LDBC®

The graph & RDF

L D B C ® benchmark reference
A Survey Of Current

Property Graph Query Languages

Peter Boncz (CWI)

incorporating slides from:

Renzo Angles (Talca University),
Oskar van Rest (Oracle),
Mingxi Wu (TigerGraph) &
Stefan Plantikow (neo4j)

History of Graph Query Languages

HPQL (BiQL)(RLV)(PDQL)
THQL GXPath
(G'athL) (ECRPQ) (GMQL) SQLIPGQ

e
¥
G) ..
Py}
m

GQL
(on) (52) (oo () () (Geom)
€ OO ja N N e N ja N O O O M
o \— o & o () \— o o) R e e
1987 1989 1995 1997 1999 2009 2013 2015 2017 2019
1990 1992 1994 2000 2002 2006 2008 2012 2016 2018 2021/20227

SPARQL

Gremlin PGQL GSQL C][]

LDBC® 2

History: the query language G

* By lsabel Cruz, Alberto Mendelzon & Peter Wood

* Data model: simple graphs
* Formal and Graphical forms

* Main functionality
— Graph pattern queries
— Path finding queries

LDBC®

ABSTRACT

We define a language G for querying data represented as a
labeled graph G By considenng G as a relation, this graphical
query language can be viewed as a relational query language,
and 1ts expressive power can be compared to that of other rela-
tional query languages We do not propose G as an altenative to
general purpose relational query languages, but rather as a com-
plementary language in which recursive queries are simple to
formulate The user 18 aided 1n this formulation by means of a
graphucal mnterface The provision of regular expressions in G
allows recursive quenes more general than transive closure to
be posed, although the language 1s not as powerful as those based
on function-free Hom clauses However, we hope to be able to
exploit well-known graph algonthms in evaluating recursive
quenes efficiently, a topic which has received widespread atten-
tion recently

- ____________j
I. F. Cruz et al. A graphical query language supporting recursion. SIGMOD 1987.

EXAMPLE 1 The following graph represents the flight in-
formation of vanous airhnes Each node 1s labeled by the name
of a city, while each edge 1s labeled by an airlhine name

LDBC®

G Example

EXAMPLE 2 Given the graph G of Example 1, the follow-
ing query Q ={Q;,Q>) finds the first and last cities visited 1n all
round trips from Toronto, in which the first and last flights are
with Air Canada and all other flights (if any) are with the same
airline

GAC’

Systems: Popular Query Language Implementations

SPARQL

Cypher
Gremlin

GSOL

MySQL, SQLserver, Oracle, SQLserver, Postgres, Redis, DB2, Amazon Aurora, Amazon Redshift,
Snowflake, Spark SQL, etc etc etc (398000k google hits for ‘sql query’)

Amazon Neptune, Ontotext, GraphDB, AllegroGraph, Apache Jena with ARQ, Redland, MarkLogic,
Stardog, Virtuoso, Blazegraph, Oracle DB Enterprise Spatial & Graph, Cray Urika-GD, AnzoGraph
(1190k google hits for ‘sparqgl query’)

neodj, RedisGraph, neo4j CAPS (Cypher on APache Spark), SAP HANA, Agens Graph, AnzoGraph,
Cypher for Gremlin, Memgraph, OrientDB (343k google hits for ‘cypher query’)

Amazon Neptune, (IBM) JanusGraph (ex TitanDB), Datastax Enterprise Graph, Azure Cosmos DB,
Stardog, neodj, BlazeGraph, OrientDB, GRAKN.AI (320k google hits for ‘gremlin query’)

TigerGraph (21k google hits for ‘gsql query’)

Oracle (Big Data) Spatial and GraphOracle Labs PGX (+Oracle Labs PGX.D)
(7k google hits for ‘pgql query’)

Graph Query Language Functionalities

* Graph Navigation
— Graph Pattern Matching {homomorphic, isomorphic} into variables
=>» graph in, (binding) table out
— (Regular Pattern) Path Finding {ALL, SHORTEST, CHEAPEST}
=>»Q: how do paths fit the PG data model??

— Filters (Boolean conditions on matches, existence of paths)
e Graph Construction

— Grouping by {existing vertex/edge, value combination}

— Merging new elements into graphs (possibly temporarily)

* Value Joins {inner,outer,anti} (possibly between multiple Graphs or even tables)
* Union/Intersection/Difference (between multiple Graphs)

* Graph Views

* Subgueries (correlated or not)

* Updates (deletion, insertion, update)

LDBC®

LDBC®

The graph & RDF

L DBC @ benchmark reference
G-CORE:

A Core for Future Graph Query Languages
LDBC GraphQL task force

GCORE is the culmination of 2.5 years of intensive
discussion between LDBC and industry, including:

HP, Huawei, IBM, Neo4j, Oracle, SAP and Sparsity

LDBC Graph Query Language Task Force

e Recommend a query language core that will strengthen future versions of industrial
graph query languages.

* Perform deep academic analysis of the expressiveness and complexity of evaluation of
the query language

* Ensure a powerful yet practical query language

Renzo Angles, Universidad de Talca Alastair Green, Neo4j
Marcelo Arenas, PUC Chile (leader) Tobias Lindaaker, Neo4;
Pablo Barceld, Universidad de Chile Marcus Paradies, SAP
Peter Boncz, CWI Stefan Plantikow, Neo4;j
George Fletcher, Eindhoven University of Technology Arnau Prat, Sparsity
Claudio Gutierrez, Universidad de Chile Juan Sequeda, Capsenta
Hannes Voigt, TU Dresden Oskar van Rest, Oracle

LDBC® 8

Graph Data Model
e directed graph

201 * nodes & edges are entities
202 ~ e entities can have labels

Example from SNB:

Node Labels LDBC Social Network Benchmark
QO Person (O Place £X Tag <Manager
e Lali; knows - » isLocatedin =—» hasinterest (See S I G M O D 20 15 pa pe r)

LDBC®

name: Wagner

\ firstName: Celine
201 | |]astName: Mayer
\ | employer: {SAP,HPI}

Property Graph Data Model

firstName: Peter

lastName: Smith

firstName: Frank

0 202

206

103 lastName: Gold
203 employer: HP

207

name: Houston
204
...................... 05 ()

since: 1/12/2014

firstName: John
lastName: Doe
employer: Google

Node Labels

QO Person (O Place £X Tag <Manager
Edge Labels

— KNOWS -] » isLocatedln =¥ haslinterest

LDBC®

* directed graph

* nodes & edges are entities
* entities can have labels

e ..and (property,value) pairs

CHALLENGE 1: COMPOSABILITY

* Current graph query languages are
not composable

— In: Graphs

— Out: Tables, (list of) Nodes, Edges
* Not: Graph

LDBC®

CHALLENGE 1: COMPOSABILITY

G

 Current graph query languages are .
Existing
not composable .Z—;z? - GOLes HEE
— In: Graphs
— Out: Tables, (list of) Nodes, Edges J
* Not: Graph

LDBC®

 Current graph query languages are .
Existing
not composable - GOLes HEE
— In: Graphs
— Out: Tables, (list of) Nodes, Edges J
* Not: Graph

* Why is it important?
— No Views and Sub-queries

— Diminishes expressive power
of the language

LDBC®

CHALLENGE 1: COMPOSABILITY

o

* Current graph query languages are °
Existing
not composable - GOLes HEE
— In: Graphs
— Out: Tables, (list of) Nodes, Edges J
* Not: Graph
* Why is it important?
— No Views and Sub-queries — S|
=) SQL =9

— Diminishes expressive power ~ HEN
of the language

LDBC®

CHALLENGE 2: PATHS

® Current graph query languages treat paths as second class citizens
graph query languag P

— Paths that are returned have to be post-processed in the client (a list of nodes or edges)

LDBC®

CHALLENGE 2: PATHS

* Current graph query languages treat paths as second class citizens

— Paths that are returned have to be post-processed in the client (a list of
nodes or edges)

* Why is it important?

— Paths are fundamental to Graphs
— Increase the expressivity of the language; do more within the language

LDBC®

name: Wagner

\ firstName: Celine
201 | |]astName: Mayer
\ | employer: {SAP,HPI}

Property Graph Data Model

firstName: Peter

lastName: Smith

firstName: Frank

0 202

206

103 lastName: Gold
203 employer: HP

207

name: Houston
204
...................... 05 ()

since: 1/12/2014

firstName: John
lastName: Doe
employer: Google

Node Labels

QO Person (O Place £X Tag <Manager
Edge Labels

— KNOWS -] » isLocatedln =¥ haslinterest

LDBC®

* directed graph

* nodes & edges are entities
* entities can have labels

e ..and (property,value) pairs

Path Property Graph Data Model

name: Wagner

\ firstName: Celine

201 | |]astName: Mayer
\ | employer: {SAP,HPI}

firstName: Peter

lastName: Smith

firstName: Frank

0 202

206

name: Houston
...................... 205 ...

103 lastName: Gold
203 employer: HP

207

since: 1/12/20

,,,,,,,,,,,,,,, 204

14

Stored Paths

firstName: John
lastName: Doe
employer: Google

John _Peter Celine | trust: 0.95

Node Labels

O Person () Place X

Edge Labels

Path Labels

Tag <>Manager () toWagner

— KNOWS - » isLocatedln =¥ haslinterest

LDBC®

* directed graph

* paths, nodes & edges are entities
* entities can have labels

e ..and (property,value) pairs

Path Property Graph Data Model

name: Wagner

\ firstName: Celine
201 | |]astName: Mayer
\ | employer: {SAP,HPI}

firstName: Peter

lastName: Smith

firstName: Frank
0 3 lastName: Gold
203 employer: HP

206 @
vy |name: Houston X \;.

........ 205 105

Stored Paths firstName: John
prmmmmmm e 301 lastName: Doe
i O—>O—>0 | employer: Google
I . [
(John Peter Celine JItryst: 0.95
Node Labels Path Labels

QO Person (O Place £X Tag <Manager () toWagner
Edge Labels

— KNOWS - » isLocatedln =¥ haslinterest

LDBC®

* directed graph

* paths, nodes & edges are entities
* entities can have labels

e ..and (property,value) pairs

a path is a sequence of consecutive
edges in the graph

CHALLENGE 3: TRACTABILITY

* Graph query languages in handling paths can easily define functionality
that is provably intractable. For instance,
— enumerating paths,
— returning paths without cycles (simple paths),
— supporting arbitrary conditions on paths,
— optional pattern matching, etc..

LDBC®

CHALLENGE 3: TRACTABILITY

* Graph query languages in handling paths can easily define functionality
that is provably intractable. For instance,

— enumerating paths,

— returning paths without cycles (simple paths),
— supporting arbitrary conditions on paths,

— optional pattern matching, etc..

* G-CORE connects the practical work done in industrial proposals with the
foundational research on graph databases

— G-CORE is tractable in data complexity (=can be implemented efficiently)

LDBC®

Always returning a graph

CONSTRUCT (n)
MATCH (n:Person) ON social graph
WHERE n.employer = ’'Google'

* CONSTRUCT clause: Every query returns a graph
* New graph with only nodes: those persons who work at Google

e All the labels and properties that these person nodes had in social _graph
are preserved in the returned result graph.

Syntax inspired by Neo4j’s Cypher and Oracle’s PGQL

LDBC®

Multi-Graph Queries and Joins

* Simple data integration query
CONSTRUCT (c)<-[:worksAt]-(n)

MATCH (c:Company) ON company graph,
(n:Person) ON social graph

WHERE c.name = n.employer

UNION social graph

LDBC®

Multi-Graph Queries and Joins

* Simple data integration query
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company graph,
(n:Person) ON social graph
WHERE c.name = n.employer
UNION social graph

* Load company nodes into company_graph

* Create a unified graph (UNION) where employees
and companies are connected with an edge
labeled worksAt.

LDBC®

Multi-Graph Queries and Joins
< n

* Simple data integration query P .

CONSTRUCT (c)<-[:worksAt]-(n) 1 #HP 104 #Frank
MATCH (c:Company) ON company graph, 2 #SAP 102 #Celine
(n:Person) ON social graph 3 #HP 102 #Celine

WHERE c.name = n.employer
UNION social graph

* Load company nodes into company_graph

* Create a unified graph (UNION) where employees
and companies are connected with an edge
labeled worksAt.

LDBC®

Multi-Graph Queries and Joins
< n

* Simple data integration query P .

CONSTRUCT (c)<-[:worksAt]-(n) 1 #HP 104 #Frank
MATCH (c:Company) ON company graph, 2 #SAP 102 #Celine
(n:Person) ON social graph 3 #HP 102 #Celine

WHERE c.name = n.employer
UNION social graph

* Load company nodes into company_graph D D
. O #HPI 105 #Joh
* Create a unified graph (UNION) where employees 104#F‘:a:k
and companies are connected with an edge 2 #Google {03 HPeter
labeled worksAt. 3 #HP 102 #Celine

LDBC®

Multi-Graph Queries and Joins
< n

* Simple data integration query P .

CONSTRUCT (c)<-[:worksAt]-(n) 1 #HP 104 #Frank
MATCH (c:Company) ON company graph, 2 #SAP 102 #Celine
(n:Person) ON social graph 3 #HP 102 #Celine

|
o

WHERE c.name = n.employer
UNION social graph

|
* Load company nodes into company_graph D [

c.name=n.employer

. O #HPI 105 #Joh

* Create a unified graph (UNION) where employees on mat
and companies are connected with an edge 2 #Google {03 HPeter
labeled worksAt. 3 HHP 102 #Celine

LDBC®

Multi-Graph Queries and Joins
CONSTRUCT (c)<-[:worksAt]-(n) __

O #Google 105 #John

MATCH (c:Company) ON company graph,

1 #HPI 104 #Frank
(n:Person) ON social graph 2 #SAP 102 #Celine
WHERE c.name = n.employer 3 #HP 102 #Celine

UNION socia l_graph firstName: Celine

.| lastName: Mayer

employer: {SAP,HPI} | [[TS{iame: Ferel

firstName: Frank
0 202 103 lastName: Gold
employer: HP

Node Labels

Person <{>Manaqger firstName: John
Edge |_abCe>|s © J lastName: Doe

employer: Google
m— KNOWS

tppc® —m——————

Multi-Graph Queries and Joins

CONSTRUCT (c)<-[:worksAt]-(n) T —
O #Google 105 #John
MATCH (c:Company) ON company graph, — T
(n:Person) ON social graph 2 HSAP 102 #Celine
WHERE c.name = n.employer 3 #HP 102 #Celine

UNION social graph firstName: Celine
— - | lastName: Mayer , _
employer: {SAP,HPI} firstName: Peter

lastName: Smith
firstName: Frank
0 202 103 lastName: Gold
employer HP
[name:HPI | [name:SAP | [name: Googlelb/ | name:HP |
Node Labels

Person {>Manager Compan firstName: John
Edge |_abCe>|s © ger O — lastName: Doe

employer: Google
m— KNOWS

ppc® —/—

Multi-Graph Queries and Joins

CONSTRUCT (c)<-[:worksAt]-(n) T —
O #Google 105 #John
MATCH (c:Company) ON company graph, — T
(n:Person) ON social graph 2 HSAP 102 #Celine
WHERE c.name = n.employer 3 #HP 102 #Celine

UNION social graph firstName: Celine
— - | lastName: Mayer , _
employer: {SAP,HPI} firstName: Peter

lastName: Smith
firstName: Frank
0 202 103 lastName: Gold
employer HP
jo
| name:HPI | [name:SAP | |name:600ﬁ/ |_name: HP |
Node Labels

Person {>Manager Compan firstName: John
Edge |_abCe>|s © ger O — lastName: Doe

employer: Google
m— KNOWS

tppc® —m

Graph Construction

 Normalize Data, turn property values into nodes

CONSTRUCT social graph,
(n) -[y:worksAt]—->(x:Company {name:=n.employert})
MATCH (n:Person) ON social graph

* The unbound destination node x would create a company node
for each match result (tuple in binding table).

* This is not what we want: we want only one company per unique
name ... SO ...

LDBC®

Graph Construction = Graph Aggregation

CONSTRUCT social graph,
(n) - [y:worksAt]—->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social graph

* Graph aggregation: GROUP clause in each graph pattern element

e Result: One company node for each unique value of e in the
binding set is created

LDBC®

Creating Graphs from Values

CONSTRUCT social graph,

(n) - [y:worksAt]—->(x GROUP e

:Company {name=e})

MATCH (n:Person {employer=e}) ON social graph

LDBC®

firstName: Celine
.| lastName: Mayer
employer: {SAP,HPI}

firstName: Peter
lastName: Smith

0 202
Node Labels
O Person {>Manager
Edge Labels
- KNOWS

103

firstName: Frank
lastName: Gold
employer: HP

firstName: John
lastName: Doe
employer: Google

33

Creating Graphs from Values

CONSTRUCT social graph,
(n) - [y:worksAt]—->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social graph

firstName: Celine
- | lastName: Mayer . .
employer: {SAP,HPI} firstName: Peter

lastName: Smith
firstName: Frank
0 202 103 lastName: Gold
employer HP
jo 11
| name:HPI | [name:SAP | |name:600ﬁ/ |_name: HP |
Node Labels

Person {>Manager compan firstName: John
Edge |_abCe>|s © ger O — lastName: Doe

employer: Google
m— KNOWS

tppc® ————

Reachability over Paths

e Paths are demarcated with slashes -/ /-
* Regular path expression are demarcated with < >

CONSTRUCT (m)

MATCH (n:Person)-/<:knows*>/->(m:Person)

WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:1sLocatedIn]->()<-[:1sLocatedIn]- (m)

e |f we return just the node (m), the <: knows*> path expression
semantics is a reachability test

LDBC®

Existential Subqueries

CONSTRUCT (m)
MATCH (n:Person)-/<:knows*>/->(m:Person)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:1islLocatedIn]->()<-[:1sLocatedIn]- (m)
| ' j
Syntactical shorthand for existential subquery:
WHERE ..
EXISTS (
CONSTRUCT ()
MATCH (n)-[:islLocatedIn]->()<-[:1sLocatedIn]- (m)

LDBC®

Storing Paths with @p

e Save the three shortest paths from John Doe towards other person who
lives at his location, reachable over knows edges

CONSTRUCT (n)-/@p:localPeople{distance:=c}/->(m)

MATCH (n)-/3 SHORTEST p <:knows*> COST c/-> (m)

WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:1slLocatedIn]->()<-[:1sLocatedIn]- (m)

@ prefix indicates a stored path: query delivers a graph with paths

* paths have label :localPeople and cost as property ‘distance’
e Default cost of a path is its hop-count (length)

ppc® —————————————————

More G-CORE..

More features: most advanced GQL so far. See SIGMOD 2018 paper!

GRAPH VIEW social graphl AS (
CONSTRUCT social graph, (n)-[e]->(m)
SET e.nr messages := COUNT (*)
MATCH (n)-[e:knows]—->(m)
WHERE (n:Person) AND (m:Person)
OPTIONAL (n)<-[cl]-(msgl:Post),
(msgl)-[:reply of]-(msg2),
(msg2:Post)-[c2]-> (m)
WHERE (cl:has creator) AND (c2:has creator)

)
PATH wKnows = (x)-[e:knows]->(y)

WHERE NOT ’“Google' IN y.employer
COST 1 / (1 + e.nr messages)
CONSTRUCT social graphl, (n)-/Qp:toWagner/->(m)
MATCH (n:Person)-/p <~wKnows*>/->(m:Person) ON social graphl

ippc® ——m——————

More G-CORE..

* Views

GRAPH VIEW

LDBC®

More G-CORE..

e set-clause in construct

CONSTRUCT social graph, (n)-[e]->(m)
SET e.nr messages := COUNT (*)

LDBC®

e optional match

OPTIONAL

LDBC®

More G-CORE..

(n)<-[ecl]- (msgl:Post),

(msgl)-[:reply of]-(msg2),
(msg2:Post)-[c2]-> (m)

WHERE (cl:has creator) AND (c2:has creator)

41

More G-CORE..

* regular path expressions (flexible Kleene*)

PATH wKnows = (x)-[e:knows]->(y)
WHERE NOT ’Google' IN y.employer
COST 1 / (1 + e.nr messages)

—/p <~wKnows*>/—=> (

LDBC ’

G-CORE+SQL

 allow SELECT clause. You form property expressions (x.prop) on
variables (x) from the binding table.

* allow FROM clause. Columns are single-value properties on the
table variable, rest is NULL.

e allow queries that have both MATCH and FROM. combine with
Cartesian Product, as usual.

Result:
 G-CORE+SQL can query and return both tables and graphs

LDBC®

G-CORE Take-Aways

1. G-CORE is a compositional query language for graph data

2. G-CORE can find paths
1+2 = the data model of G-CORE is graphs-with-paths (PPG)

* G-CORE is tractable in data complexity

* G-CORE has many advanced features, e.g.:
— regular path expressions, views, subqueries = read the paper ©

e G-CORE+SQL work well together

LDBC®

Comparison of G-CORE, Cypher & Gremlin

3

nombre="“Costa Rica”

Limita .| nombre="“Panama”

capital="“San Jos¢”
indep="1821"

- J

G =(V,E)

’| capital=“Ciudad de Panama”
indep="1903"

- J

(hacia=“SE”]

ne Jamaical
Sa
B;elmupdn
8 e
Belice
1
i .
{s La Ceiba 6\\ R
Guatemala 8. © \}6\\
Ciudad de
PO, Guatemala |
oo Honduras -
ntigua -
Guale?nala// Tegucel‘galpa
El Salvad‘?r s
<.
Nicaragua 3 <&b.
< ® o e
N % &£ ¢ o
“r 5 .
) N 0@* %‘9
Lm £l Nicaragua
Costa Rica B (/%‘
: &
San José A, ({}h’
0 a Limita ’
Panama Cqsta ‘ Panama
Rica Limita
4] ~ g ' .
Pais -

Cypher Example

match (n1)-[e]->(n2) return nl

$ match (n1)-[e]->(n2) return nl

©

Limig,

"""""ffa

1
Salvador

Panama

Displaying 7 nodes, 14 relationships.

$ match (n1)-[e]->(n2) return nl

@neoqj
Cypher

Belice

Cypher Example

match (n1)-[e]->(n2) return nl ﬁ & D

$ match (n1)-[e]->(n2) return nl & = e’ ~ O X
@ n1
Graph
2] !
Table "indep": "1821",
}\ "nombre": "Guatemala",
Text "capital”: "Ciudad de Guatemala"

}
Code

{

"indep": "1821",
"nombre": "Guatemala",

"capital": "Ciudad de Guatemala"

"indep": "1821",

Started streaming 14 records after 1 ms and completed after 2 ms.

@neoqj
Cypher

3‘9 NeoLj
Cypher

Cypher Example

match (n1)-[e]l->(n2) return nl

$ match (n1)-[e]->(n2) return nl

&

Graph

==

Table

A

Text

Code

I
| Hnl "

1

|
i I
|{"indep":"1821", "nombre": "Guatemala", "capital":"Ciudad de Guatemala"}|
I i
|{"indep":"1821", "nombre": "Guatemala", "capital":"Ciudad de Guatemala"}|
I i
|{"indep":"1821", "nombre": "Guatemala", "capital":"Ciudad de Guatemala"}|
I i
[{"indep":"1981", "nombre": "Belice", "capital":"Belmopan"} |
I i
[{"indep":"1821", "nombre": "Honduras", "capital":"Tegucigalpa"} |
I {
| {"indep":"1821", "nombre": "Honduras", "capital":"Tegucigalpa"} |
I {
| {"indep":"1821", "nombre" : "Honduras", "capital":"Tegucigalpa"} |
I {
[{"indep":"1821", "nombre":"E1l Salvador","capital":"San Salvador"} |
I {
|{"indep":"1821", "nombre":"E1l Salvador","capital":"San Salvador"} |
I i
|{"indep":"1821", "nombre": "Nicaragua", "capital":"Managua"} |
I i
|{"indep":"1821", "nombre": "Nicaragua", "capital":"Managua"} |
I i
|{"indep":"1821", "nombre": "Costa Rica", "capital":"San José"} |

]

1

[«
7

MAX COLUMN WIDTH:

Apache\
*’Tinkerrop
Gremﬁ_n

G=(V,E)

Gremlin Examples

gremlin> g.V()
==>v[1]
==>v[2]
==>v[3]
==>v[4]
==>v[5]
==>v[6]
==>v[7]

gremlin> g.V().has('nombre', 'Nicaragua').outE('Limita').inV().values('nombre"')

==>Honduras
==>Costa Rica

gremlin> g.E()

==>e[32][6-Limita->5]
==>e[33][6-Limita—>7]
==>e[34][7-Limita—>6]
==>e[21][1-Limita->2]
==>e[22][1-Limita—>4]
==>e[23][1-Limita—>3]
==>e[24]1[2-Limita->1]
==>e[25][3-Limita->1]
==>e[26]1[3-Limita—>4]
==>e[27]1[3-Limita->5]
==>e[28][4-Limita—>1]
==>e[29][4-Limita->3]
==>e[30][5-Limita—>3]
==>e[31]1[5-Limita—>6]

Adjacency

El
: Salvador

i
& .
$ £

O

Query:

Return the neighboring

countries of Guatemala (x) -[e:Limita] ->(y)
HERE x.nombre='Guatemala'

CONSTRUCT (y)
MATCH (x)-[]->(y) ON mygraph
WHERE x.nombre=‘Guatemala'

g-core

!Gre alin

G-CORE, Cypher ”

Adjacency + Filter

Belice
&0

W

N Limita

% @
\ K
El

Salvador

<
%,
%

Query:

Return the neighboring

!
neu I lryu
|

f
I
L
f T
| {"hacia":"E"}|{"indep":"1821", "nombre" : "Honduras"
| |, "capital":"Tegucigalpa"}
L
I
I
I
L

{"hacia":"E"}|{"indep":"1981", "nombre": "Belice","

|capital":"Belmopan"}
1

&
K3
“
QH%B
L,
(.,‘,h%

Costa
Rica

Limita .
Panama
— Limita

countries to the east of

MATCH

Guatemala

g.V () .has (‘nombre’, 'Guatemala') .outE('Limita') .has ('hacia', 'E")

HERE x.nombre =
RETURN e,

(x)-[e:Limita]l->(y)
'Guatemala' AND e.hacia

Y

.1nVv ()

g 0 Gre C%I})

G-CORE, Cypher

CONSTRUCT
MATCH
WHERE x.nombre =

(y)
(x)-[e:Limital]l->(y)

‘Guatemala' AND e.hacia

51

Adjacency - Hop

—_—

| "z.nombre" |

Belice 'g(

& | "Nicaragua" |
R o

o _—

Limita |"E1l salvador"|

@ ™~ Lt - @ —

] %,» | "Guatemala" |

Query: 50 E> ———

e | "Honduras" |

‘®. ==

. ‘%@ T | "Guatemala" |

Return the neighbors of . . —
Guatemala at distance 2

(fixed path) (x)-[el]=>(y) - [e2] -

HERE x.nombre='Guatemala'
RETURN z.nombre

e —

g.V() .has('nombre', 'Guatemala') .out () .out () .values ('nombre')

CONSTRUCT (z)
MATCH (x)-[el]l->(y)-[e2]->(z)
WHERE x.nombre = ‘Guatemala'

g-core

Gremlivl}

G-CORE, Cypher ”

Adjacency - Hop

==>Honduras

R %% ».)<Q¥ d(p@ (%
Query. B Nicaragua ==> El Sa 1Vad0r

==>Nicaragua

w? ==>Guatemala
. ==>Guatemala
L% " by [:{::>> ==>Guatemala

Return the neighbors of '
Guatemala at distance 2
(with recursion)

MATCH (x)-[*2..2]1->(y)

HERE x.nombre='Guatemala'
ETURN y.nombre

g.V () .has ('nombre', '"Guatemala') .repeat (out()) .times (2) .values ('nombre')

Not supported

g-core

!Gre alin

G-CORE, Cypher v

Adjacency without Duplicates

"z.nombre"

. |
g |
imita __ Il
a | "Nicaragua"
% |
I
L] E*
QU.CI y . |"E1 salvador"
Nicaragua }
| "Honduras"
Limita L
Costa
Rica

(x)-[el]l->(y)-[e2]->(z)
HERE x.nombre='Guatemala' AND x<>z
ETURN DISTINCT z.nombre

Return the neighbors of
Guatemala at distance 2
without duplicates

V() .has('nombre', 'Guatemala') .as('no') .out () .out () .where(neg('no'))

.values ('nombre')

Not supported

Grem.l;‘;}

G-CORE, Cypher >

Neighborhood

Belice
2

N‘f\

Query:

El
Salvador

o
o
— Limita __
. Limita
\ % ;
K \)&@ \f@ ((’%Q
; y
Nicaragua)
Y,

"y.nombre"

"Costa Rica"

N

"Nicaragua"

"Panama"
Ly,

] Limita)
Panama
— Limita

Costa
Rica

Return the neighbors of

Guatemala until distance 2 MATCH (x)

-[*1..2]1->(y)

HERE x.nombre='Panama'
ETURN y.nombre

g.V () .has(

'nombre', 'Panama') .repeat (out()) .times (2) .emit () .values ('nombre')

CONSTRUCT
UNION
CONSTRUCT

g-core

!Gre alin

G-CORE, Cypher

(z) MATCH (x)-[e]->(z) WHERE x.nombre='Panama'

(z) MATCH (x)-[el]->(y)-[e2]->(z) WHERE x.nombre='Panami'

55

Graph Pattern Matching

_y“\
i O
e
@
—
Ty
’h/;a
Ly, b

a -
Query: ,
Nicaragua
Salv: ad El
4% Salvador
c} Limita — .
Panama
R:ca Limita

Return three countries all
neighboring to each other

(trlangle query) -[:Limital->(y), (x)-[:Limital->(z), (y)-[:Limital]->(z)
Yr 2

__.as('x'").out().as('y'), .as('x').out().as('z'"),

.out().as('z"'"),) .select('x','y',"'z") .by('nombre"')

CONSTRUCT (x), (y), (z)
MATCH (x)-[:Limital->(y), (x)-[:Limital->(z), (y)-[:Limita]l->(z)

g-core

:sggﬁrenmﬂ@g

G-CORE, Cypher *

Path Finding

e
NN
o
— Limitg .
Limita

5,
%

&gdy
El
Salvador

q‘?“f\

Query:

==>[Belice,Guatemala,Honduras,Nicaragual

==>[Belice,Guatemala,El Salvador,Honduras,Nicaragual
==>[Belice,Guatemala,Belice,Guatemala,Honduras,Nicar
==>[Belice,Guatemala,El Salvador,Guatemala,Honduras,|
==>[Belice,Guatemala,Honduras,Guatemala,Honduras,Nic
==>[Belice,Guatemala,Honduras,E1l Salvador,Honduras,N
==>[Belice,Guatemala,Belice,Guatemala,El Salvador,Ho
==>[Belice,Guatemala,E]l Salvador,Guatemala,El Salvad
==>[Belice,Guatemala,E1l Salvador,Honduras,Guatemala,l

i
“n
QHHEE
%,,a
<”'>»‘@

Limita

Panama
- Limita

Costa
Rica

Return all paths between
Belice and Nicaragua

g.V() .has('nombre', 'Belice') .repeat (timeLimit (5) .out()) .until (has('no

mbre', 'Nicaragua')) .path() .by ('nombre"')

RETURN (x)-/p/->(y)
g MATCH (x)-/ALL p<:Limita*>/->(y)
: yl W"HERE x.nombre = 'Belice' AND y.nombre = 'Nicaragua'
Gren&%g} =

G-CORE, Cypher

57

Path Finding (single source)

Query:

- Limita — uet® I
Belice 3 5
Limita — Q”’Pa z
":"h,
Sa\vador

—epwr] -

Return all path with
distance 2 from Belize

.has ('nombre', '"Belice')

(x {nombre:

'Belice'}),

.times (2)

.repeat (out())

.path () .by ('nombre')

RETURN (x)-/p/->(y)
g MATCH (x)-/p<:(Limita Limita)>/->(y)
& WHERE x.nombre = ‘Belice'

:sggﬁrenmﬂ@g

G-CORE, Cypher

58

Shortest Path

— Limita —_ Limita — Limita —
Belice Guatem... Honduras Nicaragua
~ Limita — Limita — Limita

Query:

Return the shortest path
between Belice and
Panama

x {nombre:'Belice'}), (y {nombre:'Nicaragua'}),
shortestPath ((x)-[*]->(y))

g.V () .has (‘nombre', 'Belice') .repeat (out () .simplePath()) .until (has ('no

mbre', 'Panama')) .path () .by('nombre') .limit (1)

RETURN (x)-/p/=>(y)
MATCH (x)-/SHORTEST p<:Limita*>/->(y)
WHERE x.nombre = ‘Belice' AND y.nombre = 'Nicaragua'

g-core

!Gre alin

G-CORE, Cypher ”

Global Aggregation

Query:

Return the number of
neighbouring countries for

H()nduras (x {nombre:'Honduras'})-[]->(y)
ETURN COUNT (vy)

g.V () .has (‘nombre', '"Honduras"') .out () .count ()

CONSTRUCT (x) SET x.number = COUNT (*)
MATCH (x)-[:Limita]->()
WHERE x.nombre = 'Honduras'

g-core

!Gre alin

G-CORE, Cypher o

Grouping Aggregation

==>[Belice:1,Nicaragua:2,E1l
Salvador:2,Panaméa:1, Guatemala:3
, Honduras:3,Costa Rica:2]

Query:

Return the number of
neighboring countries for
each country

MATCH (x)-[]->(y) RETURN x, COUNT (y)

g.V () .hasLabel ('Pais') .group () .by ('nombre') .by (out ('Limita') .count ())

CONSTRUCT (x)-[:hasNeighbors]->(v GROUP y :GroupedNeighbors)
g SET v.number = COUNT (*)
o MATCH (x)-[:Limita]l->(y)
Grem.ﬁn =
G=(V,E)

G-CORE, Cypher !

Graph Construction

Belice
_}@-\\»
— Limitg ___
\ e Limita
\ %) 4
g % @ "
® v “n,

Query:

=]

Salvador

IfY is a neighbor to the

Costa
Rica

Limita _ Limita
Limita — Nicaragua Limita
alNorteDe ~ alNorteDe

Nicaragua
%"”'a .
%G Limita .
Costa Panama
Rica — Limita

north of X, add an edge
labeled ‘alNorteDe’
between Y and X

MATCH

(x)-[e:Limita]->(y)

HERE e.hacia="'N"
MERGE

(yv)-[:alNorteDe] -> (x)

Not supported

CONSTRUCT (y)-[:alNorteDe]->(x)

g MATCH (x)-[e:Limital->(y)
o & WHERE e.hacia = 'N'
’ D Gre in
G = (V,E)

G-CORE, Cypher

62

Cypher WITH: concatenate query blocks

Aggregated results have to pass through a WITH clause to be able to filter on.
Query.

MATCH (david { name: 'David' })--(otherPerson)-->()
WITH otherPerson, count(*) AS foaf

WHERE foaf > 1

RETURN otherPerson.name

The name of the person connected to 'David’ with the at least more than one outgoing relationship will be returned by
the query.

Table 3.36. Result

otherPerson.name

"Anders"

1 row

@@ neoy]
Cypher

Cypher WITH: concatenate query bocks

MATCH (n)

WITH n

ORDER BY n.name DESC LIMIT 3
RETURN collect(n.name)

A list of the names of people in reverse order, limited to 3, is returned in a list.
Table 3.3/. Result

collect(n.name)

["George","David","Ceasar"]

1 row

@@ neoy]
Cypher

64

Cypher UNWIND: repeated execution for a list

Multiple unwIND clauses can be chained to unwind nested list elements.

WITH [[1, 2],[3, 4], 5] AS nested CYPHER
UNWIND nested AS x

UNWIND x AS y

RETURN y

The first UNWIND results in three rows for x , each of which contains an element of the original list (two of which are also
lists); namely, [1, 2], [3, 4] and 5 .The second UNWIND then operates on each of these rows in turn, resulting in five

rows for vy .
y
1
2
3
4
5
5 rows
.)
@neoy

Cypher ”

Cypher MERGE: augmenting the graph

For some property 'p' in each bound node in a set of nodes, a single new node is created for each unique value for 'p".

MATCH (person:Person)
MERGE (city:City { name: person.bornIn })
RETURN person.name, person.bornIn, city

Three nodes labeled city are created, each of which contains a name property with the value of ‘New York', 'Ohio’, and
'New Jersey’, respectively. Note that even though the MATCH clause results in three bound nodes having the value '"New
York' for the bornIn property, only a single 'New York' node (i.e. a city node with a name of 'New York') is created. As
the 'New York' node is not matched for the first bound node, it is created. However, the newly-created 'New York' node is

matched and bound for the second and third bound nodes.

person.name person.bornln C“y

"Charlie Sheen™ "New York" Node[7]{name:"
"Martin Sheen" "Ohio™ Node[8]{name:"
"Michael Douglas"” "New Jersey" Node[9]{name:’
"0liver Stone" "New York" Node[7]{name:"
"Rob Reiner" "New York" Node[7]{name:"

5 rows, Nodes created: 3 Properties set: 3 Labels added: 3

@@ neoy]
Cypher

New York™"}

Ohio"}

'New Jersey"}

New York"}

New York"}

Cypher CALL: subqueries

Variables are imported into a subquery using an importing WITH clause. As the subquery is evaluated for each incoming
input row, the imported variables get bound to the corresponding values from the input row in each evaluation.

UNWIND [8, 1, 2] AS X
CALL {

WITH X

RETURN x*1@ AS y

}

RETURN X, y
X y
%] (%]
1 10
2 20
3 rows

o)

C
@ neoy)

Cypher v

Oracle’s PGQL Graph Query Language

* Core Features » Specification available online
o SQL alignment aPGQLGrap;.QumyLanguagc POQL 10 Speciication. POOL Fescurces= |
* SELECT .. WHERE ..
. . FeQLigspectiealen - PGQL 1.0 Specification
* Grouping and aggregation: GROUP BY, AVG, MIN, o S |
MAX, SUM o ¥ | st e et
« Solution modifiers: ORDER BY, LIMIT, OFFSET — 7 | ——
G h tt t h ST Introduction
— Grapn pattern matcning) .
[
* Define a high-level pattern, find all instances Implementatlon (PGO‘L 10)
* This corresponds to basic SQL — Parallel Graph Analytics (PGX)
B (Recursive) path queries * PGX is Oracle’s in-memory graph analytics engine

http://oracle.com/technetwork/oracle-labs/parallel-graph-analytics

« Component of Oracle Big Data Spatial and Graph

http://www.oracle.com/database/technologies/bigdata-spatialandgraph.html

« Use cases: detecting circular cash flow (fraud — Open-sourced PGQL front-end (apache 2.0 License)
detection), network impact analysis, etc.

PGQL

* Can | reach from vertex A to vertex B via some
number of edges?

O https://github.com/oracle/pggl-lang

68

http://oracle.com/technetwork/oracle-labs/parallel-graph-analytics
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://github.com/oracle/pgql-lang

Pattern Matching: Homomorphism vs Isomorphism

GO gle graph database que!

According to several publications, graph querying Scholar rolo 290)i (0,05

homomorphisn]

D

comes down to subgraph isomorphism, but this is

not always the case. Go gle graph database que

Isomorphism semantic found to be more intuitive for first-time users

[]

0 (

Scholar urm\ (0.06 se

— (not based on empirical study)

— Homomorphism may return more results than expected (e.g. “find friends of friends of lohn’” returns ‘John’)

Isomorphism has limitations (see previous slide)

Both have the same worst-case time complexity: O(n¥) (n = num. data vertices, k = num. query vertices)

— However, if we apply isomorphism to recursive path queries, things blow up

[]

Also, isomorphism doesn’t translate well to/from SQL, but homomorphism does

[]

Hence, PGQL is now based on homomorphism

— We also plan to introduce an allDifferent(v1, v2, ...) function to avoid large numbers of non-equality
constraints: allDifferent(x, y, z) instead of x I=y, x =2,y =2

PGQL

69

PGQL: Regular Path Query (RPQ) syntax

* Matching a pattern
repeatedly

Define a PATH pattern at the top
of a query

— Refer to it in the WHERE clause
(pattern composition)

Use Kleene star (*) for repeated
matching

PGQL

PATH has_parent := (child) -[:has_father|has_mother]-> (parent)
SELECT x.id(), y.id(), ancestor.id()
WHERE
(x:Person WITH name = 'Andy') -/:has_parent*/-> (ancestor),
(y) -/:has_parent*/-> (ancestor),
X l= ancestor AND y != ancestor AND x != vy

ﬂson SnGraph :Person \

name = ‘Amber’ ”3mf;4PaU|
age =29 7 _ :has_father age =
@
el
:has_father
:likes 37
since = '2016-04-04"
0 1 :Person
lik | name = ‘Retta’
JIKes _
since = ‘2016-04-04’ age =43 Hlikes
4 thas_mother since = ‘2015-11-08’
:has_mother =5
:Person 6 . 500

name = ‘Dwight’ clikes ! :Person
age = 15 since = ‘2013-02-14 name = ‘Andy’
age=12

70

PGQL: Regular Path Query (RPQ) syntax

PATH has_parent := (child) -[:has_father|has_mother]-> (parent)
o i SELECT x.id(), y.id(), ancestor.id()
Matching a pattern HERE
repeatedly (x:Person WITH name = 'Andy’') -/:has_parent*/-> (ancestor),
_ (y) -/:has_parent*/-> (ancestor),
Define a PATH pattern at the top X != ancestor AND y != ancestor AND x != vy
of a query
— Refer to it in the WHERE clause / snGraph percon \
(pattern composition) hzer;‘:’:,ﬁ\mber, gggnf;paur
= _thas_father -
Use Kleene star (*) for repeated age = 29 2 —has_fat -+
matChing Result set - :has_fafher;
-si\nce = '2016-04-04’ 3
X.id() | y.id() | ancestor.id() 0 1 Person
:likes ;'la;ﬂf ;3 Retta
500 |300 |200 sce=2016080¢' |7 RS ince = 2015108
:has_mother =5
500 400 200 Person 6) 500
name = ‘Dwight’ tlikes :Person
500 400 300 k%e - 15 since = '2013-02-14’ hame = ‘Andy’ /
age=12

PGQL

71

PGQL: Regular Path Query (RPQ) syntax

* Matching a pattern
repeatedly

Define a PATH pattern at the top
of a query

— Refer to it in the WHERE clause
(pattern composition)

Use Kleene star (*) for repeated
matching

PGQL

PATH has_parent := (child) -[:has_father|has_mother]-> (parent)
SELECT x.id(), y.id(), ancestor.id()
WHERE
(x:Person WITH name = 'Andy') -/:has_parent*/-> (ancestor),
(y) -/:has_parent*/-> (ancestor),
X l= ancestor AND y != ancestor AND x != vy

ﬂson SnGraph :Person \

name = ‘Amber’ ”3mf;4PaU|
age =29 7 _ :has_father age =
@
el
:has_father
:likes 37
since = '2016-04-04"
0 1 :Person
lik | name = ‘Retta’
JIKes _
since = ‘2016-04-04’ age =43 Hlikes
4 thas_mother since = ‘2015-11-08’
:has_mother =5
:Person 6 . 500

name = ‘Dwight’ clikes ! :Person
age = 15 since = ‘2013-02-14 name = ‘Andy’
age=12

72

RPQs: comparing properties along a path

Regular Expressions with Memory
(REM) [1]

* REMs are Regular Path Queries (RPQs)
with registers to store properties of
vertices/edges along paths

— Stored properties can be used later on during
traversal to compare against other properties

* Most expressive (powerful) RPQ
formalism with same complexity as usual
RPQs

* Hard to come up with a syntax for REMs
that is declarative

[1] https://homepages.inf.ed.ac.uk/libkin/papers/Iparl2.pdf

PGQL

Idea proposed for PGQL / Graph QL

* PATH patterns with WHERE clause for
data comparison

Query: “find devices that are reachable from ‘power_generator_x29’
via a path such that all the devices along the path have equal voltage”

PATH eq_voltage hop:=

(n:Device) -> (m:Device)

WHERE n.voltage = m.voltage
SELECT y.name
FROM (x) -/:eq_voltage hop+/-> (y)
WHERE Xx.name = ‘power_generator_x29’

* Supports a subset of REM, but is
declarative

= Paths can be processed in either direction

(either from x to y or from y to x)

https://homepages.inf.ed.ac.uk/libkin/papers/lpar12.pdf

TigerGraph’s GSQL: accumulators

* GSQL traversals collect and aggregate data by writing it into
accumulators

* Accumulators are containers (data types) that
— hold a data value
— accept inputs
— aggregate inputs into the data value using a binary operator

* May be built-in (sum, max, min, etc.) or user-defined

* May be
— global (a single container)
— Vertex-attached (one container per vertex)

GSQL

GSQL Vertex-attached Aggregators Example

customer product

discount quantity

thisSaleRevenue

GSQL

GSQL Vertex-attached Aggregators Example

SumAccum<float> @cSales, @pSales;

SELECT ¢

FROM Customer :c —(Bought :b)-> Product :p
ACCUM thisSaleRevenue = b.quantity*(1-b.discount)*p.price,
c.@cSales += thisSaleRevenue,

p.@pSales += thisSaleRevenue; |

same sale revenue contributes

to two aggregations, each by

groups are distributed, each node
distinct grouping criteria

accumulates its own group

CsS0 "7 / 7

Accumulators & Loops: PageRank Example

CREATE QUERY pageRank (float maxChange, int maxlteration, float dampingFactor) {

MaxAccum<float> @ @maxDifference = 9999; // max score change in an iteration

SumAccumc<float> @received_score = 0; // sum of scores received from neighbors
SumAccum<float> @score = 1; // initial score for every vertex is 1.
AllV = {Page.*}; // start with all vertices of type Page

WHILE @ @maxDifference > maxChange LIMIT maxlIteration DO
@ @maxDifference = 0;

S= SELECT S
FROM AllV:s -(Linkto)-> :t
ACCUM t.@received_score += s.@score/s.outdegree()

POST-ACCUM s.@score = 1-dampingFactor + dampingFactor * s.@received_score,
s.@received_score =0,
@ @maxDifference += abs(s.@score - s.@score');
END;

GSQL V—/———

SQL/PGQ: SQL Extensions for Property Graphs

* What?
— Tabular property graph model: store property graphs as sets of tables
— Graph pattern matching: fixed-length and variable-length (e.g. shortest path)

— Possibly more, but not in the first version

« Where? Aka the 1SO SQL committee |

— 1SO: JTC 1/SC32/WG3 (USA, Germany, Japan, UK, Canada, China)

W SQL committee |

— ANSI: INCITS / DM32 / DM32.2 / DM32.2 Ad Hoc Group on SQL Extensions for Property Graphs
(Oracle, Neodj, TigerGraph, IBM, SAP/Sybase, JCC Consulting)

* When?
— Next version of SQL; possibly SQL:2020 or SQL:2021 (current version is SQL:2016)

SQL/PGQ

78

Property Graphs That Are Backed By Tables

* A graphis stored as a set
of vertex tables and edges
tables

* A graphis like a view over
existing tables: creating a
graph requires no data

copying
* There can be multiple
graphs per database

* Graphs have a name and
live in the same name
space as tables

SQL/PGQ

~ database I

T

student_network (graph)

Oﬁ L University
O - study_at -
O FuaEn O study_at

b University
Student orudent study_at '.

O Student =_. University
Student e

Hve rtices @edges Hvertces

students (table) study_at (table) universities (table)

= e R
ra=— =1

\

= |
_///

79

Tables map to sets of vertices and/or edges

* Each row in a vertex/edge table becomes a vertex/edge in the graph
— By default, table names become labels, but it can be customized
— By default, all columns become properties, but it can be customized

— By default, PK-FK relationships are used to create edges, but it can be customized
myGraph

Peopl
copie name: Riya
id name dob dob: 1995-03-20
R C-(03-
Example vertex table: ! v e <:> name: Kathrine
2 Kathrine 1994-01-15

dob: 1994-01-15

3 Les 199:-01-29
name: Lee
dob: 1996-01-29

CREATE PROPERTY GRAPH myGraph

VERTEX TABLES (
SQL DDL statement:
- People LABEL Person PROPERTIES (name, dob)

)

SQL/PGQ

PK-FK relationships in tables to create edges

Vertex tables: Edge tables:

Person knows stude nt_netwo rk name: Riya

id | name dob personl id | person2_id dob: 1995-03-20
1 | Riya 1995-03-20 2 1 LnOWS Sty
2 | Kathrine | 1994-01-15 2 3 / E'afof
3 | Lee 1996-01-29 3 2 <:> :
studentOf
University) name: UC Berkeley
nlﬁ%

University studentOf +

id name n id university id
person_| iy_ pude
1 UC Berkeley 1 1
2 1 name: Lee
3 1 dob: 1996-01-29

CREATE PROPERTY GRAPH student_network
VERTEX TABLES (Person PROPERTIES (name, dob),
SQL DDL statement: University PROPERTIES (name))
EDGE TABLES (knows SOURCE Person DESTINATION Person NO PROPERTIES,
studentOf SOURCE Person DESTINATION University NO PROPERTIES)

SQL/PGQ .

Manually Specifying keys for vertices/edges

Keys need to be manually specified in case the underlying tables (or views) do not already have

the necessary keys defined:

CREATE PROPERTY GRAPH student_network
VERTEX TABLES (Person KEY (id) PROPERTIES (name, dob),
University KEY (id) PROPERTIES (name))
EDGE TABLES (knows SOURCE KEY (personl_id) REFERENCES Person

DESTINATION KEY (person2_id) REFERENCES Person
NO PROPERTIES,
studentOf SOURCE KEY (person_id) REFERENCES Person

SQL DDL statement:

Parson

KNOwWS

[name

personl id

persond id

i

i

3

University

wd name

.
UL Berkaley

SQL/PGQ

studentOf

person_id

university_id

student_network

i

dob: 1994-01-15 £

o "%.

5 -

—

DESTINATION KEY (university_id) REFERENCES University
NO PROPERTIES)

name: Riya
dob: 1995-03-20

) ‘fug%
O

—— Studery
ot '@ name: UC Berkeley
onoh

5"-‘-"“'

namae: Lee
dob: 1996-01-29

Statically Typed Properties

* Each property belongs to a label:

— Example with two tables with two labels each:

. VERTEX TABLES (Students LABEL Person PROPERTIES (first_name, last name)
LABEL Student PROPERTIES (student_number),

Professors LABEL Person PROPERTIES (fname AS flPSt _name, last_name)
LABEL Professor PROPERTIES (employee r“mber))

SQL DDL statement:

—

° I | I I I . Does n:::t rename the
Static typing provides safety during querying: [oes not renarme J
MATCH (p IS Personn) MATCH (p IS Person)
Error because no label Personn defined WHERE p.student_number = ...
Will give NULL values for professors but not for students

MATCH (p IS Professor)

WHERE p.student_number = ...

Error because no property student_number
for Professor vertices

sq.y, GO0 m—

MATCH (p)
WHERE p.student _number = ...
Will give NULL values for professors but not for students

Statically Typed Properties

Two vertex/edge tables that share a label

* Each property belongs to a label: need to have the same set of properties
. _ defined for that label (same property
— Example with two tables with two labels each: names and compatible data types)

. VERTEX TABLES (Students LABEL Person PROPERTIES (first _name, last name)
LABEL Student PROPERTIES (student_number),

Professors LABEL Person PROPERTIES (fname AS flPSt _name, last_name)
LABEL Professor PROPERTIES (employee r“mber))

SQL DDL statement:

—

* I | I I I . Dues- n-;:pt rename the
Static typing provides safety during querying: [oes not renarme J
MATCH (p IS Personn) MATCH (p IS Person)
Error because no label Personn defined WHERE p.student_number = ...
Will give NULL values for professors but not for students

MATCH (p IS Professor)

WHERE p.student_number = ...

Error because no property student_number
for Professor vertices

sQq.yp G077 —

MATCH (p)
WHERE p.student _number = ...
Will give NULL values for professors but not for students

SQL/PGQ Example

SELECT GT.creationDate, GT.content
FROM myGraph GRAPH_TABLE (
MATCH

(Creator IS Person WHERE Creator.email = :emaill)

-[IS Created]->
(M IS Message)
<-[IS Commented]-
(Commenter IS Person WHERE Commenter.email
WHERE ALL DIFFERENT (Creator, Commenter)
COLUMNS (
M.creationDate,
M.content)
) AS GT

SQL/PGQ

:email2)

85

SQL/PGQ Example

Get the creationDate and content
of the messages created by one

SELECT GT.creationDate, GT.content person ("email1”) and commented
FROM myGraph GRAPH_TABLE (on by another person ("email2").)
MATCH
(Creator IS Person WHERE Creator.email = :emaill)

-[IS Created]->
(M IS Message)
<-[IS Commented]-
(Commenter IS Person WHERE Commenter.email = :email2)
WHERE ALL DIFFERENT (Creator, Commenter)
COLUMNS (
M.creationDate,
M.content)
) AS GT

sQ.yp G007 ——

Example: table + graph + CHEAPEST PATH

Given a table with a list of pairs of places called Here and There, for each row in the list, find the cheapest

path from Here to There, with a stop at a gas station along the way.
Note: it is possible that some pairs (Here, There) are not connected by a path passing through a gas station; such disconnected pairs must nevertheless be
reported in the result. It is possible that Here and There are the same location. It is possible that Here or There or both may be a gas station, in which case

it is not necessary to find an additional gas station.

SELECT L.Here, GT.GasID, L.There, GT.TotalCost, GT.Eno, GT.Vvid GT.Eid
FROM List AS L LEFT OUTER JOIN MyGraph GRAPH_TABLE (
MATCH CHEAPEST (

(H Is Place WHERE H.ID = L.Here)
(-[R1 IS Route COST Rl1l.Traveltime]->)*

(G IS Place WHERE G.HasGas = 1)
(-[R2 IS Route COST R2.Traveltime]->)*
(T IS Place WHERE T.ID = L.There))

ONE ROW PER STEP (V, E)
COLUMNS (H.ID AS HID, G.ID AS GasID, T.ID AS TID, TOTAL _COST() AS totalCost,

ELEMENT_NUMBER (V) AS Eno, V.ID AS Vid, E.ID AS Eid)
) AS GT ON (GT.HID = L.Here AND GT.TID = L.There)
ORDER BY L.Here, L.There, Eno

sQ.yp G077 4 —

-ReAd Only
-RPQs
-No GRaPH

= NGT ComPoSATLE
JET.

-

Oracre VX

e,

Initiative originally by neo4;

Some coordination in W3C with SPARQL

Main backers (2020) are:

Oracle, neo4j, Microsoft, TigerGraph

ISO WG led by Jan Michels (Oracle)

ISO: GQL

ConstrucProsec;

[GCORE |

7

I -CreaTe ReaD|

I-RPQs '

l-Gm\w. ConNSTRUCT/
ProTELT]

| - C,DN\PGSAGLE l

=~ —

‘IMPLEN\ENYATI.UNS |
! e {
i Ye PRl |

o — ——

-~-RPQs
- (rpry ConsTaucT/PRosECT!
~ (oMPOSABIE

The GQL Manifesto

-CREATE ~READ -
UPDATE -DeLETE
‘Na RPQs
- CARAPH ConsTRUCT/
ProTECT:
- ComPosnmLE

“Neo#iDB sCyphec for

* A aens (raph SpARK/Gremin
*Redis Groph *Memayraphy
«SGAPHANA ®winGroph

Grraph s lyphnec.PL

W English ~

270 International Organization for Standardization
When the world agrees

Standards All about 1SO Taking part Store Searc Q

Standards catalogue Publications and products

Store > Standards catalogue > ICS © 35 + 35.060 - ISO/IEC 9075-1:2008

ISO/IEC 9075-1:2008

Information technology -- Database languages -- SQL -- Part 1: Framework (SQL/Framework)

I1SO/IEC 9075 defines the SQL language. The scope of the SQL language is the definition of
data structure and the operations on data stored in that structure. ISO/IEC 9075-1:2008,
I1SO/IEC 9075-2:2008 and ISO/IEC 9075-11:2008 encompass the minimum requirements of
the language. Other parts define extensions.

1SO/IEC 907 5-1:2008 specifies the conceptual framework used in other parts of ISO/IEC
9075 to specify the grammar of SQL and the result of processing statements in that
language by an SQL-implementation.

https://gql.today

88

GQL Lineage

- Read only

- RPQs - Create, Read, Update, Delete

- RPQs
- Construct & project graphs
- Composable

——————————

Advanced path patterns
- Create, Read, Update, Delete (CRUD)

- Construct & project graphs
- Composable

Reading graphs

g SQL PGQ

CRUD, Construct & project, Composabl

- Create, Read

_’/ﬁ nced path patterns

-RPQs

- Construct & project graphs <

- Composable Creating, constructing and projecting graphs,
\.--_& Advanced path patterns, Composable

ISO: GQL https://www.gglstandards.org/home 89

From Cypher, PGQL, GSQL, SQL/PGQ to GQL

Simple Pattern Matching I > Complex Pattern Matching
(RPQs, Shortest/Cheapest Path, Macros)
Tables out only > Graphs, tables, scalars in/out
Single graph only | > Multiple graphs & (parameterized) views
DML only I > DML, Graph computation, Graph projection
No schema I > Schema & advanced type system

All aligned with basic data types, infrastructure, and expressions of the SQL database
Support for basic tabular manipulation (projection, sorting, grouping etc)
More features are discussed (Indexing)

http://tiny.cc/gql-scope-and-features
1ISO: GQL N

http://tiny.cc/gql-scope-and-features

ISO: GQL

BNE-023: Example Query [3.1]

FROM friends

MATCH (a IS Person)-[IS TRAVELLED_TOGETHER]-(b IS Person)
WHERE a.age = b.age AND a.country = $country AND b.country = $country

FROM census($country)

MATCH SHORTEST (a) (()-[IS BORN_IN|MOVED_TO]->())* (p)
(()<=[IS BORN_IN|MOVED_TO]-())* (b)

MATCH (p)-[IS LOCATED_IN]->(c IS City)

RETURN a.age AS age, c.name AS city, count(x) AS pairs GROUP BY age

BNE-023: Pattern Matching Modifiers

<path modifiers> for controlling
path matching semantics

[ALL] SHORTEST - forshortest path patterns
[ALL] CHEAPEST -forcheapest path patterns
(both with TOP <k>,MAX <k>qualifiers, and
supportingWITH TIES)

REACHES - unique end nodes with >=1 matching path
ALL - all paths

SIMPLE - may not contain repeated nodes

TRAIL - may not contain repeated edges
ACYCLIC - may notrepeat nodes,

except allowing the first and last node to be the same

ISO: GQL

FROM twitter
MATCH SIMPLE (a) (()-[IS Knows]->())* (b),
TRAIL (a)-[IS Lives_At]->()
(()=-[IS Bus|Train|Plane]->())x*
()<-[IS Lives_At|-(b)

92

BNE-023: Pattern Matching Structure

[FROM <graph>]
MATCH <pattern> {<comma> <pattern> ...}

+ optional modifiersto MATCH
for controlling pattern matching behaviour

OPTIONAL MATCH - outerjoin, binds nulls if nothing matches
MANDATORY MATCH - query fails if nothing matches

MATCH
e DIFFERENT (VERTICES|NODES) -vertexisomorphism

e DIFFERENT (EDGES|RELATIONSHIPS) - edge isomorphism
e UNCONSTRAINED -homomorphism

ISO: GQL

FROM twitter
MATCH (a)-[IS Follows]->(b)

OPTIONAL MATCH (

(b)-[p IS Posted]->(m)
WHERE p.date » three_days_ago

93

BNE-023: Why Tabular Operations in GQL?

(A) Pattern matching => (Multi) set of bindings (=> Table)
=> Tabular result transformation useful to avoid client-side processing

(B) Bindings main input into graph modifying operations (DML)
=> Supported by tabular result transformation and combination

(C) Bindings main input into graph construction operators
=> Supported by tabular result transformation and combination

Not needed: Features focussed on tables as a base data model like e.g. referential

integrity via foreign key constraints

ISO: GQL

BNE-023: Linear Statement Composition [3.10.3,4.3.4.3]

Statement 1 e Top-Down flow

Statement 2 .) o
rew—r e Combined using lateral join
Statement 4 e Statements are update horizons
Statement 5

Benefits

e Natural, linear order used in programming
Allows query-aggregate-query without (named) nested subqueries
Allows mixing reading and writing (e.g. returning modified data)
Solvable using subquery unnesting (maps on "apply" operator)
RETURN has been very positively received by PGM users

1SO: GQL .

BNE-023: Graph Element Expressions and Functions

Element access: n.prop, labels(n), properties(n), handle(n)
Dynamic label tests

Element operators: allDifferent(<elts>), =, <

Element functions: source(e), target(e), (in|out)degree(v)
Path functions: nodes(p), edges(p), concatenation

1SO: GQL .

BNE-023: Collection and Dictionary Expressions

e Collectionliterals: [a, b, ¢, ...]

e Dictionary literals: { alpha: some(a), beta: b+c, ... }
e Indexingand lookup: coll[1], dict[‘alpha’]

e Map comprehensions

e List comprehension

e Functions

ISO: GQL

BNE-023:Type System and Schema

Selected scalar data types from SQL [4.4.1]
Nested data and collections [4.4.2]
Graph-related data types [4.4.3]

© Nodes and Edges - with intrinsic identity
o Paths
o Graphs

Advanced type system features [3.3, 4.4.4]
Static and dynamic typing [4.4.5]

SAOKS

0) @

ISO: GQL

98

BNE-023: Advanced Types

Selected scalar data types from SQL [4.4.1]
Nested data and collections [4.4.2]
Graph-related data types [4.4.3]

© Nodes and Edges - with intrinsic identity
o Paths
o Graphs

Advanced type system features [3.3, 4.4.4]
Static and dynamic typing [4.4.5]

SAOKS

© ®

ISO: GQL

99

BNE-023: Graph projection

~ o
~
\
\
\
|

-~
Y

S S IS A S S S NS S S —————— ————— -

e Derivingidentical elements in the projected graph ("sharing")
e Deriving new elements in the projected graph
e Shared edges always point to the same (shared) endpoints in the projected graph

ISO: GQL

BNE-023: Graph projection is inverse pattern matching

GRAPH MATCHING\

(12)

® / @

()

ORIGINAL GRAPH

ISO: GQL

(#1)->(#2)

NEW ENTITIES

(#1)->(#3)

(#1)<—[#5]- (#2)

(#3)->(#2)

(#1)<—[#6]-(#1)

(#1)<~[#7]- (#2)

(#3)->(#4)

a: #1, b: #2
a: #1, b: #3
a: #3, b: #2
a: #3, b: #4
a: #4, b: #2

(#4)—> (#2)

SUBGRAPH MATCHES

DRIVING TABLE

(#1)<—[#8]- (#4)

(#4)<—[#9]-(#2)

GRAPH CONSTRUCTION
WITH GROUPING

NEW GRAPH

101

BNE-023: Queries Are Procedures [4.3]

Country Sales Graph ' " EMEA Sales Graph

J e : .
R _ ./\J Q i
Query 1 — k,»l.,.:_,__, C{O — Query 2 —I- O\.-f C{Q

‘

___________________________ e Use the output of one query as input to another to enable abstraction and views
e Both for queries with tabular output and graph output

e Nested queries and procedures [4.10]

e Simple linear composition of tabular output of one query as input to another

[3.10.3]

so-eQL "7 #7/————————

View A’

BNE-023: Views [3.7, 4.12]

l

View B’

Base Graph A

ISO: GQL

\

Base Graph B

Base Graph C

Graph elements in views are derived from other graphs (which may again be views)
Graph elements are "owned" by their base graph or introducing views
Derivation graph must form a DAG
Updates reverse transformation

Z

103

BNE-023: Views [3.7, 4.12]

e Al(graph)viewis a query' that returnsa graph =~ CREATE QUERY foaf($input SocialGraph) AS {

o GQL could also support tabular views FROM $input
MATCH (a)-[IS FRIEND]-()-[IS FRIEND]-(b)
e Aview can be used as if it was a graph CONSTRUCT (a)-[IS FOAF]-(b)
a tabular view can be used as if it was a table }
e Queries(incl. views) can be parameterized FROM foaf(facebook) MATCH ...
o allowing the application of the same FROM foaf(twitter) MATCH ...

transformation over compatible graphs

‘so-eQL—""7"7 —//"/"——///—/——/—/——///—~

BNE-023: Graph Augmentation

= (2

View A’ View B’
Base Graph A Base Graph B Base Graph C

Views behave as if conceptually computed on the fly, including shared graph elements but
what if one wants to explicitly express persistently shared graph elements?

Graph augmentation: Allow explicit persistent layered graphs with derived graph elements

Many open questions (e.g. deletion semantics, security model implications)

ISO: GQL

105

BNE-023: GQL Scope And Features Document

A new and independent
Declarative,
Composable,
Compatible,
Modern,
Intuitive

Property Graph Query Language

http://tiny.cc/gql-scope-and-features

http://tiny.cc/gql-scope-digest
1ISO: GQL

P 1 GO image (Sowwmw Kath Marw)

GQL Scope and Features

e GOL Scope and §eateiey
Avthors Nood; Query Languagos Standeeds and Research Toam'
Status Dscussion Paper

Revishons Revieon 3 December 14, 2018
P rectony

Revison 7. Novesdar 39, 2098
Subettonsl comectons Caifoatons v 1 2 Summary of scogs
Aoded) § Comtwatrs Addtors o 4 2 Defevtons
Corrmatons in 3 Discussion 4 4 Duls types

Inchude tatdes boms LI U26] tor 1 2 Concordances

Revision 1 Novesder 12, 2018

Sabedtons orectom noiudny g addnyg of mieences 903 related chasges and
ectanged ordet of 4 7 and 4 8 Claeficannm n 1 8 Detign prrcpien, 3 0 Motivsson
4.2 Detotiorn. 43 Type spntorn. 4 0 Staterveris Ky gragh patism malchng.

4 T Staterwrts for moditying gragte. 4 10 1 Newted procedess

Original, October 31, 2018

Capyrght © 2010 Neod) ¢ Psase see sl page of tha document for Apache 2 0 lcence grant

Currort meerters of he Neod) Query Languages Standards andd Resoarch Team are. Alastair Groen
Pater Farovss Tobias Lindasdar Putra Selmer Havws Voot Siefee Panthow

106

http://tiny.cc/gql-scope-and-features
http://tiny.cc/gql-scope-digest

Bibliography

Foundations of Modern Query Languages for Graph Databases. R. Angles, M. Arenas, P. Barcelo, A. Hogan, J. Reutter, D. Vrgoc. ACM Computing Surveys 50, 5
(2017). marenas.sitios.ing.uc.cl/publications/csur17.pdf

Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries Towards Understanding Modern Graph Processing,
Storage, and Analytics. M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstwski, C. Barthels, G. Alonso, T. Hoefler (2019). arxiv.org/pdf/1910.09017.pdf

®* G: A graphical query language supporting recursion. I. Cruz, A. Mendelzon, P. Wood. SIGMOD (1987). dl.acm.org/doi/pdf/10.1145/38714.38749
® Cypher: An Evolving Query Language for Property Graphs. N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V Marsault, S. Plantikow, M. Rydberg, P.

Selmer, A. Taylor. SIGMOD (2018). hom inf. k/libkin rs/sigmod1
® The Gremlin Graph Traversal Machine and Language. M. Rodriguez (2015). arxiv.org/pdf/1508.03843.pdf
® TigerGraph: A Native MPP Graph Database. A. Deutsch, Y. Xu, M. Wu, V. Lee (2019). arxiv.org/pdf/1901.08248.pdf
® PGQL: a Property Graph Query Language. O. van Rest, S. Hong, J. Kim, X. Meng, H.Chafi. GRADES (2016). event.cwi.nl/grades/2016/07-VanRest.pdf

®* G-CORE: A Core for Future Graph Query Languages Designed by the LDBC Graph — designed by the LDBC Query Language Task Force. R. Angles, M. Arenas, P.
Barcelo, P. Boncz, G. Fletcher, C. Guttierrez, T. Lindaaler, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, H. Voigt. SIGMOD (2018). arxiv.org/pdf/1712.01550.pdf

d GQL Scope and Features. — by the Neo4j Query Languages Standards and Research Team. A. Green, P. Furniss, T. Lindaaker, P. Selmer, H. Voigt, S. Plantikow (2018).

in I- -and-f r

LDBC®

http://marenas.sitios.ing.uc.cl/publications/csur17.pdf
https://arxiv.org/pdf/1910.09017.pdf
https://dl.acm.org/doi/pdf/10.1145/38714.38749
https://homepages.inf.ed.ac.uk/libkin/papers/sigmod18.pdf
https://arxiv.org/pdf/1508.03843.pdf
https://arxiv.org/pdf/1901.08248.pdf
https://event.cwi.nl/grades/2016/07-VanRest.pdf
https://arxiv.org/pdf/1712.01550.pdf
http://tiny.cc/gql-scope-and-features

