Selfishness Level of Strategic Games

Krzysztof R. Apt

CWI, Amsterdam, the Netherlands, University of Amsterdam

based on joint work with

Guido Schäfer

CWI, Amsterdam, the Netherlands, Vrije Universiteit Amsterdam

Altruistic Games

- Given $G := (N, \{S_i\}_{i \in N}, \{p_i\}_{i \in N})$ and $\alpha \ge 0$.
- $G(\alpha) := (N, \{S_i\}_{i \in N}, \{r_i\}_{i \in N})$, where

$$r_i(s) := p_i(s) + \alpha SW(s).$$

- When $\alpha > 0$ the payoff of each player in $G(\alpha)$ depends on the social welfare of the players.
- $G(\alpha)$ is an altruistic version of G.

Selfishness Level (1)

- G is α -selfish if a Nash equilibrium of $G(\alpha)$ is a social optimum of $G(\alpha)$.
- Selfishness level of G:

$$\inf\{\alpha \in \mathbb{R}_+ \mid G \text{ is } \alpha\text{-selfish}\}.$$

Recall $\inf(\emptyset) = \infty$.

Selfishness level of G is α^+ iff the selfishness level of G is $\alpha \in \mathbb{R}_+$ but G is not α -selfish.

Selfishness Level (2)

Intuition

Selfishness level quantifies the minimal share of social welfare needed to induce the players to choose a social optimum.

Three Examples (1)

Prisoner's Dilemma

$$\begin{array}{c|cc}
 & C & D \\
C & 2,2 & 0,3 \\
D & 3,0 & 1,1
\end{array}$$

The Battle of the Sexes

$$egin{array}{c|cccc} F & B \ \hline F & 2,1 & 0,0 \ B & 0,0 & 1,2 \ \hline \end{array}$$

Matching Pennies

Three Examples (2)

Prisoner's Dilemma: selfishness level is 1.

$$\begin{array}{c|cc}
 & C & D \\
C & 6,6 & 3,6 \\
D & 6,3 & 3,3
\end{array}$$

The Battle of the Sexes: selfishness level is 0.

$$egin{array}{c|cccc} F & B \\ F & 2,1 & 0,0 \\ B & 0,0 & 1,2 \\ \hline \end{array}$$

Matching Pennies: selfishness level is ∞.

Another Example

Game with a bad Nash equilibrium

- The unique Nash equilibrium is (E,E).
- The selfishness level of this game is ∞.

Yet Another Example

Game with no Nash equilibrium

Consider G on the left and G(1) on the right.

$$\begin{array}{c|cc}
 & C & D \\
C & 2,2 & 2,0 \\
D & 3,0 & 1,1
\end{array}$$

$$\begin{array}{c|cc}
C & D \\
C & 6,6 & 4,2 \\
D & 6,3 & 3,3
\end{array}$$

- G has no Nash equilibrium, while in G(1) the social optimum, (C,C), is also a Nash equilibrium.
- For $\alpha < 1$, (C,C) is also a social optimum of $G(\alpha)$ but not a Nash equilibrium.
- ullet So the selfishness level of the game G is 1.

Invariance of Selfishness Level

Lemma Consider a game G and $\alpha \geq 0$.

- For every a, G is α -selfish iff G + a is α -selfish,
- For every a > 0, G is α -selfish iff aG is α -selfish.

Conclusion Selfishness level is invariant under positive linear transformations of the payoff functions.

Selfishness Level vs Price of Stability (1)

Recall

Price of stability = SW(s)/SW(s'), where s is a social optimum and s' a Nash equilibrium with the highest social welfare.

Note

Selfishness level of a finite game is 0 iff price of stability is 1.

Selfishness Level vs Price of Stability (2)

Theorem For every finite $\alpha > 0$ and $\beta > 1$ there is a finite game with selfishness level α and price of stability β .

Proof Consider G:

$$egin{array}{c|c} C & D \ \hline C & 1,1 & 0,rac{2lpha+1}{lpha+1} \ D & rac{2lpha+1}{lpha+1},0 & rac{1}{eta},rac{1}{eta} \ \hline \end{array}$$

In each $G(\gamma)$ with $\gamma \geq 0$, (C,C) is the unique social optimum. Consider $G(\gamma)$ and stipulate that (C,C) is its Nash equilibrium. This leads to

$$1+2\gamma \geq (\gamma+1)\frac{2\alpha+1}{\alpha+1}.$$

This is equivalent to $\gamma \geq \alpha$. So the selfishness level is α . The price of stability is β .

Selfishness Level can be α^+

Theorem There exists a game that is 0^+ -selfish (so α -selfish for every $\alpha > 0$, but is not 0-selfish).

Proof idea

Plug the above games for each $\alpha > 0$ and fixed $\beta > 1$ in:

		0	0	0	0
• • •	• • •	0	0	0	0
0	0			0	0
0	0			0	0
0	0	0	0		
0	0	0	0		

Alternative Definitions (1)

A: For every $\alpha \geq 0$, $G(\alpha) := (N, \{S_i\}_{i \in N}, \{r_i^{\alpha}\}_{i \in N})$ with

$$r_i^{\alpha}(s) = p_i(s) + \alpha SW(s) \quad \forall i \in \mathbb{N}.$$

B: For every $\beta \in [0,1]$, $G(\beta) := (N, \{S_i\}_{i \in N}, \{r_i^{\beta}\}_{i \in N})$ with

$$r_i^{\beta}(s) = (1 - \beta)p_i(s) + \frac{\beta}{n}SW(s) \quad \forall i \in \mathbb{N}.$$

C: For every $\gamma \in [0,1]$, $G(\gamma) := (N, \{S_i\}_{i \in N}, \{r_i^{\gamma}\}_{i \in N})$ with

$$r_i^{\gamma}(s) = (1 - \gamma)p_i(s) + \gamma SW(s) \quad \forall i \in \mathbb{N}.$$

D: For every $\delta \in [0,1]$, $G(\delta) := (N, \{S_i\}_{i \in N}, \{r_i^{\delta}\}_{i \in N})$ with

$$r_i^{\gamma}(s) = (1 - \delta)p_i(s) + \delta(SW(s) - p_i(s)) \quad \forall i \in \mathbb{N}.$$

Alternative Definitions (2)

Theorem

Consider $G := (N, \{S_i\}_{i \in N}, \{p_i\}_{i \in N})$ and its altruistic versions defined according to models A, B, C and D.

- (i) G is α -selfish with $\alpha \in \mathbb{R}_+$ iff G is β -selfish with $\beta = \frac{\alpha n}{1+\alpha n} \in [0,1]$.
- (ii) G is α -selfish with $\alpha \in \mathbb{R}_+$ iff G is γ -selfish with $\gamma = \frac{\alpha}{1+\alpha} \in [0,1]$.
- (iii) G is lpha-selfish with $lpha\in\mathbb{R}_+$ iff G is δ -selfish with $\delta=rac{lpha}{1+2lpha}\in[0,rac{1}{2}].$

Stable Social Optima

- Social optimum s stable if no player is better off by unilaterally deviating to another social optimum.
- **●** That is, s is stable if for all $i \in N$ and $s'_i \in S_i$

if (s_i', s_{-i}) is a social optimum, then $p_i(s_i, s_{-i}) \ge p_i(s_i', s_{-i})$.

Notes

- If s is a unique social optimum, then it is stable.
- Stable social optima don't need to exist: take the Matching Penny game.

Characterization Result

Player *i*'s appeal factor of s_i' given the social optimum s:

$$AF_i(s_i',s) := \frac{p_i(s_i',s_{-i}) - p_i(s_i,s_{-i})}{SW(s_i,s_{-i}) - SW(s_i',s_{-i})}.$$

Theorem

The selfishness level of G is finite iff a stable social optimum s exists for which

$$lpha(s) := \max_{i \in N, s_i' \in U_i(s)} AF_i(s_i', s)$$
 is finite, where $U_i(s) := \{s_i' \in S_i \mid p_i(s_i', s_{-i}) > p_i(s_i, s_{-i})\}.$

• If the selfishness level of G is finite, then it equals $\min_{s \in SSO} \alpha(s)$, where SSO is the set of stable social optima.

Some Observations

- If G is finite, then its selfishness level is finite iff it has a stable social optimum.
- Selfishness level can be unbounded.

Theorem For each $f: \mathbb{N} \to \mathbb{R}_+$ there exists a class of games G_n for n players, such that the selfishness level of G_n is f(n).

Some Examples

Prisoner's dilemma for n **players** Each $S_i = \{0, 1\}$,

$$p_i(s) := 1 - s_i + 2 \sum_{j \neq i} s_j.$$

Proposition Selfishness level is $\frac{1}{2n-3}$.

Traveler's dilemma Two players, $S_i = \{2, ..., 100\}$,

$$p_i(s) := \begin{cases} s_i & \text{if } s_i = s_{-i} \\ s_i + 2 & \text{if } s_i < s_{-i} \\ s_{-i} - 2 & \text{otherwise.} \end{cases}$$

Proposition Selfishness level is $\frac{1}{2}$.

Public Goods Game

- n players,
- $b \in \mathbb{R}_+$: fixed budget,
- c > 1: a multiplier,
- $S_i = [0, b],$
- $p_i(s) := b s_i + \frac{c}{n} \sum_{j \in N} s_j.$

Proposition Selfishness level is $\max \{0, \frac{1-\frac{c}{n}}{c-1}\}$. Notes

- Free riding: contributing 0 (it is a dominant strategy).
- For fixed c temptation to free ride increases with n.
- For fixed n temptation to free ride decreases as c increases.

Potential Games

$$G := (N, \{S_i\}_{i \in N}, \{p_i\}_{i \in N})$$

is a generalized ordinal potential game if for some

$$P: S_1 \times \ldots \times S_n \to \mathbb{R}$$
 for all $i \in N$, $s_i \in S_i$, and $s_i \in S_i$

for all $i \in N$, $s_{-i} \in S_{-i}$ and $s_i, s_i' \in S_i$

$$p_i(s_i, s_{-i}) > p_i(s_i', s_{-i}) \text{ implies } P(s_i, s_{-i}) > P(s_i', s_{-i}).$$

Theorem Every finite generalized ordinal potential game has a finite selfishness level.

Proof Each social optimum with the largest potential is a stable social optimum.

Fair Cost Sharing Games (1)

Fair cost sharing game: $G = (N, E, \{S_i\}_{i \in N}, \{c_e\}_{e \in E})$, where

- E is the set of facilities,
- $S_i \subseteq 2^E$ is the set of facility subsets available to player i, i.e., each $s_i \subseteq E$,
- $c_e \in \mathbb{Q}_+$ is the cost of facility $e \in E$.
- Let $x_e(s)$ be the number of players using facility e in s.
- The cost of facility $e \in E$ is evenly shared. So $c_i(s) := \sum_{e \in s_i} \frac{c_e}{x_e(s)}$.
- Social cost: $SC(s) = \sum_{i=1}^{n} c_i(s)$.

Fair Cost Sharing Games (2)

Singleton cost sharing game: for each s_i , $|s_i| = 1$.

- \bullet $c_{\max} := \max_{e \in E} c_e$,
- $L := \max_{i \in N, s_i \in S_i} |s_i|$ (maximum number of facilities a player can choose).

Proposition Selfishness level of

- a singleton cost sharing game is $\leq \max\{0, \frac{1}{2} \frac{c_{\max}}{c_{\min}} 1\}$. The bound is tight.
- a fair cost sharing game with non-negative integer costs is $\leq \max\{0, \frac{1}{2}Lc_{\max} 1\}$. The bound is tight.

Congestion Games

Congestion game: $G = (N, E, \{S_i\}_{i \in N}, \{d_e\}_{e \in E})$, where

- E is a finite set of facilities,
- $S_i \subseteq 2^E$ is the set of facility subsets available to player i,
- $d_e \in \mathbb{N}$ is the delay function for facility $e \in E$.
- Let $x_e(s)$ be the number of players using facility e in s.
- The goal of a player is to minimize his individual cost $c_i(s) := \sum_{e \in s_i} d_e(x_e(s))$.
- Social cost: $SC(s) = \sum_{i=1}^{n} c_i(s)$.

Linear Congestion Games

Linear congestion game: each delay function is of the form $d_e(x) = a_e x + b_e$, where $a_e, b_e \in \mathbb{R}_+$.

- $L := \max_{i \in N, s_i \in S_i} |s_i|$ (maximum number of facilities a player can choose).

Proposition Selfishness level of

• a linear congestion game with non-negative integer coefficients is $\leq \max\{0, \frac{1}{2}(L\Delta_{\max} - \Delta_{\min} - 1)\}$. This bound is tight.

Cournot Competition (1)

- One infinitely divisible product (oil),
- n companies decide simultaneously how much to produce,
- price is decreasing in total output.

Each $S_i = \mathbb{R}_+$,

$$p_i(s) := s_i \left(a - b \sum_{j=1}^n s_j \right) - cs_i$$

for some a, b, c, where a > c and b > 0.

The price of the product: $a - b \sum_{j=1}^{n} s_j$.

The production cost: cs_i .

Cournot Competition (2)

•
$$p_i(s) := s_i \left(a - b \sum_{j=1}^n s_j \right) - c s_i$$

Unique Nash equilibrium:

$$s$$
, with each $s_i = \frac{a-c}{b(n+1)}$.

$$SW(s) = \frac{(a-c)^2}{b} \cdot \frac{n}{(n+1)^2}.$$

• Social optimum, when $\sum_{j=1}^{n} s_j = \frac{a-c}{2b}$.

$$SW(s) = \frac{(a-c)^2}{4b}$$
.

Note Price of stability converges to ∞.

Proposition For each n > 1 the selfishness level is ∞ .

Tragedy of the Commons (1)

- Contiguous common resource (e.g. shared bandwidth),
- Each $S_i = [0, 1]$,
- s_i : chosen fraction of the common resource
- payoff function:

$$p_i(s) := \begin{cases} s_i(1 - \sum_{j=1}^n s_j) & \text{if } \sum_{j=1}^n s_j \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Intuition: the payoff degrades when the resource is overused.

Tragedy of the Commons (2)

$$p_i(s) := \begin{cases} s_i(1 - \sum_{j=1}^n s_j) & \text{if } \sum_{j=1}^n s_j \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Best Nash equilibrium:

$$s$$
, with each $s_i = \frac{1}{n+1}$. $SW(s) = \frac{n}{(n+1)^2}$.

- Social optimum, when $\sum_{j=1}^{n} s_j = \frac{1}{2}$. $SW(s) = \frac{1}{4}$.
- Note Price of stability converges to ∞.

Proposition For each n > 1 the selfishness level is ∞ .

Bertrand Competition

- One product for sale.
- 2 companies simultaneously select their prices.
- The product is sold by the company that chose a lower price.

Each
$$S_i = [c, \frac{a}{b})$$
, where $c < \frac{a}{b}$.
(So $s_i - c \ge 0$ and $a - bs_i > 0$ for $s_i \in S_i$.)

$$p_i(s_i, s_{3-i}) := \begin{cases} (s_i - c)(a - bs_i) & \text{if } c < s_i < s_{3-i} \\ \frac{1}{2}(s_i - c)(a - bs_i) & \text{if } c < s_i = s_{3-i} \\ 0 & \text{otherwise.} \end{cases}$$

The demand for the product: $a - bs_i$.

The marginal production cost: c.

Proposition The selfishness level is ∞.

Some Quotations

The intelligent way to be selfish is to work for the welfare of others.

Microeconomics: Behavior, Institutions, and Evolution, S. Bowles '04.

An excellent way to promote cooperation in a society is to teach people to care about the welfare of others.

The Evolution of Cooperation, R. Axelrod, '84.

THANK YOU