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Introduction

Mathematical game theory, as launched by Von Neumann and Morgenstern
in their seminal book [22], followed by Nash’ contributions [11, 12], has be-
come a standard tool in Economics for the study and description of various
economic processes, including competition, cooperation, collusion, strategic
behaviour and bargaining. Since then it has also been successfuly used in
Biology, Political Sciences, Psychology and Sociology. With the advent of
the Internet game theory became increasingly relevant in Computer Science.
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One of the main areas in game theory are strategic games , (sometimes
also called non-cooperative games), which form a simple model of inter-
action between profit maximizing players. In strategic games each player
has a payoff function that he aims to maximize and the value of this func-
tion depends on the decisions taken simultaneously by all players. Such a
simple description is still amenable to various interpretations, depending on
the assumptions about the existence of private information. The purpose of
these lecture notes is to provide a simple introduction to the most common
concepts used in strategic games and most common types of such games.

Many books provide introductions to various areas of game theory, in-
cluding strategic games. Most of them are written from the perspective of
applications to Economics. In the nineties the leading textbooks were [10],
[2], [5] and [15].

Moving to the next decade, [14] is an excellent, broad in its scope, under-
graduate level textbook, while [16] is probably the best book on the market
for the graduate level. Undeservedly less known is the short and lucid [21].
An elementary, short introduction, focusing on the concepts, is [19]. In turn,
[17] is a comprehensive book on strategic games that also extensively dis-
cusses extensive games , i.e., games in which the players choose actions in
turn. Finally, [3] is thoroughly revised version of [2].

Several textbooks on microeconomics include introductory chapters on
game theory, including strategic games. Two good examples are [8] and
[6]. In turn, [13] is a recent collection of surveys and introductions to the
computational aspects of game theory, with a number of articles concerned
with strategic games and mechanism design.

Finally, [9] is a most recent, very comprehensive account of various areas
of game theory, while [20] is an elegant introduction to the subject.
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Chapter 1

Nash Equilibrium

Assume a set {1, . . . , n} of players, where n > 1. A strategic game (or
non-cooperative game) for n players, written as (S1, . . . , Sn, p1, . . . , pn),
consists of

• a non-empty (possibly infinite) set Si of strategies ,

• a payoff function pi : S1 × · · · × Sn → R,

for each player i.
We study strategic games under the following basic assumptions:

• players choose their strategies simultaneously ; subsequently each player
receives a payoff from the resulting joint strategy,

• each player is rational , which means that his objective is to maximize
his payoff,

• players have common knowledge of the game and of each others’
rationality.1

Here are three classic examples of strategic two-player games to which
we shall return in a moment. We represent such games in the form of a
bimatrix, the entries of which are the corresponding payoffs to the row and
column players. So for instance in the Prisoner’s Dilemma game, when the
row player chooses C (cooperate) and the column player chooses D (defect),

1Intuitively, common knowledge of some fact means that everybody knows it, everybody
knows that everybody knows it, etc. This notion can be formalized using epistemic logic.
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then the payoff for the row player is 0 and the payoff for the column player
is 3.

Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2

Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1

We introduce now some basic notions that will allow us to discuss and
analyze strategic games in a meaningful way. Fix a strategic game

(S1, . . . , Sn, p1, . . . , pn).

We denote S1 × · · · × Sn by S, call each element s ∈ S a joint strategy ,
or a strategy profile, denote the ith element of s by si, and abbreviate the
sequence (sj)j 6=i to s−i. Occasionally we write (si, s−i) instead of s. Finally,
we abbreviate ×j 6=iSj to S−i and use the ‘−i’ notation for other sequences
and Cartesian products.

We call a strategy si of player i a best response to a joint strategy s−i

of his opponents if

∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i).

Next, we call a joint strategy s a Nash equilibrium if each si is a best
response to s−i, that is, if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i).
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So a joint strategy is a Nash equilibrium if no player can achieve a higher
payoff by unilaterally switching to another strategy. Intuitively, a Nash equi-
librium is a situation in which each player is a posteriori satisfied with his
choice.

Let us return now the three above introduced games.

Re: Prisoner’s Dilemma
The Prisoner’s Dilemma game has a unique Nash equilibrium, namely

(D,D). One of the peculiarities of this game is that in its unique Nash
equilibrium each player is worse off than in the outcome (C,C). We shall
return to this game once we have more tools to study its characteristics.

To clarify the importance of this game we now provide a couple of simple
interpretations of it. The first one, due to Aumann, is the following.

Each player decides whether he will receive 1000 dollars or the
other will receive 2000 dollars. The decisions are simultaneous
and independent.

So the entries in the bimatrix of the Prisoner’s Dilemma game refer to the
thousands of dollars each player will receive. For example, if the row player
asks to give 2000 dollars to the other player, and the column player asks for
1000 dollar for himself, the row player gets nothing while column player gets
3000 dollars. This contingency corresponds to the 0,3 entry in the bimatrix.

The original interpretation of this game that explains its name refers to
the following story.

Two suspects are taken into custody and separated. The district
attorney is certain that they are guilty of a specific crime, but
he does not have adequate evidence to convict them at a trial.
He points out to each prisoner that each has two alternatives: to
confess to the crime the police are sure they have done (C), or
not to confess (N).

If they both do not confess, then the district attorney states he
will book them on some very minor trumped-up charge such as
petty larceny or illegal possession of weapon, and they will both
receive minor punishment; if they both confess they will be prose-
cuted, but he will recommend less than the most severe sentence;
but if one confesses and the other does not, then the confessor
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will receive lenient treatment for turning state’s evidence whereas
the latter will get “the book” slapped at him.

This is represented by the following bimatrix, in which each negative
entry, for example -1, corresponds to the 1 year prison sentence (‘the lenient
treatment’ referred to above):

C N
C −5,−5 −1,−8
N −8,−1 −2,−2

The negative numbers are used here to be compatible with the idea that
each player is interested in maximizing his payoff, so, in this case, of receiving
a lighter sentence. So for example, if the row suspect decides to confess, while
the column suspect decides not to confess, the row suspect will get 1 year
prison sentence (the ‘lenient treatment’), the other one will get 8 years of
prison (‘ “the book” slapped at him’).

Many other natural situations can be viewed as a Prisoner’s Dilemma
game. This allows us to explain the underlying, undesidered phenomena.

Consider for example the arms race. For each of two warring, equally
strong countries, it is beneficial not to arm instead of to arm. Yet both
countries end up arming themselves. As another example consider a couple
seeking a divorce. Each partner can choose an inexpensive (bad) or an ex-
pensive (good) layer. In the end both partners end up choosing expensive
lawyers. Next, suppose that two companies produce a similar product and
may choose between low and high advertisement costs. Both end up heavily
advertising.

Re: Matching Pennies game
Next, consider the Matching Pennies game. This game formalizes a game

that used to be played by children. Each of two children has a coin and si-
multaneously shows heads (H) or tails (T ). If the coins match then the first
child wins, otherwise the second child wins. This game has no Nash equi-
librium. This corresponds to the intuition that for no outcome both players
are satisfied. Indeed, in each outcome the losing player regrets his choice.
Moreover, the sum of the payoffs is always 0. Such games, unsurprisingly,
are called zero-sum games and we shall return to them later. Also, we
shall return to this game once we have introduced mixed strategies.

Re: Battle of the Sexes game
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Finally, consider the Battle of the Sexes game. The interpretation of this
game is as follows. A couple has to decide whether to go out for a football
match (F ) or a ballet (B). The man, the row player prefers a football match
over the ballet, while the woman, the column player, the other way round.
Moreover, each of them prefers to go out together than to end up going out
separately. This game has two Nash equilibria, namely (F, F ) and (B,B).
Clearly, there is a problem how the couple should choose between these two
satisfactory outcomes. Games of this type are called coordination games .

Obviously, all three games are very simplistic. They deal with two players
and each player has to his disposal just two strategies. In what follows we
shall introduce many interesting examples of strategic games. Some of them
will deal with many players and some games will have several, sometimes an
infinite number of strategies.

To close this chapter we consider two examples of more interesting games,
one for two players and another one for an arbitrary number of players.

Example 1 (Traveler’s dilemma)
Suppose that two travellers have identical luggage, for which they both

paid the same price. Their luggage is damaged (in an identical way) by an
airline. The airline offers to recompense them for their luggage. They may
ask for any dollar amount between $2 and $100. There is only one catch.
If they ask for the same amount, then that is what they will both receive.
However, if they ask for different amounts —say one asks for $m and the
other for $m′, with m < m′— then whoever asks for $m (the lower amount)
will get $(m+ 2), while the other traveller will get $(m − 2). The question
is: what amount of money should each traveller ask for?

We can formalize this problem as a two-player strategic game, with the set
{2, . . ., 100} of natural numbers as possible strategies. The following payoff
function2 formalizes the conditions of the problem:

pi(s) :=







si if si = s−i

si + 2 if si < s−i

s−i − 2 otherwise

It is easy to check that (2, 2) is a Nash equilibrium. To check for other
Nash equilibria consider any other combination of strategies (si, s−i) and

2We denote in two-player games the opponent of player i by −i, instead of 3− i.
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suppose that player i submitted a larger or equal amount, i.e., si ≥ s−i.
Then player’s i payoff is s−i if si = s−i or s−i − 2 if si > s−i.

In the first case he will get a strictly higher payoff, namely s−i + 1, if he
submits instead the amount s−i−1. (Note that si = s−i and (si, s−i) 6= (2, 2)
implies that s−i − 1 ∈ {2, . . ., 100}.) In turn, in the second case he will get a
strictly higher payoff, namely s−i, if he submits instead the amount s−i.

So in each joint strategy (si, s−i) 6= (2, 2) at least one player has a strictly
better alternative, i.e., his strategy is not a best response. This means that
(2, 2) is a unique Nash equilibrium. This is a paradoxical conclusion, if we
recall that informally a Nash equilibrium is a state in which both players are
satisfied with their choice. ✷

Example 2 Consider the following beauty contest game. In this game
there are n > 2 players, each with the set of strategies equal {1, . . . , 100},
Each player submits a number and the payoff to each player is obtained by
splitting 1 equally between the players whose submitted number is closest
to 2

3
of the average. For example, if the submissions are 29, 32, 29, then the

payoffs are respectively 1
2
, 0, 1

2
.

Finding Nash equilibria of this game is not completely straightforward.
At this stage we only observe that the joint strategy (1, . . . , 1) is clearly a
Nash equilibrium. We shall answer the question of whether there are more
Nash equilibria once we introduce some tools to analyze strategic games. ✷

Exercise 1 Find all Nash equilibria in the following games:

Stag hunt

S R
S 2, 2 0, 1
R 1, 0 1, 1

Coordination

L R
T 1, 1 0, 0
B 0, 0 1, 1

Pareto Coordination

L R
T 2, 2 0, 0
B 0, 0 1, 1
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Hawk-dove

H D
H 0, 0 3, 1
D 1, 3 2, 2

✷

Exercise 2 Watch the following video
https://www.youtube.com/watch?v=p3Uos2fzIJ0. Define the underlying
game. What are its Nash equilibria?

Exercise 3 Consider the following inspection game.
There are two players: a worker and the boss. The worker can either

Shirk or put an Effort, while the boss can either Inspect or Not. Finding a
shirker has a benefit b while the inspection costs c, where b > c > 0. So if
the boss carries out an inspection his benefit is b− c > 0 if the worker shirks
and −c < 0 otherwise.

The worker receives 0 if he shirks and is inspected, and g if he shirks and
is not found. Finally, the worker receives w, where g > w > 0 if he puts in
the effort.

This leads to the following bimatrix:

I N
S 0, b− c g, 0
E w,−c w, 0

Analyze the best responses in this game. What can we conclude from it
about the Nash equilibria of this game?

✷
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Chapter 2

Social Optima

To discuss strategic games in a meaningful way we need to introduce further,
natural, concepts. Fix a strategic game (S1, . . . , Sn, p1, . . . , pn).

We call a joint strategy s a Pareto efficient outcome if for no joint
strategy s′

∀i ∈ {1, . . . , n} pi(s
′) ≥ pi(s) and ∃i ∈ {1, . . . , n} pi(s

′) > pi(s).

That is, a joint strategy is a Pareto efficient outcome if no joint strategy is
both a weakly better outcome for all players and a strictly better outcome
for some player.

Further, given a joint strategy s we call the sum
∑n

j=1 pj(s) the social
welfare of s. Next, we call a joint strategy s a social optimum if its social
welfare is maximal.

Clearly, if s is a social optimum, then s is Pareto efficient. The converse
obviously does not hold. Indeed, in the Prisoner’s Dilemma game the joint
strategis (C,D) and (D,C) are both Pareto efficient, but their social welfare
is not maximal. Note that (D,D) is the only outcome that is not Pareto
efficient. The social optimum is reached in the strategy profile (C,C). In
contrast, the social welfare is smallest in the Nash equilibrium (D,D).

This discrepancy between Nash equilibria and Pareto efficient outcomes
is absent in the Battle of Sexes game. Indeed, here both concepts coincide.

The tension between Nash equilibria and Pareto efficient outcomes present
in the Prisoner’s Dilemma game occurs in several other natural games. It
forms one of the fundamental topics in the theory of strategic games. In this
chapter we shall illustrate this phenomenon by a number of examples.
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Example 3 (Prisoner’s Dilemma for n players)
First, the Prisoner’s Dilemma game can be easily generalized to n players as
follows. It is convenient to assume that each player has two strategies, 1, rep-
resenting cooperation, (formerly C) and 0, representing defection, (formerly
D). Then, given a joint strategy s−i of the opponents of player i,

∑

j 6=i sj
denotes the number of 1 strategies in s−i. Denote by 1 the joint strategy in
which each strategy equals 1 and similarly with 0.

We put

pi(s) :=

{

2
∑

j 6=i sj + 1 if si = 0

2
∑

j 6=i sj if si = 1

Note that for n = 2 we get the original Prisoner’s Dilemma game.
It is easy to check that the strategy profile 0 is the unique Nash equilib-

rium in this game. Indeed, in each other strategy profile a player who chose
1 (cooperate) gets a higher payoff when he switches to 0 (defect).

Finally, note that the social welfare in 1 is 2n(n − 1), which is strictly
more than n, the social welfare in 0. We now show that 2n(n − 1) is the
social optimum. To this end it suffices to note that if a single player switches
from 0 to 1, then his payoff decreases by 1 but the payoff of each other player
increases by 2, and hence the social welfare increases. ✷

The next example deals with the depletion of common resources ,
which in economics are goods that are not excludable (people cannot be
prevented from using them) but are rival (one person’s use of them dimin-
ishes another person’s enjoyment of it). Examples are congested toll-free
roads, fish in the ocean, or the environment. The overuse of such common
resources leads to their destruction. This phenomenon is called the tragedy
of the commons .

One way to model it is as a Prisoner’s dilemma game for n players. But
such a modeling is too crude as it does not reflect the essential characteristics
of the problem. We provide two more adequate modeling of it, one for the
case of a binary decision (for instance, whether to use a congested road or
not), and another one for the case when one decides about the intensity of
using the resource (for instance on what fraction of a lake should one fish).

Example 4 (Tragedy of the commons I)
Assume n > 1 players, each having to its disposal two strategies, 1 and 0
reflecting, respectively, that the player decides to use the common resource or
not. If he does not use the resource, he gets a fixed payoff. Further, the users
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of the resource get the same payoff. Finally, the more users of the common
resource the smaller payoff for each of them gets, and when the number of
users exceeds a certain threshold it is better for the other players not to use
the resource.

The following payoff function realizes these assumptions:

pi(s) :=

{

0.1 if si = 0

F (m)/m otherwise

where m =
∑n

j=1 sj and

F (m) := 1.1m− 0.1m2.

Indeed, the function F (m)/m is strictly decreasing. Moreover, F (9)/9 =
0.2, F (10)/10 = 0.1 and F (11)/11 = 0. So when there are already ten or
more users of the resource it is indeed better for other players not to use the
resource.

To find a Nash equilibrium of this game, note that given a strategy profile
s withm =

∑n
j=1 sj player i profits from switching from si to another strategy

in precisely two circumstances:

• si = 0 and F (m+ 1)/(m+ 1) > 0.1,

• si = 1 and F (m)/m < 0.1.

In the first case we have m+ 1 < 10 and in the second case m > 10.
Hence when n < 10 the only Nash equilibrium is when all players use the

common resource and when n ≥ 10 then s is a Nash equilibrium when either
9 or 10 players use the common resource.

Assume now that n ≥ 10. Then in a Nash equilibrium s the players who
use the resource receive the payoff 0.2 (when m = 9) or 0.1 (when m = 10).
So the maximum social welfare that can be achieved in a Nash equilibrium
is 0.1(n− 9) + 1.8 = 0.1n+ 0.9.

To find a strategy profile in which social optimum is reached with the
largest social welfare we need to find m for which the function 0.1(n−m) +
F (m) reaches the maximum. Now, 0.1(n−m) + F (m) = 0.1n+m− 0.1m2

and by elementary calculus we find thatm = 5 for which 0.1(n−m)+F (m) =
0.1n+2.5. So the social optimum is achieved when 5 players use the common
resource. ✷
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Example 5 (Tragedy of the commons II)
Assume n > 1 players, each having to its disposal an infinite set of strategies
that consists of the real interval [0, 1]. View player’s strategy as its chosen
fraction of the common resource. Then the following payoff function reflects
the fact that player’s enjoyment of the common resource depends positively
from his chosen fraction of the resource and negatively from the total fraction
of the common resource used by all players:

pi(s) :=

{

si(1−
∑n

j=1 sj) if
∑n

j=1 sj ≤ 1

0 otherwise

The second alternative reflects the phenomenon that if the total fraction
of the common resource by all players exceeds a feasible level, here 1, then
player’s enjoyment of the resource becomes zero. We can write the payoff
function in a more compact way as

pi(s) := max(0, si(1−
n

∑

j=1

sj)).

To find a Nash equilibrium of this game, fix i ∈ {1, . . ., n} and s−i and
denote

∑

j 6=i sj by t. Then pi(si, s−i) = max(0, si(1− t− si)).

By elementary calculus player’s i payoff becomes maximal when si =
1−t
2
.

This implies that when for all i ∈ {1, . . ., n} we have

si =
1−

∑

j 6=i sj

2
,

then s is a Nash equilibrium. This system of n linear equations has a unique
solution si = 1

n+1
for i ∈ {1, . . ., n}. In this strategy profile each player’s

payoff is 1−n/(n+1)
n+1

= 1
(n+1)2

, so its social welfare is n
(n+1)2

.

There are other Nash equilibria. Indeed, suppose that for all i ∈ {1, . . ., n}
we have

∑

j 6=i sj ≥ 1, which is the case for instance when si = 1
n−1

for
i ∈ {1, . . ., n}. It is straightforward to check that each such strategy profile
is a Nash equilibrium in which each player’s payoff is 0 and hence the social
welfare is also 0. It is easy to check that no other Nash equilibria exist.

To find a strategy profile in which social optimum is reached fix a strategy
profile s and let t :=

∑n
j=1 sj. First note that if t > 1, then the social welfare

is 0. So assume that t ≤ 1. Then
∑n

j=1 pj(sj) = t(1 − t). By elementary
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calculus this expression becomes maximal precisely when t = 1
2
and then it

equals 1
4
.

Now, for all n > 1 we have n
(n+1)2

< 1
4
. So the social welfare of each

solution for which
∑n

j=1 sj =
1
2
is superior to the social welfare of the Nash

equilibria. In particular, no such strategy profile is a Nash equilibrium.
In conclusion, the social welfare is maximal, and equals 1

4
, when precisely

half of the common resource is used. In contrast, in the ‘best’ Nash equilib-
rium the social welfare is n

(n+1)2
and the fraction n

n+1
of the common resource

is used. So when the number of players increases, the social welfare of the
best Nash equilibrium becomes arbitrarily small, while the fraction of the
common resource being used becomes arbitrarily large. ✷

The analysis carried out in the above two examples reveals that for the
adopted payoff functions the common resource will be overused, to the detri-
ment of the players (society). The same conclusion can be drawn for a much
larger of class payoff functions that properly reflect the characteristics of
using a common resource.

Example 6 (Cournot competition) This example deals with a situation
in which n companies independently decide their production levels of a given
product. The price of the product is a linear function that depends negatively
on the total output.

We model it by means of the following strategic game. We assume that
for each player i:

• his strategy set is R+,

• his payoff function is defined by

pi(s) := si(a− b

n
∑

j=1

sj)− csi

for some given a, b, c, where a > c and b > 0.
Let us explain this payoff function. The price of the product is represented

by the expression a − b
∑n

j=1 sj, which, thanks to the assumption b > 0,
indeed depends negatively on the total output,

∑n
j=1 sj. Further, csi is the

production cost corresponding to the production level si. So we assume for
simplicity that the production cost functions are the same for all companies.
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Further, note that if a ≤ c, then the payoffs would be always negative or
zero, since pi(s) = (a− c)si − bsi

∑n
j=1 sj . This explains the assumption that

a > c. For simplicity we do allow a possibility that the prices are negative,
but see Exercise 5. The assumption c > 0 is obviously meaningful but not
needed.

To find a Nash equilibrium of this game fix i ∈ {1, . . ., n} and s−i and
denote

∑

j 6=i sj by t. Then pi(si, s−i) = si(a − c − bt − bsi). By elementary
calculus player’s i payoff becomes maximal iff

si =
a− c

2b
−

t

2
.

This implies that s is a Nash equilibrium iff for all i ∈ {1, . . ., n}

si =
a− c

2b
−

∑

j 6=i sj

2
.

One can check that this system of n linear equations has a unique solution,
si =

a−c
(n+1)b

for i ∈ {1, . . ., n}. So this is a unique Nash equilibrium of this
game.

Note that for these values of sis the price of the product is

a− b
n

∑

j=1

sj = a− b
n(a− c)

(n + 1)b
=

a + nc

n+ 1
.

To find the social optimum let t :=
∑n

j=1 sj. Then
∑n

j=1 pj(s) = t(a −
c − bt). By elementary calculus this expression becomes maximal precisely
when t = a−c

2b
. So s is a social optimum iff

∑n
j=1 sj =

a−c
2b

. The price of the

product in a social optimum is a− ba−c
2b

= a+c
2
.

Now, the assumption a > c implies that a+c
2

> a+nc
n+1

. So we see that the
price in the social optimum is strictly higher than in the Nash equilibrium.
This can be interpreted as a statement that the competition between the
producers of the product drives its price down, or alternatively, that the
cartel between the producers leads to higher profits for them (i.e., higher
social welfare), at the cost of a higher price. So in this example reaching the
social optimum is not a desirable state of affairs. The reason is that in our
analysis we focussed only on the profits of the producers and omitted the
customers.

Further notice that when n, so the number of companies, increases, the
price a+nc

n+1
in the Nash equilibrium decreases. This corresponds to the intu-

ition that increased competition is beneficial for the customers. Note also
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that in the limit the price in the Nash equilibrium converges to the production
cost c.

Finally, let us compare the social welfare in the unique Nash equilib-
rium and a social optimum. We just noted that for t :=

∑n
j=1 sj we have

∑n
j=1 pj(s) = t(a − c − bt), and that for the unique Nash equilibrium s we

have si =
a−c

(n+1)b
for i ∈ {1, . . ., n}. So t = a−c

b
n

n+1
and consequently

n
∑

j=1

pj(s) =
a− c

b

n

n + 1
(a− c− (a− c)

n

n+ 1
)

=
a− c

b

n

n + 1

1

n + 1
(a− c) =

(a− c)2

b

n

(n+ 1)2

This shows that the social welfare in the unique Nash equilibrium converges
to 0 when n, the number of companies, goes to infinity. This can be in-
terpreted as a statement that the increased competition between producers
results in their profits becoming arbitrary small.

In contrast, the social welfare in each social optimum remains constant.
Indeed, we noted that s is a social welfare iff t = a−c

2b
where t :=

∑n
j=1 sj. So

for each social welfare s we have
n

∑

j=1

pj(s) = t(a− c− bt) =
a− c

2b
(a− c−

a− c

2
) =

(a− c)2

4b
.

✷

While the last two examples refer to completely different scenarios, their
mathematical analysis is very similar. Their common characteristics is that
in both examples the payoff functions can be written as f(si,

∑n
j=1 sj), where

f is increasing in the first argument and decreasing in the second argument.

Exercise 4 Prove that in the game discussed in Example 5 indeed no other
Nash equilibria exist apart of the mentioned ones. ✷

Exercise 5 Modify the game from Example 6 by considering the following
payoff functions:

pi(s) := simax(0, a− b

n
∑

j=1

sj)− csi.

Compute the Nash equilibria of this game.
Hint. Proceed as in Example 5. ✷
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Chapter 3

Strict Dominance

Let us return now to our analysis of an arbitrary strategic game (S1, . . . , Sn,
p1, . . . , pn). Let si, s

′
i be strategies of player i. We say that si strictly

dominates s′i (or equivalently, that s
′
i is strictly dominated by si) if

∀s−i ∈ S−i pi(si, s−i) > pi(s
′
i, s−i).

Further, we say that si is strictly dominant if it strictly dominates all
other strategies of player i.

First, note the following obvious observation.

Note 1 (Strict Dominance) Consider a strategic game G.
Suppose that s is a joint strategy such that each si is a strictly dominant

strategy. Then it is a unique Nash equilibrium of G.

Proof. By assumption s is a Nash equilibrium. Take now some s′ 6= s. For
some i we have s′i 6= si. By assumption pi(si, s

′
−i) > pi(s

′
i, s

′
−i), where pi is

the payoff function of player i. So s′ is not a Nash equilibrium. ✷

Clearly, a rational player will not choose a strictly dominated strategy. As
an illustration let us return to the Prisoner’s Dilemma. In this game for each
player C (cooperate) is a strictly dominated strategy. So the assumption of
players’ rationality implies that each player will choose strategy D (defect).
That is, we can predict that rational players will end up choosing the joint
strategy (D,D) in spite of the fact that the Pareto efficient outcome (C,C)
yields for each of them a strictly higher payoff.

The same holds in the Prisoner’s Dilemma game for n players, where
for all players i strategy 1 is strictly dominated by strategy 0, since for all
s−i ∈ S−i we have pi(0, s−i)− pi(1, s−i) = 1.
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We assumed that each player is rational. So when searching for an out-
come that is optimal for all players we can safely remove strategies that are
strictly dominated by some other strategy. This can be done in a number of
ways. For example, we could remove all or some strictly dominated strate-
gies simultaneously, or start removing them in a round Robin fashion starting
with, say, player 1. To discuss this matter more rigorously we introduce the
notion of a restriction of a game.

Given a game G := (S1, . . . , Sn, p1, . . . , pn) and (possibly empty) sets
of strategies R1, . . . , Rn such that Ri ⊆ Si for i ∈ {1, . . . , n} we say that
R := (R1, . . . , Rn, p1, . . . , pn) is a restriction of G. Here of course we view
each pi as a function on the subset R1 × · · · ×Rn of S1 × · · · × Sn.

In what follows, given a restriction R we denote by Ri the set of strategies
of player i in R. Further, given two restrictions R and R′ ofG we write R′ ⊆ R
when ∀i ∈ {1, . . . , n} R′

i ⊆ Ri. We now introduce the following notion of
reduction between the restrictions R and R′ of G:

R→S R
′

when R 6= R′, R′ ⊆ R and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R
′
i ∃s

′
i ∈ Ri si is strictly dominated in R by s′i.

That is, R→S R
′ when R′ results from R by removing from it some strictly

dominated strategies.
We now clarify whether a one-time elimination of (some) strictly domi-

nated strategies can affect Nash equilibria.

Lemma 2 (Strict Elimination) Given a strategic game G consider two
restrictions R and R′ of G such that R→SR

′. Then

(i) if s is a Nash equilibrium of R, then it is a Nash equilibrium of R′,

(ii) if G is finite and s is a Nash equilibrium of R′, then it is a Nash
equilibrium of R.

At the end of this chapter we shall clarify why in (ii) the restriction to
finite games is necessary.

Proof.
(i) For each player the set of his strategies in R′ is a subset of the set of his
strategies in R. So to prove that s is a Nash equilibrium of R′ it suffices

21



to prove that no strategy constituting s is eliminated. Suppose otherwise.
Then some si is eliminated, so for some s′i ∈ Ri

pi(s
′
i, s

′′
−i) > pi(si, s

′′
−i) for all s

′′
−i ∈ R−i.

In particular
pi(s

′
i, s−i) > pi(si, s−i),

so s is not a Nash equilibrium of R.

(ii) Suppose s is not a Nash equilibrium of R. Then for some i ∈ {1, . . . , n}
strategy si is not a best response of player i to s−i in R.

Let s′i ∈ Ri be a best response of player i to s−i in R (which exists since
Ri is finite). The strategy s′i is eliminated since s is a Nash equilibrium of
R′. So for some s∗i ∈ Ri

pi(s
∗
i , s

′′
−i) > pi(s

′
i, s

′′
−i) for all s

′′
−i ∈ R−i.

In particular
pi(s

∗
i , s−i) > pi(s

′
i, s−i),

which contradicts the choice of s′i. ✷

In general an elimination of strictly dominated strategies is not a one step
process; it is an iterative procedure. Its use is justified by the assumption of
common knowledge of rationality.

Example 7 Consider the following game:

L M R
T 3, 0 2, 1 1, 0
C 2, 1 1, 1 1, 0
B 0, 1 0, 1 0, 0

Note that B is strictly dominated by T and R is strictly dominated by
M . By eliminating these two strategies we get:

L M
T 3, 0 2, 1
C 2, 1 1, 1

Now C is strictly dominated by T , so we get:
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L M
T 3, 0 2, 1

In this game L is strictly dominated by M , so we finally get:

M
T 2, 1

✷

This brings us to the following notion, where given a binary relation →
we denote by → ∗ its transitive reflexive closure. Consider a strategic game
G. Suppose that G→ ∗

SR, i.e., R is obtained by an iterated elimination of
strictly dominated strategies, in short IESDS , starting with G.

• If for no restriction R′ of G, R→SR
′ holds, we say that R is an out-

come of IESDS from G.

• If R has just one joint strategy, we say that G is solved by IESDS .

The following result then clarifies the relation between the IESDS and
Nash equilibrium.

Theorem 3 (IESDS) Suppose that G′ is an outcome of IESDS from a
strategic game G.

(i) If s is a Nash equilibrium of G, then it is a Nash equilibrium of G′.

(ii) If G is finite and s is a Nash equilibrium of G′, then it is a Nash
equilibrium of G.

(iii) If G is finite and solved by IESDS, then the resulting joint strategy is a
unique Nash equilibrium.

Proof. By the Strict Elimination Lemma 2. ✷

Example 8 A nice example of a game that is solved by IESDS is the loca-
tion game. Assume that that the players are two vendors who simultane-
ously choose a location. Then the customers choose the closest vendor. The
profit for each vendor equals the number of customers it attracted.
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3

8

To be more specific we assume that the vendors choose a location from
the set {1, . . . , n} of natural numbers, viewed as points on a real line, and
that at each location there is exactly one customer. For example, for n = 11
we have 11 locations:
and when the players choose respectively the locations 3 and 8:
we have p1(3, 8) = 5 and p2(3, 8) = 6. When the vendors ‘share’ a customer,
for instance when they both choose the location 6:

6

they end up with a fractional payoff, in this case p1(6, 6) = 5.5 and p1(6, 6) =
5.5.

In general, we have the following game:

• each set of strategies consists of the set {1, . . . , n},

• each payoff function pi is defined by:

pi(si, s−i) :=























si + s−i − 1

2
if si < s−i

n−
si + s−i − 1

2
if si > s−i

n

2
if si = s−i

It is easy to check that for n = 2k + 1 this game is solved by k rounds
of IESDS, and that each player is left with the ‘middle’ strategy k. In each
round both ‘outer’ strategies are eliminated, so first 1 and n, then 2 and
n− 1, and so on. ✷
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There is one more natural question that we left so far unanswered. Is the
outcome of an iterated elimination of strictly dominated strategies unique,
or in the game theory parlance: is strict dominance order independent?
The answer is positive.

Theorem 4 (Order Independence I) Given a finite strategic game all it-
erated eliminations of strictly dominated strategies yield the same outcome.

Proof. See the Appendix of this Chapter. ✷

The above result does not hold for infinite strategic games.

Example 9 Consider a game in which the set of strategies for each player is
the set of natural numbers. The payoff to each player is the number (strategy)
he selected.

Note that in this game every strategy is strictly dominated. Consider
now three ways of using IESDS:

• by removing in one step all strategies that are strictly dominated,

• by removing in one step all strategies different from 0 that are strictly
dominated,

• by removing in each step exactly one strategy, for instance the least
even strategy.

In the first case we obtain the restriction with the empty strategy sets,
in the second one we end up with the restriction in which each player has
just one strategy, 0, and in the third case we obtain an infinite sequence of
reductions. ✷

The above example also shows that in the limit of an infinite sequence
of reductions different outcomes can be reached. So for infinite games the
definition of the order independence has to be modified.

The above example also shows that in the Strict Elimination 2(ii) and the
IESDS Theorem 3(ii) and (iii) we cannot drop the assumption that the game
is finite. Indeed, the above infinite game has no Nash equilibria, while the
game in which each player has exactly one strategy has a Nash equilibrium.

Exercise 6

25



(i) What is the outcome of IESDS in the location game with an even
number of locations?

(ii) Modify the location game from Example 8 to a game for three players.
Exhibit the Nash equilibria when n ≥ 5. Prove that no Nash equilibria
exist when n > 5.

(iii) Define a modification of the above game for three players to the case
when the set of possible locations (both for the vendors and the cus-
tomers) forms all points of a circle. (So the set of strategies is infinite.)
Find the set of Nash equilibria. ✷

Appendix

We provide here the proof of the Order Independence I Theorem 4. Concep-
tually it is useful to carry out these consideration in a more general setting.
We assume an initial strategic game

G := (G1, . . ., Gn, p1, . . ., pn).

By a dominance relation D we mean a function that assigns to each
restriction R of G a subset DR of

⋃n
i=1Ri. Instead of writing si ∈ DR we say

that si is D-dominated in R.
Given two restrictions R and R′ we write R→D R′ when R 6= R′, R′ ⊆ R

and
∀i ∈ {1, . . . , n} ∀si ∈ Ri \R

′
i si is D-dominated in R.

Clearly being strictly dominated by another strategy is an example of a
dominance relation and →S is an instance of →D.

An outcome of an iteration of →D starting in a game G is a restriction
R that can be reached from G using →D in finitely many steps and such
that for no R′, R→D R′ holds.

We call a dominance relation D

• order independent if for all initial finite games G all iterations of
→D starting in G yield the same final outcome,

• hereditary if for all initial games G, all restrictions R and R′ such
that R→D R′ and a strategy si in R′

si is D-dominated in R implies that si is D-dominated in R′.
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We now establish the following general result.

Theorem 5 Every hereditary dominance relation is order independent.

To prove it we introduce the notion of an abstract reduction system .
It is simply a pair (A, → ) where A is a set and → is a binary relation on
A. Recall that →∗ denotes the transitive reflexive closure of → .

• We say that b is a → -normal form of a if a→∗ b and no c exists
such that b→ c, and omit the reference to → if it is clear from the
context. If every element of A has a unique normal form, we say that
(A, → ) (or just → if A is clear from the context) satisfies the unique
normal form property .

• We say that → is weakly confluent if for all a, b, c ∈ A

a
ւ ց
b c

implies that for some d ∈ A

b c
ց∗ ∗ ւ

d

We need the following crucial lemma.

Lemma 6 (Newman) Consider an abstract reduction system (A, → ) such
that

• no infinite → sequences exist,

• → is weakly confluent.

Then → satisfies the unique normal form property.

27



Proof. By the first assumption every element of A has a normal form. To
prove uniqueness call an element a ambiguous if it has at least two different
normal forms. We show that for every ambiguous a some ambiguous b exists
such that a→ b. This proves absence of ambiguous elements by the first
assumption.

So suppose that some element a has two distinct normal forms n1 and
n2. Then for some b, c we have a→ b→∗ n1 and a→ c→∗ n2. By weak
confluence some d exists such that b→∗ d and c→∗ d. Let n3 be a normal
form of d. It is also a normal form of b and of c. Moreover n3 6= n1 or
n3 6= n2. If n3 6= n1, then b is ambiguous and a→ b. And if n3 6= n2, then c
is ambiguous and a→ c. ✷

Proof of Theorem 5.
Take a hereditary dominance relation D. Consider a restriction R. Sup-

pose that R→D R′ for some restriction R′. Let R′′ be the restriction of R
obtained by removing all strategies that are D-dominated in R.

We have R′′ ⊆R′. Assume that R′ 6= R′′. Choose an arbitrary strategy
si such that si ∈ R′

i \R
′′
i . So si is D-dominated in R. By the hereditarity of

D, si is also D-dominated in R′. This shows that R′ →D R′′.
So we proved that either R′ = R′′ or R′ →D R′′, i.e., that R′ → ∗

D R′′. This
implies that →D is weakly confluent. It suffices now to apply Newman’s
Lemma 6. ✷

To apply this result to strict dominance we establish the following fact.

Lemma 7 (Hereditarity I) The relation of being strictly dominated is hered-
itary on the set of restrictions of a given finite game.

Proof. Suppose a strategy si ∈ R′
i is strictly dominated in R and R→S R

′.
The initial game is finite, so there exists in Ri a strategy s′i that strictly dom-
inates si in R and is not strictly dominated in R. Then s′i is not eliminated
in the step R→S R

′ and hence is a strategy in R′
i. But R′ ⊆ R, so s′i also

strictly dominates si in R′. ✷

The promised proof is now immediate.

Proof of the Order Independence I Theorem 4.
By Theorem 5 and the Hereditarity I Lemma 7. ✷
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Chapter 4

Weak Dominance and Never
Best Responses

Let us return now to our analysis of an arbitrary strategic game G :=
(S1, . . . , Sn, p1, . . . , pn). Let si, s

′
i be strategies of player i. We say that

si weakly dominates s′i (or equivalently, that s
′
i is weakly dominated by

si) if

∀s−i ∈ S−i pi(si, s−i) ≥ pi(s
′
i, s−i) and ∃s−i ∈ S−i pi(si, s−i) > pi(s

′
i, s−i).

Further, we say that si is weakly dominant if it weakly dominates all
other strategies of player i.

The following counterpart of the Strict Dominance Note 1 holds.

Note 8 (Weak Dominance) Consider a strategic game G.
Suppose that s is a joint strategy such that each si is a weakly dominant

strategy. Then it is a Nash equilibrium of G.

Proof. Immediate. ✷

Note that in contrast to the Strict Dominance Note 1 we do not claim
here that s is a unique Nash equilibrium of G. In fact, such a stronger claim
does not hold. Indeed, consider the game

L R
T 1, 1 1, 1
B 1, 1 0, 0
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Here T is a weakly dominant strategy for the player 1, L is a weakly dominant
strategy for player 2 and, as prescribed by the above Note, (T, L), is a Nash
equilibrium. However, this game has two other Nash equilibria, (T,R) and
(B,L).

4.1 Elimination of weakly dominated strate-

gies

Analogous considerations to the ones concerning strict dominance can be
carried out for the elimination of weakly dominated strategies. To this end
we consider the reduction relation →W on the restrictions of G, defined by

R→W R′

when R 6= R′, R′ ⊆ R and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R
′
i ∃s

′
i ∈ Ri si is weakly dominated in R by s′i.

Below we abbreviate iterated elimination of weakly dominated strategies
to IEWDS .

However, in the case of IEWDS some complications arise. To illustrate
them consider the following game that results from equipping each player in
the Matching Pennies game with a third strategy E (for Edge):

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Note that

• (E,E) is its only Nash equilibrium,

• for each player E is the only strategy that is weakly dominated.

Any form of elimination of these two E strategies, simultaneous or iter-
ated, yields the same outcome, namely the Matching Pennies game, that, as
we have already noticed, has no Nash equilibrium. So during this eliminating
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process we ‘lost’ the only Nash equilibrium. In other words, part (i) of the
IESDS Theorem 3 does not hold when reformulated for weak dominance.

On the other hand, some partial results are still valid here. As before we
prove first a lemma that clarifies the situation.

Lemma 9 (Weak Elimination) Given a finite strategic game G consider
two restrictions R and R′ of G such that R→WR′. Then if s is a Nash
equilibrium of R′, then it is a Nash equilibrium of R.

Proof. Suppose s is a Nash equilibrium of R′ but not a Nash equilibrium of
R. Then for some i ∈ {1, . . . , n} the set

A := {s′i ∈ Ri | pi(s
′
i, s−i) > pi(s)}

is non-empty.
Weak dominance is a strict partial ordering (i.e. an irreflexive transitive

relation) and A is finite, so some strategy s′i in A is not weakly dominated in
R by any strategy in A. But each strategy in A is eliminated in the reduction
R→WR′ since s is a Nash equilibrium of R′. So some strategy s∗i ∈ Ri weakly
dominates s′i in R. Consequently

pi(s
∗
i , s−i) ≥ pi(s

′
i, s−i)

and as a result s∗i ∈ A. But this contradicts the choice of s′i. ✷

This brings us directly to the following result.

Theorem 10 (IEWDS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IEWDS from G and s is a Nash equilibrium of
G′, then s is a Nash equilibrium of G.

(ii) If G is solved by IEWDS, then the resulting joint strategy is a Nash
equilibrium of G.

Proof. By the Weak Elimination Lemma 9. ✷

In contrast to the IESDS Theorem 3 we cannot claim in part (ii) of
the IEWDS Theorem 10 that the resulting joint strategy is a unique Nash
equilibrium. Further, in contrast to strict dominance, an iterated elimination
of weakly dominated strategies can yield several outcomes.

The following example reveals even more peculiarities of this procedure.
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Example 10 Consider the following game:

L M R
T 0, 1 1, 0 0, 0
B 0, 0 0, 0 1, 0

It has three Nash equilibria, (T, L), (B,L) and (B,R). This game can be
solved by IEWDS but only if in the first round we do not eliminate all weakly
dominated strategies, which are M and R. If we eliminate only R, then we
reach the game

L M
T 0, 1 1, 0
B 0, 0 0, 0

that is solved by IEWDS by eliminating B and M . This yields

L
T 0, 1

So not only IEWDS is not order independent; in some games it is advanta-
geous not to proceed with the deletion of the weakly dominated strategies
‘at full speed’. One can also check that the second Nash equilibrium, (B,L),
can be found using IEWDS, as well, but not the third one, (B,R). ✷

It is instructive to see where the proof of order independence given in the
Appendix of the previous chapter breaks down in the case of weak dominance.
This proof crucially relied on the fact that the relation of being strictly
dominated is hereditary. In contrast, the relation of being weakly dominated
is not hereditary.

To summarize, the iterated elimination of weakly dominated strategies

• can lead to a deletion of Nash equilibria,

• does not need to yield a unique outcome,

• can be too restrictive if we stipulate that in each round all weakly
dominated strategies are eliminated.

Finally, note that the above IEWDS Theorem 10 does not hold for infinite
games. Indeed, Example 9 applies here, as well.
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4.2 Elimination of never best responses

Iterated elimination of strictly or weakly dominated strategies allow us to
solve various games. However, several games cannot be solved using them.

For example, consider the following game:

X Y
A 2, 1 0, 0
B 0, 1 2, 0
C 1, 1 1, 2

Here no strategy is strictly or weakly dominated. On the other hand C
is a never best response, that is, it is not a best response to any strategy
of the opponent. Indeed, A is a unique best response to X and B is a
unique best response to Y . Clearly, the above game is solved by an iterated
elimination of never best responses. So this procedure can be stronger than
IESDS and IEWDS.

Formally, we introduce the following reduction notion between the re-
strictions R and R′ of a given strategic game G:

R→N R′

when R 6= R′, R′ ⊆ R and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R
′
i ¬∃s−i ∈ R−i si is a best response to s−i in R.

That is, R→N R′ when R′ results from R by removing from it some strategies
that are never best responses. Note that in contrast to strict and weak
dominance there is now no ‘witness’ strategy that acounts for a removal of a
strategy.

We now focus on the iterated elimination of never best responses, in short
IENBR, obtained by using the → ∗

N relation. The following counterpart of
the IESDS Theorem 3 holds.

Theorem 11 (IENBR) Suppose that G′ is an outcome of IENBR from a
strategic game G.

(i) If s is a Nash equilibrium of G, then it is a Nash equilibrium of G′.

(ii) If G is finite and s is a Nash equilibrium of G′, then it is a Nash
equilibrium of G.
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(iii) If G is finite and solved by IENBR, then the resulting joint strategy is
a unique Nash equilibrium.

Proof. Analogous to the proof of the IESDS Theorem 3 and omitted. ✷

Further, we have the following analogue of the Hereditarity I Lemma 7.

Lemma 12 (Hereditarity II) The relation of never being a best response
is hereditary on the set of restrictions of a given finite game.

Proof. Suppose a strategy si ∈ R′
i is a never best response in R and R→N R′.

Assume by contradiction that for some s−i ∈ R′
−i, si is a best response to

s−i in R′, i.e.,
∀s′i ∈ R′

i pi(si, s−i) ≥ pi(s
′
i, s−i).

The initial game is finite, so there exists a best response s′i to s−i in R.
Then s′i is not eliminated in the step R→N R′ and hence is a strategy in R′

i.
But si is not a best response to s−i in R, so

pi(s
′
i, s−i) > pi(si, s−i),

so we reached a contradiction. ✷

This leads us to the following analogue of the Order Independence I The-
orem 4.

Theorem 13 (Order Independence II) Given a finite strategic game all
iterated eliminations of never best responses yield the same outcome.

Proof. By Theorem 5 and the Hereditarity II Lemma 12. ✷

In the case of infinite games we encounter the same problems as in the
case of IESDS. Indeed, Example 9 readily applies to IENBR, as well, since in
this game no strategy is a best response. In particular, this example shows
that if we solve an infinite game by IENBR we cannot claim that we obtained
a Nash equilibrium. Still, IENBR can be useful in such cases.

Example 11 Consider the following infinite variant of the location game
considered in Example 8. We assume that the players choose their strategies
from the open interval (0, 100) and that at each real in (0, 100) there resides
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one customer. We have then the following payoffs that correspond to the
intuition that the customers choose the closest vendor:

pi(si, s−i) :=



















si + s−i

2
if si < s−i

100−
si + s−i

2
if si > s−i

50 if si = s−i

In this game each strategy 50 is a best response (namely to strategy 50
of the opponent) and no other strategies are best responses. So this game is
solved by IENBR, in one step.

We cannot claim automatically that the resulting joint strategy (50, 50)
is a Nash equilibrium, but it is clearly so since each strategy 50 is a best
response to the ‘other’ strategy 50. Moreover, by the IENBR Theorem 11(i)
we know that this is a unique Nash equilibrium. ✷

Exercise 7 Show that the beauty contest game from Example 2 is solved
by IEWDS. What is the outcome?

This allows us to conclude by the IEWDS Theorem 10 that this game has
a Nash equilibrium, though not necessarily a unique one. We shall return to
this matter in a later chapter. ✷

Exercise 8 Show that in the location game from Example 11 no strategy is
strictly or weakly dominant. ✷

Exercise 9 Given a game G := (S1, . . . , Sn, p1, . . . , pn) we say that that a
strategy si of player i is dominant if for all strategies s′i of player i

pi(si, s−i) ≥ pi(s
′
i, s−i).

Suppose that s is a joint strategy such that each si is a dominant strategy.
Prove that it is a Nash equilibrium of G. ✷
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Chapter 5

Potential Games

5.1 Best response dynamics

The existence of a Nash equilibrium is clearly a desirable property of a strate-
gic game. In this chapter we discuss some natural classes of games that do
have a Nash equilibrium. First, notice the following obvious nondeterminis-
tic algorithm, called best response dynamics , to find a Nash equilibrium
(NE):

choose s ∈ S1 × · · · × Sn;
while s is not a NE do
choose i ∈ {1, . . ., n} such that si is not a best response to s−i;
si := a best response to s−i

od

Obviously, this procedure does not need to terminate, for instance when
the Nash equilibrium does not exist. Even worse, it may cycle when a Nash
equilibrium actually exists. Take for instance the following extension of the
Matching Pennies game already considered in Section 4.1:

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Then an execution of the best response dynamics may end up in a cycle

((H,H), (H, T ), (T, T ), (T,H))∗.
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However, for various games, for instance the Prisoner’s Dilemma game
(also for n players) and the Battle of the Sexes game all executions of the best
response dynamics terminate. This is a consequence of a general approach
that forms the topic of this chapter.

First, note the following simple observation to which we shall return later
in the chapter.

Note 14 (Best Response Dynamics) Consider a strategic game for n
players. Suppose that every player has a strictly dominant strategy. Then
all executions of the best response dynamics terminate after at most n steps
and their outcome is unique.

Proof. Each strictly dominant strategy is a unique best response to each
joint strategy of the opponents, so in each execution of the best response
dynamics every player can modify his strategy at most once. ✷

5.2 Potentials

In this section we introduce the main concept of this chapter. Given a game
G := (S1, . . ., Sn, p1, . . ., pn) we call the function P : S1 × · · · × Sn → R a
potential for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i)− pi(s
′
i, s−i) = P (si, s−i)− P (s′i, s−i).

We call then a game that has a potential a potential game.
The intuition behind the potential is that it tracks the changes in the

payoff when some player deviates, without taking into account which one.
The following observation explains the interest in the potential games.

Note 15 (Potential) For finite potential games all executions of the best
response dynamics terminate.

Proof. At each step of each execution of the best response dynamics the
potential strictly increases. ✷

Consequently, each finite potential game has a Nash equilibrium. This is
also a consequence of the fact that by definition each maximum of a potential
is a Nash equilibrium.
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A number of games that we introduced in the earlier chapters are potential
games. Take for instance the Prisoner’s Dilemma game for n players from
Example 3. Indeed, we noted already that in this game we have pi(0, s−i)−
pi(1, s−i) = 1. This shows that P (s) := n −

∑n
j=1 sj is a potential function.

Intuitively, this potential counts the number of players who selected 0, i.e.,
the defect strategy.

Also, the Battle of the Sexes is a potential game. We present the game
and its potential in Figure 5.1.

F B
F 2, 1 0, 0
B 0, 0 1, 2

F B
F 2 1
B 0 2

Figure 5.1: The Battle of the Sexes game and its potential

Example 12 It is less trivial to show that the Cournot competition game
from Example 6 is a potential game. Recall that the set of strategies for each
player is R+ and payoff for each player i is defined by

pi(s) := si(a− b
n

∑

j=1

sj)− csi

for some given a, b, c, where (these conditions play no role here) a > c and
b > 0.

We prove that

P (s) := a
n

∑

i=1

si − b
n

∑

i=1

s2i − b
∑

1≤i<j≤n

sisj −
n

∑

i=1

csi

is a potential.
To show it we use the fundamental theorem of calculus that states the

following. If f : [a, b] → R is a continuous function defined on a real interval
[a, b] and F is an antiderivative of f , then

F (b)− F (a) =

∫ b

a

f(t) dt.
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Applying this theorem to the functions pi and P we get that for all i ∈
{1, . . ., n}, s−i ∈ S−i and si, s

′
i ∈ Si we have

pi(si, s−i)− pi(s
′
i, s−i) =

∫ si

s′i

∂pi
∂si

(t, s−i) dt

and

P (si, s−i)− P (s′i, s−i) =

∫ si

s′i

∂P

∂si
(t, s−i) dt.

So to prove that P is a potential it suffices to show that for all i ∈ {1, . . ., n}

∂pi
∂si

=
∂P

∂si
.

But for all i ∈ {1, . . ., n} and s ∈ S1 × · · · × Sn

∂pi
∂si

(s) = (a− b

n
∑

j=1

sj)− bsi − c = a− 2bsi − b
∑

j∈{1,. . .,n}\{j}
sj − c =

∂P

∂si
(s).

Note that the fact that Cournot competion is a potential game does not
automatically imply that it has a Nash equilibrium. Indeed, the set of strate-
gies is infinite, so the Potential Note 15 does not apply. ✷

Exercise 10 Find a potential game that has no Nash equilibrium. Hint.
Analyze the game from Example 9. ✷

Exercise 11 Suppose that P1 and P2 are potentials for some game G. Prove
that there exists a constant c such that for every joint strategy s we have
P1(s)− P2(s) = c. ✷

The potential tracks the precise changes in the payoff function. We can
relax this requirement and only track the sign of the changes of the payoff
function. This leads us to the following notion.

Given a game G := (S1, . . ., Sn, p1, . . ., pn) we call the function P : S1 ×
· · · × Sn → R an ordinal potential for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i)− pi(s
′
i, s−i) > 0 iff P (si, s−i)− P (s′i, s−i) > 0.

As an example consider a modification of the Prisoner’s Dilemma game
and its ordinal potential given in Figure 5.2.
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C D
C 2, 2 0, 3
D 3, 0 1, 2

C D
C 0 1
D 1 2

Figure 5.2: A game and its ordinal potential

Note that this game has no potential. Indeed every potential has to satisfy
the following conditions:

P (C,C)− P (D,C) = −1,
P (D,C)− P (D,D) = −2,
P (D,D)− P (C,D) = 1,
P (C,D)− P (C,C) = 1,

which implies 0 = −1. So the notion of an ordinal potential is more general
than that of a potential.

Exercise 12 Prove that

P (s) := s1s2. . .sn(a− b

n
∑

j=1

sj − c)

is an ordinal potential for the Cournot competition game introduced in Ex-
ample 6 and analyzed in Example 12. ✷

An even more general notion is the following one. Given a game G :=
(S1, . . ., Sn, p1, . . ., pn) we call the function P : S1 × · · ·×Sn → R a general-
ized ordinal potential for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i)− pi(s
′
i, s−i) > 0 implies P (si, s−i)− P (s′i, s−i) > 0.

As an example consider the game and its generalized ordinal potential
given in Figure 5.3.

It is easy to check that this game has no ordinal potential. Indeed, every
ordinal potential has to satisfy

P (T, L) < P (B,L) < P (B,R) < P (T,R).

But p2(T, L) = p2(T,R), so P (T, L) = P (T,R).
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L R
T 1, 0 2, 0
B 2, 0 0, 1

L R
T 0 3
B 1 2

Figure 5.3: A game and its generalized ordinal potential

We now characterize the finite games that have a generalized ordinal po-
tential. These are precisely the games for which the best response dynamics,
generalized to better responses, always terminates. We first introduce the
used concepts.

Fix a strategic game G := (S1, . . . , Sn, p1, . . . , pn). By a profitable de-
viation we mean a pair (s, s′) of joint strategies, written as s → s′, such
that s′ = (s′i, s−i) for some s′i and pi(s

′) > pi(s). We say then that s′i is a bet-
ter response of player i to the joint strategy s. An improvement path
is a maximal sequence (i.e., a sequence that cannot be extended) of joint
strategies such that each consecutive pair is a profitable deviation. Clearly,
if an improvement path is finite, then its last element is a Nash equilibrium.
Moreover, if s is a Nash equilibrium, then s is also an improvement path.

We say that G has the finite improvement property (FIP), if every
improvement path is finite. Finally, by an improvement sequence we
mean a prefix of an improvement path. Obviously, if G has the FIP, then it
has a Nash equilibrium.

We can now state the announced result.

Theorem 16 (FIP) A finite game has a generalized ordinal potential iff it
has the FIP.

In the proof below we use the following classic result.

Lemma 17 (König’s Lemma) Any finitely branching tree is either finite
or it has an infinite path. ✷

Proof. Consider an infinite, but finitely branching tree T . We construct an
infinite path in T , that is, an infinite sequence

ξ : n0 n1 n2 . . .

of nodes such that, for each i ≥ 0, ni+1 is a child of ni. We define ξ inductively
such that every ni is the root of an infinite subtree of T . As n0 we take the
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root of T . Suppose now that n0, . . ., ni are already constructed. By induction
hypothesis, ni is the root of an infinite subtree of T . Since T is finitely
branching, there are only finitely many children m1, . . ., mn of ni. At least
one of these children is a root of an infinite subtree of T , so we take ni+1 to
be such a child of ni. This completes the inductive definition of ξ. ✷

Proof of the FIP Theorem 16.
(⇒ ) Let P be a generalized ordinal potential. Suppose by contradiction
that an infinite improvement path exists. Then the corresponding values of
P form a strictly increasing infinite sequence. This is a contradiction, since
there are only finitely many joint strategies.

(⇐ ) Consider a branching tree the root of which has all joint strategies as
successors and whose branches are the improvement paths. Because the game
is finite this tree is finitely branching. By the assumption the game has the
FIP, so this tree has no infinite paths. Consequently by König’s Lemma this
tree is finite and hence the number of improvement sequences is finite. Given
a joint strategy s define P (s) to be the number of improvement sequences
that terminate in s. Then in the considered game (S1, . . ., Sn, p1, . . ., pn)

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i)− pi(s
′
i, s−i) > 0 implies P (si, s−i)− P (s′i, s−i) = 1,

so P is a generalized ordinal potential. ✷

5.3 Congestion games

We now study an important class of games that have a potential. Until now
we associated with each player a payoff function pi. An alternative is to
associate with each player a cost function ci. Then the objective of each
player is to minimize the cost. Consequently, when the cost functions are
used, a joint strategy s is a Nash equilibrium if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si ci(si, s−i) ≤ ci(s
′
i, s−i).

It is straightforward to associate with each game that uses cost functions
a customary strategic game by using

pi(s) := −ci(s).

42



We now define a congestion game for n players as follows. Assume a
non-empty finite set E of facilities , for example road segments. Given a
player i his set of strategies is a set of non-empty subsets ofE, i.e. Si ⊆P(E)\
{{∅}}.

We define the cost functions ci as follows. First, we introduce the delay
function dj : {1, . . ., n}→ R for using facility j ∈ E; dj(k) is the delay
for using facility j when there are k users of j. Next, we define a function
uj : S1 × · · · × Sn →{1, . . ., n} by

uj(s) := |{r ∈ {1, . . ., n} | j ∈ sr}|.

So uj(s) is the number of users of facility j given the joint strategy s. Finally,
we define the cost function by

ci(s) :=
∑

j∈si

dj(uj(s)).

So ci(s) is the aggregate delay incurred by player i when each player j
selected the set of facilities sj .

The following important result clarifies our interest in the congestion
games.

Theorem 18 (Congestion) Every congestion game is a potential game.

Proof. We define

P (s) :=
∑

j∈s1∪. . .∪sn

uj(s)
∑

k=1

dj(k),

Intuitively, P (s) is the sum of accumulated delays for each facility. We
prove that P is indeed a potential.

First, we extend each function dj to {0, 1, . . ., n} by putting dj(0) := 0.
We have then

P (s) =
∑

j∈E

uj(s)
∑

k=0

dj(k), (5.1)

since for j ∈ E \ (s1 ∪ . . . ∪ sn) we have uj(s) = 0.
Recall that χA denotes the set characteristic function for the set A, i.e.,

χ(A)(j) = 1 if j ∈ A and 0 otherwise. We have then for i ∈ {1, . . ., n}

ci(s) =
∑

j∈E

di(uj(s))χsi(j). (5.2)
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From (5.1) and (5.2) it follows that for i ∈ {1, . . ., n}

P (s)− ci(s) =
∑

j∈E

uj(s)−χsi
(j)

∑

k=0

dj(k) (5.3)

and

P (s′i, s−i)− ci(s
′
i, s−i) =

∑

j∈E

uj(s′i,s−i)−χs′
i
(j)

∑

k=0

dj(k). (5.4)

But for j ∈ E we have uj(s)− χsi(j) = uj(s
′
i, s−i)− χs′

i
(j), so from (5.3)

and (5.4) it follows that P is a potential. ✷

Example 13 We now discuss the so-called Braess paradox showing that
adding new roads to a road network can lead to an increased travel time. To
discuss it we use the game theoretic concepts of a Nash equilibrium, strictly
dominant strategies and a social welfare. Consider the road network given
in Figure 5.4.

T/100

T/100

45

 U

R

B

45

A

Figure 5.4: A road network

Assume that there are 4000 players (drivers), travelling from A to B. Each
of them has two strategies consisting of a road A - U - B or A - R - B. The
delays for each facility (road segment) are indicated in the figure. So if T
drivers choose the road segment A - U (or R - B), then the delay is T/100.
The delay for the other two road segments is constant.

It is easy to see that a joint strategy is a Nash equilibrium iff the drivers
evenly split among the two possible roads, that is 2000 players choose one
strategy and 2000 the other strategy. The resulting cost (travel time) for
each player (driver) equals 2000/100 + 45 = 45 + 2000/100 = 65.
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Suppose now that a new, fast, road from U to R is added to the network
with delay 0, see Figure 5.5.

T/100

T/100

45

 U

R

B

45

A 0

Figure 5.5: An augmented road network

Now each player (driver) has three possible strategies (routes): A - U - B,
A - R - B, and A - U - R - B. It is easy to see that in this new congestion game
for each player A - U - R - B is a strictly dominant strategy. Consequently, by
the Strict Dominance Note 1 this new game has a unique Nash equilibrium
that consists of these strictly dominant strategies. Moreover, by the Best
Response Dynamics Note 14, all executions of the best response dynamics
terminate in this unique Nash equilibrium.

Now, the resulting travel time for each driver equals 4000/100 + 4000/100
= 80, so it increased. This shows that adding the new road segment, in this
case U - R, can result in a longer travel time. It is easy to check that this
paradox remains in force as long as the delay for using U - R is smaller than
5. ✷

Exercise 13 Prove that in the above example for each player A - U - R - B
is indeed a strictly dominant strategy. ✷

A special case of congestion games are the fair cost sharing games .
In these games each facility j ∈ E has a cost cj ∈ R associated with it.
Then the delay function for a facility is obtained by dividing its cost equally
between the users. So we use

dj(uj(s)) :=
cj

uj(s)

in the definition of the congestion game. Consequently

ci(s) :=
∑

j∈si

cj
uj(s)

.
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Fair cost sharing games form a natural class of congestion games in which
the costs decrease when the number of users of the shared facilities increases.
In this context the delay function should be viewed as the charge for the use
of the facility.
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Chapter 6

Weakly Acyclic Games

In the previous chapter we identified the class of games that have the finite
improvement property (FIP). They are obviously of interest, since they have
a Nash equilibrium and moreover a Nash equilibrium can be reached from
any initial joint strategy by means of an improvement path. However, FIP is
a very strong property and for several games only a weaker property holds.

Example 14 Consider a finite directed graph in which we view each node
as a player. Assume that each player has a finite set of strategies that we
call colours. The payoff to each player is the number of (in)neighbours who
chose the same colour.

More precisely, given a directed graph G, let Nj denote the set of all
neighbours of node j in G. Then each payoff function is defined by

pi(s) := |{j ∈ Ni | si = sj}|.

We call such games coordination games .
As an example consider the directed graph and the colour assignment

depicted in Figure 6.1.
Take the joint strategy s that consists of the underlined strategies, so

• node 7 selects a,

• nodes 1, 4 and 9 select b,

• nodes 2, 3, 5, 6 and 8 select c.

Then the payoffs are as follows:
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Figure 6.1: A directed graph with a colour assignment.

• 0 for the nodes 1, 7, 8 and 9,

• 1 for the nodes 2, 4, 5, 6,

• 2 for the node 3.

Note that the above joint strategy is not a Nash equilibrium. For example,
node 1 can profitably deviate to colour a. ✷

Let us focus now on a specific example of a coordination game in the
above sense.

Example 15 Consider now a coordination game on a simple cycle 1 → 2 →
. . . → n → 1, where n ≥ 3 and such that the nodes share at least two colours,
say a and b. Take the initial colouring (a, b, . . ., b). Then both (a, b, b, . . ., b) →
(a, a, b, . . ., b) and (a, a, b, . . ., b) → (b, a, b, . . ., b) are profitable deviations,
where to increase readability we underlined the strategies that were modified.
After these two steps we obtain a colouring that is a rotation of the first one.
Iterating we obtain an infinite improvement path. Hence this game does not
have the FIP. ✷

On the other hand a weaker property holds for the above game. We call a
strategic game weakly acyclic if for any joint strategy there exists a finite
improvement path that starts at it. The following result holds.

Theorem 19 The game from Example 15 is weakly acyclic.
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Proof. To fix the notation, suppose that the considered graph is 1 → 2 →
. . . → n → 1. Given a joint strategy s, let BR(s) = {i ∈ N | si is a best
response to s−i}, where N = {1, . . ., n}. Consider a function f : S → N∪{0},
defined as follows:

f(s) :=

{

min(N \ BR(s)) if BR(s) 6= N,

0 otherwise

At each joint strategy which is not a Nash equilibrium, the function f
specifies the node that is allowed to update its strategy. Consider an im-
provement path ρ = s1, s2, . . . which satisfies the condition that for all k ≥ 0,
if sk is not a Nash equilibrium, then sk → sk+1 is a profitable deviation
for the node f(sk). We argue that ρ is finite, i.e., that it reaches a Nash
equilibrium. There are two cases.

Case 1. Suppose that in ρ, node n is never chosen to update its strategy (i.e.
for all k > 1, f(sk) 6= n). Then, the length of ρ can be at most n− 1 and a
fortiori it is finite.

Case 2. Suppose that there exists sk in the improvement path ρ such that
f(sk) = n. Let sk+1

n = c. Since ρ is an improvement path, we have skn−1 = c
as well. Let j := min{l ∈ N | skl = c and ∀v : l ≤ v ≤ n, skv = c}. By
definition, j ≤ n − 1. We argue that for all m > k, f(sm) 6= j. In other
words, in the suffix of ρ starting at sk, the node j is never chosen to update
its strategy. It then follows that ρ is finite.

Note that, by the definition of f , {2, 3, . . . , n} ⊆ BR(sk+1). So if sk+1 is
not a Nash equilibrium, then f(sk+1) = 1. According to the payoff function,
if 1 6∈ BR(sk+1), then sk+1

1 6= c and c ∈ S1. Therefore, sk+2
1 = c. Again, it

holds that {1, 3, 4, . . . , n} ⊆ BR(sk+2). So if sk+2 is not a Nash equilibrium,
then f(sk+2) = 2. Since 2 6∈ BR(sk+2) we have that sk+2

2 6= c (= sk+2
1 ) and

c ∈ S2. Therefore, sk+3
2 = c. Continuing in this manner, we get that, if

there exists sk+m such that f(sk+m) = j − 1 then sk+m+1
j−1 = c. And therefore

BR(sk+m+1) = N , i.e., sk+m+1 is a Nash equilibrium. ✷

As in the case of the games that have the FIP we can characterize finite
weakly acyclic games by means of appropriate potentials. Given a game
G := (S1, . . ., Sn, p1, . . ., pn) we call the function P : S1 × · · · × Sn → R a
weak potential for G if

∀s (if s is not a Nash equilibrium, then for some
profitable deviation s → s′, P (s) < P (s′)).
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We have then the following counterpart of Theorem 16.

Theorem 20 (Weakly Acyclic) A finite game has a weak potential iff it
is weakly acyclic.

Proof.
(⇒ ) Let P be a weak potential. Take a joint strategy s. Suppose that s is
not a Nash equilibrium. Then for some profitable deviation s → s′ we have
P (s) < P (s′). We set s, s′ to be the prefix of an improvement path that starts
with s. By iterating this process we construct an improvement path. This
path cannot be infinite since the corresponding values of P form a strictly
increasing sequence and there are only finitely many joint strategies.

(⇐ ) Given a joint strategy s, let P (s) be the minus of the length of the
shortest finite improvement path that starts with s. To prove that P is a
weak potential consider a joint strategy s that is not a Nash equilibrium.
Let s, s1, s2, . . ., sk be a shortest finite improvement path that starts with s.
Then P (s) = −(k+1), s → s1 is a profitable deviation, and P (s1) = −k. So
P is indeed a weak potential. ✷

In Chapter 4 we considered games that can be solved by IENBR, the
iterated elimination of never best responses. We now relate them to the
weakly acyclic games.

Theorem 21 If a finite game can be solved by IENBR, then it is weakly
acyclic.

Proof. Suppose that a finite game G is solved by IENBR. Let R1, . . ., Rm be
the corresponding sequence of restrictions, that is, G = R1, Ri →N Ri+1 for
i ∈ {1, . . ., m− 1} and Rm has just one joint strategy.

We define the height of a strategy si from G as the largest l ∈ {1, . . ., m}
such that si ∈ Rl

i. For a joint strategy s from G we then define

P (s) :=
n

∑

i=1

height(si).

We now prove that P is a weak potential. Suppose that s is not a Nash
equilibrium. Take i such that height(si) is minimal. By the IENBR Theorem
11 s is not in Rm, so P (s) < m ·n and consequently height(si) < m. Suppose
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height(si) = l. So si ∈ Rl
i and si 6∈ Rl+1

i . That is, si is a never best response
in Rl. In particular, si is not a best response to s−i in Rl.

Let s′i be a best response to s−i in Rl. Put s′ := (s′i, s−i). Then pi(s) <
pi(s

′), i.e., s → s′ is a profitable deviation. Also s′i ∈ Rl+1
i , so height(s′i) >

l = height(si). Hence P (s) < P (s′). By Theorem 20 G is weakly acyclic. ✷

6.1 Exercises

Exercise 14 Find a weak potential for the game considered in Theorem 19.
✷

Exercise 15 Prove that the coordination game given in Example 14 has no
Nash equilibrium. ✷
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Chapter 7

Sealed-bid Auctions

An auction is a procedure used for selling and buying items by offering them
up for bid. Auctions are often used to sell objects that have a variable price
(for example oil) or an undetermined price (for example radio frequencies).
There are several types of auctions. In its most general form they can involve
multiple buyers and multiple sellers with multiple items being offered for
sale, possibly in succession. Moreover, some items can be sold in fractions,
for example oil.

Here we shall limit our attention to a simple situation in which only one
seller exists and offers one object for sale that has to be sold in its entirety
(for example a painting). So in this case an auction is a procedure that
involves

• one seller who offers an object for sale,

• n bidders, each bidder i having a valuation vi ≥ 0 of the object.

The procedure we discuss here involves submission of sealed bids . More
precisely, the bidders simultaneously submit their bids in closed envelopes
and the object is allocated, in exchange for a payment, to the bidder who
submitted the highest bid (the winner). Such an auction is called a sealed-
bid auction . To keep things simple we assume that when more than one
bidder submitted the highest bid the object is allocated to the highest bidder
with the lowest index.

To formulate a sealed-bid auction as a strategic game we consider each
bidder as a player. Then we view each bid of player i as his possible strategy.
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We allow any nonnegative real as a bid, that is the set of strategies of each
player is R+.

We assume that the valuations vi are fixed and publicly known. This
is an unrealistic assumption to which we shall return in a later chapter.
However, this assumption is necessary, since the valuations are used in the
definition of the payoff functions and by assumption the players have common
knowledge of the game and hence of each others’ payoff functions. When
defining the payoff functions we consider two options, each being determined
by the underlying payment procedure.

Given a sequence b := (b1, . . . , bn) of reals, we denote the least l such
that bl = maxk∈{1,...,n} bk by argsmax b. That is, argsmax b is the smallest
index l such that bl is a largest element in the sequence b. For example,
argsmax (6, 7, 7, 5) = 2.

7.1 First-price auction

The most commonly used rule in a sealed-bid auction is that the winner i
pays to the seller the amount equal to his bid. The resulting mechanism is
called the first-price auction .

Assume the winner is bidder i, whose bid is bi. Since his value for the
sold object is vi, his payoff (profit) is vi− bi. For the other players the payoff
(profit) is 0. Note that the winner’s profit can be negative. This happens
when he wins the object by overbidding , i.e., submitting a bid higher than
his valuation of the object being sold. Such a situation is called the winner’s
curse.

To summarize, the payoff function pi of player i in the game associated
with the first-price auction is defined as follows, where b is the vector of the
submitted bids:

pi(b) :=

{

vi − bi if i = argsmax b

0 otherwise

Let us now analyze the resulting game. The following theorem provides
a complete characterization of its Nash equilibria.

Theorem 22 (Characterization I) Consider the game associated with the
first-price auction with the players’ valuations v. Then b is a Nash equilib-
rium iff for i = argsmax b
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(i) bi ≤ vi

(the winner does not suffer from the winner’s curse),

(ii) maxj 6=i vj ≤ bi

(the winner submitted a sufficiently high bid),

(iii) bi = maxj 6=i bj

(another player submitted the same bid as player i).

These three conditions can be compressed into the single statement

max
j 6=i

vj ≤ max
j 6=i

bj = bi ≤ vi,

where i = argsmaxb. Also note that (i) and (ii) imply that vi = max v, which
means that in every Nash equilibrium a player with the highest valuation is
the winner.
Proof.
(⇒ )
(i) If bi > vi, then player’s i payoff is negative and it increases to 0 if he
submits the bid equal to vi.

(ii) If maxj 6=i vj > bi, then player j such that vj > bi can win the object
by submitting a bid in the open interval (bi, vj), say vj − ǫ. Then his payoff
increases from 0 to ǫ.

(iii) If bi > maxj 6=i bj , then player i can increase his payoff by submitting a
bid in the open interval (maxj 6=i bj , bi), say bi − ǫ. Then his payoff increases
from vi − bi to vi − bi + ǫ.

So if any of the conditions (i) − (iii) is violated, then b is not a Nash
equilibrium.

(⇐ ) Suppose that a vector of bids b satisfies (i)−(iii). Player i is the winner
and by (i) his payoff is non-negative. His payoff can increase only if he bids
less, but then by (iii) another player (the one who initially submitted the
same bid as player i) becomes the winner, while player’s i payoff becomes 0.

The payoff of any other player j is 0 and can increase only if he becomes
the winner. This can happen only if he bids at least bi (if j < i) or more
than bi (if j > i). But then by (ii), maxj 6=i vj ≤ bj , so his payoff remains 0
or becomes negative.
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So b is a Nash equilibrium. ✷

As an illustration of the above theorem suppose that the vector of the
valuations is (1, 6, 5, 2). Then the vectors of bids (1, 5, 5, 2) and (1, 5, 2, 5)
satisfy the above three conditions and are both Nash equilibria. The first
vector of bids shows that player 2 can secure the object by bidding the second
highest valuation. In the second vector of bids player 4 overbids but his payoff
is 0 since he is not the winner.

By the truthful bidding we mean the vector b of bids, such b = v,
i.e., each player bids his own valuation. Note that by the Characterization
Theorem 22 truthful bidding, i.e., v, is a Nash equilibrium iff the two highest
valuations coincide.

Further, note that for no player i such that vi > 0 his truthful bidding is
a dominant strategy (the notion introduced in Exercise 9). Indeed, truthful
bidding by player i always results in payoff 0. However, if all other players
bid 0, then player i can increase his payoff by submitting a lower, positive
bid.

Observe that the above analysis does not allow us to conclude that in each
Nash equilibrium the winner is the player who wins in the case of truthful
bidding. Indeed, suppose that the vector of valuations is (0, 5, 5, 5), so that
in the case of truthful bidding by all players player 2 is the winner. Then
the vector of bids (0, 4, 5, 5) is a Nash equilibrium with player 3 being the
winner.

Finally, notice the following strange consequence of the above theorem:
in no Nash equilibrium the last player, n, is a winner. The reason is that we
resolved the ties in the favour of a bidder with the lowest index. Indeed, by
item (iii) in every Nash equilibrium b we have argsmax b < n.

7.2 Second-price auction

We consider now an auction with the following payment rule. As before the
winner is the bidder who submitted the highest bid (with a tie broken, as
before, to the advantage of the bidder with the smallest index), but now he
pays to the seller the amount equal to the second highest bid. This sealed-
bid auction is called the second-price auction . It was proposed by W.
Vickrey and is alternatively called Vickrey auction . So in this auction in
the absence of ties the winner pays to the seller a lower price than in the
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first-price auction.
Let us formalize this auction as a game. The payoffs are now defined as

follows:

pi(b) :=

{

vi −maxj 6=i bj if i = argsmax b

0 otherwise

Note that bidding vi always yields a non-negative payoff but can now lead
to a strictly positive payoff, which happens when vi is a unique winning bid.
However, when the highest two bids coincide the payoffs are still the same as
in the first-price auction, since then for i = argsmaxb we have bi = maxj 6=i bj .
Finally, note that the winner’s curse still can take place here, namely when
vi < bi and some other bid is in the open interval (vi, bi).

The analysis of the second-price auction as a game leads to different
conclusions that for the first-price auction. The following theorem provides
a complete characterization of the Nash equilibria of the corresponding game.

Theorem 23 (Characterization II) Consider the game associated with
the second-price auction with the players’ valuations v. Then b is a Nash
equilibrium iff for i = argsmax b

(i) maxj 6=i vj ≤ bi

(the winner submitted a sufficiently high bid),

(ii) maxj 6=i bj ≤ vi

(the winner’s valuation is sufficiently high).

Proof.
(⇒ )
(i) If maxj 6=i vj > bi, then player j such that vj > bi can win the object by
submitting a bid in the open interval (bi, vj). Then his payoff increases from
0 to vj − bi.

(ii) If maxj 6=i bj > vi, then player’s i payoff is negative, namely vi−maxj 6=i bj ,
and can increase to 0 if player i submits a losing bid.

So if condition (i) or (ii) is violated, then b is not a Nash equilibrium.

(⇐ ) Suppose that a vector of bids b satisfies (i) and (ii). Player i is the
winner and by (ii) his payoff is non-negative. By submitting another bid he
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either remains a winner, with the same payoff, or becomes a loser with the
payoff 0.

The payoff of any other player j is 0 and can increase only if he becomes
the winner. This can happen only if he bids at least bi (if j < i) or more
than bi (if j > i). But then his payoff becomes vj − bi, so by (i) it remains 0
or becomes negative.

So b is a Nash equilibrium. ✷

This characterization result shows that several Nash equilibria exist. We
now exhibit three specific ones that are of particular interest. In each case it
is straightforward to check that conditions (i) and (ii) of the above theorem
hold.

Truthful bidding

Recall that in the case of the first-price auction truthful bidding is a Nash
equilibrium iff for the considered sequence of valuations the auction coincides
with the second-price auction. Now truthful bidding, so v, is always a Nash
equilibrium. Below we prove another property of truthful bidding in second-
price auction.

Wolf and sheep Nash equilibrium

Suppose that i = argsmaxv, i.e., player i is the winner in the case of truthful
bidding. Consider the strategy profile in which player i bids vi and everybody
else bids 0. This Nash equilibrium is called wolf and sheep , where player
i plays the role of a wolf by bidding aggressively and scaring the sheep being
the other players who submit their minimal bids.

Yet another Nash equilibrium

Finally, we exhibit a Nash equilibrium in which the player with the uniquely
highest valuation is not a winner. This is in contrast with what we observed
in the case of the first-price auction. Suppose that the two highest valuations
are vj and vi, where vj > vi > 0 and i < j. Then the strategy profile in which
player i bids bi = vj , player j bids bj = vi and everybody else bids 0 is a
Nash equilibrium.
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7.3 Incentive compatibility

So far we discussed two examples of sealed-bid auctions. A general form
of such an auction is determined by fixing for each bidder i the payment
procedure payi which given a sequence b of bids such that bidder i is the
winner yields his payment.

In the resulting game, that we denote by Gpay,v, the payoff function is
defined by

pi(b) :=

{

vi − payi(b) if i = argsmax b

0 otherwise

Intuitively, bidding 0 means that the bidder is not interested in the object.
So if all players bid 0 then none of them is interested in the object. According
to our definition the object is then allocated to the first bidder. We assume
that then his payment is 0. That is, we stipulate that pay1(0, . . ., 0) = 0.

When designing a sealed-bid auction it is natural to try to induce the
bidders to bid their valuations. This leads to the following notion.

We call a sealed-bid auction with the payment procedures pay1, . . ., payn
incentive compatible if for all sequences v of players’ valuations for each
bidder i his valuation vi is a dominant strategy in the corresponding game
Gpay,v.

While dominance of a strategy does not guarantee that a player will
choose it, it ensures that deviating from it is not profitable. So dominance of
each valuation vi can be viewed as a statement that in the considered auction
lying does not pay off.

We now show that the condition of incentive compatibility fully charac-
terizes the corresponding auction. More precisely, the following result holds.

Theorem 24 (Second-price auction) A sealed-bid auction is incentive com-
patible iff it is the second-price auction.

Proof. Fix a sequence of the payment procedures pay1, . . ., payn that deter-
mines the considered sealed-bid auction.
(⇒ ) Choose an arbitrary sequence of bids that for the clarity of the argument
we denote by (vi, b−i). Suppose that i = argsmax (vi, b−i). We establish the
following four claims.

Claim 1. payi(vi, b−i) ≤ vi.
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Proof. Suppose by contradiction that payi(vi, b−i) > vi. Then in the corre-
sponding game Gpay,v we have pi(vi, b−i) < 0. On the other hand pi(0, b−i) ≥
0. Indeed, if i 6= argsmax (0, b−i), then pi(0, b−i) = 0. Otherwise all bids
in b−i are 0 and i = 1, and hence pi(0, b−i) = vi, since by assumption
pay1(0, . . ., 0) = 0.

This contradicts the assumption that vi is a dominant strategy in the
corresponding game Gpay,v.

Claim 2. For all bi ∈ (maxj 6=i bj , vi) we have payi(vi, b−i) ≤ payi(bi, b−i).
Proof. Suppose by contradiction that for some bi ∈ (maxj 6=i bj , vi) we have
payi(vi, b−i) > payi(bi, b−i). Then i = argsmax (bi, b−i) so

pi(vi, b−i) = vi − payi(vi, b−i) < vi − payi(bi, b−i) = pi(bi, b−i).

This contradicts the assumption that vi is a dominant strategy in the corre-
sponding game Gpay,v.

Claim 3. payi(vi, b−i) ≤ maxj 6=i bj .
Proof. Suppose by contradiction that payi(vi, b−i) > maxj 6=i bj . Take some
v′i ∈ (maxj 6=i bj , payi(vi, b−i)). By Claim 1 v′i < vi, so by Claim 2 payi(vi, b−i) ≤
payi(v

′
i, b−i). Further, by Claim 1 for the sequence (v′i, v−i) of valuations we

have payi(v
′
i, b−i) ≤ v′i.

So payi(vi, b−i) ≤ v′i, which contradicts the choice of v′i.

Claim 4. payi(vi, b−i) ≥ maxj 6=i bj .
Proof. Suppose by contradiction that payi(vi, b−i) < maxj 6=i bj . Take an
arbitrary v′i ∈ (payi(vi, b−i),maxj 6=i bj). Then pi(v

′
i, b−i) = 0, while

pi(vi, b−i) = vi − payi(vi, b−i) > vi −max
j 6=i

bj ≥ 0.

So pi(vi, b−i) > pi(v
′
i, b−i). This contradicts the assumption that v′i is a

dominant strategy in the corresponding game Gpay,(v′
i
,v−i).

So we proved that for i = argsmax (vi, b−i) we have payi(vi, b−i) =
maxj 6=i bj , which shows that the considered sealed-bid auction is second price.

(⇐ ) We actually prove a stronger claim, namely that for all sequences of
valuations v, each vi is a weakly dominant strategy for player i.

To this end take a vector b of bids. By definition pi(bi, b−i) = 0 or
pi(bi, b−i) = vi −maxj 6=i bj ≤ pi(vi, b−i). But 0 ≤ pi(vi, b−i), so

pi(bi, b−i) ≤ pi(vi, b−i).
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Consider now a bid bi 6= vi. If bi < vi, then take b−i such that each
element of it lies in the open interval (bi, vi). Then bi is a losing bid and vi
is a winning bid and

pi(bi, b−i) = 0 < vi −max
j 6=i

bj = pi(vi, b−i).

If bi > vi, then take b−i such that each element of it lies in the open
interval (vi, bi). Then bi is a winning bid and vi is a losing bid and

pi(bi, b−i) = vi −max
j 6=i

bj < 0 = pi(vi, b−i).

So we proved that each strategy bi 6= vi is weakly dominated by vi, i.e.,
that vi is a weakly dominant strategy. As an aside, recall that each weakly
dominant strategy is unique, so we characterized bidding one’s valuation in
the second-price auction in game theoretic terms. ✷

Exercise 16 Prove that the game associated with the first-price auction
with the players’ valuations v has no Nash equilibrium iff vn is the unique
highest valuation. ✷

Exercise 17 Prove the counterparts of the Characterization Theorems 22
and 23 when for each player the set of possible strategies is the set N ∪ {0}
of natural numbers augmented with zero. ✷
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Chapter 8

Regret Minimization and
Security Strategies

Until now we implicitly adopted a view that a Nash equilibrium is a desirable
outcome of a strategic game. In this chapter we consider two alternative views
that help us to understand reasoning of players who either want to avoid
costly ’mistakes’ or ‘fear’ a bad outcome. Both concepts can be rigorously
formalized.

8.1 Regret minimization

Consider the following game:

L R
T 100, 100 0, 0
B 0, 0 1, 1

This is an example of a coordination problem, in which there are two
satisfactory outcomes (read Nash equilibria), (T, L) and (B,R), of which
one is obviously better for both players. In this game no strategy strictly
or weakly dominates the other and each strategy is a best response to some
other strategy. So using the concepts we introduced so far we cannot explain
how come that rational players would end up choosing the Nash equilibrium
(T, L). In this section we explain how this choice can be justified using the
concept of regret minimization .
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With each finite strategic game (S1, . . . , Sn, p1, . . . , pn) we first associate
a regret-recording game (S1, . . . , Sn, r1, . . . , rn) in which each payoff func-
tion ri is defined by

ri(si, s−i) := pi(s
∗
i , s−i)− pi(si, s−i),

where s∗i is player’s i best response to s−i. We call then ri(si, s−i) player’s
i regret of choosing si against s−i. Note that by definition for all s we
have ri(s) ≥ 0.

For example, for the above game the corresponding regret-recording game
is

L R
T 0, 0 1, 100
B 100, 1 0, 0

Indeed, r1(B,L) := p1(T, L)−p1(B,L) = 100, and similarly for the other
seven entries.

Let now
regreti(si) := max

s−i∈S−i

ri(si, s−i).

So regreti(si) is the maximal regret player i can have from choosing si. We
call then any strategy s∗i for which the function regreti attains the minimum,
i.e., one such that regreti(s

∗
i ) = minsi∈Si

regreti(si), a regret minimiza-
tion strategy for player i.

In other words, s∗i is a regret minimization strategy for player i if

max
s−i∈S−i

ri(s
∗
i , s−i) = min

si∈Si

max
s−i∈S−i

ri(si, s−i).

The following intuition is helpful here. Suppose the opponents of player
i are able to perfectly anticipate which strategy player i is about to play
(for example by being informed through a third party what strategy player
i has just selected and is about to play). Suppose further that they aim at
inflicting at player i the maximum damage in the form of maximal regret and
that player i is aware of these circumstances. Then to miminize his regret
player i should select a regret minimization strategy. We could say that a
regret minimization strategy will be chosen by a player who wants to avoid
making a costly ‘mistake’, where by a mistake we mean a choice of a strategy
that is not a best response to the joint strategy of the opponents.
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To clarify this notion let us return to our example of the coordination
game. To visualize the outcomes of the functions regret1 and regret2 we put
the results in an additional row and column:

L R regret1
T 0, 0 1, 100 1
B 100, 1 0, 0 100

regret2 1 100

So T is the minimum of regret1 and L is the minimum of regret2. Hence
(T, L) is the unique pair of regret minimization strategies. This shows that
using the concept of regret minimization we succeeded to single out the pre-
ferred Nash equilibrium in the considered coordination game.

It is important to note that the concept of regret minimization does not
allow us to solve all coordination problems. For example, it does not help us
in selecting a Nash equilibrium in symmetric situations, for instance in the
game

L R
T 1, 1 0, 0
B 0, 0 1, 1

Indeed, in this case the regret of each strategy is 1, so regret minimization
does not allow us to distinguish between the strategies. Analogous consider-
ations hold for the Battle of Sexes game from Chapter 1.

Regret minimization is based on different intuitions than strict and weak
dominance or the notion of a never best response. As a result these notions
are incomparable. Further, regret minimization does not necessarily lead to
a selection of a Nash equilibrium for the simple reason that some finite games
have no Nash equilibria. In general, only the following limited observation
holds. Recall that the notion of a dominant strategy was introduced in
Exercise 9 on page 35.

Note 25 (Regret Minimization) Consider a finite game. Every domi-
nant strategy is a regret minimization strategy.

Proof. Fix a finite game (S1, . . . , Sn, p1, . . . , pn). Note that each dominant
strategy si of player i is a best response to each s−i ∈ S−i. So by the definition
of the regret-recording game for all s−i ∈ S−i we have ri(si, s−i) = 0. Hence
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si is a regret minimization strategy for player i, since for all joint strategies
s we have ri(s) ≥ 0. ✷

The process of removing strategies that do not achieve regret minimiza-
tion can be iterated. We call this process the iterated regret minimiza-
tion . The example of the coordination game we analyzed shows that the
process of regret minimization may yield to a loss of some Nash equilibria.
In fact, as we shall see in a moment, during this process all Nash equilibria
can be lost. On the other hand, as recently suggested by J. Halpern and
R. Pass, in some games the iterated regret minimization yields a more intu-
itive outcome. As an example let us return to the Traveler’s Dilemma game
considered in Example 1.

Example 16 (Traveler’s dilemma revisited)
Let us first determine in this game the regret minimization strategies for

each player. Take a joint strategy s.

Case 1. s−i = 2.
Then player’s i regret of choosing si against s−i is 0 if si = s−i and 2 if

si > s−i, so it is at most 2.

Case 2. s−i > 2.
If s−i < si, then pi(s) = s−i − 2, while the best response to s−i, namely

s−i − 1, yields the payoff s−i + 1. So player’s i regret of choosing si against
s−i is in this case 3.

If s−i = si, then pi(s) = s−i, while the best response to s−i, namely
s−i − 1, yields the payoff s−i + 1. So player’s i regret of choosing si against
s−i is in this case 1.

Finally, if s−i > si, then pi(s) = si + 2, while the best response to s−i,
namely s−i − 1, yields the payoff s−i + 1. So player’s i regret of choosing si
against s−i is in this case s−i − si − 1.

To summarize, we have

regreti(si) = max(3, max
s−i∈S−i

s−i − si − 1) = max(3, 99− si).

So the minimal regret is achieved when 99−si ≤ 3, i.e., when the strategy si
is in the interval [96, 100]. Hence removing all strategies that do not achieve
regret minimization yields a game in which each player has the strategies in
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the interval [96, 100]. In particular, we ‘lost’ in this way the unique Nash
equilibrium of this game, (2,2).

We now repeat this elimination procedure. To compute the outcome we
consider again two, though now different, cases.

Case 1. si = 97.
The following table then summarizes player’s i regret of choosing si

against a strategy s−i of player i:

strategy best response regret
of player −i of player i of player i

96 96 2
97 96 1
98 97 0
99 98 1
100 99 2

Case 2. si 6= 97.
The following table then summarizes player’s i regret of choosing si, where

for each strategy of player i we list a strategy of player −i for which player’s
i regret is maximal:

strategy relevant strategy regret
of player i of player −i of player i

96 100 3
98 97 3
99 98 3
100 99 3

So each strategy of player i different from 97 has regret 3, while 97 has
regret 2. This means that the second round of elimination of the strategies
that do not achieve regret minimization yields a game in which each player
has just one strategy, namely 97. ✷

Recall again that the unique Nash equilibrium in the Traveler’s Dilemma
game is (2,2). So the iterated regret minimization yields here a radically
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different outcome than the analysis based on Nash equilibria. Interestingly,
this outcome, (97,97), has been confirmed by empirical studies.

Exercise 18 Show that regret minimization as a strategy elimination pro-
cedure is not order independent.
Hint. Consider the game

L R
T 2, 1 0, 3
B 0, 2 1, 1

✷

8.2 Security strategies

Consider the following game:

L R
T 0, 0 101, 1
B 1, 101 100, 100

This is an extreme form of a Chicken game, sometimes also called a
Hawk-dove game or a Snowdrift game.

This game models two drivers driving towards each other on a narrow
road. If neither driver swerves (‘chickens’), the result is a crash. The best
option for each driver is to stay straight while the other swerves. This yields
a situation in which each driver, in attempting to realize his best outcome,
risks a crash.

The description of this game as a snowdrift game stresses advantages of a
cooperation. The game models two drivers who are trapped on the opposite
sides of a snowdrift. Each has the option of staying in the car or shoveling
snow to clear a path. Letting the other driver do all the work is the best
option, but being exploited by shoveling while the other driver sits in the car
is still better than doing nothing.

Note that this game has two Nash equilibria, (T,R) and (B,L). However,
there seems to be no reason in selecting any Nash equilibrium as each Nash
equilibrium is grossly unfair to the player who will receive only 1.

In contrast, (B,R), which is not a Nash equilibrium, looks like a most
reasonable outcome. Each player receives in it a payoff close to the one he
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receives in the Nash equilibrium of his preference. Also, why should a player
risk the payoff 0 in his attempt to secure the payoff 101 that is only a fraction
bigger than his payoff 100 in (B,R)?

Note that in this game no strategy strictly or weakly dominates the other
and each strategy is a best response to some other strategy. Moreover, the
regret minimization for each strategy is 1. So these concepts are useless in
analyzing this game.

We now introduce the concept of a security strategy that allows us to
single out the joint strategy (B,R) as the most reasonable outcome for both
players.

Fix a, not necessarily finite, strategic game G := (S1, . . . , Sn, p1, . . . , pn).
Player i, when considering which strategy si to select, has to take into account
which strategies his opponents will choose. A ‘worst case scenario’ for player
i is that, given his choice of si, his opponents choose a joint strategy for
which player’s i payoff is the lowest1. For each strategy si of player i once
this lowest payoff can be identified a strategy can be selected that leads to a
‘minimum damage’.

To formalize this concept for each i ∈ {1, . . . , n} we consider the function2

fi : Si → R defined by

fi(si) := min
s−i∈S−i

pi(si, s−i).

We call any strategy s∗i for which the function fi attains the maximum, i.e.,
one such that fi(s

∗
i ) = maxsi∈Si

fi(si), a security strategy or a maxmin-
imizer for player i. We denote this maximum, so

max
si∈Si

min
s−i∈S−i

pi(si, s−i),

by maxmini and call it the security payoff of player i.
In other words, s∗i is a security strategy for player i if

min
s−i∈S−i

pi(s
∗
i , s−i) = maxmini.

Note that fi(si) is the minimum payoff player i is guaranteed to secure
for himself when he selects strategy si. In turn, the security payoff maxmini

1We assume here that such si exists.
2In what follows we assume that all considered minima and maxima always exist. This

assumption is obviously satisfied in finite games. In a later chapter we shall discuss a
natural class of infinite games for which this assumption is satisfied, as well.
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of player i is the minimum payoff he is guaranteed to secure for himself in
general. To achieve at least this payoff he just needs to select any security
strategy.

The following intuition is helpful here. Suppose the opponents of player
i are able to perfectly anticipate which strategy player i is about to play.
Suppose further that they aim at inflicting at player i the maximum dam-
age (in the form of the lowest payoff) and that player i is aware of these
circumstances. Then player i should select a strategy that causes the mini-
mum damage for him. Such a strategy is exactly a security strategy and it
guarantees him at least the maxmini payoff. We could say that a security
strategy will be chosen by a ‘pessimist’ player, i.e., one who fears the worst
outcome for himself.

To clarify this notion let us return to our example of the chicken game.
Clearly, both B and R are the only security strategies in this game. Indeed,
we have f1(T ) = f2(L) = 0 and f1(B) = f2(R) = 1. So we succeeded to
single out in this game the outcome (B,R) using the concept of a security
strategy.

The following counterpart of the Regret Minimization Note 25 holds.

Note 26 (Security) Consider a finite game. Every dominant strategy is a
security strategy.

Proof. Fix a game (S1, . . . , Sn, p1, . . . , pn) and suppose that s∗i is a dominant
strategy of player i. For all joint strategies s

pi(s
∗
i , s−i) ≥ pi(si, s−i),

so for all strategies si of player i

min
s−i∈S−i

pi(s
∗
i , s−i) ≥ min

s−i∈S−i

pi(si, s−i).

Hence
min

s−i∈S−i

pi(s
∗
i , s−i) ≥ max

si∈Si

min
s−i∈S−i

pi(si, s−i).

This concludes the proof. ✷

Next, we introduce a dual notion to the security payoff maxmini. It is
not needed for the analysis of security strategies but it will turn out to be
relevant in the next two chapters.

68



With each i ∈ {1, . . . , n} we consider the function Fi : S−i →R defined
by

Fi(s−i) := max
si∈Si

pi(si, s−i).

Then we denote the value mins−i∈S−i
Fi(s−i), i.e.,

min
s−i∈S−i

max
si∈Si

pi(si, s−i),

by minmaxi.
The following intuition is helpful here. Suppose that now player i is able to

perfectly anticipate which strategies his opponents are about to play. Using
this information player i can compute the minimum payoff he is guaranteed
to achieve in such circumstances: it isminmaxi. This lowest payoff for player
i can be enforced by his opponents if they choose any joint strategy s∗−i for
which the function Fi attains the minimum, i.e., one such that Fi(s

∗
−i) =

mins−i∈S−i
Fi(s−i).

To clarify the notions of maxmini and minmaxi consider an example.

Example 17 Consider the following two-player game:

L M R
T 3,− 4,− 5,−
B 6,− 2,− 1,−

where we omit the payoffs of the second, i.e., column, player.
To visualize the outcomes of the functions f1 and F1 we put the results

in an additional row and column:

L M R f1
T 3,− 4,− 5,− 3
B 6,− 2,− 1,− 1
F1 6 4 5

In the f1 column we list for each row its minimum and in the F1 row we
list for each column its maximum.

Since f1(T ) = 3 and f1(B) = 1 we conclude that maxmin1 = 3. So the
security payoff of the row player is 3 and T is a unique security strategy of
the row player. In other words, the row player can secure for himself at least
the payment 3 and achieves this by choosing strategy T .

Next, since F1(L) = 6, F1(M) = 4 and F1(R) = 5 we get minmax1 = 4.
In other words, if the row player knows which strategy the column player is
to play, he can secure for himself at least the payment 4. ✷
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In the above example maxmin1 < minmax1. In general the following
observation holds. From now on, to simplify the notation we assume that si
and s−i range over, respectively, Si and S−i.

Lemma 27 (Lower Bound)

(i) For all i ∈ {1, . . . , n} we have maxmini ≤ minmaxi.

(ii) If s is a Nash equilibrium of G, then for all i ∈ {1, . . . , n} we have
minmaxi ≤ pi(s).

Given the above intuitions behind the definitions ofmaxmini andminmaxi

we can say that item (i) formalizes the intuition that one can take a better
decision when more information is available (in this case about which strate-
gies the opponents are about to play). Item (ii) provides a lower bound on
the payoff in each Nash equilibrium, which explains the name of the lemma.

Proof.
(i) Fix i. Let s∗i be such that mins−i

pi(s
∗
i , s−i) = maxmini and s∗−i such that

maxsi pi(si, s
∗
−i) = minmaxi. We have then the following string of equalities

and inequalities:

maxmini = mins−i
pi(s

∗
i , s−i) ≤ pi(s

∗
i , s

∗
−i) ≤ maxsipi(si, s

∗
−i) = minmaxi.

(ii) Fix i. For each Nash equilibrium (s∗i , s
∗
−i) of G we have

mins−i
maxsipi(si, s−i) ≤ maxsipi(si, s

∗
−i) = pi(s

∗
i , s

∗
−i).

✷

The concepts of the regret minimization and security strategies bear no
relation to each other. Indeed, consider the following variant of a coordina-
tion game:

L R
T 100, 100 0, 1
B 1, 0 1, 1

In this game the regret minimization strategies form one Nash equilib-
rium, (T, L), while the security strategies form the other Nash equilibrium,
(B,R).
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Exercise 19 Characterize Nash equilibria in the security strategies in the
games associated with the first-price and second-price auctions by adding an
appropriate condition to the ones given in the Characterization Theorems 22
and 23. ✷

Exercise 20
(i) Find a two-player game with a Nash equilibrium such that maxmin1 <
minmax1.
(ii) Find a two-player game with no Nash equilibrium such that maxmini =
minmaxi for i = 1, 2. ✷

This exercise shows that in general there is no relation between the equal-
ities maxmini = minmaxi, where i = 1, 2, and an existence of a Nash equi-
librium. In the next chapter we shall discuss a class of two-player games for
which these two properties are equivalent.
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Chapter 9

Strictly Competitive Games

In this chapter we discuss a special class of two-player games for which
stronger results concerning Nash equilibria can be established. To study
them we shall crucially rely on the notions introduced in Section 8.2, namely
security strategies and maxmini and minmaxi.

More specifically, we introduce a natural class of two-player games for
which the equalities between the maxmini and minmaxi values for i =
1, 2 constitute a necessary and sufficient condition for the existence of a
Nash equilibrium. In these games any Nash equilibrium consists of a pair of
security strategies.

A strictly competitive game is a two-player strategic game (S1, S2, p1, p2)
in which for i = 1, 2 and any two joint strategies s and s′

pi(s) ≥ pi(s
′) iff p−i(s) ≤ p−i(s

′).

That is, a joint strategy that is better for one player is worse for the other
player. This formalizes the intuition that the interests of both players are
diametrically opposed and explains the terminology.

By negating both sides of the above equivalence we get

pi(s) < pi(s
′) iff p−i(s) > p−i(s

′).

So an alternative way of defining a strictly competitive game is by stating that
this is a two-player game in which every joint strategy is a Pareto efficient
outcome.

To illustrate this concept let us fill in the game considered in Example
17 the payoffs for the column player in such a way that the game becomes
strictly competitive:
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L M R
T 3, 4 4, 3 5, 2
B 6, 0 2, 5 1, 6

Exercise 21 Is the Traveler’s Dilemma game considered in Example 1 strictly
competitive? ✷

Canonic examples of strictly competitive games are zero-sum games .
These are two-player games in which for each joint strategy s we have

p1(s) + p2(s) = 0.

So a zero-sum game is an extreme form of a strictly competitive game in
which whatever one player ‘wins’, the other one ‘loses’. A simple example is
the Matching Pennies game from Chapter 1.

Another well-known zero-sum game is the Rock, Paper, Scissors
game. In this game, often played by children, both players simultaneously
make a sign with a hand that identifies one of these three objects. If both
players make the same sign, the game is a draw. Otherwise one player wins,
say, 1 Euro from the other player according to the following rules:

• the rock defeats (breaks) scissors,

• scissors defeat (cut) the paper,

• the paper defeats (wraps) the rock.

Since in a zero-sum game the payoff for the second player is just the nega-
tive of the payoff for the first player, each zero-sum game can be represented
in a simplified form, called reward matrix . It is simply the matrix that
represents only the payoffs for the first player. So the reward matrix for the
Rock, Paper, Scissors game looks as follows:

R P S
R 0 −1 1
P 1 0 −1
S −1 1 0

For the strictly competitive games, so a fortiori the zero-sum games, the
following counterpart of the Lower Bound Lemma 27 holds.
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Lemma 28 (Upper Bound) Consider a strictly competitive game G :=
(S1, S2, p1, p2). If (s∗1, s

∗
2) is a Nash equilibrium of G, then for i = 1, 2

(i) pi(s
∗
i , s

∗
−i) ≤ mins−i

pi(s
∗
i , s−i),

(ii) pi(s
∗
i , s

∗
−i) ≤ maxmini.

Both items provide an upper bound on the payoff in each Nash equilib-
rium, which explains the name of the lemma.
Proof.
(i) Fix i. Suppose that (s∗i , s

∗
−i) is a Nash equilibrium of G. Fix s−i. By the

definition of Nash equilibrium

p−i(s
∗
i , s

∗
−i) ≥ p−i(s

∗
i , s−i),

so, since G is strictly competitive,

pi(s
∗
i , s

∗
−i) ≤ pi(s

∗
i , s−i).

But s−i was arbitrary, so

pi(s
∗
i , s

∗
−i) ≤ min

s−i

pi(s
∗
i , s−i).

(ii) By definition

min
s−i

pi(s
∗
i , s−i) ≤ max

si
min
s−i

pi(si, s−i),

so by (i)
pi(s

∗
i , s

∗
−i) ≤ max

si
min
s−i

pi(si, s−i).

✷

Combining the Lower Bound Lemma 27 and the Upper Bound Lemma
28 we can draw the following conclusions about strictly competitive games.

Theorem 29 (Strictly Competitive Games) Consider a strictly compet-
itive game G.

(i) If for i = 1, 2 we have maxmini = minmaxi, then G has a Nash
equilibrium.
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(ii) If G has a Nash equilibrium, then for i = 1, 2 we have maxmini =
minmaxi.

(iii) All Nash equilibria of G yield the same payoff, namely maxmini for
player i.

(iv) All Nash equilibria of G are of the form (s∗1, s
∗
2) where each s∗i is a

security strategy for player i.

Proof. Suppose G = (S1, S2, p1, p2).
(i) Fix i. Let s∗i be a security strategy for player i, i.e., such that mins−i

pi(s
∗
i , s−i) =

maxmini, and let s∗−i be such that maxsi pi(si, s
∗
−i) = minmaxi. We show

that (s∗i , s
∗
−i) is a Nash equilibrium of G.

We already noted in the proof of the Lower Bound Lemma 27(i) that

maxmini = min
s−i

pi(s
∗
i , s−i) ≤ pi(s

∗
i , s

∗
−i) ≤ max

si
pi(si, s

∗
−i) = minmaxi.

But now maxmini = minmaxi, so all these values are equal. In particular

pi(s
∗
i , s

∗
−i) = max

si
pi(si, s

∗
−i) (9.1)

and
pi(s

∗
i , s

∗
−i) = min

s−i

pi(s
∗
i , s−i).

Fix now s−i. By the last equality

pi(s
∗
i , s

∗
−i) ≤ pi(s

∗
i , s−i),

so, since G is strictly competitive,

p−i(s
∗
i , s

∗
−i) ≥ p−i(s

∗
i , s−i).

But s−i was arbitrary, so

p−i(s
∗
i , s

∗
−i) = max

s−i

p−i(s
∗
i , s−i). (9.2)

Now (9.1) and (9.2) mean that indeed (s∗i , s
∗
−i) is a Nash equilibrium of

G.
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(ii) and (iii) If s is a Nash equilibrium of G, by the Lower Bound Lemma
27(i) and (ii) and the Upper Bound Lemma 28(ii) we have for i = 1, 2

maxmini ≤ minmaxi ≤ pi(s) ≤ maxmini.

So all these values are equal.

(iv) Fix i. Take a Nash equilibrium (s∗i , s
∗
−i) of G. We always have

min
s−i

pi(s
∗
i , s−i) ≤ pi(s

∗
i , s

∗
−i)

and by the Upper Bound Lemma 28(i) we also have

pi(s
∗
i , s

∗
−i) ≤ min

s−i

pi(s
∗
i , s−i).

So
min
s−i

pi(s
∗
i , s−i) = pi(s

∗
i , s

∗
−i) = maxmini,

where the last equality holds by (iii). So s∗i is a security strategy for player
i. ✷

Combining (i) and (ii) we see that a strictly competitive game has a Nash
equilibrium iff for i = 1, 2 we have maxmini = minmaxi. So in a strictly
competitive game each player can determine whether a Nash equilibrium
exists without knowing the payoff of the other player. All what he needs to
know is that the game is strictly competitive. Indeed, each player i then just
needs to check whether his maxmini and minmaxi values are equal.

Morever, by (iv), each player can select on his own a strategy that forms
a part of a Nash equilibrium: it is simply any of his security strategies.

There is another characterization of Nash equilibria in strictly competitive
games in terms of the following notion. Given a function f : R2 → R we call
a pair (x∗, y∗) ∈ R

2 a saddle point of f if

∀x∀y f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y).

Note 30 Consider a strictly competitive game G. Then s is a Nash equilib-
rium iff it is a saddle point of any of the payoff functions.

Proof. Suppose G = (S1, S2, p1, p2). Fix i. By the definition of a strictly
competitive game s is a Nash equilibrium iff

∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i)
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and
∀s′−i ∈ S−i pi(si, s−i) ≤ pi(si, s

′
−i).

But the last two inequalities simply state that s is a saddle point of pi. ✷

9.1 Zero-sum games

Let us focus now on the special case of zero-sum games. We first show that
for zero-sum games the maxmini and minmaxi values for one player can be
directly computed from the corresponding values for the other player.

Theorem 31 (Zero-sum) Consider a zero-sum game (S1, S2, p1, p2). For
i = 1, 2 we have

maxmini = −minmax−i

and
minmaxi = −maxmin−i.

Proof. Fix i. For each joint strategy (si, s−i)

pi(si, s−i) = −p−i(si, s−i),

so

max
si

min
s−i

pi(si, s−i) = max
si

(min
s−i

−p−i(si, s−i)) = −min
si

max
s−i

p−i(si, s−i).

This proves the first equality. By interchanging i and −i we get the
second equality. ✷

It follows by the Strictly Competitive Games Theorem 29(i) that for
zero-sum games a Nash equilibrium exists iff maxmin1 = minmax1. When
this equality holds in a zero-sum game, the common value of maxmin1 and
minmax1 is called the value of the game.

Example 18 Consider the zero-sum game represented by the following re-
ward matrix:

L M R
T 4 3 5
B 6 2 1
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To compute maxmin1 and minmax1, as in Example 17, we extend the
matrix with an additional row and column and fill in the minima of the rows
and the maxima of the columns:

L M R f1
T 4 3 5 3
B 6 2 1 1
F1 6 3 5

We see that maxmin1 = minmax1 = 3. So 3 is the value of this game.
✷

The above result does not hold for arbitrary strictly competitive games.
To see it notice that in any two-player game a multiplication of the payoffs
of player i by 2 leads to the doubling of the value of maxmini and it does
not affect the value of minmax−i. Moreover, this multiplication procedure
does not affect the property that a game is strictly competitive.

In an arbitrary strategic game with multiple Nash equilibria, for exam-
ple the Battle of the Sexes game, the players face the following coordination
problem. Suppose that each of them chooses a strategy from a Nash equilib-
rium. Then it can happen that this way they selected a joint strategy that
is not a Nash equilibrium. For instance, in the Battle of the Sexes game the
players can choose respectively F and B. The following result shows that in
a zero-sum game such a coordination problem does not exist.

Theorem 32 (Interchangeability) Consider a zero-sum game G.

(i) Suppose that a Nash equilibrium of G exists. Then any joint strategy
(s∗1, s

∗
2) such that each s∗i is a security strategy for player i is a Nash

equilibrium of G.

(ii) Suppose that (s∗1, s
∗
2) and (t∗1, t

∗
2) are Nash equilibria of G. Then so are

(s∗1, t
∗
2) and (t∗1, s

∗
2).

Proof.
(i) Let (s∗1, s

∗
2) be a pair of security strategies for players 1 and 2. Fix i. By

definition
min
si

p−i(si, s
∗
−i) = maxmin−i. (9.3)
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But

min
si

p−i(si, s
∗
−i) = min

si
−pi(si, s

∗
−i) = −max

si
pi(si, s

∗
−i)

and by the Zero-sum Theorem 31

maxmin−i = −minmaxi.

So (9.3) implies
max
si

pi(si, s
∗
−i) = minmaxi. (9.4)

We now rely on the Strictly Competitive Games Theorem 29. By item
(ii) for j = 1, 2 we have maxminj = minmaxj , so by the proof of item (i)
and (9.4) we conclude that (s∗i , s

∗
−i) is a Nash equilibrium.

(ii) By (i) and the Strictly Competitive Games Theorem 29(iv). ✷

The assumption that a Nash equilibrium exists is obviously necessary in
item (i) of the above theorem. Indeed, in the finite zero-sum games security
strategies always exist, in contrast to the Nash equilibrium.

Finally, recall that throughout this chapter we assumed the existence of
various minima and maxima. So the results of this chapter apply only to a
specific class of strictly competitive and zero-sum games. This class includes
finite games. We shall return to this matter in a later chapter.
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Chapter 10

Repeated Games

In the games considered so far the players took just a single decision: a
strategy they selected. In this chapter we consider a natural idea of playing
a given strategic game repeatedly. We assume that the outcome of each
round is known to all players before the next round of the game takes place.

10.1 Finitely repeated games

In the first approach we shall assume that the same game is played a fixed
number of times. The final payoff to each player is simply the sum of the
payoffs obtained in each round.

Suppose for instance that we play the Prisoner’s Dilemma game, so

C D
C 2, 2 0, 3
D 3, 0 1, 1

twice. It seems then that the outcome is the following game in which we
simply add up the payoffs from the first and second round:

CC CD DC DD
CC 4, 4 2, 5 2, 5 0, 6
CD 5, 2 3, 3 3, 3 1, 4
DC 5, 2 3, 3 3, 3 1, 4
DD 6, 0 4, 1 4, 1 2, 2
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However, this representation is incorrect since it erronously assumes that
the decisions taken by the players in the first round have no influence on
their decisions taken in the second round. For instance, the option that the
first player chooses C in the second round if and only iff the second player
chose C in the first round is not listed. In fact, the set of strategies available
to each player is much larger.

In the first round each player has two strategies. However, in the second
round each player’s strategy is a function f : {C,D} × {C,D}→ {C,D}.
So in the second round each player has 24 = 16 strategies and consequently
in the repeated game each player has 2 × 16 = 32 strategies. Each such
strategy has two components, one of each round. It is clear how to compute
the payoffs for so defined strategies. For instance, if the first player chooses
in the first round C and in the second round the function

f1(s) :=



















C if s = (C,C)

D if s = (C,D)

C if s = (D,C)

D if s = (D,D)

and the second player chooses in the first round D and in the second round
the function

f2(s) :=



















C if s = (C,C)

D if s = (C,D)

D if s = (D,C)

C if s = (D,D)

then the corresponding payoffs are:

• in the first round: (0, 3) (corresponding to the joint strategy (C,D)),

• in the second round: (1, 1) (corresponding to the joint strategy (D,D)).

So the overall payoffs are: (1, 4), which corresponds to the joint strategy
(CD,DD) in the above bimatrix. In fact, this matrix does list all possible
overall payoffs, but not all possible joint strategies.

Let us consider now the general setup. The strategic game that is repeat-
edly played is called the stage game. Given a stage game (S1, . . . , Sn, p1, . . . , pn)
the repeated game with k rounds (in short: a repeated game), where
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k ≥ 1, is defined by first introducing the set of histories . This set H is
defined inductively as follows, where ε denotes the empty sequence, t ≥ 1,
and, as usual, S = S1 × · · · × Sn:

H0 := {ε},
H1 := S,
Ht+1 := Ht × S,

H :=
⋃k−1

t=0 H
t.

So h ∈ H0 iff h = ε and for t ∈ {1, . . ., k − 1}, h ∈ Ht iff h ∈ St. That is,
a history is a (possibly empty) sequence of joint strategies of the stage game
of length at most k − 1.

Then a strategy for player i in the repeated game is a function σi :
H→ Si. In particular σi(ε) is a strategy in the stage game chosen in the first
round.

We denote the set of strategies of player i in the repeated game by Σi

and the set of joint strategies in the repeated game by Σ.
The outcome of the repeated game corresponding to a joint strategy

σ = (σ1, . . ., σn) ∈ Σ of the players is the history that consists of k joint
strategies selected in the consecutive stages of the underlying stage game.
This history (o1(σ), . . ., ok(σ)) ∈ Hk is defined as follows:

o1(σ) := (σ1(ε), . . ., σn(ε)),
o2(σ) := (σ1(o

1(σ)), . . ., σn(o
1(σ))),

. . .
ok(σ) := (σ1(o

1(σ), . . ., ok−1(σ)), . . ., σn(o
1(σ), . . ., ok−1(σ)).

In particular ok(σ) is obtained by applying each of the strategies σ1, . . ., σn

to the already defined history (o1(σ), . . ., ok−1(σ)) ∈ Hk−1.
Finally, the payoff function Pi of player i in the repeated game is

defined as

Pi(σ) :=
k

∑

t=1

pi(o
t(σ)).

So the payoff for each player is the sum of the payoffs he received in each
round.

Now that we defined formally a repeated game let us return to the Pris-
oner’s Dilemma game and assume that it is played k rounds. We can now
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define the following natural strategies:1

• cooperate: select at every stage C,

• defect : select at every stage D,

• tit for tat : first select C, then repeatly select the last strategy played
by the opponent,

• grim (or trigger): select C as long as the opponent selects C; if he
selects D select D from now on.

For example, it does not matter if one chooses tit for tat or grim strategy
against a grim strategy: in both cases each player repeatedly selects C.
However, if one selects C in the odd rounds and D in the even rounds, then
against the tit for tat strategy the following sequence of stage strategies
results:

• for player 1: C,D,C,D,C, . . .,

• for player 2: C,C,D,C,D, . . .

while against the grim strategy we obtain:

• for player 1: C,D,C,D,C, . . .,

• for player 2: C,C,D,D,D, . . .

Using the concept of strictly dominant strategies we could predict that
the outcome of the Prisoner’s dilemma game is (D,D). A natural question
arises whether we can also predict the outcome in the repeated version of
this game. To do this we first extend the relevant notions to the repeated
games.

Given a stage game G we denote the repeated game with k rounds by
G(k). After the obvious identification of σi : H0 → Si with σi(ε) we can
identify G(1) with G.

1These definitions are incomplete in the sense that the strategies are not defined for all
histories. However, the specified parts completely determine the outcomes that can arise
against any strategy of the opponent.
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In general we can view G(k) as a strategic game (Σ1, . . .,Σn, P1, . . ., Pn),
where the strategy sets Σi and the payoff functions Pi are defined above. This
allows us to apply the basic notions, for example that of Nash equilibrium,
to the repeated game.

As a first result we establish the following.

Theorem 33 (Finitely Repeated Game I) Consider a stage game G and
k ≥ 1.

If s is a Nash equilibrium of G, then the joint strategy σ, where for all
i ∈ {1, . . ., n} and h ∈ H

σi(h) := si,

is a Nash equilibrium of G(k).

Proof. The outcome corresponding to σ consists of s repeated k times. That
is, in each round of G(k) the Nash equilibrium is selected and the payoff to
each player i is pi(s), where G := (S1, . . . , Sn, p1, . . . , pn).

Suppose that σ is not a Nash equilibrium in G(k). Then for some player i
a strategy τi yields a higher payoff than σi when used against σ−i. So in some
round of G(k) player i receives a strictly larger payoff than pi(s). But in this
(and every other) round every other player j selects sj . So the strategy of
player i selected in this round yields a strictly higher payoff against s−i than
si, which is a contradiction. ✷

The definition of a strategy in a repeated game determines player’s choice
for each history, in particular for histories that cannot be outcomes of the
repeated game. As a result the joint strategy σ considered in the above
theorem does not need to be a unique Nash equilibrium of G(k).

As an example consider the Prisoner’s Dilemma game played twice. Then
the pair of defect strategies is a Nash equilibrium. Moreover, the pair of
strategies according to which one selects D in the first round and C in the
second round iff the first round equals (C,C) is also a Nash equilibrium.
These two pairs differ though they yield the same outcome.

Note that if a player has a strictly dominant strategy in the stage game
then he does not necessarily have a strictly dominant strategy in the repeated
game.

Example 19 Take as the stage game the Prisoner’s Dilemma game. Then
D is a strictly dominant strategy for both players.
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Consider now the Prisoner’s Dilemma game played twice and take best
responses against two strategies, the tit for tat and the cooperate strategy.

In each best response against the tit for tat strategy C is selected in the
first round and D in the second round. In contrast, in each best response
against the cooperate strategy in both rounds D is selected. So no player
has a single best response strategy, that is, no player has a strictly dominant
strategy.

Note also that in our first, incorrect, representation of the Prisoner’s
Dilemma game played twice strategy DD is strictly dominant for both play-
ers. ✷

More interestingly, if in the stage game each player has a strictly domi-
nant strategy, sometimes a higher average payoff can be achieved in a Nash
equilibrium of the repeated game if in some rounds the players select another
strategy.

Example 20 We modify the Prisoner’s Dilemma game by adding to it a
third strategy P (for ‘punishment’) as follows.

C D P
C 2, 2 0, 3 −2, 0
D 3, 0 1, 1 −1, 0
P 0,−2 0,−1 −2,−2

Note that in this game for each player D is a strictly dominant strategy.
Hence by the Strict Dominance Note 1 (D,D) is a unique Nash equilibrium.
When the game is played once the payoff in this unique Nash equilibrium is 1
for each player. However, when the game is played twice a Nash equilibrium
exists with a higher average payoff.

Namely, consider the following strategy for each player:

• select C in the first round,

• if the other player selected C in the first round, select in the second
round D and otherwise select P .

If each player selects this strategy, they both select in the first round C
and D in the second round. This yields payoff 3 for each player.

We now prove that this pair of strategies forms a Nash equilibrium. Sup-
pose that the first player chooses a different strategy. If he selects in the
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first round a different strategy than C then he receives in the first round the
payoff 3 or 0. But then in the second round he receives then the payoff −2
or −1, so his overall payoff gets smaller than 3. Further, if the first player
selects in the first round C but in the second round a C or P , then in the
second round he receives the payoff 0 instead of 1 and his overall payoff gets
2 instead of 3.

By symmetry the same considerations hold for the second player. This
concludes the proof. ✷

This example shows that when the Prisoner’s Dilemma game is aug-
mented by another strategy it may be beneficial for both players to cooperate
(i.e., to select C) in some rounds. This cooperation is possible because cru-
cially the choices made by the players in the previous rounds are commonly
known.

Still, when the Prisoner’s Dilemma game is played repeatedly, at no stage
cooperation will occur. This is a consequence of the following result.

To formulate it we use the minmaxi value introduced in Section 8.2.
Recall that given a game (S1, . . . , Sn, p1, . . . , pn) it was defined by

minmaxi := min
s−i∈S−i

max
si∈Si

pi(si, s−i).

Theorem 34 (Finitely Repeated Game II) Consider a stage game G :=
(S1, . . . , Sn, p1, . . . , pn) such that for each player i the value minmaxi is well
defined and k ≥ 1. Suppose that for each Nash equilibrium s of G

pi(s) = minmaxi

for i ∈ {1, . . ., n}.
Then for each Nash equilibrium of G(k) the outcome corresponding to it

consists of a sequence of Nash equilibria in the stage game.

Proof. Suppose by contradiction that a Nash equilibrium (σ1, . . .σn) of G(k)
exists such that a joint strategy in its outcome (s1, . . ., sk) is not a Nash
equilibrium in the stage game G. Let t be the last stage at which st is not
a Nash equilibrium. For some player i there exists a strategy s′i such that
pi(s

′
i, s

t
−i) > pi(s

t
i, s

t
−i).

In Section 8.2 we defined minmaxi as mins−i∈S−i
Fi(s−i), where the func-

tion Fi : S−i → R was defined by

Fi(s−i) := max
si∈Si

pi(si, s−i).
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Let s∗i (s−i) be a strategy of player i that realizes this maximum, i.e., such
that Fi(s−i) = pi(s

∗
i (s−i), s−i). Then pi(s

∗
i (s−i), s−i) ≥ minmaxi for all s−i.

Consider now the following strategy σ′
i for player i in the repeated game:

• σ′
i(s

1, . . ., st−1) = s′i,

• σ′
i(h) = s∗i (σ−i(h)), where σ−i(h) = (σj(h))j 6=i, for all histories that are

of length ≥ t,

• σ′
i(h) = σi(h) for any other history.

Then the outcome of (σ′
i, σ−i) is a sequence of joint strategies

(s1, . . ., st−1, (s′i, s
t
−i), ŝ

t+1, . . ., ŝk)

in which the payoffs of player i are

• pi(s
l) in the rounds l ∈ {1, . . ., t− 1},

• pi(s
′
i, s

t
−i) > pi(s

t) in the round t,

• ≥ minmaxi = pi(s
l) in the rounds l ∈ {t+ 1, . . ., k}.

So the overall payoff of player i in the joint strategy (σ′
i, σ−i) is higher than

in the Nash equilibrium (σ1, . . .σn), which yields a contradiction. ✷

Corollary 35 Take as G the Prisoner’s Dilemma game. Then for each Nash
equilibrium of G(k), where k ≥ 1, the outcome corresponding to it consists
of each player selecting D in the stage game.

Proof. For the Prisoner’s Dilemma game we have minmax1 = minmax2 = 1
and the payoffs in the unique Nash equilibrium, (D,D), are 1, as well. ✷

So in any Nash equilibrium of the repeated Prisoner’s Dilemma game
in every round each player selects D. However, as noted earlier, selecting D
repeatedly is not anymore a strictly dominant strategy in the repeated game.
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10.2 Infinitely repeated games

In this section we consider infinitely repeated games. To define them we need
to modify appropriately the approach of the previous section.

First, to ensure that the payoffs are well defined we assume that in the
underlying stage game the payoff functions are bounded (from above and
below). Then we redefine the set of histories by putting

H :=
⋃∞

t=0H
t,

where each Ht is defined as before.
The notion of a strategy of a player remains the same: it is a function

from the set of all histories to the set of his strategies in the stage game. An
outcome corresponding to a joint strategy σ is now the infinite set of joint
strategies of the stage game o1(σ), o2(σ), . . . where each ot(σ) is defined as
before.

Finally, to define the payoff function we first introduce a discount ,
which is a number δ ∈ (0, 1). Then we put

Pi(σ) := (1− δ)
∞
∑

t=1

δt−1pi(o
t(σ)).

This definition requires some explanations. First note that this payoff
function is well-defined and always yields a finite value. Indeed, the original
payoff functions are assumed to be bounded and δ ∈ (0, 1), so the sequence
(
∑t

t=1 δ
t−1pi(o

t(σ)))t=1,2,. . . converges.
Note that the payoff in each round t is discounted by δt−1, which can be

viewed as the accumulated depreciation. So discounted payoffs in each round
are summed up and subsequently multiplied by the factor 1− δ. Note that

∞
∑

t=1

δt−1 = 1 + δ
∞
∑

t=1

δt−1,

hence
∞
∑

t=1

δt−1 =
1

1− δ
.

So if in each round the players select the same joint strategy s, then their
respective payoffs in the stage game and the repeated game coincide. This

88



explains the adjustment factor 1− δ in the definition of the payoff functions.
Further, since the payoffs in the stage game are bounded, the payoffs in the
repeated game are finite.

Given a stage game G and a discount δ we denote the infinitely repeated
game defined above by G(δ).

We observed in the previous section that in each Nash equilibrium of the
finitely repeated Prisoner’s Dilemma game the players select in each round
the defect (D) strategy. So finite repetition does not allow us to induce
cooperation, i.e., the selection of the C strategy. We now show that in the
infinitely repeated game the situation dramatically changes. Namely, the
following holds.

Theorem 36 (Prisoner’s Dilemma) Take as G the Prisoner’s Dilemma
game. Then for all δ ∈ (1

2
, 1) the pair of trigger strategies forms a Nash

equilibrium of G(δ).

Note that the outcome corresponding to the pair of trigger strategies
consists of the infinite sequence of (C,C), that is, in the claimed Nash equi-
librium of G(δ) both players repeatedly select C, i.e., always cooperate.

Proof. Suppose that, say, the first player deviates from his trigger strategy
while the other player remains at his trigger strategy. Let t be the first
stage in which the first player selects D. Consider now his payoffs in the
consecutive rounds of the stage game:

• in the rounds 1, . . ., t− 1 they equal 2,

• in the round t it equals 3,

• in the rounds t+ 1, . . ., they equal at most 1.

So the payoff in the repeated game is bounded from above by

(1− δ)(2
∑t−1

j=1 δ
j−1 + 3δt−1 +

∑∞
j=t+1 δ

j−1)

= (1− δ)(21−δt−1

1−δ
+ 3δt−1 + δt

1−δ
)

= 2(1− δt−1) + 3δt−1(1− δ) + δt

= 2 + δt−1 − 2δt.

Since δ > 0, we have

δt−1 − 2δt < 0 iff 1− 2δ < 0 iff δ > 1
2
.
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So when the first player deviates from his trigger strategy and δ > 1
2
, his

payoff in the repeated game is less than 2. In contrast, when he remains at
the trigger strategy, his payoff is 2.

This concludes the proof. ✷

This theorem shows that cooperation can be achieved by repeated inter-
action, so it seems to carry a positive message. However, repeated selection
of the defect strategy D by both players still remains a Nash equilibrium and
there is an obvious coordination problem between these two Nash equilibria.

Moreover, the above result is a special case of a much more general theo-
rem, called Folk theorem, since some version of it has been known before it
was recorded in a journal paper. From now on we abbreviate (p1(s), . . ., pn(s))
to p(s) and similarly with the Pi payoff functions. Also, we use, as in the
Finitely Repeated Game II Theorem 34, the minmaxi value.

Theorem 37 (Folk Theorem) Consider a stage game G := (S1, . . . , Sn,
p1, . . . , pn) with the bounded payoff functions.

Take some s′ ∈ S and suppose r := p(s′) is such that for i ∈ {1, . . ., n}
we have ri > minmaxi. Then δ0 ∈ (0, 1) exists such that for all δ ∈ (δ0, 1)
the repeated game G(δ) has a Nash equilibrium σ with P (σ) = r.

Note that this theorem is indeed a generalization of the Prisoner’s Dilemma
Theorem 36 since for the Prisoner’s Dilemma game we have minmax1 =
minmax2 = 1, while for the joint strategy (C,C) the payoff to each player is
2. Now, the only way to achieve this payoff for both players in the repeated
game is by repeatedly selecting C.

Proof. The argument is analogous to the one we used in the proof of the
Prisoner’s Dilemma Theorem 36. Let the strategy σi consist of selecting in
each round s′i. Note that P (σ) = r.

We first define an analogue of the trigger strategy. Let s∗−i be such that
maxsi pi(si, s

∗
−i) = minmaxi. That is, s∗−i is the joint strategy of the oppo-

nents of player i that when selected by them results in a minimum possible
payoff to player i. The idea behind the strategies defined below is that the
opponents of the deviating player jointly switch forever to s∗−i to ‘inflict’ on
player i the maximum ‘penalty’.

Recall that a history h is a finite sequence of joint strategies in the stage
game. Below a deviation in h refers to the fact that a specific player i did
not select s′i in a joint strategy from h.
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Given h ∈ H and j ∈ {1, . . ., n} we put

σj(h) :=















s′j if no player i 6= j deviated in h from s′i unilaterally

s∗j otherwise, where i is the first player who deviated in h from

s′i unilaterally

We now claim that σ is a Nash equilibrium for appropriate δs. Suppose
that some player i deviates from his strategy σi while the other players remain
at σ−i. Let t be the first stage in which player i selects a strategy s′′i different
from s′i. Consider now his payoffs in the consecutive rounds of the stage
game:

• in the rounds 1, . . ., t− 1 they equal ri,

• in the round t it equals pi(s
′′
i , s

′
−i),

• in the rounds t+ 1, . . ., they equal at most minmaxi.

Let r∗i > pi(s) for all s ∈ S. The payoff of player i in the repeated game
G(δ) is bounded from above by

(1− δ)(ri
∑t−1

j=1 δ
j−1 + r∗i δ

t−1 +minmaxi

∑∞
j=t+1 δ

j−1)

= (1− δ)(ri
1−δt−1

1−δ
+ r∗i δ

t−1 +minmaxi
δt

1−δ
)

= ri − δt−1ri + (1− δ)δt−1r∗i + δtminmaxi

= ri + δt−1(−ri + (1− δ)r∗i + δ minmaxi).

Since δ > 0 and r∗i ≥ ri > minmaxi, we have

δt−1(−ri + (1− δ)r∗i + δ minmaxi) < 0
iff r∗i − ri − δ(r∗i −minmaxi) < 0

iff
r∗i −ri

r∗i −minmaxi
< δ.

But r∗i > ri > minmaxi implies that δ0 :=
r∗i −ri

r∗i −minmaxi
∈ (0, 1). So when

δ > δ0 and player i selects in some round a strategy different than s′i, while
every other player j keeps selecting s′j, player’s i payoff in the repeated game
is less than ri. In contrast, when he remains selecting s′i his payoff is ri.

So σ is indeed a Nash equilibrium. ✷
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The above result can be strengthened to a much larger set of payoffs.
Recall that a set of points A⊆ R

n is called convex if for any x,y ∈ A and
α ∈ [0, 1] we have αx + (1 − α)y ∈ A. Given a subset A⊆ R

k denote the
smallest convex set that contains A by conv(A).

Then the above theorem holds not only for r ∈ {p(s) | s ∈ S}, but also
for all r ∈ conv({p(s) | s ∈ S}). In the case of the Prisoner’s Dilemma game
G we get that for any

r ∈ conv({(2, 2), (3, 0), (0, 3), (1, 1)})∩ {r′ | r′1 > 1, r′2 > 1}

there is δ0 ∈ (0, 1) such that for all δ ∈ (δ0, 1) the repeated game G(δ) has
a Nash equilibrium σ with P (σ) = r. In other words, cooperation can be
achieved in a Nash equilibrium, but equally well many other outcomes.

Such results belong to a class of similar theorems collectively called Folks
theorems. The considered variations allow for different sets of payoffs achiev-
able in an equilibrium, different ways of computing the payoff, different forms
of equilibria, and different types of repeated games.

Exercise 22 Compute the strictly and weakly dominated strategies in the
Prisoner’s Dilemma game played twice. ✷

Exercise 23 Find a counterexample to the following strengthening of the
Finitely Repeated Game I Theorem 33.

Consider a stage game G and k ≥ 1. Suppose that s is a Nash
equilibrium of G and that the outcome corresponding to a joint
strategy σ in G(k) consists of s repeated k times. Prove that σ
is a Nash equilibrium of G(k).

Hint. Consider the Prisoner’s Dilemma game played twice. ✷

Exercise 24 Consider the following stage game:

A B C
A 5, 5 0, 0 12, 0
B 0, 0 2, 2 0, 0
C 0, 12 0, 0 10, 10

This game has two Nash equilibria (A,A) and (B,B). So when the game
is played once the highest payoff in a Nash equilibrium is 5 for each player.
Find a Nash equilibrium in this game played twice in which the payoff to
each player is 15. ✷
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Chapter 11

Mixed Extensions

We now study a special case of infinite strategic games that are obtained in
a canonic way from the finite games, by allowing mixed strategies. Below
[0, 1] stands for the real interval {r ∈ R | 0 ≤ r ≤ 1}. By a probability
distribution over a finite non-empty set A we mean a function

π : A→ [0, 1]

such that
∑

a∈A π(a) = 1. We denote the set of probability distributions over
A by ∆A.

11.1 Mixed strategies

Consider now a finite strategic game G := (S1, . . . , Sn, p1, . . . , pn). By a
mixed strategy of player i in G we mean a probability distribution over Si.
So ∆Si is the set of mixed strategies available to player i. In what follows,
we denote a mixed strategy of player i by mi and a joint mixed strategy of
the players by m.

Given a mixed strategy mi of player i we define

support(mi) := {a ∈ Si | mi(a) > 0}

and call this set the support of mi. In specific examples we write a mixed
strategy mi as the sum

∑

a∈A mi(a) · a, where A is the support of mi.
Note that in contrast to Si the set ∆Si is infinite. When referring to the

mixed strategies, as in the previous chapters, we use the ‘−i’ notation. So for
m ∈ ∆S1 × · · · ×∆Sn we have m−i = (mj)j 6=i, etc.
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We can identify each strategy si ∈ Si with the mixed strategy that puts
‘all the weight’ on the strategy si. In this context si will be called a pure
strategy . Consequently we can view Si as a subset of ∆Si and S−i as a
subset of ×j 6=i∆Sj .

By a mixed extension of (S1, . . . , Sn, p1, . . . , pn) we mean the strategic
game

(∆S1, . . . ,∆Sn, p1, . . . , pn),

where each function pi is extended in a canonic way from S := S1 × · · · × Sn

to M := ∆S1 × · · · × ∆Sn by first viewing each joint mixed strategy m =
(m1, . . . , mn) ∈ M as a probability distribution over S, by putting for s ∈ S

m(s) := m1(s1) · . . . ·mn(sn),

and then by putting

pi(m) :=
∑

s∈S

m(s) · pi(s).

Example 21 Reconsider the Battle of the Sexes game from Chapter 1. Sup-
pose that player 1 (man) chooses the mixed strategy 1

2
F + 1

2
B, while player

2 (woman) chooses the mixed strategy 1
4
F + 3

4
B. This pair m of the mixed

strategies determines a probability distribution over the set of joint strategies,
that we list to the left of the bimatrix of the game:

F B
F 1

8
3
8

B 1
8

3
8

F B
F 2, 1 0, 0
B 0, 0 1, 2

To compute the payoff of player 1 for this mixed strategy m we multiply
each of his payoffs for a joint strategy by its probability and sum it up:

p1(m) =
1

8
2 +

3

8
0 +

1

8
0 +

3

8
1 =

5

8
.

Analogously

p2(m) =
1

8
1 +

3

8
0 +

1

8
0 +

3

8
2 =

7

8
.

✷

This example suggests the computation of the payoffs in two-player games
using matrix multiplication. First, we view each bimatrix of such a game as
a pair of matrices (A,B). The first matrix represents the payoffs to player 1
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and the second one to player 1. Assume now that player 1 has k strategies
and player 2 has ℓ strategies. Then bothA and B are k×ℓmatrices. Further,
each mixed strategy of player 1 can be viewed as a row vector p of length k
(i.e., a 1 × k matrix) and each mixed strategy of player 2 as a row vector q
of length ℓ (i.e., a 1 × ℓ matrix). Since p and q represent mixed strategies,
we have p ∈ ∆k−1 and q ∈ ∆ℓ−1, where for all m ≥ 0

∆m−1 := {(x1, . . ., xm) |
m
∑

i=1

xi = 1 and ∀i ∈ {1, . . ., m} xi ≥ 0}.

∆m−1 is called the (m− 1)-dimensional unit simplex .
In the case of our example we have

p =
(

1
2

1
2

)

,q =
(

1
4

3
4

)

,A =

(

2 0
0 1

)

,B =

(

1 0
0 2

)

.

Now, the payoff functions can be defined as follows:

p1(p,q) =

k
∑

i=1

ℓ
∑

j=1

piqjAij = pAqT

and

p2(p,q) =

k
∑

i=1

ℓ
∑

j=1

piqjBij = pBqT .

11.2 Nash equilibria in mixed strategies

In the context of a mixed extension we talk about a pure Nash equi-
librium , when each of the constituent strategies is pure, and refer to an
arbitrary Nash equilibrium of the mixed extension as a Nash equilibrium
in mixed strategies of the initial finite game. In what follows, when we
use the letter m we implicitly refer to the latter Nash equilibrium.

Below we shall need the following notion. Given a probability distribution
π over a finite non-empty multiset1 A of reals, we call

∑

r∈A

π(r) · r

1This reference to a multiset is relevant.
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a convex combination of the elements of A. For instance, given the
multiset A := {{4, 2, 2}}, 1

3
4 + 1

3
2 + 1

3
2, so 8

3
, is a convex combination of the

elements of A.
To see the use of this notion when discussing mixed strategies note that

for every joint mixed strategy m we have

pi(m) =
∑

si∈support(mi)

mi(si) · pi(si, m−i).

That is, pi(m) is a convex combination of the elements of the multiset

{{pi(si, m−i) | si ∈ support(mi)}}.

We shall employ the following simple observations on convex combina-
tions.

Note 38 (Convex Combination) Consider a convex combination

cc :=
∑

r∈A

π(r) · r

of the elements of a finite multiset A of reals. Then

(i) max A ≥ cc,

(ii) cc ≥ max A iff

• cc = r for all r ∈ A such that π(r) > 0,

• cc ≥ r for all r ∈ A such that π(r) = 0.

✷

Lemma 39 (Characterization) Consider a finite strategic game

(S1, . . . , Sn, p1, . . . , pn).

The following statements are equivalent:

(i) m is a Nash equilibrium in mixed strategies, i.e.,

pi(m) ≥ pi(m
′
i, m−i)

for all i ∈ {1, . . . , n} and all m′
i ∈ ∆Si,
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(ii) for all i ∈ {1, . . . , n} and all si ∈ Si

pi(m) ≥ pi(si, m−i),

(iii) for all i ∈ {1, . . . , n} and all si ∈ support(mi)

pi(m) = pi(si, m−i)

and for all i ∈ {1, . . . , n} and all si 6∈ support(mi)

pi(m) ≥ pi(si, m−i).

Note that the equivalence between (i) and (ii) implies that each Nash
equilibrium of the initial game is a pure Nash equilibrium of the mixed ex-
tension. In turn, the equivalence between (i) and (iii) provides us with
a straightforward way of testing whether a joint mixed strategy is a Nash
equilibrium.
Proof.
(i)⇒ (ii) Immediate.
(ii)⇒ (iii) We noticed already that pi(m) is a convex combination of the
elements of the multiset

A := {{pi(si, m−i) | si ∈ support(mi)}}.

So this implication is a consequence of part (ii) of the Convex Combination
Note 38.
(iii)⇒ (i) Consider the multiset

A := {{pi(si, m−i) | si ∈ Si}}.

But for all m′
i ∈ ∆Si, in particular mi, the payoff pi(m

′
i, m−i) is a convex

combination of the elements of the multiset A.
So by the assumptions and part (ii) of the Convex Combination Note 38

pi(m) ≥ max A,

and by part (i) of the above Note

max A ≥ pi(m
′
i, m−i).
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Hence pi(m) ≥ pi(m
′
i, m−i). ✷

We now illustrate the use of the above theorem by finding in the Battle
of the Sexes game a Nash equilibrium in mixed strategies, in addition to the
two pure ones exhibited in Chapter 3. Take

m1 := r1 · F + (1− r1) · B,
m2 := r2 · F + (1− r2) · B,

where 0 < r1, r2 < 1. By definition

p1(m1, m2) = 2 · r1 · r2 + (1− r1) · (1− r2),
p2(m1, m2) = r1 · r2 + 2 · (1− r1) · (1− r2).

Suppose now that (m1, m2) is a Nash equilibrium in mixed strategies.
By the equivalence between (i) and (iii) of the Characterization Lemma 39
p1(F,m2) = p1(B,m2), i.e., (using r1 = 1 and r1 = 0 in the above formula
for p1(·)) 2 · r2 = 1 − r2, and p2(m1, F ) = p2(m1, B), i.e., (using r2 = 1 and
r2 = 0 in the above formula for p2(·)) r1 = 2 · (1− r1). So r2 =

1
3
and r1 =

2
3
.

This implies that for these values of r1 and r2, (m1, m2) is a Nash equi-
librium in mixed strategies and we have

p1(m1, m2) = p2(m1, m2) =
2
3
.

11.3 Nash theorem

We now establish a fundamental result about games that are mixed exten-
sions. In what follows we shall use the following result from the calculus.

Theorem 40 (Extreme Value Theorem) Suppose that A is a non-empty
compact subset of Rn and

f : A→ R

is a continuous function. Then f attains a minimum and a maximum. ✷

The example of the Matching Pennies game illustrated that some strategic
games do not have a Nash equilibrium. In the case of mixed extensions the
situation changes and we have the following fundamental result established
by J. Nash in 1950.
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Theorem 41 (Nash) Every mixed extension of a finite strategic game has
a Nash equilibrium.

In other words, every finite strategic game has a Nash equilibrium in
mixed strategies. In the case of the Matching Pennies game it is straightfor-
ward to check that (1

2
·H + 1

2
· T, 1

2
·H + 1

2
· T ) is such a Nash equilibrium.

In this equilibrium the payoffs to each player are 0.
Nash Theorem follows directly from the following result.2

Theorem 42 (Kakutani) Suppose that A is a non-empty compact and con-
vex subset of Rn and

Φ : A→P(A)

such that

• Φ(x) is non-empty and convex for all x ∈ A,

• the graph of Φ, so the set {(x, y) | y ∈ Φ(x)}, is closed.

Then x∗ ∈ A exists such that x∗ ∈ Φ(x∗). ✷

Proof of Nash Theorem. Fix a finite strategic game (S1, . . . , Sn, p1, . . . , pn).
Define the function besti : ×j 6=i∆Sj →P(∆Si) by

besti(m−i) := {mi ∈ ∆Si | mi is a best response to m−i}.

Then define the function best : ∆S1 × · · · ×∆Sn →P(∆S1 × · · · ×∆Sn) by

best(m) := best1(m−1)× · · · × bestn(m−n).

It is now straightforward to check that m is a Nash equilibrium iff m ∈
best(m). Moreover, one easily can check that the function best(·) satisfies
the conditions of Kakutani Theorem. The fact that for every joint mixed
strategy m, best(m) is non-empty is a direct consequence of the Extreme
Value Theorem 40. ✷

Ever since Nash established his celebrated Theorem, a search has contin-
ued to generalize his result to a larger class of games. A motivation for this
endevour has been existence of natural infinite games that are not mixed ex-
tensions of finite games. As an example of such an early result let us mention
the following theorem stablished independently in 1952 by Debreu, Fan and
Glickstein.

2Recall that a subset A of Rn is called compact if it is closed and bounded.
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Theorem 43 Consider a strategic game such that

• each strategy set is a non-empty compact convex subset of Rn,

• each payoff function pi is continuous and quasi-concave in the ith ar-
gument.3

Then a Nash equilibrium exists.

More recent work in this area focused on existence of Nash equilibria in
games with non-continuous payoff functions.

11.4 Minimax theorem

Let us return now to strictly competitive games that we studied in Chapter
9. First note the following lemma.

Lemma 44 Consider a strategic game (S1, . . . , Sn, p1, . . . , pn) that is a mixed
extension. Then

(i) For all si ∈ Si, mins−i∈S−i
pi(si, s−i) exists.

(ii) maxsi∈Si
mins−i∈S−i

pi(si, s−i) exists.

(iii) For all s−i ∈ S−i, maxsi∈Si
pi(si, s−i) exists.

(iv) mins−i∈S−i
maxsi∈Si

pi(si, s−i) exists.

Proof. It is a direct consequence of the Extreme Value Theorem 40. ✷

This lemma implies that we can apply the results of Chapter 9 to each
strictly competitive game that is a mixed extension. Indeed, it ensures that
the minima and maxima the existence of which we assumed in the proofs
given there always exist. However, equipped with the knowledge that each
such game has a Nash equilibrium we can now draw additional conclusions.

Theorem 45 Consider a strictly competitive game that is a mixed extension.
For i = 1, 2 we have maxmini = minmaxi.

3Recall that the function pi : S → R is quasi-concave in the ith argument if the
set {s′

i
∈ Si | pi(s′i, s−i) ≥ pi(s)} is convex for all s ∈ S.
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Proof. By the Nash Theorem 41 and the Strictly Competitive Games The-
orem 29(ii). ✷

The formulation ‘a strictly competitive game that is a mixed extension’ is
rather awkward and it is tempting to write instead ‘the mixed extension of a
strictly competitive game’. However, one can show that the mixed extension
of a strictly competitive game does not need to be a strictly competitive
game, see Exercise 25.

On the other hand we have the following simple observation.

Note 46 (Mixed Extension) The mixed extension of a zero-sum game is
a zero-sum game.

Proof. Fix a finite zero-sum game (S1, S2, p1, p2). For each joint strategy m
we have

p1(m)+p2(m) =
∑

s∈S

m(s)p1(s)+
∑

s∈S

m(s)p2(s) =
∑

s∈S

m(s)(p1(s)+p2(s)) = 0.

✷

This means that for finite zero-sum games we have the following result,
originally established by von Neumann in 1928.

Theorem 47 (Minimax) Consider a finite zero-sum game G := (S1, S2, p1, p2).
Then for i = 1, 2

max
mi∈Mi

min
m−i∈M−i

pi(mi, m−i) = min
m−i∈M−i

max
mi∈Mi

pi(mi, m−i).

Proof. By the Mixed Extension Note 46 the mixed extension of G is zero-
sum, so strictly competitive. It suffices to use Theorem 45 and expand the
definitions of minmaxi and maxmini. ✷

Finally, note that using the matrix notation we can rewrite the above
equalities as follows, where A is an arbitrary k× ℓ matrix (that is the reward
matrix of a zero-sum game):

max
p∈∆k−1

min
q∈∆ℓ−1

pAqT = min
q∈∆ℓ−1

max
p∈∆k−1

pAqT .
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So the Minimax Theorem can be alternatively viewed as a theorem about
matrices and unit simplices. This formulation of the Minimax Theorem has
been generalized in many ways to a statement

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y),

where X and Y are appropriate sets replacing the unit simplices and f :
X × Y → R is an appropriate function replacing the payoff function. Such
theorems are called Minimax theorems.

Exercise 25 Find a 2 × 2 strictly competitive game such that its mixed
extension is not a strictly competitive game.

Exercise 26 Prove that the Matching Pennies game has exactly one Nash
equilibrium in mixed strategies. ✷

Exercise 27 Find all Nash equilibria in mixed strategies of the Rock, Paper,
Scissors game. ✷
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Chapter 12

Elimination by Mixed
Strategies

The notions of dominance apply in particular to mixed extensions of finite
strategic games. But we can also consider dominance of a pure strategy by
a mixed strategy. Given a finite strategic game G := (S1, . . . , Sn, p1, . . . , pn),
we say that a (pure) strategy si of player i is strictly dominated by a
mixed strategy mi if

∀s−i ∈ S−i pi(mi, s−i) > pi(si, s−i),

and that si is weakly dominated by a mixed strategy mi if

∀s−i ∈ S−i pi(mi, s−i) ≥ pi(si, s−i) and ∃s−i ∈ S−i pi(mi, s−i) > pi(si, s−i).

In what follows we discuss for these two forms of dominance the counter-
parts of the results presented in Chapters 3 and 4.

12.1 Elimination of strictly dominated strate-

gies

Strict dominance by a mixed strategy leads to a stronger form of strategy
elimination. For example, in the game

L R
T 2, 1 0, 0
M 0, 1 2, 0
B 0, 1 0, 2
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the strategy B is strictly dominated neither by T nor M but is strictly
dominated by 1

2
· T + 1

2
·M .

We now focus on iterated elimination of pure strategies that are strictly
dominated by a mixed strategy. For instance, applying this procedure to the
above game yields in three steps the game

L
T 2, 1

As in Chapter 3 we would like to clarify whether this procedure affects
the Nash equilibria, in this case equilibria in mixed strategies. We denote
the corresponding reduction relation between restrictions of a finite strategic
game by →SM .

First, we introduce the following notation. Given two mixed strategies
mi, m

′
i and a strategy si we denote by mi[si/m

′
i] the mixed strategy obtained

from mi by substituting the strategy si by m′
i and by ‘normalizing’ the re-

sulting sum. For example, given mi =
1
3
H + 2

3
T and m′

i =
1
2
H + 1

2
T we have

mi[H/m′
i] =

1
3
(1
2
H + 1

2
T ) + 2

3
T = 1

6
H + 5

6
T.

We also use the following identification of mixed strategies over two sets
of strategies S ′

i and Si such that S ′
i ⊆ Si. We view a mixed strategy mi ∈ ∆Si

such that support(mi)⊆ S ′
i as a mixed strategy ‘over’ the set S ′

i, i.e., as an
element of ∆S ′

i, by limiting the domain of mi to S ′
i. Further, we view each

mixed strategy mi ∈ ∆S ′
i as a mixed strategy ‘over’ the set Si, i.e., as an

element of ∆Si, by assigning the probability 0 to the elements in Si \ S
′
i.

Next, we establish the following auxiliary lemma.

Lemma 48 (Persistence) Given a finite strategic game G consider two
restrictions R and R′ of G such that R→SMR′.

Suppose that a strategy si ∈ Ri is strictly dominated in R by a mixed
strategy from R. Then si is strictly dominated in R by a mixed strategy from
R′.

Proof. We shall use the following, easy to establish, two properties of strict
dominance by a mixed strategy in a given restriction:

(a) for all α ∈ (0, 1], if si is strictly dominated by (1 − α)si + α mi, then si
is strictly dominated by mi,

(b) if si is strictly dominated by mi and s′i is strictly dominated by m′
i, then

si is strictly dominated by mi[s
′
i/m

′
i].
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Suppose that Ri \ R′
i = {t1i , . . ., t

k
i }. By definition for all j ∈ {1, . . ., k}

there exists in R a mixed strategy mj
i such that tji is strictly dominated in R

by mj
i . We first prove by complete induction that for all j ∈ {1, . . ., k} there

exists in R a mixed strategy nj
i such that

tji is strictly dominated in R by nj
i and support(nj

i ) ∩ {t1i , . . ., t
j
i} = ∅.

(12.1)
For some α ∈ (0, 1] and a mixed strategy n1

i with t1i 6∈ support(n1
i ) we

have
m1

i = (1− α)t1i + α n1
i .

By assumption t1i is strictly dominated in R by m1
i , so by (a) t1i is strictly

dominated in R by n1
i , which proves (12.1) for j = 1.

Assume now that ℓ < k and that (12.1) holds for all j ∈ {1, . . ., ℓ}. By
assumption tℓ+1

i is strictly dominated in R by mℓ+1
i .

Let
m′′

i := mℓ+1
i [t1i /n

1
i ]. . .[t

ℓ
i/n

ℓ
i ].

By the induction hypothesis and (b) tℓ+1
i is strictly dominated in R by m′′

i

and support(m′′
i ) ∩ {t1i , . . ., t

ℓ
i} = ∅.

For some α ∈ (0, 1] and a mixed strategy nℓ+1
i with tℓ+1

i 6∈ support(nℓ+1
i )

we have
m′′

i = (1− α)tℓ+1
i + α nℓ+1

i .

By (a) tℓ+1
i is strictly dominated inR by nℓ+1

i . Also support(nℓ+1
i )∩{t1i , . . ., t

ℓ+1
i } =

∅, which proves (12.1) for j = ℓ+ 1.
Suppose now that the strategy si is strictly dominated in R by a mixed

strategy mi from R. Define

m′
i := mi[t

1
i /n

1
i ]. . .[t

k
i /n

k
i ].

Then by (b) and (12.1) si is strictly dominated inR bym′
i and support(m′

i)⊆ R′
i,

i.e., m′
i is a mixed strategy in R′. ✷

The following is a counterpart of the Strict Elimination Lemma 2 and
will be used in a moment.

Lemma 49 (Strict Mixed Elimination) Given a finite strategic game G
consider two restrictions R and R′ of G such that R→SMR′.

Then m is a Nash equilibrium of R iff it is a Nash equilibrium of R′.
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Proof. Let
R := (R1, . . . , Rn, p1, . . . , pn),

and
R′ := (R′

1, . . . , R
′
n, p1, . . . , pn).

(⇒ ) It suffices to show that m is also a joint mixed strategy in R′, i.e., that
for all i ∈ {1, . . ., n} we have support(mi)⊆R′

i.
Suppose otherwise. Then for some i ∈ {1, . . ., n} a strategy si ∈ support(mi)

is strictly dominated by a mixed strategy m′
i ∈ ∆Ri. So

pi(m
′
i, m

′′
−i) > pi(si, m

′′
−i) for all m

′′
−i ∈ ×j 6=i∆Rj .

In particular
pi(m

′
i, m−i) > pi(si, m−i).

But m is a Nash equilibrium of R and si ∈ support(mi) so by the Charac-
terization Lemma 39

pi(m) = pi(si, m−i).

Hence
pi(m

′
i, m−i) > pi(m),

which contradicts the choice of m.

(⇐ ) Suppose m is not a Nash equilibrium of R. Then by the Characteriza-
tion Lemma 39 for some i ∈ {1, . . ., n} and s′i ∈ Ri

pi(s
′
i, m−i) > pi(m).

The strategy s′i is eliminated since m is a Nash equilibrium of R′. So s′i is
strictly dominated in R by some mixed strategy in R. By the Persistence
Lemma 48 s′i is strictly dominated in R by some mixed strategy m′

i in R′. So

pi(m
′
i, m

′′
−i) ≥ pi(s

′
i, m

′′
−i) for all m

′′
−i ∈ ×j 6=i∆Rj .

In particular
pi(m

′
i, m−i) ≥ pi(s

′
i, m−i)

and hence by the choice of s′i

pi(m
′
i, m−i) > pi(m).
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Since m′
i ∈ ∆R′

i this contradicts the assumption that m is a Nash equi-
librium of R′. ✷

Instead of the lengthy wording ‘the iterated elimination of strategies
strictly dominated by a mixed strategy’ we write IESDMS . We have then
the following counterpart of the IESDS Theorem 3, where we refer to Nash
equilibria in mixed strategies. Given a restriction G′ of G and a joint mixed
strategym of G, when we say thatm is a Nash equilibrium of G′ we implicitly
stipulate that all supports of all mis consist of strategies from G′.

We then have the following counterpart of the IESDS Theorem 3.

Theorem 50 (IESDMS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IESDMS from G, then m is a Nash equilibrium
of G iff it is a Nash equilibrium of G′.

(ii) If G is solved by IESDMS, then the resulting joint strategy is a unique
Nash equilibrium of G (also in mixed strategies).

Proof. By the Strict Mixed Elimination Lemma 49. ✷

To illustrate the use of this result let us return to the beauty contest
game discussed in Example 2 of Chapter 1 and Exercise 7 in Chapter 4. We
explained there that (1, . . . , 1) is a Nash equilibrium. Now we can draw a
stronger conclusion.

Example 22 One can show (see Exercise 28) that the beauty contest game
is solved by IESDMS in 99 rounds. In each round the highest strategy of
each player is removed and eventually each player is left with the strategy
1. On the account of the above theorem we now conclude that (1, . . . , 1) is
a unique Nash equilibrium. ✷

As in the case of strict dominance by a pure strategy we now address
the question whether the outcome of IESDMS is unique. The answer is
positive. To establish this result we proceed as before and establish the
following lemma first. Recall that the notion of hereditarity was defined in
the Appendix of Chapter 3.

Lemma 51 (Hereditarity III) The relation of being strictly dominated by
a mixed strategy is hereditary on the set of restrictions of a given finite game.
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Proof. This is an immediate consequence of the Persistence Lemma 48.
Indeed, consider a finite strategic game G and two restrictions R and R′

of G such that R→SMR′.
Suppose that a strategy si ∈ R′

i is strictly dominated in R by a mixed
strategy in R. By the Persistence Lemma 48 si is strictly dominated in R
by a mixed strategy in R′. So si is also strictly dominated in R′ by a mixed
strategy in R′. ✷

This brings us to the following conclusion.

Theorem 52 (Order independence III) All iterated eliminations of strate-
gies strictly dominated by a mixed strategy yield the same outcome.

Proof. By Theorem 5 and the Hereditarity III Lemma 51. ✷

12.2 Elimination of weakly dominated strate-

gies

Next, we consider iterated elimination of pure strategies that are weakly
dominated by a mixed strategy.

As already noticed in Chapter 4 an elimination by means of weakly dom-
inated strategies can result in a loss of Nash equilibria. Clearly, the same
observation applies here. On the other hand, as in the case of pure strate-
gies, we can establish a partial result, where we refer to the reduction relation
→WM with the expected meaning.

Lemma 53 (Mixed Weak Elimination) Given a finite strategic game G
consider two restrictions R and R′ of G such that R→WMR′.

If m is a Nash equilibrium of R′, then it is a Nash equilibrium of R.

Proof. It suffices to note that both the proofs of the Persistence Lemma
48 and of the (⇐ ) implication of the Strict Mixed Elimination Lemma 49
apply without any changes to weak dominance, as well. ✷

This brings us to the following counterpart of the IEWDS Theorem 10,
where we refer to Nash equilibria in mixed strategies. Instead of ‘the iterated
elimination of strategies weakly dominated by a mixed strategy’ we write
IEWDMS .
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Theorem 54 (IEWDMS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IEWDMS from G and m is a Nash equilibrium
of G′, then m is a Nash equilibrium of G.

(ii) If G is solved by IEWDMS, then the resulting joint strategy is a Nash
equilibrium of G.

Proof. By the Mixed Weak Elimination Lemma 53. ✷

Here is a simple application of this theorem.

Corollary 55 Every mixed extension of a finite strategic game has a Nash
equilibrium such that no strategy used in it is weakly dominated by a mixed
strategy.

Proof. It suffices to apply Nash Theorem 41 to an outcome of IEWDMS and
use item (i) of the above theorem. ✷

Finally, observe that the outcome of IEWMDS does not need to be unique.
In fact, Example 10 applies here, as well. It is instructive to note where the
proof of the Order independence III Theorem 52 breaks down. It happens
in the very last step of the proof of the Hereditarity III Lemma 51. Namely,
if R→WMR′ and a strategy si ∈ R′

i is weakly dominated in R by a mixed
strategy in R′, then we cannot conclude that si is weakly dominated in R′

by a mixed strategy in R′.

12.3 Rationalizability

Finally, we consider iterated elimination of strategies that are never best
responses to a joint mixed strategy of the opponents. Strategies that survive
such an elimination process are called rationalizable strategies.

Formally, we define rationalizable strategies as follows. Consider a re-
striction R of a finite strategic game G. Let

RAT (R) := (S ′
1, . . . , S

′
n),

where for all i ∈ {1, . . . , n}

S ′
i := {si ∈ Ri | ∃m−i ∈ ×j 6=i∆Rj si is a best response to m−i in G}.
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Note the use of G instead of R in the definition of S ′
i. We shall comment on

it in below.
Consider now the outcome GRAT of iterating RAT starting with G. We

call then the strategies present in the restriction GRAT rationalizable.
We have the following counterpart of the IESDMS Theorem 50.

Theorem 56 Assume a finite strategic game G.

(i) Then m is a Nash equilibrium of G iff it is a Nash equilibrium of GRAT .

(ii) If each player has in GRAT exactly one strategy, then the resulting joint
strategy is a unique Nash equilibrium of G.

In the context of rationalizability a joint mixed strategy of the opponents
is referred to as a belief . The definition of rationalizability is generic in the
class of beliefs w.r.t. which best responses are collected. For example, we
could use here joint pure strategies of the opponents, or probability distri-
butions over the Cartesian product of the opponents’ strategy sets, so the
elements of the set ∆S−i (extending in an expected way the payoff functions).
In the first case we talk about point beliefs and in the second case about
correlated beliefs .

In the case of point beliefs we can apply the elimination procedure entailed
by RAT to arbitrary games. To avoid discussion of the outcomes reached
in the case of infinite iterations we focus on a result for a limited case. We
refer here to Nash equilibria in pure strategies.

Theorem 57 Assume a strategic game G. Consider the definition of the
RAT operator for the case of point beliefs and suppose that the outcome
GRAT is reached in finitely many steps.

(i) Then s is a Nash equilibrium of G iff it is a Nash equilibrium of GRAT .

(ii) If each player is left in GRAT with exactly one strategy, then the result-
ing joint strategy is a unique Nash equilibrium of G.

A subtle point is that when G is infinite, the restriction GRAT may have
empty strategy sets (and hence no joint strategy).

Example 23 Bertrand competition is a game concerned with a simul-
taneous selection of prices for the same product by two firms. The product
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is then sold by the firm that chose a lower price. In the case of a tie the
product is sold by both firms and the profits are split.

Consider a version in which the range of possible prices is the left-open
real interval (0, 100] and the demand equals 100 − p, where p is the lower
price. So in this game G there are two players, each with the set (0, 100] of
strategies and the payoff functions are defined by:

p1(s1, s2) :=















s1(100− s1) if s1 < s2

s1(100− s1)

2
if s1 = s2

0 if s1 > s2

p2(s1, s2) :=















s2(100− s2) if s2 < s1

s2(100− s2)

2
if s1 = s2

0 if s2 > s1

Consider now each player’s best responses to the strategies of the op-
ponent. Since s1 = 50 maximizes the value of s1(100 − s1) in the interval
(0, 100], the strategy 50 is the unique best response of the first player to any
strategy s2 > 50 of the second player. Further, no strategy is a best response
to a strategy s2 ≤ 50. By symmetry the same holds for the strategies of the
second player.

So the elimination of never best responses leaves each player with a single
strategy, 50. In the second round we need to consider the best responses to
these two strategies in the original game G. In G the strategy s1 = 49
is a better response to s2 = 50 than s1 = 50 and symmetrically for the
second player. So in the second round of elimination both strategies 50 are
eliminated and we reach the restriction with the empty strategy sets. By
Theorem 57 we conclude that the original game G has no Nash equilibrium.

✷

Note that if we defined S ′
i in the definition of the operator RAT using

the restriction R instead of the original game G, the iteration would stop in
the above example after the first round. Such a modified definition of the
RAT operator is actually an instance of the IENBR (iterated elimination
of never best responses) in which at each stage all never best responses are
eliminated. So for the above game G we can then conclude by the IENBR
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Theorem 11(i) that it has at most one equilibrium, namely (50, 50), and then
check separately that in fact it is not a Nash equilibrium.

12.4 A comparison between the introduced

notions

We introduced so far the notions of strict dominance, weak dominance, and
a best response, and related them to the notion of a Nash equilibrium. To
conclude this section we clarify the connections between the notions of dom-
inance and of best response.

Clearly, if a strategy is strictly dominated, then it is a never best response.
However, the converse fails. Further, there is no relation between the notions
of weak dominance and never best response. Indeed, in the game considered
in Section 4.2 strategy C is a never best response, yet it is neither strictly
nor weakly dominated. Further, in the game given in Example 10 strategy
M is weakly dominated and is also a best response to B.

The situation changes in the case of mixed extensions of two-player finite
games. Below by a totally mixed strategy we mean a mixed strategy with
full support, i.e., one in which each strategy is used with a strictly positive
probability. We have the following results.

Theorem 58 Consider a finite two-player strategic game.

(i) A pure strategy is strictly dominated by a mixed strategy iff it is not a
best response to a mixed strategy.

(ii) A pure strategy is weakly dominated by a mixed strategy iff it is not a
best response to a totally mixed strategy.

We only prove here part (i).
We shall use the following result.

Theorem 59 (Separating Hyperplane) Let A and B be disjoint convex
subsets of Rk. Then there exists a nonzero c ∈ R

k and d ∈ R such that

c · x ≥ d for all x ∈ A,

c · y ≤ d for all y ∈ B.
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Proof of Theorem 58(i).
Clearly, if a pure strategy is strictly dominated by a mixed strategy, then

it is not a best response to a mixed strategy. To prove the converse fix a
two-player strategic game (S1, S2, p1, p2). Also fix i ∈ {1, 2}.

Suppose that a strategy si ∈ Si is not strictly dominated by a mixed
strategy. Let

A := {x ∈ R
|S−i| | ∀s−i ∈ S−i xs−i

> 0}

and
B := {(pi(mi, s−i)− pi(si, s−i))s−i∈S−i

| mi ∈ ∆Si}.

By the choice of si the sets A and B are disjoint. Moreover, both sets are
convex subsets of R|S−i|.

By the Separating Hyperplane Theorem 59 for some nonzero c ∈ R
|S−i|

and d ∈ R

c · x ≥ d for all x ∈ A, (12.2)

c · y ≤ d for all y ∈ B. (12.3)

But 0 ∈ B, so by (12.3) d ≥ 0. Hence by (12.2) and the definition of A
for all s−i ∈ S−i we have cs−i

≥ 0. Again by (12.2) and the definition of A
this excludes the contingency that d > 0, i.e., d = 0. Hence by (12.3)

∑

s−i∈S−i
cs−i

pi(mi, s−i) ≤
∑

s−i∈S−i
cs−i

pi(si, s−i) for all mi ∈ ∆Si. (12.4)

Let c̄ :=
∑

s−i∈S−i
cs−i

. By the assumption c̄ 6= 0. Take

m−i :=
∑

s−i∈S−i

cs−i

c̄
s−i.

Then (12.4) can be rewritten as

pi(mi, m−i) ≤ pi(si, m−i) for all mi ∈ ∆Si,

i.e., si is a best response to m−i. ✷

Exercise 28 Show that the beauty contest game is indeed solved by IES-
DMS in 99 rounds. ✷
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Chapter 13

Alternative Concepts

In the presentation until now we heavily relied on the definition of a strategic
game and focused several times on the crucial notion of a Nash equilibrium.
However, both the concept of an equilibrium and of a strategic game can be
defined in alternative ways. Here we discuss some alternative definitions and
explain their consequences.

13.1 Other equilibria notions

Nash equilibrium is a most popular and most widely used notion of an equi-
librium. However, there are many other natural alternatives. In this section
we briefly discuss three alternative equilibria notions. To define them fix a
strategic game (S1, . . . , Sn, p1, . . . , pn).

Strict Nash equilibrium We call a joint strategy s a strict Nash equi-
librium if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si \ {si} pi(si, s−i) > pi(s
′
i, s−i).

So a joint strategy is a strict Nash equilibrium if each player achieves a strictly
lower payoff by unilaterally switching to another strategy.

Obviously every strict Nash equilibrium is a Nash equilibrium and the
converse does not need to hold.

Consider now the Battle of the Sexes game. Its pure Nash equilibria that
we identified in Chapter 1 are clearly strict. However, its Nash equilibrium
in mixed strategy we identified in Example 21 of Section 11.1 is not strict.
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Indeed, the following simple observation holds.

Note 60 Consider a mixed extension of a finite strategic game. Every strict
Nash equilibrium is a Nash equilibrium in pure strategies.

Proof. It is a direct consequence of the Characterization Lemma 39. ✷

Consequently each finite game with no Nash equilibrium in pure strate-
gies, for instance the Matching Pennies game, has no strict Nash equilibrium
in mixed strategies. So the analogue of Nash theorem does not hold for strict
Nash equilibria, which makes this equilibrium notion less useful.

ǫ-Nash equilibrium The idea of an ǫ-Nash equilibrium formalizes the in-
tuition that a joint strategy can be also be satisfactory for the players when
each of them can gain only very little from deviating from his strategy.

Let ǫ > 0 be a small positive real. We call a joint strategy s an ǫ-Nash
equilibrium if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i)− ǫ.

So a joint strategy is an ǫ-Nash equilibrium if no player can gain more
than ǫ by unilaterally switching to another strategy. In this context ǫ can be
interpreted either as the amount of uncertainty about the payoffs or as the
gain from switching to another strategy.

Clearly, a joint strategy is a Nash equilibrium iff it is an ǫ-Nash equilib-
rium for every ǫ > 0. However, the payoffs in an ǫ-Nash equilibrium can be
substantially lower than in a Nash equilibrium. Consider for example the
following game:

L R
T 1, 1 0, 0
B 1 + ǫ, 1 100, 100

This game has a unique Nash equilibrium (B,R), which obviously is also
an ǫ-Nash equilibrium. However, (T, L) is also an ǫ-Nash equilibrium.
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Strong Nash equilibrium Another variation of the notion of a Nash
equilibrium focusses on the concept of a coalition, by which we mean a non-
empty subset of all players.

Given a subset K := {k1, . . . , km} of N := {1, . . . , n} we abbreviate the
sequence (sk1, . . . , skm) of strategies to sK and Sk1 × · · · × Skm to SK .

We call a joint strategy s a strong Nash equilibrium if for all coalitions
K there does not exist s′K ∈ SK such that

pi(s
′
K , sN\K) > pi(sK , sN\K) for all i ∈ K.

So a joint strategy is a strong Nash equilibrium if no coalition can profit
from deviating from it, where by “profit from” we mean that each member of
the coalition gets a strictly higher payoff. The notion of a strong Nash equi-
librium generalizes the notion of a Nash equilibrium by considering possible
deviations of coalitions instead of individual players.

Note that the unique Nash equilibrium of the Prisoner’s Dilemma game
is strict but not strong. For example, if both players deviate from D to C,
then each of them gets a strictly higher payoff.

Correlated equilibrium The final concept of an equilibrium that we in-
troduce is a generalization of Nash equilibrium in mixed strategies. Recall
from Chapter 11 that given a finite strategic gameG := (S1, . . . , Sn, p1, . . . , pn)
each joint mixed strategy m = (m1, . . . , mn) induces a probability distribu-
tion over S, defined by

m(s) := m1(s1) · . . . ·mn(sn),

where s ∈ S.
We have then the following observation.

Note 61 (Nash Equilibrium in Mixed Strategies) Consider a finite strate-
gic game (S1, . . . , Sn, p1, . . . , pn).

Then m is a Nash equilibrium in mixed strategies iff for all i ∈ {1, . . . , n}
and all s′i ∈ Si

∑

s∈S

m(s) · pi(si, s−i) ≥
∑

s∈S

m(s) · pi(s
′
i, s−i).
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Proof. Fix i ∈ {1, . . . , n} and choose some s′i ∈ Si. Let

m′
i(si) :=







1 if si = s′i

0 otherwise

So m′
i is the mixed strategy that represents the pure strategy s′i.

Let now m′ := (m1, . . ., mi−1, m
′
i, mi+1, . . ., mn). We have

pi(m) =
∑

s∈S

m(s) · pi(si, s−i)

and
pi(s

′
i, m−i) =

∑

s∈S

m′(s) · pi(si, s−i).

Further, one can check that

∑

s∈S

m′(s) · pi(si, s−i) =
∑

s∈S

m(s) · pi(s
′
i, s−i).

So the claim is a direct consequence of the equivalence between items (i)
and (ii) of the Characterization Lemma 39. ✷

We now generalize the above inequality to an arbitrary probability distri-
bution over S. This yields the following equilibrium notion. We call a proba-
bility distribution π over S a correlated equilibrium if for all i ∈ {1, . . . , n}
and all s′i ∈ Si

∑

s∈S

π(s) · pi(si, s−i) ≥
∑

s∈S

π(s) · pi(s
′
i, s−i).

By the above Note every Nash equilibrium in mixed strategies is a corre-
lated equilibrium. To see that the converse is not true consider the Battle of
the Sexes game:

F B
F 2, 1 0, 0
B 0, 0 1, 2

It is easy to check that the following probability distribution forms a
correlated equilibrium in this game:
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F B
F 1

2
0

B 0 1
2

Intuitively, this equilibrium corresponds to a situation when an external ob-
serves flips a fair coin and gives each player a recommendation which strategy
to choose.

Exercise 29 Check the above claim. ✷

13.2 Variations on the definition of strategic

games

The notion of a strategic game is quantitative in the sense that it refers
through payoffs to real numbers. A natural question to ask is: do the payoff
values matter? The answer depends on which concepts we want to study. We
mention here three qualitative variants of the definition of a strategic game
in which the payoffs are replaced by preferences. By a preference relation
on a set A we mean here a linear ordering on A.

In [15] a strategic game is defined as a sequence

(S1, . . . , Sn,�1, . . . ,�n),

where each �i is player’s i preference relation defined on the set S1×· · ·×Sn

of joint strategies.
In [1] another modification of strategic games is considered, called a

strategic game with parametrized preferences . In this approach each
player i has a non-empty set of strategies Si and a preference relation �s−i

on Si parametrized by a joint strategy s−i of his opponents. In [1] only strict
preferences were considered and so defined finite games with parametrized
preferences were compared with the concept of CP-nets (Conditional Pref-
erence nets), a formalism used for representing conditional and qualitative
preferences, see, e.g., [4].

Next, in [18] conversion/preference games are introduced. Such a
game for n players consists of a set S of situations and for each player i
a preference relation �i on S and a conversion relation → i on S. The
definition is very general and no conditions are placed on the preference
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and conversion relations. These games are used to formalize gene regulation
networks and some aspects of security.

Another generalization of strategic games, called graphical games , in-
troduced in [7]. These games stress the locality in taking decision. In a
graphical game the payoff of each player depends only on the strategies of
its neighbours in a given in advance graph structure over the set of players.
Formally, such a game for n players with the corresponding strategy sets
S1, . . . , Sn is defined by assuming a neighbour function N that given a player
i yields its set of neighbours N(i). The payoff for player i is then a function
pi from ×j∈N(i)∪{i}Sj to R.

In all mentioned variants it is straightforward to define the notion of a
Nash equilibrium. For example, in the conversion/preferences games it is
defined as a situation s such that for all players i, if s→ is

′, then s′ 6≻i s.
However, other introduced notions can be defined only for some variants.
In particular, Pareto efficiency cannot be defined for strategic games with
parametrized preferences since it requires a comparison of two arbitrary joint
strategies. In turn, the notions of dominance cannot be defined for the con-
version/preferences games, since they require the concept of a strategy for a
player.

Various results concerning finite strategic games, for instance the IESDS
Theorem 3, carry over directly to the the strategic games as defined in [15]
or in [1]. On the other hand, in the variants of strategic games that rely
on the notion of a preference we cannot consider mixed strategies, since the
outcomes of playing different strategies by a player cannot be aggregated.

119



Chapter 14

Mechanism Design

Mechanism design is one of the important areas of economics. The 2007
Nobel prize in Economics went to three economists who laid its foundations.
To quote from the article Intelligent design, published in The Economist,
October 18th, 2007, mechanism design deals with the problem of ‘how to
arrange our economic interactions so that, when everyone behaves in a self-
interested manner, the result is something we all like.’ So these interactions
are supposed to yield desired social decisions when each agent is interested
in maximizing only his own utility.

In mechanism design one is interested in the ways of inducing the players
to submit true information. To discuss it in more detail we need to introduce
some basic concepts.

14.1 Decision problems

Assume a set of decisions D, a set {1, . . . , n} of players, and for each player

• a set of types Θi, and

• an initial utility function vi : D ×Θi → R.

In this context a type is some private information known only to the player,
for example, in the case of an auction, player’s valuation of the items for sale.

As in the case of strategy sets we use the following abbreviations:

• Θ := Θ1 × · · · ×Θn,
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• Θ−i := Θ1×· · ·×Θi−1×Θi+1 ×· · ·×Θn, and similarly with θ−i where
θ ∈ Θ,

• (θ′i, θ−i) := θ1 × · · · × θi−1 × θ′i × θi+1 × · · · × θn.

In particular (θi, θ−i) = θ.
A decision rule is a function f : Θ → D. We call the tuple

(D,Θ1, . . . ,Θn, v1, . . . , vn, f)

a decision problem .
Decision problems are considered in the presence of a central authority

who takes decisions on the basis of the information provided by the play-
ers. Given a decision problem the desired decision is obtained through the
following sequence of events, where f is a given, publicly known, decision
rule:

• each player i receives (becomes aware of) his type θi ∈ Θi,

• each player i announces to the central authority a type θ′i ∈ Θi; this
yields a type vector θ′ := (θ′1, . . ., θ

′
n),

• the central authority then takes the decision d := f(θ′) and communi-
cates it to each player,

• the resulting initial utility for player i is then vi(d, θi).

The difficulty in taking decisions through the above described sequence
of events is that players are assumed to be rational , that is they want to
maximize their utility. As a result they may submit false information to
manipulate the outcome (decision). We shall return to this problem in the
next section. But first, to better understand the above notion let us consider
some natural examples.

Given a sequence a := (a1, . . . , aj) of reals denote the least l such that
al = maxk∈{1,...,j} ak by argsmax a.

Additionally, for a function g : A→ R we define

argmaxx∈Ag(x) := {y ∈ A | g(y) = max
x∈A

g(x)}.

So a ∈ argmaxx∈Ag(x) means that a is a maximum of the function g on the
set A.
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Example 24 [Sealed-bid auction]
We consider a sealed-bid auction in which there is a single object for

sale. Each player (bidder) simultaneously submits to the central authority
his type (bid) in a sealed envelope and the object is allocated to the highest
bidder.

We view each player’s valutation as his type. More precisely, we model
this type of auction as the following decision problem (D,Θ1, . . . ,Θn, v1, . . . , vn, f):

• D = {1, . . . , n},

• for all i ∈ {1, . . ., n}, Θi = R+;

θi ∈ Θi is player’s i valuation of the object,

• vi(d, θi) :=

{

θi if d = i
0 otherwise

• f(θ) := argsmax θ.

Here decision d ∈ D indicates to which player the object is sold. Note
that at this stage we only modeled the fact that the object is sold to
the highest bidder (with the ties resolved in the favour of a bidder with
the lowest index). We shall return to the problem of payments in the
next section. ✷

Example 25 [Public project problem]
This problem deals with the task of taking a joint decision concerning

construction of a public good 1, for example a bridge.
It is explained as follows in the Scientific Background of the Royal Swedish

Academy of Sciences Press Release that accompanied the Nobel prize in
Economics in 2007:

Each person is asked to report his or her willingness to pay for the
project, and the project is undertaken if and only if the aggregate
reported willingness to pay exceeds the cost of the project.

1In Economics public goods are so-called not excludable and nonrival goods. To quote
from the book N.G. Mankiw, Principles of Economics, 2nd Editiona, Harcourt, 2001:
“People cannot be prevented from using a public good, and one person’s enjoyment of a
public good does not reduce another person’s enjoyment of it.”
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So there are two decisions: to carry out the project or not. In the termi-
nology of the decision problems each player reports to the central authority
his appreciation of the gain from the project when it takes place. If the sum
of the appreciations exceeds the cost of the project, the project takes place.
We assume that each player has to pay then the same fraction of the cost.
Otherwise the project is cancelled.

This leads to the following decision problem:

• D = {0, 1},

• each Θi is R+,

• vi(d, θi) := d(θi −
c
n
),

• f(θ) :=

{

1 if
∑n

i=1 θi ≥ c
0 otherwise

Here c is the cost of the project. If the project takes place (d = 1), c
n
is

the cost share of the project for each player. ✷

Example 26 [Taking an efficient decision] We assume a finite set of de-
cisions. Each player submits to the central authority a function that describes
his satisfaction level from each decision if it is taken. The central authority
then chooses a decision that yields the maximal overall satisfaction.

This problem corresponds to the following decision problem:

• D is the given finite set of decisions,

• each Θi is {f | f : D→ R},

• vi(d, θi) := θi(d),

• the decision rule f is a function such that for all θ, f(θ) ∈ argmaxd∈D
∑n

i=1 θi(d).

✷

Example 27 [Reversed sealed-bid auction]
In the reversed sealed-bid auction each player offers the same service,

for example to construct a bridge. The decision is taken by means of a sealed-
bid auction. Each player simultaneously submits to the central authority his
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type (bid) in a sealed envelope and the service is purchased from the lowest
bidder.

We model it in exactly the same way as the sealed-bid auction, with the
only exception that for each player the types are now non-positive reals. So
we consider the following decision problem:

• D = {1, . . . , n},

• for all i ∈ {1, . . ., n}, Θi = R− (the set of non-positive reals);

−θi, where θi ∈ Θi, is player’s i offer for the service,

• vi(d, θi) :=

{

θi if d = i
0 otherwise

• f(θ) := argsmax θ.

Here decision d ∈ D indicates from which player the service is bought. So
for example f(−8,−5,−4,−6) = 3, that is, given the offers 8, 5, 4, 6 (in that
order), the service is bought from player 3, since he submitted the lowest
bid, namely 4. As in the case of the sealed-bid auction, we shall return to
the problem of payments in the next section. ✷

Example 28 [Buying a path in a network]
We consider a communication network, modelled as a directed graph

G := (V,E) (with no self-cycles or parallel edges). We assume that each
edge e ∈ E is owned by a player, also denoted by e. So different edges are
owned by different players. We fix two distinguished vertices s, t ∈ V . Each
player e submits the cost θe of using the edge e. The central authority selects
on the basis of players’ submissions the shortest s− t path in G.

Below we denote by G(θ) the graph G augmented with the costs of edges
as specified by θ. That is, the cost of each edge i in G(θ) is θi.

This problem can be modelled as the following decision problem:

• D = {p | p is a s− t path in G},

• each Θi is R+;

θi is the cost incurred by player i if the edge i is used in the selected
path,
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• vi(p, θi) :=

{

−θi if i ∈ p
0 otherwise

• f(θ) := p, where p is the shortest s− t path in G(θ).

In the case of multiple shortest paths we select, say, the one that is
alphabetically first.

Note that in the case an edge is selected, the utility of its owner be-
comes negative. This reflects the fact we focus on incurring costs and not on
benefits. In the next section we shall introduce taxes and discuss a scheme
according to which each owner of a selected path is paid by the central au-
thority an amount exceeding the incurred costs. ✷

Let us return now to the decision rules. We call a decision rule f efficient
if for all θ ∈ Θ and d′ ∈ D

n
∑

i=1

vi(f(θ), θi) ≥
n

∑

i=1

vi(d
′, θi),

or alternatively

f(θ) ∈ argmaxd∈D

n
∑

i=1

vi(d, θi).

This means that for all θ ∈ Θ, f(θ) is a decision that maximizes the
initial social welfare, defined by

∑n
i=1 vi(d, θi).

It is easy to check that the decision rules used in Examples 24–28 are
efficient. Take for instance Example 28. For each s − t path p we have
∑n

i=1 vi(p, θi) = −
∑

j∈p θj , so
∑n

i=1 vi(p, θi) reaches maximum when p is a
shortest s− t path in G(θ), which is the choice made by the decision rule f
used there.

14.2 Direct mechanisms

Let us return now to the subject of manipulations. A problem with our
description of the sealed-bid auction is that we intentionally neglected the
fact that the winner should pay for the object for sale. Still, we can imagine
in this limited setting that player i with a strictly positive valuation of the
object somehow became aware of the types (that is, bids) of the other players.
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Then he should just submit a type strictly larger than the other types. This
way the object will be allocated to him and his utility will increase from 0
to θi.

The manipulations are more natural to envisage in the case of the public
project problem. A player whose type (that is, appreciation of the gain
from the project) exceeds c

n
, the cost share he is to pay, should manipulate

the outcome and announce the type c. This will guarantee that the project
will take place, irrespectively of the types announced by the other players.
Analogously, player whose type is lower than c

n
should submit the type 0 to

minimize the chance that the project will take place.
To prevent such manipulations we use taxes. This leads to mechanisms

that are constructed by combining decision rules with taxes (transfer pay-
ments). Each such mechanism is obtained by modifying the initial decision
problem (D,Θ1, . . .,Θn, v1, . . ., vn, f) to the following one:

• the set of decisions is D × R
n,

• the decision rule is a function (f, t) : Θ→D × R
n, where t : Θ→ R

n

and (f, t)(θ) := (f(θ), t(θ)). Below we write t as (t1, . . ., tn) and t(θ) as
t1(θ), . . ., tn(θ)),

• the final utility function for player i is a function ui : D × R
n ×

Θi → R defined by

ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti.

(So defined utilities are called quasilinear .)

We call (D×R
n,Θ1, . . .,Θn, u1, . . ., un, (f, t)) a direct mechanism and refer

to t as the tax function .
So when the received (true) type of player i is θi and his announced type

is θ′i, his final utility is

ui((f, t)(θ
′
i, θ−i), θi) = vi(f(θ

′
i, θ−i), θi) + ti(θ

′
i, θ−i),

where θ−i are the types announced by the other players.
In each direct mechanism, given the vector θ of announced types, t(θ),

i.e., (t1(θ), . . ., tn(θ)) is the vector of the resulting payments that the players
have to make. If ti(θ) ≥ 0, player i receives from the central authority ti(θ),
and if ti(θ) < 0, he pays to the central authority |ti(θ)|.
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The following definition then captures the idea that taxes prevent manip-
ulations. We say that a direct mechanism with tax function t is incentive
compatible if for all θ ∈ Θ, i ∈ {1, . . ., n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ
′
i, θ−i), θi).

Intuitively, this means that announcing one’s true type (θi) is better than an-
nouncing another type (θ′i). That is, false announcements, i.e., manipulations
do not pay off.

From now on we focus on specific incentive compatible direct mechanisms.
Each Groves mechanism is a direct mechanism obtained by using a tax
function t := (t1, . . ., tn), where for all i ∈ {1, . . ., n}

• ti : Θ→R is defined by ti(θ) := gi(θ) + hi(θ−i), where

• gi(θ) :=
∑

j 6=i vj(f(θ), θj),

• hi : Θ−i →R is an arbitrary function.

Note that vi(f(θ), θi)+gi(θ) =
∑n

j=1 vj(f(θ), θj) is simply the initial social
welfare from the decision f(θ). In this context the final social welfare
is defined as

∑n
i=1 ui((f, t)(θ), θi), so it equals the sum of the initial social

welfare and all the taxes.
The importance of Groves mechanisms is then revealed by the following

crucial result due to T. Groves.

Theorem 62 Consider a decision problem (D,Θ1, . . .,Θn, v1, . . ., vn, f) with
an efficient decision rule f . Then each Groves mechanism is incentive com-
patible.

Proof. The proof is remarkably straightforward. Since f is efficient, for all
θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi we have

ui((f, t)(θi, θ−i), θi) =

n
∑

j=1

vj(f(θi, θ−i), θj) + hi(θ−i)

≥
n

∑

j=1

vj(f(θ
′
i, θ−i), θj) + hi(θ−i)

= ui((f, t)(θ
′
i, θ−i), θi).
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✷

When for a given direct mechanism for all θ′ we have
∑n

i=1 ti(θ
′) ≤ 0, the

mechanism is called feasible (which means that it can be realized without
external financing) and when for all θ′ we have

∑n
i=1 ti(θ

′) = 0, the mecha-
nism is called budget balanced (which means that it can be realized without
a deficit).

Each Groves mechanism is uniquely determined by the functions h1, . . .,
hn. A special case, called pivotal mechanism is obtained by using

hi(θ−i) := −max
d∈D

∑

j 6=i

vj(d, θj).

So then

ti(θ) :=
∑

j 6=i

vj(f(θ), θj)−max
d∈D

∑

j 6=i

vj(d, θj).

Hence for all θ and i ∈ {1, . . . , n} we have ti(θ) ≤ 0, which means that
each player needs to make the payment |ti(θ)| to the central authority. In
particular, the pivotal mechanism is feasible.

14.3 Back to our examples

When applying Theorem 62 to a specific decision problem we need first to
check that the used decision rule is efficient. We noted already that this is
the case in Examples 24–28. So in each example Theorem 62 applies and in
particular the pivotal mechanism can be used. Let us see now the details of
this and other Groves mechanisms for these examples.

Sealed-bid auction

To compute the taxes we use the following observation.

Note 63 In the sealed-bid auction we have for the pivotal mechanism

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.
0 otherwise

✷
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So the highest bidder wins the object and pays for it the amount maxj 6=i θj ,
i.e., the second highest bid. This shows that the pivotal mechanism for the
sealed-bid auction is simply the second-price auction proposed byW. Vickrey.
By the above considerations this auction is incentive compatible.

In contrast, the first-price sealed-bid auction, in which the winner pays
the price he offered, is not incentive compatible. Indeed, suppose that the
true types are (4,5,7) and that players 1 and 2 bid truthfully. If player 3
bids truthfully, he wins the object and his payoff is 0. But if he bids 6, he
increases his payoff to 1.

Bailey-Cavallo mechanism

Second-price auction is a natural approach in the set up when the central
authority is a seller, as the tax corresponds then to payment for the object for
sale. But we can also use the initial decision problem simply to determine
which of the player values the object most. In such a set up the central
authority is merely an arbiter and it is meaningful then to reach the decision
with limited taxes.

Below, given a sequence θ ∈ R
n of reals we denote by θ∗ its reordering

from the largest to the smallest element. So for example, for θ = (1, 4, 2, 3, 0)
we have (θ−2)

∗
2 = 2 since θ−2 = (1, 2, 3, 0) and (θ−2)

∗ = (3, 2, 1, 0).
In the case of the second-price auction the final social welfare, i.e.,

∑n
j=1 uj((f, t)(θ), θj),

equals θi−maxj 6=i θj , where i = argsmaxθ, so it equals the difference between
the highest bid and the second highest bid.

We now discuss a modification of the second-price auction which yields a
larger final social welfare. To ensure that it is well-defined we need to assume
that n ≥ 3. This modification, called Bailey-Cavallo mechanism , is
achieved by combining each tax t′i(θ) to be paid in the second-price auction
with

h′
i(θ−i) :=

(θ−i)
∗
2

n
,

that is, by using
ti(θ) := t′i(θ) + h′

i(θ−i).

Note that this yields a Groves mechanism since by the definition of the
pivotal mechanism for specific functions h1, . . . , hn

t′i(θ) =
∑

j 6=i

vj(f(θ), θj) + hi(θ−i),
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and consequently

ti(θ) =
∑

j 6=i

vj(f(θ), θj) + (hi + h′
i)(θ−i).

In fact, this modification is a Groves mechanism if we start with an arbi-
trary Groves mechanism. In the case of the second-price auction the resulting
mechanism is feasible since for all i ∈ {1, . . ., n} and θ we have (θ−i)

∗
2 ≤ θ∗2

and as a result, since maxj 6=i θj = θ∗2,
n

∑

i=1

ti(θ) =

n
∑

i=1

t′i(θ) +

n
∑

i=1

h′
i(θ−i) =

n
∑

i=1

−θ∗2 + (θ−i)
∗
2

n
≤ 0.

Let, given the sequence θ of submitted bids (types), π be the permutation
of 1, . . . , n such that θπ(i) = θ∗i for i ∈ {1, . . ., n} (where we break the ties
by selecting players with the lower index first). So the ith highest bid is by
player π(i) and the object is sold to player π(1). Note that then

• (θ−i)
∗
2 = θ∗3 for i ∈ {π(1), π(2)},

• (θ−i)
∗
2 = θ∗2 for i ∈ {π(3), . . . , π(n)},

so the above mechanism boils down to the following payments by player π(1):

•
θ∗
3

n
to player π(2),

•
θ∗
2

n
to players π(3), . . . , π(n),

• θ∗2 −
2
n
θ∗3 −

n−2
n
θ∗2 =

2
n
(θ∗2 − θ∗3) to the central authority.

To illustrate these payments assume that there are three players, A, B,
and C whose true types (valuations) are 18, 21, and 24, respectively. When
they bid truthfully the object is allocated to player C. In the second-price
auction player’s C tax is 21 and the final social welfare is 24− 21 = 3.

In constrast, in the case of the Bailey-Cavallo mechanism we have for the
vector θ = (18, 21, 24) of submitted types θ∗2 = 21 and θ∗3 = 18, so player C
pays

• 6 to player B,

• 7 to player A,

• 2 to the tax authority.

So the final social welfare is now 24 − 2 = 22. Table 14.1 summarizes the
situation.

130



player type tax ui

A 18 7 7
B 21 6 6
C 24 −15 9

Table 14.1: The Bailey-Cavallo mechanism

Public project problem

Let us return now to Example 25. To compute the taxes in the case of the
pivotal mechanism we use the following observation.

Note 64 In the public project problem we have for the pivotal mechanism

ti(θ) =















0 if
∑

j 6=i θj ≥
n−1
n
c and

∑n
j=1 θj ≥ c

∑

j 6=i θj −
n−1
n
c if

∑

j 6=i θj <
n−1
n
c and

∑n
j=1 θj ≥ c

0 if
∑

j 6=i θj ≤
n−1
n
c and

∑n
j=1 θj < c

n−1
n
c−

∑

j 6=i θj if
∑

j 6=i θj >
n−1
n
c and

∑n
j=1 θj < c

✷

To illustrate the pivotal mechanism suppose that there are three players,
A, B, and C whose true types are 6, 7, and 25, and c = 30, respectively. When
these types are announced the project takes place and Table 14.2 summarizes
the taxes that players need to pay and their final utilities. The taxes were
computed using Note 64.

player type tax ui

A 6 0 −4
B 7 0 −3
C 25 −7 8

Table 14.2: The pivotal mechanism for the public project problem

Suppose now that the true types of players are 4, 3 and 22, respectively
and, as before, c = 30. When these types are also the announced types, the
project does not take place. Still, some players need to pay a tax, as Table
14.3 illustrates.
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player type tax ui

A 4 −5 −5
B 3 −6 −6
C 22 0 0

Table 14.3: The pivotal mechanism for the public project problem

Reversed sealed-bid auction

Note that the pivotal mechanism is not appropriate here. Indeed, we noted
already that in the pivotal mechanism all players need to make a payment
to the central authority, while in the context of the reversed sealed-bid auc-
tion we want to ensure that the lowest bidder receives a payment from the
authority and other bidders neither pay nor receive any payment.

This can be realized by using the Groves mechanism with the following
tax definition:

ti(θ) :=
∑

j 6=i

vj(f(θ), θj)− max
d∈D\{i}

∑

j 6=i

vj(d, θj).

The crucial difference between this mechanism and the pivotal mechanism
is that in the second expression we take a maximum over all decisions in the
set D \ {i} and not D.

To compute the taxes in the reversed sealed-bid auction with the above
mechanism we use the following observation.

Note 65

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.
0 otherwise

✷

This is identical to Note 63 in which the taxes for the pivotal mechanism
for the sealed bid auction were computed. However, because we use here
negative reals as bids the interpretation is different. Namely, the taxes are
now positive, i.e., the players now receive the payments. More precisely, the
winner, i.e., player i such that i = argsmax θ, receives the payment equal to
the second lowest offer, while the other players pay no taxes.

For example, when θ = (−8,−5,−4,−6), the service is bought from
player 3 who submitted the lowest bid, namely 4. He receives for it the
amount 5. Indeed, 3 = argsmax θ and −maxj 6=3 θj = −(−5) = 5.
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Buying a path in a network

As in the case of the reversed sealed-bid auction the pivotal mechanism is
not appropriate here since we want to ensure that the players whose edge was
selected receive a payment. Again, we achieve this by a simple modification
of the pivotal mechanism. We modify it to a Groves mechanism in which

• the central authority is viewed as an agent who procures an s− t path
and pays the players whose edges are used,

• the players have an incentive to participate: if an edge is used, then
the final utility of its owner is ≥ 0.

Recall that in the case of the pivotal mechanism we have

t′i(θ) =
∑

j 6=i

vj(f(θ), θj)− max
p∈D(G)

∑

j 6=i

vj(p, θj),

where we now explicitly indicate the dependence of the decision set on the
underlying graph, i.e., D(G) := {p | p is a s− t path in G}.

We now put instead

ti(θ) :=
∑

j 6=i

vj(f(θ), θj)− max
p∈D(G\{i})

∑

j 6=i

vj(p, θj).

The following note provides the intuition for the above tax. We abbreviate
here

∑

j∈p θj to cost(p).

Note 66

ti(θ) =

{

cost(p2)− cost(p1 − {i}) if i ∈ p1
0 otherwise

where p1 is the shortest s − t path in G(θ) and p2 is the shortest s − t path
in (G \ {i})(θ−i).

Proof. Note that for each s− t path p we have

−
∑

j 6=i

vj(p, θj) =
∑

j∈p−{i}

θj .
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Recall now that f(θ) is the shortest s − t path in G(θ), i.e., f(θ) = p1. So
∑

j 6=i vj(f(θ), θj) = −cost(p1 − {i}).
To understand the second expression in the definition of ti(θ) note that

for each p ∈ D(G \ {i}), so for each s− t path p in G \ {i}, we have

−
∑

j 6=i

vj(p, θj) =
∑

j∈p−{i}

θj =
∑

j∈p

θj ,

since the edge i does not belong to the path p. So−maxp∈D(G\{i})

∑

j 6=i vj(p, θj)
equals the length of the shortest s − t path in (G \ {i})(θ−i), i.e., it equals
cost(p2). ✷

So given θ and the above definitions of the paths p1 and p2 the central
authority pays to each player i whose edge is used the amount cost(p2) −
cost(p1 − {i}). The final utility of such a player is then −θi + cost(p2) −
cost(p1 − {i}), i.e., cost(p2) − cost(p1). So by the choice of p1 and p2 it is
positive. No payments are made to the other players and their final utilities
are 0.

Consider an example. Take the communication network depicted in Fig-
ure 14.1.

Figure 14.1: A communication network

This network has nine edges, so it corresponds to a decision problem with
nine players. We assume that each player submitted the depicted length of
the edge. Consider the player who owns the edge e, of length 4. To compute
the payment he receives we need to determine the shortest s − t path and
the shortest s − t path that does not include the edge e. The first path is
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the upper path, depicted in Figure 14.1 in bold. It contains the edge e and
has the length 7. The second path is simply the edge connecting s and t and
its length is 12. So, assuming that the players submit the costs truthfully,
according to Note 66 player e receives the payment 12− (7− 4) = 9 and his
final utility is 9− 4 = 5.

14.4 Green and Laffont result

Until now we studied only one class of incentive compatible direct mecha-
nisms, namely Groves mechanisms. Are there any other ones? J. Green and
J.-J. Laffont showed that when the decision rule is efficient, under a natu-
ral assumption no other incentive compatible direct mechanisms exist. To
formulate the relevant result we introduce the following notion.

Given a decision problem (D,Θ1, . . .,Θn, v1, . . ., vn, f), we call the utility
function vi complete if

{v | v : D → R} = {vi(·, θi) | θi ∈ Θi},

that is, if each function v : D → R is of the form vi(·, θi) for some θi ∈ Θi.

Theorem 67 Consider a decision problem (D,Θ1, . . .,Θn, v1, . . ., vn, f) with
an efficient decision rule f . Suppose that each utility function vi is complete.
Then each incentive compatible direct mechanism is a Groves mechanism.

To prove it first observe that each direct mechanism originating from a
decision problem (D,Θ1, . . .,Θn, v1, . . ., vn, f) can be written in a ’Groves-
like’ way, by putting

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) + hi(θ),

where each function hi is defined on Θ and not on Θ−i, as in the Groves
mechanisms.

Lemma 68 For each incentive compatible direct mechanism

(D × R
n,Θ1, . . .,Θn, u1, . . ., un, (f, t)),

given the above representation, for all i ∈ {1, . . ., n}

f(θi, θ−i) = f(θ′i, θ−i) implies hi(θi, θ−i) = hi(θ
′
i, θ−i).
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Proof. Fix i ∈ {1, . . ., n}. We have

ui((f, t)(θi, θ−i), θi) =

n
∑

j=1

vj(f(θi, θ−i)), θj) + hi(θi, θ−i)

and

ui((f, t)(θ
′
i, θ−i), θi) =

n
∑

j=1

vj(f(θ
′
i, θ−i)), θj) + hi(θ

′
i, θ−i),

so, on the account of the incentive compatibility, f(θi, θ−i) = f(θ′i, θ−i) im-
plies hi(θi, θ−i) ≥ hi(θ

′
i, θ−i). By symmetry hi(θ

′
i, θ−i) ≥ hi(θi, θ−i), as well.

✷

Proof of Theorem 67.
Consider an incentive compatible direct mechanism

(D × R
n,Θ1, . . .,Θn, u1, . . ., un, (f, t))

and its ’Groves-like’ representation with the functions h1, . . ., hn. We need to
show that no function hi depends on its ith argument. Suppose otherwise.
Then for some i, θ and θ′i

hi(θi, θ−i) > hi(θ
′
i, θ−i).

Choose an arbitrary ǫ from the open interval (0, hi(θi, θ−i)− hi(θ
′
i, θ−i)) and

consider the following function v : D →R:

v(d) :=

{

ǫ−
∑

j 6=i vj(d, θj) if d = f(θ′i, θ−i)

−
∑

j 6=i vj(d, θj) otherwise

By the completeness of vi for some θ′′i ∈ Θi

v(d) = vi(d, θ
′′
i )

for all d ∈ D.
Since hi(θi, θ−i) > hi(θ

′
i, θ−i), by Lemma 68 f(θi, θ−i) 6= f(θ′i, θ−i), so by

the definition of v

vi(f(θi, θ−i), θ
′′
i ) +

∑

j 6=i

vj(f(θi, θ−i), θj) = 0. (14.1)
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Further, for each d ∈ D the sum vi(d, θ
′′
i ) +

∑

j 6=i vj(d, θj) equals either 0
or ǫ. This means that by the efficiency of f

vi(f(θ
′′
i , θ−i), θ

′′
i ) +

∑

j 6=i

vj(f(θ
′′
i , θ−i), θj) = ǫ. (14.2)

Hence, by the definition of v we have f(θ′′i , θ−i) = f(θ′i, θ−i), and consequently
by Lemma 68

hi(θ
′′
i , θ−i) = hi(θ

′
i, θ−i). (14.3)

We have now by (14.1)

ui((f, t)(θi, θ−i), θ
′′
i )

= vi(f(θi, θ−i), θ
′′
i ) +

∑

j 6=i

vj(f(θi, θ−i), θj) + hi(θi, θ−i)

= hi(θi, θ−i).

In turn, by (14.2) and (14.3),

ui((f, t)(θ
′′
i , θ−i), θ

′′
i )

= vi(f(θ
′′
i , θ−i), θ

′′
i ) +

∑

j 6=i

vj(f(θ
′′
i , θ−i), θj) + hi(θ

′′
i , θ−i)

= ǫ+ hi(θ
′
i, θ−i).

But by the choice of ǫ we have hi(θi, θ−i) > ǫ+ hi(θ
′
i, θ−i), so

ui((f, t)(θi, θ−i), θ
′′
i ) > ui((f, t)(θ

′′
i , θ−i), θ

′′
i ),

which contradicts the incentive compatibility for the joint type (θ′′i , θ−i). ✷
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Chapter 15

Pre-Bayesian Games

Mechanism design, as introduced in the previous chapter, can be explained
in game-theoretic terms using pre-Bayesian games In strategic games, after
each player selected his strategy, each player knows the payoff of every other
player. This is not the case in pre-Bayesian games in which each player has
a private type on which he can condition his strategy. This distinguishing
feature of pre-Bayesian games explains why they form a class of games with
incomplete information . Formally, they are defined as follows.

Assume a set {1, . . . , n} of players, where n > 1. A pre-Bayesian game
for n players consists of

• a non-empty set Ai of actions ,

• a non-empty set Θi of types ,

• a payoff function pi : A1 × · · · × An ×Θi → R,

for each player i.
Let A := A1 × · · · × An. In a pre-Bayesian game Nature (an external

agent) moves first and provides each player i with a type θi ∈ Θi. Each
player knows only his type. Subsequently the players simultaneously select
their actions. The payoff function of each player now depends on his type, so
after all players selected their actions, each player knows his payoff but does
not know the payoffs of the other players. Note that given a pre-Bayesian
game, every joint type θ ∈ Θ uniquely determines a strategic game, to which
we refer below as a θ-game.

A strategy for player i in a pre-Bayesian game is a function si : Θi → Ai.
A strategy si(·) for player i is called
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• best response to the joint strategy s−i(·) of the opponents of i if for
all ai ∈ Ai and θ ∈ Θ

pi(si(θi), s−i(θ−i), θi) ≥ pi(ai, s−i(θ−i), θi),

• dominant if for all a ∈ A and θi ∈ Θi

pi(si(θi), a−i, θi) ≥ pi(ai, a−i, θi),

Then a joint strategy s(·) is called an ex-post equilibrium if each si(·) is a
best response to s−i(·). Alternatively, s(·) := (s1(·), . . . , sn(·)) is an ex-post
equilibrium if

∀θ ∈ Θ ∀i ∈ {1, . . . , n} ∀ai ∈ Ai pi(si(θi), s−i(θ−i), θi) ≥ pi(ai, s−i(θ−i), θi),

where s−i(θ−i) is an abbreviation for the sequence of actions (sj(θj))j 6=i.
So s(·) is an ex-post equilibrium iff for every joint type θ ∈ Θ the sequence

of actions (s1(θ1), . . . , sn(θn)) is a Nash-equilibrium in the corresponding θ-
game. Further, si(·) is a dominant strategy of player i iff for every type
θi ∈ Θi, si(θi) is a dominant strategy of player i in every (θi, θ−i)-game.

We also have the following immediate observation.

Note 69 (Dominant Strategy) Consider a pre-Bayesian game G. Sup-
pose that s(·) is a joint strategy such that each si(·) is a dominant strategy.
Then it is an ex-post equilibrium of G. ✷

Example 29 As an example of a pre-Bayesian game, suppose that

• Θ1 = {U,D}, Θ2 = {L,R},

• A1 = A2 = {F,B},

and consider the pre-Bayesian game uniquely determined by the following
four θ-games. Here and below we marked the payoffs in Nash equilibria in
these θ-games in bold.

U

L

F B
F 2, 1 2, 0
B 0, 1 2, 1

R

F B
F 2, 0 2, 1
B 0, 0 2, 1
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D

F B
F 3, 1 2, 0
B 5, 1 4, 1

F B
F 3, 0 2, 1
B 5, 0 4, 1

This shows that the strategies s1(·) and s2(·) such that

s1(U) := F, s1(D) := B, s2(L) = F, s2(R) = B

form here an ex-post equilibrium. ✷

However, there is a crucial difference between strategic games and pre-
Bayesian games. We call a pre-Bayesian game finite if each set of actions and
each set of types is finite. By the mixed extension of a finite pre-Bayesian
game

(A1, . . . , An,Θ1, . . . ,Θn, p1, . . . , pn)

we mean below the pre-Bayesian game

(∆A1, . . . ,∆An,Θ1, . . . ,Θn, p1, . . . , pn).

Example 30 Consider the following pre-Bayesian game:

• Θ1 = {U,B}, Θ2 = {L,R},

• A1 = A2 = {C,D},

U

L

C D
C 2, 2 0, 0
D 3, 0 1, 1

R

C D
C 2, 1 0, 0
D 3, 0 1, 2

B

C D
C 1, 2 3, 0
D 0, 0 2, 1

C D
C 1, 1 3, 0
D 0, 0 2, 2

Even though each θ-game has a Nash equilibrium, they are so ‘positioned’
that the pre-Bayesian game has no ex-post equilibrium. Even more, if we
consider a mixed extension of this game, then the situation does not change.
The reason is that no new Nash equilibria are then added to the original
θ-games.
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Indeed, each of these original θ-games is solved by IESDS and hence by
the IESDMS Theorem 50(ii) has a unique Nash equilibrium. This shows
that a mixed extension of a finite pre-Bayesian game does not need to have
an ex-post equilibrium, which contrasts with the existence of Nash equilibria
in mixed extensions of finite strategic games. ✷

This motivates the introduction of a new notion of an equilibrium. A
strategy si(·) for player i is called safety-level best response to the joint
strategy s−i(·) of the opponents of i if for all strategies s′i(·) of player i and
all θi ∈ Θi

min
θ−i∈Θ−i

pi(si(θi), s−i(θ−i), θi) ≥ min
θ−i∈Θ−i

pi(s
′
i(θi), s−i(θ−i), θi).

Then a joint strategy s(·) is called a safety-level equilibrium if each
si(·) is a safety-level best response to s−i(·).

The following theorem was established by Monderer and Tennenholz.

Theorem 70 Every mixed extension of a finite pre-Bayesian game has a
safety-level equilibrium. ✷

We now relate pre-Bayesian games to mechanism design. To this end we
need one more notion. We say that a pre-Bayesian game is of a revelation-
type if Ai = Θi for all i ∈ {1, . . . , n}. So in a revelation-type pre-Bayesian
game the strategies of a player are the functions on his set of types. A
strategy for player i is called then truth-telling if it is the identity function
πi(·) on Θi.

Now mechanism design can be viewed as an instance of the revelation-type
pre-Bayesian games. Indeed, we have the following immediate, yet revealing
observation.

Theorem 71 Given a direct mechanism

(D × R
n,Θ1, . . . ,Θn, u1, . . . , un, (f, t))

associate with it a revelation-type pre-Bayesian game, in which each payoff
function pi is defined by

pi((θ
′
i, θ−i), θi) := ui((f, t)(θ

′
i, θ−i), θi).

Then the mechanism is incentive compatible iff in the associated pre-Bayesian
game for each player truth-telling is a dominant strategy.
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By Groves Theorem 62 we conclude that in the pre-Bayesian game as-
sociated with a Groves mechanism, (π1(·), . . . , πn(·)) is a dominant strategy
ex-post equilibrium.
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