
www.cwi.nl/~boncz/bads

Big Data for Data Science

Data streams and low latency processing

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DATA STREAM BASICS

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

What is a data stream?
• Large data volume, likely structured, arriving at a very high rate

– Potentially high enough that the machine cannot keep up with it
• Not (only) what you see on youtube

– Data streams can have structure and semantics, they’re not only audio
or video

• Definition (Golab and Ozsu, 2003)
– A data stream is a real-time, continuous, ordered (implicitly by arrival

time of explicitly by timestamp) sequence of items. It is impossible to
control the order in which items arrive, nor it is feasible to locally store a
stream in its entirety.

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Why do we need a data stream?
• Online, real-time processing
• Potential objectives

– Event detection and reaction
– Fast and potentially approximate online aggregation and analytics at

different granularities
• Various applications

– Network management, telecommunications
Sensor networks, real-time facilities monitoring

– Load balancing in distributed systems
– Stock monitoring, finance, fraud detection
– Online data mining (click stream analysis)

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Example uses
• Network management and configuration

– Typical setup: IP sessions going through a router
– Large amounts of data (300GB/day, 75k records/second sampled every 100

measurements)
– Typical queries

• What are the most frequent source-destination pairings per router?
• How many different source-destination pairings were seen by router 1 but

not by router 2 during the last hour (day, week, month)?
• Stock monitoring

– Typical setup: stream of price and sales volume
– Monitoring events to support trading decisions
– Typical queries

• Notify when some stock goes up by at least 5%
• Notify when the price of XYZ is above some threshold and the price of its

competitors is below than its 10 day moving average

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Structure of a data stream
• Infinite sequence of items (elements)
• One item: structured information, i.e., tuple or object
• Same structure for all items in a stream
• Timestamping

– Explicit: date/time field in data
– Implicit: timestamp given when items arrive

• Representation of time
– Physical: date/time
– Logical: integer sequence number

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Database management vs. data stream management

• Data stream management system (DSMS) at multiple observation points
– Voluminous streams-in, reduced streams-out

• Database management system (DBMS)
– Outputs of data stream management system can be treated as data

feeds to database

DSMS

DSMS

DBMS

data streams
queries

queries
data feeds

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DBMS vs. DSMS

• DBMS
– Model: persistent relations
– Relation: tuple set/bag
– Data update: modifications
– Query: transient
– Query answer: exact
– Query evaluation: arbitrary
– Query plan: fixed

• DSMS
– Model: transient relations
– Relation: tuple sequence
– Data update: appends
– Query: persistent
– Query answer: approximate
– Query evaluation: one pass
– Query plan: adaptive

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Windows
• Mechanism for extracting a finite relation from an infinite stream
• Various window proposals for restricting processing scope

– Windows based on ordering attributes (e.g., time)
– Windows based on item (record) counts
– Windows based on explicit markers (e.g., punctuations) signifying

beginning and end
– Variants (e.g., some semantic partitioning constraint)

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Ordering attribute based windows
• Assumes the existence of an attribute that defines the order of stream

elements/records (e.g., time)
• Let T be the window length (size) expressed in units of the ordering

attribute (e.g., T may be a time window)

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2 t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Count-based windows
• Window of size N elements (sliding, tumbling) over the stream
• Problematic with non-unique timestamps associated with stream elements
• Ties broken arbitrarily may lead to non-deterministic output
• Potentially unpredictable with respect to fluctuating input rates

– But dual of time based windows for constant arrival rates
– Arrival rate λ elements/time-unit, time-based window of length T, count-

based window of size N; N = λT

t1 t2 t3t1' t2’ t3’ t4’

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Punctuation-based windows
• Application-inserted “end-of-processing”

– Each next data item identifies “beginning-of-processing”
• Enables data item-dependent variable length windows

– Examples: a stream of auctions, an interval of monitored activity
• Utility in data processing: limit the scope of operations relative to the

stream
• Potentially problematic if windows grow too large

– Or even too small: too many punctuations

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Putting it all together: architecting a DSMS

storage query
monitor

query
processor

input
monitor

output
buffer

streaming
inputs

streaming
outputs

working
storage

summary
storage

static
storage

query
repository

DSMS
user

queries

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

STREAM MINING

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Data stream mining
• Numerous applications

– Identify events and take responsive action in real time
– Identify correlations in a stream and reconfigure system

• Mining query streams: Google wants to know what queries are more
frequent today than yesterday

• Mining click streams: Yahoo wants to know which of its pages are getting
an unusual number of hits in the past hour

• Big brother
– Who calls whom?
– Who accesses which web pages?
– Who buys what where?
– All those questions answered in real time

• We will focus on frequent pattern mining

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Frequent pattern mining
• Frequent pattern mining refers to finding patterns that occur more

frequently than a pre-specified threshold value
– Patterns refer to items, itemsets, or sequences
– Threshold refers to the percentage of the pattern occurrences to the

total number of transactions
• Termed as support

• Finding frequent patterns is the first step for association rules
– A→B: A implies B

• Many metrics have been proposed for measuring how strong an
association rule is

– Most commonly used metric: confidence
– Confidence refers to the probability that set B exists given that A

already exists in a transaction
• confidence(A→B) = support(A∧B) / support(A)

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Frequent pattern mining in data streams
• Frequent pattern mining over data streams differs from conventional one

– Cannot afford multiple passes
• Minimised requirements in terms of memory
• Trade off between storage, complexity, and accuracy
• You only get one look

• Frequent items (also known as heavy hitters) and itemsets are usually the
final output

• Effectively a counting problem
– We will focus on two algorithms: lossy counting and sticky sampling

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

The problem in more detail

stream

ite
m
s

• Problem statement
– Identify all items whose current frequency exceeds some support

threshold s (e.g., 0.1%)

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Lossy counting in action

• Divide the incoming stream into windows

window 1 window 2 window 3

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

First window comes in

• At window boundary, adjust counters

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Next window comes in

• At window boundary, adjust counters

Next Window

+

Frequency
Counts

second window

frequency counts

Frequenc
y
Counts

frequency counts

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Lossy counting algorithm
• Deterministic technique; user supplies two parameters

– Support s; error ε
• Simple data structure, maintaining triplets of data items e, their associated

frequencies f, and the maximum possible error ∆ in f : (e, f, ∆)
• The stream is conceptually divided into buckets of width w = 1/ε

– Each bucket labelled by a value N/w where N starts from 1 and
increases by 1

• For each incoming item, the data structure is checked
– If an entry exists, increment frequency
– Otherwise, add new entry with ∆ = bcurrent − 1 where bcurrent is the

current bucket label
• When switching to a new bucket, all entries with f + ∆ < bcurrent are released

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Lossy counting observations
• How much do we undercount?

– If current size of stream is N

– ...and window size is 1/ε
– ...then frequency error ≤ number of windows, i.e., εN

• Empirical rule of thumb: set ε = 10% of support s

– Example: given a support frequency s = 1%,
– …then set error frequency ε = 0.1%

• Output is elements with counter values exceeding sN − εN

• Guarantees
– Frequencies are underestimated by at most εN

– No false negatives
– False positives have true frequency at least sN−εN

• In the worst case, it has been proven that we need 1/ε× log (εN) counters

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Sticky Sampling

34
15
30

28
31
41
23
35
19

● Create counters by sampling
● Maintain exact counts thereafter

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Sticky sampling algorithm
• Probabilistic technique; user supplies three parameters

– Support s; error ε; probability of failure δ
• Simple data structure, maintaining pairs of data items e and their

associated frequencies f : (e, f)
• The sampling rate decreases gradually with the increase in the number of

processed data elements
• For each incoming item, the data structure is checked

– If an entry exists, increment frequency
– Otherwise sample the item with the current sampling rate
– If selected, add new entry; else ignore the item

• With every change in the sampling rate, toss a coin for each entry
– Decreasing the frequency of the entry for each unsuccessful coin toss
– If frequency goes down to zero, release the entry

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Sticky sampling observations
• For a finite stream of length N

• Sampling rate = 2/Nε× log (1/sδ)
– δ is the probability of failure—user configurable

• Same guarantees with lossy counting, but probabilistic
• Same rule of thumb as lossy counting, but with a probabilistic and user configurable

failure probability δ
• Generalisation to infinite streams of unknown N

– (probabilistically) expected number of counters is = 2/ε× log (1/sδ)
– Independent of N

• Comparison
– Lossy counting is deterministic; sticky sampling is probabilistic
– In practice, lossy counting is more accurate
– Sticky sampling extends to infinite streams with same error guarantees as lossy

counting

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

STORM AND LOW-LATENCY
PROCESSING

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Low latency processing
• Similar to data stream processing, but with a twist

– Data is streaming into the system (from a database, or a network
stream, or an HDFS file, or …)

– We want to process the stream in a distributed fashion
– And we want results as quickly as possible

• Numerous applications
– Algorithmic trading: identify financial opportunities (e.g., respond as

quickly as possible to stock price rising/falling
– Event detection: identify changes in behaviour rapidly

• Not (necessarily) the same as what we have seen so far
– The focus is not on summarising the input
– Rather, it is on “parsing” the input and/or manipulating it on the fly

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

The problem
• Consider the following use-case
• A stream of incoming information needs to be summarised by some identifying token

– For instance, group tweets by hash-tag; or, group clicks by URL;
– And maintain accurate counts

• But do that at a massive scale and in real time
• Not so much about handling the incoming load, but using it

– That's where latency comes into play
• Putting things in perspective

– Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're
talking about 2.25MB/s

– Google served 34k searches/s in 2010: let's say 100k searches/s now and an
average of 200 bytes/search that's 20MB/s

– But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s
throughput

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

A rough approach
• Latency

– Each point 1 − 5 in the figure introduces a high processing latency
– Need a way to transparently use the cluster to process the stream

• Bottlenecks
– No notion of locality

• Either a queue per worker per node, or data is moved around
– What about reconfiguration?

• If there are bursts in traffic we need to shutdown, reconfigure and redeploy

w
ork partitioner

stream

queue

queue

queue

worker

worker

worker

worker

queue

queue

queue

worker

worker

worker
hadoop/
H

D
FS persistent

store

1

3

4
make hadoop-friendly
records out of tweets2

share the load
of incoming items parallelise processing

on the cluster

extract grouped data
out of distributed files

5
store grouped data
in persistent store

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Storm
• Started up as backtype; widely used in Twitter
• Open-sourced (you can download it and play with it!

– http://storm-project.net/
• On the surface, Hadoop for data streams

– Executes on top of a (likely dedicated) cluster of commodity hardware
– Similar setup to a Hadoop cluster

• Master node, distributed coordination, worker nodes
• We will examine each in detail

• But whereas a MapReduce job will finish, a Storm job—termed a
topology—runs continuously

– Or rather, until you kill it

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Storm topologies
• A Storm topology is a graph of computation

– Graph contains nodes and edges
– Nodes model processing logic (i.e., transformation over its input)
– Directed edges indicate communication between nodes
– No limitations on the topology; for instance one node may have more

than one incoming edges and more than one outgoing edges
• Storm processes topologies in a distributed and reliable fashion

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Streams, spouts, and bolts
• Streams

– The basic collection abstraction: an
unbounded sequence of tuples

– Streams are transformed by the
processing elements of a topology

• Spouts
– Stream generators
– May propagate a single stream to

multiple consumers

• Bolts
– Subscribe to streams
– Streams transformers
– Process incoming streams and

produce new ones

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Storm architecture

nimbus

zookeeperzookeeper zookeeper

supervisor

wor
ker

supervisor

wor
ker

supervisor

wor
ker

supervisor

wor
ker

supervisor

wor
ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor
ker

wor
ker

wor
ker

wor
ker

wor
ker

wor
ker

wor
ker

wor
ker

wor
ker

wor
ker

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

From topology to processing: stream groupings
• Spouts and bolts are replicated in

taks, each task executed in
parallel by a worker

– User-defined degree of
replication

– All pairwise combinations are
possible between tasks

• When a task emits a tuple, which
task should it send to?

• Stream groupings dictate how to
propagate tuples

– Shuffle grouping: round-robin
– Field grouping: based on the

data value (e.g., range
partitioning)

spout spout

boltbolt

bolt

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Zookeeper: distributed reliable storage and coordination

• Design goals
– Distributed coordination service
– Hierarchical name space
– All state kept in main memory, replicated

across servers
– Read requests are served by local replicas
– Client writes are propagated to the leader
– Changes are logged on disk before applied

to in-memory state
– Leader applies the write and forwards to

replicas

• Guarantees
– Sequential consistency: updates from a

client will be applied in the order that they
were sent

– Atomicity: updates either succeed or fail;
no partial results

– Single system image: clients see the same
view of the service regardless of the server

– Reliability: once an update has been
applied, it will persist from that time forward

– Timeliness: the clients’ view of the system
is guaranteed to be up-to-date within a
certain time bound

client client client client client client client

server server server server server
leader

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Putting it all together: word count
// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)

.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count", new WordCount(), 12)

.fieldsGrouping("split", new Fields("word")); // field grouping

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count", conf, builder.createTopology());

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

SPARK STREAMING

Discretized	Stream	Processing
Run	a	streaming	computation	as	a	series	of	very	small,	
deterministic	batch	jobs	è “MICRO	BATCH”	approach

39

Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

§ Chop	up	the	live	stream	into	batches	of	X	
seconds	

§ Spark	treats	each	batch	of	data	as	RDDs	and	
processes	them	using	RDD	operations

§ Finally,	the	processed	results	of	the	RDD	
operations	are	returned	in	batches

Discretized	Stream	Processing	
Run	a	streaming	computation	as	a	series	of	very	small,	
deterministic	batch	jobs	è “MICRO	BATCH”	approach

40

§ Batch	sizes	as	low	as	½	second,	latency	
of	about	1	second

§ Potential	for	combining	batch	
processing	and	streaming	processing	
in	the	same	system

Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

Example	– Get	hashtags from	Twitter	
val tweets = ssc.twitterStream()

DStream:	a	sequence	of	RDDs	representing	a	stream	of	data

batch	@	t+1batch @	t batch	@	t+2

tweets	DStream

stored	in	memory	as	an	RDD	
(immutable,	distributed)

Twitter	Streaming	API

Example	– Get	hashtags from	Twitter	
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation:	modify	data	in	one	DStream to	create	
another	DStreamnew	DStream

new	RDDs	created	
for	every	batch	

batch	@	t+1batch @	t batch	@	t+2

tweets	DStream

hashTags Dstream
[#cat,	#dog,	…]

Example	– Get	hashtags from	Twitter		
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output	operation:	to	push	data	to	external	storage

flatMap flatMap flatMap

save save save

batch	@	t+1batch @	t batch	@	t+2
tweets	DStream

hashTags	DStream

every	batch	
saved	to	HDFS

Example	– Get	hashtags from	Twitter		
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.foreach(hashTagRDD => { ... })

foreach:	do	whatever	you	want	with	the	processed	data

flatMap flatMap flatMap

foreach foreach foreach

batch	@	t+1batch @	t batch	@	t+2
tweets	DStream

hashTags	DStream

Write	to	database,	update	analytics	
UI,	do	whatever	you	want

DStream of	data

Window-based	Transformations
val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

sliding	window	
operation window	length sliding	interval

window	length

sliding	interval

Arbitrary	Stateful	Computations

Specify	function	to	generate	new	state	based	on	
previous	state	and	new	data

- Example:	Maintain	per-user	mood	as	state,	and	update	it	
with	their	tweets

updateMood(newTweets, lastMood) => newMood

moods = tweets.updateStateByKey(updateMood _)

Arbitrary	Combinations	of	Batch	and	
Streaming	Computations

Inter-mix	RDD	and	DStream	operations!

- Example:	Join	incoming	tweets	with	a	spam	HDFS	file	to	filter	
out	bad	tweets

tweets.transform(tweetsRDD => {
tweetsRDD.join(spamHDFSFile).filter(...)

})

DStream	Input	Sources
§Out	of	the	box	we	provide

- Kafka

- HDFS

- Flume

- Akka Actors

- Raw	TCP	sockets

§ Very	easy	to	write	a	receiver for	your	own	data	source

Fault-tolerance:	Worker
§ RDDs	remember	the	operations	
that	created	them

§ Batches	of	input	data	are	replicated	
in	memory	for	fault-tolerance

§ Data	lost	due	to	worker	failure,	can	
be	recomputed	from	replicated	
input	data

input	data	
replicated
in	memory

flatMap

lost	partitions	
recomputed	on	
other	workers

tweets
RDD

hashTags
RDD

§ All	transformed	data	is	fault-tolerant,	and	
exactly-once	transformations

Fault-tolerance:	Master
§Master	saves	the	state	of	the	DStreams	to	a	checkpoint	file

- Checkpoint	file	saved	to	HDFS	periodically

§ If	master	fails,	it	can	be	restarted	using	the	checkpoint	file

§More	information	in	the	Spark	Streaming	guide
- Link	later	in	the	presentation

§Automated	master	fault	recovery	coming	soon

Performance
Can	process	6	GB/sec	(60M	records/sec)	of	data	on	100	nodes	at	
sub-second latency

- Tested	with	100	text	streams	on	100	EC2	instances	with	4	cores	each

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

Cl
us
te
r	T

hr
ou

gh
pu

t	(
G
B/
s)

#	Nodes	in	Cluster

WordCount

1	sec

2	sec
0

1

2

3

4

5

6

7

0 50 100

Cl
us
te
r	T

hh
ro
ug
hp

ut
	(G

B/
s)

#	Nodes	in	Cluster

Grep

1	sec

2	sec

Comparison	with	Storm	and	S4
Higher	throughput	than	Storm

- Spark	Streaming:	670k records/second/node
- Storm:	115k records/second/node
- Apache	S4:	7.5k	records/second/node

0

10

20

30

100 1000

Th
ro
ug
hp

ut
	p
er
	n
od

e	
(M

B/
s)

Record	Size	(bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000

Th
ro
ug
hp

ut
	p
er
	n
od

e	
(M

B/
s)

Record	Size	(bytes)

Grep

Spark

Storm

Unifying	Batch	and	Stream	Processing	Models

Spark	program	on	Twitter	log	file	using	RDDs

val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFile("hdfs://...")

Spark	Streaming	program	on	Twitter	stream	using	DStreams

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Vision	- one	stack	to	rule	them	all
§ Explore	data	interactively	
using	Spark	Shell	to	identify	
problems

§ Use	same	code	in	Spark	stand-
alone	programs	to	identify	
problems	in	production	logs

§ Use	similar	code	in	Spark	
Streaming	to	identify	
problems	in	live	log	streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
} object ProcessLiveStream {

def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

LAMBDA ARCHITECTURE

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Lambda Architecture
• apply the (λ) Lambda philosophy in designing big data system
• equation “query = function(all data)” which is the basis of all data systems
• proposed by Nathan Marz (http://nathanmarz.com/)

– software engineer from Twitter in his “Big Data” book.
• three design principles:

1. human fault-tolerance – the system is unsusceptible to data loss or data corruption
because at scale it could be irreparable.

2. data immutability – store data in it’s rawest form immutable and for perpetuity.
• INSERT/ SELECT/DELETE but no UPDATE !)

3. recomputation – with the two principles above it is always possible to (re)-compute results
by running a function on the raw data

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Lambda Architecture

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

GOOGLE DATAFLOW

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Google DataFlow
• Allows for the calculation of

– event-time ordered results,
– windowed by features of the data themselves,
– over an unbounded, unordered data source,
– correctness, latency, and cost tunable across a broad spectrum of combinations.

• Decomposes pipeline implementation across four related dimensions, providing clarity,
composability, and flexibility:

– What results are being computed.
– Where in event time they are being computed.
– When in processing time they are materialized.
– How earlier results relate to later refinements.

• Separates the logical data processing from the underlying physical implementation,
– allowing the choice of

• batch
• micro-batch, or
• streaming engine to become one of simply correctness, latency, and cost.

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DataFlow: Time

Two kinds of time
• Event Time, which is

the time at which the
event itself actually
occurred

• Processing Time,
which is the time at
which an event is
handled by the
processing pipeline.

watermark = time before
which the system (thinks it)
has processed all events

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DataFlow: Processing Model
Generalized MapReduce:
• ParDo (doFcn) pretty much = “Map”

– Each input element to be processed (which itself may be a finite collection) is provided to a
user-defined function (called a DoFn in Dataflow), which can yield zero or more output
elements per input.

– For example, consider an operation which expands all prefixes of the input key, duplicating
the value across them:

• Input: (fix, 1),(fit, 2) ���
è ParDo(ExpandPrefixes) è

• Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
• GroupByKey more or less ~ “Reduce”

– for key-grouping (key, value) pairs.
– In the example:

• Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
è GroupByKey è

• Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2])

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DataFlow: Windowing Model
Many possible window definitions, define one using two methods:
• AssignWindows(T datum) è Set<Windows>
• MergeWindows(Set<Windows>) è Set<Windows>

Example:
• Input: (k, v1, 12:00, [0, ∞)),(k, v2, 12:01, [0, ∞)) ���

è AssignWindows(Sliding(2min, 1min)) è

• Output:
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Data Model

• MapReduce
(Key,Value)

• DataFlow
(Key, Value, EventTime, Window)

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

DataFlow: Windowing Model

AssignWindows(Sliding(2m, 1m))

• Output:
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Example. When do results get computed?

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Triggering: classical batch execution

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

GlobalWindows, AtPeriod, Accumulating

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

GlobalWindows, AtCount, Discarding

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Triggering: FixedWindows, Batch

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Triggering: FixedWindows, Micro-Batch

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

FixedWindows, Streaming, Partial

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

FixedWindows, Streaming, Retracting

event.cwi.nl/lsde2015www.cwi.nl/~boncz/bads

Summary
• Introduced the notion of data streams and data stream processing

– DSMS: persistent queries, transient data (opposite of DBMS)
• Described use-cases and algorithms for stream mining

– Lossy counting
• Introduced frameworks for low-latency stream processing

– Storm
• Stream engine, not very Hadoop integrated (separate cluster)

– Spark Streaming
• “Micro-batching”, re-use of RDD concept

– Google Dataflow
• Map-Reduce++ with streaming built-in (advanced windowing)
• Finegrained control over the freshness of computations
• Avoids “Lambda Architecture” – two systems for batch and streaming

