
The (sorry) State of
Graph Database Systems

Peter Boncz
CWI

comparing graph with relational database systems..
+ provide pointers to related literature

About Myself
● Systems

○ Column stores (MonetDB)
○ Vectorized execution, Lightweight compression (Actian Vector/VectorWise)

● Benchmarking
○ LDBC: Linked Data Benchmark Council (ldbcouncil.org)

■ Social Network Benchmark (Interactive / BI)
■ Graphalytics

● Query Languages
○ G-CORE - with e.g. Neo4j, Oracle, and researchers from the theory community

■ LDBC Liaison with ISO ⇒ SQL:2023 (SQL/PGQ)

Roadmap
● above the surface: Graph Data Management

○ data models
○ query languages
○ systems

● under the hood: Graph Systems
○ 6 blunders in graph system architecture
○ blueprint of a competent graph database system
○ future standards: SQL/PGQ (SQL:2023) and GQL

Graph Data Management

GDBMS Use Cases
Gained a foothold in the data systems market

● Initially via RDF and SPARQL systems
● now via Property Graph Systems

VLDB Journal 2020 + PVLDB 2017

Tasks: Data Integration, Data cleaning and
Enrichment, Fraud Detection, Recommendation,
Historical Analysis, Root-Cause Analysis,...

Data: knowledge graphs, social networks, telco
networks, relational warehouses, data lakes
(output of joins, similarity mining generates
edges on-the-fly)

CACM 2021

Key GDBMS building blocks

⚫–>⚫
property graph

data model

🌀
graph query

language

🔎
graph

visualization

subgraph
matching

relational
queries

path
queries

stored
procedures

🌀 🌀 🌀 🌀

Data model: Property graph

Tag
name: Oasis

MEMBER
since: 2017-05-03

A

D

B

E

Person
name: Alice
speaks: [en, fr]

LIKES

C

G

Directed graph consisting of labeled entities: vertexes & edges

● Entities can have properties with (literal) values (KV-pairs)
● Loose schema only

Person

Tag

SUBCLASS_OF

KNOWS

LIKES

Forum
FMEMBER

Forum

LDBC Property Graph Schema Working Group

Topics of study:

● Constraints
● Properties
● Nulls

Person

Tag

SUBCLASS_OF

KNOWS

LIKES

SIGMODʼ21

Tag
name: Oasis

A

D

Person
name: Alice
speaks: [en, fr]

LIKES
 since: 2004/1/1

vs Property Graph
Data model: RDF triples

Data model: RDF triples

Tag
name: Oasis

A

D

Person
name: Alice
speaks: [en, fr]

::uri:alice

::uri:oasis

“Alice”

“Oasis” ::uri:name

::uri:name

::uri:likes

vs Property Graph

“en”

“fr”

::uri:speaks

::uri:speaks

LIKES
 since: 2004/1/1

Tag
name: Oasis

A

D

Person
name: Alice
speaks: [en, fr]

::uri:alice

::uri:oasis

“en”
“Alice”

“fr”

“Oasis” ::uri:name

::uri:name
::uri:speaks

::uri:speaks

::uri:likes
::uri:since

2004/1/1reification

vs Property Graph
Data model: RDF triples

LIKES
 since: 2004/1/1

MATCH

 (p1:Person)-[:KNOWS]-(p2:Person),

 (p1)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2),

 (p1)-[:KNOWS*]-(p3:Person)

WHERE NOT (f)-[:MEMBER]->(p3)

RETURN p1, f, count(p2), count(p3)

path query
(Kleene-star)

subgraph
matching

relational
operators

Query language: Cypher

Forum
title: Drums

MEMBER
 since: 2017-05-03

A

D

B

E

C
Person
name: Alice
speaks: [en, fr]

KNOWS

╒════╤═══╤═══════════╤═══════════╕
│"p1"│"f"│"count(p2)"│"count(p3)"│
╞════╪═══╪═══════════╪═══════════╡
│{B} │{E}│1 │1 │
└────┴───┴───────────┴───────────┘

Isomorphic semantics

MATCH

 (p1:Person)-[:KNOWS]-(p2:Person),

 (p1)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2),

 (p1)-[:KNOWS*]-(p3:Person)

WHERE NOT (f)-[:MEMBER]->(p3)

RETURN p1, f, count(p2), count(p3)

path query
(Kleene-star)

subgraph
matching

relational
operators

Query language: Cypher

Forum
title: Drums

MEMBER
 since: 2017-05-03

A

D

B

E

C
Person
name: Alice
speaks: [en, fr]

KNOWS

╒════╤═══╤═══════════╤═══════════╕
│"p1"│"f"│"count(p2)"│"count(p3)"│
╞════╪═══╪═══════════╪═══════════╡
│{B} │{E}│1 │1 │
│{A} │{E}│1 │1 │
└────┴───┴───────────┴───────────┘

Homomorphic semantics

Pattern matching
● basic graph pattern

● complex graph pattern

property graph
data model

graph query
language visualization

subgraph
matching

relational
queries

stored
procedures

path
queries

Subgraph matching (Cypher)

p1: Person

f: Forum

Category: Basic graph pattern

MATCH

 (p1:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

 (p1)-[:KNOWS]-(p2)

WHERE p1.id < p2.id

RETURN p1, p2, f

A

D

B

E

C
p2: Person

Results:

(A, B, D)
(A, B, E)
(B, C, E)

Subgraph matching (Cypher)

p1: Person

f: Forum

Category: Basic graph pattern

MATCH

 (p1:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

 (p1)-[:KNOWS]-(p2)

WHERE p1.id < p2.id

RETURN p1, p2, f

A

D

B

E

C
p2: Person

Results:

(A, B, D)
(A, B, E)
(B, C, E)

Subgraph matching (Cypher)

p1: Person

f: Forum

Category: Basic graph pattern

MATCH

 (p1:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

 (p1)-[:KNOWS]-(p2)

WHERE p1.id < p2.id

RETURN p1, p2, f

A

D

B

E

C
p2: Person

Results:

(A, B, D)
(A, B, E)
(B, C, E)

Subgraph matching (Cypher)

p1: Person

f: Forum

Category: Basic graph pattern

MATCH

 (p1:Person)<-[:MEMBER]-(f:Forum)-[:MEMBER]->(p2:Person),

 (p1)-[:KNOWS]-(p2)

WHERE p1.id < p2.id

RETURN p1, p2, f

A

D

B

E

C
p2: Person

Results:

(A, B, D)
(A, B, E)
(B, C, E)

Subgraph matching (SQL)

p1: Person

f: Forum

p2: Person

Edge tables: knows(person1id, person2id); member(forumid, personid)

Basic graph pattern: equijoins (SPJ)

Q: m1 ⋈ m2 ⋈ knows

SELECT m1.personid, m2.personid, m1.forumid

 FROM member m1

 JOIN member m2

 ON m1.forumid = m2.forumid

 JOIN knows

 ON knows.person1id = m1.personid

 AND knows.person2id = m2.personid

 WHERE knows.person1id < knows.person2id

Pattern matching

● basic graph pattern

● complex graph pattern

property graph
data model

graph query
language visualization

subgraph
matching

relational
queries

stored
procedures

path
queries

Subgraph matching (Cypher)

p1: Person

f: Forum

Category: Complex graph pattern

MATCH (f:Forum)-[:MEMBER]->(p1:Person)

OPTIONAL MATCH (f)-[:MEMBER]->(p2:Person)

WHERE p1.id < p2.id AND NOT (p1)-[:KNOWS]-(p2)

RETURN f, count(p2)

A

D

B

E

C
p2: Person

«neg» count Results:

(D, 0)
(E, 1)«opt»

Subgraph matching (SQL)
Edge tables: knows(person1id, person2id); member(forumid, personid)

Complex graph pattern: equijoins, outer joins, antijoin, aggregation (SPOJG)

 ɣ (member ⟕ member ▹ knows)

SELECT m1.forumid, count(m2.personid)

FROM member m1

LEFT OUTER JOIN member m2

 ON m1.forumid = m2.forumid

 AND m1.personid < m2.personid

WHERE NOT EXISTS (SELECT true FROM knows

 WHERE person1id = m1.personid

 AND person2id = m2.personid)

GROUP BY m1.forumid

p1: Person

f: Forum

p2: Person
«neg» count

«opt»

1
Alice

2
Bob

3
Cecile

6
Fleur

4
Diane

5
Emily

Unweighted shortest path in Cypher
MATCH path=shortestPath(
 (source:Person {name: 'Bob'})-[:KNOWS*]-(target:Person {name: 'Fleur'})
)
RETURN length(path) AS length

Result:

length

 3

Unw. SP query: Data in SQL
Graphs can be represented in the
relational model with PKs and FKs
(primary keys and foreign keys)

id [PK] name
1 Alice
2 Bob
3 Cecile
4 Diane
5 Emily
6 Fleur

person1id
[FK]

person2id
[FK]

1 2
1 3
1 4
2 3
3 4
3 5
4 5
4 6
5 6

all edges backwards

Person

knows

1
Alice

2
Bob

3
Cecile

6
Fleur

4
Diane

5
Emily

Graphs can be represented in the
relational model with PKs and FKs
(primary keys and foreign keys)

id [PK] name
1 Alice
2 Bob
3 Cecile
4 Diane
5 Emily
6 Fleur

person1id
[FK]

person2id
[FK]

1 2
1 3
1 4
2 3
3 4
3 5
4 5
4 6
5 6

all edges backwards

Person

knows

 source

 target

1
Alice

2
Bob

3
Cecile

6
Fleur

4
Diane

5
Emily

Unw. SP query: Data in SQL

┌----------------┬-------┬---------------┐
│ path │ level │ targetReached │
├----------------┼-------┼---------------┤
│ [2, 3] │ 1 │ false │
│ [2, 1] │ 1 │ false │
│ [2, 1, 4] │ 2 │ false │
│ [2, 3, 5] │ 2 │ false │
│ [2, 3, 4] │ 2 │ false │
│ [2, 1, 4, 6] │ 3 │ true │
│ [2, 3, 5, 6] │ 3 │ true │
│ [2, 3, 4, 6] │ 3 │ true │
└----------------┴-------┴---------------┘

Unweighted shortest path query in SQL
WITH RECURSIVE paths(source, target, path, level, targetReached) AS (
 SELECT person1id AS source,
 person2id AS target,
 [person1id, person2id] AS path,
 1 AS level,
 (p2.name = 'Fleur') AS targetReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
UNION ALL
 SELECT paths.source AS source,
 person2id AS target,
 array_append(path, person2id) AS path,
 level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur' THEN true ELSE false END)
 OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS targetReached
 FROM paths
 JOIN knows ON knows.person1id = paths.target
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE person2id != ALL(paths.path)
 AND NOT paths.targetReached
 AND NOT EXISTS (SELECT 1 FROM paths previous_paths WHERE list_contains(previous_paths.path, knows.person2id))
)
SELECT path, level, targetReached
FROM paths
JOIN Person ON Person.id = paths.target;

Unweighted shortest path query in SQL
WITH RECURSIVE paths(source, target, path, level, targetReached) AS (
 SELECT person1id AS source,
 person2id AS target,
 [person1id, person2id] AS path,
 1 AS level,
 (p2.name = 'Fleur') AS targetReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
UNION ALL
 SELECT paths.source AS source,
 person2id AS target,
 array_append(path, person2id) AS path,
 level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur' THEN true ELSE false END)
 OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS targetReached
 FROM paths
 JOIN knows ON knows.person1id = paths.target
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE person2id != ALL(paths.path)
 AND NOT paths.targetReached
 AND NOT EXISTS (SELECT 1 FROM paths previous_paths WHERE list_contains(previous_paths.path, knows.person2id))
)
SELECT path, level, targetReached
FROM paths
JOIN Person ON Person.id = paths.target;

not reached
target node

add next edge

“reached target node?”
using a window function

initial edge

prevent visiting nodes already
found in previous steps

cycle detection in path

┌----------------┬-------┬---------------┐
│ path │ level │ targetReached │
├----------------┼-------┼---------------┤
│ [2, 3] │ 1 │ false │
│ [2, 1] │ 1 │ false │
│ [2, 1, 4] │ 2 │ false │
│ [2, 3, 5] │ 2 │ false │
│ [2, 3, 4] │ 2 │ false │
│ [2, 1, 4, 6] │ 3 │ true │
│ [2, 3, 5, 6] │ 3 │ true │
│ [2, 3, 4, 6] │ 3 │ true │
└----------------┴-------┴---------------┘

source person

┌----------------┬-------┬---------------┐
│ path │ level │ targetReached │
├----------------┼-------┼---------------┤
│ [2, 3] │ 1 │ false │
│ [2, 1] │ 1 │ false │
│ [2, 1, 4] │ 2 │ false │
│ [2, 3, 5] │ 2 │ false │
│ [2, 3, 4] │ 2 │ false │
│ [2, 1, 4, 6] │ 3 │ true │
│ [2, 3, 5, 6] │ 3 │ true │
│ [2, 3, 4, 6] │ 3 │ true │
└----------------┴-------┴---------------┘

Unweighted shortest path query in SQL

┌-----------------------------┐
│ pathNames │
├-----------------------------┤
│ [Bob, Alice, Diane, Fleur] │
│ [Bob, Cecile, Emily, Fleur] │
│ [Bob, Cecile, Diane, Fleur] │
└-----------------------------┘

WITH RECURSIVE paths(source, target, path, level, targetReached) AS (
 SELECT person1id AS source,
 person2id AS target,
 [person1id, person2id] AS path,
 1 AS level,
 (p2.name = 'Fleur') AS targetReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
UNION ALL
 SELECT paths.source AS source,
 person2id AS target,
 array_append(path, person2id) AS path,
 level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur' THEN true ELSE false END)
 OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS targetReached
 FROM paths
 JOIN knows ON knows.person1id = paths.target
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE person2id != ALL(paths.path)
 AND NOT paths.targetReached
 AND NOT EXISTS (SELECT 1 FROM paths previous_paths WHERE list_contains(previous_paths.path, knows.person2id))
)
SELECT array_agg(pathPerson.name) AS pathNames
FROM (SELECT path, unnest(paths.path) AS personid
 FROM paths JOIN Person targetPerson ON targetPerson.id = paths.target
 WHERE targetPerson.name = 'Fleur') unnestedPath
JOIN Person pathPerson ON pathPerson.id = unnestedPath.personid
GROUP BY path;

finding the names
on the paths by

unnesting & joining

Unweighted shortest path query in SQL
WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (
 SELECT person1id AS startPerson, person2id AS endPerson,
 [person1id, person2id]::bigint[] AS path, 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
 UNION ALL
 SELECT paths.startPerson AS startPerson, person2id AS endPerson,
 array_append(path, person2id) AS path, level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM paths
 JOIN knows ON paths.endPerson = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p2.id != ALL(paths.path)
 AND NOT paths.endPersonReached)
SELECT path, level, endPersonReached AS epr
FROM paths;

┌──────────────┬───────┬───────┐
│ path │ level │ epr │
├──────────────┼───────┼───────┤
│ [2, 3] │ 1 │ false │
│ [2, 1] │ 1 │ false │
│ [2, 1, 4] │ 2 │ false │
│ [2, 3, 1] │ 2 │ false │
│ [2, 1, 3] │ 2 │ false │
│ [2, 3, 5] │ 2 │ false │
│ [2, 3, 4] │ 2 │ false │
│ [2, 1, 4, 3] │ 3 │ true │
│ [2, 3, 1, 4] │ 3 │ true │
│ [2, 3, 5, 4] │ 3 │ true │
│ [2, 3, 4, 1] │ 3 │ true │
│ [2, 1, 4, 6] │ 3 │ true │
│ [2, 1, 3, 5] │ 3 │ true │
│ [2, 3, 5, 6] │ 3 │ true │
│ [2, 3, 4, 6] │ 3 │ true │
│ [2, 1, 4, 5] │ 3 │ true │
│ [2, 1, 3, 4] │ 3 │ true │
│ [2, 3, 4, 5] │ 3 │ true │
└──────────────┴───────┴───────┘

Unweighted shortest path in Cypher
MATCH p=shortestPath(

 (start:Person {name: 'Bob'})-[:KNOWS*]-(end:Person {name: 'Fleur'}))

RETURN length(p) AS length

Alice

Bob Cecile

Fleur

Diane

Emily

Result:

length

 3

Unw. SP query: Data in SQL
Graphs can be represented in the
relational model with PKs and FKs
(primary keys and foreign keys)

id [PK] name
1 Alice
2 Bob
3 Cecile
4 Diane
5 Emily
6 Fleur

person1id
[FK]

person2id
[FK]

1 2
1 3
1 4
2 3
3 4
3 5
4 5
4 6
5 6

all edges backwards
(optional)

Person

knows

1
Alice

2
Bob

3
Cecile

6
Fleur

4
Diane

5
Emily

Graphs can be represented in the
relational model with PKs and FKs
(primary keys and foreign keys)

id [PK] name
1 Alice
2 Bob
3 Cecile
4 Diane
5 Emily
6 Fleur

person1id
[FK]

person2id
[FK]

1 2
1 3
1 4
2 3
3 4
3 5
4 5
4 6
5 6

all edges backwards
(optional)

Person

knows

 start

 end

1
Alice

2
Bob

3
Cecile

6
Fleur

4
Diane

5
Emily

Unw. SP query: Data in SQL

Unweighted shortest path query in SQL
WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (
 SELECT person1id AS startPerson, person2id AS endPerson,
 [person1id, person2id]::bigint[] AS path, 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
 UNION ALL
 SELECT paths.startPerson AS startPerson, person2id AS endPerson,
 array_append(path, person2id) AS path, level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM paths
 JOIN knows ON paths.endPerson = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p2.id != ALL(paths.path)
 AND NOT paths.endPersonReached)
SELECT path, level, endPersonReached AS epr
FROM paths;

Unweighted shortest path query in SQL
WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (
 SELECT person1id AS startPerson, person2id AS endPerson,
 [person1id, person2id]::bigint[] AS path, 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
 UNION ALL
 SELECT paths.startPerson AS startPerson, person2id AS endPerson,
 array_append(path, person2id) AS path, level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM paths
 JOIN knows ON paths.endPerson = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p2.id != ALL(paths.path)
 AND NOT paths.endPersonReached)
SELECT path, level, endPersonReached AS epr
FROM paths;

cycle detection

check reached end node

adding an edge to the path

reached end node? w/ window function

reached end node? w/ window function

initial edge

Unweighted shortest path query in SQL
WITH RECURSIVE paths(startPerson, endPerson, path, level, endPersonReached) AS (
 SELECT person1id AS startPerson, person2id AS endPerson,
 [person1id, person2id]::bigint[] AS path, 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM knows
 JOIN Person p1 ON p1.id = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p1.name = 'Bob'
 UNION ALL
 SELECT paths.startPerson AS startPerson, person2id AS endPerson,
 array_append(path, person2id) AS path, level + 1 AS level,
 max(CASE WHEN p2.name = 'Fleur'
 THEN true ELSE false END) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endPersonReached
 FROM paths
 JOIN knows ON paths.endPerson = knows.person1id
 JOIN Person p2 ON p2.id = knows.person2id
 WHERE p2.id != ALL(paths.path)
 AND NOT paths.endPersonReached)
SELECT path, level
FROM paths
JOIN Person ON Person.id = paths.endPerson
WHERE Person.name = 'Fleur';

┌──────────────┬───────┐
│ path │ level │
├──────────────┼───────┤
│ [2, 1, 4, 6] │ 3 │
│ [2, 3, 5, 6] │ 3 │
│ [2, 3, 4, 6] │ 3 │
└──────────────┴───────┘+ unnest + join to get the names

Path queries

property graph
data model

graph query
language visualization

subgraph
matching

relational
queries

path
queries

stored
procedures

● unweighted path query

● weighted shortest path query

Weighted shortest paths
Difficult. Alternative: stored procedures, e.g. Postgres has pgrouting and MADlib

Oracle example from: http://aprogrammerwrites.eu/?p=1391

WITH paths (node, path, cost, rnk, lev) AS (
SELECT a.dst, a.src || ',' || a.dst, a.distance, 1, 1 FROM arcs a
WHERE a.src = :SRC
UNION ALL
SELECT a.dst, p.path || ',' || a.dst, p.cost + a.distance, Rank () OVER (PARTITION BY a.dst ORDER BY p.cost +
a.distance), p.lev + 1
 FROM paths p
 JOIN arcs a ON a.src = p.node AND p.rnk = 1
) SEARCH DEPTH FIRST BY node SET line_no
 CYCLE node SET lp TO '*' DEFAULT ' '
, paths_ranked AS (
SELECT lev, node, path, cost, Rank () OVER (PARTITION BY node ORDER BY cost) rnk_t, lp, line_no
 FROM paths WHERE rnk = 1)
SELECT LPad (node, 1 + 2* (lev - 1), '.') node, lev, path, cost, lp
 FROM paths_ranked
 WHERE rnk_t = 1
 ORDER BY line_no ⚠ Complex query ⚠ A relational simulation of Dijkstraʼs algorithm

https://docs.pgrouting.org/3.1/en/pgr_dijkstra.html
https://madlib.apache.org/docs/latest/group__grp__sssp.html
http://aprogrammerwrites.eu/?p=1391

Weighted shortest paths
Cypher: No weighted shortest path construct. In Neo4j thereʼs the Graph Data Science lib.

MATCH (c1:Customer {id: $c1id}), (c2: Customer {id: $c2id})

CALL gds.shortestPath.dijkstra.stream({

 nodeProjection: 'Customer',

 relationshipProjection: 'TRANSFER',

 sourceNode: c1,

 targetNode: c2,

 relationshipWeightProperty: 'amount'

})

YIELD path, totalCost

RETURN path, totalCost

This is confusing to users:
● Unweighted shortest path -> pattern matching
● Weighted shortest path -> stored procedure

call stored procedure

Systems and languages

Cypher GSQL

Gremlin

Rel

Datalog

DQL

SPARQL, Cypher,
Gremlin

ACM Computing Surveys 2017

PGQL

See also:
A Survey of Current Property Graph Query Languages
(2021) by Peter Boncz &&

https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)
https://homepages.cwi.nl/~boncz/job/gql-survey.pdf

A simple test of Graph Data Systems

basic GP

complex GP

GRADES-NDA 2021 ..check out docker container with 10 systems to test

basic GP

complex GP

GDBMS performance for subgraph queries
● Load the data: 100M vertices, 650M edges
● Run all 9 queries one-by-one (count number of matches)
● Environment: cloud VM, 370GB RAM, 48 vCPU cores

4 min 10 min

>90 min
timeout
/ crash

Umbra
prototype

RDBMS

Hyper
industry
RDBMS

every GDBMS
we tested

runtime

⇒ GDBMS often still incompetent!
● performance

○ Slow loading speeds
○ Query speeds over magnitude slower than RDBMS

● scalability
○ Low datasize limit, typically << RAM
○ Little benefit from parallelism (SIMD, cores, machines)

● reliability
○ Loads never terminate
○ Query run out of memory or crash
○ Bugs

6 blunders in system architecture

Triple Fallacy 1: Locality Lost
Throwing all edges in one basket: a good idea?

• relational clustered index

O P S
0

1995 year 4

1996 year 0

1996 year 6

1997 year 3

1998 year 2

ZZZZ

P S O
a

isbn 0 i1996

isbn 2 i1998

isbn 3 i1997

isbn 4 i1995

isbn 6 i1996

z

P S O
a

auth 0 a1996

auth 2 a1998

auth 3 a1997

auth 4 a1995

auth 5 foo

auth 6 a1996

an indexing on all 6 triple orders does
not guarantee access locality (red)!!

year author isbn
1975 a1995 i1995

1996 a1996 i1996

1996 a1996 i1996

1997 a1997 i1997

1998 a1998 i1998

• relational partitioned table
author isbn

1995 a1995 i1995

author isbn
1996 a1996 i1996

a1996 i1996

author isbn
1997 a1997 i1997

author isbn
1998 a1998 i1998

• clustering is often for free with ZoneMaps

SELECT ?a ?n WHERE {
 ?b <has_author> ?a.
 ?b <in_year> “1996”.
 ?b <isbn_no> ?n
}

book query:

Triple Fallacy 2: Join Jungle
SELECT ?a ?n WHERE {
 ?b <has_author> ?a.
 ?b <in_year> “1996”.
 ?b <isbn_no> ?n
}

book query:

● superfluous joins explode query complexity

• query has unnecessary joins

– in a relational DB, this is scanning a record, not a join

– problem #1: joins are costly at query execution time
– problem #2: query optimization complexity is O(3N)

with star patterns size F, exponentially worse (3F) optimization space coverage

?b

?a

<has_author>

<in_year>

“1996”

<is
bn
_n
o>

?n

< Query graph> < Example query plan >

Triple Fallacy 3: Cardinality Crisis
● Graph joins are harder to optimize!

?b

?a

<has_author>

<in_year>

“1996”

<is
bn
_n
o>

?n

< Query graph>

• because of structural correlations

– if (?b has an <isbn_no>) it’s a book, it has <in_year> and <has_author>

– query optimizer estimates using the independence assumption
– many joins (fallacy 2) + wrong estimates ⇒ performance disaster

SELECT ?a ?n WHERE {
 ?b <has_author> ?a.
 ?b <in_year> “1996”.
 ?b <isbn_no> ?n
}

book query:

4 Graph Uniqueness Syndrome

● “so different from relational that no lessons apply”

○ attitude also seen in research papers

○ E.g. insist on using pointers for navigation (no buffer manager)

■ At what cost: updates? memory locality? fast scans?

■ Do you avoid joins, or just call them something different?

⇒ GDBMS should build on all techniques from RDBMS

○ Buffer Manager, Transactions, Query Algebra, Statistics, Optimizer, …

○ …and then add graph-specific functionality

5 A PItfall: Key-Value APIs
● “APIs are faster than a query language”

○ Three navigation steps in social network = 1 million API calls

● “This GDBMS is pluggable and can use any KV store as backend”
○ Tell-tale signal of non-bulk API
○ Typically API even goes beyond process or machine

⇒ if you design an imperative API, make it a bulk one

● mentioned “Query Algebra” already..

6 Booby-Trapped Query Languages
● Bad: QL with high complexity and some optimizations

○ e.g. OWL
○ If the optimizer gets it, the query finishes, otherwise not

⇒ Query languages should only allow tractable queries, e.g.

○ Explicit syntax for reachability and (weighted) shortest path
■ Always Dijkstra, Bellman-Ford, ..

○ Restricted path expressions only
■ REMʼs as proposed in Oracle PGQL (and G-CORE)

Blueprint of a competent GDBMS

Start from a competent base
● Columnar storage + lightweight compression

○ Compact storage, Fast (SIMD-friendly) scans

● Fast Query Executor
○ JIT (Umbra) or vectorized execution (DuckDB)

● Buffer Manager
○ data >> RAM (e.g. LeanStore = execute directly on SSD)

● Control over memory
○ C++, C or Rust

● Bottom-up Dynamic Programming Query Optimizer
○ Samples and hyperloglog as statistics

● Morsel-driven Parallellism
○ Atomics in shared hash tables, low-overhead queues

CIDRʼ20

CIDRʼ20

Structure-Aware Storage
GDBMS must know tables (vertex/edge entities) and its columns (aka properties)

● Either because there is an explicit schema
○ See work of LDBC Property Graph Schema working groups

● Or because the system learns the schema on-the-fly
○ Similar to smart JSON loading techniques
○ Only the most populated columns need efficient columnar storage

SIGMODʼ21 WWWʼ15

Faster Navigation
can we get O(1) navigation using joins?

ideas:

● Positional access as a hash-join
optimization (if keys are dense)

○ + caching of such hash tables
● Packed Memory Arrays (PMA)

○ Updatable graph-friendly (CSR) columnar
data structure, see Teseo

CIDRʼ22

PVLDBʼ21

Add Path-finding
On top of the navigationally optimized joins, add path-finding algorithms

● Bulk: find cheapest paths between table of [src,dst] vertexes
● Bulk-optimizations: exploit landmarks, exploit SIMD

SIGMODʼ13 BTWʼ17

Complexity of subgraph matching

p1: Person p2: Person

Subgraph isomorphism is in NP but on graphs of bounded degree it is polynomial. Still, the
complexity of evaluating a triangle query with binary joins is provably suboptimal, O(|E|2)

i1

⋈

i2

⋈

ki1 i2

k

i1

⋈

k

⋈

i2

i1 i2

⋈

k

t: Tag

Triggered by many-to-many edges and skewed distributions.

Worst-case optimal join (WCOJ) algorithms are needed, which
have a complexity of just O(|E|1.5) for this query.

Research on Worst-Case Optimal Joins (WCOJ)
Subject to research in the last ~15 years:

● FOCSʼ08 bounds on complexity
● PODSʼ12 Generic-Join (trie-based)
● SIGMODʼ16 GraphflowDB demo
● PVLDBʼ19 query optimizer integration
● PVLDBʼ20 hash-based WCOJ algorithm

Working implementations:

● Industrial: RelationalAI, LogicBlox, XTDB
● Academic: Umbra (umbra-db.com)
● Open-source: EdgeFrames (Spark, github.com/cwida/edge-frames)

PVLDBʼ19

PVLDBʼ20

Work on some of the missing pieces..
● Smart schema-discovering graph loading
● Property Graph Schema languages
● Vectorizable WCOJ algorithms
● Bulk “Cheapest Path” Finding Algorithms
● Relational Query Optimization that benefits graphs
● Transactional semantics for graph data
● …

TPCTCʼ20

SQL:2023 aka SQL/PGQ

SQL/PGQ: CREATE PROPERTY GRAPH
Major part of SQL:2023
(slides)

https://download.oracle.com/otndocs/products/spatial/pdf/AnD2020/AD_Develop_Graph_Apps_SQL_PGQ.pdf

SQL/PGQ: SELECT … FROM GRAPH_TABLE
Major part of SQL:2023
(slides)

Access to ISO specs possible through liaison with LDBC. Become an LDBC member!

https://download.oracle.com/otndocs/products/spatial/pdf/AnD2020/AD_Develop_Graph_Apps_SQL_PGQ.pdf

Graph Query Language (GQL)
New ISO standard with Cypher-like syntax:

USE my_social_graph

MATCH (p:Person)-[:FRIEND*{1,2}]->(friend_or_foaf)

WHERE friend_or_foaf.age > $age AND p.country = $country

RETURN count(*)

Will also support returning graphs. Unsure timeline.

https://gqlstandards.org
https://ldbcouncil.org/event/fourteenth-tuc-meeting/attachments/stefan-plantikow-gql.pdf

https://gqlstandards.org
https://ldbcouncil.org/event/fourteenth-tuc-meeting/attachments/stefan-plantikow-gql.pdf

Conclusions

Conclusion
● Discussed the relationship between GDBMS and RDBMS
● Graph queries have interesting use cases, and their usage will continue to expand
● LDBC has created useful benchmarks, but also query and schema languages

○ LDBC Technical User Community Meeting at SIGMODʼ22 on Friday
● Current generation of GDBMS is often not competent
● Discussed pitfalls (“6 blunders”) in GDBMS architectures
● Outlined future standards SQL/PGQ in SQL:2023 (and.. GQL)
● Outlined the blueprint of a competent GDBMS

○ CWI is building a PGQ extension module for

Gábor Szárnyas

Hannes Mühleisen
&
Mark Raasveldt

