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Abstract—The last two decades have seen a growing interest
in automated agents that are able to negotiate on behalf of
human negotiators in a wide variety of negotiation domains.
One key aspect of a successful negotiating agent is its ability to
make appropriate concessions at the right time, especially when
there are costs associated with the duration of the negotiation.
However, so far, there is no fundamental approach on how
much to concede at every stage of the negotiation in such time-
sensitive domains. We introduce an efficient solution based on
simultaneous search, which is able to select the optimal sequence
of offers that maximizes expected payoff, given the agent’s beliefs
about the opponent. To this end, we show that our approach is
consistent with known theoretical results and we demonstrate
both its effectiveness and natural properties by applying it to a
number of typical negotiation scenarios. Finally, we show in a
number of experiments that our solution outperforms other state
of the art strategy benchmarks.

I. INTRODUCTION

Negotiation is an important process for coordinating our
actions and reaching agreements, and a crucial component
of many important decisions, such as job negotiations or
acquiring a house. We can also observe it in various everyday
situations, such as setting a calendar date with a friend, or
agreeing on a deadline. As a result, the last two decades
have seen a growing interest in the automation of negotiation
and e-negotiation systems [1], [2], and automated agents are
becoming increasingly adept at negotiating on behalf of human
negotiators [3].

A key ingredient of a successful negotiation is that both
parties make concessions during the negotiation [4]. Conces-
sions are used to elicit cooperation from the other, to convey
information to the opponent about the negotiator’s preferences
and, perhaps most importantly, to accommodate the pressure
of time [5], [6]. The fact that time is costly (typically in the
form a deadline or a perceived maximum number of bidding
rounds) puts important pressure on the parties to reduce their
aspirations and operates as a force on the parties to concede.
For example, a house searcher whose own house is getting
sold might have ample time for a few negotiation exchanges,
but may require some guarantees on the worst-time duration
of the negotiation. Another important example is that it might
be costly to generate suitable offers; e.g., when negotiating a

highly complex domain that requires significant computational
and cognitive resources.

Current automated negotiation research on concession
strategies is mainly heuristic-based. One of the most well-
known concession strategies is the family of time dependent
tactics (TDT’s) [7], [8], such as Boulware and Conceder,
which are characterized by the fact that they consistently
concede throughout the negotiation process as a function of
time. Similar concession-based behavior can also be observed
in practice in the Automated Negotiating Agents Compe-
tition (ANAC) [9], [10]. A variety of such state-of-the-art
agents, such Agent K [11] (winner of ANAC 2010) and
HardHeaded [12] (winner of ANAC 2011), as well as the time
dependent tactics, select their concessions in a heuristic-based
manner rather than being informed by fundamental theoretical
insights; therefore, they make largely unfounded choices on
how much to concede at every stage of the negotiation. In
addition, there is a surprising lack of automated negotiation
strategies that can proficiently take time-sensitive domains into
account when deciding on an offer.

Against this background, we introduce a fundamental,
decision-theoretic approach that optimally solves how to con-
cede in time-sensitive domains, given certain beliefs about
the opponent. Moreover, we present an algorithm that does
so in a computationally efficient manner. This is not an easy
task as there is a significant amount of planning involved in
the optimal selection of bids: what should be offered at one
moment naturally depends on the consequences of having it
rejected and relying on subsequent bids. Conversely, reasoning
backward poses a similar challenge, as what can be offered
later depends on time costs dispensed earlier in the negotiation.

By adapting a technique from search theory called simulta-
neous search [13], our solution looks ahead and selects, given
the agent’s current beliefs, the optimal sequence of offers that
maximizes expected payoff, while incurring the least amount
of costs. Specifically, we calculate how many concessions
we should make to optimize expected utility, in what order
to make them, and how much we should concede at every
negotiation step, given a model of the opponent’s likelihood
of accepting different offers.

Our solution exhibits the same properties as known the-



oretical results for a classic resource division problem of
splitting a pie. Furthermore, we demonstrate its use in both
distributive (i.e. single-issue, win–lose) and integrative (i.e.
multi-issue, win–win) bargaining scenarios. We show that
our algorithm exhibits desirable negotiation behavior such as
compromising over time and aiming for fair and win-win
outcomes. Moreover, we show that although the brute force
method is intractable, the optimal strategy can be calculated
in O(n2 log n) time as a function of the domain size.

We begin with a discussion of related work in Section II
and then we formalize our problem setting in Section III.
We formulate our optimal concession strategy in Section IV,
and we apply it to two negotiation cases in Section V. We
subsequently compare our solution with state of the art bidding
strategies in a series of tests (Section VI). We conclude our
paper in Section VII, which summarizes the contributions of
this work and outlines its implications.

II. RELATED WORK

The problem of finding an optimal bidding strategy under
uncertainty is also studied by Fatima et al. in [8]. They deter-
mine optimal negotiation strategies for different information
states and environments (e.g. symmetrical or asymmetrical
deadlines) and conditions for their convergence. In this paper,
the strategy set of both agents is restricted to time-dependent
strategies as defined in [7], and only single-issue bargaining is
studied. This is later extended in [14] to a multi-issue setting,
but their focus is on finding optimal negotiation agendas
and procedures, rather than negotiation strategies. Similarly,
Hao et al. [15] focus on concession curves in discounted
domains by introducing a parameter to balance exploiting and
compromising. Much like the state-of-the-art agents mentioned
in the introduction ([11], [12]), they build upon the heuristic
approach of the time-dependent tactics.

Work that presents optimal choices of how much to
concede also includes game theoretic work, for example in
single-shot bargaining and the ultimatum game. For instance,
Rubinstein [16] studies negotiation strategies in which each
players bears a fixed cost for each period. Rubinstein finds
equilibrium strategies in several different scenarios relating to
differences between bargaining costs of the two players. This
approach assumes a complete information setting, in which
the deal is struck immediately, which we cannot easily apply
to a typical concession-based negotiation of multiple rounds.
Furthermore, this type of work typically revolves around
equilibrium strategies, which assumes full rationality on the
part of both agents. Our approach uses methods from decision
theory, focusing on optimal solutions for one negotiating party,
given certain beliefs about the opponent.

Another principled approach in formulating a concession
strategy is given by Williams at al. [17]. They use Gaussian
processes to predict the opponent’s future behavior and to
set the agent’s concession rate dynamically during the ne-
gotiation by calculating the optimal time for an agreement.
This approach only works in a real-time setting with many
possible exchanges and when time pressure is induced by
discount factor. We cannot meaningfully employ this technique
in domains with different costs and a discrete time line.

An alternative approach is to study behavior dependent
tactics that reciprocate the opponent’s concessions (e.g. by
employing tit for tat [7], [18]). Such adaptive strategies base
the decision to make concessions on the actions of the other
negotiating party, but they do not give us any information on
how to concede based on time and costs.

III. PROBLEM SETTING

Our negotiation setting consists of a negotiation domain
Ω = {ω1, . . . , ωn}, which contains all possible negotiation
outcomes or agreements. In this work, we focus on bilateral
automated negotiations, in which agents take turns in exchang-
ing offers using the alternating offers protocol [16]: at every
point in time, the agent can make a bid to the opponent, and
the opponent responds by indicating whether or not the offer
is acceptable; if the offer is rejected, the opponent can respond
with a counter-offer, and the process continues.

While the domain is common knowledge to the negotiating
parties, the preferences of each player is private information.
The agent and the opponent both have a utility function,
denoted U and Uopp respectively, which maps each outcome
ω ∈ Ω to a utility in the range [0, 1]. As the players do not
have access to the utility function of the opponent, they will
need to learn about the other during the encounter and/or from
previous encounters. To this end, the agent has an opponent
model, in the form of independent acceptance probabilities pω
for every outcome ω, and which can be updated after each
negotiation exchange.

The agent models its time-sensitivity through a cost func-
tion c(k), assigning a cost to the maximum length k (i.e.,
the maximum number of offers made by the agent) of the
negotiation. Note that this implies that the costs depend on
the number of selected offers and hence not on the particular
order in which they are offered. Such cost functions can
arise in a number of different circumstances. For example,
the bids can be costly for the agent to generate; e.g., because
they require computational resources or costly user feedback.
Another reason may be the cost associated with the uncertainty
about the duration of the negotiation; e.g., the longer the
negotiation is allowed to go on for, the more uncertainty a
seller has with respect to planning, stocking, etc. We do not
restrict the specific type of cost function, but a special case we
focus on in the paper is a deadline; by setting c(k) = 0 for
k < D and c(k) =∞ for k ≥ D, the costs impose a deadline
in the form of a specified maximum number of rounds D ∈ N.

The agents seek to reach an agreement while at the same
time aiming to maximize their own utility. Note that simply
maximizing the expected utility in the current round, i.e.,
sending the bid ω that maximizes pω · U(ω) may not be
optimal, as it could be more beneficial, costs permitting, to
take a chance with more ‘risky’ bids; i.e., offers with higher
utility and a lower probability of being accepted.

Therefore, the agent needs to plan ahead when deciding on
an offer. To this end, the agent needs to decide not only on a
number k of bids to make, but also, at the same time, which
bids x1, . . . , xk ∈ Ω to make. That is, if we denote by

Ω≤n =
⋃

1≤k≤n

Ωk



the set of all possible bid sequences, the agent’s goal is
to determine a sequence of bids (x1, . . . , xk) ∈ Ω≤n (not
containing duplicates) that optimizes the expected negotiation
payoff ; i.e., the expected utility of sending the first bid, or,
when this is rejected, the expected utility of the second bid,
and so on, subtracted by the costs:

px1
U(x1)+(1−px1

) [px2
U(x2) + (1− px2

) [· · · ]]−c(k). (1)

In principle, one could calculate the optimal sequence by
sampling every element of Ω≤n and selecting the one with the
highest expected payoff. However, this would take factorial
time to accomplish, which is infeasible even for a moderately
sized negotiation space. In the next section, we will provide
an algorithm that finds the optimal sequence in O(n2 log n)
time.

IV. OPTIMAL BIDDING STRATEGY

Given a sequence of bids π ∈ Ωk, rearranging the terms in
Eq. (1) yields the following expression for the expected utility
of π:

EU(π) =

k∑
i=1

pxi
U(xi)

i−1∏
j=1

(1− pxj
)− c(k).

Our goal is to find the optimal bid sequence of arbitrary length
k ∈ {1, . . . , n}:

π∗ = arg max
π∈Ω≤n

EU(π).

Note that there are three distinct aspects to solving this
equation for π∗: we need to find the number, the set, and the
order of the bids. We start with a crucial lemma stating that, for
every sequence of bids, it is best to offer them in decreasing
order of utility, regardless of the accompanying acceptance
probabilities.

Concession Lemma. Let k ∈ N and x1, . . . , xk ∈ Ω be such
that

(x1, . . . , xk) = arg max
π∈Ω≤n

EU(π).

Then, U(x1) ≥ U(x2) ≥ · · · ≥ U(xk).

Proof: The proof runs as a bubble sort on the sequence of
bids, similar to the exchange argument in [19], but this time
involving a costly selection mechanism. Suppose, on the con-
trary, that there exists an s < k such that U(xs) < U(xs+1).
We will show that π = (x1, . . . , xk) cannot possibly be
optimal. Let π be defined by swapping xs and xs+1 in π.
We have:

EU(π) =

s−1∑
i=1

pxi
U(xi)

i−1∏
j=1

(1− pxj
)

+ U(xs+1)pxs+1

s−1∏
j=1

(1− pxj )

+ U(xs)pxs
(1− pxs+1

)

s−1∏
j=1

(1− pxj
)

+

k∑
i=s+2

pxi
U(xi)

i−1∏
j=1

(1− pxj
)− c(π).

Therefore,

EU(π)− EU(π) = U(xs+1)pxs+1 + U(xs)pxs(1− pxs+1)

− U(xs)pxs
− U(xs+1)pxs+1

(1− pxs
)

= U(xs+1)pxs+1
pxs
− U(xs)pxs

pxs+1

> 0.

The Concession Lemma drastically reduces the number of
sequences we need to inspect to find the optimal bid sequence.
Since we know a concession-based strategy is optimal, it
suffices to focus on the number of concessions, and how much
to concede at every time step. Note that the Concession Lemma
does not state that we should simply make bids from highest
to lowest utility; it merely expresses that, once we know the
optimal sequence of bids, they need to be sent out in decreasing
order. In particular, it does not tell us how to select the right
bids to optimize EU(π).

Interestingly, a similar situation occurs in the cascade
model studied in sponsored search literature [20], in which
ads can be placed in ranked slots which are traversed linearly
by a user. Each ad ai in slot i is either clicked with probability
qai , or skipped with probability cai , after which the scanning
process continues with slot i + 1. A classic result by Kempe
and Mahdian [19] is that the optimal placement of the ads
is characterized by the fact that their ratios U(ai)qai

1−cai
are

sorted in decreasing order. Neither model subsumes the other,
as our model incorporates cost, while [19] has a general
skipping probability cai . However, comparing the two methods
is possible when setting costs to zero and cai = 1 − qai , in
which case Kempe and Mahdian’s solution implies the ads (or
bids, in our case) need to be tried in decreasing order of utility.
As we will see below, this is consistent with the behavior of
our algorithm, which does exactly this for the special case of
no costs, in an arguably more straightforward way the dynamic
programming solution proposed in [20].

Before we formulate a greedy algorithm for finding π∗ and
prove that it is optimal in Theorem IV.1, we first provide some
definitions. For any set of bids S ⊆ Ω, define incr(S) as its
corresponding sequence sorted by descending utility in terms
of U . That is, incr(S) = (x1, . . . , x|S|), such that ∀i(xi ∈ S∧
U(xi) ≥ U(xi+1)). The marginal improvement of an offer ω
with respect to an existing sequence (x1, . . . , xk) is simply the
added negotiation payoff of placing ω in the right place of the
sequence; i.e., EU(incr({x1, . . . , xk, ω}))−EU(x1, . . . , xk).

Greedy Concession Algorithm (GCA). Iteratively select, in
a greedy manner, bids that maximize marginal improvement in
expected negotiation payoff, until this becomes negative. Send
these bids out in order of decreasing utility. (See Algorithm 1.)

The algorithm is greedy in the sense that once it has
selected a set of bids {x1, . . . , xk−1}, it chooses the best
addition xk to this set by maximizing marginal improvement.
Note that in line 5 of the algorithm, we can disregard the
costs when maximizing EU , as the cost function does not
depend on the order. The costs come into play, however, in the
termination condition on line 6. We can prove that, in principle,
every additional bid increases expected utility if we disregard
the costs. Therefore, the GCA continues to include bids until



Algorithm 1: Greedy Concession Algorithm (GCA)
Input: The current negotiation state.
Output: A sequence π∗ of optimal bids.

1 begin
// Update using opponent model

2 for ω ∈ Ω do
3 update(pω);
4 for k ∈ {1, . . . , |Ω|} do

// Note this invokes cost c(k)
5 xk ←−

arg max
ω∈Ω\{x1,...,xk−1}

EU(incr({x1, . . . , xk−1, ω}));

6 if EU(incr({x1, . . . , xk})) <
EU(incr({x1, . . . , xk−1})) then

7 k ←− k − 1;
8 break;

// Sort result in decreasing order
9 π∗ ←− incr({x1, . . . , xk});

10 return π∗

even the best addition lowers overall expected utility due to
marginal costs. For instance, disregarding costs, for k = 1, the
GCA simply selects the offer with the highest myopic payoff:

x1 = arg max
ω∈Ω

EU((ω)) = arg max
ω∈Ω

pωU(xω).

For x2, it selects the best bid, given that it has already selected
x1. The GCA will offer x2 either before or after x1, depending
on the utility order:

x2 = argmax
ω∈Ω\{x1}

EU(incr({x1, ω}))

= argmax
ω∈Ω\{x1}

{
pωU(ω) + (1− pω)px1U(x1), if U(ω) ≥ U(x1)

px1U(x1) + (1− px1)pωU(ω) otherwise.

We can prove, using techniques from simultaneous search
theory [13], that remarkably, a greedy strategy is actually
optimal for particular forms of the cost function.

Theorem IV.1. If c(k) is a convex increasing function, then
the Greedy Concession Algorithm selects the optimal sequence
of bids π∗ = arg max

π∈Ω≤n

EU(π).

Proof: Let k ∈ N be such that π∗ = (x1, . . . , xk). From
the Concession Lemma we know that U(x1) ≥ U(x2) ≥ · · · ≥
U(xk). Now, instead of sending out offers x1 to xk one by one,
we imagine sending them all simultaneously to the opponent,
who accepts a subset of these bids and communicates this back
to the agent. It is easy to verify this is equivalent given the
agent’s current beliefs, as long as the agent always elects the
highest bid in the subset of accepted bids:

π∗ = arg max
S⊆Ω,|S|=k

EU(incr(S)).

In this form, the problem is about finding the opti-
mal set of bids, which can be solved by simultane-
ous search techniques [13]. Since the function S 7→∑k
i=1 pincr(S)iU(incr(S)i)

∏i−1
j=1(1 − pincr(S)j ) is downward

recursive and c is a convex increasing function defined in

terms of |S|, the greedy marginal improvement algorithm is
optimal [13].

Note that the optimality of the GCA holds for the agent’s
current beliefs, namely after the updating has been performed
on line 3. These beliefs may change as a result of negotiation
exchanges with the opponent at later stages; therefore, a new
optimal solution needs to be calculated at the start of every
round. Fortunately, the complexity of the algorithm greatly
improves over the naı̈ve approach of an exhaustive search over
Ω≤n:

Proposition IV.1. The complexity of GCA is O(n2 log n).

Proof: The bottleneck of the GCA is in line 5, where the
set {x1, . . . , xk−1, ω} is sorted n−k+1 times to compute the
expected utility. However, {x1, . . . , xk−1} can be sorted once
beforehand, so interleaving ω can be achieved in O(log k). In
the worst case (i.e., c(k) ≡ 0), the outer loop on line 4 never
breaks, and therefore, n+(n−1)+ · · ·+1 = O(n2) outcomes
are tested to maximize EU , resulting in O(n2 log n) overall
complexity.

Observe that one can improve the complexity bound in
case the costs induce a deadline D: the breaking condition of
Algorithm 1 on line 6 is then guaranteed to hold after D steps,
leading to O(n2) complexity.

V. APPLICATIONS

In this section, we show how to apply the GCA to a number
of negotiation scenarios. We first focus on a well-studied case
involving a single negotiation issue with strictly opposite pref-
erences in V-A, which is an example of distributive bargaining.
We also study an integrative bargaining case concerning a
multi-issue negotiation scenario in V-B.

A. Dividing a Single Resource

As a concrete example of the conceding behavior of the
GCA, we will consider a classical resource division scenario
in which two players need to divide a unit-sized pie [16],
[21]. This scenario is often studied in a game theoretic setting
(e.g. [16]); in single-shot bargaining, it is also known as
the ultimatum game [22]. These approaches usually assume
a complete information setting with fully rational players, in
which the deal is struck immediately. Here, we are interested
in an optimal concession-based solution for one negotiating
party, given certain beliefs about the opponent.

We discretize a pie Ω into n slices of size 1/n, after which
the agents need to reach an agreement on who gets what part of
the cake. That is, we instantiate Ω = {0, 1/n, . . . , 1}, where
every outcome x ∈ Ω represents the part x that the agent
receives, while the opponent receives 1 − x. We assume the
players have linear preferences over the pie, so that U(x) = x,
and the acceptance probability of the opponent is the opposite:
px = 1− x.

Given a deadline D, which bids should the agent select to
optimize expected utility? With one bid remaining (D = 1)
and even n, the answer the GCA gives is

x1 = arg max
x∈Ω

x(1− x) = 1/2.



The greedy algorithm also tells us which bids to consider with
more time left. Figure 1 shows the results for any D ≤ n =
100. The figure should be read as follows: for any given D
on the horizontal axis, all bids (with their utility shown on
the vertical axis) to the left of k are selected by the GCA,
and then offered after first being sorted in decreasing order
as per the Concession Lemma. For instance, we can see that
the bid with utility 1/2 is indeed the first one to be selected,
followed by a bid with utility 0.625. For the extreme case of
D = |Ω| = n+1, all offers are selected, which means that the
agent should simply offer all slices in decreasing order.
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Fig. 1. The order in which offer are selected by the GCA (for the discrete
variant of the resource division problem) and the theoretical optimum (for the
continuous variant). Agent utility of the offers are indicated on the vertical
axis.

The bids generated by the GCA are in line with theoretical
results known for the continuous case of this problem, in
which any real-valued division of the pie is a valid outcome.
Specifically, consider a pie represented by the unit interval,
Ω = [0, 1] ⊆ R, in which every bid x ∈ [0, 1] is allowed. It is
shown in [23] that the optimal bids are given by solutions of
the following recurrence relation vj for j ∈ N:{

v0 = 0,
vj = 1

2 + 1
2v

2
j−1.

Ordering vj (1 ≤ j ≤ k) in decreasing order yields the
required solutions x1, . . . , xk. The graph of vj is plotted as the
gray dotted line in Figure 1. The results are exactly aligned for
small k. The discrepancies between the two can be attributed
entirely to the fact that the GCA is applied to the discretized
version of the domain, while the theoretical optimum is defined
for the continuous case. In more detail, the GCA is unable to
locate shares of exactly size vj , leading to small discretization
‘errors’ that accumulate for higher k, which explains the erratic
behavior near the end of the graph. This is easily remedied
by increasing the number of partitions n or, alternatively, by
choosing an appropriate cut-off point for k, since the marginal
improvement of adding another offer decreases quickly for
higher k. For instance, in the case of n = 100, the marginal
improvement is already smaller than 0.01 for k > 8.

B. The Multi-Issue Negotiation Case

We can also readily apply the GCA to the situation in which
players negotiate multiple issues simultaneously, so that there
may exist win-win outcomes that benefit both players.

We illustrate the GCA’s behavior on a negotiation scenario
called Itex–Cypress [24], which is used in the Automated
Negotiating Agents Competition of 2010 [25]. It involves Itex
Manufacturing, a producer of bicycle components, and Cypress
Cycles, a builder of bicycles. Both sides negotiate multiple
issues at once, such as the price, delivery times, and payment
arrangements. There are 180 potential agreements in total,
which denote all combinations of values for the issues. As
before, the agent needs to take into account a deadline D.

Before we can apply the GCA to this scenario, the agent
needs to establish an estimate of the opponent’s acceptance
probabilities pω for every offer ω ∈ Ω. One straightforward
way of estimating this probability is through an estimate of
the opponent’s utility, for which we might employ a range
of state of the art preference modeling techniques [26], [27],
[28], [29]. Similar to the distributive case, suppose that the
opponent’s acceptance probability pω equals the opponent’s
utility Uop(ω).1 This assumption has a number of attractive
properties, which we now outline. Call an outcome dominated
if there exists another outcome that is preferred by both. Then
the following holds:

Proposition V.1. Suppose px = Uop(x) for all x ∈ Ω. If any
ω ∈ Ω gets selected by the greedy concession algorithm, then
all outcomes that dominate ω are also selected.

Proof: If ω is dominated by ω′, then it follows that
U(ω)pω > U(ω′)pω′ . It is shown in [13] that this implies
the marginal benefit of ω′ is higher than of ω. This holds
irrespective of any previously selected offers (as long as they
are different from ω and ω′), and therefore, ω′ will be selected
first, in line 5 of Algorithm 1.

Note that it follows that Pareto efficient outcomes are
always part of the offers selected by the algorithm. In
particular, note that the Nash point, defined as ωNash =
maxω∈Ω U(ω)Uop(ω), is the first to be selected by the al-
gorithm and hence always part of the bidding sequence if
c(1) ≤ U(ωNash)pωNash . It is important to stress this does not
imply that the Nash point is offered first (or last), as the bids
are still sorted in decreasing order after the algorithm has
finished selecting all bids. However, it does mean that the Nash
point will always be among the offered bids, and in such a way
that it is optimal to include it.

Figure 2 provides a visualization of the offers selected by
the GCA as we increase the deadline D when the agent plays
as Itex Manufacturing in the Itex–Cypress scenario. From this,
we can get a clear idea of the bidding strategy emerging from
the algorithm: in general, it tends to propose offers that are
grouped around the same iso-utility of the agent [30], with a
bias towards Pareto efficient outcomes.

The algorithm favors win-win outcomes over selfish bids
at the start of the selection phase but, as the marginal im-
provement of later bids decreases, the agent’s own utility gains
importance. As a result, the iso-curves tend to become more
vertically oriented towards the left of the figure. For instance,
the outcome with utility (0.58, 0.78) (pictured in Figure 2 as
the top-most outcome in the darkest region) is the 9th of bids to

1We expand upon alternative techniques for estimating the opponent’s
acceptance probabilities in Section VII
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Fig. 2. The bids that the GCA selects in the Itex–Cypress scenario as
we increase the deadline D. Every point represents one of the 180 possible
outcome of the scenarios. The outcomes are divided in 10 different regions,
all containing an equal amount of outcomes. Every region represents a set of
offers that is selected around the same deadline. Bids are offered from dark
to light; e.g., the dark region on the far right contains the bids selected by the
algorithm for D ≤ 18.

be selected by the algorithm, although it is only 47th in terms
of utility. This shows how desirable negotiation behavior such
as locating highly efficient outcomes for both players naturally
arises from the GCA.

VI. EXPERIMENTAL EVALUATION

In order to analyze the performance of the GCA, we developed
a negotiating agent adopting this algorithm and implemented it
within the GENIUS negotiation platform [31]. GENIUS is an en-
vironment for designing and evaluating automated negotiators’
strategies, and has been used for the Automated Negotiating
Agents Competition (ANAC) [9], [25]. We compared the per-
formance of the GCA agent to the top performing negotiation
agents from the past ANACs. For our experiments, we used a
round-based alternating offers protocol with a deadline.

Specifically, we selected the following top-performing
agents as benchmarks: Agent K (the winner of ANAC
2010 [25]), HardHeaded (the winner of ANAC 2011 [9]),
CUHKAgent (the winner of ANAC 2012 [32]). In addition, we
included the Linear Conceder agent [7], which is a well-known
time-dependent concession strategy. We did not include the
winners from ANAC 2013 and 2014, since these competitions
had a different negotiation setup from preceding years.

All negotiation strategies were tested in four different ne-
gotiation scenarios with a varying domain size in order to show
the scalability of the GCA strategy. Specifically, the scenarios
we used are: Laptop (27 outcomes – ANAC 2011), Itex-
Cypress (180 outcomes – ANAC 2010), England-Zimbabwe
(576 possible outcomes – ANAC 2010), and Grocery (1600
outcomes – ANAC 2011).

For the opponent, we selected a strategy that simply accepts
any offer with probability equal to the utility of the offer,
as previously described in Section V. The set of acceptable

offers is sampled before the start of each negotiation, and
does not change during the negotiation. The probabilities
are common information and hence are known to the agent.
However, note that the agent does not know which offers will
be accepted; it only has a faithful model of the opponent’s
acceptance probabilities. Furthermore, to avoid the effect of the
acceptance strategies of the agents on the negotiation outcome,
the opponent’s offers are discarded. This enables us to have
the performance depend solely on the concession strategies of
the agents.

In our experiments, all agents negotiated against the same
opponent on all negotiation scenarios with different nego-
tiation deadlines (5, 10, 15, 20 and 25). Because of the
non-deterministic behavior of the opponent (i.e. the set of
acceptable offers was sampled anew for each negotiation), we
repeated each negotiation 1000 times and we report average
utilities gained by each agent, together with the standard error.

Figure 3 shows the average utility obtained by the agents
for different deadlines and negotiation scenarios. It can be seen
that the GCA agent outperforms the other agents.2 Also, the
average utility difference between the GCA agent and the other
strategies is higher for an earlier deadline. This supports our
hypothesis that the GCA agent is able to select the optimal
sequence of offers even when the agents are allowed to make
a limited number of offers during the negotiation. Another
observation is that the average utility of the agents is higher
for later deadlines in most cases. This shows that, if an agent
has more time to explore, it is able to find the acceptable bids
with a high utility for itself.

We now consider how the performance of the GCA agent
compares across different scenarios. To this end, Figure 4
shows the same results as before but focuses on one particular
deadline, namely 15 rounds. From this figure we can see that
the performance of the GCA agent is fairly consistent across
domains, and outperforms the state-of-art negotiating agents
especially in the larger ones. For instance, when the agents
negotiate on Grocery domain, the average utility gained by
GCA agent is significantly higher than the others (0.95 versus
0.89, 0.87, 0.85 and 0.86). However, when they negotiate on
the Laptop domain, the performance difference between GCA
agent and other agent strategies is less significant (0.88 versus
0.75, 0.84, 0.88, 0.85). The reason for this is that, in small
domains such as Laptop, a large fraction of the outcome space
can be easily explored without the need for any optimization,
whereas in large domains the agents need to be much more
selective. The same trend is observed in settings with different
deadlines.

VII. CONCLUSION AND DISCUSSION

In this work, we deal with informed concession strategies in
time-sensitive domains, in which there are costs associated
with the duration of the negotiation. Our solution provides an
optimal sequence of offers to propose to the opponent, given
how likely it is that an offer is accepted. Our method is optimal

2This is to be expected as the GCA agent is the only one to optimally
use knowledge about the opponent model. The point here is to show that, by
using the opponent model in an optimal manner, this leads to better decision
functions, and to see how the performance varies depending on the specific
setting.
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Fig. 3. The average utility obtained by the agents for different negotiation
scenarios and deadlines. The error bars denote the standard error to the mean.

in terms of the agent’s own utility, and yet, it also takes the
opponent into account when deciding on an offer. Through
the use of a generic opponent model based on acceptance
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Fig. 4. The average utility gained by the agents in different negotiation
scenarios. The error bars denote the standard error to the mean.

probabilities, the agent naturally aims for win-win outcomes on
the Pareto frontier. Our algorithm scales with the negotiation
domain size and performs well in a variety of circumstances,
ranging from integrative to distributive negotiation scenarios.

We should stress that a negotiation strategy is a complex
combination of different components (e.g. deciding when to
accept, predicting the opponent’s strategy). All such compo-
nents are important and must work together to comprise an
effective negotiation agent. Eventually, we envision a design of
an automated negotiator that incorporates our optimal decision
function with regard to time costs, while other types of
concessions (e.g., to convey and withhold information, or to
elicit cooperation) are handled separately by other decision
components.

For future work, it would be interesting to combine our
method with a number of different opponent modeling tech-
niques. For example, estimates of the opponent’s likelihood
of acceptance could be inferred from previous interactions
using transfer learning techniques or by adapting preference
modeling techniques that are widely available for our setting.
The most promising approach is to estimate the opponent’s en-
tire decision model. For example, by modeling the opponent’s
decision function based on the history of exchanged offers (i.e.,
rejected and proposed offers), as proposed in [33].

Finally, an interesting future application of our approach
lies in multi-objective negotiation. For such cases, we would
need to maximize a sum of weighted utilities associated with
reaching the objectives, minus the sum of costs of acquiring
them. This type of negotiation settings could be mapped to
simultaneous selection problems [34], which could provide an
interesting extension to our work.
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