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Abstract—Energy efficient festival electrification can be viewed
as a middle-consumption problem, standing between smart
household applications and larger commercial consumers. The
optimal deployment of different resources, such as local renew-
able energy production (RES), diesel generators (DG) and energy
storage systems (ESS) may bring about significant financial
gain for the organizer, and is usually framed as an off-grid
or limited grid-connection problem. This makes online planning
particularly challenging due to the uncertainty related to the
RES production, constraints regarding the operation of the diesel
generators and limitations of the grid connection. In this paper
a new online planning algorithm based on two-stage stochastic
programming is proposed in order to address the aforementioned
challenges and provide minimal-cost, uninterrupted, and sustain-
able electrification of festivals under dynamically priced grid
energy. Data based on real festival events are used in order to
illustrate the effectiveness of the proposed methodology.

Keywords—energy storage, festival electrification, online plan-
ning, renewable energy, stochastic programming.

I. INTRODUCTION

The exploitation of renewable energy sources (RES) is
a topic that has been studied extensively and from various
perspectives in the last decades. The integration of RES at the
level of the bulk electrictiy system is challenging due to the
uncertainty and variability inherent to their generation, which
in turn can increase the need in procuring pricey ancillary
services (e.g., regulation, reserves, etc.) to ensure system
stability and reliability [1]. Apart from grid-scale applications,
RES can be also used for the electrification of remote areas
and other standalone applications. Moreover, RES can be
installed behind-the-meter and combined with other resources
in order to reduce the dependency of a consumer on the grid
connection.

The electrification of outdoor festival events is an example
of the last category of applications that is challenging both in
terms of selecting the type and size of resources to be used and
its real-time operation in order to guarantee minimal-cost and
uninterrupted supply of the demand. An energy management
tool is expected to make schedules ahead of time, while the
generation of the utilized RES production is still uncertain.
However, this may lead to sub-optimal or even infeasible
solutions, if poor forecasts are used both for the day- or
hour-ahead planning. Several solutions have been suggested
to this problem, such as the use of energy storage systems
(ESS) and demand response (DR) in order to manage both the

unpredictability of RES generation and follow more closely
the real-time availability of RES generation

Several literature studies are devoted to addressing these
issues at a microgrid or a nanogrid scale. However, to the best
knowledge of the authors, the energy management problem
of festival electrification has not been studied yet in the
relevant literature. Madaeni et al. [2] proposed a stochastic
optimization framework to investigate the relative benefits of
DR and real-time pricing (RTP) in reducing the impact of
RES on system costs. Niknam et al. [3] proposed a multi-
objective cost-emission minimization stochastic algorithm for
microgrids. Moreover, Cardoso et al. [4] developed a mi-
crogrid reliability model handling uncertainty related to fuel
cell module production in the day-ahead battery scheduling.
On the contrary, a real-time DR management model based
on stochastic and robust optimization was proposed in [5].
However, this model is restricted to residential appliances.
Finally, a deterministic rolling-horizon decision-making tool
tailored to residential end-users was proposed in [6]. This
study indicated how updated information on the uncertain
parameters can be exploited in improving costs by repeatedly
executing the energy management algorithm. Based on the
evidence provided by the aforementioned studies, online plan-
ning algorithms constitute an effective approach to managing
uncertainty by closely following the real-time conditions.

Despite the rich body of literature devoted to the develop-
ment of energy management systems in various setups, to the
best knowledge of the Authors, the electrification of festivals
is an energy management problem of a medium consumer that
has not been studied in the relevant literature. The contribution
of this paper is twofold:

• The principled treatment of the energy management prob-
lem of a special type of electrical energy consumer that
typically relies on simple rule-of-thumb approaches.

• The development of an online planning tool based on two-
stage stochastic programming for the energy management
of festival events.

In this study, the underlying optimization model is cast
as a mixed-integer linear programming (MILP) optimization
problem in order to exploit the computational efficiency of
state-of-the-art solvers. Accurate parametric forecasts are dif-
ficult to attain and often do not easily combine with available
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forecasting systems. For this reason, a non-parametric set
of scenarios is employed in order to quantify uncertainty in
the generation of photovoltaic (PV) systems and clustering is
used to compile a smaller representative scenario centroid set
with associated probabilities. Furthermore, the execution of
the planning algorithm is repeated within the duration of the
festival event, incorporating new information on the realization
of the uncertain variables and improving the quantification of
uncertainty by updating the set of the scenarios that are being
considered. The festival organizer considers the so-called here-
and-now decisions in order to optimally procure energy from
its own behind-the-meter assets and the grid connection, with
the prupose of economically covering the load demand for the
time intervals between two executions of the algorithm. One
significant advantage is that, unlike deterministic or simple
rule-of-thumb approaches, feasibility is guaranteed for all the
plausible realizations of uncertainty by reserving adequate
capacity from other controllable resources.

The remainder of this paper is organized as follows: in
Section II the proposed optimization model is developed and a
benchmark approach is established. A case study is presented
in Section III. Finally, conclusions are drawn in Section IV.

II. METHODOLOGY

A. Model

The objective function stands for the minimization of the
expected cost (EC) and is represented by (1). It is assumed
that the festival organizer buys energy from the grid at an
hourly-varying price.

EC =
∑
t

(
cdiesellt · γ · PDG

t + cgridt · P grid
t

)
·∆T

+
∑
s

π(s) ·
∑
t

[
cdiesellt · γ · (pDG

s,t − PDG
t )

+ cgridt · (rgrid,us,t − rgrid,ds,t )

+Mspill · spPV
s,t +Mshed · lsPV

s,t

]
·∆T

(1)

The objective function consists of two parts. The first part
involves decision variables that are not dependent on any
specific realization of uncertainty and stand for here-and-now
decisions that are made before the realization of uncertainty.
The second part involves variables that depend on a specific
scenario realization and account for the cost of corrective
actions. Thus, they represent wait-and-see decisions [7]. The
notation used in this work is described in Table I.

The first-stage constraints of the problem, involving only
variables that are not dependent on any specific scenario
realization, are described by (2)-(14). The power-balance is
expressed by (2). Grid connection limitations are taken into
account by (3) and (4). Constraints on the planned production
of the diesel generator (DG), as well as the corresponding
up and down reserve limits, are enforced by (5) and (6).
Furthermore, (7) considers limitations on the maximum time
that the DG can be operated, typically imposed by renting
such equipment for specific times. Finally, the planned PV

TABLE I
NOMENCLATURE

Sets
h(H) index (set) of optimization repetition intervals
t(T ) index (set) of time periods
s(Ω) index (set) of scenarios

Parameters
cdiesellt price of diesel (e/lt)
cgridt grid energy price in period t (e/kWh)
γ fuel to power conversion constant (lt/kWh)
Ngrid restriction to power drawn from the grid
Mspill RES production spillage penalty (e/kWh)
Mshed load shedding penalty (e/kWh)
PDG
min/P

DG
max min/max diesel generator (DG) output (kW )

Tmax
DG,on maximum time intervals a DG can be used in T

∆T duration of time intervals (h)
P rated
ESS energy storage system (ESS) rated power (kW )
SOEmin/SOEmax ESS state-of-energy limits (kWh)
SOEini initial state-of-energy of ESS (kWh)
CEESS/DEESS charging /discharging efficiency of ESS
Lt load in period t (kW )
PVt,s PV production in period t and scenario s (kW )
π(s) probability of scenario s

Continuous variables
EC expected cost (e)
PPV
t PV power in period t (kW )
PDG
t DG power in period t (kW )
RDG,u

t /RDG,d
t scheduled DG up/down reserve in period t (kW )

P grid
t grid power in period t (kW )
Rgrid,u

t /Rgrid,d
t scheduled grid up/down reserve in period t (kW )

P ch
t /P dis

t ESS charging/discharging power in period t (kW )
SOEt ESS state-of-energy in period t (kWh)
pDG
s,t DG power in period t and scenario s (kW )
rDG,u
s,t /rDG,d

s,t used DG up/down reserve in period t
and scenario s (kW )

pgrids,t grid power in period t and scenario s (kW )
rgrid,us,t /rgrid,ds,t used up/down grid reserve in period t

and scenario s (kW )
spPV

s,t PV spillage in period t and scenario s (kW )
lsPV

s,t load shedding in period t and scenario s (kW )
pchs,t/p

dis
s,t charging/discharging power of ESS in period t

and scenario s (kW )
soes,t ESS state-of-energy in period t

and scenario s (kWh)
∆P ch

s,t/∆P
dis
s,t change in charging/discharging power

in period t and scenario s (kW )
Binary variables

uDG
t 1 if DG is online in period t
ucht 1 if ESS is charging in period t
uch2s,t 1 if ESS is charging in period t

and scenario s
uDG,res
s,t 1 if upward reserve from DG is used in period t

and scenario s
udg2s,t 1 if DG is online in period t and scenario s
ugrid,ress,t 1 if upward reserve from the grid is used in

period t and scenario s

power usage is constrained by the maximum production in
the considered scenarios (8).

P grid
t + PPV

t + PDG
t + P dis

t = Lt + P ch
t (2)

P grid
t +Rgrid,u

t ≤ Ngrid ·max
t
Lt (3)

Rgrid,d
t ≤ P grid

t (4)



PDG
t +RDG,u

t ≤ PDG
max · uDG

t (5)

PDG
t −RDG,d

t ≥ PDG
min · uDG

t (6)∑
t

uDG
t ≤ Tmax

DG,on (7)

PPV
t ≤ max

s
PVt,s (8)

The rest of the first-stage constraints (9)-(14) describe the
battery-based ESS constraints.

P ch
t ≤ P rated

ESS · ucht (9)

P dis
t ≤ P rated

ESS · (1− ucht ) (10)

SOEt = SOEt−1 + CEESS · P ch
t ·∆T

−DEESS · P dis
t ·∆T ∀t > 1 (11)

SOEt = SOEini + CEESS · P ch
t ·∆T

−DEESS · P dis
t ·∆T, t = 1 (12)

SOEt ≤ SOEmax (13)

SOEt ≥ SOEmin (14)

The second-stage constraints, that involve only variables
that are dependent on specific scenario realizations, and the
linking constraints, which involve both types of variables, are
described by (15)-(39). The ESS constraints are expressed by
(15)-(24). The differences in charging and discharging power
between the first and the second stage are expressed by (15)
and (17), while upper and lower bounds are established by
(19) and (20) and by (16) and (18), respectively. Constraints
(21) - (24) are the scenario dependent counterparts of (9)-(12).

pchs,t = P ch
t + ∆P ch

s,t (15)

∆P ch
s,t ≥ −P ch

t (16)

pdiss,t = P dis
t + ∆P dis

s,t (17)

∆P dis
s,t ≥ −P dis

t (18)

∆P ch
s,t ≤ P rated

ESS − P ch
t (19)

∆P dis
s,t ≤ P rated

ESS − P dis
t (20)

pchs,t ≤ P rated
ESS · uch2s,t (21)

pdiss,t ≤ P rated
ESS · (1− uch2s,t ) (22)

soes,t = soes,t−1 + CEESS · pchs,t ·∆T
−DEESS · pdiss,t ·∆T ∀t > 1 (23)

soes,t = SOEini + CEESS · pchs,t ·∆T
−DEESS · pdiss,t ·∆T, t = 1 (24)

The power balance in the second-stage is expressed by (25),
while the limitations for scenario-dependent load shedding and
available PV production spillage are expressed by (26) and
(27), respectively.

PVt,s − spPV
s,t + pDG

s,t + pgrids,t + pdiss,t

= Lt − lsPV
s,t + pchs,t (25)

lsPV
s,t ≤ Lt (26)

spPV
s,t ≤ PVt,s (27)

Restrictions regarding the energy procurement from the grid
are described by the following set of equations. In (28)-(30)
the up and down reserves that are deployed in the second
stage are within the limits imposed by the first stage, showing
the possibility of increasing or decreasing grid participation in
a scenario realization. The maximum of up or down reserve
is constrained by a limit imposed by the network maximum
participation in covering the energy needs of the event over
the planning horizon, as indicated by (31) and (32). The use of
a binary variable prevents up and down reserves from having
a nonzero value simultaneously.

pgrids,t = P grid
t + rgrid,us,t − rgrid,ds,t (28)

rgrid,us,t ≤ Rgrid,u
t (29)

rgrid,ds,t ≤ Rgrid,d
t (30)

rgrid,us,t ≤ Ngrid ·max
t
Lt · ugrid,ress,t (31)

rgrid,ds,t ≤ Ngrid ·max
t
Lt · (1− ugrid,ress,t ) (32)

The last set of second-stage and linking constraints are
related to the DG model and are expressed by (33)-(39),
restricted again by the first-stage reserves.

pDG
s,t = PDG

t + rDG,u
s,t − rDG,d

s,t (33)

rDG,u
s,t ≤ RDG,u

t (34)

rDG,d
s,t ≤ RDG,d

t (35)

rDG,u
s,t ≤ PDG

max · u
DG,res
s,t (36)

rDG,d
s,t ≤ PDG

max · (1− u
DG,res
s,t ) (37)

pDG
s,t ≤ PDG

max · u
dg2
s,t (38)

pDG
s,t ≥ PDG

min · u
dg2
s,t (39)

B. Scenario generation and reduction

The PV production scenario generation and reduction is
based on machine learning techniques. Initially, a number of
k-Nearest Neighboors Regression models are fit to different
time spans of historical data in order to obtain an initial pool of
equiprobable scenarios. Then, a scenario reduction technique
based on the k-means clustering algorithm is used in order to
obtain a reduced number of non-equiprobable scenarios that
coincide with the cluster centroids. The probability π(s) of
each scenario is calculated based on the number of initially
generated scenarios assigned to each cluster.
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Fig. 1. Day-ahead PV production scenarios and their associated probabilities

Algorithm 1 Online planning

1: Let x(h)
t and y

(h)
t,s be the first and second stage decision

variables, z(h)t,s be the estimation of the random variable
updated in the h-th repetition and ẑt its realization.

2: h← 1
3: Estimate z(1)t,s , π

(1)
s ∀t ∈ T

4: Solve (1)-(39) and obtain x
(h)∗

t and y
(h)∗

t,s ∀t ∈ T
5: for h ∈ H|h > 1 do
6: xt ← x

(h)∗

t ∀t ∈ T |t < h

7: z
(h)
t,s ← ẑt, πs ← 1 ∀t ∈ T |t < h

8: Update z(h)t,s , π
(h)
s ∀t ∈ T |t > h

9: Solve (1)-(39) and obtain x
(h)∗

t and y
(h)∗

t,s ∀t ∈ T |t > h
10: end for

C. Online planning

The model described by (1)-(39) provides the optimal
planning for T future periods at the time it is executed. The
solution of the optimization problem can be obtained again in
the current time interval h for the remaining time periods t of
the planning horizon. In this way, the estimation of the random
variable that is associated with the production of the PV sys-
tem can be improved in terms of updating the set of scenarios
by repeating the scenario generation and reduction technique
described in Section II-B, while incorporating newly available
information. This procedure is described by Algorithm 1.

D. Evaluation

If the scenarios and probabilities are accurate, our method
computes (and in fact minimizes) expected costs that corre-
spond to average actual costs. The introduction of a range of
possible scenario realizations however, requires an evaluation
method to test the feasibility of the algorithm and evaluate
the fluctuation of the expected cost. Hence, to demonstrate
the value of quantifying uncertainty in terms of using the
online two-stage stochastic programming tool, a benchmark
comparison with a deterministic approach of testing the model
was established.

TABLE II
CASE STUDY PARAMETERS

Parameter Value Parameter Value
cdiesellt 1.21 e/lt ∆T 0.25
γ 0.2166 lt/kWh P rated

ESS 60 kW
Ngrid 0.2 (20%) SOEmin/max 0/100 kWh
PDG
min/max

0/40 kW SOEini 50 kWh

Tmax
DG,on 36 intervals (8hrs) in T CE/DEESS 0.9/0.9

The model was executed for each one of the final set of sce-
narios created using the procedure described in Section II-B
and the day-ahead results of the first-stage variables are stored.
In other words a here-and-now decision is stored as a result
of an optimization execution for a single scenario each time,
as it would be the realized one in a deterministic approach.
Following this, the model is re-executed for each one of the
remaining scenarios with the first-stage variables fixed to the
values that were determined for the realized scenario, while the
imposed limit to grid connection is removed, and the second-
stage variables are free to take a value in the second execution.

III. CASE STUDY

Our test involves a case study using data from real summer
festival events in the Netherlands. Two months of historical
PV production public datasets were used for scenario gener-
ation [8]. Fig. 1 depicts a reduced set of scenarios that are
generated based on data available at the beginning of the
horizon, together with the actual PV production. The asset-
related parameters of this case study are provided in Table II
and are in line with those used by Dutch festival organizers.
Hourly electricity prices of the Dutch day-ahead market were
obtained from [9] for 12/7/2015. Based on field measurements
the cost of operating the DG can be approximated as a linear
function of fuel consumption. The power drawn from the grid
is restricted to 20% of the maximum load. The penalization M-
parameters both for load shedding and the spillage of available
PV production were set to 1000 e/kWh in order to highlight
the importance of uninterrupted power supply and sustainable
electrification. The time granularity used is 15 min. For the
optimization model GAMS/CPLEX were used.

A. Day-ahead Planning

First, the proposed algorithm and the evaluation approach
are executed at the beginning of the time horizon, providing
the day-ahead planning. The expected cost is 29.85 e, pre-
sented as the first execution of the online algorithm later in
Table III. The day-ahead power analytics are shown in Fig. 2.
The quantities that are illustrated correspond to the first-stage
decision variables PPV

t , PDG
t , P grid

t , P ch,ESS
t , P dis,ESS

t , as
well as the load demand Lt. Note that the algorithm fully
exploits the PV production, while despite being limited to
20% of the maximum load, power is drawn from the grid
in every time interval due to the fact that it is less costly
than the energy provided by the DG. Moreover, the ESS
charging is mainly taking place during the time intervals in
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Fig. 2. Day-ahead power analytics

which the grid electricity price is relatively low. The ESS
discharging is planned during intervals with high consumption
and relatively high electricity prices. The DG is also used
during high demand periods, and the load shedding is zero
throughout the horizon.

The day-ahead evaluation as described in Section II-D
proved to give feasible results for every scenario in the
deterministic benchmark approach. The absolute differences
between the one-scenario solution of the optimization model
and the re-optimization of the second-stage for the remaining
scenarios after fixing the first-stage variable values to the
chosen scenario demonstrate an average absolute difference
of 0.468 e and variance of 0.249 e. The evaluation shows
the feasibility and supports the solution quality, as the absolute
differences in the expected cost are relatively low. The algo-
rithm can offer a solution for all variables even if the input
is a single scenario considered as the realized one and tested
versus each of the remaining scenarios.

B. Online Planning

The online planning algorithm described in Section II-C
is executed in every time interval h (every 15 min) for all
the future time intervals t > h. The PV production scenarios
are renewed for t > h with newly available data of real
PV production for the time intervals t < h. The past PV
production with respect to the time interval h in which the
optimization is executed are fixed to the actual PV production
values.

Furthermore, all the decision variables are fixed for the
solutions of the previous time intervals (t < h) and the
SOEESS

t value for the previous time interval t = h − 1
updates the value of the SOEini

ESS of current time interval
h. The estimation of the planning costs in key time intervals
is presented in Table III. The feasibility of the planning
solutions offered by the online planning tool is indicated by
the fact that neither load shedding nor spillage of available
PV production is noticed for the subsequent repetitions of the
algorithm. The aforementioned results ensure that the uninter-
rupted electrification of a festival event is possible by using
the proposed online planning tool, while the resulting cost
approaches perfect knowledge of the uncertain PV production.
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Fig. 3. Online planning power analytics - 6pm.

TABLE III
ONLINE PLANNING COST MINIMIZATION

h day-ah.(12am) 6am 12pm 6pm end(11.45pm)
EC(e) 29.85 29.85 30.9 31.36 32.09

The power analytics for the optimization execution that
takes place at 6pm are displayed in Fig. 3. The lightly shaded
area before t = 72 indicates time periods in which the decision
variables are fixed to their realized values from previous
executions of the algorithm and the PV production is set
to its actual value. On top of previous fixed decisions the
change on PV scenarios renewed by the new production data
within the day affects the new planning. For example, the
energy that is drawn by the ESS is increased in order to cover
the consumption needs in the last intervals of the planning
horizon. This result also reinforces the feasibility argument:
there is sufficient energy left in the battery in combination with
adequate capacity of resources even during the last intervals
of the horizon.

IV. CONCLUSIONS

In this study an uncertainty-aware online planning algorithm
for the electrification of festival events based on two-stage
stochastic mixed-integer linear programming was presented.
The obtained results indicate that despite the increased com-
plexity in comparison with simpler algorithms, the proposed
algorithm is capable of offering a planning solution that
guarantees the uninterrupted electrification of festival events
at a cost that approaches the optimal cost of a deterministic
optimization that assumes perfect knowledge of the uncertain
photovoltaic production. This is achieved by adapting newly
available information on the realization of the uncertain vari-
able that allows for improvements in the the quantification
of uncertainty. Festival organizers can trust such a decision-
making tool in order to optimize their planning, operational
resources and costs. Here, the load demand was considered
perfectly known, based on the fact that most loads are known
beforehand (e.g., lighting needs). Nevertheless, uncertainty
introduced by an unusually large number of visitors could be
considered in future work.
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