
Data Models Matter Less Than You Think

Peter Boncz (CWI and VU University)

Keynote Graph-TA (March 4, 2016)

 (1) Even if data models seem to be very different,

the techniques to manage data are common among them

(at least from a database architect perspective)

(2) some datasets often assumed to belong to very different models are
structurally very similar (RDF, graph, relational)

Keynote Statements

 1970-

 Relational Data Model, SQL Query Language, Entity Relationship Modeling

 1980-

 Object Oriented Data models, OQL query language, UML

• Object-Relational

 1990-

 XML, XPath & XQuery query languages, XML Schema

• JSON

 2000-

 RDF, SPARQL query Languages, Ontologies, OWL

• Graph Data Models, Cypher query language

History

11 years ago

 a new data model does not imply a necessity for “everything new” (storage, compression, query
optimization, execution)

• Virtuoso SPARQL  a SQL system

• MonetDB XQuery  XPath on top of relational algebra

“pointer based navigation is more efficient than relational join?” NO!

 pointer swizzling de/serialization, join index, row-IDs

graph navigation = relational join = graph navigation = relational join = …

 proven techniques used and often invented in relational data management systems are not by
themselves “relational”. They are data management techniques, widely applicable (not to be dismissed).

• relational hash-join? B-trees? Bloom-filters?

• relational dynamic-programming bottom-up enumeration?

• relational query algebra?

Lessons

Are LOD Knowledge Graphs proper graphs?

WWW2015

 Bad query plans

 Low storage locality

 Lack of user schema insight

Main Problems in RDF Data Management

S P O
book1 has_title “Pride & Prejudice”

book1 has_author “Austen”

book1 isbn_no “960-425-059-0”

book2 has_title

book2 has_author “Pecker”

book2 isbn_no

RDF Triple Indexing

SPO Index

 Most current RDF systems store data with triples sorted on various permutations

• SPO, PSO, OPS, POS, OSP, SOP,

 PSO – a bit like relational “column store”

 SPO – a bit like relational “row store”

P S O
has_author book0

has_author book1 “Austen”

has_author book2 “Pecker”

isbn_no book0

isbn_no book1 “960-425-059-0”

isbn_no book2

PSO Index

 Have unnecessary joins

• All subject having property <isbn_no> always has property <has_author>, but query plan still needs a join for these
properties to construct the answer

problems: query optimization explosion + costly join operations

 Hard to find the optimal join order

• Being unaware of structural correlations makes it difficult to estimate the join hit ratio between triple patterns

• SPARQL queries are very join-intensive

Bad Query Plans

?b

?a

“1996”
?n

SELECT ?a ?n WHERE

{

 ?b <has_author> ?a.

 ?b <in_year> “1996”.

 ?b <isbn_no> ?n

}

< SPARQL query > < Query graph> < Example query plan >

 Bad query plans

 Low storage locality

 Lack of user schema insight

Main Problems in RDF Data Management

 Impossible to formulate clustered index or partitioning scheme without the notion of classes/tables (DBA
would say “store all Book triples clustered by Year”)

 Exhaustive indexes for all permutations of S, P, O do not create real locality (contrary to common belief)

Low Storage Locality

SELECT ?a, ?n WHERE

{

 ?b <has_author> ?a.

 ?b <in_year> ?y.

 ?b <isbn_no> ?n.

 FILTER (?y = 1997)

}

SPARQL

Using POS index for quick range
selection (in_year,1997,?s)

Need repeated lookups into a PSO index for
each attribute

 No locality

Unclustered Index: Random Access Horrors

does NOT scale!!

yet…
all RDF stores rely on

this

S P O
Book1 has_title “Pride & Prejudice”

Book1 has_author “Austen”

Book1 isbn_no “960-425-059-0”

Book1 in_year 1996

Book2 has_title

Book2 has_author “Pecker”

Book2 isbn_no

Book2 in_year 2001

Book3 has_title

Book3 has_author “John Doe”

Book3 isbn_no “960-477-109-1”

Book3 in_year 1997

 S P O
Book1 has_title “Pride & Prejudice”

Book1 has_author “Austen”

Book1 isbn_no “960-425-059-0”

Book1 in_year 1996

Book3 has_title

Book3 has_author “John Doe”

Book3 isbn_no “960-477-109-1”

Book3 in_year 1997

Book2 has_title

Book2 has_author “Pecker”

Book2 isbn_no

Book2 in_year 2001

S P O
Book1 has_title “Pride & Prejudice”

Book1 has_author “Austen”

Book1 isbn_no “960-425-059-0”

Book1 in_year 1996

Book2 has_title

Book2 has_author “John Doe”

Book2 isbn_no “960-477-109-1”

Book3 in_year 1997

Book3 has_title

Book3 has_author “Pecker”

Book3 isbn_no

Book3 in_year 2001

Clustered Index

RDF “clustered index”:
S-identifiers should follow some

PO ordering 
S-identifiers now chosen at

random 

 Bad query plans

 Low storage locality

 Lack of user schema insight

Main Problems in RDF Data Management

 RDF data does not have explicit schema

• difficult to formulate SPARQL queries

• would be good to get a schema (summary)

 Many more tools for relational data access, than for RDF

• try to expose the regular part of RDF triple set as SQL

Lack of User Schema Insight

Emergent Schema

Emergent schema = “rough” schema to which the majority of triples conforms

Recognize:

 Classes (CS) – recognize “classes” of often co-occurring properties

 Relationships (CS) – recognize often-occurring references between such classes

+give logical names to these

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://rdfs.org/sioc/ns#num_replies>
<http://purl.org/dc/terms/title>
<http://rdfs.org/sioc/ns#has_creator>
<http://purl.org/dc/terms/date>
<http://purl.org/dc/terms/created>
<http://purl.org/rss/1.0/modules/content/encoded>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/name>
<http://xmlns.com/foaf/0.1/page>

<has_creator>

“Book”

Recovering the Emergent Schema of RDF data

“Author”

What does “schema” mean?

Relational Schema Semantic Web Schema

Describes the structure of the occurring data Purpose: knowledge representation

Concept mixing (for convenience) Describing a concept universe (regardless data)

Designed for one database (=dataset) Designed for interoperability in many contexts

Statement: it is useful to have both an (Emergent) Relational and Semantic Schema for RDF data

 useful for systems (higher efficiency)

 useful for humans (easier query formulation)

SQL vs RDF: Schema-first vs Schema-last

 Compact Schema

• as few tables as possible

• homogeneous literal types (few NULLs in the tables)

 Human-friendly “Labels”

• URIs + human-understandable table/column/relationship names

 High “Coverage”

• the schema should match almost all triples in the dataset

 Efficient to compute

• as fast as data import

When is a Emergent Schema of RDF data useful?

Step 1:
Basic CS
discovery

Characteristic Sets in some well-known RDF datasets

 frequency distribution

• how many CS’s do I need to represent 90% of the triples?

Characteristic Sets in some well-known RDF datasets

Partial and Mixed Use of Ontologies

Step 2: Labeling

Using ontologies to get class and property labels:
• exploit subclass hierarchy
• TF/IDF: how frequent is the label inside the CS divided by global frequency

We try to associate each CS with an ontology class (will not work always)

<Organization>

Step 2: Labeling

using discriminative properties

Step 3: CS Merging

Semantic merging: based on ontology correspondences (found during labeling)

Step 3: CS Merging

Structural merging: based on class structure and discriminative properties

Step 4: Schema Filtering

Goal: make the schema more compact

•remove infrequent CS’s (small tables)

• except “Dimension Tables”
• CS that is small but is referred to very often
• Run PageRank on the emergent schema

• weight is initial frequencies
• remove infrequent properties

• and infrequent relationships

Step 5: Instance Filtering

Reduce the amount of NULLs in relational table representation

• remove infrequent literal types

• e.g. Person.name is a string, but sometimes a number (remove)
• remove infrequent multi-valued properties

• e.g. Person usually has one birthdate (but a few have multiple)
• remove triples to improve relationship cardinalities

• Car usually has 0 or at most one Brand
• but some have multiple Brands (remove)

Results: compact schemas with high coverage

!

Are LOD Knowledge Graphs proper graphs?

Results: understandable labels & performance

Likert Score: 1=bad ….. 5=excellent

MonetDB/RDF

ID type creator title partOf

inproc1 inproceeding {author3,
author4}

“AAA” conf1

inproc2 inproceeding author2 “BBB” conf1

inproc3 inproceeding author3 “CCC” conf2

ID type title issued

conf1 Conference “conference1” 2010

conf2 Proceedings “conference2” 2011

Foreign Key Relationship

SPARQL

SQL

M
o

n
etD

B
 K

e
rn

e
l

Front-Ends
(>95%)

Relational
Storage

+

(a bit of)
Triple Table

Storage

conf2

“index.php”

“content.php”

 identified main RDF Store problems

• data locality, query optimization, query formulation

Identified different notion of “schema” in relational vs semantic web

• argument: we need both relational schema and semantic schema

• can bring relational and semantic data management closer together

 Outlined an algorithm for Emergent Schema detection in RDF

• compact, high coverage, understandable labels, efficient

Conclusion

 (1) Even if data models seem to be very different,

the techniques to manage data are common among them

(at least from a database architect perspective)

(2) some datasets often assumed to belong to very different models are
structurally very similar (RDF, graph, relational)

Keynote Statements

