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Abstract. Our research is developing flexible strategies for forming and
routing future platoons of automated urban logistics vehicles. We pro-
pose the notion of compensational platooning using automated negoti-
ation between agents representing vehicles. After the vehicles reach the
end of a common route, an agent can propose part of its route along
with a monetary value to platoon partners for further together-travel.
If negotiation is successful, a new platoon is formed and follows the
proposed route. If the compensation is too small or the route proposed
oversteps the agent’s limitations, the offer is rejected and the vehicles
continue their travel separately. A contribution of this paper is a negoti-
ation strategy that proposes compensation based on beliefs of what the
opponent’s payment threshold would be. In doing so, the bid with the
highest acceptance likelihood is calculated, keeping negotiations short
and effective. Our model is tested on a synthetic network and a real ur-
ban example. We show that by using negotiation, vehicles can identify
mutually beneficial new routes that a centralised/distributed approach
would not find, with utility improvements of up to 8%.

Keywords: Automated negotiation · Opponent modelling · Platoon
matching · Decentralised agent coordination.

1 Introduction

With the steady growth of e-commerce, logistic providers are expanding and
accelerating the way they conduct their shipments to same-day deliveries. To
reduce emissions, road occupancy and the costs of logistics companies, small
electric autonomous delivery vehicles could take over deliveries. However, having
multiple such vehicles in an already congested network could further impede
traffic and ultimately prove to be chaotic and counterproductive.

As a solution we investigate platoons, a formation where vehicles travel with
small inter-vehicular distances, behaving as one unit. Platooning has been shown
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to positively affect traffic through better usage of road-space [1], and deconges-
tion of intersections in urban environments [8]. To increase the probability of
platoons forming, we require technology that allows vehicles from different logis-
tic service providers to cooperate. Encouraging such competitive formations will
be done by monetarily incentivising vehicles, along the lines of the fuel savings
sharing presented in [4]. The authors found that optimal individual utility is
reached with an even distribution of profits between competing vehicles.

While optimisation methods can create mutually beneficial routes for all vehi-
cles considered, agent negotiation can be leveraged on top of existing centralised
and distributed solutions to further improve utility. Therefore, compensational
platooning is offering payment for vehicles to travel together in a platoon af-
ter the end of an optimiser-found route. The compensation needs to be high
enough to convince the opponent to participate, while also being low enough for
the ego-vehicle to prefer cooperation over the status quo solution. To increase
the likelihood of an agreement being reached, vehicles should be equipped with
an opponent modelling module. Our work presents a general model of turning
knowledge collected about the opponent into a bid acceptance probability. By
having an approximate insight of the opponent’s reservation value, we can cal-
culate agreeable bids, ensuring that at every round, only the best offer is being
made. We show that negotiation provides a benefit when added to a distributed
solution (presented in [10]), by allowing vehicles to form platoons on routes that
may not necessarily be beneficial for all vehicles, but can be made more attractive
through payments.

2 Related work

A distributed approach to platoon formation is presented in [10], which uses an
optimisation algorithm to find the longest common route between vehicles while
respecting their limitations. Road-side units (RSU) equipped with the algorithm
are distributed at every node in the network and get triggered when two or more
vehicles are at the same place at the same time. The algorithm dynamically
groups and routes the vehicles according to traffic density, the vehicles’ current
position, destinations and restrictions.

In the context of traffic and platooning, negotiation is used mainly as a con-
flict resolution mechanism; either merging [7], vehicle ordering [6], or intersec-
tion crossing [9]. None of these works employ negotiation as a platoon formation
method.

Ensuring that the strategy used during negotiation will lead to win-win, as
well as non-exploitative solutions, we turned to opponent modelling techniques.
Previous works focused on estimating reservation value [13] or strategy [3]. Ac-
ceptance probability research [5] considered the case where the two negotiation
parties have interacted before and can use previous knowledge to model the bids
their opponent is more likely to accept. In this work, however, we tackle the prob-
lem of opponent modelling by creating an acceptance probability of bids based
on estimations of the opponent’s reservation value without prior knowledge.
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3 Model

Routes Each vehicle has a route, which is given to it by its logistics provider
or the RSU situated in the environment. The latter is responsible for the initial
creation and routing of the platoon with an optimiser approach. For our scope we
consider a route to be a sequence of edges defined as R = ((Split, Vi), (Vi, Vi+1),
..., (Vn, Destination)) for all vehicles, where Split is the split point (end of the
common route given by the RSU) and Vi intermediary nodes.

Pricing To incentivise platoon travel, traffic management authorities can use
congestion pricing, represented by traffic density de (the number of vehicles
per time unit in a specific space). Alone travel incurs full payment, whereas
platoons receive preferential prices due to their proven decongestion abilities [8].
The congestion price of an edge increases with the platoon size, which is then
shared among the vehicles comprising it [4].The price function is defined as

pe =

{
de/nvp+ de/ω, if nvp > 1

de, otherwise
(1)

where nvp is the number of vehicles in a platoon and ω the increase coefficient
imposed by traffic management (based on the congestion in the immediate area).

Utility function Traditionally, the goal of routing problems is to either min-
imise cost, travel distance or travel duration [12]. With these three aspects, we
can represent the vehicle’s preferences using an additive utility function depend-
ing on route length(l) and pricing(p). The latter encompasses costs and time
spent in traffic due to their dependence on traffic density. Therefore, the utility
function is defined as

Uveh = −
∑
e∈R

(π · le + ρ · pe) (2)

with the purpose of maximising, π, ρ representing the vehicle’s preferences and
π + ρ = 1; π, ρ ≥ 0.

Agents Vehicles are represented by agents that have a set of preferences and
limitations. They seek to improve their utility through platoon formation by
communicating with nearby agents and making offers about alternative routes
they can travel on together.

Offers An offer consists of a route and a monetary compensation (R, comp).
The route will contain a subsequence of the initiating agent’s best route and be
noted as R′i. The compensation is an amount of money offered by the initiator to
convince a potential accepting agent to agree to travel together on the proposed
route. A viable compensation lies at the intersection of both agents’ acceptable
offer spaces.
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Compensation offer space This is defined by the aspiration and reservation
values. For the initiating agent i, the compensation offered is financed through
the savings generated from platooning. The maximum compensation offered will
be denoted as the reservation value compi = [0;RVi]. For the accepting agent
a, the compensation offered has to be high enough to get it to change its route.
The minimum compensation it will accept, also noted as reservation value, is the
one that provides the same utility as its original best route compa = [RVa;∞).

Protocol We consider bilateral negotiations with the protocols used being ei-
ther a Take it or Leave it (ToL) or an Alternating Offers protocol. Allowing for
feedback from the opponent, an agent can adjust their bids to increase the like-
lihood of the negotiation ending in an agreement. We included ToL as a baseline
approach to negotiation for comparison with our more advanced bidding strat-
egy.

Deadline A deadline is the upper limit on negotiation rounds and is set by the
traffic management authority based on how congested the immediate area is.

3.1 Problem solution

The initiator selects a subset of edges from its ideal route, computes a compensa-
tion based on its reservation value and sends it out to possible accepting agents.
The reservation value is calculated as RVi =

∑
e∈R′

i
de − pe. For an accepting

agent to be able to fully assess the viability of an offer, it needs to receive a
complete route, from the split point to their destination. This is done by the
RSU, supplementing the route offered by the initiator and having it finish at the
acceptor’s destination. The acceptor knows the compensation comp offered and
the de and le for all the edges in the new route R′a. However, it does not know the
price it is expected to pay and by extension the platoon savings; since it could
then extrapolate the initiator’s ideal route and reservation value. This is covered
by the RSU, which supplements the value of the offer with the corresponding
platoon savings. The acceptor ensures the proposed route does not exceed its
limitations by calculating the utility.

U ′a = −π ·
∑
e∈R′

a

(le)− ρ · [
∑
e∈R′

a

(de)− comp] (3)

If any limitations are met, the utility returned is 0. Afterwards, it computes its
reservation value for the proposed route.

RVa = (Ua +
∑
e∈R′

a

π · le)/ρ (4)

If the compensation offered by the initiator is below the previously calculated
reservation value, the accepting vehicle can send a counter-offer with higher com-
pensation to increase its utility. The agents engage in making alternative offers
within their defined offer space until an agreement is reached or the deadline
expires.
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4 Negotiation Strategy

To increase the likelihood of bids being accepted, they are chosen based on the
knowledge agents can extrapolate about their opponent. Agents keep track of a
probability distribution of their opponent’s reservation value which they update
with every new bid received. Based on this they calculate which of their bids can
be accepted. However, the bid that has the highest likelihood of being accepted
does not necessarily translate to better utility, since the concession made could
be too large. Determining how much to concede at every step, is done by Baarslag
et al.[2] with the Greedy Concession Algorithm. Given our setting, we assume
that the opponents follow a time-based strategy, making concessions based on
the time available until the deadline.

Estimating the reservation value The agent’s offer space is bound by their
aspiration and reservation values, but during negotiation, the aspiration value
will change to reflect the possible payment interval at a specific time. Therefore,
we consider a fixed interval when calculating bids, which will be [X(0)i, RVi] for
an initiator and [RVa, X(0)a] for an accepting opponent, where X(0) represents
their first offer/counteroffer. The opponent’s bids follow a concession curve [3],
dependent on time and strategy, encompassed in the α coefficient, which can
follow either a polynomial or exponential curve.

X(n) =

{
RV + (1− α(n)) · (X(0)−RV ), if agent is initiator

X(0) + α(n) · (RV −X(0)), if agent is acceptor
(5)

While a correct estimate of the reservation value can be obtained by studying
the opponent’s strategy, our approach is to transform a probability distribution
of the reservation value to an acceptance probability of bids. An agent starts
negotiations with an uninformed prior and with every round updates its beliefs
about the opponent, thus skewing the reservation value distribution.

RV to Acceptance Probability As mentioned before, bids follow a concession
curve as time progresses based on the agent’s strategy, which ends at the deadline
in their reservation value. By having a distribution of the potential reservation
value, we can create multiple such curves, with a higher density at its peak
(the black lines in Figure 1). The acceptance probability of any of our bids
depends on the values on these curves for the specific time-step considered. Our
bid has a higher acceptance probability if it is higher than the projected values
for an initiator opponent, and lower for an acceptor opponent. Therefore, the
probability of a bid Y (s) being accepted is:

P (Y (s))accepted =

{
P (X(s) ≤ Y (s)), if opponent is acceptor

P (X(s) ≥ Y (s)), if opponent is initiator
(6)

where X(s) is defined in Equation 5. With the resulting tuples of bid and accep-
tance probability, the agents calculate their ideal bids and their sequence using
the Greedy Concession Algorithm [2].
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Fig. 1. Bid Y(s) with respect to the conces-
sion curves of a normal RV distribution for
an initiator opponent.

Fig. 2. Example network.

5 Experiments

To validate our approach, we used a simulation framework that incorporated
vehicular movement and platooning, as well as a negotiation component con-
taining the bidding module. As a benchmark for comparison, we are using the
distributed platooning approach presented in [10]. This current paper studies
strictly the effect negotiation has on platoons when they reach the end of the
distributed-found route. As an illustration, we present the network in Figure 2
where the notations on the edges represent their respective traffic density. We
currently consider just a two-vehicle platoon (Blue and Red) starting at node O,
trying to get as ”cheaply” as possible to their destinations B and R. For gener-
alisability, an alternative network was modelled, depicting the Tiergarten neigh-
bourhood in Berlin paired with a realistic traffic demand model derived from
[11]. For the experiments we considered greedy agents that seek to maximise
their profit, hence the coefficients of the utility function were: π = 0.2, ρ = 0.8.

Fig. 3. Vehicle platooning with optimisation(a) and negotiation(b) approach.
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Illustration With the optimiser approach presented in Figure 3a, the platoon-
ing stops at node S, with each vehicle travelling individually to their destination
from there. When we introduced negotiation Blue made an offer for edge S-B,
and with the ToL protocol the compensation offered lead to rejection and thus,
the same results as the optimiser solution. When using the Alternating Offers
protocol paired with the bidding strategy, Red accepted the offer and the ve-
hicles continued travelling in a platoon until node B (Figure 3b)), where Red
continued alone to its destination R. The costs accrued by the vehicles were im-
proved using negotiation and by extension, so did the utility (see Table 1). For
the cost, we have a saving of 1.88% for Blue and 12% for Red. As for the utility,
we measured a 1.83% and 8.13% improvement for Blue and Red respectively.

Berlin Tiergarten We also investigated the applicability of our approach on a
realistic example, namely the Tiergarten neighbourhood of Berlin. For the sake
of continuity, we consider Blue to be the initiating agent and Red to be the
accepting agent. They split after platooning for two edges, Blue offers one extra
edge, which leads to Red travelling an extra three edges alone. Much like the
previous example, the compensation of the offer made with the ToL protocol is
not sufficient and leads to rejection. This is attributed to the length of the detour
route, whose influence can be more clearly seen in Table 2. Using the Alternating
Offers protocol an agreement is reached and the agents continue platooning. The
savings that negotiation offers, in this case, are rather small. We do note that
the example provided as the illustration is also based on the Berlin network.
Therefore, we claim that more notable improvements are realistic, in the case of
shorter and less crowded streets.

Table 1. Numerical results for Illustra-
tion network.

Vehicle Cost Distance Utility

Optimiser
Blue 9 1 -7.4
Red 7 1 -5.8

Negotiation
Blue 8.83 1 -7.264
Red 6.16 2 -5.328

Table 2. Numerical results for Berlin
Tiergarten.

Vehicle Cost Distance Utility

Optimiser
Blue 324 0.466 -259.2932
Red 1191 0.094 -952.8188

Negotiation
Blue 318.11 0.466 -254.5812
Red 1155.89 3.2 -925.325

6 Conclusion and Outlook

With this paper, we incorporate negotiation between vehicles as a way of de-
centralised platoon building while addressing the specific requirements related
to negotiation in urban traffic (effective bids and quick agreements). To ensure
that the offers made will lead to a win-win conclusion, vehicles are equipped with
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an opponent modelling module. We present a negotiation strategy that models
the acceptance probability of an agent’s bids based on ever-updating knowledge
about the opponent. This allows the vehicle agents to reach an agreement quickly
and effectively by offering bids with a high likelihood of being accepted. The ex-
periments show an improvement in both cost and utility. Testing on a real urban
network with realistic traffic demand proved that this approach is effective, but
would be best suited on short and non-traffic heavy streets, where there is a
higher number of alternative routes that the vehicles can follow. This model
can support platoon-to-vehicle and platoon-to-platoon negotiation as well, since
a platoon would act as a singular agent, aggregating the utility functions of its
vehicles and then negotiating on their behalf. Further research can address those
scenarios, as well as multilateral negotiations.
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