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About Myself

® Systems

o Column stores (MonetDB) L
o Vectorized execution, nghtwelght compressmn (Actian Vector/VectorWise)

e Benchmarking
o LDBC: Linked Data Benchmark Council (ldbcouncil.org) $
m Social Network Benchmark (Interactive / Bl) LDBC
m Graphalytics The graph & RDF

e QueryLlLanguages benchmark reference

o G-CORE - with e.g. Neo4j, Oracle, and researchers from the theory community
m LDBC Liaison with ISO = SQL:2023 (SQL/PGQ)
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Roadmap

e above the surface: Graph Data Management
o data models
o querylanguages
o systems

e underthe hood: Graph Systems

o 6 blundersin graph system architecture
o blueprint of a competent graph database system
o future standards: SQL/PGQ (SQL:2023) and GQL



Graph Data Management
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GDBMS Use Cases

Gained a foothold in the data systems market

Tasks: Data Integration, Data cleaning and
Enrichment, Fraud Detection, Recommendation,
Historical Analysis, Root-Cause Analysis,...

e Initially via RDF and SPARQL systems
e now via Property Graph Systems

Data: knowledge graphs, social networks, telco
networks, relational warehouses, data lakes
(output of joins, similarity mining generates
edges on-the-fly)

VLDB Journal 2020 + PVLDB 2017

COMMUNICATIONS
"ACM
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By Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru losup, Khaled Ammar, Renzo Angles, Walid Aref, Marcelo
Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard
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ABSTRACT
Graph p ing is b g y p: across many
application domains. In spite of this prevalence, there is little re-

search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’

to onr ione hichlichtino comman natternc and chal-

52,55], and distributed graph processing systems [17,21,27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:
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Key GDBMS building blocks

-0 Q ”~
property graph graph query graph
data model language visualization
Q Q Q Q
subgraph relational path stored
matching queries queries procedures
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Data model: Property graph

Directed graph consisting of labeled entities: vertexes & edges

e Entities can have properties with (literal) values (KV-pairs)

e Looseschemaonly

SUBCLASS_OF

o

9

TLIKES

MEMBER

Perso\n—)

KNOWS

Forum

Tag
name; Oasis

Person
name:; Alice
speaks: [en, fr]
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LDBC Property Graph Schema Working Group

SUBCLASS_OF

Tag

LIKES

Person

KNOWS

Topics of study:

e Constraints
e Properties
e Nulls

SIGMOD’21

PG-KEeys: Keys for Property Graphs

Renzo Angles Angela Bonifati Stefania Dumbrava
Universidad de Talca, IMFD Chile Lyon 1 Univ., Liris CNRS & INRIA ~ ENSIIE & Inst. Polytechnique de Paris
George Fletcher Keith W. Hare Jan Hidders
Eindhoven Univ. of Technology JCC Consulting Inc., Neo4j Birkbeck, Univ. of London
Victor E. Lee Bei Li Leonid Libkin
TigerGraph Google LLC U. of Edinburgh, ENS-Paris/PSL, Neo4j
Wim Martens Filip Murlak Josh Perryman
University of Bayreuth University of Warsaw Interos Inc.
Ognjen Savkovié¢ Michael Schmidt Juan Sequeda
Free Univ. of Bozen-Bolzano Amazon Web Services data.world
Stawek Staworko Dominik Tomaszuk
U. Lille, INRIA LINKS, CRIStAL CNRS  Inst. of Comp. Sci., U. of Bialystok
ABSTRACT KEYWORDS

We report on a community effort between industry and academia to
shape the future of property graph constraints. The standardization
for a property graph query language is currently underway through
the ISO Graph Query Language (GQL) project. Our position is that
this project should pay close attention to schemas and constraints,
and should focus next on key constraints.

The main purposes of keys are enforcing data integrity and
allowing the referencing and identifying of objects. Motivated by
use cases from our industry partners, we argue that key constraints

property graphs; key constraints

ACM Reference Format:

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith
W. Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savkovi¢, Michael Schmidt, Juan Sequeda,
Stawek Staworko, and Dominik Tomaszuk. 2021. PG-KEys: Keys for Property
Graphs. In P lings of the 2021 International Conference on Management
of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457561
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Subject Predicate Object

born-in

Data model: RDF triples

Reconciliation of RDEF* and Property Graphs

Olaf Hartig

University of Waterloo
http://olathartig.de

November 14, 2014

Abstract

Both the notion of Property Graphs (PG) and the Resource Description Framework (RDF) are
commonly used models for representing graph-shaped data. While there exist some system-
specific solutions to convert data from one model to the other, these solutions are not entirely
compatible with one another and none of them appears to be based on a formal foundation. In
1 fact. for the PG model. there does not even exist a commonlv acreed-upon formal definition.

Tag
name; Oasis

LIKES

Person since: 2004/1/1

name: Alice
speaks: [en, fr]

vs Property Graph
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LIKES

Person since: 2004/1/1

name: Alice

Data model: RDF triples speaks: [en, fi]
Cossis e mprmame uroasi vs Property Graph

:uri:likes

- (uri:alice
<uri:name

::Ur\ispeaks
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LIKES

Person since: 2004/1/1

name: Alice

Data model: RDF triples speaks: [en, fi]
Consis Doy vs Property Graph

reification ::uri?k& ::urizsince
.-U [

- (uri:alice
<uri:name

uri;oasis




Query language: Cypher

MATCH

(pl:Person)-[:KNOWS]-(p2:Person), ﬁ;%ﬁ:gg
path query (p1)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2),
(Kleene-star) (pl)—[:KNOWS*J—(pB:Pe[‘son)
WHERE NOT (f)-[:MEMBER]->(p3) relational
RETURN p1, f, count(p2), count(p3)| operators
Person KNOWS

name: Alice

Isomorphic semantics
speaks: [en, fr

MEMBER
since: 2017-05-03

|

"pl" "f"l"COUHt pZ "Count p3 "|
|

1

1

|
|
|
|
(B} |
|

Forum
title: Drums



Query language: Cypher

MATCH

(pl:Person)-[:KNOWS]-(p2:Person), f:;%ﬁ:sh
path query (p1)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2), g
(Kleene-star) (p1)-[:KNOWS™]-(p3:Person)
WHERE NOT (f)-[:MEMBER]->(p3) relational
RETURN p1, f, count(p2), count(p3)| operators
Person KNOWS

name: Alice Homomorphic semantics

speaks: [en, fr

MEMBER
since: 2017-05-03

"count (p2) 'count (p3)"

| v
|
|
|

Forum

title: Drums




e basic graph pattern

Pattern matching [ """
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Subgraph matching (Cypher)

Category: Basic graph pattern

MATCH

(pl:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

(p1)-[:KNOWS]-(p2)
WHERE pl.id < p2.id
RETURN pl1, p2, f

p1: Person

p2: Person

N

f: Forum

O‘G (&)

Results:

(A, B, D)
(A, B, E)
(B, C, E)
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Subgraph matching (Cypher)

Category: Basic graph pattern

MATCH

(pl:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

(p1)-[:KNOWS]-(p2)
WHERE pl.id < p2.id
RETURN pl1, p2, f

p1: Person

p2: Person

N

f: Forum

OQORE

Results:

(A, B, D)
(A, B, E)
(B, C, E)
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Subgraph matching (Cypher)

Category: Basic graph pattern

MATCH

(pl:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

(p1)-[:KNOWS]-(p2)
WHERE pl.id < p2.id
RETURN pl1, p2, f

p1: Person

p2: Person

N

f: Forum

Oq® (&

Results:

(A, B, D)
(A, B, E)
(B, C, E)
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Subgraph matching (Cypher)

Category: Basic graph pattern

MATCH

(pl:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

(p1)-[:KNOWS]-(p2)
WHERE pl.id < p2.id
RETURN pl1, p2, f

p1: Person

p2: Person

N

f: Forum

O:E!G

Results:

(A, B, D)
(A, B, E)
(B, C, E)



Subgraph matching (SQL)

Edge tables: knows (personlid, person2id); member(forumid, personid)
Basic graph pattern: equijoins (SPJ)

SELECT ml.personid, m2.personid, ml.forumid

p1: Person p2: Person FROM member ml

JOIN member m2
‘\\\\\\\\////////7 ON ml.forumid = m2.forumid
JOIN knows

f: Forum ON knows.personlid = ml.personid
AND knows.person2id = m2.personid
WHERE knows.personlid < knows.person2id

Q: m1>=m2>knows



e basic graph pattern

e complex graph pattern

Pattern matching




Subgraph matching (Cypher)

Category: Complex graph pattern

MATCH (f:Forum)-[:MEMBER]->(pl:Person)

OPTIONAL MATCH (f)-[:MEMBER]->(p2: Per‘son)l

WHERE pl.id < p2.id AND [NOT (p1)-[:KNOWS]-(p2)
RETURN f, [count(p2)

«neg» count ° e G Results:
p1: Person [----- p2: Person
///7 (D) O)
////«opt» (E, ]_)
f: Forum Q e




Subgraph matching (SQL)

Edge tables: knows (personlid, person2id); member(forumid, personid)

Complex graph pattern: equijoins, outer joins, antijoin, aggregation (SPOJG)

neg count SELECT ml.forumid, |[count(m2.personid)
« »
p1: Person | ----- p2: Person FROM member ml
v LEFT OUTER JOIN member m2
i\\\\\\\\ L7 ON mil.forumid = m2.forumid
-7 «opt» . .
.z AND ml.personid < m2.personid
f: Forum WHERE NOT EXISTS (SELECT true FROM knows

WHERE personlid = ml.personid
AND person2id = m2.personid)
Y ( member P} member > knows ) [GROUP BY mi.forumid
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Unweighted shortest path in Cypher

MATCH path=shortestPath(
(source:Person {name: 'Bob'})-[:KNOWS*]-(target:Person {name: 'Fleur'})

)
RETURN length(path) AS length
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Person
Unw. SP query: Data in SQL 1

Alice

2 Bob

3 Cecile
Graphs can be represented in the 4 Diane
relational model with PKs and FKs 2 E;:L'j"r’

(primary keys and foreign keys)

"GN LM personlid | person2id
[FK] [FK]

1 2
1 3
1 4
2 3
3 4
3 5
4 5
4 6
5 6

all edges backwards
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Person
Unw. SP query: Data in SQL 1

Alice

sourccmmp 2 Bob
3 Cecile
Graphs can be represented in the 4 Diane
- - 5 Emily
relational model with PKs and FKs target mm . Four

(primary keys and foreign keys)

"GN LM personlid | person2id
[FK] [FK]

1 2
1 3
1 4
2 3
3 4
3 5
4 5
4 6
5 6

all edges backwards
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Unweighted shortest path query in SQL

WITH RECURSIVE paths(source, target, path, level, targetReached) AS (
SELECT personlid AS source,
person2id AS target,

[personlid, person2id] AS path, path level | targetReached
1 AS level,  TTTTTTTT T TS T T T T T T T T T T T T T T T T T T T T T o
(p2.name = 'Fleur') AS targetReached [2, 3] 1 false
FROM knows [2, 1] 1 false
JOIN Person pl ON pl.id = knows.personilid [2, 1, 4] 2 false
JOIN Person p2 ON p2.id = knows.person2id [2, 3, 5] 2 false
WHERE pl.name = 'Bob' [2, 3, 4] 2 false
UNION ALL [2, 1, 4, 6] 3 true
SELECT paths.source AS source, [2, 3, 5, 6] 3 true
person2id AS target, [2, 3, 4, 6] 3 true
array_append(path, person2id) AS path, L]

level + 1 AS level,
max(CASE WHEN p2.name = 'Fleur' THEN true ELSE false END)
OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS targetReached
FROM paths
JOIN knows ON knows.personlid = paths.target
JOIN Person p2 ON p2.id = knows.person2id
WHERE person2id != ALL(paths.path)
AND NOT paths.targetReached
AND NOT EXISTS (SELECT 1 FROM paths previous_paths WHERE list_contains(previous_paths.path, knows.person2id))
)
SELECT path, level, targetReached
FROM paths
JOIN Person ON Person.id = paths.target;
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Unweighted shortest path query in SQL

WITH RECURSIVE paths(source, target, path, level, targetReached) AS (
SELECT personlid AS source,

person2id AS target,

[personlid, person2id] AS path,

1 AS level,

(p2.name = 'Fleur') AS targetReached

FROM knows

JOIN Person pl ON pl.id = knows.personlid

JOIN Person p2 ON p2.id = knows.person2id
source person WHERE pl.name = 'Bob' |
UNION ALL

SELECT paths.source AS source,
person2id AS target,
array_append(path, person2id) AS path,

initial edge

path
[2, 3]
[2, 1]
[2, 1, 4]
[2, 3, 5]
[2, 3, 4]
[2, 1, 4, 6]
[2, 3, 5, 6]
3

“reached target node?” HOERWSSEDN
using a WindOW function max(CASE WHEN p2.name = 'Fleur' THEN true ELSE false END)

OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS targetReached

FROM paths

[ JOIN knows ON knows.personlid = paths.target

JOIN Person p2 ON p2.id = knows.person2id

WHERE |personZid I= ALL(paths.path) CyCle detection in path
not reached AND NOT paths.targetReached |

add next edge

target node

SELECT path, level, targetReached
FROM paths
JOIN Person ON Person.id = paths.target;

| AND NOT EXISTS (SELECT 1 FROM paths previous_paths WHERE list_contains(previous_paths.path, knows.person2id))

prevent visiting nodes already

found in previous steps
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Unweighted shortest path query in SQL

WITH RECURSIVE paths(source, target, path, level, targetReached) AS (
SELECT personlid AS source,
person2id AS target,
[personlid, person2id] AS path,

1 AS level, . [TTTTTTTTT TS TS S SSTT TSyt

(p2.name = 'Fleur') AS targetReached
FROM knows
JOIN Person pl ON pl.id
JOIN Person p2 ON p2.id
WHERE pl.name = 'Bob'’
UNION ALL
SELECT paths.source AS source,
person2id AS target,

knows.personlid
knows .person2id

path level | targetReached
3] 1 false
1] 1 false
1, 4] 2 false
3, 5] 2 false
3, 4] 2 false
1, 4, 6] 3 true
3, 5, 6] 3 true
3, 4, 6] 3 true

array_append(path, person2id) AS path, Lol

level + 1 AS level,
max(CASE WHEN p2.name = 'Fleur' THEN true ELSE false END)

OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS targetReached

FROM paths
JOIN knows ON knows.personlid = paths.target
JOIN Person p2 ON p2.id = knows.person2id
WHERE person2id != ALL(paths.path)
AND NOT paths.targetReached

AND NOT EXISTS (SELECT 1 FROM paths previous_paths WHERE list_contains(previous_paths.path, knows.person2id))

)

L SELECT array_agg(pathPerson.name) AS pathNames
finding the names [y (SELECT path, unnest(paths.path) AS personid
on the paths by FROM paths JOIN Person targetPerson ON targetPerson.id = paths.target
WHERE targetPerson.name = 'Fleur') unnestedPath
JOIN Person pathPerson ON pathPerson.id = unnestedPath.personid
GROUP BY path;

unnesting & joining

Bob, Alice, Diane, Fleur]
Bob, Cecile, Emily, Fleur]
Bob, Cecile, Diane, Fleur]

—_—r——
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Unweighted shortest path query in SQL

WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (

SELECT personlid AS startPerson, person2id AS endPerson,

[personlid, person2id]::bigint[] AS path, 1 AS level, path level epr
max (CASE WHEN p2.name = 'Fleur’
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING[ AND 3UNBOUNDED |FOLLOWING) AS1se
endPersonReached [2, 1] 1 false
FROM knows [2, 1, 4] 2 false
JOIN Person pl ON pl.id = knows.personlid [2, 3, 1] 2 false
JOIN Person p2 ON p2.id = knows.person2id [2, 1, 3] 2 fadise
WHERE p1.name = 'Bob' [2, 3, 5] 2 false
UNION ALL
SELECT paths.startPerson AS startPerson, person2id AS endPerson, {g: i: j} 3] i iiize
array_append(path, person2id) AS path, level + 1 AS level, (2, 3, 1, 4] 3 i
max(CASE WHEN p2.name = 'Fleur’ (2, 3. 5. 4 3 i
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING[é\ND3 NB&)UN[R%D FO%LOWING <
endPersonReached » 0 W
FROM paths [2, 1, 4, 6] 3 true
JOIN knows ON paths.endPerson = knows.personlid (2, 1,3, 5] 3 e
JOIN Person p2 ON p2.id = knows.person2id (2,3, 5, 6] 3 e
WHERE p2.id != ALL(paths.path) [2, 3, 4, & |} 3 g
AND NOT paths.endPersonReached) [2, 1, 4, 3 3 g
SELECT path, level, endPersonReached AS epr (2, 1, 3, 4] 3 true
FROM paths; (2, 3, 4, 3 3 true
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Unwelghted shortest path in Cypher

MATCH p=shortestPath(
(start:Person {name: 'Bob'})-[:KNOWS*]-(end:Person {name: 'Fleur'}))
RETURN length(p) AS length
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Person
Unw. SP query: Data in SQL 1

Alice

2 Bob

3 Cecile
Graphs can be represented in the 4 Diane
relational model with PKs and FKs 2 E;:L'j"r’

(primary keys and foreign keys)

"GN LM personlid | person2id
[FK] [FK]

1 2
1 3
1 4
2 3
3 4
3 )
4 )
4 6
S} 6

all edges backwards
(optional)
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Person
Unw. SP query: Data in SQL 1

Alice

startmmp| 2 Bob
3 Cecile
Graphs can be represented in the 4 Diane
- - 5 Emily
relational model with PKs and FKs end mm) . Four

(primary keys and foreign keys)

"GN LM personlid | person2id
[FK] [FK]

1 2
1 3
1 4
2 3
3 4
3 )
4 )
4 6
S} 6

all edges backwards
(optional)



Unweighted shortest path query in SQL

WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (
SELECT personlid AS startPerson, person2id AS endPerson,
[personlid, person2id]::bigint[] AS path, 1 AS level,
max (CASE WHEN p2.name = 'Fleur’
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
FROM knows
JOIN Person pl ON pl.id
JOIN Person p2 ON p2.id
WHERE pl.name = 'Bob'’
UNION ALL
SELECT paths.startPerson AS startPerson, person2id AS endPerson,
array_append(path, person2id) AS path, level + 1 AS level,
max(CASE WHEN p2.name = 'Fleur’
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
FROM paths
JOIN knows ON paths.endPerson = knows.personlid
JOIN Person p2 ON p2.id = knows.person2id
WHERE p2.id != ALL(paths.path)
AND NOT paths.endPersonReached)
SELECT path, level, endPersonReached AS epr
FROM paths;

knows.personlid
knows.person2id



Unweighted shortest path query in SQL

WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS
SELECT personlid AS startPerson, person2id AS endPerson, initial edge
[personlid, person2id]::bigint[] AS path, 1 AS level,
max (CASE WHEN p2.name = 'Fleur’
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PH reached end node? w/ window function
endPersonReached
FROM knows
JOIN Person pl ON pl.id
JOIN Person p2 ON p2.id
WHERE pl.name = 'Bob'’
UNION ALL
SELECT |[paths.startPerson AS startPerson, person2id AS endPerson,
array_append(path, person2id) AS path, level + 1 AS level,
max(CASE WHEN p2.name = 'Fleur: reached end node? w/ window function
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECE
endPersonReached
FROM paths
JOIN knows ON paths.endPerson = knows.personlid
JOIN Person p2 ON p2.id = knows.person2id
WHERE |p2.id != ALL(paths.path)
AND |[NOT paths.endPersonReached)
SELECT path, level, endPersonReached AS epr
FROM paths;

knows.personlid
knows.person2id

adding an edge to the path

cycle detection

check reached end node




Unweighted shortest path query in SQL

WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (
SELECT personlid AS startPerson, person2id AS endPerson,
[personlid, person2id]::bigint[] AS path, 1 AS level,
max (CASE WHEN p2.name = 'Fleur’
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
FROM knows
JOIN Person pl ON pl.id
JOIN Person p2 ON p2.id
WHERE pl.name = 'Bob'’
UNION ALL
SELECT paths.startPerson AS startPerson, person2id AS endPerson,
array_append(path, person2id) AS path, level + 1 AS level,
max(CASE WHEN p2.name = 'Fleur’
THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS

knows.personlid
knows.person2id

endPersonReached

FROM paths

JOIN knows ON paths.endPerson = knows.personlid

JOIN Person p2 ON p2.id = knows.person2id path level

WHERE p2.id != ALL(paths.path)

AND NOT paths.endPersonReached) (2, 1, 4, 6] 3
SELECT path, level [2, 3, 5, 6] 3
FROM paths (2, 3, 4, 6] 3
JOIN Person ON Person.id = paths.endPerson

+ unnest + join to get the names

WHERE Person.name = 'Fleur';



e unweighted path query

Path q ueries e weighted shortest path query
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Weighted shortest paths

Difficult. Alternative: stored procedures, e.g. Postgres has pgrouting and MAD1ib

Oracle example from: http://aprogrammerwrites.eu/?p=1391

WITH paths (node, path, cost, rnk, lev) AS (

SELECT a.dst, a.src || ',' || a.dst, a.distance, 1, 1 FROM arcs a

WHERE a.src = :SRC

UNION ALL

SELECT a.dst, p.path || '," || a.dst, p.cost + a.distance, Rank () OVER (PARTITION BY a.dst ORDER BY p.cost +

a.distance), p.lev + 1
FROM paths p
JOIN arcs a ON a.src = p.node AND p.rnk = 1
) SEARCH DEPTH FIRST BY node SET line_no
CYCLE node SET 1lp TO '*' DEFAULT ' '
, paths_ranked AS (
SELECT lev, node, path, cost, Rank () OVER (PARTITION BY node ORDER BY cost) rnk_t, 1lp, line_no
FROM paths WHERE rnk = 1)
SELECT LPad (node, 1 + 2* (lev - 1), '.') node, lev, path, cost, 1p
FROM paths_ranked

ORDER I;‘:](kficn:_io . Complex query /I Arelational simulation of Dijkstra’s algorithm


https://docs.pgrouting.org/3.1/en/pgr_dijkstra.html
https://madlib.apache.org/docs/latest/group__grp__sssp.html
http://aprogrammerwrites.eu/?p=1391
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Weighted shortest paths

Cypher: No weighted shortest path construct. In Neo4j there’s the Graph Data Science lib.

MATCH (cl:Customer {id: $c1id}), (c2: Customer {id: $c2id})

| CALL gds.shortestPath.dijkstra.stream({
—— : , call stored procedure
nodeProjection: 'Customer',

relationshipProjection: 'TRANSFER',
sourceNode: c1,
targetNode: c2,
relationshipWeightProperty: 'amount'
)
YIELD path, totalCost
RETURN path, totalCost

This is confusing to users:
e Unweighted shortest path -> pattern matching
e Weighted shortest path -> stored procedure
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Systems and languages
% TigerGraph @XTDB

>ﬂeO4j S(r;a)c(:le Labs

Cypher PGQL

relationalAl 0 Dgraph

Rel

@ JanusGraph
Amazon Neptune

SPARQL, Cypher, Gremlin
Gremlin

GSQL Datalog

See also:
A Survey of Current Property Graph Query Languages

(2021) by Peter Boncz &&

ACM Computing Surveys 2017

Foundations of Modern Query Languages for Graph Databases'

RENZO ANGLES, Universidad de Talca & Center for Semantic Web Research

MARCELO ARENAS, Pontificia Universidad Catélica de Chile & Center for Semantic Web Research
PABLO BARCELQ, DCC, Universidad de Chile & Center for Semantic Web Research

AIDAN HOGAN, DCC, Universidad de Chile & Center for Semantic Web Research

JUAN REUTTER, Pontificia Universidad Catélica de Chile & Center for Semantic Web Research
DOMAGOJ VRGOC, Pontificia Universidad Catélica de Chile & Center for Semantic Web Research

‘We survey foundational features underlying modern graph query languages. We first discuss two popular
graph data models: edge-labelled graphs, where nodes are connected by directed, labelled edges; and prop-
erty graphs, where nodes and edges can further have attributes. Next we discuss the two most fundamental

oraph auerving functionalities: sraph patterns and navigational expressions. We start with eraph patterns.



https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)
https://homepages.cwi.nl/~boncz/job/gql-survey.pdf

A simple test of Graph Data Systems
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LSQB: A Large-Scale Subgraph Query Benchmark
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Message ABSTRACT As observed in prior work [1, 3, 32], a subgraph matching query
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marks. Matching a labelled structural graph pattern, referred to as T:}lerefore, provided a mapping from the graph schema to the rela-

subgraph matching, is the focus of LSQB. In relational terms, the tlon“fl schema, relational DBMSs (RDBMSs) also support subgraph

(g) Q7‘ benchmark tests DBMSs’ join performance as a choke-point since quenes.
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GDBMS performance for subgraph queries

e Loadthe data: 100M vertices, 650M edges
e Run all 9 queries one-by-one (count number of matches)
e Environment: cloud VM, 370GB RAM, 48 vCPU cores

runtime‘ T T T

' |
' |
I >90 min |
I timeout |
I /crash |
' |
' |

_m_m

Umbra Hyper every GDBMS
prototype industry we tested
RDBMS RDBMS
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= GDBMS often still incompetent!

e performance

o  Slow loading speeds

o Query speeds over magnitude slower than RDBMS
e scalability

o Low datasize limit, typically << RAM

o Little benefit from parallelism (SIMD, cores, machines)
e reliability

o Loads never terminate

o Query run out of memory or crash
o Bugs



6 blunders in system architecture
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Triple Fallacy 1: Locality Lost

Throwing all edges in one basket: a good idea?

0

1995
1996
1996
1997

year

year

year

4
0
year | 6
3
2

1998 | year

7777

* relational clustered index

><

P s o0 |

a

isbn | 0 | i1996

isbn | 2 | i1998

isbn | 3 | i1997

isbn | 4 | i1995

isbn | 6 | 11996
z

><

year author isbn
1975 a1995 1995
1996 a1996 11996
1996 a1996 1996
1997 a1997 1997
1998 a1998 1998

* clustering is often for free with ZoneMaps

P _S 0 |
a

auth [ 0 | a1996
auth | 2 | a1998
auth | 3 | a1997
auth | 4 | a1995
auth [ 5 foo

auth | 6 | a1996

book query:

SELECT ?a ?n WHERE {
?b <has_author> ?a.
?b <in year>
?b <isbn no> ?n

}

“1996”.

an indexing on all 6 triple orders does
not guarantee access locality (red)!!

 relational partitioned table

1995 I a1995 | 1995

1996 a1996

1996

a1996

1996

1997 I a1997 | 1997

1998

author

a1998 1998




W book query:
Centrum Wiskunde & Informatica SELECT ?a ?n WHERE {

Triple Fallacy 2: Join Jungle

e superfluous joins explode query complexity

=<

?b <has_author> ?a.
?b <in year> “1996”.
?b <isbn no> ?n

}

/\dgb,"_no> ’n

=<

/T~

IdxScan

IdxScan
<in_ _year> “1996”

IdxScan
<has author> Pa

< Query graph> < Example query plan >
g’C)
¢ query has unnecessary joins é :
— in arelational DB, this is scanning a record, not a join g il
— problem #1: joins are costly at query execution time e .

— problem #2: query optimization complexity is O(3V)

5 10 15 20
Number of triple patterns

with star patterns size F, exponentially worse (37) optimization space coverage (b) Virtuoso




W book query:
Centrum Wiskunde & Informatica SELECT ?a ?n WHERE {

?b <has_author> ?a.

Triple Fallacy 3: Cardinality Crisis | = =222 57

}

e Graph joins are harder to optimize!

< Query graph>

* because of structural correlations
— if (?b has an <isbn_no>) it’s a book, it has <in_year> and <has_author>
— query optimizer estimates using the independence assumption

— many joins (fallacy 2) + wrong estimates = performance disaster
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4 Graph Unigueness Syndrome

e “sodifferent from relational that no lessons apply”
o attitude also seen in research papers
o E.g.insist on using pointers for navigation (no buffer manager)
m At what cost: updates? memory locality? fast scans?

m Do you avoid joins, or just call them something different?

= GDBMS should build on all techniques from RDBMS

o Buffer Manager, Transactions, Query Algebra, Statistics, Optimizer, ...

o ...and then add graph-specific functionality
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5 A Pltfall: Key-Value APIs

e “APIs are faster than a query language”
o  Three navigation steps in social network =1 million API calls

e “This GDBMS s pluggable and can use any KV store as backend”

o Tell-tale signal of non-bulk API
o Typically APl even goes beyond process or machine

= if you design an imperative APIl, make it a bulk one

e mentioned “Query Algebra” already..



6 Booby-Trapped Query Languages

e Bad: QL with high complexity and some optimizations
o e.g OWL
o Ifthe optimizer gets it, the query finishes, otherwise not

= Query languages should only allow tractable queries, e.g.

o  Explicit syntax for reachability and (weighted) shortest path
m  Always Dijkstra, Bellman-Ford, ..

o  Restricted path expressions only
m REM’sas proposed in Oracle PGQL (and G-CORE)



Blueprint of a competent GDBMS
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Start from a competent base

e Columnar storage + lightweight compression

o  Compact storage, Fast (SIMD-friendly) scans CIDR’20 ‘. DUCk DB
® FaSt Quel’y EXGCUtOF Data Management for Data Science

Towards Embedded Analytics

o JIT (Umbra) or vectorized execution (DuckDB)

Mark Raasveldt Hannes Muhleisen
CWI Amsterdam CWI Amsterdam

. B u ﬁe r M a n a ge r m.raasveldt@cwi.nl hannes@cwi.nl

ABSTRACT

The rise of Data Scienc
i f data manag

o data>>RAM (e.g. LeanStore = execute directly on SSD)

e Control over memory
o C++,CorRust
e Bottom-up Dynamic Programming Query Optimizer
ot CIDR’20
o Samples and hyperloglog as statistics (S UMBRA
PY Morsel_d r|Ven Pa ra“eulsm Umbra: A Disk-Based System with In-Memory Performance

Thomas Neumann, Michael Freitag

o  Atomicsin shared hash tables, low-overhead queues it

ABSTRACT




Centrum Wiskunde & Informatica

Structure-Aware Storage

GDBMS must know tables (vertex/edge entities) and its columns (aka properties)

Either because there is an explicit schema

o See work of LDBC Property Graph Schema working groups
Or because the system learns the schema on-the-fly

o  Similar to smart JSON loading techniques

o  Only the most populated columns need efficient columnar storage

SIGMOD’21

ook

JSON Tiles: Fast Analytics on Semi-Structured Data

Dominik Durner

Thomas Neumann
Technische Universitét Miinchen

Viktor Leis

dominik.durner@tum.de

ABSTRACT

Developers often prefer flexibility over upfront schema design, mak-
ing semi-structured data formats such as JSON increasingly popular.
Large amounts of JSON data are therefore stored and analyzed by
relational database systems. In existing systems, however, JSON’s
lack of a fixed schema results in slow analytics. In this paper, we
present JSON tiles, which, without losing the flexibility of JSON, en-

he Universitit Miinch Friedrich-Schiller-Universitit Jena

viktorleis@uni-jena.de thomas.neumann@tum.de

Sinew [57]

Figure 1: Classification of existing work.
ahisrsalatisnaleretaris ta Betiormanalo s TOON data At fatioe gu g | I |

WWW’15

Deriving an Emergent Relational Schema from RDF Data

Minh-Duc Pham#  Linnea Passing® Orri Erling® Peter Boncz®
m.d.pham@vu.nl passing@in.tum.de oerling@openlinksw.com boncz@cwi.nl

“Vrije Universiteit Amsterdam, The Netherlands
“Technische Universitat Miinchen, Germany
©OpenlLink Software, UK ©“CWI, The Netherlands

ABSTRACT

0 (subject, property, object) columns'. SQL systems tend
to be more efficient than triple stores, because the latter

scribe techniques that allow to detect an
g TN

P e LR O

need querv plans with manv self-ioins — one per SPAROQIL
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Faster Navigation

can we get O(1) navigation using joins?

ideas:

e Positional access as a hash-join
optimization (if keys are dense)
o +caching of such hash tables

e Packed Memory Arrays (PMA)
o Updatable graph-friendly (CSR) columna
data structure, see Teseo

PVLDB’21

Teseo and the Analysis of Structural Dynamic Graphs

Dean De Leo
CWI
dleo@cwi.nl

ABSTRACT

‘We present Teseo, a new system for the storage and analysis of
dynamic structural graphs in main-memory and the addition of
transactional support. Teseo introduces a novel design based on
sparse arrays, large arrays interleaved with gaps, and a fat tree,
where the graph is ultimately stored. Our design contrasts with
early systems for the analysis of dynamic graphs, which often lack
transactional support and are anchored to a vertex table as a primary
index. We claim that the vertex table implies several constraints,

Peter Boncz
CWI
boncz@cwi.nl

arguably representing the most compared system to day. On the
other hand, there have been attempts to adapt existing Relational
DBMSes (RDBMS) for graph analysis [22, 33].

Upon inspection, these approaches have been shown to come
short in terms of performance [48, 50], compared to systems for
static graphs, while offering a somewhat more restricted abstrac-
tion model. Nowadays, single machines can process relatively large
graphs [51], and, recently, for this architecture, several libraries
to tackle dynamic graphs have been published [20, 35, 37, 46, 63].

CIDR’22

GRainDB: A Relational-core Graph-Relational DBMS

Guodong Jin
jinguodong@ruc.edu.cn
Renmin University of China

Nafisa Anzum
nanzum@uwaterloo.ca
University of Waterloo

Semih Salihoglu
semih.salihoglu@uwaterloo.ca
University of Waterloo

China Canada Canada

ABSTRACT

Ever since the birth of our field, RDBMSs and several classes of
graph database management systems (GDBMSs) have existed side
by side, providing a set of complementary features in data models,
query languages, and visualization capabilities these data models
provide. As a result, RDBMSs and GDBMSs appeal to different
users for developing different sets of applications and there is im-
mense value in extending RDBMSs to provide some capabilities of
OTYRAE: s Iascwaisats RRHEDA & wsearee Hear satisds

advantages for extending RDBMSs to natively provide some of
the capabilities of GDBMSs and support efficient graph querying.
Over the past two years, we have started to develop a relational-
core hybrid graph-relational system that we call GRainDB at the
University of Waterloo. We use the term relational-core to indicate
that GRainDB extends an RDBMS at its core. Specifically, GRainDB
integrates a set of storage and query processing techniques, such
as predefined pointer-based joins (reviewed in Section 4.1), into
the columnar DuckDB RDBMS [2, 24] to make it more efficient on
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Add Path-finding

On top of the navigationally optimized joins, add path-finding algorithms

e Bulk: find cheapest paths between table of [src,dst] vertexes
e Bulk-optimizations: exploit landmarks, exploit SIMD

SIGMOD’13

S] 17 Apr 2013

Fast Exact Shortest-Path Distance Queries on Large
Networks by Pruned Landmark Labeling

Takuya Akiba
The University of Tokyo
Tokyo, 113-0033, Japan

Yoichi lwata
The University of Tokyo National Institute of Informatics,
Tokyo, 113-0033, Japan

Yuichi Yoshida

Preferred Infrastructure, Inc.

t.akiba@is.s.u-tokyo.ac.jp y.iwata@is.s.u-tokyo.ac.jp Tokyo, 101-8430, Japan

ABSTRACT

‘We propose a new exact method for shortest-path distance
queries on large-scale networks. Our method precomputes
distance labels for vertices by performing a breadth-first
search from every vertex. Seemingly too obvious and too
inefficient at first glance, the key ingredient introduced here
is pruning during breadth-first searches. While we can still
answer the correct distance for any pair of vertices from
the labels, it surprisingly reduces the search space and sizes
of labels. Moreover, we show that we can perform 32 or
64 breadth-first searches simultaneously exploiting bitwise

yyoshida@nii.ac.jp

analyze influential people and communities [19,6]. On web
graphs, distance between web pages is one of indicators of
relevance, and used in context-aware search to give higher
ranks to web pages more related to the currently visiting
web page [39,29]. Other applications of distance queries in-
clude top-k keyword queries on linked data [16,37], discovery
of optimal pathways between compounds in metabolic net-
works [31,32], and management of resources in computer
networks [28,7].

Of course, we can compute the distance for each query by
using a breadth first search (BFS) or Dijkstra’s algorithm.

BTW’17

B. Mitschang et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2017),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 247

Efficient Batched Distance and Centrality Computation in
Unweighted and Weighted Graphs

Manuel Then,l Stephan Giinnernann,2 Alfons Kemper? Thomas Neumann?

Abstract: Distance and centrality computations are important building blocks for modern graph
databases as well as for dedicated graph analytics systems. Two commonly used centrality metrics
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Complexity of subgraph matching

Subgraph isomorphism is in NP but on graphs of bounded degree it is polynomial. Still, the
complexity of evaluating a triangle query with binary joins is provably suboptimal, O(|E|?)

k

p1: Person p2: Person / . \ / > \
i1 i2 / - \ k / = \ i2
il i2

t: Tag i1 k

Triggered by many-to-many edges and skewed distributions.

Worst-case optimal join (WCOJ) algorithms are needed, which / | \
have a complexity of just O(|E[*®) for this query. il i2 k
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Research on Worst-Case Optimal Joins (WCOJ)

PVLDB’19

Subject to research in the last ~15 years:

FOCS’08
PODS’12
SIGMOD’16
PVLDB’19
PVLDB’20

bounds on complexity
Generic-Join (trie-based)
GraphflowDB demo

query optimizer integration
hash-based WCOJ algorithm

Working implementations:

e Industrial: RelationalAl, LogicBlox, XTDB
e Academic: Umbra (umbra-db.com)

Optimizing Subgraph Queries by Combining
Binary and Worst-Case Optimal Joins

Amine Mhedhbi
University of Waterloo

amine.mhedhbi@uwaterloo.ca

ABSTRACT

We study the problem of optimizing subgraph querics using the
new worst-case optimal join plans. Worst-case optimal plans eval-
uate queries by matching one query vertex at a time using multi-
way intersections. The core problem in optimizing worst-case op-
timal plans is to pick an ordering of the query vertices to match.
We design a cost-based optimizer that (i) picks efficient query ver-
tex orderings for worst-case optimal plans; and (ii) generates hy-

Semih Salihoglu
University of Waterloo

semih.salihoglu@uwaterloo.ca

query can be as: Qpx =E<Ep< B EqE: where
Fr(a1, a2), Fa(a1,a3), F3(a2,a3), Fa(a2,a1), and Es(as, a1)
are copies of E(aia;). We study evaluating a general class of
subgraph queries where Vo and Eq can have labels. For labeled
queries, the edge table corresponding to the query edge ai—a;
contains only the edges in G that are consistent with the labels on
a;, aj, and a;—a;. Subgraph queries are evaluated with two main
approaches:

PVLDB’20

Adopting Worst-Case Optimal Joins in
Relational Database Systems

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, Thomas Neumann
Technische Universitat Minchen

{freitagm, bandle, tobias.schmidt, kemper, neumann}@in.tum.de

ABSTRACT

of workloads. Nevertheless, it is well-known that there are
hological cases in which any binary join plan exhibits

Worst-case optimal join i are attractive from a
theoretical point of view, as they offer asymptotically bet-
ter runtime than binary joins on certain types of queries.
In particular, they avoid ing large i iate re-

suboptimal performance (10,19,30]. The main shortcoming
of binary joins is the generation of intermediate results that
can become much larger than the actual query result [46].

sults by processing multiple input relations in a single multi-
wav inin Flawavar avieting imnlamantatiang inenr a sizahla

, this situation is generally unavoidable in
complex analytical settings where joins between non-key at-

e Open-source: EdgeFrames (Spark, github.com/cwida/edge-frames)
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Work on some of the missing pieces..

Graph Processing: A Panoramic View and
Some Open Problems

M. Tamer Ozsu

University of Waterloo
David R. Cheriton School of Computer Science
https://cs.uwaterloo.ca/~tozsu

WATERLSo | DBSE:

Smart schema-discovering graph loading

Property Graph Schema languages

Vectorizable WCOJ algorithms

Bulk “Cheapest Path” Finding Algorithms
Relational Query Optimization that benefits graphs

Transactional semantics for graph data

TPCTC’20

Towards Testing ACID Compliance
in the LDBC Social Network Benchmark

Jack Waudby', Benjamin A. SteerQ, Karim Karimov"‘, Jozsef Marton®,
Peter Boncz®, and Gébor Szarnyas™

! Newcastle University, School of Computing, j .waudby2@newcastle. ac.uk
2 f London, b.a c.u

ment and Tnformation
of Technology and

Depar tment of Telecos and Media Infrmtcs

® CWI, Amsterdam, boncz@cwi.nl
6 MTA-BME Lendiilet Cyber-Physical Systems Research Group
szarnyas@mit .bme.hu




SQL:2023 aka SQL/PGQ
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SQL/PGQ: CREATE PROPERTY GRAPH

Major part of SQL:2023

(slides) Property Graph Definition
(DDL) - Example

Defaults apply for label
CREATE PROPERTY GRAPH aml and all properties.

]

VERTEX TABLES ( account
Explicit label and properties , customer
options for customer LABEL customer PROPERTIES

7

N

customer

O

=

owns

account

auth_signer O
transfers /

(rcad;

name, city ))

EDGE TABLES ( owns SOURCE customers DESTINATION accounts
PROPERTIES ( since )
, auth signer SOURCE customer DESTINATION account
, transfers
SOURCE KEY ( from id ) REFERENCES accounts ( aid )
DESTINATION KEY (to id) REFERENCES accounts ( aid )
amount) )

LABEL transfers PROPERTIES ( when,

Columns when and amount are exposed
as properties. Columns tid, from_id, and

to_id are not.



https://download.oracle.com/otndocs/products/spatial/pdf/AnD2020/AD_Develop_Graph_Apps_SQL_PGQ.pdf
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SQL/PGQ: SELECT .. FROM GRAPH_TABLE

Major part of SQL:2023
(slides)

Retrieve the info of all

Querying PGs — Example 1

]

New operator* applied to
graph (aml), returns table

SELECT

MATCH

( ¢l IS customer )
( IS account )
( IS account ) <-[ IS owns ]-

WHERE cl.cid

AND tl1.amount > 10000

COLUMNS ( c2.
Y o)
Mt - .
P 5 St
) ‘gt

rcid, gbshame; gE.cibyy
FROM GRAPH TABLE ( aml,

customers who got
more than $10,000
from customer 100.

gt.amount

Edge pattern
enclosed in -[]->
-[ IS owns ]->

-[ t1 IS transfers ]1->

,

J

( c2 IS customer )

100

cid Vertex pattern
name COLUMNS defines the shape enclosed in ()
city of the output table. Properties

amount ) projected out of the MATCH.

Access to ISO specs possible through liaison with LDBC. Become an LDBC member!


https://download.oracle.com/otndocs/products/spatial/pdf/AnD2020/AD_Develop_Graph_Apps_SQL_PGQ.pdf

Graph Query Language (GQL)

New ISO standard with Cypher-like syntax:

USE my_social_ graph

MATCH (p:Person)-[:FRIEND*{1,2}]->(friend or_foaf)

WHERE friend or_ foaf.age > $age AND p.country = $country
RETURN count(*)

Will also support returning graphs. Unsure timeline.

https://gglstandards.org
https://ldbcouncil.org/event/fourteenth-tuc-meeting/attachments/stefan-plantikow-gqgl.pdf



https://gqlstandards.org
https://ldbcouncil.org/event/fourteenth-tuc-meeting/attachments/stefan-plantikow-gql.pdf

Conclusions
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Conclusion

Discussed the relationship between GDBMS and RDBMS
Graph queries have interesting use cases, and their usage will continue to expand
LDBC has created useful benchmarks, but also query and schema languages @
o LDBC Technical User Community Meeting at SIGMOD’22 on Friday LDBC
Current generation of GDBMS is often not competent
Discussed pitfalls (“6 blunders”) in GDBMS architectures
Outlined future standards SQL/PGQ in SQL:2023 (and.. GQL)
Outlined the blueprint of a competent GDBMS
o CWIis building a PGQ extension module for

The graph & RDF
benchmark reference

_ P et
Gabor Szarnyas

Hannes Mihleisen
&
Mark Raasveldt



