider a strategic game G := (N, {S;}ien, {pi}tien)-

(i) The selfishness level of G is finite iff a stable social optimum s exists for which
a(s) 1= maxien, s cv,(s) AFi(s5, 8) is finite.

(ii) If the selfishness level of G is finite, then it equals mingesso a(s), where SSO is
the set of stable social optima.

(iii) If G is finite, then its selfishness level is finite iff it has a stable social optimum.
In particular, if G has a unique social optimum, then its selfishness level is finite.

(i) If B>« >0 and G is a-selfish, then G is (3-selfish.
Proof. (i) and (iv) follow by Lemma 1, (ii) by (i) and Lemma 1, and (iii) by (i). O

Using the above theorem we now exhibit a class of games for n players for which
the selfishness level is unbounded. In fact, the following more general result holds.

Theorem 5. For each function f : N — R, there exists a class of games for n players,
where n > 1, such that the selfishness level of a game for n players equals f(n).

Proof. Assume n > 1 players and that each player has two strategies, 1 and 0. Denote
by 1 the joint strategy in which each strategy equals 1 and by 1_; the joint strategy of
the opponents of player ¢ in which each entry equals 1. The payoff for each player ¢ is
defined as follows:

0 ifs=1
pi(s) == ¢ f(n) if s;=0and Vj <i, s; =1
i (:_)Jlrl otherwise.

So when s # 1, pi(s) = f(n) if ¢ is the smallest index of a player with s; = 0 and
otherwise p;(s) = —%. Note that SW(1) =0 and SW(s) = —-1if s# 1. Solisa
unique social optimum.

We have p;(0,1_;) —p;(1) = f(n) and SW(1) — SW(0,1_;) = 1. So by Theorem
4 (ii) the selfishness level equals f(n). O

10



3 Examples

We now use the above characterization result to determine or compute an upper bound
on the selfishness level of some selected games. First, we exhibit a well-known class of
games (see [10]) for which the selfishness level is finite.

3.1 Potential games

Given a game G := (N, {S; }ien, {pi tien), a function P : Sy x --- x S, — R is called
e an exact potential for G if for alli € N, s_; € S_; and s;, s, € S;,

pi(si,s—i) — pi(s;, s—i) = P(s4,5-i) — P(s},5_;),
e a generalized ordinal potential for G if for alli € N, s_; € S_; and s;, s}, € S;,
pi(si,s—i) > pi(s},s_;) implies P(s;,s_;) > P(s},s_;).

A game that possesses a generalized ordinal potential is called a generalized ordinal
potential game.

Theorem 6. FEvery finite generalized ordinal potential game has a finite selfishness
level.

Proof. Each social optimum with the largest potential is a stable social optimum. So
the claim follows by Theorem 4 (ii). O

In particular, every finite congestion game has a finite selfishness level as by the
result of [13] these games have an exact potential.

We shall derive explicit bounds for two special cases of these games in Sections 3.3
and 3.4.

3.2 Weakly acyclic games

Following [10], given a game G := (N, {S;}ien, {pi}ien), a path in S; x --- x S, is a
sequence (s!,s2,...) of joint strategies such that for every k > 1 there is a player i such
that s* = (s, s]i;l) for some s} # sffl. A path is called an improvement path if it is
maximal and for all k > 1, p;(s*) > p;(s*~1), where 7 is the player who deviated from
sk=1 A game G has the finite improvement property (FIP) if every improvement
path is finite. Following [9, 15], a game G is called weakly acyclic if for every joint
strategy there exists a finite improvement path that starts at it.

By the result of [10] finite games that have the FIP coincide with the games that have
a generalized ordinal potential. So by Theorem 6 these games have a finite selfishness
level. In contrast, the selfishness level of a weakly acyclic game can be infinite. Indeed,
the following game is easily seen to be weakly acyclic:

H T E
H 1,—1 —1, 1 —1,-05
T —1, 1 1,—1 —1,-05
E —0.5,—1 —0.5,—1 —0.5,-0.5

Yet, on the account of Theorem 4 (iii), its selfishness level is infinite.

11



3.3 Fair cost sharing games

In a fair cost sharing game, see, e.g., [1], players allocate facilities and share the cost
of the used facilities in a fair manner. Formally, a fair cost sharing game is given by
G = (N,E,{S;}icn,{ce}eck), where N = {1,...,n} is the set of players, E is the set of
facilities, S; C 2 is the set of facility subsets available to player i, and ¢, € R is the
cost of facility e € E. It is called a singleton cost sharing game if for every ¢ € N and
for every s; € S;: |s;| = 1. For a joint strategy s € Sy x -+ x S, let z.(s) be the number
of players using facility e € E, i.e., z.(s) = |[{i € N | e € s;}|. The cost of a facility
e € F is evenly shared among the players using it. That is, the cost of player ¢ is defined
as ¢i(8) = ) .es, Ce/Te(s). The social cost function is given by SC(s) = >,y ci(s).
We first consider singleton cost sharing games. Let cpax = maxecr ce and cpin =
mingc g ¢ refer to the maximum and minimum costs of the facilities, respectively.

Proposition 2. The selfishness level of a singleton cost sharing game is at most
max{0, %iﬂﬂ — 1}. Moreover, this bound is tight.

3.4 Linear congestion games

In a congestion game G := (N, E,{S; }ien, {de }ecr) we are given a set of players N =
{1,...,n}, a set of facilities F with a delay function d. : N — Ry for every facility
e € E, and a strategy set S; C 2F for every player i € N. For a joint strategy
s € 81 X -+ xS, define z.(s) as the number of players using facility e € E, i.e.,
ze(s) = |{t € N | e € s;}|. The goal of a player is to minimize his individual cost
Ci(8) = X ees, de(we(s)). The social cost function is given by SC(s) = ;v ci(s). Here
we call a congestion game symmetric if there is some common strategy set S C 2F such
that S; = S for all 7. It is singleton if every strategy s; € S; is a singleton set, i.e.,
for every i € N and for every s; € S;, |s;| = 1. In a linear congestion game, the delay
function of every facility e € E is of the form de¢(z) = acx + be, where a.,b. € R, are
non-negative real numbers.

We first derive a bound on the selfishness level for symmetric singleton linear conges-
tion games. As it turns out, a bound similar to the one for singleton cost sharing games
does not extend to symmetric singleton linear congestion games. Instead, the crucial
insight here is that the selfishness level depends on the discrepancy between facilities in
a stable social optimum. We make this notion more precise.

Let s be a stable social optimum and let x, refer to x.(s). Define the discrepancy
between two facilities e and ¢’ with a. + a.r > 0 under s as

50, ) = 20c%e + be _ 200/ T + be/. )

Qe + Qg Qe + Qe

We show below that §(x., zer) € [—1,1]. Define dmax(s) as the maximum discrepancy
between any two facilities e and e’ under s with a. + aer > 0 and 6(x,, z/) < 1; more
formally, let

Omax(s) = enc}%%{é(xe,xe/) | ae + aer > 0 and §(ze, xer) < 1}.

12



Let 0max be the maximum discrepancy over all stable social optima, i.e., dmax =
MaXse 550 Omax(8). Further, let Aoy := maxecg(ae + be) and Ay := mingeg(ae + be).
Moreover, let apni, be the minimum non-zero coefficient of a latency function, i.e.,
Gmin = Milee Frq,>0 Te-

Proposition 3. The selfishness level of a symmetric singleton linear congestion game

15 at most
max{O 1 Amax - Amin _ 1}
"2 (1 - 5max)afmin 2

Moreover, this bound is tight.

Proposition 4. The selfishness level of a linear congestion game with non-negative
integer coefficients is at most max{0, %(LAmaX — Apin — 1)}. Moreover, this bound is
tight.

3.5 Prisoner’s dilemma for n players

We assume that each player i € N = {1,...,n} has two strategies, 1 (cooperate) and 0
(defect). We put pi(s) :=1—s8;+23,,;s;.

Proposition 5. The selfishness level of the n-players Prisoner’s Dilemma game is ﬁ

Intuitively, this means that when the number of players in the Prisoner’s Dilemma
game increases, a smaller share of the social welfare is needed to resolve the underlying
conflict. That is, its ‘acuteness’ diminishes with the number of players. The formal
reason is that the appeal factor of each unilateral deviation from the social optimum is
inversely proportional to the number of players.

Proof. In this game s = 1 is the unique social optimum, with for each i € N, p;(s) =
2(n — 1) and SW(s) = 2n(n — 1). Consider now the joint strategy (s}, s_;) in which
player ¢ deviates to the strategy s, = 0. We have then p;(s},s_;) = 2(n — 1) + 1 and
SW (s}, s—;) =2(n—1)+1+2(n—1)(n —2). Hence AF;(s},s) = 5-—. The claim now
follows by Theorem 4 (ii). O

In particular, for n = 2 we get, as already argued in Example 1, that the selfishness
level of the original Prisoner’s Dilemma game is 1.

3.6 Public goods

We consider the public goods game with n players. Every player i € N = {1,...,n}
chooses an amount s; € [0,b] that he contributes to a public good, where b € R is the
budget. The game designer collects the individual contributions of all players, multiplies
their sum by ¢ > 1 and distributes the resulting amount evenly among all players. The
payoff of player i is thus p;(s) == b —s; + 5 >y 8j-

Proposition 6. The selfishness level of the n-players public goods game is max {0, 1(;_? }

13



In this game, every player has an incentive to “free ride” by contributing 0 to the
public good (which is a dominant strategy). This is exactly as in the n-players Prisoner’s
Dilemma game. However, the above proposition reveals that for fixed ¢, in contrast
to the Prisoner’s Dilemma game, this temptation becomes stronger as the number of
players increases. Also, for a fixed number of players this temptation becomes weaker
as c increases.

Proof of Proposition 6. Note that SW(s) = bn + (¢ — 1) Y _;cn si- The unique social
optimum of this game is therefore s = b with p;(s) = ¢b for every i € N and SW(s) =
cbn. Suppose player i deviates from s by choosing s; € [0,b). Then p;(s},s_;) =
cb+ (1 = £)(b— s;). Thus,

pi(si,s—;) —pi(s) = (1—<£)(b—s;) and SW(s)— SW (s, s_;) = (c—1)(b—s}).

n

If 1 — £ < 0 then Uj(s) = () and the selfishness level is zero. Otherwise, 1 — £ > 0
and U;(s) = [0,b). We conclude that in this case AF;(s},s) = (1 — 5)/(c — 1) for every
s € U;(s). The claim now follows by Theorem 4 (ii). O

3.7 Traveler’s dilemma

This is a strategic game discussed in [2] with two players N = {1,2}, strategy set
S; ={2,...,100} for every player i, and payoff function p; for every i defined as

S5 if 5, =5
pi(S) =48+ 2 if S; < S

s_; — 2 otherwise.

Proposition 7. The selfishness level of the Traveler’s Dilemma game is %

Proof. The unique social optimum of this game is s = (100,100), while (2,2) is its
unique Nash equilibrium. If player i deviates from s to a strategy s; < 99, while the
other player remains at 100, the respective payoffs become s; + 2 and s, — 2, so the
social welfare becomes 2s}. So AF;(s}, s) = (s, —98)/(200 — 2s}). The maximum, 3, is
reached when s; = 99. So the claim follows by Theorem 4 (ii). O

3.8 Tragedy of the Commons

Assume that each player i € N = {1,...,n} has the real interval [0,1] as its set of
strategies. Each player’s strategy is his chosen fraction of a common resource. Let
(see [11, Exercise 63.1] and [14, pages 6-7]): pi(s) := max(0, s;(1 — >,y s;)). This
payoff function reflects the fact that player’s enjoyment of the common resource depends
positively from his chosen fraction of the resource and negatively from the total fraction
of the common resource used by all players. Additionally, if the total fraction of the
common resource by all players exceeds a feasible level, here 1, then player’s enjoyment
of the resource becomes zero.

Proposition 8. The selfishness level of the n-players Tragedy of the Commons game
18 00.
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Intuitively, this result means that in this game no matter how much we ‘involve’
the players in sharing the social welfare we cannot achieve that they will select a social
optimum.

Proof. We first determine the stable social optima of this game. Fix a joint strategy s

and let ¢ := ZjeN sj. If t > 1, then the social welfare is 0. So assume that ¢ < 1. Then
SW (s) = t(1 — t). This expression becomes maximal precisely when ¢ = 1 and then it
equals i. So this game has infinitely many social optima and each of them is stable.

Take now a stable social optimum s. So > ..y s; = . Fix i € {1,...,n}. Denote
s; by a and consider a strategy x of player ¢ such that p;(z,s—_;) > p;(a,s—;). Then
djiSit T F 3,50 SW(a,s_;) > SW(x,s_;).

We have p;(a,s—;) = % and SW(a,s_;) = 1. Further, p;(z,s_;) > p;(a, s_;) implies
>_j+i8j o <1 and hence

pi(z,s_;) =z(a+i—z) and SW(z,s_;) =3 —a+2)(l-32+a-2)=1-(a—2)

Also x # a. Hence

pi(xvs—i) _pi(avs—i) ((I—l‘)(l‘—%) .’E—% a— %
(, 5) SW(a,s_;) — SW(x,s_;) (a —x)? a—x * a—zx

Since p;(z,s—;) — pi(a,s—;) = (a — z)(x — 3) we have p;(z,s—;) > pi(a,s_;) iff
a<z< % ora >1x > % But a < %, since Z#isj +a = % So the conjunction

of pi(z,5_;) > pi(a,s—;) and SW(z,s_;) < SW(a,s_;) holds iff a < z < 3. Now

max, ., .1 AF;(x,s) = co. But s was an arbitrary stable social optimum, so the claim
follows by Theorem 4 (i). O

3.9 Cournot competition

We consider Cournot competition for n firms with a linear inverse demand function
and constant returns to scale, see, e.g., [8, pages 174-175]. So we assume that each
player i € N = {1,...,n} has a strategy set S; = Ry and payoff function p;(s) :=
si(a— ijeN sj) — cs; for some given a,b, ¢, where a > ¢ >0 and b > 0.

The price of the product is represented by the expression a — sze ~ 8; and the
production cost corresponding to the production level s; by c¢s;. In what follows we
rewrite the payoff function as p;(s) := si(d — b} ;. 8;), where d := a — c. Note that
the payoffs can be negative, which was not the case in the tragedy of the commons
game. Still the proofs are very similar for both games.

Proposition 9. The selfishness level of the n-players Cournot competition game is co.

Proof. We first determine the stable social optima of this game. Fix a joint strategy
s and let ¢ := > .y s;. Then SW(s) = t(d — bt). This expression becomes maximal

precisely when t = 2%. So this game has infinitely many social optima and each of them
is stable.
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Take now a stable social optimum s. So 3,y s; = 2%. Fixi € N. Let u:=3_,,;s;.
For every strategy z of player ¢

pi(2,8_5) = —b2> + (d—bu)z and SW(z,s_;) = —bz* 4 (d — 2bu)z + u(d — bu).

Denote now s; by y and consider a strategy z of player i such that p;(z,s—;) >
pi(y,s—;). Then u + x # %, so SW(y,s_;) > SW(x,s_;).
We have
pi(,5-5) = pi(y, s—5) = =b(a? — y?) + (d — bu)(z — y)
= b gty u— )= bz —y) - ),

where the last equality holds since u — % = —(y+ %) on the account of the equality
_ d
U+yY=qg.
Further,

SW (y,s_;) — SW(z,s_;) = b(z* — y*) — (d — 2bu)(z — ¥)

=b(z —y)(z+y+2u—§) = bz —y)?
where the last equality holds since QU—% = —2y on the account of the equality u+y = ib.
We have = # y. Hence
d d
AFy(z.5) = pit,s—) =pily,s—i) _ TTa YT
SW(y,s-i) — SW(z,5-;) T—y y—x

Since pi(z, s—i) — pi(y, s-i) = b(y — x)(z — g) we have p;(z,s-;) — pi(y,5-i) > 0

iffy <z % ory >z >< Buty < since v +y = %. So the conjunction

d

2b° 20>

of pi(z,5-;) > pi(y,s—;) and SW(z,s_;) > SW(y,s_;) holds if y < 2 < £. Now
max, ., d AF;(z,s) = oco. But s was an arbitrary stable social optimum, so the claim

follows by Theorem 4 (i). O

This proof shows that for every stable social optimum s, for every player there exist
deviating strategies with an arbitrary high appeal factor. In fact, lim,_,+ AF;(z,s) =
00, i.e., the appeal factor of the deviating strategy x converges to co when it converges
from the right to the original strategy v in s.

3.10 Bertrand competition

Next, we consider Bertrand competition, a game concerned with a simultaneous se-
lection of prices for the same product by two firms, see, e.g., [8, pages 175-177]. The
product is then sold by the firm that chose a lower price. In the case of a tie the product
is sold by both firms and the profits are split. We assume that each firm has identical
marginal costs ¢ > 0 and no fixed cost, and that each strategy set S; equals [c, 7), where
¢ < £. The payoff function for player 7 € {1,2} is given by

(si —c)(a—1bs;) ifc<s;<szy
pi(8i,83—1) == %(sZ —c)(a—bs;) ife<s;=s3-

0 otherwise.
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Proposition 10. The selfishness level of the Bertrand competition game is co.

Proof. Let d := %é’c. If SW(s) > 0, then SW(s) = (so — ¢)(a — bsp), where so :=
min(sy,s2). Note that d € (c, §), since by the assumption bc < a. Hence s is a social
optimum iff min(sy, s2) = d.

If s is a social optimum with s # so, then player ¢ with the larger s; can profitably
deviate to s3_; (that equals d), while (s3_;, $3_;) remains a social optimum. So the only
stable social optimum is (d, d).

Fix ¢ € {1,2}. Note that if s; is slightly lower than d, then p;(s;,d) > p;(d,d).
Further,

lim (pi(si,d) —pi(d,d)) = 2(d—c)(a—bd), while lim (SW(d,d)—SW(s;,d)) =0

Si—>d7 Si—>d7
and SW(d,d) — SW(s;,d) # 0 for s; # d. Hence

i(8i,d) — pi(d, d
e pi(si,d) — pi(d, d) .

c<s;<d SW(d, d) - SW(SZ', d)

The claim now follows by Theorem 4 (i). O
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