E Cantiian Wikinde & livlarmatica

Large-Scale Data Engineering

Some notes on Access Patterns, Latency,
| Bandwidth

+ Tips for
practical

event.cwi.nl/lsde/2016

Memory Hierarchy

Processor SUPER FAST
SUPER EXPENSIVE

TINY CAPACITY

FASTER
EXPENSIVE
SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY

SOLID STATE MEMORY AVERAGE SPEED
- : B “' 7 PRICED REASONABLY
AVERAGE CAPACITY

SSD, Flash Drive

VIRTUAL MEMORY sLow

Mechanical Hard Drives CHEAP
LARGE CAPACTITY

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

event.cwi.nl/lsde/2016

Transistor count

Coantrisn Winkunde B Infarmatica

Hardware Progress

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000 -
1.000,000,000 5

100,000,000

110, 000,000 ~

1,000,000 -

100,000

10,000

2,300 -

s BRI T2
S Lo G 7,
-l M T80 \“\'i 81 E-Cosn Kean Wastmars-EX

k]
s hasaam S e~ #r
i s
WA l. wvu.—rl'-{:f--l.t-c
rowTna ey ™. o pan srman Lu
T il . G %, "GO Oplaroa B4
A B u..—..?‘m -

wimzg RTINS
- AT
[
Penim Al e & o
Ll
cunss shows ransistor A S
cEnin coubiing mary MLP'I“"" i
b years [ra—
Y-
e
Eer
e
S0 E p—
O R
L
D G R
(e L+
EEE S DS B
FrRE
f T T T 1
1871 1980 1900 2000 2011

Date of introduction

Transistors

Single-Threaded Integer Performance
Based o d SPECIntE

"

'Y +52%

resulls

)n adjusied SPECi

per year

| m ntel Xeon
Intel Core
Intel Pentium
4 Intel Itanium
= Intel Celeron
AMD FX
= AMD Opteron
AMD Phenom
* AMD Athlon
|BM POWER
» PowerPC
Fujitsu SPARC

per year Sun SPARC

2
N
s
7
T
-
)
5
A

CPU performance

event.cwi.nl/lsde/2016

RAM,Disk Improvement Over the Years

100000 Fr—r— — — e . . : - - T
avasafiheass capacqy 100000 BRI RO capacity
---5--- bandwidth ---9--- bandwidth
s —H— random access (1/latency) " | —5— random access (1/latency)
g 10000 F 3 > 10000 | P
5 = | A
é 1000 | - Q— g 1000 | 3
3 Pl E R
5 . ; S A 0
Q _." .~ = "—‘_/
E 100 | G v .g 100 A ."’Q]
: R 8 A o
(] © s
E =
5] o
® ®
o o
1 1 1 1 i 1
1983 1990 1994 1998 2003 2008
year

Magnetic Disk

event.cwi.nl/lsde/2016

Latency Lags Bandwidth

« Communications of the ACM, 2004 10000

By David A. Patterson

1000~

100

Relative
Bandwidth

LATENCY LAGS

BANDWITH -

Recognizing the chronic imbalance between
bandwidth and latency, and how to cope with it.

s | review performance trends, I am struck by a consistent
theme across many technologies: bandwidth improves much

Network

Memory

/7

(Latency improverent
= Bandwidth improvement)

10
Relative Latency Improvement

event.cwi.nl/lsde/2016

100

Centrim Wiskurde & Ivlarmatica

Geeks on Latency

&} jboner / latency.txt

Created on 31 May 2012

Latency Numbers Every Programmer Should Know
[l latency.txt

Latency Comparison Numbers

[

L1 cache reference 8.5 ns
4 Branch mispredict 5 ns
5 L2 cache reference I ¢ ns 14x L1 cache
Mutex lock/unlock 25 ns
7 Main memory reference 1880 ns 20x L2 cache, 2@9x L1 cache
: Compress 1K bytes with Zippy 3,080 ns
9 Send 1K bytes over 1 Gbps netwerk 12,200 ns 9.81 ms
19 Read 4K randomly from SSD* 150,000 ns 9.15 ms
11 Read 1 MB seguentially from memory 252,909 ns 9.25 ms
12 Round trip within same datacenter 500,900 ns 9.5 ms
13 Read 1 MB seguentially from SSD* 1,000,000 ns 1 ms 4X memory
14 Disk seek 16,000,200 ns 19 ms 28x datacenter roundtrip
15 Read 1 MB seguentially from disk 20,000,000 ns 29 ms 89x memory, 28X SSD
16 Send packet CA->Netherlands->CA 152,000,200 ns 159 ms
1¢ Notes
28 1 ns = 18-9 seconds
21 1 ms = 18-3 seconds

22 * Assuming ~1GB/sec SSD

event.cwi.nl/lsde/2016

E Canniian W whunde B Invlaimatca

Sequential Access Hides Latency

» Sequential RAM access

— CPU prefetching: multiple consecutive cache lines being requested
concurrently

« Sequential Magnetic Disk Access

— Disk head moved once

— Data is streamed as the disk spins under the head
« Sequential Network Access

— Full network packets

— Multiple packets in transit concurrently

event.cwi.nl/lsde/2016

E Coantrisn Winkunde B Infarmatica

Consequences For Algorithms

« Analyze the main data structures
— How big are they?
 Are they bigger than RAM?
 Are they bigger than CPU cache (a few MB)?
— How are they laid out in memory or on disk?

* One area, multiple areas?

Java Object Data Structure
VS
memory pages (or cache lines)

event.cwi.nl/lsde/2016

E Coantrisn Winkunde B Infarmatica

Consequences For Algorithms

* Analyze your access patterns
— Sequential: you're OK
— Random: it better fit in cache!
« What is the access granularity?
* |s there temporal locality?

* |Is there spatial locality?

location

time

event.cwi.nl/lsde/2016

E Coantrisn Winkunde B Infarmatica

Storage Layout of a Table

Basics - Row vs. Column-Stores

Row-Store Storage

=» Multiple rows are stored per page
=» Traditional way for storage

& Easy to add a new record

@ Might read in unnecessary data

Column Store Storage

Street
Email Phone# Address

=»Stores each column in separate set of disk pages
© Only need to read relevant data
@ Data compression

@ Tuple writes might require multiple seeks

event.cwi.nl/lsde/2016

E Cantin Wiakunde B Inlarmata

Improving Bad Access Patterns

Minimize Random Memory Access

— Apply filters first. Less accesses is better.

Denormalize the Schema

— Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

Trade Random Access For Sequential Access
— perform a 100K random key lookups in a large table
=>» put 100K keys in a hash table, then
scan table and lookup keys in hash table

Try to make the randomly accessed region smaller
— Remove unused data from the structure
— Apply data compression

— Cluster or Partition the data (improve locality) ...hard for social graphs

If the random lookups often fail to find a result

— Use a Bloom Filter

event.cwi.nl/lsde/2016

CW1

A331gnment 1: Querying a Social Graph

event.cwi.nl/lsde/2016

E Cantin Wiakunde B Inlarmata

LDBC Data generator

« Synthetic dataset available in different
scale factors
— SF100 € for quick testing
— SF3000 € the real deal
* Very complex graph
— Power laws (e.g. degree)
— Huge Connected Component
— Small diameter

— Data correlations

Chinese have more Chinese names

— Structure correlations

Chinese have more Chinese friends

& c

[Idbcouncil.org/industry/members

The graph & RDF

L D B C ® benchmark reference

BENCHMARKS » INDUSTRY » PUBLIC» DEVELOPER» EVENTS TALKS PUBLICATIONS BL(

-

o . (s / ” S \‘ : ; . 4 : . "
7" 1ntormation about how the‘Pac organization wWorks; — ity
% \ ' AT e S W]

. ARG S
HOME » INDUSTRY » MEMBERS . R
Companies:
) ot o,
. 4 rontatext
LR
"eneotechnology *Sparsity
@igdata iEm,
ORACLE" J
e 3£ sPARQLcity

event.cwi.nl/lsde/2016

CSV file schema

o See: http://wikistats.ins.cwi.nl/Isde-data/practical 1
« Counts for sf3000 (total 37GB)

Knows (1. 3B)

Person (9M) Z////PersonFrom

PersonId PK personto Tags (16K)
FirstName

I\\\\interests(.ZB) taglb
LastName Name

PersonlID

Gender f20TD URL
Birthday 29
CreationDate Place (1.4K
LocationIP PlaceID PK
BrowserUsed ////////////////////?URL
LocatedIn type

event.cwi.nl/lsde/2016

http://wikistats.ins.cwi.nl/lsde-data/practical_1
http://wikistats.ins.cwi.nl/lsde-data/practical_1
http://wikistats.ins.cwi.nl/lsde-data/practical_1

The Query

* The marketeers of a social network have been data mining the musical
preferences of their users. They have built statistical models which predict
given an interest in say artists A2 and A3, that the person would also like
Al (i.e. rules of the form: A2 and A3 = Al). Now, they are commercially
exploiting this knowledge by selling targeted ads to the management of
artists who, in turn, want to sell concert tickets to the public but in the
process also want to expand their artists' fanbase.

* The ad is a suggestion for people who already are interested in A1 to buy
concert tickets of artist Al (with a discount!) as a birthday present for a
friend ("who we know will love it" - the social network says) who lives in the
same city, who is not yet interested in Al yet, but is interested in other
artists A2, A3 and A4 that the data mining model predicts to be correlated
with Al.

event.cwi.nl/lsde/2016

The Query

For all persons P :

« who have their birthday on or in between D1..D2

* who do not like Al yet

we give a score of

— 1 for liking any of the artists A2, A3 and A4 and
— 0 if not
the final score, the sum, hence is a number between 0 and 3.
Further, we look for friends F:
— Where P and F who know each other mutually
— Where P and F live in the same city and
— Where F already likes Al

The answer of the query is a table (score, P, F) with only scores >0

event.cwi.nl/lsde/2016

Binary files

» Created by “loader” program in example github repo
 Total size: 6GB

Person.bin Knows .bin
PersonId PK PersonPos
Birthday

LocatedIn /////

Knows first interests.bin
Knows n taglD
Interests first 7|

Interests n

event.cwi.nl/lsde/2016

\CWL_

What 1t looks like

» Created by “loader” program in example github repo

e Total size: 6GB

know

s first

4bytes
*1.3B

Kr

1o%s.bin

Jf\

/

knows_n

PN
e whs—twl af o e

2bytes
*204M

48bytes
*8.9M

event.cwi.nl/lsde/2016

E Cantiien Wikinde B ivlarimate

The Naive Implementation

The “cruncher” program

Go through the persons P sequentially
 counting how many of the artists A2,A3,A4 are liked as the score
for those with score>0:
— visit all persons F known to P.
For each F.
» checks on equal location
» check whether F already likes Al
» check whether F also knows P

iIf all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde/2016

E uride B livlariatic

Naive Query Implementation

e “cruncher”

know

s first

4bytes
*1.3B

Kr

1o%s.bin

//////////4

knows_n

PN
e whs—twl af o e

48bytes
*8.9M

2bytes
*204M

event.cwi.nl/lsde/2016

E uride B livlariatic

Naive Query Implementation dbytes
* “cruncher” *1.38

Kno%s.bin

knows first

48bytes
*8.9M

*204M

event.cwi.nl/lsde/2016

E it B livlaiimatie

Naive Query Implementation dbytes
* “cruncher” *1.38

Kno‘lvs . bin

knows first

48bytes
*8.9M

*204M

event.cwi.nl/lsde/2016

E Wikuirdde B Iivlarimatig

Naive Query Implementation dbytes
* “cruncher” *1.38
Khows | bin

knows first

\M\

48bytes
*8.9M

*204M

T~

event.cwi.nl/lsde/2016

E llllllllllllllllllllllll

Nalve Query Implementation

* “cruncher”

2bytes
*204M

‘—.-‘\ -—-

48bytes
*8.9M

~

lnow rLirst

\

»‘m

j

event.cwi.nl/lsde/2016

E Cantin Wiakunde B Inlarmata

Challenges, questions

For the “reorg” program:

« Can we throw way unneeded data?

- Can we store the data more efficiently?

- Can we put the data in some order to improve access patterns?

For the “query” program:
« Can we move some of the work to the re-org phase?
« Can we improve the access pattern?

— we trade random access for sequential access?

« Multiple passes, instead of one?

- |
We will meet on the leaderboard! event.cwinl/lsde/2016

