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Abstract. In the past few years, there is a growing interest in automated ne-
gotiation in which software agents facilitate negotiationon behalf of their users
and try to reach joint agreements. The potential value of developing such mech-
anisms becomes enormous when negotiation domain is too complex for humans
to find agreements (e.g. e-commerce) and when software components need to
reach agreements to work together (e.g. web-service composition). Here, one of
the major challenges is to design agents that are able to dealwith incomplete
information about their opponents in negotiation as well asto effectively negoti-
ate on their users’ behalves. To facilitate the research in this field, an automated
negotiating agent competition has been organized yearly. This paper introduces
the research challenges in ANAC 2014 and explains the competition set up and
competition results. Furthermore, a detailed analysis of the best performing five
agent has been examined.
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1 Introduction

Conflict is an omnipresent phenomenon in human society [42, 38, 15]. It spans from
daily situations like discussing a holiday plan with friends and arranging a meeting
between colleagues to complex scenarios like politics and business. Automated nego-
tiation tools provide an important mechanism for decision makers to resolve their con-
flicts and to reach mutually acceptable agreements. There isa growing interest and need
for automated negotiation mechanisms [15, 30]. To facilitate the research in automated
negotiation, an international competition namely Automated Negotiating Agent Com-
petition (ANAC)6 [6] is yearly organized. This competition challenges researchers to

6 http://ii.tudelft.nl/anac



design and develop fully-automated negotiation agents that can negotiate under certain
protocols and conditions. To compete, one has to develop a negotiation agent that can
negotiate across a variety of negotiation scenarios. In allvariants of the competition, the
agents have to negotiate with incomplete knowledge - agentsdo not know neither their
opponents preferences nor their negotiation strategy.

From May 2010 to May 2013 four instances of the ANAC competition [4, 7, 9,
48] have been held in conjunction with the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). This competition follows in the footsteps
of a series of successful competitions that aim to advance the state-of-the-art in artificial
intelligence (other examples include the Annual Computer Poker Competition and the
various Trading Agent Competitions (TAC) [46]). ANAC focuses specifically on the
design of practical negotiation strategies. In particular, the overall aim of the compe-
tition is to advance the state-of-the-art in the area of bilateral, multi-issue negotiation,
with an emphasis on the development of successful automatednegotiators in realistic
environments with incomplete information (where negotiators do not know their oppo-
nent’s strategy, nor their preferences) and continuous time (where the negotiation speed
and number of negotiation exchanges depends on the computational requirements of the
strategy). One of the successes of ANAC lies in the development of state-of-the-art ne-
gotiation strategies that co–evolve every year; some notable examples include [1, 8, 10–
12, 16, 17, 26, 27, 34, 40, 47]. The previous four incarnations of ANAC already yielded
more than 60 new strategies and scenarios [4] which can be used as benchmarks to test
the efficacy of subsequent work in this area. This is in line with the goal of ANAC
to build a community in which work on such negotiating agentscan be compared by
standardized negotiation benchmarks and performance metrics.

Each year, the organizers bring up a new challenge for the participants. This year,
ANAC 2014’s focus is on negotiating with nonlinear utility functions as well as dealing
with large-scale outcome spaces [18]. In ANAC 2014, negotiating agents were not al-
lowed to access the structure of the nonlinear utility functions directly; therefore, they
needed to explore the outcome space smartly to generate their bids. The main challenge
in ANAC 2014 is to explore a large-scale outcome space effectively. In this paper, we
explain the competition setup and results of the qualification and final rounds. Further-
more, we analyze the performance of the best performing five agents in an additional
experimental set up. Following the competition, we systematically generated108 differ-
ent negotiation scenarios and tested the performance of thebest performing five agents
elaborately. We studied the effect of the domain size, the number of constraints and
issue-constraint distribution on the performance of the agents.

Our experimental results show that the agent applying a Genetic Algorithm namely
Gangsteroutperforms the other agents in terms of the individual utility gained by the
agents. The performance of the agents using Simulated Annealing in their strategy,
namelyAgent MandWhale Agentis closed to the performance ofGangsteragent. On
average, the performance ofAgent Mwith respect to the distance to Pareto optimal
outcome and Nash outcome is slightly better thanGangsteragent. Their overall perfor-
mance regarding to the utilitarian social welfare metrics is almost the same. Moreover,
our evaluation results also show that the performance of theagents highly depends on
their opponents and the negotiation scenarios played. For example,DoNAagent, which



was ranked second place in ANAC 2014, was outperformed by allagents in the sec-
ond experiment. In the second experiment DoNA had less opponents and in the second
experiment a greater variety of scenarios was used.

The rest of this paper is organized as follows: Section 2 gives an introduction on
ANAC 2014 rules and competition setup. Section 3 provides anoverview of agents par-
ticipated in ANAC 2014. Section 4 explains ANAC 2014 qualification and final round
results while Section 5 provides a detailed analysis of bestperforming five ANAC 2014
agents. Finally, Section 6 concludes the paper with directions to future work.

2 ANAC 2014

Each year, the ANAC organizers bring a new challenge to the participants (e.g. dis-
count factors in ANAC 2011 [7, 19], private reservation value for each agent in ANAC
2012 [48], learning from past negotiation sessions in ANAC 2013 [50]). The focus of
ANAC 2014 is on bilateral multi-issue negotiation, in whicheach agent’s preferences
are represented in the form of nonlinear utility functions as well as dealing with large-
scale negotiation domains. In such complex domains, exploring the outcome space is
not as straightforward as it was in the former competition, in which linear additive util-
ity functions were used on relatively small-size domains. To sum up, the main challenge
in ANAC 2014 is to find efficient exploration strategies for interdependent preferences,
particularly on large-size domains.

As in previous years, the General Environment for Negotiation with Intelligent
multi-purpose Usage Simulation (GENIUS)7 [36] has been used in ANAC 2014. GENIUS

is a research tool for automated multi-issue negotiation that enables ANAC participants
to develop and to test their negotiating agents. It also provides an easily accessible
framework to develop negotiating agents via a public API. Each participating team has
to design and build a negotiation agent using the GENIUS. For ANAC 2014, we ex-
tended the GENIUS framework with nonlinear utility functions in the form of weighted
hypercubes [28, 38].

2.1 ANAC 2014 Rules

The aim for the entrants to the competition is to develop an autonomous negotiation
agent. Performance of the agents is evaluated in a tournament setting, where each agent
is matched with all other submitted agents, and each pair of agents will negotiate in
a number of negotiation scenarios. There is an initial qualifying round, and the top
8 performing agents will continue to the finals, which is heldat the AAMAS 2014
conference. All teams that make it through to the finals have arepresentative attending
the AAMAS 2014 conference, who has the opportunity to give a brief presentation
describing their agent.

In the previous years, additive utility functions were usedto represent negotiating
agents’ preferences in ANAC. Since realistic negotiation scenarios involve bundles of
interdependent issues under one or more specific constraints, as a main update with re-
spect to the previous year, ANAC 2014 extends the agents’ utility model tononlinear

7 http://ii.tudelft.nl/genius



utility functions(see Section 2.2). When generating scenarios, we should notrestrict the
interdependencies to low-order constraints but allow multidimensional interdependen-
cies to be parametrically defined. One way of doing it is to generate a utility spaces as
an hypergraph with connectivities defined as hyperedges connecting a number of issues
[25]. Such approach allows a quantitative assessment of thecomplexity of any non-
linear utility space using information entropy [23]. Moreover, using a graph-theoretic
analysis of the complexity gives a good estimate of the performance of any optimization
algorithm. Therefore, we use weighted hypercubes to represent agents’ preferences.

In these scenarios, the agents no longer have linear utilityfunctions; instead, they
can only sample their utility of a bid through agetUtility() method. In terms of
the agent design, this means that the agents do not have access to methods pertaining
to scenarios, such as functionality specifying the weightsof the negotiation issues. The
participants were not allowed to exploit the structure of the nonlinear preferences, so
that it becomes a challenge to explore the outcome space efficiently. The agents have to
search the utility space bid-by-bid, using thegetUtility()method for any bid they
are interested in. Another challenge is to deal with large-size domains, with outcome
spaces as big as1050 outcomes.

Negotiations are bilateral and based on the alternating-offers protocol. Offers are
exchanged in real time with a deadline after 3 minutes. In addition, half of the domains
contain a discount factor, which causes the value of an agreement to decrease over time.
The challenge for an agent is to negotiate without any prior knowledge of the opponent’s
preferences and strategy. Negotiations are repeated several times to obtain statistically
significant results. Agents can be disqualified for violating the spirit of fair play. The
competition rules allow multiple entries from a single institution, but require each agent
to be developed independently.

2.2 Negotiation Scenarios

In all ANAC competitions the scenarios form the setting in which the participating
agents compete with each other. The agents play against eachother over a number of
scenarios. In ANAC 2014 setting, a negotiation scenario consists of domain description
and two conflicting nonlinear preference profiles. There exists a number of representa-
tion used in automated negotiation [36, 2, 45, 3]. For convenience, only integer issues
are considered for domain specification and each agent’s preferences are represented
in the form of weighted hypercubes [28, 29]. According to this representation, a utility
function consists of a set of hypercube regions in the outcome space. Each hypercube
represents a single constraintck. A numericweightor utility valueu(ck) is associated
to each constraint. The utility of a given bid,o is calculated as sum of the utility values
for the hypercubes including this bid, as follows:

u(o) =
∑

ck∈C|Satisfy(o,ck)

u(ck). (1)

Figure 1 shows a sample utility function for a two-issue negotiation problem. This
utility function consists of a unary constraintC1 and two binary constraintsC2 and
C3. The corresponding utility values associated to these constraints are5, 10 and12



respectively. According to this example, the contractx (issue1= 2; issue2=3) would
yield a utility valueu(x) = 15 for the agent, since it satisfies bothC1 andC2 (that
is, constraintsC1 andC2 overlap, creating a region of higher utility). The contracty

(issue1 = 4; issue2=2), on the other hand, would yield a utility valueu(y) = 5, because
it only satisfiesC1.
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Fig. 1. Example of a utility space with two issues and three constraints

It is worth noting that we extend this representation to support negatedconstraints,
which are satisfied when the given bid remains outside of the given hypervolume. This
richer expressiveness allows us to approximate any desiredfunction, by a finite number
of constraints[38].

Figure 2 shows an example of a nonlinear utility space. Thereare two issues,i.e.,
two dimensions, with domains[0, 99]. There are 50 unary constraints (i.e., that relate
to 1 issue) as well as 100 binary constraints (i.e., that inter-relate 2 issues). The utility
space is, as we can see, highly nonlinear, with many hills andvalleys.It will generally
be the case, in fact, that agents do not fully know their desirable contracts in advance
because each own utility functions are simply too large and complex. If we have 10
issues with 10 possible values per issue, for example, this produces a space of1010 (10



Fig. 2. Utility Space for a Single Agent

billion) possible contracts, too many to evaluate exhaustively. Agents must thus operate
in a highly uncertain environment.

In addition, one of the key points in achieving automated negotiation in real life has
been the non-linearity and size of the domains. Many real-world negotiation problems
sometimes assume the nonlinear and large domains. When an automated negotiation
strategy covers the linear function effectively, it is not always possible or desirable in
nonlinear situations [35]. Therefore, the constraint-based nonlinear utility function with
integer issues has been the one of the important topic in automated negotiations [28,
29]. The existing work analyzes and defines some measures forthe constraint-based
nonlinear utility function [20], and other existing works try to improve the effectiveness
of finding contracts in the bumpy nonlinear utility function[21, 22, 37, 39].

Typically, the characteristics of a negotiation scenario such as size, number of is-
sues, opposition, discount factor and reservation value can greatly influence the negoti-
ation outcome, [5]. Therefore, also in the ANAC 2014 competition, we systematically
varied some of these factors. Given our focus on the scale of the domains and the non-
linearity, we generated scenarios to differ in terms of number of issues, number of pos-
sible proposals, opposition of preference profiles and meandistance of all points in the
outcome space to the Pareto Frontier. We decided to use 12 negotiation scenarios for
ANAC 2014 as described in Table 1. In more detail, three typesof negotiation domains
with varying size (e.g., moderate, large and very large) were defined. For each domain
category, different discount factors and reservation values have been allocated (See Ta-
ble 1). For each integer issue,10 possible integer values are possible. If the number of
issues is equal to50, this domain has1050 possible outcomes. In the rest of the paper,
we will use the following domain categories:



– Moderate Domain: consists of10 issues -1010 outcomes
– Large Domain: consists of30 issues -1030 outcomes
– Very Large Domain: consists of50 issues -1050 outcomes

The utility spaces of three different scenarios are graphically represented in Fig-
ure 3.

Table 1.Negotiation Domains in ANAC 2014

ID Number of IssuesSize of Outcome SpaceDiscount Factor Reservation Value

1 10 10
10 None None

2 10 10
10 0.50 None

3 10 10
10 None 0.75

4 10 10
10 0.50 0.75

5 30 10
30 None None

6 30 10
30 0.50 None

7 30 10
30 None 0.75

8 30 10
30 0.50 0.75

9 50 10
50 None None

10 50 10
50 0.50 None

11 50 10
50 None 0.75

12 50 10
50 0.50 0.75

2.3 Competition Setup

The tournament platform for running and analyzing a varietyof negotiations was (GENIUS) [36].
Some sample negotiation scenarios were provided to the participants. However, the ne-
gotiation scenarios used in the competition were not known by the participants in ad-
vance. The success of each negotiating agent is measured by considering the results of
all negotiations within the underlying tournament.

Given the complexity of the negotiation domains, time limitation (from submission
to having the final results available at the AAMAS 2014 conference that hosted our
competition, and the available computers for running the tournament, it was infeasible
to set up a single tournament for the expected number of agents. The expected number
of agents was around18 based on the emails we received that expressed an interest
to participate. Running a full tournament for19 agents, where each agent negotiates
against18 other agents in all negotiation scenarios, requires at least 1026 hours (19 ×
18 different combinations× 3 minutes per negotiation× 12 scenarios× 5 repetitions
= 1026 hours). Therefore, ANAC 2014 consisted of two phases: a qualifying round
and a final round. The aim of the qualifying round is to determine the top10 agents
that will compete in the final round. In total21 agents were submitted from13 different
institutions in8 different countries. Before starting the qualifying round, all submitted
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Fig. 3. Utility Spaces of Three ANAC 2014 Negotiation Scenarios

agents were tested and two of them were disqualified as their code did not run correctly.
Therefore, 19 agents were considered in the qualifying round. These agents were dis-
tributed to three groups (pools) randomly for the qualifying round. It took two weeks to
complete three tournaments in which approximately6 or 7 agents negotiated with each
other. From each pool, the best three agents with respect to social welfare and individual
utility were qualified for the final round. From one pool, we picked the best four agents;
that makes10 in total. It is worth mentioning that in ANAC 2014, the participants were
not allowed to update their agents after the qualifying round.

In order to complete such an extensive set of tournaments within a limited time
frame, we used five high-spec computers, made available by Nagoya Institute of Tech-
nology and Tokyo University of Agriculture and Technology,Japan. Specifically, each
of these machines contained anIntel Core i7CPU, at least 16GB of DDR3 memory,
and a hard drive with at least 2TB of capacity.

In the final round, we ran a single tournament for the qualified10 agents. We con-
sidered the utilitarian social welfare criterion, the sum of each agent’s individual utility.
The same negotiation scenarios were used in both qualifyingand final rounds. The sin-
gle tournament consisted of10 × 9 × 12 = 1080 negotiation sessions. Each agent
pair negotiated twice (i.e.,switching their roles) since the role of the negotiators might
change the negotiation outcome. Each negotiation session was repeated five times.



3 ANAC 2014 Agents

In total21 agents were submitted from13 different institutions in8 different countries.
Two of them were disqualified as their code does not run correctly. Among 19 agents,
the best 10 agents with respect to social welfare and individual utility were qualified for
the final. Table 2 lists the ANAC 2014 finalists. To prevent themanipulation, the par-
ticipants were not allowed to submit more than one agent. Multiple submissions from
a single institution were allowed if only each agent would bedeveloped independently
by different team members.

Table 2.Finalists of ANAC 2014

Agent Name Affiliation Team Members

AgentM Nagoya Institute of Technology Makoto Niimi
AgentYK Shizuoka University Yoshiaki Kadono

BraveCat University of Isfahan
Farhad Zafari

Faria Nassiri-Mofakham

DoNA
Bar Ilan University

Ariel University
Eden Shalom Erez
Inon Zuckerman

E2Agent Nagoya Institute of Technology Yuichi Enoki
Gangster IIIA-CSIC Barcelona Dave de Jonge

Group2Agent Delft University of Technology

Balint Szollosi-Nagy
Marta Skarzynska

David Festen

kGAgent
Tokyo University of

Agriculture and Technology
Shinji Kakimoto
Katsuhide Fujita

Sobut University of Electro-Communications Satoshi Takahashi
WhaleAgent Nagoya Institute of Technology Motoki Sato

In the rest of this section, we provide, in alphabetical order, a brief description of
the individual strategies of the finalists based on the provided descriptions by the teams.

AgentM [41] has a cooperative and compromising strategy considering the negotiation
time and the difference between the best and worst bid offered by the opponent. The
bidding strategy is aim to improve the social welfare using Simulated Annealing (SA)
considering the frequency of the opponent’s bids for each issue. While generating its
bid, this agent considers its own best bid, the best bid offered by its opponent and the
most frequently asked bid by its opponent so far. The acceptance of the opponent’s bid
is decided whether or not the utility of the opponent’s bid ishigher than the lowest
utility asked by the agent itself during the negotiation.

AgentYK [31] aims to generate bids increasing the social welfare by usingBidElement
andPairBidElement, so that they are more likely to be accepted by the opponent. Ac-
cording to its bidding strategy, this agent evaluates to what extent the given bid would be
preferred by the opponent as well as considering its own pastcompromises. Typically,



it evaluates the similarity of a given bid with the opponent’s previous bids. This agent
tries to make bids that are more likely to be accepted by the opponent by considering
the co-occurrences in the history of the negotiation. It is also inclined to make more
compromised proposals at most three times through the end ofthe negotiation session.

BraveCat [51] employs a hybrid bidding strategy called RBT strategy (R: Random, B:
Behavioral, Time dependent), which is a mixture of a random strategy, a time dependent
strategy, and a behavioral strategy.BraveCatuses a new distance based opponent model
to estimate the utility of a candidate bid to be sent to the opponent in each round of the
negotiation. Moreover, by using iterative deepening search, BraveCatovercomes the
limitations imposed by the huge amount of memory needed in the large domains.

DoNA [14] employs a domain-based approach using behavioral strategies based on
solely two domain parameters: reservation value and discount factor. These two param-
eters are used to divide the class of all possible domains into different regions, in each
of which employs a predefined strategy relying on a behavioral intuition. It considers
the state space of domains divided into a 3-by-3 grid of combination of values. DoNA
agent applies a cognitive model based on the analysis regarding the time allocated to
the negotiations and the concession stance for the given reservation value and discount
factor. It computes the minimum acceptable utility value byrandom sampling of offers
where the distribution of opponent’s bids is estimated by a normal distribution as fol-
lows: argmin = 1.2 ∗ µ + 2.4 ∗ σ (whereσ is the standard deviation, andµ is the
average).

E2Agent is an extension ofAgent K [33], winner of the ANAC 2010 competition.
When creating a counter offerAgent Kcalculates a target utilityUt based on the pre-
vious offers made by the opponent and the remaining negotiation time.Agent K then
makes random bids above the target utility. If there is no bidwith the target utility, the
target utility is lowered slightly. The target utilityUt at timet is calculated using the
following formula:

Ut = 1− (1− Emax(t)) · t
α, (2)

whereEmax(t) is the estimated maximum value the opponent will present in the
future based on the average and variance of previous bids, and α is a parameter which
controls the concession speed.E2Agentuses a sophisticated acceptance mechanism,
where it will use the average and variations of the previous bid utilities presented by the
opponent in order to determine the best possible bid it can expect in the future. It will
either accept or reject the offer based on the probability that the opponent will present
a better offer in the future. If it has already received an offer from the opponent with
the same utility or higher, it will offer that bid instead. Inaddition, it searches for bids
with Simulated Annealing to find the bids effectively since it difficult for AgentKin the
non-linear domains.

Gangster [13] applies a Genetic Algorithm (GA) to explore a large-scale bid space
associated with nonlinear utilities. It calculates a target utility for the agent. It decides



whether to accept its opponent’s bid by comparing it with thetarget utility. It applies a
global GA to get the samples of the agreement space and stores10 of the bids with the
highest utilities and it also applies a local GA similarly. It proposes the best proposal
in the current round or any of the previous rounds.Gangstergets some advantages of
employing a GA with Manhattan distance and the combination of local and global GAs.

Group2Agent [44] Group2Agenttries to find bids with the high social welfare in the
complex domains. It uses the Greedy Coordinate Descent (GCD) algorithm[49], which
can scale linearly with the number of issues and is shown to beeffective, locating mean-
ingful middle ground between negotiating parties. It can gain the high average social
welfare of1.79, being only0.03 below the optimal social welfare solution and found
the optimal solution itself 3 out of 25 times. Furthermore, GCD scales better than algo-
rithms such as SA used in other agents.

k-GAgent [32] applies theSPEA2[52], a method based on GA for multiple objective
optimization, to explore the Pareto Frontier effectively.To estimate the opponent’s util-
ity function, the opponent’s bid is divided into small partsconsidering the combinations
of issues, and it considers how many times of these parts occurs in opponent’s past bids.

Sobut employs a simple martingale bidding method used in the casino. If it wins the
previous game, it tries to choose the minimum bid utility using the probability of win-
ning (P ) in next game. If it loses, it tries to choose the default value in the next game.
In other words, theP and the utility of the minimum bid are decided according to the
following equations.

P = max(previous outcome, reserve value)

Utility of minimum bid = max(P, r)

It uses a random function to decider, and the range ofr is specified as(0, 0.5].

WhaleAgent [43] has two bidding strategies: Hard headed and Conceder. According
to the hardheaded strategy, it offers a bid whose utility is greater than0.9 at the begin-
ning of negotiations. Through the end of the negotiation, itdecreases the threshold of
accepting its opponent’s bids. If the utility of the opponent’s offer is greater than this
threshold, it accepts that bid. The threshold is equivalentto the value used in Hard-
headed strategy and Conceder strategy. The agent is inclined to accept any offer in the
end of the negotiation in order avoid to fail the negotiations. To search the bid space
with nonlinear utility values, the agent employs a search strategy that combines Simu-
lated Annealing and Hill Climbing. First, it explores bids whose utility is greater than
the threshold by using the Hill Climbing strategy. When it cannot find such a bid, it uses
the Simulated Annealing using a random starting point.



Fig. 4.Average scores of each agent in the qualifying round (pool1)

Fig. 5.Average scores of each agent in the qualifying round (pool2)

4 Results of ANAC 2014 Competition

Qualifying Round First, thequalifying roundwas played in order to select the finalists
from the 19 agents that were submitted by the participating teams (2 agents were dis-
qualified from the trial tests) 19 agents was divided to threegroups (pools) randomly,
and the best three agents in social welfare and individual utility in each pool proceeded
to the final round. Each tournament wasn’t repeated to prohibit the learning from the
previous tournaments.

In order to complete such an extensive set of tournaments within a limited time
frame, we used five high-spec computers, made available by Nagoya Institute of Tech-
nology and Tokyo University of Agriculture and Technology.Specifically, each of these
machines contained anIntel Core i7CPU, at least 16GB of DDR3 memory, and a hard
drive with at least 2TB of capacity.

Fig.4 - 6 show the results of each agent in the qualifying round (pool1, pool2, and
pool3). The finalists are selected from all pools by considering the individual utilities
and social welfare. The individual utility means the average of utility of the individual



Fig. 6.Average scores of each agent in the qualifying round (pool3)

agent in the tournaments. The social welfare means the average of the sum of utilities
of two agents in the tournaments. As figures showing, the bestthree or four agents
are selected by considering the individual utility and social welfare. As a results,kGA-
gent, E2Agent, GROUP2Agent, Sobutare selected as finalists from the pool1;Gangster,
WhaleAgent, AgentYKare selected as finalists from pool2;DoNA, AgentM, BraveCat
are selected as finalists from pool3. They are the best three in each pool considering the
individual utility or the social welfare.

Rank Agent Score Variance
1 Agent M 0.7546182393.12× 10

−5

2 DoNA 0.7422450359.31× 10
−6

3 Gangster 0.7406748893.49× 10
−6

4 WhaleAgent 0.7107402523.90× 10
−5

5 GROUP2Agent0.7084014046.38× 10
−5

6 E2Agent 0.7039550082.85× 10
−5

7 kGAgent 0.6765951115.02× 10
−5

8 AgentYK 0.6664509432.38× 10
−5

9 BraveCat 0.6619403432.84× 10
−5

10 Sobut 0.6276847011.71× 10
−5

Table 3.Tournament results in the final round (Individual Utility)

Final Round The final round consisted of 10 agents that were selected fromthe qual-
ifying round. For each pair of agents, under each preferenceprofile, we ran a total of
some negotiations. By averaging over all the scores (individual utility and social wel-
fare) achieved by each agent (against all opponents and using all preference profiles),



Rank Agent Score Variance
1 Agent M 1.6454121374.12× 10

−5

2 Gangster 1.6274519081.21× 10
−5

3 E2Agent 1.6089361431.39× 10
−5

4 WhaleAgent 1.6031992773.55× 10
−5

5 AgentYK 1.5698771861.16× 10
−4

6 GROUP2Agent1.561545988.46× 10
−5

7 BraveCat 1.5453847743.11× 10
−5

8 DoNA 1.4736865283.89× 10
−5

9 Sobut 1.4699723331.12× 10
−4

10 kGAgent 1.4631685434.32× 10
−4

Table 4.Tournament results in the final round (Social Welfare)

the final ranking were decided. Formally, the average scoreUΩ(p) of agentp in scenario
Ω is given by:

UΩ(p) =

∑
p′∈P,p6=p′ UΩ(p, p

′) + UΩ(p
′, p)

2 · (|P | − 1)
(3)

whereP is the set of players andUΩ(p, p
′) is the utility achieved by playerp against

playerp′ when playerp is playing sideA of Ω and playerp′ is under the sideB of
Ω. For the final round, we matched each pair of finalist agents, under each preference
profile, for a total of5 times.

It is notable thatAgentMwas the clear winner of both categories (see Table 3 and
4). However, the differences in utilities between many of the ranked strategies are small,
so the ranking of several of the agents was decided by a small margin. Finally, the first
places in the individual utility and social welfare categories were awarded toAgentM;
The second place in the individual category was awarded toDoNA; The second place
in the social welfare was awarded awarded toGangster.

In more detail, we can discuss the relationships between thesocial welfare and other
measures. As figure and showing, the percentage of agreements and the pareto distance
are important features of obtaining the high social welfare. Especially, the correlation
coefficient of the percentage of agreements is about1.0 and, the average of pareto dis-
tance is about−1.0. In other words, the effective strategy of obtaining the social welfare
is that finding the pareto frontiers with the high percentageof agreements.

5 In Depth Evaluation of ANAC 2014 Agents

After the competition, a detailed analysis of best performing five ANAC 2014 agents,
namelyAgent M, DoNA, Gangster, WhaleAgent, andE2Agent, has been carried out. We
first explain our experimental setup, then present the results, after which we analyze the
negotiation results with respect to several characteristics of the negotiation scenarios.
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Fig. 7.Plotting graph between the percentage of agreements and thesocial welfare (A correlation
coefficient = 0.8735)
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Fig. 8.Plotting graph between the average of pareto distance and the social welfare (A correlation
coefficient = -0.9994)



Fig. 9.Cubic, bell and linear constraints

5.1 Experimental Setup

For the in depth evaluation of ANAC 2014 agents, a variety of negotiation scenarios was
generated. For the generation of these negotiation scenarios, we consider the following
factors:

– The number of issues (n).
– The number of constraints (m).
– The constraint-issue distribution (π).

Each distributionπ assigns a predefined number of issues[1, n] to each constraint.
For example,π(ck) denotes the number of issues involved in constraintck, wherek ∈
[1,m]. Our scenario generator supports three types of distributions:

1. Uniform distribution:π(ck) = p, ∀k, p ∈ [1, n]. All constraints have the same
cardinality.

2. Power-law distribution:π(ck) is scale-free in terms ofk, k ∈ [1,m]. In other words,
few constraints are dense (involve most of the issues) whilemost of the other con-
straints have only fewer issues.

3. Random distribution:π(ck) is randomly chosen from[1, n], for all k.

In our experiments, an agenti’s preference profile is therefore generated randomly
based on a tuple(n,m, πi). The idea behind the constraint-issue distribution is to have
a generative model allowing us to specify the complexity of each profile. For instance,
two negotiating agents1 and2 will respectively have two utility spaces(n,m1, π1) and
(n,m2, π2). The complexities ofπ1 andπ2 are reflected through their entropiesH(π1)
andH(π2) [24].

When generating the scenarios, we attempted to diversify the agent profiles along
the following lines. First, we assume that an agent’s utility space is built using three
types of basic parametric constraints. As shown in figure 9, we distinguish linear (hy-
perplane), bell-shaped and conic-shaped utility functions [24]. Secondly, it is possible
to adjust the complexity of any given utility space by specifying the constraint-issue
connectivity using theπ distribution. Such connectivity affects the computational com-
plexity required to optimise over any given utility space [23]. Utility spaces with ran-
domised sets in particular, render the search for optimal bids more difficult.



It is important to note that the used scenarios do not accountfor the level of com-
petitiveness or collaboration between two agents. In particular, we did not differentiate
between the cases where the constraints are disjoint sets, and thus giving rise to a zero-
sum game, and the cases where the constraints are nested, which yields a collaborative
behaviour. Instead, we used generic randomised sets, whichreinforces complexity and
is useful for any temporal (not utilitarian) assessment of the agents performances.

For our experiments,108 different negotiation scenarios were generated by taking
the number of issuesn to be in{2, 10, 50}, the number of constraintsm in {1, 10, 50, 100},
and the constraint-issue distributions are drawn from{Random,Uniform, Power −
law}. Note that9 different combinations exist for constraint-issue distribution in bi-
lateral negotiations (e.g. Random vs. Random, Random vs. Uniform and so forth). As
a result,3 different number of issues *4 different number of constraints *9 different
combinations of constraint-issue distributions in bilateral negotiation makes108 dif-
ferent negotiation scenarios. The deadline for each negotiation was set to 3 minutes,
as it was in the competition. We picked the five best agents from ANAC 2014, each
agent negotiates with the other agents and plays in both sides (5 × 4 × 2 = 40 nego-
tiations). Each negotiation is repeated 5 times and we have108 negotiation scenarios,
which makes21600 negotiation runs in total.

5.2 Experiment Results

We evaluated the performance of the agents according to the following criteria:

– The average utility gained by the agent (i.e., individual utility).
– The average distance to the closest Pareto outcome.
– The average distance to Nash outcome.
– The average utilitarian social welfare (i.e., sum of all agents’ utilities).

Table 5 shows the performance of each agent with respect to each aforementioned
criterion over21600 negotiations. According to these results,Gangsteroutperforms
other agents in terms of the individual utility gained by theagents on average. The
performance ofAgent M is close toGangster(0.511 vs 0.543). As far as optimality
of a negotiation outcome is concerned, it is desired to reachagreements on the Pareto
Frontier and/or to reach a Nash solution. Therefore, it is desired to find agreements
whose distance to Pareto outcome and/or Nash outcome is as small as possible. Table 5
shows thatAgent Mperforms best according to these criteria followed byWhaleAgent
andGangster. With respect to the average utilitarian social welfare, the performance of
Agent MandGansteris almost the same and they outperform other agents.

It is worth mentioning thatDoNA, that was ranked in second place in ANAC 2014
(see Section 4), is outperformed by all agents in this experimental setup. This incon-
sistency can be explained by the fact that the performance ofan agent highly depends
on its opponents. In the final round of ANAC 2014,DoNAnegotiates against nine dif-
ferent agents while it negotiates against the best four agents among those agents in
this analysis. Furthermore, the negotiation scenarios used in this section are different
than the scenarios used in the final round of ANAC 2014. This clearly influences the
performance of the agents.



Performance Criterion E2Agent DoNA AgentM Gangster WhaleAgent
Average Individual Utility: 0.478 0.353 0.511 0.543 0.490
Average Pareto Distance: 0.180 0.349 0.112 0.117 0.117
Average Nash Distance: 0.252 0.434 0.163 0.180 0.182
Average Utilitarian Social Welfare: 0.936 0.652 1.056 1.057 1.046

Table 5.Overall Performance of Best Five ANAC 2014 Agents over21600 Negotiations

In the following sections, we investigate the effect of domain size, constraint size
and constraint-issue distribution on the performance of these agents.

5.3 Effect of Domain Size

Table 6 shows the negotiation results by grouping the negotiations according to their
domain size (number of issues). Considering the average individual utility gained by
the agents, it can be seen thatGangsteragent is the best performer. According to this
performance criterion, the performance ofWhaleAgentandAgent Mis similar to each
other and they perform better thanE2AgentandDoNA. It can be seen that the perfor-
mance ofDoNAdrops drastically when the outcome space becomes increasesto 1050,
based on50 issues with10 possible values. In general, the performance of all agents re-
duces when we increase the domain size to1050. In the table, domain size is indicated
by the number of issues, as the number of possible values per issue is always10. So
domain size indication 2 actually means102, and indication10 stands for1010.

In terms of utilitarian social welfare, Gangster is the winner in the negotiations
where the domain size is2 or 10; however, when the domain size is50, WhaleAgent
gains higher social welfare on average. According to the results showing the average
distance to Nash outcome, we can say thatAgent MandWhaleAgentperform better
thanGangsteragent. That is,Gangsteragent achieves higher utility for himself while
Agent MandWhaleAgentconsider other agents’ utility and act more collaboratively
in their negotiation so that that negotiation outcomes seems to be more fair. As far as
the results regarding to the average Pareto distance are considered, the performance of
Gangsteragent drops when the outcome space becomes huge.WhaleAgentperforms
better than Gangster agent when the domain size is50.

5.4 Effect of Constraint Size

In this section, we study whether the number of constraints in a given negotiation sce-
nario has any effect on the performance of the agents. Table 7shows the negotiation
results by grouping them according to the number of constraints in the underlying ne-
gotiation scenarios. According to the average individual utility gained by the agents, the
winner isGangsteragent, irrespective of the constraint size.

When the number of constraints is extremely low or high, using Gangsteragent
seems a promising approach in terms of the average distance Pareto outcome. However,
when the number of constraints is10 or 50, thenAgent MandWhaleAgentperform
better. This is also valid for utilitarian social welfare. If we investigate the performance



Performance Criterion Domain SizeE2Agent DoNA AgentM Gangster WhaleAgent
2 0.492 0.366 0.557 0.572 0.492

Average Individual Utility: 10 0.503 0.431 0.512 0.582 0.509
50 0.439 0.261 0.463 0.475 0.469
2 0.214 0.384 0.091 0.084 0.117

Average Pareto Distance: 10 0.127 0.217 0.087 0.088 0.088
50 0.198 0.445 0.158 0.177 0.145
2 0.329 0.516 0.171 0.188 0.228

Average Nash Distance: 10 0.210 0.322 0.147 0.163 0.158
50 0.217 0.465 0.172 0.190 0.159
2 0.938 0.652 1.136 1.142 1.088

Average Utilitarian Social Welfare: 10 0.993 0.803 1.093 1.104 1.083
50 0.879 0.501 0.941 0.926 0.968

Table 6.Overall Performance of Best Five ANAC 2014 Agents wrt Varying Domain Size

Performance Criterion Constraint SizeE2Agent DoNA AgentM Gangster WhaleAgent
1 0.474 0.188 0.466 0.537 0.459
10 0.496 0.397 0.553 0.556 0.521

Average Individual Utility: 50 0.480 0.417 0.531 0.558 0.510
100 0.462 0.409 0.493 0.522 0.469
1 0.199 0.513 0.144 0.120 0.151
10 0.196 0.370 0.125 0.166 0.124

Average Pareto Distance: 50 0.173 0.275 0.089 0.092 0.088
100 0.150 0.237 0.091 0.089 0.103
1 0.307 0.673 0.213 0.210 0.244
10 0.285 0.454 0.189 0.240 0.198

Average Nash Distance: 50 0.225 0.331 0.132 0.140 0.141
100 0.191 0.278 0.120 0.130 0.143
1 0.875 0.330 1.006 1.052 0.986
10 1.001 0.728 1.125 1.072 1.121

Average Utilitarian Social Welfare: 50 0.955 0.779 1.088 1.087 1.083
100 0.915 0.771 1.007 1.018 0.995

Table 7.Overall Performance of Best Five ANAC 2014 Agents w.r.t. Varying Constraint Size



of the agents with respect to the average distance to the Nashsolution,Agent Mis the
best choice except for the extreme case in which a negotiation scenario consists of only
a single constraint.

5.5 Effect of Constraint-Issue Distribution

In this section, we study the effect of the complexity of negotiation scenarios on the per-
formance of the agents. Complexity is defined in terms of the entropy of each constraint-
issue distribution. The higher the entropy, the more complex the distribution is. The
complexity of the negotiation scenarios are as follows:H(πuniform) > H(πrandom) >
H(πpl).

This presupposes that entropy correlates with the bumpiness of the utility space and
the computational time needed to explore it [23]. Table 8 shows the negotiation results
grouped by their constraint-issue distribution. Based on these results, we can say that
Agent Mis good at complex domains. According to all evaluation criteria,Agent Mis
the winner when the scenarios are generated with normal distribution. For relatively
less complex negotiation scenarios generated by random distribution,Gangsteragent is
the best choice.

We note that having more constraints implies more marginal utility (
∑m

k=1 w(ck))
but not necessary better agreement zones. In this sense, oneconstraint provides low
utility when it is isolated in the overall utility space. Moreover, having many large con-
straints give better utility for the agents since such largeconstraints give more accept-
able agreements.

Performance Criterion Constraint-IssueE2Agent DoNA AgentM Gangster WhaleAgent
Distribution

Uniform 0.509 0.264 0.570 0.565 0.531
Average Individual Utility: Power-Law 0.602 0.488 0.654 0.727 0.633

Random 0.372 0.330 0.403 0.436 0.376
Uniform 0.229 0.561 0.137 0.159 0.181

Average Pareto Distance: Power-Law 0.205 0.336 0.123 0.139 0.137
Random 0.123 0.190 0.082 0.068 0.080
Uniform 0.260 0.606 0.159 0.186 0.208

Average Nash Distance: Power-Law 0.255 0.407 0.164 0.185 0.189
Random 0.187 0.255 0.121 0.115 0.131
Uniform 1.014 0.510 1.152 1.119 1.083

Average Utilitarian Social Welfare: Power-Law 1.188 0.927 1.368 1.379 1.345
Random 0.738 0.614 0.817 0.845 0.817

Table 8.Overall Performance of Best Five ANAC 2014 Agents wrt Constraint-issue Distribution

DoNAagent gets the lowest average individual utility and utilitarian social welfare.
Similarly, its performance is dropping as the complexity ofthe negotiation domain in
terms of distributions type is increasing from power-law towards uniform.DoNAgets
better utility on average for power-law, but less for randomand lesser for uniform.



This decreasing performance is due to the increasing complexity and the usage of a
behavioral strategy that only focuses on satisfiability (instead of optimality) with respect
to the discount factor and the reservation value. The increasing complexity reduces the
marginal utility and renders any satisfactory parameter value as performing well enough
for the agent.

Agents adopt different metaheuristics when sampling theirutility spaces (Simulated
Annealing, Genetic Algorithms, Heuristic Search, etc.). To understand the effect of do-
main complexity on the agents, we should understand the nature of the used metaheuris-
tics and how they perform given different distributions (π). Depending on the domain,
such metaheuristics can be for instance randomized or not, global or local, use the op-
ponent bids or not, etc. When comparing the agents’ performances, it is important to
classify the agents based on their metaheuristics. For instance, metaheuristics that rely
on randomization (Simulated Annealing, Genetic Algorithms) work well when there is
no prior knowledge of the constraints shapes and connectivity.

The complexity of the utility spaces affects the exploration time. For example, if the
agent is sampling a power-law distribution, he can find the optimal bids quicker than
if the utility space was distributed according to a uniform distribution. An agent with
a power-law distribution and a sampling metaheuristic thatworks well with power-law
topologies will quickly know what his best bids are. He can consequently focus more on
his acceptance/concession strategies. An agent with a complete distribution will have
to search the utility space and propose at the same time.

6 Conclusion

In this paper, we describe the fifth international automatednegotiating agents compe-
tition. The main challenge in ANAC 2014 is to design intelligent negotiating agents
that can explore a large-scale outcome space effectively under time constraints. In this
competition, we used negotiation scenarios using nonlinear utility functions and agents
were not allowed to access the structure of their utility function. Therefore, they need
to use advance search techniques such as Simulated Annealer, Hill-Climber, Genetic
Algorithms and so on.

Following the competition, we conducted additional experiments in order to ana-
lyze the performance of the best performing five agents elaborately. To achieve this, we
generated 108 different nonlinear negotiation scenarios systematically and ran 21600
negotiations to evaluate the agents with respect to a numberof performance criteria. We
consider the average individual utility gained by the agents, the utilitarian social wel-
fare, the average distance to Pareto and Nash solution. Our results showed thatGang-
steragent outperforms other agents regarding to the individualutility and social welfare
while Agent Mis better off regarding to other metrics. Furthermore, we studied the ef-
fect of domain size, constraint size and issue-constraint distribution on the performance
of the agents. An interesting result is thatAgent Mgains higher individual utility than
Gangsteragent in complex negotiation scenarios generated with uniform distribution
while Gangster agent is better off for other type of scenarios.

In conclusion, we believe that ANAC facilitates the research in automated negoti-
ation. The joint discussions with the participating teams gave us great insights for the



future competitions. There is a great interests in multilateral negotiation and human-
agent negotiation. As a future work, we are going to organizea multiparty negotiation
competition in which the negotiating agents have more than one opponents. In addition,
it is also interesting to investigate human-agent negotiation although its experimental
set up might be costly(i.e. we need human negotiators to testthe performance of the
agents).
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6. T. Baarslag, R. Aydoğan, K. V. Hindriks, K. Fuijita, T. Ito, and C. M. Jonker. The automated
negotiating agents competition, 2010-2015.AI Magazine, 36(4):115–118, 12/2015 2015.

7. T. Baarslag, K. Fujita, E. H. Gerding, K. V. Hindriks, T. Ito, N. R. Jennings, C. M. Jonker,
S. Kraus, R. Lin, V. Robu, and C. R. Williams. Evaluating practical negotiating agents:
Results and analysis of the 2011 international competition. Artificial Intelligence, 198:73 –
103, May 2013.

8. T. Baarslag, K. V. Hindriks, and C. M. Jonker. A tit for tat negotiation strategy for real-time
bilateral negotiations. In T. Ito, M. Zhang, V. Robu, and T. Matsuo, editors,Complex Auto-
mated Negotiations: Theories, Models, and Software Competitions, volume 435 ofStudies
in Computational Intelligence, pages 229–233. Springer Berlin Heidelberg, 2013.

9. T. Baarslag, K. V. Hindriks, C. M. Jonker, S. Kraus, and R. Lin. The first automated negoti-
ating agents competition (ANAC 2010). In T. Ito, M. Zhang, V.Robu, S. Fatima, and T. Mat-
suo, editors,New Trends in Agent-based Complex Automated Negotiations, volume 383 of
Studies in Computational Intelligence, pages 113–135, Berlin, Heidelberg, 2012. Springer-
Verlag.

10. M. Ben Adar, N. Sofy, and A. Elimelech. Gahboninho: Strategy for balancing pressure and
compromise in automated negotiation. In T. Ito, M. Zhang, V.Robu, and T. Matsuo, editors,



Complex Automated Negotiations: Theories, Models, and Software Competitions, volume
435 of Studies in Computational Intelligence, pages 205–208. Springer Berlin Heidelberg,
2013.

11. S. Chen, H. B. Ammar, K. Tuyls, and G. Weiss. Optimizing complex automated negotia-
tion using sparse pseudo-input gaussian processes. InProceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages 707–714,
Richland, SC, 2013. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

12. S. Chen and G. Weiss. OMAC: a discrete wavelet transformation based negotiation agent.
In I. Marsa-Maestre, M. Lopez-Carmona, T. Ito, M. Zhang, Q. Bai, and K. Fujita, editors,
Novel Insights in Agent-based Complex Automated Negotiation, volume 535 ofStudies in
Computational Intelligence, pages 187–196. Springer, Japan, 2014.

13. D. de Jonge and C. Sierra. Gangster: An automated negotiator applying genetic algorithms.
In N. Fukuta, T. Ito, M. Zhang, K. Fujita, and V. Robu, editors, Recent Advances in Agent-
based Complex Automated Negotiation, pages 225–234. Springer International Publishing,
Cham, 2016.

14. E. S. Erez and I. Zuckerman. Dona - a domain-based negotiation agent. In N. Fukuta,
T. Ito, M. Zhang, K. Fujita, and V. Robu, editors,Recent Advances in Agent-based Complex
Automated Negotiation, pages 261–271. Springer International Publishing, Cham,2016.

15. S. Fatima, S. Kraus, and M. Wooldridge.Principles of Automated Negotiation. Cambridge
University Press, 2014.

16. R. Fishel, M. Bercovitch, and Y. Gal. Bram agent. In T. Ito, M. Zhang, V. Robu, and
T. Matsuo, editors,Complex Automated Negotiations: Theories, Models, and Software Com-
petitions, volume 435 ofStudies in Computational Intelligence, pages 213–216. Springer
Berlin Heidelberg, 2013.

17. K. Fujita. Automated negotiating agent with strategy adaptation for multi-times negotia-
tions. In IEEE 6th International Conference on Service-Oriented Computing and Applica-
tions (SOCA), pages 333–337, 2013.
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37. M. A. López-Carmona, I. Marsá-Maestre, M. Klein, and T. Ito. Addressing stability issues in
mediated complex contract negotiations for constraint-based, non-monotonic utility spaces.
Autonomous Agents and Multi-Agent Systems, 24(3):485–535, 2012.

38. I. Marsa-Maestre, M. Klein, C. M. Jonker, and R. Aydoğan. From problems to protocols:
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