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Social Networks

Facebook,

Hyves,

LinkedIn,

Nasza Klasa,

. . .
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But also . . .

An area with links to

sociology (spread of patterns of social behaviour)

economics (effects of advertising, emergence of ‘bubbles’ in financial
markets, . . .),

epidemiology (epidemics),

computer science (complexity analysis),

mathematics (graph theory).
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Example 1

(From D. Easley and J. Kleinberg, 2010).

Spread of the tuberculosis outbreak.
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Example 2

(From D. Easley and J. Kleinberg, 2010).

Pattern of e-mail communication among 436 employees of HP Research
Lab.
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Example 3

(From D. Easley and J. Kleinberg, 2010).

Collaboration of mathematicians centered on Paul Erdős.
Drawing by Ron Graham.
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Social networks

Essential components of our model

Finite set of agents.

Influence of “friends”.

Finite product set for each agent.

Resistance level in (threshold for) adopting a product.
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Social networks

Essential components of our model

Finite set of agents.

Influence of “friends”.

Finite product set for each agent.

Resistance level in (threshold for) adopting a product.
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The model

Social network [Apt, Markakis 2011]

Weighted directed graph: G = (V ,→,w), where
V : a finite set of agents,
wij ∈ (0, 1]: weight of the edge i → j .

Products: A finite set of products P.

Product assignment: P : V → 2P \ {∅};
assigns to each agent a non-empty set of products.

Threshold function: θ(i , t) ∈ (0, 1], for each agent i and product
t ∈ P(i).

Neighbours of node i : {j ∈ V | j → i}.

Source nodes: Agents with no neighbours.
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The associated strategic game
Interaction between agents: Each agent i can adopt a product from the
set P(i) or choose not to adopt any product (t0).

Social network games

Players: Agents in the network.

Strategies: Set of strategies for player i is P(i) ∪ {t0}.

Payoff: Fix c > 0.
Given a joint strategy s and an agent i ,
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The associated strategic game
Interaction between agents: Each agent i can adopt a product from the
set P(i) or choose not to adopt any product (t0).

Social network games

Players: Agents in the network.

Strategies: Set of strategies for player i is P(i) ∪ {t0}.

Payoff: Fix c > 0.
Given a joint strategy s and an agent i ,

◮ if i ∈ source(S), pi (s) =

{

0 if si = t0

c if si ∈ P(i)
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The associated strategic game
Interaction between agents: Each agent i can adopt a product from the
set P(i) or choose not to adopt any product (t0).

Social network games

Players: Agents in the network.

Strategies: Set of strategies for player i is P(i) ∪ {t0}.

Payoff: Fix c > 0.
Given a joint strategy s and an agent i ,

◮ if i ∈ source(S), pi (s) =

{

0 if si = t0

c if si ∈ P(i)

◮ if i 6∈ source(S), pi (s) =






0 if si = t0
∑

j∈N t
i
(s)

wji − θ(i , t) if si = t, for some t ∈ P(i)

N t
i (s): the set of neighbours of i who adopted in s the product t.
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Example
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Threshold is 0.3 for all the players.

P = {•, •, •}

Krzysztof R. Apt Social Network Games



Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}
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{•}

0.5

0.5

0.5
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0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Payoff:

p4(s) = p5(s) = p6(s) = c
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Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Payoff:

p4(s) = p5(s) = p6(s) = c

p1(s) = 0.4 − 0.3 = 0.1
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Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Payoff:

p4(s) = p5(s) = p6(s) = c

p1(s) = 0.4 − 0.3 = 0.1

p2(s) = 0.5 − 0.3 = 0.2

p3(s) = 0.4 − 0.3 = 0.1
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Social network games

Properties

Graphical game: The payoff for each player depends only on the
choices made by his neighbours.

Join the crowd property: The payoff of each player weakly increases if
more players choose the same strategy.
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Does Nash equilibrium always exist?
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Threshold is 0.3 for all the players.
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Does Nash equilibrium always exist?
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3{•, •} 2 {•, •}
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0.4 0.4

Threshold is 0.3 for all the players.

Observation: No player has the
incentive to choose t0.

Source nodes can ensure a
payoff of c > 0.

Each player on the cycle can
ensure a payoff of at least 0.1.
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Does Nash equilibrium always exist?
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1 {•, •}

3{•, •} 2 {•, •}
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Threshold is 0.3 for all the players.

(•, •, •)

Observation: No player has the
incentive to choose t0.

Source nodes can ensure a
payoff of c > 0.

Each player on the cycle can
ensure a payoff of at least 0.1.
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Does Nash equilibrium always exist?

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}
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Threshold is 0.3 for all the players.

Best response dynamics

(•, •, •) (•, •, •) (•, •, •)

(•, •, •)(•, •, •)(•, •, •)

Observation: No player has the
incentive to choose t0.

Source nodes can ensure a
payoff of c > 0.

Each player on the cycle can
ensure a payoff of at least 0.1.

Reason: Players keep switching
between the products.
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Nash equilibrium

Recall the network with no Nash equilibrium:
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Nash equilibrium (ctd)

Theorem. If there exists X ⊆ P where |X | ≤ 2 such that for all source
nodes i , P(i) ∩ X 6= ∅ then S has a Nash equilibrium.

Corollary. If there are at most two products, then a Nash equilibrium
always exists.
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Nash equilibrium
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Properties of the underlying graph:
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Nash equilibrium
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Properties of the underlying graph:

Contains a cycle.
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Nash equilibrium
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Nash equilibrium

4
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Properties of the underlying graph:

Contains a cycle.

Contains source nodes.

Question: Does Nash equilibrium always exist in social networks when the
underlying graph

is acyclic?

has no source nodes?
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Directed acyclic graphs

A Nash equilibrium s is non-trivial if there is at least one player i such
that si 6= t0.

Krzysztof R. Apt Social Network Games



Directed acyclic graphs

Theorem. In a DAG, a non-trivial Nash equilibrium always exist.

Procedure to generate a non-trivial Nash
equilibrium

Initialise: Assigns a product for each source
node
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Directed acyclic graphs

Theorem. In a DAG, a non-trivial Nash equilibrium always exist.

Procedure to generate a non-trivial Nash
equilibrium

Initialise: Assigns a product for each source
node

Repeat until all nodes are labelled:

Pick a node which is not labelled and
for which all neighbours are labelled

Assign the product which maximises the
payoff
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Directed acyclic graphs

Theorem. In a DAG, a non-trivial Nash equilibrium always exist.

1

{•, •}

2

{•, •}

3{•, •}

4 {•, •}

5 {•, •, •}

0.4

0.5
0.3

0.10.1

Threshold = 0.3

Procedure to generate a non-trivial Nash
equilibrium

Initialise: Assigns a product for each source
node

Repeat until all nodes are labelled:

Pick a node which is not labelled and
for which all neighbours are labelled

Assign the product which maximises the
payoff
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Directed acyclic graphs

Theorem. In a DAG, a non-trivial Nash equilibrium always exist.
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Directed acyclic graphs

Theorem. In a DAG, a non-trivial Nash equilibrium always exist.
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Directed acyclic graphs

Theorem. In a DAG, a non-trivial Nash equilibrium always exist.
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{•, •}

2

{•, •}

3{•, •}

4 {•, •}

5 {•, •, •}

0.4

0.5
0.3

0.10.1

Threshold = 0.3

Procedure to generate a non-trivial Nash
equilibrium

Initialise: Assigns a product for each source
node

Repeat until all nodes are labelled:

Pick a node which is not labelled and
for which all neighbours are labelled

Assign the product which maximises the
payoff
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Directed acyclic graphs

Theorem. A joint strategy s is a Nash equilibrium iff there is a run of the
labelling procedure such that s is defined by the labelling function.
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Graphs with no source nodes
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{•, •}
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{•, •}
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{•, •}

“Circle of friends”: everyone has a
neighbour.
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Graphs with no source nodes

1

{•, •}

3
{•, •}

2

{•, •}

4

{•, •}

7{•, •}

5

{•, •}

6

{•, •}

“Circle of friends”: everyone has a
neighbour.

Observation: t0 is always a Nash
equilibrium.

Question: When does a non-trivial Nash equilibrium exist?
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Graphs with no source nodes
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Self sustaining subgraph

A subgraph Ct is self sustaining for
product t if it is strongly connected and
for all i in Ct ,

t ∈ P(i)

∑

j∈N (i)∩Ct

wji ≥ θ(i , t)
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Graphs with no source nodes
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Graphs with no source nodes

1

{•, •}

3
{•, •}

2

{•, •}

4

{•, •}

7{•, •}

5

{•, •}

6

{•, •}

0.4

0.4

0.5

0.3
0.2

0.1

0.2

0.1

0.4

0.2

Threshold=0.3

Self sustaining subgraph

A subgraph Ct is self sustaining for
product t if it is strongly connected and
for all i in Ct ,

t ∈ P(i)

∑

j∈N (i)∩Ct

wji ≥ θ(i , t)

Theorem. There is a non-trivial Nash equilibrium iff there exists a product
t and a self sustaining subgraph Ct for t.
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Graphs with no source nodes

For a product t,

X 0
t := {i ∈ V | t ∈ P(i)}

Xm+1
t := {i ∈ V |

∑

j∈N (i)∩Xm
j

wji ≥ θ(i , t)}

Xt :=
⋂

m∈N
Xm

t

Theorem. There is a non-trivial Nash equilibrium iff there exists a product
t such that Xt 6= ∅.
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Finite Improvement Property

Fix a game.

Profitable deviation: a pair (s, s ′) such that s ′ = (s ′i , s−i) for some s ′i
and pi(s

′) > pi (s).

Improvement path: a maximal sequence of profitable deviations.

A game has the FIP if all improvement paths are finite.
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FIP

Theorem. Every two players social network game has the FIP.
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FIP

Theorem. Every two players social network game has the FIP.
Proof.

Consider an improvement path ρ.
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FIP

Theorem. Every two players social network game has the FIP.
Proof.

Consider an improvement path ρ.

We can assume that the players alternate their moves in ρ.
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FIP

Theorem. Every two players social network game has the FIP.
Proof.

Consider an improvement path ρ.

We can assume that the players alternate their moves in ρ.

A match: an element of ρ of the type (t, t) or (t, t).
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FIP

Theorem. Every two players social network game has the FIP.
Proof.

Consider an improvement path ρ.

We can assume that the players alternate their moves in ρ.

A match: an element of ρ of the type (t, t) or (t, t).

Consider two successive matches in ρ.
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FIP

Theorem. Every two players social network game has the FIP.
Proof.

Consider an improvement path ρ.

We can assume that the players alternate their moves in ρ.

A match: an element of ρ of the type (t, t) or (t, t).

Consider two successive matches in ρ.

The corresponding segment of ρ is of one of the following types.
Type 1. (t, t) ⇒∗ (t1, t1).
Type 2. (t, t) ⇒∗ (t1, t1).
Type 3. (t, t) ⇒∗ (t1, t1).
Type 4. (t, t) ⇒∗ (t1, t1).
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Proof, ctd

Type p1 p2

1 increases decreases
by > w21 by < w12

2, 3 increases increases

4 decreases increases
by < w21 by > w12

Table: Changes in p1 and p2
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Proof, ctd

Type p1 p2

1 increases decreases
by > w21 by < w12

2, 3 increases increases

4 decreases increases
by < w21 by > w12

Table: Changes in p1 and p2

Suppose (t, t) ⇒∗ (t1, t1) in ρ.
Ti : the number of internal segments of type i .
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Proof, ctd

Type p1 p2

1 increases decreases
by > w21 by < w12

2, 3 increases increases

4 decreases increases
by < w21 by > w12

Table: Changes in p1 and p2

Suppose (t, t) ⇒∗ (t1, t1) in ρ.
Ti : the number of internal segments of type i .

Case 1. T1 ≥ T4.
Then p1(t̄) < p1(t1).
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Proof, ctd

Type p1 p2

1 increases decreases
by > w21 by < w12

2, 3 increases increases

4 decreases increases
by < w21 by > w12

Table: Changes in p1 and p2

Suppose (t, t) ⇒∗ (t1, t1) in ρ.
Ti : the number of internal segments of type i .

Case 1. T1 ≥ T4.
Then p1(t̄) < p1(t1).

Case 2. T1 < T4.
Then p2(t̄) < p2(t1).

Krzysztof R. Apt Social Network Games



Proof, ctd

Type p1 p2

1 increases decreases
by > w21 by < w12

2, 3 increases increases

4 decreases increases
by < w21 by > w12

Table: Changes in p1 and p2

Suppose (t, t) ⇒∗ (t1, t1) in ρ.
Ti : the number of internal segments of type i .

Case 1. T1 ≥ T4.
Then p1(t̄) < p1(t1).

Case 2. T1 < T4.
Then p2(t̄) < p2(t1).

Conclusion: t 6= t1. So each match occurs in ρ at most once.
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Proof, ctd

So from some moment on in ρ no matches occur.
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Proof, ctd

So from some moment on in ρ no matches occur.

So from that moment on the social welfare keeps increasing.
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Proof, ctd

So from some moment on in ρ no matches occur.

So from that moment on the social welfare keeps increasing.

Hence ρ is finite.
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A generalization: two player coordination games

Theorem. Consider a finite two players game G such that

pi(s) := fi (si) + ai(si = s−i),
where fi : Si → R, ai > 0 and

(si = s−i ) :=

{

1 if si = s−i

0 otherwise

Then G has the FIP.

Intuition: ai is a bonus for player i for coordinating with his opponent.
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Price of Anarchy and Price of Stability

Theorem. The price of anarchy and the price of stability for the games
associated with the networks whose underlying graph is a DAG or a simple
cycle is unbounded.
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Proof
For a simple cycle.

Choose arbitrary r > 0 and ǫ such that ǫ < min(1
4 , 1

2(r+1) ).

Then 1 − 2ǫ > 2ǫ and 1−2ǫ

2ǫ
> r .

Consider the network

1
)){t1,t2}

2ii
{t1,t2}

Assume
w12 − θ(2, t2) = 1 − ǫ, w21 − θ(1, t2) = −ǫ,

w12 − θ(2, t1) = ǫ, w21 − θ(1, t1) = ǫ.

Social optimum: (t2, t2) with social welfare 1 − 2ǫ.

There are two Nash equilibria, (t1, t1) and (t0, t0) with the social
welfare 2ǫ and 0.

Price of anarchy: 1−2ǫ

0 . We interpret it as ∞.

Price of stability: 1−2ǫ

2ǫ
> r .
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