) CV LS
Bi1g Data for Data Science

Data streams and low latency processing

www.cwi.nl/~boncz/bads

DATA STREAM BASICS

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

What 1s a data stream?

« Large data volume, likely structured, arriving at a very high rate
— Potentially high enough that the machine cannot keep up with it
* Not (only) what you see on youtube

— Data streams can have structure and semantics, they’re not only audio
or video

 Definition (Golab and Ozsu, 2003)

— A data stream is a real-time, continuous, ordered (implicitly by arrival
time of explicitly by timestamp) sequence of items. It is impossible to
control the order in which items arrive, nor it is feasible to locally store a
stream in its entirety.

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Why do we need a data stream?

* Online, real-time processing
« Potential objectives
— Event detection and reaction

— Fast and potentially approximate online aggregation and analytics at
different granularities

 Various applications

— Network management, telecommunications
Sensor networks, real-time facilities monitoring

— Load balancing in distributed systems
— Stock monitoring, finance, fraud detection

— Online data mining (click stream analysis)

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Example uses

* Network management and configuration
— Typical setup: IP sessions going through a router

— Large amounts of data (300GB/day, 75k records/second sampled every 100
measurements)

— Typical queries
e What are the most frequent source-destination pairings per router?

 How many different source-destination pairings were seen by router 1 but
not by router 2 during the last hour (day, week, month)?

« Stock monitoring
— Typical setup: stream of price and sales volume
— Monitoring events to support trading decisions
— Typical queries
* Notify when some stock goes up by at least 5%

* Notify when the price of XYZ is above some threshold and the price of its
competitors is below than its 10 day moving average

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Structure of a data stream

Infinite sequence of items (elements)

One item: structured information, i.e., tuple or object

Same structure for all items in a stream

Timestamping
— Explicit: date/time field in data

— Implicit: timestamp given when items arrive

Representation of time
— Physical: date/time
— Logical: integer sequence number

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Database management vs. data stream management

ﬂ ! queries
S

= \Y ' data feeds
| O '
| O
|
O |
|
|

= DSMS I

data streams)
queries

- Data stream management system (DSMS) at multiple observation points
— Voluminous streams-in, reduced streams-out
- Database management system (DBMS)

— QOutputs of data stream management system can be treated as data
feeds to database

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatic:

DBMS vs. DSMS

- DBMS
— Model: persistent relations
— Relation: tuple set/bag
— Data update: modifications
— Query: transient
— Query answer: exact
— Query evaluation: arbitrary

— Query plan: fixed

« DSMS
— Model: transient relations
— Relation: tuple sequence
— Data update: appends
— Query: persistent
— Query answer: approximate
— Query evaluation: one pass

— Query plan: adaptive

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Windows

* Mechanism for extracting a finite relation from an infinite stream
 Various window proposals for restricting processing scope

— Windows based on ordering attributes (e.g., time)

— Windows based on item (record) counts

— Windows based on explicit markers (e.g., punctuations) signifying
beginning and end

— Variants (e.g., some semantic partitioning constraint)

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Ordering attribute based windows

« Assumes the existence of an attribute that defines the order of stream
elements/records (e.g., time)

» Let T be the window length (size) expressed in units of the ordering
attribute (e.g., T may be a time window)

L t, t t, t,' t, t, t, sliding window
. . =
! : ti’_ ti= T
t t, ts tumbling window
| : >
: i ti+1 - ti= T

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Count-based windows

« Window of size N elements (sliding, tumbling) over the stream
* Problematic with non-unique timestamps associated with stream elements
 Ties broken arbitrarily may lead to non-deterministic output
 Potentially unpredictable with respect to fluctuating input rates
— But dual of time based windows for constant arrival rates

— Arrival rate A elements/time-unit, time-based window of length T, count-
based window of size N; N = AT

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Punctuation-based windows

Application-inserted “end-of-processing”

— Each next data item identifies “beginning-of-processing”

Enables data item-dependent variable length windows

— Examples: a stream of auctions, an interval of monitored activity

Utility in data processing: limit the scope of operations relative to the
stream

Potentially problematic if windows grow too large

— Or even too small: too many punctuations

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Putting 1t all together: architecting a DSMS

!

input
monitor

1111

streaming

inputs

storage

working

storage

summary
storage

static
storage

query

monitor

query
processor

query
repository

output
buffer

111

streaming

user
queries

outputs

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

STREAM MINING

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Data stream mining

* Numerous applications
— Identify events and take responsive action in real time
— ldentify correlations in a stream and reconfigure system

« Mining query streams: Google wants to know what queries are more
frequent today than yesterday

* Mining click streams: Yahoo wants to know which of its pages are getting
an unusual number of hits in the past hour

* Big brother
— Who calls whom?
— Who accesses which web pages?
— Who buys what where?
— All those questions answered in real time

« We will focus on frequent pattern mining

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Frequent pattern mining

* Frequent pattern mining refers to finding patterns that occur more
frequently than a pre-specified threshold value

— Patterns refer to items, itemsets, or sequences

— Threshold refers to the percentage of the pattern occurrences to the
total number of transactions

e Termed as support
« Finding frequent patterns is the first step for association rules
— A—B: Aimplies B

« Many metrics have been proposed for measuring how strong an
association rule is

— Most commonly used metric: confidence

— Confidence refers to the probability that set B exists given that A
already exists in a transaction

 confidence(A—B) = support(A/\B) / support(A)

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Frequent pattern mining in data streams

* Frequent pattern mining over data streams differs from conventional one
— Cannot afford multiple passes
e Minimised requirements in terms of memory
e Trade off between storage, complexity, and accuracy
* You only get one look

* Frequent items (also known as heavy hitters) and itemsets are usually the
final output

- Effectively a counting problem
— We will focus on two algorithms: lossy counting and sticky sampling

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

The problem 1n more detail

O000OEO0NOO00O000O0O0EENEO0ONOO0O0O0O00048
EENONO0ONNOOOOOOO0ONEEOONNOOOOCOC S -
»| ODEEOORNO0OO00O000O0O00RERENOO0000O0000 -
ElELNONONNONOOOO0000NECOENONOOO0OC N
| OEEO0ONONONOOO00O0O0OEERONONOOOO0O0 -
ORNEOONONONOOO0O0OCOCSEENECONONOOOCECO -
VOoOOOOEOEOOOOOOOOOEEEROEOOOOOOmOO
OROOONO0OONOOOOOOCOCOSEEENO0O0ONOOOCOECO -
ONCONO0ONONNOOOOOO0OSEEEOENOOOCOEC -
EEECONO0NOOOOOO0SEENOMENOOOCO SN =

>

stream

* Problem statement

— ldentify all items whose current frequency exceeds some support
threshold s (e.g., 0.1%)

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Lossy counting 1n action

* Divide the incoming stream into windows

window 1

OOO0O0O8OO O
_§) JEIE) pEEmy gy
ONECOCONEOCOO
EONCONCENC] N
Wi} JEIN)ONE))
[I 7 7 I 1 I] I
OdodocOeEOmEOnO
O OO0 8OO0 e
[I 7 1] I
EECIECECC

window 2

OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O000O0 NN
OO0O0O000O0 NN
OO0O0O0O00O0 NN
OO0OO0O0O0O00 NN
OO0OO0O0O00 NN

window 3

EOOROOOOONO
EOONROOOON
EEOOOOOOO0OO
ONBECOROOOON
EOROROOOON
EONCOROOOC N
EONCOOOOOC0 M
EOOOROOOC0 M
ONCOEBOCOOC N
EOCOENOCOOC .

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

First window comes 1n

O00O0Om00OmO
(1] uim] eiw)) |
m] | uim] | |=imls
sEC0e0e0Oee0Oe
m] | |uim] =) =)
m] | uim] =) ie)
O0000OmOmO0O0O
Ooe000Oeco0O0.
m] ju] uim] =))
ERC0e0e00OE®E

| .

first window

empty counts frequency counts

« At window boundary, adjust counters

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Next window comes 1n

OO0O000O00@ .
OO0O000O00@ .
OO0O000O00@ .
OO0000000@ N
OO0O000800@ .
OO0O00000aE N
OO0O00000aE N
OO0O008000aE N
OO0FOOO0COEEN
OO0O00000EE N

second window

frequency counts ﬂequencycowﬁg

« At window boundary, adjust counters

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Lossy counting algorithm

» Deterministic technique; user supplies two parameters
— Support s; error €

« Simple data structure, maintaining triplets of data items e, their associated
frequencies f, and the maximum possible error Ain f: (e, f, A)

« The stream is conceptually divided into buckets of width w = 1/¢

— Each bucket labelled by a value N/w where N starts from 1 and
increases by 1

* For each incoming item, the data structure is checked
— If an entry exists, increment frequency

— Otherwise, add new entry with A = bt = 1 Where bt IS the
current bucket label

* When switching to a new bucket, all entries with f+ A < b, . @re released

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Lossy counting observations

How much do we undercount?
— If current size of stream is N
— ...and window size is 1/¢

— ...then frequency error < number of windows, i.e., eN

Empirical rule of thumb: set € = 10% of support s
— Example: given a support frequency s = 1%,

— ...then set error frequency € = 0.1%

Output is elements with counter values exceeding sN — eN

Guarantees
— Frequencies are underestimated by at most eN
— No false negatives
— False positives have true frequency at least sSN—¢N

In the worst case, it has been proven that we need 1/¢ X log (eN) counters

www.cwi.nl/~boncz/bads

Sticky Sampling

gEcamaan o (g=nesci
R

OOodond
DID Dl
[H
my |

L1
DD
Il | |

Dll ID
EE OHE l
B OO0

IID

e Create counters by sampling
e Maintain exact counts thereafter

@2

IDD:IIIDIIIIDDDIDI

B EORCOO0O0000
()] O
iR

m]n (@) ={=]=
@ZIIIEIDEI
OoooouEOo
III HE N
|:|||:| Om

&

(D 28
W 31
B 41
O 23
O 35

\ 19

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatic:

Stick}; sampling algorithm

Probabilistic technique; user supplies three parameters
— Support s; error g; probability of failure &

Simple data structure, maintaining pairs of data items e and their
associated frequencies f: (e,)

The sampling rate decreases gradually with the increase in the number of
processed data elements

For each incoming item, the data structure is checked
— If an entry exists, increment frequency
— Otherwise sample the item with the current sampling rate

— If selected, add new entry; else ignore the item

With every change in the sampling rate, toss a coin for each entry
— Decreasing the frequency of the entry for each unsuccessful coin toss
— If frequency goes down to zero, release the entry

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Sticky sampling observations

For a finite stream of length N
Sampling rate = 2/Ne X log (1/50)
— O is the probability of failure—user configurable

Same guarantees with lossy counting, but probabilistic

Same rule of thumb as lossy counting, but with a probabilistic and user configurable

failure probability
Generalisation to infinite streams of unknown N

— (probabilistically) expected number of counters is = 2/¢ X log (1/s0)

— Independent of N

Comparison
— Lossy counting is deterministic; sticky sampling is probabilistic

— In practice, lossy counting is more accurate

— Sticky sampling extends to infinite streams with same error guarantees as lossy

counting

www.cwi.nl/~boncz/bads

STORM AND LOW-LATENCY
PROCESSING

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Low latency processing

 Similar to data stream processing, but with a twist

— Data is streaming into the system (from a database, or a network
stream, or an HDFS file, or ...)

— We want to process the stream in a distributed fashion
— And we want results as quickly as possible
* Numerous applications

— Algorithmic trading: identify financial opportunities (e.g., respond as
quickly as possible to stock price rising/falling

— Event detection: identify changes in behaviour rapidly
* Not (necessarily) the same as what we have seen so far
— The focus is not on summarising the input

— Rather, it is on “parsing” the input and/or manipulating it on the fly

www.cwi.nl/~boncz/bads

The problem

» Consider the following use-case

A stream of incoming information needs to be summarised by some identifying token
— For instance, group tweets by hash-tag; or, group clicks by URL,;

— And maintain accurate counts

But do that at a massive scale and in real time

Not so much about handling the incoming load, but using it

— That's where latency comes into play

Putting things in perspective

— Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're
talking about 2.25MB/s

— Google served 34k searches/s in 2010: let's say 100k searches/s now and an
average of 200 bytes/search that's 20MB/s

— But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s
throughput

www.cwi.nl/~boncz/bads

A rough approach

« Latency
— Each point 1 = 5 in the figure introduces a high processing latency

— Need a way to transparently use the cluster to process the stream

o share the load
of incoming items

parallelise processing store grouped data
e on the cluster e in persistent store

I queue I

perS|stent
store

_—

Jauoniued yiom

extract grouped data

make hadoop-friendly e out of distributed files
e records out of tweets

- Bottlenecks
— No notion of locality
* Either a queue per worker per node, or data is moved around
— What about reconfiguration?
« If there are bursts in traffic we need to shutdown, reconfigure and redeploy

)ads

E Centrum Wiskunde & Informatica

Storm

Started up as backtype; widely used in Twitter

Open-sourced (you can download it and play with it!

— http://storm-project.net/

On the surface, Hadoop for data streams
— Executes on top of a (likely dedicated) cluster of commodity hardware
— Similar setup to a Hadoop cluster
* Master node, distributed coordination, worker nodes

* \We will examine each in detail

But whereas a MapReduce job will finish, a Storm job—termed a
topology—runs continuously

— Or rather, until you kill it

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Storm topologies

« A Storm topology is a graph of computation
— Graph contains nodes and edges
— Nodes model processing logic (i.e., transformation over its input)
— Directed edges indicate communication between nodes

— No limitations on the topology; for instance one node may have more
than one incoming edges and more than one outgoing edges

« Storm processes topologies in a distributed and reliable fashion

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Streams, spouts, and bolts

e Streams

— The basic collection abstraction: an
unbounded sequence of tuples

— Streams are transformed by the stream

processing elements of a topology

* Spouts
— Stream generators

— May propagate a single stream to
multiple consumers

* Bolts
— Subscribe to streams
— Streams transformers

— Process incoming streams and
produce new ones

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Storm architecture

spout bolt bolt
Storm job topology

Z0keaRe’ ZoqkesRer 00leaRe ordinatio
coordination
; Storm cluster
nimbus
master node

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

From topology to processing: stream groupings

» Spouts and bolts are replicated in
taks, each task executed in
parallel by a worker spout spout

— User-defined degree of
replication

— All pairwise combinations are
possible between tasks

* When a task emits a tuple, which
task should it send to?

« Stream groupings dictate how to
propagate tuples

— Shuffle grouping: round-robin

— Field grouping: based on the bolt
data value (e.g., range
partitioning)

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Zookeeper: distributed reliable storage and coordination

server server

client client client

server server server

client client client client

* Design goals
— Distributed coordination service
— Hierarchical name space

— All state kept in main memory, replicated
across servers

— Read requests are served by local replicas
— Client writes are propagated to the leader

— Changes are logged on disk before applied
to in-memory state

— Leader applies the write and forwards to
replicas

* Guarantees

— Sequential consistency: updates from a
client will be applied in the order that they
were sent

— Atomicity: updates either succeed or fail;
no partial results

— Single system image: clients see the same
view of the service regardless of the server

— Reliability: once an update has been
applied, it will persist from that time forward

— Timeliness: the clients’ view of the system
is guaranteed to be up-to-date within a
certain time bound

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Putting it all together: word count

// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout(“spout”, new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)
.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count"”, new WordCount(), 12)
.fieldsGrouping("split", new Fields("word")); // field grouping

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count”, conf, builder.createTopology());
www.cwi.nl/~boncz/bads

SPARK STREAMING

www.cwi.nl/~boncz/bads

Discretized Stream Processing

Run a streaming computation as a series of very small,
deterministic batch jobs = “MICRO BATCH” approach

live data stream
Spark
= Chop up the live stream into batches of X Streaming
seconds \
—
= Spark treats each batch of data as RDDs and ~ Patches of X —
seconds —

processes them using RDD operations

" Finally, the processed results of the RDD
operations are returned in batches

(o mm mm mm | Spark

processed
results

Discretized Stream Processing

Run a streaming computation as a series of very small,
deterministic batch jobs = “MICRO BATCH” approach

live data stream

o [s I [> Spark
= Batch sizes as low as % second, latency Streaming
of about 1 second
batches of X —
a
- ' ini —
Potential for combining batch <econds —

processing and streaming processing

in the same system

(o mm mm mm | Spark
processed

results

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()

DStream: a sequence of RDDs representing a stream of data

Twitter Streaming AP| | batch @ t batch @ t+1 batch @ t+2)

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

transformation: modify data in one DStream to create
new DStream

another DStream

bachr bahewl bchewd |

tweets DStream

hashTags Dstream

[#cat, #dog, ...] for every batch

new RDDs created J

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap
hashTags DStream

save save save

every batch
saved to HDFS

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.foreach(hashTagRDD => { ... })

foreach: do whatever you want with the processed data

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap
hashTags DStream

foreach foreach foreach

Write to database, update analytics
Ul, do whatever you want

Window-based Transformations

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

[Sl'd'ngW',nih window length | | sliding interval
operation | |

window length
A

DEUUUUUUDEUUUUUUUUUU_>
DStream of data W_/

sliding interval

Arbitrary Stateful Computations

Specify function to generate new state based on
previous state and new data

- Example: Maintain per-user mood as state, and update it
with their tweets

(newTweets, lastMood) => newMood

moods = tweets.updateStateByKey()

Arbitrary Combinations of Batch and
Streaming Computations

Inter-mix RDD and DStream operations!

- Example: Join incoming tweets with a spam HDFS file to filter
out bad tweets

tweets.transform(tweetsRDD => {
tweetsRDD. join(spamHDFSFile).filter(...)

})

DStream Input Sources

= Out of the box we provide
- Kafka
- HDFS
- Flume
- Akka Actors
- Raw TCP sockets

= Very easy to write a receiver for your own data source

Fault-tolerance: Worker

= RDDs remember the operations tweets

that created them RDD L inplllt data
_J+ replicated
=ISIST y in rF:] emory

JJ J/ |

= Batches of input data are replicated
in memory for fault-tolerance

= Data lost due to worker failure, can
be recomputed from replicated ~ hashTags

. oo (A
input data lost partitions
‘ recomputed on

other workers

= All transformed data is fault-tolerant, and
exactly-once transformations

Fault-tolerance: Master

= Master saves the state of the DStreams to a checkpoint file

- Checkpoint file saved to HDFS periodically
= |f master fails, it can be restarted using the checkpoint file

= More information in the Spark Streaming guide

- Link later in the presentation

= Automated master fault recovery coming soon

Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at
sub-second latency

- Tested with 100 text streams on 100 EC2 instances with 4 cores each

7 3.5
Qg » WordCount
g Grep / 3,
55 525 /
o Q.
% 4 // < /
3 3 g
e 3 =15 /
£ -
C 2 s 1
o -1 sec 2 / -1 sec
S 1 ~4 . 30.5
3 2 sec] v -8-2 sec
0 I | 0 T 1
0 50 100 0 50 100
Nodes in Cluster # Nodes in Cluster

Comparison with Storm and S4

Higher throughput than Storm
- Spark Streaming: 670k records/second/node
- Storm: 115k records/second/node
- Apache S4: 7.5k records/second/node

o Grep v WordCount
? 120 8 30
c c
a “ 80 M Spark §. © 20 M Spark
5 o 3 3
oS o 2
w® 40 ®
5 3 10 M Storm
o M Storm o
-IE 0 - -IE 0 -
100 1000 100 1000
Record Size (bytes) Record Size (bytes)

Unifying Batch and Stream Processing Models

Spark program on Twitter log file using RDDs

val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")

Spark Streaming program on Twitter stream using DStreams

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Vision - one stack to rule them all

$./spark-shell
scala> val file = sc.hadoopFile(“smalllLogs”)

= Explore data interactively
using Spark Shell to identify

scala> val filtered = file.filter(_.contains(“ERROR”))

problems
scala> val mapped = filtered.map(...)
*iobject ProcessProductionData {
| def main(args: Array[String]) {
= Use same code in Spark stand- val sc = new SparkContext(...)

]) val file = sc.hadoopFile(“productionLogs™)
alone programs to identify val filtered = file.filter(_.contains(“ERROR”))
problems in production logs val mapped = filtered.map(...)

k:
} |object ProcessLiveStream {
o . 7 def main(args: Array[String]) {
= Use similar code in Spark val sc = new StreamingContext(...)
S . '(j 'f val stream = sc.kafkaStream(...)
treamlng to identi Yy val filtered = file.filter(_.contains(“ERROR”))
problems in live log streams val mapped = filtered.map(...)
}
}

LAMBDA ARCHITECTURE

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

[Lambda Architecture

 apply the (A) Lambda philosophy in designing big data system
* equation “query = function(all data)” which is the basis of all data systems

» proposed by Nathan Marz (http://nathanmarz.com/)

— software engineer from Twitter in his “Big Data” book.
+ three design principles:

1. human fault-tolerance — the system is unsusceptible to data loss or data corruption
because at scale it could be irreparable.

2. data immutability — store data in it's rawest form immutable and for perpetuity.
 INSERT/ SELECT/DELETE but no UPDATE!)

3. recomputation — with the two principles above it is always possible to (re)-compute results
by running a function on the raw data

~

(e
Speed Layer Serving Layer

(Storm)

Batch Layer
(Hadoop) \)

D’Oh! Two pipelines! www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Lambda Architecture

batch view
data \

Precomputed /
/ realtime view

Query

New data stream

“Lambda Architecture”

www.cwi.nl/~boncz/bads

GOOGLE DATAFLOW

www.cwi.nl/~boncz/bads

Google DataFlow

 Allows for the calculation of
— event-time ordered results,
— windowed by features of the data themselves,
— over an unbounded, unordered data source,

— correctness, latency, and cost tunable across a broad spectrum of combinations.

« Decomposes pipeline implementation across four related dimensions, providing clarity,
composability, and flexibility:

— What results are being computed.
— Where in event time they are being computed.
— When in processing time they are materialized.

— How earlier results relate to later refinements.

« Separates the logical data processing from the underlying physical implementation,
— allowing the choice of
* batch
e micro-batch, or

* streaming engine to become one of simply correctness, latency, and cost.

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

DataFlow: Time

<t
Q_ _e
N A i Two kinds of time
S . -
o ' « Event Time, which is
o ST N the time at which the
5 — ' event itself actually
oo O N occurred
) 7
% ﬁ“ _aet * Processing Time,
o '/ which is the time at
S | La-’ which an event is
& handled by the
processing pipeline.

|
[
F
| | | |

12:01 12:02 12:03 12:04

Event Time watermark = time before
Actual[watermark] ~ =--=-====-- s Which the system (thinks it)

has processed all events
Ideal watermark:

Event Time Skew: & >

www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

DataFlow: Processing Model

Generalized MapReduce:
« ParDo (doFcn) pretty much = “Map”

— Each input element to be processed (which itself may be a finite collection) is provided to a
user-defined function (called a DoFn in Dataflow), which can yield zero or more output

elements per input.

— For example, consider an operation which expands all prefixes of the input key, duplicating
the value across them:

e Input: (fix, 1),(fit, 2) 0[]
=>» ParDo(ExpandPrefixes) =

e Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
* GroupByKey more or less ~ “Reduce”

— for key-grouping (key, value) pairs.
— In the example:
e Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
= GroupByKey =
e Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2])

www.cwi.nl/~boncz/bads

DataFlow: Windowing Model

Many possible window definitions, define one using two methods:
* AssignWindows(T datum) = Set<Windows>
* MergeWindows(Set<Windows>) = Set<Windows>

Example:
* Input: (k, v1, 12:00, [0, «)),(k, v2, 12:01, [0, «)) O O

= AssignWindows(Sliding(2min, 1min)) =>»

* Qutput:
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))

www.cwi.nl/~boncz/bads

Data Model

 MapReduce
(Key,Value)

 DataFlow

(Key, Value, EventTime, Window)

www.cwi.nl/~boncz/bads

DataFlow: Wlnd()wmg Model

PCollection<KV<String, Integer>> input = IO.read(.
PCollection<KV<String, Integer>> output = input
.apply (Window.into (Sessions.withGapDuration (
Duration.standardMinutes (30))))

.apply (Sum.integersPerKey());

AssignWindows(Sliding(2m, 1m))

* Output:
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))

E Centrum Wiskunde & Informatica

Example. When do results get computed?

PCollection<KV<String, Integer>> output = input
.apply (Sum.integersPerKey ());

12:08 12|09
©
S :
G

Processing Time

12:07

“

]
()

il

1

L

|

|}

1

|

%
B

| | | | | L | |]

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Actual watermark: = ss=ssssscc-- >

Ideal watermark: = - ¢ oo » www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Triggering: classical batch execution

Processing Time
12:07

PCollection<KV<String, Integer>> output = input
.apply (Sum.integersPerKey ()) ;

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Actual watermark:

Ideal watermark: __», www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

GlobalWindows, AtPeriod, Accumulating

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtPeriod (1, MINUTE)))
.accumulating())
.apply (Sum.integersPerKey ()) ;

Processing Time
12:06 12:07 12:08 12:09

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

www.cwi.nl/~boncz/bads

GlobalWindows, AtCount, Discarding

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtCount (2)))
.discarding())
.apply (Sum.integersPerKey ()) ;

1
L

12:09

®

12:08

3

Processing Time
12106 12107

@

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

www.cwi.nl/~boncz/bads

Triggering: FixedWindows, Batch

PCollection<KV<String,

Integer>> output = input
.apply (Window. into (FixedWindows.of (2, MINUTES))

.trigger (Repeat (AtWatermark())))

.accumulating()

)

.apply (Sum.integersPerKey ()) ;

Processing Time

3
@

L |

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event

Actual watermark:

Ideal watermark:

Time

EREEEEEEEE

www.cwi.nl/~boncz/bads

Triggering: FixedWindows, Micro-Batch

Processing Time
12:06 12:07 12:08 12:09

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Actual watermark: =~ ==sssessses > www.cwi.nl/~boncz/bads

Ideal watermark: - oo >

E Centrum Wiskunde & Informatica

FixedWindows, Streaming, Partial

PCollection<KV<String, Integer>> output = input
.apply (Window.into (FixedWindows.of (2, MINUTES))
.trigger (SequenceOf (
RepeatUntil (
AtPeriod (1, MINUTE),
AtWatermark()),
Repeat (AtWatermark ())))
.accumulating())
.apply (Sum.integersPerKey ()) ;

:

Processing Time
12:06 12:07 12:08

12:01 12:02 12:03 12:04 12;05 12:06 12:07 12:08

Event Time

Actual watermark: B — - '>)
www.cwi.nl/~boncz/bads

Ideal watermark: - - ¢ < s s e >

E Centrum Wiskunde & Informatica

FixedWindows, Streaming, Retracting

PCollection<KV<String, Integer>> output = input
.apply (Window.into (Sessions.withGapDuration (1, MINUTE))

Processing Time

12:07 12:08 12:09

12:06

.trigger (SequenceOf (
RepeatUntil (
AtPeriod (1, MINUTE),
AtWatermark ()),
Repeat (AtWatermark ())))

.accumulatingAndRetracting())

.apply (Sum.integersPerKey ()) ;

12:01 12:02 12:03 12:04

Event Time

Actual watermark:
Ideal watermark:

1

12:05 12:06

12:07 12:08

» www.cwi.nl/~boncz/bads

E Centrum Wiskunde & Informatica

Summary

* Introduced the notion of data streams and data stream processing
— DSMS: persistent queries, transient data (opposite of DBMS)
« Described use-cases and algorithms for stream mining
— Lossy counting
* Introduced frameworks for low-latency stream processing
— Storm
e Stream engine, not very Hadoop integrated (separate cluster)
— Spark Streaming
e “Micro-batching”, re-use of RDD concept
— Google Dataflow
¢ Map-Reduce++ with streaming built-in (advanced windowing)
* Finegrained control over the freshness of computations

e Avoids “Lambda Architecture” — two systems for batch and streaming

www.cwi.nl/~boncz/bads

