E Centrum Wiskunde & Informatica

Large-Scale Data Engineering

Data streams and low latency processing

event.cwi.nl/lsde

DATA STREAM BASICS

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

What 1s a data stream?

« Large data volume, likely structured, arriving at a very high rate
— Potentially high enough that the machine cannot keep up with it
* Not (only) what you see on youtube

— Data streams can have structure and semantics, they’re not only audio
or video

* Definition (Golab and Ozsu, 2003)

— A data stream is a real-time, continuous, ordered (implicitly by arrival
time of explicitly by timestamp) sequence of items. It is impossible to
control the order in which items arrive, nor it is feasible to locally store a
stream in its entirety.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Why do we need a data stream?

* Online, real-time processing
« Potential objectives
— Event detection and reaction

— Fast and potentially approximate online aggregation and analytics at
different granularities

 Various applications

— Network management, telecommunications
Sensor networks, real-time facilities monitoring

— Load balancing in distributed systems
— Stock monitoring, finance, fraud detection

— Online data mining (click stream analysis)

event.cwi.nl/lsde

Example uses

* Network management and configuration
— Typical setup: IP sessions going through a router

— Large amounts of data (300GB/day, 75k records/second sampled every 100
measurements)

— Typical queries
« What are the most frequent source-destination pairings per router?

« How many different source-destination pairings were seen by router 1 but
not by router 2 during the last hour (day, week, month)?

« Stock monitoring
— Typical setup: stream of price and sales volume
— Monitoring events to support trading decisions
— Typical queries
« Notify when some stock goes up by at least 5%

* Notify when the price of XYZ is above some threshold and the price of its
competitors is below than its 10 day moving average

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Structure of a data stream

Infinite sequence of items (elements)
One item: structured information, i.e., tuple or object

Same structure for all items in a stream

Timestamping
— Explicit: date/time field in data
— Implicit: timestamp given when items arrive

Representation of time
— Physical: date/time
— Logical: integer sequence number

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Database management vs. data stream management

ﬂ ! queries

= MS data feeds
' O '
I O
|
O I
I
|

I DSMS I

data streams .
gueries

- Data stream management system (DSMS) at multiple observation points
— Voluminous streams-in, reduced streams-out
- Database management system (DBMS)

— Qutputs of data stream management system can be treated as data
feeds to database

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

DBMS vs. DSMS

- DBMS
— Model: persistent relations
— Relation: tuple set/bag
— Data update: modifications
— Query: transient
— Query answer: exact
— Query evaluation: arbitrary
— Query plan: fixed

* DSMS
— Model: transient relations
— Relation: tuple sequence
— Data update: appends
— Query: persistent
— Query answer: approximate
— Query evaluation: one pass
— Query plan: adaptive

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Windows

« Mechanism for extracting a finite relation from an infinite stream
 Various window proposals for restricting processing scope

— Windows based on ordering attributes (e.g., time)

— Windows based on item (record) counts

— Windows based on explicit markers (e.g., punctuations) signifying
beginning and end

— Variants (e.g., some semantic partitioning constraint)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Ordering attribute based windows

« Assumes the existence of an attribute that defines the order of stream

elements/records (e.g., time)

* Let T be the window length (size) expressed in units of the ordering

attribute (e.g., T may be a time window)

sliding window

t, ot oty t' ottt
! ! ! ! ! ! ! ! >
. . . | | | t'—t=T
t, t, t tumbling window
. ; ; >
| g —4=T

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Count-based windows

Window of size N elements (sliding, tumbling) over the stream

Problematic with non-unique timestamps associated with stream elements

Ties broken arbitrarily may lead to non-deterministic output

Potentially unpredictable with respect to fluctuating input rates
— But dual of time based windows for constant arrival rates

— Arrival rate A elements/time-unit, time-based window of length T, count-
based window of size N; N =AT

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Punctuation-based windows

Application-inserted “end-of-processing”

— Each next data item identifies “beginning-of-processing”

Enables data item-dependent variable length windows

— Examples: a stream of auctions, an interval of monitored activity

Utility in data processing: limit the scope of operations relative to the
stream

Potentially problematic if windows grow too large

— Or even too small: too many punctuations

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Putting it all together: architecting a DSMS

1111

streaming
inputs

!

input
monitor

storage

working

storage

summary
storage

static
storage

qguery
monitor

query
repository

user
gueries

query
processor

output
buffer

111

streaming

outputs

event.cwi.nl/lsde

STREAM MINING

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Data stream mining

Numerous applications
— ldentify events and take responsive action in real time

— ldentify correlations in a stream and reconfigure system

Mining query streams: Google wants to know what queries are more
frequent today than yesterday

Mining click streams: Yahoo wants to know which of its pages are getting
an unusual number of hits in the past hour

Big brother
— Who calls whom?

— Who accesses which web pages?
— Who buys what where?

— All those questions answered in real time

We will focus on frequent pattern mining

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Frequent pattern mining

* Frequent pattern mining refers to finding patterns that occur more
frequently than a pre-specified threshold value

— Patterns refer to items, itemsets, or sequences

— Threshold refers to the percentage of the pattern occurrences to the
total number of transactions

« Termed as support
« Finding frequent patterns is the first step for association rules
— A—B: Aimplies B

« Many metrics have been proposed for measuring how strong an
association rule is

— Most commonly used metric: confidence

— Confidence refers to the probability that set B exists given that A
already exists in a transaction

 confidence(A—B) = support(AAB) / support(A)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Frequent pattern mining in data streams

* Frequent pattern mining over data streams differs from conventional one
— Cannot afford multiple passes
« Minimised requirements in terms of memory
« Trade off between storage, complexity, and accuracy
* You only get one look

* Frequent items (also known as heavy hitters) and itemsets are usually the
final output

« Effectively a counting problem
— We will focus on two algorithms: lossy counting and sticky sampling

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic:

The problem 1in more detail

OO00OOEO0OEOO0O0O0O O8O0
ERECOOEO0ONNOOO0O O8O0

»| ONEBOORBO0O000080O80

ElHLNORCOERCNOOOBO0O8O

= ONEOONCOEOEOO0O0O0OO8O
OO OEOEOEOOOO0O0OCO0O.
vOOOoOOEOEOOODOooOOooOmn
OROOOEO0OEOO0OOO0EE .
ONONO0ONOENOOO0OOO0OEENET]
EEECOEOENOOO0OAO0SEEE N

>
stream

* Problem statement

— Identify all items whose current frequency exceeds some support
threshold s (e.g., 0.1%)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Lossy counting 1n action

 Divide the incoming stream into windows

window 1

OOO0OONO0 MmO
_J | JEIN) JEimy)|
ONECOCORECOOO
EONCONCONNEC] N
ONECOCONCEC N
ONNECOCONCECN
OdotoCcCOeOmO0O
OROCOOCNDOOO N
COECECOC]
_§ JH} JH} JEIE))

window 2

OO0O0O0O00800 M.
OOO0OO080O00 M.
OO0O0O0O00800 M.
OO0O0O0O00800 M.
OO0O0O0O080O0 M.
OO0O0O0O0O0OC0 NN N
OO0O0O0O0O0OC0 NN N
OO0O0O0O00 NN
OO0OO0O000O00 NN
OOOO0OO0O00 NN N

window 3

EOCOROOOOOO
BOOEROOOOO
BREOCOOOOOOO
ONECOROOOONO
EORCOROOOONO
BEORCOROCOOC M
BORCOOOOO0 M
EOCOOROOO0 M
ONCONBECOCOOC N
EOCOENOCOOC N

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

First window comes 1n

OO0O0O0OeOo0OmO
EERO00ORO0OEN
] | |uim] | |nimln
EC0OROER0CE
] | |uis] =] =]
OEfddsdEOn
OO0O0O0OeOmO0O
m] juinin] Ieimie] |
] |u] |uim] =} |
ER0E000EE

first window

empty counts

« At window boundary, adjust counters

frequency counts

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Next window comes 1n

frequency counts

OO00OBEEE
OOO0000
ONEEOEE
OO0O0O000
BmOO0O00
EEEEEN
EEEEEN

OO0O0O0O0O00O0O
O
O
O
|
|
|

OOO00aEN
O0O00O0EE N
OO0O0EE N

OOO0O0O0OOOOO
OO0O0O0O0OOOO

second window

« At window boundary, adjust counters

frequency counts

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Lossy counting algorithm

« Deterministic technique; user supplies two parameters

— Support s; error €

Simple data structure, maintaining triplets of data items e, their associated
frequencies f, and the maximum possible error Ainf: (e, f, A)

The stream is conceptually divided into buckets of width w = 1/¢

— Each bucket labelled by a value N/w where N starts from 1 and
increases by 1

For each incoming item, the data structure is checked
— If an entry exists, increment frequency

— Otherwise, add new entry with A = b et = 1 Where b, en IS the
current bucket label

When switching to a new bucket, all entries with f + A < b, are released

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Lossy counting observations

e How much do we undercount?
— |If current size of stream is N
— ...and window size is 1/¢

— ...then frequency error < number of windows, i.e., eN

Empirical rule of thumb: set € = 10% of support s
— Example: given a support frequency s = 1%,
— ...then set error frequency € = 0.1%

Output is elements with counter values exceeding sN — eN

Guarantees
— Frequencies are underestimated by at most eN
— No false negatives
— False positives have true frequency at least SN—¢N

In the worst case, it has been proven that we need 1/¢ X log (N) counters

event.cwi.nl/lsde

E Centrum Wiskunde & Infor

Lossy Counting

e D%é
@ DE@%.D. D
|:|.|:| DE&.

OCOEO0O

=

Himy §

L) e
i
L Uumr J s e

L 1O0O0

OO0OC &
OO0on
L1100

E@EElE@®E

EECOO

III:I

e Create counters by sampling M, N3
e Maintain exact counts thereafter O 23

event.cwi.nl/lsde

STORM AND LOW-LATENCY
PROCESSING

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Low latency processing

« Similar to data stream processing, but with a twist

— Data is streaming into the system (from a database, or a network
stream, or an HDFS file, or ...)

— We want to process the stream in a distributed fashion
— And we want results as quickly as possible
* Numerous applications

— Algorithmic trading: identify financial opportunities (e.g., respond as
quickly as possible to stock price rising/falling

— Event detection: identify changes in behaviour rapidly
* Not (necessarily) the same as what we have seen so far
— The focus is not on summarising the input

— Rather, it is on “parsing” the input and/or manipulating it on the fly

event.cwi.nl/lsde

The problem

» Consider the following use-case

A stream of incoming information needs to be summarised by some identifying token
— For instance, group tweets by hash-tag; or, group clicks by URL;

— And maintain accurate counts

But do that at a massive scale and in real time

Not so much about handling the incoming load, but using it
— That's where latency comes into play
 Putting things in perspective

— Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're
talking about 2.25MB/s

— Google served 34k searches/s in 2010: let's say 100k searches/s now and an
average of 200 bytes/search that's 20MB/s

— But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s
throughput

event.cwi.nl/lsde

A rough approach

- Latency

— Each point 1 = 5 in the figure introduces a high processing latency
— Need a way to transparently use the cluster to process the stream

o share the load
of incoming items

parallelise processing store grouped data
e on the cluster e in persistent store

-

=y

worker

Jauonnsed yiom

worker

extract grouped data

records out of tweets

- Bottlenecks
— No notion of locality
 Either a queue per worker per node, or data is moved around

— What about reconfiguration?

- If there are bursts in traffic we need to shutdown, reconfigure and redeploy sde

E Centrum Wiskunde & Informatica

Storm

Started up as backtype; widely used in Twitter

Open-sourced (you can download it and play with it!

— http://storm-project.net/

On the surface, Hadoop for data streams
— Executes on top of a (likely dedicated) cluster of commodity hardware
— Similar setup to a Hadoop cluster
« Master node, distributed coordination, worker nodes

 We will examine each in detall

But whereas a MapReduce job will finish, a Storm job—termed a
topology—runs continuously

— Or rather, until you Kkill it

event.cwi.nl/lsde

http://storm-project.net/
http://storm-project.net/
http://storm-project.net/
http://storm-project.net/
http://storm-project.net/

E Centrum Wiskunde & Informatica

Storm topologies

« A Storm topology is a graph of computation
— Graph contains nodes and edges
— Nodes model processing logic (i.e., transformation over its input)
— Directed edges indicate communication between nodes

— No limitations on the topology; for instance one node may have more
than one incoming edges and more than one outgoing edges

« Storm processes topologies in a distributed and reliable fashion

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Streams, spouts, and bolts

e Streams

— The basic collection abstraction: an
unbounded sequence of tuples

— Streams are transformed by the stream

processing elements of a topology

* Spouts
— Stream generators

— May propagate a single stream to
multiple consumers

* Bolts
— Subscribe to streams
— Streams transformers

— Process incoming streams and
produce new ones

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Storm architecture

spout bolt bolt
Storm job topology

distributed
coordination

: Storm cluster
nimbus
master node

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

From topology to processing: stream groupings

» Spouts and bolts are replicated in
taks, each task executed in
parallel by a worker spout spout

— User-defined degree of
replication

— All pairwise combinations are
possible between tasks

* When a task emits a tuple, which
task should it send to?

« Stream groupings dictate how to
propagate tuples

— Shuffle grouping: round-robin

— Field grouping: based on the bolt
data value (e.g., range
partitioning)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Putting it all together: word count

// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout("“spout”, new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)
.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count"”, new WordCount(), 12)
.fieldsGrouping("split", new Fields("word")); // field grouping

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count™, conf, builder.createTopology());
event.cwi.nl/Isde

SPARK STREAMING

event.cwi.nl/lsde

Discretized Stream Processing

Run a streaming computation as a series of very small,
deterministic batch jobs = “MICRO BATCH” approach

live data stream

seconds

: Spark
= Chop up the live stream into batches of X \r\ f Streaming

[—
= Spark treats each batch of data as RDDs and ~ Patches of X —

processes them using RDD operations seconds [

= Finally, the processed results of the RDD
operations are returned in batches

@ um mmmm | Spark

processed
results

Discretized Stream Processing

Run a streaming computation as a series of very small,
deterministic batch jobs = “MICRO BATCH” approach

live data stream S "
ar
s P

= Batch sizes as low as % second, latency Streaming
of about 1 second

_—

. . batches of X
= Potential for combining batch e
seconds —

processing and streaming processing

in the same system

¢ um mmmm | Spark
processed

results

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()

DStream: a sequence of RDDs representing a stream of data

Twitter Streaming AP| | batch@t| |batch@t+1| |batch @ t+2] i
weetsDsream (RLE) (Rl (R

TR TR T

stored in memory as an RDD
(immutable, distributed)

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

T~

transformation: modify data in one DStream to create]

new DStream] [another DStream

tweets DStream

hashTags Dstream

[#cat, #dog, ...] for every batch

new RDDs created]

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

batch @ t batch @ t+1 batch @ t+2

tweets DStream

flatMap flatMap flatMap
hashTags DStream

save save save

every batch
saved to HDFS

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.foreach(hashTagRDD => { ... })

foreach: do whatever you want with the processed data

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap
hashTags DStream

foreach foreach foreach

Write to database, update analytics
Ul, do whatever you want

Window-based Transformations

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(1l), Seconds(5)).countByValue()

[slldlnng;h window length | | sliding interval
operation | |

window length
A

EUHHHHHHQ]QHHHHHHHHHHQ
DStream of data W_/

sliding interval

Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at
sub-second latency

- Tested with 100 text streams on 100 EC2 instances with 4 cores each

7 3.5
Qg Q WordCount
3¢ Grep / 2,
T //. 2 /
o 4 w 2
3 3 o
£ 3 =15 /
< =
=2 =1
— Q
3 —o-1 sec = / —o-1 sec
@ 1 30.5
3 o 82 sec G o -8-2 sec
O | | 0 | |
0 50 100 0 50 100

Nodes in Cluster # Nodes in Cluster

Comparison with Storm and S4

Higher throughput than Storm
- Spark Streaming: 670k records/second/node
- Storm: 115k records/second/node
- Apache S4: 7.5k records/second/node

o Grep v WordCount
o

° 120 o 30
c c
g = 80 m Spark §. N W Spark
52 3 2
23 2
& 40 % 10 W Storm
o H Storm o
g £ 4

100 1000 100 1000

Record Size (bytes) Record Size (bytes)

Unifying Batch and Stream Processing Models

Spark program on Twitter log file using RDDs

val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")

Spark Streaming program on Twitter stream using DStreams

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Vision - one stack to rule them all

$./spark-shell
scala> val file = sc.hadoopFile(“smalllLogs”)

= Explore data interactively
using Spark Shell to identify

scala> val filtered = file.filter(_.contains(“ERROR”))

problems
scala> val mapped = filtered.map(...)
- 1object ProcessProductionData {
) . | def main(args: Array[String]) {
= Use same code in Spark stand- val sc = new SparkContext(...)

. . val file = sc.hadoopFile(“productionLogs®)
alone programs to Identlfy val filtered = file.filter(_.contains(“ERROR”))
problems in production logs val mapped = filtered.map(...)

}
} |object ProcessLiveStream {

L . def main(args: Array[String]) {
= Use similar code in Spark val sc = new StreamingContext(...)

St . to identif val stream = sc.kafkaStream(...)
reaming to identity val filtered = file.filter(_.contains(“ERROR”))

problems in live log streams val mapped = filtered.map(...)

LAMBDA ARCHITECTURE

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

[Lambda Architecture

» apply the (A) Lambda philosophy in designing big data system
« equation “query = function(all data)” which is the basis of all data systems
« proposed by Nathan Marz (http://nathanmarz.com/)

— software engineer from Twitter in his “Big Data” book.
* three design principles:

1. human fault-tolerance — the system is unsusceptible to data loss or data corruption
because at scale it could be irreparable.

2. data immutability — store data in it's rawest form immutable and for perpetuity.
« INSERT/ SELECT/DELETE but no UPDATE ')

3. recomputation — with the two principles above it is always possible to (re)-compute results
by running a function on the raw data

(e R
Speed Layer Serving Layer
(Storm) -

Batch Layer
(Hadoop) \)

event.cwi.nl/lsde

http://nathanmarz.com/
http://nathanmarz.com/

E Centrum Wiskunde & Informatica

[Lambda Architecture

batch view
data \

Precomputed /
/ realtime view

Query

New data stream

“Lambda Architecture”

event.cwi.nl/lsde

GOOGLE DATAFLOW

event.cwi.nl/lsde

Google DataFlow

Allows for the calculation of
— event-time ordered results,
— windowed by features of the data themselves,
— over an unbounded, unordered data source,
— correctness, latency, and cost tunable across a broad spectrum of combinations.

« Decomposes pipeline implementation across four related dimensions, providing clarity,
composability, and flexibility:

— What results are being computed.
— Where in event time they are being computed.
— When in processing time they are materialized.

— How earlier results relate to later refinements.

« Separates the logical data processing from the underlying physical implementation,
— allowing the choice of
 batch
* micro-batch, or

« streaming engine to become one of simply correctness, latency, and cost.
event.cwi.nl/Isde

E Centrum Wiskunde & Informatica

DataFlow: Time

=
<_ IR |
N o : Two kinds of time
- J - Event Time, which is
o T+ H the time at which the
g = N event itself actually
Z ~ N occurred
g 21 y : :
7 _aet * Processing Time,
9 o which is the time at
O — 'l h h .
=S| Le-- whnich an event Is
AT handled by the
F' processing pipeline.
| I I |
12:01 12:02 12:03 12:04
Event Time watermark = time before
Actual ___________ > which the system (thinks it)

has processed all events
Ideal watermark:

Event Time Skew: & >

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

DataFlow: Processing Model

Generalized MapReduce:
» ParDo (doFcn) pretty much = “Map”

— Each input element to be processed (which itself may be a finite collection) is provided to a
user-defined function (called a DoFn in Dataflow), which can yield zero or more output

elements per input.

— For example, consider an operation which expands all prefixes of the input key, duplicating
the value across them:

 Input: (fix, 1),(fit, 2) = = =
= ParDo(ExpandPrefixes) =
« Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
« GroupByKey more or less ~ “Reduce”
— for key-grouping (key, value) pairs.
— In the example:
 Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
= GroupByKey =
« Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2])

event.cwi.nl/lsde

DataFlow: Windowing Model

Many possible window definitions, define one using two methods:
* AssignWindows(T datum) =» Set<Windows>
* MergeWindows(Set<Windows>) = Set<Windows>

Example:
* Input: (k, v1, 12:00, [0, «)),(k, v2, 12:01, [0, «)) = = =

= AssignWindows(Sliding(2min, 1min)) =>»

* Output:
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2,12:01, [12:00, 12:02)),
(k, v2,12:01, [12:01, 12:03))

event.cwi.nl/lsde

Data Model

 MapReduce
(Key,Value)

 DataFlow

(Key, Value, EventTime, Window)

event.cwi.nl/lsde

DataFlow: Wlndowmg Model

FCollection<EV<String, Integer>> input = I0.readl.
Flollection<EW<String, Integer®> output = input
.apply (Window. into (Sessions . withGapDuration |
Duration.standardMinutes (30))))
.apply (Sum.integersPerkey ()} ;

AssignWindows(Sliding(2m, 1m))

« Output:
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2,12:01, [12:00, 12:02)),
(k, v2,12:01, [12:01, 12:03))

E Centrum Wiskunde & Informatica

Example. When do results get computed?

PCollection<KV<String, Integer>> output = input

.apply (Sum.integersPerKey ()) ;

=

@:
)

Processing Time
12:06 12:07 12:08 12:09

|
]
]
]
|
|
|
1
‘\.

Oa
=

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Actual watermark: @ s=sssssee-- >

Ideal watermark: event.cwi.nl/Isde

E Centrum Wiskunde & Informatica

Triggering: classical batch execution

PCollection<KV<String, Integer>> output = input
.apply (Sum.integersPerKey ()) ;

Processing Time
1 QIGT
()
®

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Actual watermark: s=s=ssssccces > _
event.cwi.nl/lsde
Ideal watermark:

GlobalWindows, AtPeriod, Accumulating

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtPeriod (1, MINUTE)))
.accumulating())
.apply (Sum.integersPerKey ());

(]
=
[|
-
5
”éc:i
'I--H
B
=
=)
.EN
i
3
o
S 8
o <
gt |
—

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

event.cwi.nl/Isde

GlobalWindows, AtCount, Discarding

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtCount (2)))
.discarding())
.apply (Sum.integersPerKey ()) ;

4
AL

12:09

®

12:08

Processing Time
12:06 12:07
@

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Triggering: FixedWindows, Batch

PCollection<KV<String,

.accumulating ()
.apply (Sum.integersPerKey ())

.apply (Window. into (FixedWindows.of (2,
.trigger (Repeat (AtWatermark())))

Integer>> output = input

MINUTES))

)

.
r

12:08 12509
@ 4

Processing Time
12:07

12:06

3
®

12:01

12:02

12:03

12:04

12:05 12:06

Event Time

Actual watermark:

Ideal watermark:

12:07

12:08

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

FixedWindows, Streaming, Partial

PCollection<KV<String, Integer>> output = input
.apply (Window.into (FixedWindows.of (2, MINUTES))
.trigger (SequenceOf (

RepeatUntil (
AtPeriod (1, MINUTE),
AtWatermark()),
Repeat (AtWatermark ())))
.accumulating())
.apply (Sum.integersPerKey ()) ;

3
2 &
— ™
E4

-
2 o
'EN
TR |
aF
2
=
o, =

™

—

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Actual watermark: memmmmm————) event.cwi.nl/Isde

Ideal watermark: I ICICICIE R D -

E Centrum Wiskunde & Informatica

FixedWindows, Streaming, Retracting

PCollection<KV<String, Integer>> output = input
.apply (Window.into (Sessions.withGapDuration (1, MINUTE))
.trigger (SequenceOf (
RepeatUntil (
AtPeriod (1, MINUTE),
AtWatermark()),
Repeat (AtWatermark ())))
.accumulatingAndRetracting())
.apply (Sum.integersPerKey ());

Processing Time
12:07 12:08 12:09

12:06

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

ACtua.—]. Wﬂtermﬂrk: - . -)

Ideal watermark: I event.cwi.nl/Isde

E Centrum Wiskunde & Informatica

Summary

* Introduced the notion of data streams and data stream processing
— DSMS: persistent queries, transient data (opposite of DBMS)
» Described use-cases and algorithms for stream mining
— Lossy counting
* Introduced frameworks for low-latency stream processing
— Storm
« Stream engine, not very Hadoop integrated (separate cluster)
— Spark Streaming
» “Micro-batching”, re-use of RDD concept
— Google Dataflow
« Map-Reduce++ with streaming built-in (advanced windowing)
« Finegrained control over the freshness of computations
« Avoids “Lambda Architecture” — two systems for batch and streaming

event.cwi.nl/lsde

