Data Models Matter Less Than You Think

Peter Boncz (CWI and VU University)
Keynote Graph-TA (March 4, 2016)

W Keynote Statements

(1) Even if data models seem to be very different,
the techniqgues to manage data are common among them

(at least from a database architect perspective)

(2) some datasets often assumed to belong to very different models are
structurally very similar (RDF, graph, relational)

History

= 1970-
Relational Data Model, SQL Query Language, Entity Relationship Modeling

= 1980-
Object Oriented Data models, OQL query language, UML
* Object-Relational

= 1990-
XML, XPath & XQuery query languages, XML Schema
* JSON

= 2000-
RDF, SPARQL query Languages, Ontologies, OWL
* Graph Data Models, Cypher query language

11 years ago

@ Tree Encoding: XPath Accellerator

Node-based relational encoding of XQuery's data model

089
b/‘\e
1 e @2 e 3
| TN\
2e0 505 se7
‘ AN
oe3 /e4 0O@0b
g h J

Peter Boncz

,DOSI‘
da |
el
- l ".__::I.
T -._. '&f .J
5 = = — —@g=—r=—r—=—r=
T - | &
£ ®d |
1+ &b
|"¢ [T R T I
0.0y 1 T T 1 T 7
R T 5 pre

Pathfinder - MonetDB/XQuery

=}

OO, bEeEWwkh = O
O = 00N ;OO =
WMNWWN = =N =0

pre + size —level = post

IBM Amaden 14-01-2005

Lessons

= 3 new data model does not imply a necessity for “everything new” (storage, compression, query
optimization, execution)

* Virtuoso SPARQL = a SQL system
* MonetDB XQuery =2 XPath on top of relational algebra

“pointer based navigation is more efficient than relational join?” NO!
pointer swizzling de/serialization, join index, row-IDs

graph navigation = relational join = graph navigation = relational join = ...

= proven techniques used and often invented in relational data management systems are not by
themselves “relational”. They are data management techniques, widely applicable (not to be dismissed).

* relational hash-join? B-trees? Bloom-filters?
* relational dynamic-programming bottom-up enumeration?
* relational query algebra?

WAre LOD Knowledge Graphs proper graphs?

REGION

Ny

CITY

CONTACT

| ADDRESS

AN

CUSTOMER =—

‘ DEMOGRAFPHICS

"y

STORE

./- MONTH

N =

DAILY SALES
fact table

F

Y
PROMOTION

ERAND

AN

PRODUCT

/
AN

PRODUCT_LINE

Deriving an Emergent Relational Schema from RDF Data

Minh-Duc Pham#

Linnea Passing®
m.d.pham@vu.nl

Orri Erling® Peter Boncz®

passing@in.tum.de oerling@openlinksw.com boncz@cwi.nl

“Vrije Universiteit Amsterdam, The Netherlands
“Technische Universitat Minchen, Germany

°OpenLink Software, UK

ABSTRACT

We motivate and describe techniques that allow to detect an
“emergent” relational schema from RDF data. We show that
on a wide variety of datasets, the found structure explains
well over 90% of the RDF triples. Further. we also describe
technical solutions to the semantic challenge to give short
names that humans find logical to these emergent tables,
columns and relationships between tables. Our techniques
can be exploited in many ways, e.g., to improve the effi-
ciency of SPARQL systems, or to use existing SQL-based
applications on top of any RDF dataset using a RDBMS.

©@CWI, The Netherlands

0 (subject, property, object) columns®. SQL systems tend
to be more efficient than triple stores, because the latter
need query plans with many self-joins — one per SPARQL
triple pattern. Not only are these extra joins expensive, but
because the complexity of query optimization is exponen-
tial in the amount of joins, SPARQL query optimization is
much more complex than SQL query optimization. As a
result, large SPARQL queries often execute with a subop-
timal plan, to much performance detriment. RDBMS’s can
further store data efficiently e.g. using advanced techniques
such as column-wise compression, table partitioning. mate-
rialized views and multi-dimensional data clustering. These
techniques require insight in the (tabular) structure of the

W Main Problems in RDF Data Management

= Bad query plans
= | ow storage locality

= Lack of user schema insight

RDF Triple Indexing

book1 has_title “Pride & Prejudice” has_author bookO
book1 has_author “Austen” has_author book1 “Austen”
book1 isbn_no “960-425-059-0” has_author book2 “Pecker”
book2 has_title isbn_no book0
book?2 has_author “Pecker” isbn_no book1l
book2 isbn_no isbn_no book2

SPO Index PSO Index

= Most current RDF systems store data with triples sorted on various permutations
* SPO, PSO, OPS, POS, OSP, SOP,
PSO — a bit like relational “column store”

SPO - a bit like relational “row store”

Bad Query Plans

SELECT ?a ?n WHERE

< Query graph>

= Have unnecessary joins

=

>

IdxScan

/\<j5bn_no> 3

IdxScan
<in_year> “1996”

IdxScan
<has author> ?a

{
?b <has_author> ?a.
?b <in_ year> “1996”.
?b <isbn_no> ?n
}
< SPARQL query >

< Example query plan >

* All subject having property <isbn_no> always has property <has_author>, but query plan still needs a join for these

properties to construct the answer
problems: query optimization explosion + costly join operations
= Hard to find the optimal join order

* Being unaware of structural correlations makes it difficult to estimate the join hit ratio between triple patterns

* SPARQL queries are very join-intensive

W Main Problems in RDF Data Management

= Bad query plans
= Low storage locality

= Lack of user schema insight

Low Storage Locality

» Impossible to formulate clustered index or partitioning scheme without the notion of classes/tables (DBA
would say “store all Book triples clustered by Year”)

= Exhaustive indexes for all permutations of S, P, O do not create real locality (contrary to common belief)

SELECT ?a, ?n WHERE , . ,
Using POS index for quick range

{
?b <has_author> ?a. / selection (in_year,1997,7s)
?b <in_year> ?y. ><

?b <isbn no> ?n. \ g d look) index f
FILTER (?y = 1997) Nee repgate ookups into a PSO index for
each attribute

SPARQL - No locality

Unclustered Index: Random Access Horrors

» y od fth
Index does NOT scale!! b

yet... 778
o™ all RDF stores rely on jpcks are
this

»
&
SEEEEEEE. EEEEE
EEEERENT SREEE

g EERERN

iy Leaf Block 224

- = > | ‘>l
I~ - Lol ! Yo
< o4 o N L 4\
A e T .
- A | =]
e -
- - — T~ <\t
v« £ ¢ 5 S~
| y - Sl . : |
I' - | B 5 L - —_— =y) ¥ \ .
s ~ il Ve ‘ i = e Fee=s] e -
- A i o] L weril
: L - -

Clustered Index

Index Orlanized

2X Range Scan of

dis the root node ¢ Bookl has title
a block ins c -

. ' dth Book1l has_author
_ As th
eeds pookl isbn_no
/ \‘ y) until a :
RDF “clustered index”: nveer
S-identifiers should follow some has_title
PO ordering =» has_author
S-identifiers now chosen at 'sbn_no
random ® e
has_title
has_author
isbn_no
in_year

“Pride & Prejudice”
“Austen”
“960-425-059-0”
1996

“John Doe”
“960-477-109-1"
1997

“Pecker”

2001

W Main Problems in RDF Data Management

= Bad query plans
= | ow storage locality

= Lack of user schema insight

Lack of User Schema Insight

= RDF data does not have explicit schema
e difficult to formulate SPARQL queries
» would be good to get a schema (summary)

= Many more tools for relational data access, than for RDF
* try to expose the regular part of RDF triple set as SQL

Emergent Schema

Recovering the Emergent Schema of RDF data

Emergent schema = “rough” schema to which the majority of triples conforms
Recognize:

= Classes (CS) — recognize “classes” of often co-occurring properties

= Relationships (CS) — recognize often-occurring references between such classes
+give logical names to these

<http://www.w3.0rg/1999/02/22-rdf-syntax-nsttype>
<http://rdfs.org/sioc/ns#tnum_replies>
<http://purl.org/dc/terms/title>
<http://rdfs.org/sioc/nstthas_creator>
<http://purl.org/dc/terms/date>
<http://purl.org/dc/terms/created>
<http://purl.org/rss/1.0/modules/content/encoded>

llBook”

<has_creator>

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/name>
<http://xmlIns.com/foaf/0.1/page>

“Author”

SQL vs RDF: Schema-first vs Schema-last

What does “schema” mean?

Relational Schema Semantic Web Schema
Describes the structure of the occurring data Purpose: knowledge representation

Concept mixing (for convenience) Describing a concept universe (regardless data)
Designed for one database (=dataset) Designed for interoperability in many contexts

Statement: it is useful to have both an (Emergent) Relational and Semantic Schema for RDF data
= useful for systems (higher efficiency)
= useful for humans (easier query formulation)

W When is a Emergent Schema of RDF data useful?

" Compact Schema
* as few tables as possible
* homogeneous literal types (few NULLs in the tables)
" Human-friendly “Labels”
* URIs + human-understandable table/column/relationship names
" High “Coverage”
* the schema should match almost all triples in the dataset
= Efficient to compute
e as fast as data import

Step 1:
Basic CS
discovery

(s1, offers, offer1)
(s1, region, regionl)
(s2, offers, offer2)
(s2, offers, offer3)
(s2, region, region1)

(offer1, availableDeliveryMethods, DHL)
(offer1, description, “Offer data”)
(offer1, hasBusinessFunction, “Sell”)
(offer1, hasEligibleQuantity, 1)

(offer1, haslnventorylevel, 1)

(offer1, hasStockKeepingUnit, 112)
(offer2, availableDeliveryMethods, DHLH
(offer2, hasPriceSpec, pricel)

(offer2, hasStockKeepingUnit, 112)
(offer2, type, Offering)

(pricel, hasCurrency, “EUR”)

(pricel, hasCurrencyValue, “35.99”)
(pricel, hasUnitOfMeasurement, “C62")
(pricel, valueAddedTaxIncluded, “false”,
(pricel, eligibleTransactionVolume, 0)
(pricel, ...

<Example RDF triples>

Characteristic Sets in some well-known RDF datasets

_ #CS’s to| Avg. |#multi-type
— - L

Datasets #triples #C5's cover 90% | #prop. properties
LUBM 100M 17 T 5.71 0
BSBM 100M 51 14 12.35 0
SP2Bench 100M 554 7 9.8 0

synthetic data created by benchmark data generator
MusicBrainz 179M 27 10 4.7 0
EuroStat TOK 44 8 7.77 0
DBLP H6 M 251 8 13.61 0
PubMed 1.82B 3340 35 19.27 0

relational RDF data from a relational database dump
WebData. 90M 13914 993 7.79 543
DBpedia 404M 1472270 109831 24.02 1601

native real data originating as RDF

Characteristic Sets in some well-known RDF datasets

= frequency distribution
* how many CS’s do | need to represent 90% of the triples?

CS Frequency

Fraction of triples cover

SP2Bjnch DELP ¥ DBpedia Yo
1 10 100 1 10 100 1 10 100 1K 10K
Number of CSs Number of CSs Number of CSs

partial
Yoontology
class
properties
dataset |used per CS
LUBM 37%
BSBM 3%
SP2Bench 4%
MusicBrainz 1%
EuroStat 84%
DELP 8%
PubMed -
WebData. 33%
DBpedia 5%

dc:description

gor:validFrom

gor:validThrough

gor:hasCurrency

gor:hasCurrencyValue

gor:hasUnitOfMeasurement

gor:valueAddedTaxIncluded

gor:eligibleTransactionVolume

(prefix gor:
http://purl.org/qgoodrelations/v1#
prefix dc:
http://purl.org/dc/elements/1.1/)

Partial and Mixed Use of Ontologies

PriceSpecification

gor:description

gor:name

gor:eligibleTransactionVolume

gor:validFrom

gor:validThrough

gor:hasCurrency

gor:hasCurrencyValue

gor:hasUnitOfMeasurement

gor:valueAddedTaxIncluded

gor:hasMaxCurrencyValue

gor:hasMinCurrencyValue

W Step 2: Labeling

Using ontologies to get class and property labels:
* exploit subclass hierarchy

* TF/IDF: how frequent is the label inside the CS divided by global frequency

label of subjects /:_'l;l{\g>
rdf :type CS % |all % P ---<Or§fn\|zat.l.(')n>
Thing 100 83 <Person> -.. X
Organization 100 7 <Althﬁte\>"' <Br}dsast%m
RadioStation 97 0.2 <RadioStaRtion> <TelevisionStation>
Co 2 1 4 <BaseBallPlayer>

—paty /\ <BasketBallPlayer> /\

“ee ..(\

We try to associate each CS with an ontology class (will not work always)

Step 2: Labeling

Offering

CS5 hasPriceSpez@

Labels assigned by

: using ontologies
AAA: using discriminative properties

AAA: using CS’s relationships

Region RadioStation

Location

w Step 3: CS Merging

isionStation

Location Region

BroadCaster

Semantic merging: based on ontology correspondences (found during labeling)

Step 3: CS Merging

CSy3 hasPrlceSpeEQ

Table t Table t Table t;
: rged CS (cs) [(cs) : (esy) !

me

eet-address

ality

sion

0

stal

Region BroadCaster

-

BroadCaster
| rara:postal |

Structural merging: based on class structure and discriminative properties

W Step 4: Schema Filtering

Goal: make the schema more compact

remove infrequent CS’s (small tables)
e except “Dimension Tables”
* CS that is small but is referred to very often
* Run PageRank on the emergent schema
e weight is initial frequencies
* remove infrequent properties
* and infrequent relationships

W Step 5: Instance Filtering

Reduce the amount of NULLs in relational table representation

* remove infrequent literal types
* e.g. Person.name is a string, but sometimes a number (remove)
* remove infrequent multi-valued properties
e e.g. Person usually has one birthdate (but a few have multiple)
* remove triples to improve relationship cardinalities
 Car usually has 0 or at most one Brand
* but some have multiple Brands (remove)

Results: compact schemas with high coverage

Number of tables Coverage — Metric C (%)
Datasets before after |remove |remove
merging | merging | small | small
tables | tables
LUBM 17 13 12 100
BSBM 51 8 3 100
SP2B 554 13 10 | 99.99
MusicBrainz 27 12 12 100
EuroStat 44 10 5 | 99.73
DBELP 251 9 6 100
PubMed 3340 14 12 100
WebData. 13914 3000 253 | 98.17
DBpedia 472270 542 234 | 99.12

WAre LOD Knowledge Graphs proper graphs?

REGION

Ny

CITY

CONTACT

| ADDRESS

AN

CUSTOMER =—

‘ DEMOGRAFPHICS

"y

STORE

./- MONTH

N =

DAILY SALES
fact table

F

Y
PROMOTION

ERAND

AN

PRODUCT

/
AN

PRODUCT_LINE

Results: understandable labels & performance

Query 3 Query 5
; RDF Store | Cold | Hot | Opt. Time | Cold Hot | Opt. Time
labels | WebData. DBpedi: .
Sl B - Virt-Quad | 4210 | 53 40.2 | 3842 | 1350 18.6
top3 | 36 3-8 Virt-CS | 2965 9 5.4 | 2130 | 712 42
final 4.1 4.6
Table 3: Human survey results on Likert scale Table 5: Query time (msecs) w/wo the recognized schema
(Cold: First query runtime after re-starting the server
Hot : Run the query 3 times and get the last runtime
Likert Score: 1=bad 5=excellent Opt. Time: Query optimization time)
160
ALL
140 SPO TIME [bulk-load] mmm -
3 120 CS-based TIME [detection]
100 -
g
= 80 .
D
= 60 ~
£
5 40 -
=
20 -
0—"% b 0. Se 4 < o &
%, % %, % % &, 0‘9@ \%’47 Oﬁﬂ&
. G
GO" q’?-u {2’1 Q’,‘\ %x

MonetDB/RDF

Front-Ends

creator title | partof

=
inprocl inproceedi ing | {author3, ‘AAA” | confi o
aaaaaaa 3}
(>95%) inproc2 inproceeding | author2 “BBB” confl :
inproc3 | inproceeding | author3 | “ccc” conf2 m
)
Relatlonal Foreign Key Relationship I l o o
y O
S 1D title | issued
to ra ge confl Conference “conferencel w
+ conf2 Proceedings “conference2 x
M
it 3 — | SPARQL
(a bit of) aged
P2}y
tableOfContent ‘:g\ é‘% rl

Triple Table =

“content.php”

“index.php”’ t“($\°\

Storage

W Conclusion

» identified main RDF Store problems
e data locality, query optimization, query formulation

=|dentified different notion of “schema” in relational vs semantic web
e argument: we need both relational schema and semantic schema
 can bring relational and semantic data management closer together

= Qutlined an algorithm for Emergent Schema detection in RDF
e compact, high coverage, understandable labels, efficient

W Keynote Statements

(1) Even if data models seem to be very different,
the techniqgues to manage data are common among them

(at least from a database architect perspective)

(2) some datasets often assumed to belong to very different models are
structurally very similar (RDF, graph, relational)

