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Big Data for Data Science

Data streams and low latency processing
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DATA STREAM BASICS
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What is a data stream?
• Large data volume, likely structured, arriving at a very high rate

– Potentially high enough that the machine cannot keep up with it 
• Not (only) what you see on youtube

– Data streams can have structure and semantics, they’re not only audio 
or video 

• Definition (Golab and Ozsu, 2003)
– A data stream is a real-time, continuous, ordered (implicitly by arrival 

time of explicitly by timestamp) sequence of items. It is impossible to 
control the order in which items arrive, nor it is feasible to locally store a 
stream in its entirety. 
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Why do we need a data stream?
• Online, real-time processing 
• Potential objectives 

– Event detection and reaction 
– Fast and potentially approximate online aggregation and analytics at 

different granularities
• Various applications 

– Network management, telecommunications
Sensor networks, real-time facilities monitoring

– Load balancing in distributed systems
– Stock monitoring, finance, fraud detection
– Online data mining (click stream analysis) 
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Example uses
• Network management and configuration

– Typical setup: IP sessions going through a router
– Large amounts of data (300GB/day, 75k records/second sampled every 100 

measurements)
– Typical queries

• What are the most frequent source-destination pairings per router?
• How many different source-destination pairings were seen by router 1 but 

not by router 2 during the last hour (day, week, month)?
• Stock monitoring

– Typical setup: stream of price and sales volume 
– Monitoring events to support trading decisions
– Typical queries

• Notify when some stock goes up by at least 5%
• Notify when the price of XYZ is above some threshold and the price of its 

competitors is below than its 10 day moving average
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Structure of a data stream
• Infinite sequence of items (elements) 
• One item: structured information, i.e., tuple or object
• Same structure for all items in a stream
• Timestamping

– Explicit: date/time field in data 
– Implicit: timestamp given when items arrive

• Representation of time 
– Physical: date/time
– Logical: integer sequence number
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Database management vs. data stream management

• Data stream management system (DSMS) at multiple observation points
– Voluminous streams-in, reduced streams-out

• Database management system (DBMS)
– Outputs of data stream management system can be treated as data 

feeds to database

DSMS

DSMS

DBMS

data streams
queries

queries
data feeds
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DBMS vs. DSMS

• DBMS
– Model: persistent relations 
– Relation: tuple set/bag
– Data update: modifications 
– Query: transient 
– Query answer: exact
– Query evaluation: arbitrary 
– Query plan: fixed 

• DSMS
– Model: transient relations 
– Relation: tuple sequence 
– Data update: appends
– Query: persistent 
– Query answer: approximate
– Query evaluation: one pass 
– Query plan: adaptive 
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Windows
• Mechanism for extracting a finite relation from an infinite stream
• Various window proposals for restricting processing scope

– Windows based on ordering attributes (e.g., time) 
– Windows based on item (record) counts
– Windows based on explicit markers (e.g., punctuations) signifying 

beginning and end
– Variants (e.g., some semantic partitioning constraint)



event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Ordering attribute based windows
• Assumes the existence of an attribute that defines the order of stream 

elements/records (e.g., time)
• Let T be the window length (size) expressed in units of the ordering 

attribute (e.g., T may be a time window)

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2 t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T



event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Count-based windows
• Window of size N elements (sliding, tumbling) over the stream
• Problematic with non-unique timestamps associated with stream elements
• Ties broken arbitrarily may lead to non-deterministic output
• Potentially unpredictable with respect to fluctuating input rates 

– But dual of time based windows for constant arrival rates
– Arrival rate λ elements/time-unit, time-based window of length T, count-

based window of size N; N = λT

t1 t2 t3t1' t2’ t3’ t4’
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Punctuation-based windows
• Application-inserted “end-of-processing”

– Each next data item identifies “beginning-of-processing”
• Enables data item-dependent variable length windows

– Examples: a stream of auctions, an interval of monitored activity
• Utility in data processing: limit the scope of operations relative to the 

stream
• Potentially problematic if windows grow too large

– Or even too small: too many punctuations
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Putting it all together: architecting a DSMS

storage query
monitor

query
processor

input
monitor

output
buffer

streaming
inputs

streaming
outputs

working
storage

summary
storage

static
storage

query
repository

DSMS
user

queries
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STREAM MINING
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Data stream mining
• Numerous applications

– Identify events and take responsive action in real time
– Identify correlations in a stream and reconfigure system

• Mining query streams: Google wants to know what queries are more 
frequent today than yesterday

• Mining click streams: Yahoo wants to know which of its pages are getting 
an unusual number of hits in the past hour

• Big brother
– Who calls whom?
– Who accesses which web pages?
– Who buys what where?
– All those questions answered in real time

• We will focus on frequent pattern mining
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Frequent pattern mining
• Frequent pattern mining refers to finding patterns that occur more 

frequently than a pre-specified threshold value 
– Patterns refer to items, itemsets, or sequences 
– Threshold refers to the percentage of the pattern occurrences to the 

total number of transactions
• Termed as support 

• Finding frequent patterns is the first step for association rules 
– A→B: A implies B 

• Many metrics have been proposed for measuring how strong an 
association rule is 

– Most commonly used metric: confidence 
– Confidence refers to the probability that set B exists given that A 

already exists in a transaction 
• confidence(A→B) = support(A∧B) / support(A) 
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Frequent pattern mining in data streams
• Frequent pattern mining over data streams differs from conventional one 

– Cannot afford multiple passes
• Minimised requirements in terms of memory 
• Trade off between storage, complexity, and accuracy
• You only get one look 

• Frequent items (also known as heavy hitters) and itemsets are usually the 
final output 

• Effectively a counting problem
– We will focus on two algorithms: lossy counting and sticky sampling 
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The problem in more detail

stream

ite
m
s

• Problem statement
– Identify all items whose current frequency exceeds some support 

threshold s (e.g., 0.1%) 
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Lossy counting in action

• Divide the incoming stream into windows

window 1 window 2 window 3
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First window comes in

• At window boundary, adjust counters
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Next window comes in

• At window boundary, adjust counters

Next Window

+

Frequency
Counts

second window

frequency counts

Frequenc
y
Counts

frequency counts
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Lossy counting algorithm
• Deterministic technique; user supplies two parameters 

– Support s; error ε
• Simple data structure, maintaining triplets of data items e, their associated 

frequencies f, and the maximum possible error ∆ in f : (e, f, ∆) 
• The stream is conceptually divided into buckets of width w = 1/ε

– Each bucket labelled by a value N/w where N starts from 1 and 
increases by 1 

• For each incoming item, the data structure is checked 
– If an entry exists, increment frequency
– Otherwise, add new entry with ∆ = bcurrent − 1 where bcurrent is the 

current bucket label 
• When switching to a new bucket, all entries with f + ∆ < bcurrent are released 
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Lossy counting observations
• How much do we undercount? 

– If current size of stream is N 

– ...and window size is 1/ε
– ...then frequency error ≤ number of windows, i.e., εN

• Empirical rule of thumb: set ε = 10% of support s 

– Example: given a support frequency s = 1%, 
– …then set error frequency ε = 0.1% 

• Output is elements with counter values exceeding sN − εN

• Guarantees 
– Frequencies are underestimated by at most εN

– No false negatives
– False positives have true frequency at least sN−εN

• In the worst case, it has been proven that we need 1/ε× log (εN ) counters 
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Sticky Sampling

34
15
30

28
31
41
23
35
19

● Create counters by sampling
● Maintain exact counts thereafter
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Sticky sampling algorithm
• Probabilistic technique; user supplies three parameters

– Support s; error ε; probability of failure δ
• Simple data structure, maintaining pairs of data items e and their 

associated frequencies f : (e, f ) 
• The sampling rate decreases gradually with the increase in the number of 

processed data elements 
• For each incoming item, the data structure is checked

– If an entry exists, increment frequency
– Otherwise sample the item with the current sampling rate 
– If selected, add new entry; else ignore the item 

• With every change in the sampling rate, toss a coin for each entry 
– Decreasing the frequency of the entry for each unsuccessful coin toss 
– If frequency goes down to zero, release the entry 
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Sticky sampling observations
• For a finite stream of length N 

• Sampling rate = 2/Nε× log (1/sδ) 
– δ is the probability of failure—user configurable 

• Same guarantees with lossy counting, but probabilistic 
• Same rule of thumb as lossy counting, but with a probabilistic and user configurable 

failure probability δ
• Generalisation to infinite streams of unknown N

– (probabilistically) expected number of counters is = 2/ε× log (1/sδ)
– Independent of N 

• Comparison
– Lossy counting is deterministic; sticky sampling is probabilistic 
– In practice, lossy counting is more accurate 
– Sticky sampling extends to infinite streams with same error guarantees as lossy

counting 
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STORM AND LOW-LATENCY 
PROCESSING
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Low latency processing
• Similar to data stream processing, but with a twist

– Data is streaming into the system (from a database, or a network 
stream, or an HDFS file, or …)

– We want to process the stream in a distributed fashion
– And we want results as quickly as possible

• Numerous applications
– Algorithmic trading: identify financial opportunities (e.g., respond as 

quickly as possible to stock price rising/falling
– Event detection: identify changes in behaviour rapidly

• Not (necessarily) the same as what we have seen so far
– The focus is not on summarising the input
– Rather, it is on “parsing” the input and/or manipulating it on the fly
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The problem
• Consider the following use-case
• A stream of incoming information needs to be summarised by some identifying token

– For instance, group tweets by hash-tag; or, group clicks by URL;
– And maintain accurate counts

• But do that at a massive scale and in real time
• Not so much about handling the incoming load, but using it

– That's where latency comes into play
• Putting things in perspective

– Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're 
talking about 2.25MB/s

– Google served 34k searches/s in 2010: let's say 100k searches/s now and an 
average of 200 bytes/search that's 20MB/s

– But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s 
throughput
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A rough approach
• Latency

– Each point 1 − 5 in the figure introduces a high processing latency 
– Need a way to transparently use the cluster to process the stream 

• Bottlenecks
– No notion of locality

• Either a queue per worker per node, or data is moved around
– What about reconfiguration?

• If there are bursts in traffic we need to shutdown, reconfigure and redeploy

w
ork partitioner

stream

queue

queue

queue

worker

worker

worker

worker

queue

queue

queue

worker

worker

worker
hadoop/
H

D
FS persistent 

store

1

3

4
make hadoop-friendly
records out of tweets2

share the load
of incoming items parallelise processing

on the cluster

extract grouped data
out of distributed files 

5
store grouped data
in persistent store 
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Storm
• Started up as backtype; widely used in Twitter
• Open-sourced (you can download it and play with it!

– http://storm-project.net/
• On the surface, Hadoop for data streams

– Executes on top of a (likely dedicated) cluster of commodity hardware
– Similar setup to a Hadoop cluster

• Master node, distributed coordination, worker nodes
• We will examine each in detail

• But whereas a MapReduce job will finish, a Storm job—termed a 
topology—runs continuously

– Or rather, until you kill it
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Storm topologies
• A Storm topology is a graph of computation

– Graph contains nodes and edges 
– Nodes model processing logic (i.e., transformation over its input)
– Directed edges indicate communication between nodes
– No limitations on the topology; for instance one node may have more 

than one incoming edges and more than one outgoing edges
• Storm processes topologies in a distributed and reliable fashion
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Streams, spouts, and bolts
• Streams

– The basic collection abstraction: an 
unbounded sequence of tuples 

– Streams are transformed by the 
processing elements of a topology 

• Spouts
– Stream generators
– May propagate a single stream to 

multiple consumers

• Bolts
– Subscribe to streams
– Streams transformers 
– Process incoming streams and 

produce new ones

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream
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Storm architecture
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zookeeperzookeeper zookeeper
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Storm cluster
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From topology to processing: stream groupings
• Spouts and bolts are replicated in 

taks, each task executed in 
parallel by a worker 

– User-defined degree of 
replication 

– All pairwise combinations are 
possible between tasks 

• When a task emits a tuple, which 
task should it send to? 

• Stream groupings dictate how to 
propagate tuples 

– Shuffle grouping: round-robin
– Field grouping: based on the 

data value (e.g., range 
partitioning) 

spout spout

boltbolt

bolt
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Zookeeper: distributed reliable storage and coordination

• Design goals
– Distributed coordination service 
– Hierarchical name space 
– All state kept in main memory, replicated 

across servers 
– Read requests are served by local replicas 
– Client writes are propagated to the leader 
– Changes are logged on disk before applied 

to in-memory state 
– Leader applies the write and forwards to 

replicas 

• Guarantees
– Sequential consistency: updates from a 

client will be applied in the order that they 
were sent 

– Atomicity: updates either succeed or fail; 
no partial results 

– Single system image: clients see the same 
view of the service regardless of the server 

– Reliability: once an update has been 
applied, it will persist from that time forward 

– Timeliness: the clients’ view of the system 
is guaranteed to be up-to-date within a 
certain time bound 

client client client client client client client

server server server server server
leader
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Putting it all together: word count
// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)

.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count", new WordCount(), 12)

.fieldsGrouping("split", new Fields("word")); // field grouping 

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count", conf, builder.createTopology());
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SPARK STREAMING



Discretized	Stream	Processing
Run	a	streaming	computation	as	a	series	of	very	small,	
deterministic	batch	jobs	è “MICRO	BATCH”	approach

39

Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

§ Chop	up	the	live	stream	into	batches	of	X	
seconds	

§ Spark	treats	each	batch	of	data	as	RDDs	and	
processes	them	using	RDD	operations

§ Finally,	the	processed	results	of	the	RDD	
operations	are	returned	in	batches



Discretized	Stream	Processing	
Run	a	streaming	computation	as	a	series	of	very	small,	
deterministic	batch	jobs	è “MICRO	BATCH”	approach

40

§ Batch	sizes	as	low	as	½	second,	latency	
of	about	1	second

§ Potential	for	combining	batch	
processing	and	streaming	processing	
in	the	same	system

Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results



Example	– Get	hashtags from	Twitter	
val tweets = ssc.twitterStream()

DStream:	a	sequence	of	RDDs	representing	a	stream	of	data

batch	@	t+1batch @	t batch	@	t+2

tweets	DStream

stored	in	memory	as	an	RDD	
(immutable,	distributed)

Twitter	Streaming	API



Example	– Get	hashtags from	Twitter	
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation:	modify	data	in	one	DStream to	create	
another	DStreamnew	DStream

new	RDDs	created	
for	every	batch	

batch	@	t+1batch @	t batch	@	t+2

tweets	DStream

hashTags Dstream
[#cat,	#dog,	…	]



Example	– Get	hashtags from	Twitter		
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output	operation:	to	push	data	to	external	storage

flatMap flatMap flatMap

save save save

batch	@	t+1batch @	t batch	@	t+2
tweets	DStream

hashTags	DStream

every	batch	
saved	to	HDFS



Example	– Get	hashtags from	Twitter		
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.foreach(hashTagRDD => { ... })

foreach:	do	whatever	you	want	with	the	processed	data

flatMap flatMap flatMap

foreach foreach foreach

batch	@	t+1batch @	t batch	@	t+2
tweets	DStream

hashTags	DStream

Write	to	database,	update	analytics	
UI,	do	whatever	you	want



DStream of	data

Window-based	Transformations
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

sliding	window	
operation window	length sliding	interval

window	length

sliding	interval



Arbitrary	Stateful	Computations

Specify	function	to	generate	new	state	based	on	
previous	state	and	new	data

- Example:	Maintain	per-user	mood	as	state,	and	update	it	
with	their	tweets

updateMood(newTweets, lastMood) => newMood

moods = tweets.updateStateByKey(updateMood _)



Arbitrary	Combinations	of	Batch	and	
Streaming	Computations

Inter-mix	RDD	and	DStream	operations!

- Example:	Join	incoming	tweets	with	a	spam	HDFS	file	to	filter	
out	bad	tweets

tweets.transform(tweetsRDD => {
tweetsRDD.join(spamHDFSFile).filter(...)

})



DStream	Input	Sources
§Out	of	the	box	we	provide

- Kafka

- HDFS

- Flume

- Akka Actors

- Raw	TCP	sockets

§ Very	easy	to	write	a	receiver for	your	own	data	source



Fault-tolerance:	Worker
§ RDDs	remember	the	operations	
that	created	them

§ Batches	of	input	data	are	replicated	
in	memory	for	fault-tolerance

§ Data	lost	due	to	worker	failure,	can	
be	recomputed	from	replicated	
input	data

input	data	
replicated
in	memory

flatMap

lost	partitions	
recomputed	on	
other	workers

tweets
RDD

hashTags
RDD

§ All	transformed	data	is	fault-tolerant,	and	
exactly-once	transformations



Fault-tolerance:	Master
§Master	saves	the	state	of	the	DStreams	to	a	checkpoint	file

- Checkpoint	file	saved	to	HDFS	periodically

§ If	master	fails,	it	can	be	restarted	using	the	checkpoint	file

§More	information	in	the	Spark	Streaming	guide
- Link	later	in	the	presentation

§Automated	master	fault	recovery	coming	soon



Performance
Can	process	6	GB/sec	(60M	records/sec)	of	data	on	100	nodes	at	
sub-second latency

- Tested	with	100	text	streams	on	100	EC2	instances	with	4	cores	each
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Comparison	with	Storm	and	S4
Higher	throughput	than	Storm

- Spark	Streaming:	670k records/second/node
- Storm:	115k records/second/node
- Apache	S4:	7.5k	records/second/node
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Unifying	Batch	and	Stream	Processing	Models

Spark	program	on	Twitter	log	file	using	RDDs

val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFile("hdfs://...")

Spark	Streaming	program	on	Twitter	stream	using	DStreams

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")



Vision	- one	stack	to	rule	them	all
§ Explore	data	interactively	
using	Spark	Shell	to	identify	
problems

§ Use	same	code	in	Spark	stand-
alone	programs	to	identify	
problems	in	production	logs

§ Use	similar	code	in	Spark	
Streaming	to	identify	
problems	in	live	log	streams

$ ./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
} object ProcessLiveStream {

def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}
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LAMBDA ARCHITECTURE
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Lambda Architecture
• apply the (λ) Lambda philosophy in designing big data system 
• equation “query = function(all data)” which is the basis of all data systems 
• proposed by Nathan Marz (http://nathanmarz.com/)

– software engineer from Twitter in his “Big Data” book. 
• three design principles: 

1. human fault-tolerance – the system is unsusceptible to data loss or data corruption 
because at scale it could be irreparable. 

2. data immutability – store data in it’s rawest form immutable and for perpetuity. 
• INSERT/ SELECT/DELETE but no UPDATE !)

3. recomputation – with the two principles above it is always possible to (re)-compute results 
by running a function on the raw data
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Lambda Architecture
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GOOGLE DATAFLOW
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Google DataFlow
• Allows for the calculation of 

– event-time ordered results, 
– windowed by features of the data themselves, 
– over an unbounded, unordered data source, 
– correctness, latency, and cost tunable across a broad spectrum of combinations. 

• Decomposes pipeline implementation across four related dimensions, providing clarity, 
composability, and flexibility: 

– What results are being computed. 
– Where in event time they are being computed. 
– When in processing time they are materialized. 
– How earlier results relate to later refinements. 

• Separates the logical data processing from the underlying physical implementation,
– allowing the choice of 

• batch
• micro-batch, or 
• streaming engine to become one of simply correctness, latency, and cost. 
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DataFlow: Time

Two kinds of time
• Event Time, which is 

the time at which the 
event itself actually 
occurred

• Processing Time, 
which is the time at 
which an event is 
handled by the 
processing pipeline.

watermark = time before 
which the system (thinks it) 
has processed all events



event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DataFlow: Processing Model
Generalized MapReduce:
• ParDo (doFcn) pretty much = “Map”

– Each input element to be processed (which itself may be a finite collection) is provided to a 
user-defined function (called a DoFn in Dataflow), which can yield zero or more output 
elements per input. 

– For example, consider an operation which expands all prefixes of the input key, duplicating 
the value across them: 

• Input: (fix, 1),(fit, 2) ���
è ParDo(ExpandPrefixes) è

• Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2) 
• GroupByKey more or less ~ “Reduce”

– for key-grouping (key, value) pairs. 
– In the example:

• Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2) 
è GroupByKey è

• Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2]) 
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DataFlow: Windowing Model
Many possible window definitions, define one using two methods:
• AssignWindows(T datum) è Set<Windows>
• MergeWindows(Set<Windows>) è Set<Windows>

Example:
• Input: (k, v1, 12:00, [0, ∞)),(k, v2, 12:01, [0, ∞)) ���

è AssignWindows( Sliding(2min, 1min))  è

• Output:
(k, v1, 12:00, [11:59, 12:01)), 
(k, v1, 12:00, [12:00, 12:02)), 
(k, v2, 12:01, [12:00, 12:02)), 
(k, v2, 12:01, [12:01, 12:03)) 
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Data Model

• MapReduce
(Key,Value)

• DataFlow
(Key, Value, EventTime, Window)
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DataFlow: Windowing Model

AssignWindows( Sliding(2m, 1m)) 

• Output:
(k, v1, 12:00, [11:59, 12:01)), 
(k, v1, 12:00, [12:00, 12:02)), 
(k, v2, 12:01, [12:00, 12:02)), 
(k, v2, 12:01, [12:01, 12:03)) 
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Example. When do results get computed?
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Triggering: classical batch execution
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GlobalWindows, AtPeriod, Accumulating
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GlobalWindows, AtCount, Discarding
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Triggering: FixedWindows, Batch
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Triggering: FixedWindows, Micro-Batch 
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FixedWindows, Streaming, Partial 
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FixedWindows, Streaming, Retracting
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Summary
• Introduced the notion of data streams and data stream processing

– DSMS: persistent queries, transient data (opposite of DBMS)
• Described use-cases and algorithms for stream mining

– Lossy counting
• Introduced frameworks for low-latency stream processing

– Storm
• Stream engine, not very Hadoop integrated (separate cluster)

– Spark Streaming
• “Micro-batching”, re-use of RDD concept

– Google Dataflow
• Map-Reduce++ with streaming built-in (advanced windowing) 
• Finegrained control over the freshness of computations
• Avoids “Lambda Architecture” – two systems for batch and streaming


