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1. Introduction

Data mining applications cause very heavy and very specific query loads on a DBMS, that can be
characterized as consisting of many small queries, involving full table scans, that zoom in into each time
smaller subsets of objects, and use only a few attributes from a wide and deep mining table. Various
vendors have tried to extend OLTP - databases to handle this type of query load. Multidimensional
databases, pre-computed aggregations, SQL-Extensions like the Cube-operator, are attempts to boost the
OLTP databases for this type of querying.

Researchers at the Centrum voor Wiskunde en Informatica (CWI) in Amsterdam have developed a totally
different approach that is able to handle the data mining query load efficiently by using vertical table
fragmentation and algorithms optimized for main memory execution. These techniques are implemented
in a main-memory DBMS called Monet. Data Distilleries, a spin-off company of the CWI, develops a
client-server data mining tool, Data Surveyor (DS), which offers a variety of powerful algorithms for
interactive data mining on very large data sets.

| !

Application cartridges Mining cartridges Backend cartridges
-Muailshot selector -Classification rules -Mining booster
-Credit scoring modeler -Beamsearch -Drill engine

Front-tier
-Client Browser.
-IE 4.0, Netscape 4

Middle-tier
-Mining engine
-Data Surveyor

Backend-tier
-Oracle, Tandem -
DB/2, Monet

The tool is designed in a three-tier architecture :
1. The front end cartridges, a 100% pure Java graphical user interface.
2. The middle layer, which implements the various pluggable mining-algorithms in a mining-
engine
3. The backend, the Monet database system or any other SQL-speaking DBMS.

A business application consists of one cartridge out of each layer.

Many companies store its customer data inside the Oracle-DBMS. Currently, the data has to be duplicated
towards Monet before the mining session with DS can start. This is not compliant with the major
advantage of databases : central storage of data. To eliminate this nagging problem, Data Distilleries has
launched the Mining Booster project.
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1.1 Mining Booster

The main goal of the Mining Booster (MB) is to achieve a Monet-like performance on Oracle8. By using
the Oracle data-cartridge mechanism, a kind of search accelerator structure called the Data Vector (DV)
is introduced to Oracle. These data vectors can be created on any table column in Oracle, and have special
operators defined on them for data cube construction and aggregation, that can be computed efficiently.
This efficiency is gained in much the same way as Monet operations achieve efficiency. In fact. a data
vector corresponds 1-1 with a Binary Association Table (BAT), the vertical fragment of Monet.

1.1.1 Objectives Mining Booster

The objectives to be met by the MB cartridge are:
¢ Performance
the cartridge should enable Monet-like performance on Data Mining tasks like the DD
Benchmark.
e Openness
the cartridge should be reusable by data mining or OLAP tools other than Data Surveyor.
¢ Orthogonality
it should be possible to apply the functions in the cartridge to any kind of Oracle table. containing
any kind of data.
¢ Self-contained
it should be easy to integrate the Booster cartridge in an Oracle systemn used for data
warehousing. This means that no a priori requirements should be placed on the Oracle schema.
» Data Warehouse integration
Changes in the data warehouse should not affect the minin g booster functionality. This means
that that it should be able to cope with updates occurring on the Oracle tables.

Technically, all this should be made possible by employing the new object-relational features of OracleS.

1.2 DD Benchmark

To measure how well a DBMS is able to support data mining, Data Distilleries developed the Drill Down
Benchmark (DDB). The DDB is a typical data mining-session with Data Surveyor in a real business case :

A mail-order warehouse comparny wants to optimize its mailing activities by using database
marketing. In particular, it wants to make special offers to reliable customers. The company
heard about good results achieved with data mining, and decided to do a pilot-project where it
wants to develop a general profile of reliable customers.

Goal of this project is to find out which client characteristics indicate a higher probability of becoming a
reliable customer. The company owns a data warehouse with 100 attributes per customer, and wants to
predict the value of the reliable-attribute from -combinations of- the six attributes listed below:

—

Customer: ID | age | gender |marital | town |zipcode|spendings reliable

The DDB is distributed as an ASCII-dump of data, and a set of queries.

Data Distilleries,
Company Confidential 2



When distributing the benchmark to database vendors one does not want to distribute 1-4 G (needed for
the most extreme performancetest ) of bulk data. Therefore, the distributed bulk data consists of one table
of 1 M tuples of seven attributes. The standard width of the mining table used in the buisinesscase is 100
attributes wide. These 100 attributes are obtained by horizontal concatenating the 6 attributes listed above:
Hence, we obtain columns like age_0, age_1, age_2, .. etc..

1.2.1 Scaling

To enable the DDB to serve as a benchmark, the sizing of the mining table has to be formalized as well.
This is achieved by introducing horizontal (HF) and vertical (VF) scaling factors. HF (in {1, 10, 100} )
applies to the number of columns, VF (in {1, 10, 100, 1000} ) applies to the number of rows. Applying
the scaling factors results in mining tables from 100 to 10.000 attributes and cardinalities from 1M to 1 G.
Applying HF also multiplies the number of attributes taken into account by the same factor HF.

The DDB, with HF set to one, results in a 133 queries-of-interest generated by the DS-mining engine.
How well a DBMS backend is able to support data mining is then expressed as a timescore on the DDB.

1.2.2 Implementations

The DDB was implemented for the Monet database and an anonymous RDBMS product. The testplatform
was a Sun Ultra2 Creator 3D machine with :

two 168 MHz CPU’s

512 Mb of main memory

16 MB of L2 cache

12 MB/s real disk throughput.

Timescores are listed in the table below :

Summarized Results of the DD Benchmark [
database size platform elapsed time

|HF [VF|| DBMS [#cpus|| total | Bo [ B1 | Ba | Bz | Ba

small 1 | 1 ||relational| 2 |[|22m358]|1m22s|1m28s|7m48s|5m47s|3m0s

(400MB) monet 2 39s 46s | 478 | 1789s | 9.1s | 2.38

1 1m10s || 9.1s | 8.9s | 31.1s | 17.0s | 4.1s

big 1 {10 || monet 2 8m32s || 50.0s | 54.0s [4m23s|1mb2s]| 33s

(4GB) 1 ||13m58s|/1m27s|1m38s|6m43s| 3mlds| 57s

wide 10| 1 || monet 2 8m46s | Imbs | 53.0s | 3m4l [2m29s| 37s

(4GB) 1 ||15m25s ||1m39s | Im38s |6m33s|4m29s |1mbs
Data Distilleries,
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2. Project Description

My project is to participate in the Mining Booster (MB) -project by designing the interface of the MB. As
a data cartridge is defined in PL/SQL, implementing the MB interface will consist of expressing the data
vector and its operations as a set of classes in PL/SQL, using Oracles object-relational features. Functional
and technical specifications have to be defined and discussed.

Milestone in this project is to run the DD benchmark on Oracle8, and to achieve a Monet-like
performance.

The following objectives of the overall Mining Booster project are covered in the interface:

e Performance
The cartridge should enable Monet-like performance on Data Mining tasks like the DD Benchmark.

¢ Openness
The cartridge should be reusable by data mining or OLAP tools other than Data Surveyor.

¢ Orthogonality

It should be possible to apply the functions in the cartridge to any kind of Oracle table, containing any
kind of data.

Implementations coming from my project are :

*  An set of classes in PL/SQL, with member functions that enables the construction of data cubes using
data vectors.

¢ A communications cartridge, in PL/SQL, that handles the communications between the Monet server
and ORACLE

Overall position in the project:

Marco Fuykschot, an engineer sent on secondment from SuperFluid, is currently working on the
implementation of the data vector. He is, supervised by Peter Boncz (Core backend developer at DD),
designing the Oracle-representation of the data vector, optimizing storage-capacity in Oracle, minimizing
memory usage, and the fastest way of transporting the data vectors towards the Monet-server. Most of his
work is done in C and SQL. I will refer to this part of the MB as the MB engine. My task is to connect to
this engine, invoke the commands that build the specified DVS, and generate optimal Monet-statements to
process the DVS. We work separately, and will integrate out work at the end of the project

Data Distilleries,
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3. Context

3.1 Data mining

Data mining is a technique to discover strategic information hidden in very large databases. This
information, e.g. trends and patterns, can be used to improve business decisions. The last few years data-
mining has been used in an experimental setting, now we are at a stage it can be used on a day to day
basis to support business professionals. Nowadays, most companies have to deal with fast moving and
competitive markets. Customers preferences change easily and competitors are always there to look for
better products, new niches and other ways to improve their marketshare.

For these companies, the crucial weapon is knowledge. Knowing more about the outside world, being able
to detect trends earlier and to better predict customer's behavior are crucial for survival.

One of the ways to learn about the outside world is to analyze the wealth of data that is already available
within companies. Companies collect a lot of data about the outside world, e.g. information about their
customers, the products they buy and how they pay for these products. All this information is stored in
large databases. Analyzing these data will learn them a lot and let them take actions to take full
competitive advantage of this knowledge.

3.1.1 Data Warehousing

Customer data, product data and transaction data are stored in so-called production databases. Generally,
this data is stored in a form very well suited for daily business, but not suited for analysis. For analysis, we
often want to combine data from different sources, e.g. combine customer data with externally available
data such as geodemographic data. Therefore, special databases are constructed called data warehouses,
where data from various sources is combined, cleaned and stored in a form suited for analysis. A data

warehouse is simply a database for analysis. These data warehouses may store very large amounts of detail
data, up to Terabytes (thousand billion bytes).

3.1.2 Analyzing data

Building a data warehouse in itself is useless, as long as users don't have the powerful tools needed to
analyze this data warehouse. In Data Distilleries' vision, not all business questions can be solved by one
and the same tool. So rather than a single tool, the user should have a variety of tools, all geared towards

particular information requirements. Different analysis techniques have been developed during recent
years for these requirements:

quantify the data
explain behavior
discover hidden knowledge
predict behavior

Ll o

3.1.2.1 quantify the data
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Users often want quantitative information from their data, such as

e how many products did I sell last month?
o how many customers reside in New York?

If this information need is stable over time, report generators can be used to generate a standard report for
each month. Sometimes however, users need to have more flexibility to get answer to ad hoc questions.
Here, standard query tools are used. These tools are also known as managed report or query environments.

3.1.2.2 Explain behavior

Sometimes, users want to have a better understanding of observed anomalies or behavior in their data. For
example, if sales figures drop for a particular product Y (figure a), the user may want to find an
explanation for this behavior. Knowing the explanation allows users to take appropriate actions. OLAP
(On Line Analytical Processing) tools are user-friendly and flexible tools that allow users to interactively
browse through the data. In the above example, the user may discover the reason for the dropped sales
figure by looking at the data from different dimensions.

For example, the user may look at the sales figures for product Y for the different regions, and find out
that say North-Western region is mainly responsible for the decreased sales (figure b). Next, the user can
perform a drill down: zoom in on the North-Western region and find out which states contribute most to
the dropped sales (figure c¢)

X ¥ 2 NENW SESW
(a) ssles for product {b} y for different {cysalesfory
X, y&z regians for NV ragion

3.1.2.3 Discover hidden knowledge

The above techniques, how useful they may be, have one serious drawback. They expect the user to have
suspicions of the knowledge hidden in the database. The above techniques test only the user's

assumptions. In the above OLAP example, the user assumed that fallback of product X is caused by
differences in sales in states.

Data warehouses combine data from various sources and therefore contain a lot of hidden knowledge that
is not known to the user. For example, if you combine your customer data with geodemographic data,
there may be a very interesting relation between your customer's willingness to donate to charity and their
creditworthiness. Since this is an unexpected relation, you would probably not have formulated this as an
explicit query. So you would never have found this useful knowledge.

Data Distilleries,
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Data mining allows the user to discover hidden information in large databases. Rather than relying on the
user to formulate hypotheses, a data mining tool formulates ten thousands of these hypotheses itself,
verifies them on the database, and returns the most interesting ones to the user. A data mining tool may
discover relations and trends such as:

"young men driving expensive red leased cars have 27% probability of getting a car accident, which is
significantly more than the average insurgent”

"85% of product X is sold to unmarried women, aged 45 - 55, living in suburbs and income > 50000"
These results, also known as explanatory or descriptive models, provide insight in e.g. the profiles of

customers and allow you to target new niches and develop new products.

3.1.2.4 Predict behavior

The ability to predict future events allows us to anticipate these and make better decisions. For banks, it is
very useful to predict whether a new applicant will default on a loan or not. Or for direct marketing, it
may be useful to target only those prospects that are very likely to respond to the mailing.

Hence, we need a model that predicts customer behavior. A variety of techniques can be used to build this
model, such as

* Neural Networks
¢ Statistical Techniques
¢ Data Mining

As described above, data mining techniques are used to discover hidden relationships in data. For
example, this can be the relationship between customer characteristics and creditworthiness. Once this
relationship has been discovered, it can be used to make predictions for new customers.

For example, the system could discover the following rule:

if age < 24 and gender = male and carprice > 40000 then accident probability is 24%

stating that young male drivers in expensive cars have a high probability of getting an accident.

Data Distilleries,
Company Confidential 7



3.1.3 Data Cubes and Cross-tables

Now, how are these hidden relations and probabilities detected ?

The answer is already mentioned, by aggregating on the desired attributes. Together with the aggregate
function (count, average, min, max etc) so-called data cubes are constructed. Aggregating divides the
data into groups with the same value. Let’s for now assume the aggregate function is the count, and g0
back to the running example of the DD Benchmark, then we can count how many customers are ‘male’
and reliable. We also can count how many are ‘male’ and not reliable. From these two we can construct a
probability of a male being reliable. We could also do this for all males living in Amsterdam. Then we
compose a restricted data cube.

A grouping on two attributes (i.e. find all distinct combinations of these attributes), together with the
aggregate function count, is called a Cross-table. When a different aggregate function is used the result
is called a data cube. On speaking terms, these two are often considered equal.

Gender Gender, town = Amsterdam
Reliable M E Reliable M F
Yes 23 234 Yes 23 200
No 243 123 No 32 10
A data cube on gender and reliable A data cube on gender and reliable, restricted for Amsterdam

Data Distilleries,
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3.2 Monet

Monet is a customizable database system developed at CWI and University of Amsterdam, intended to be
used as the database backend for widely varying application domains. It is designed to get maximum
database performance out of today's workstations and multiprocessor systems. It has already achieved
considerable success in supporting a data mining application, and work is well under way in a project
where it is used in a high-end GIS application. Monet is a type- and algebra-extensible database system
and employs shared memory parallelism.

3.2.1 Data structures

Monet uses the Decomposed Storage Model to store its data : all relations are sliced per column, one
column is the basis data element in Monet : the Binary Association Table.

This approach has a number of advantages : First, one column is much smaller in size then a whole table
(of e.g. 100 attributes, a typical mining table), therefore it will fit into main memory much easier. Second,
as the data is also stored per column on disk, IO is much more efficient compared to row-based storage
when accessing only a few attributes. As a third, Monet has even more optimized memory usage by
encoding data types to integers, and by mapping cell-ids to positional ids. It is because of these three
strategies that Monet can aim for main memory execution.

One column of a relation is represented as a Binary Association Table (BAT) in Monet.
Relevant parts of the data structure are shown below :

Head |Tail

Fig :aBAT in Monet

In real, hash tables, binary search trees and heaps to store and search the data efficiently are also present,
but they are not relevant here. Initially, the head-column contains a ID, and the tail column contains the
corresponding data. Cells in different BATS are mapped to the same row through their ID.

Data Distilleries,
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3.2.2 BAT operations

To illustrate the effect of a number of BAT-operations we take two BATS, representing the column
‘Gender’ and ‘Age’ from table ‘Customer’. In Monet, operations are expressed in the Monet Interaction
Language (MIL). For each operation the MIL-code and its effect is demonstrated.

gender

gender.
gender.
gender.
gender.
gender.
gender.

:= new({oid, chr);

insert (oid(l), '£*);
insert (oid(2), 'm’);
insert (o0id(3), 'f');
insert (oid(4), 'm'):
insert (oid(5), 'f’);
insert (oid(6), 'f’);

gender

1@0

2@0

3@0

4@0

5@0

6@0

I ERRI R

OR, using @0-notation

age

age := new(oid, int); le0 | 20
age.insert (1e0, 20); 20| 22
age.insert (2e0, 22);

age.insert (3e0, 20); 3e0 | 20
age.insert (4e0, 23); 4@0 | 23
age.insert (5e0, 24); S@0 | 24
age.insert (6e0, 20): 6@0 | 20

Note that :

e in MIL-notation group(gender) is equivalent to gender. group()
¢ 1@0 and o0id(1), mean OID 1, just 1 means integer 1
* cells in distinct columns are only related through having the same oid.

» Example one: GROUP BY gender

gender gender_ct
1@0 f le0 | 1@0
200 | m gender . group () 2@0 | 2@0
3e0 f 3e0 | 1e0
4@0 | m > 4@0 | 2@0
Se0 f 5e0 | 1e0
6@0 f 6@0 | 1e0

The operator

group (bat[oid,anyl]) return bat[oid, oid]

Data Distilleries,
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creates for each different value in the tail-column a new group-id. This group-id is the oid of the first
occurrence of this value. Every next occurrence of this value is marked as member of this group.
An aggregate like Count ( * ) is then easily performed with a count of group members.

A listing of all different values can be obtained by the operator:

join(bat{any::1,any::2], batlany::2,any::3]) return batlany::1,any::3]

It takes two input-BATS, joins the head of the first with the tail of the second, and returns a BAT with
their joint elements (based on the any::2 - column).

e.g.
C.histogram.reverse.join(age)

lists all different values with their counts. where
e histogram delivers a bat{oid, int] with the different group-ids and their counts

e reverse swaps the head- and tail column of a BAT

» Example two : GROUP BY gender, age

age
le0 | 20
2e0 | 22
3@0 | 20
4@0 | 23
gender_ct s@0 | 24 gender _age_ct
6@0 | 20
1@0 | 1e0 1e0 | 1e0
2@0 | 2@0 2e0 | 2e0
300 | 1@0 gender_ct.group (age) 3@0 | 1@0
4@0 | 2@0 4@0 | 4@0
>
50 | 1e0 5@0 | 5e0
6@0 | 1@0 6@0 | 10

The operator
group (bat[oid, 0id]l, batloid,any]) return batloid,oid]

is an overloaded version of the previous group-operator. Now it looks at all different combinations of
values in the first and second argument. New group-ids for the discovered combinations are created.

» Note the reuse the former computed grouping on gender.

Data Distilleries,
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If we want to go back to retrieve all computed combinations and their aggregates

operator : res. with age and gender.

like
histo := gender _age_ct.histogram
histo
1@0 3
2@0 1
4@0 1
S5e0 1

m_age:=histo.reverse.join(age);

m_age
3 20
1 24
1 22
1 23

Or the Print-function can print values right away.

like

gender_ct_age.histogram.print(age, gender)

Data Distilleries,
Company Confidential

m_gender:

., we again need the join-

age gender
le0 | 20 1@0 f
2@0 | 22 2@0 | m
3@0 | 20 3e@0 f
4@0 | 23 4@0 | m
50| 24 5e0 f
6@0 | 20 6@0 f

m_gender

ey U e OS]

18 18 |-

“On screen
20 f 3
24 m 1
22 m 1
23 f 1

=zhisto.reverse.join(gender) ;

12



» Example three : SELECTION

gender

l1e0
2e0
3e0
4@0
5e@0
6@0

gender.select (*f’)

=>

=8 118 |-

Note that an equivalent operation would be:

females := gender.semijoin (H);

The operator

females
1@0 f
3@l f
5@0 f
6@0 f

with H a BAT like

H
1@0 | any
3@0 | any
5@0 | any
6@0 | any

semijoin (bat[any::1,any::2], bat[any::1,any]) return batlany::1,any::2]

returns the original BAT, but only those elements with the same head as the second BAT: i.e. selecting

one BAT with another BAT.

Data Distilleries,
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Example four: Grouping and selection

age females

le0 | 20 l@0 f

200 | 22 3e0 f

3@0 | 20 5e0 f

4@0 | 23 6e@0 f

5@0 | 24

6@0 | 20
gender_ct fern_gender_age_ct
1e0 | 1e0 gender_ct.subgroup(age, females) 10 | 1e0
2@0 | 2@0 3e0 | 1@0
3@0 | @0 2> 5e0 | Se0
4@0 | 2@0 6@0 | 1@0
5@0 | 1e0
6@0 | 1@0

The operator
subgroup (bat{oid,o0id], bat[oid,any], bat[ecid,any]) return bat[oid, oid]

Performs two operations in one statement: first bat [oid, 0id] is semijoined with the last argument,
then the previously discussed operation group (bat, bat) is performed.

Data Distilleries,
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3.2.3 Application interfaces

Monet is an extendible database system. Below we see the complete architecture of Monet All its
fromtends use TCP/IP to connect to the server. The interpreter can be extended with modules containing
application-specific commands. The MB engine will be integrated with Monet by such an extension-
module, containing commands to put- and fetch Oracle data.

e . e S -
-~ -~

~ o o .

.~ ODUG Clasees ., /7 S0LTables
i gruetPerson :

Ok

¢ strmg name: CHEFACTERY
int =6 K f

. mage fop; o
GO Frontend
|

%if ) ¥

Monet interpreter ™

e Backend

Figure: Monet architecture
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3.3 The Oracle 8 Object-relational features

The interface of the MB will use the Object relational features of Oracle8 from PL/SQL. Therefore, it is
meaningful to examine these new features to demarcate the toolkit.

3.3.1 Language elements

»Definition
Objects in Oracle are defined in two steps :

1. define the public methods and attributes of the object
2. define the methods body and additional methods

Create type customer as object (
_age integer,

gender char,

MEMBER function age() return integer
);

Create type BODY customer as (
MEMBER function age() return integer is
begin
return _age;
end;

»Creation & Storage of Objects

In PL/SQL, objects can be created using :
DECLARE ¢ Customer;
begin

c := customer (23, ‘m’');
end;

The object ¢ is valid inside this BEGIN/END scope, the constructor is system-generated and cannot be
edited.

Objects must be explicitly stored in Object-Tables :

CREATE TABLE Customer_t OF Customer;
Or as columns in a regular table :

CREATE TABLE Order_t (

orderid integer
customer Customer) ;

Data Distilleries,
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insert into Customer_t values (c);
—or-

insert into Order_t values (‘'E546’, customer (20, 'm’));

Objects stored in an object-table are called row-objects. They have a unique, immutable identifier called
an object identifier. Objects appearing only in table columns or as attributes are called column-objects.

»Collection types

These are special container-types which can hold sets of any user-defined type. We have two types :
bounded ad unbounded collections.

1. CREATE TYPE cust_col_fix as VARRY(20.000) of Customer
2. CREATE TYPE cust_col_var as TABLE of Customer

The first can hold as many elements as specified on declaration, the second can grow ‘unlimited’.
»Comparison

The standard SQL comparison operators ( =, <, >, <=, >=) can be overloaded to handle the defined object.
Functions have to be implemented to enable Oracle to compare the objects.

»Sharing objects

A built-in data type, called REF, allows to share an object. A REF is a pointer to an object.

CREATE TYPE Order (
orderid integer
customer REF Customer) ;

it is possible that the object of a REF becomes unavailable, through deletion of the object or a change in
privileges. This situation is called DANGLING and can be checked from SQL (IS DANGLING-predicate)

»Inheritance
In this release, inheritance is not supported
»Overloading

Overloading is defined here as distinguishing methods on the basis of their formal and actual parameter
list. Functions and procedures with the same name and different parameter-lists are supported.

Data Distilleries,
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>Limitations
% Private attributes are not supported.

% Private methods not are supported

® Creation of REFS is embedded in SQL:

» Select REF (p) into cref from customer_t p where p.id=id;
% This implies that you can only have REF to an object stored in an object-table.

% Dereferencing REFS is also embedded in SQL

» Select DEREF(cref) into ¢ from dual;

% Nested collections are NOT supported. This means that whenever an object type has a collection-
attribute, it cannot be stored in a different collection.

pe: ]

Changes to a stored object are not reflected in the object-table until you use the update-staternent.

» Update Order_t p
Set set p.customer = cref
Where p.order_id = ‘E246°

3.3.2 Application Interfaces

There are various application-interfaces to Oracle : Oracle Call Interface (OCI), RPC from PL/SQL, and
Pro*C- and Pro*Cobol- precompilers. Also there is a standard package called DBMS_PIPE for
communication through named pipes. Maybe this can also be used to communicate with the Mserver.

Regarding performance, only three of all interfaces will be discussed here : OCI, RPC from PL/SQ, and
the DBMS_PIPE package.

»RPC from PL/SQL

From PL/SQL it is possible to invoke procedures implemented in another 3GL language through a Remote
Procedure Call (RPC). This procedure has to be stored in an external library. When an external procedure
is called, PL/SQL alerts a listener process, which in turn launches a session-specific agent called extproc.
The listener hands over the connection to extproc. PL/SQL passes to extproc the name of the shared
library, the name of the procedure, and any parameters passed in by the caller. Then extproc loads the
shared-library and runs the external procedure. Also, extproc handles service calls, (such as raising an

exception) and callbacks to the Oracle-server. Finally, extproc passes to PL/SQL any values returned by
the external procedure.

However, as we see, this communication generates a lot of overhead, which will affect performance.
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»DBMS_PIPE - package

This pre-fabricated package from Oracle allows you to communicate with another process through a
named pipe. However, this DBMS-PIPE -package is not implemented using the UNIX named pipe
mechanism. The UNIX-Pipe could be used for communication with the Monet server. There could be a
workaround (still use the UNIX Pipe) by doing a UNIX-system call, but I did only see a possibility doing
this with the PRO*C-interface, not with PL/SQL. From PL/SQL, using the pipe-mechanism would result
in an Rpe-call which of course can read and write from a named-pipe, but now we do not avoid the
overhead with the extproc agent. Also, Monet has to be extended to handle named pipes.

»>0CI

The OCI is an Application Programming Interface(API) that allows to manipulate data and schemas in an
Oracle database from outside Oracle. It is a C-interface, and it is the most direct way to communicate with
Oracle : little overhead is generated. It is used for the creation and transport of the data vectors.

3.3.3 Oracle API-Overview

Below, the relevant Oracle API are shown together:

TCP/TP
Oracle8 PL/SQL > Listener
A 3
R y
e extproc
TCP/TP .
A 4
Shared library
0Cl R
Oracle Space External Space

3.3.4 Data cartridges

Creating a data cartridge is using the object-relational features to add a new data type to the database.
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4. Analysis

When designing an interface, it is useful to separate between functional behavior of the interface, and
technically problems to solve considering the implementation details of the data vectors, Oracle
limitations and the communication with the MB engine. Also, The queries of the DD benchmark will be
characterized to gain more insight in the desired functionality. Decisions like the actual look of the
interface on the level of individual functions and their effect will be made during implementation.

4.1 Functional analysis

4.1.1 Requirements

e Simple
As a starting observation, I see that it is a big step from the Row-based Thinking (Oracle) to the
column-based thinking in Monet. A part of the processing speed of Monet is smart programming in
the Monet Interface Language (MIL) which requires a strong developed column-based point of view.

One requirement for dvml is hide unnecessary complications for the Oracle-programmer. To do this, we

need in specific cases to design primitives with which you can do several MIL operations in one
statement.

4.1.2 DD benchmark

The DDB is executed in 5 batches. After the first 2 batches, Data Surveyor starts interacting and
formulating hypothesis (selections) to restrict the maximal width of the beamsearch.

Batch 0:

Basic groupings for each attribute, 6 groupings are computed
Batch 1:

Extend these groupings with a grouping on the target-attribute (reliable)
7 cubes (including aggregations) are computed on 100% of the database

» From now, we only deal with data cubes

Batch 2:
DS starts formulating hypothesis as selections on one attribute.

All promising cubes from batch 1 are restricted with the selections and re-computed.
50 cubes (including aggregations) are re-computed on 30% of the database

Batch 3:
First eliminate non-promising subgroups. The hypothesis is now a selection on 2 attributes, an
extension (and) of the selections of Batch 2. The selection of Batch 2 is reused and joined with
the extra selection. Batch 2 or 1 is not reused, Batch 0 is reused.
40 cubes (including aggregations) are computed on 15% of the database.
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Batch 4:

Further extension of selections applied in Batch3. The selection of Batch 3 is reused and joined
with the extra selection. CT’s from Batch 2 or 1 are not reused, Batch 0 is reused.
30 cubes (including aggregations) are computed, on 8% of the database

Summary

The groupings from batch 0 are not inspected, but they are reused

After batch, we only have data cubes

The ten most promising cubes from every batch are further restricted with selections (hypothesis)
Only 2-dimensional cubes are constructed

After the first grouping, the second grouping-attribute is always the same (reliable)

a cube is never restricted (selected) with a grouping attribute

4.1.3 Functional requirements

From above I would like the following functionalities covered by the interface:

I would like to enable the programmer to:

Create data vectors

Construct data cubes

Construct restricted data cubes

Specify the aggregate-function used for the cube
Observe the various aggregate-values of a data cube
Store computed cubes

Things I would like to hide are

Aspects considering the MB engine and the Monet-server.
Oids, voids and enumeration (Monet-specific!)

The path from a just computed cube [oid, int], to the actual values [any, int] with their aggregates
I would like to present a data cube like a regular table.

optimal processing considerations
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4.2 Technical analysis

All actual processing of the data vectors will be done on a hidden Monet server. In Oracle, only optimized
storage of the DVS will be implemented. On demand, from the interface, DVS will be created in Oracle
and transported to Monet to be processed there. The interface will send MIL.-commands that will
manipulate the BATS there. These MIL-commands could be composed optimal. On demand, again from
the interface, the processed DVS for inspection. Therefore, the mapping between the Oracle DV and
Monet-BAT is important. Being able to do the above, administration is required. Monet will be extended
with a transport module with functions like ‘get_bat’ and ‘put_bat’ to transport the DVS between the two
processes. To enable Monet to resolve the grouped BATS ([oid, 0id]!) to combinations of values
additional administration is required. Another technically item could be ¢ Multi-batch query optimization
‘. This is complex optimization that relies on re-use of former computed cubes, over multiple batches.

4.2.1 Needs for Administration

» Creation of internal data vectors.

DVS are created on demand, and we want this to be transparent for the end user. This requires an
administration of available internal DVS. This administration should be hidden behind the interface.

» Creation of interface-objects.

The objects created in the interface should be stored centrally as well, to know what we have, and to be
able to share the objects.

5> Path to a cube.

In MIL a BAT is meaningless if you do not know which operations are performed on it. Hence, all

operations on a DV should be administrated in the interface to be passed to Monet the moment we want to
store the cube.

4.2.2 Optimal processing

First we will show how DS delivers its hypothesis to MB interface, and what optimizations can be
achieved here.

For example, suppose DS delivers the following request for the MB interface:
DS: Dear Mining booster, Please calculate for me:

Cube (<no selection>, {age, gender), count);

Cube (town=amsterdam, {age, gender}, count);

Cube (town=rotterdam, {town, gender}, count);

Cube (town=rotterdam && age <40, {town, gender}, count);

Cube (town=amsterdam && age <35, {zipcode, gender}, count);

Cube (town=rotterdam && age < 60 and age > 35, {zipcode, gender},
count) ;

All of these cubes are normally computed with MIL statements like :
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age_ct := age.group();

females := gender.select(‘f’);
alt 1 : fem_ age_ct := age_ct.semijoin(fem):
fem_age_ct_reliable := fem_age_ct.group(reliable);
alt 2 : fem age_ct_reliable := age_ct.subgroup(reliable, females) ;

where alternative 2 compresses all two statements of alternative 1 into one.

In the DD benchmark, age_ct is already computed in batch 0, and therefore can (and is) reused using
alternative 2 from above. However, age_ct_reliable is computed (batch1) ! It is tempting to
introduce a third alternative

alt 3 : fem_age_ct_reliable := age_ct_reliable.semijoin (females)

Just semijoining with females means not having to recompute the second grouping on reliable! Lets see
what happens if we do this for just one grouping:

age_ct := age.group ( ) : fem := gender.select(‘f ') ;
age age_ct gender fem
020 010 0 lm 1
1122 1 1 1 f 2
2120 210 2
fem_age_ct
fem_age_ct := age_ct.semijoin(fem); ] 1
210

Remember that;

> Grouping creates group-ids in the tail-column
> Semijoining returns those elements from the first BAT with the same head as the second BAT
»  Resolving group-ids to values is achieved by use of the join-operator

If we resolve the group-ids (tail-column) of fem_age_ct with the original gender-bat we discover that a
person of 22 years has changed its sex! Reason for this is that oid (0) was (and always is) an element of
the original grouping (age_ct) We also see that groupid (0) appears at position 2 as well. But oid (0) is not
female ! Thus, when resolving using the Jjoin-operator, we corrupt the data !

Of course, problems like this are solvable in MIL :

fem_val := fem_age_ct.join (fem_age_ct.reverse.join{gender) );

however, the DS mining engine, in general knows which hypothesis it generates, therefore it does not
need to resolve this dangerous values. For the interface, this means additional administration.

Note that, when speaking of performance, the group-operation also counts the members of each group.
Hence, when using the count(*) aggregate function, the counting is done while grouping. When
semijoining a grouping, the registered counts do not longer correct: the count requires an extra
computation. Tests have showed that recomputing the grouping is little faster then first semijoining and
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then computing counts of group members. However, when using a different aggregate the semijoin is
*much* faster. Therefore, the most generic solution might be the semijoin.

4.2.2.1 Multi batch query optimization

MBQO is a complex area, which is relatively new, also with DD.
Decisions for reuse are distinctive in two ways:

1. When can a cube be reused, and when not
2.  Which cubes are useful to keep, and which are not

Considering point 1:

When computing N-dimensional cubes, one would be looking for cubes that are grouped on a subset of the

grouping-attributes of the cube to compute. Then, if a match is found, one could re-use this cube.
For example :

Suppose we have cube_n available
grouped on gender, age, town

And we get the request for cube_m
grouped on : town, age, zipcode, gender, and reliable

then we could
group cube_n on zipcode and reliable to get the desired result

I see the optimizer here as a process, scanning available cubes for their components.

Point two is more difficult:

I would think that the lowest-dimensional cubes are the ones that are the most frequently re-used. When a
cube is restricted, its reusability lowers, but its size (and its memory-load) also. The question for reusing

this cube also depends on the mining-algorithm used : what is the probability that a cube-request, similar
than this one will occur in the future ?

¢ When the optimizer is embedded in the MB, the administration has to be done in PL, as this is the
place where all information is available. The scanner will be using Oracle tables and Oracle data type-
functions for comparing attribute-values. As the number of available cubes can be quite large, I assume
that the administration also will affect performance.

The administration needed for MBQO can now be characterized as follows

o which operations are performed on a cube.
e which cubes are available in Monet for re-use

Data Distilleries,
Company Confidential 24



4.2.3 Communication architecture

Communication consists of a control flow and a data flow. The interface will use the control flow, where
the engine will utilize the data flow. These two differ in magnitude of data-traffic : The control flow
requires few bandwidth where the data flow is a typical bulk operation. As seen in chapter 3, both Oracle
and Monet have various interfaces to the outside world. This paragraph is about choosing the right
channel for the right flow.

As the OCI interface is the most efficient, it will be used for the bulk operations. Monet will be extended
with functions like ‘GetBat” and ‘PutBat’ which will use the OCI API towards Oracle. For the control
flow, OCT is out of the question. It is a C-interface, therefore it cannot be used directly from PL. It is also
not appropriate, as OCI is defined as a set of functions to access Oracle-data from outside Oracle. Passin g
commands does not require access to Oracle tables. The named pipe would be an appropriate channel for
the control flow, unfortunately is was not implemented using the UNIX pipes but by shared memory in the
Oracle memory space.

Therefore, we are forced to use the extproc-agent for passing commands. As Monet already has a TCP/IP
extension, TCP/IP is the most logical entrance to Monet.

Putting all channels together in one picture results in :

4.2.3.1 Overall communication diagram of the Mining Booster

TCP/TP
Oracle8 PL/SQL > Listener
A i
y
i > extproc
TCP/IP
Y
Shared library
» Tcp/lp
TCPAP Extension Monet
Oracle
OCI » Extension
Oracle Space External Space

Data Flow

----------------------- Control Flow
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5. Design

Requirements and a set of technically challenges have been inventoried in the previous chapters, but what
the interface actually looks like is not clear at all at this moment. I think this is a normal stage in the
design-process as the actual look of this interface is determined by

1. Functional requirements

®  the functional requirements are clear, this is not the problem

2. Technical possibilities / limitations of the MB Engine.

®  due to the overall development stage many implementation details are unknown

3. Object-oriented possibilities / limitations of PL/SQL

*  Having no experience available in developing with Oracle8 objects throughout Europe, here also

many things are uncertain.

5.1 design process

When I look back in the design process, I see several considerations and choices I have made. In order for
the reader to have a view on the process as a whole, I discuss my considerations for some of the above
points. At a certain point, I started implementing, and this gave a lot of input too. I finalize all this into
the implemented version of dvml. After this version, a version from DD is presented, which reflects a
greater overview of the whole MB project and its technical implications. However, from my point of view
I think I can improve this version on some points. This last — not implemented — version, is the one I am

the most satisfied with. In chapter 6, I will present an implementation proposal for this version, based on
my experiences with Oracle objects.

Let us recall the functional requirements from chapter 4, and then discuss alternatives for realizing these:

Functional requirements :

Creation of data vectors

Construction of data cubes

Computation of restricted data cubes

Specify the aggregate-function used for the cube

e Observe the various aggregate-values of a data cube
¢  Store computed cubes

Details to hide:

e  Aspects considering the MB engine and the Monet-server.

e oids, voids and enumeration (Monet-specific !)

e  The path from a just computed cube [oid, int], to the actual values [any, int] with their aggregates
I would like to present a data cube like a regular table.

e  optimal processing considerations
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5.1.5 Implementation break

Below, we see the first version being implemented

mb := MBTable('demo*, ‘customer_big2',0,0,0,1);
batch = batch(1l);
town mb.GetDV (‘town_0');

i

rel mb.GetDV ('reliable 0');
mb.build();

batch.addcube (age, rel, cnt):
batch.addcube (gender, rel, cnt);

if batch.exec then

age_rel = batch.getcube (age, rel, cnt);
gender_rel = batch.getcube (gender, rel, cnt);
end if;
females = gender.MBselect('=', 'f'});
adam = town.MBselect('=', 'Amsterdam');
fem_adam = females.MBintersect (adam);

batch.addcube (age, rel, cnt, fem_adam) ;

if batch.exec then

age_rel := batch.getcube (age, rel, cnt, fem_adam) ;
end if;

5.1.5.1 Discussion

Looking at the interface we see a new function with the MBTable : Build () . Due to an implementation
novelty of the MB engine, creating data vectors batch-wise gained performance. Placing this function with
the MBTable is a bit of an inconsistency, as optimal batch-wise processing is placed within the batch-
object. On the other hand, DVS are created through the MBTable. This inconsistency is not solvable at the
moment, but we will get back to this item later on this chapter. As we can see from the script, it is possible
to creating an intersection between two selections that are not yet computed in Monet. Releasing the
synchronicity with the selections did not raise any implementation difficulties, whatsoever. On the
contrary, DVS are also now also asynchronous, therefore why make any fuss with the getcube-function ?

fem_age_rel
fem_town_rel

batch.addcube (age, rel, cnt, females) ;
batch.addcube (town, rel, cnt, females) ;

nwon

batch.exec

can be realized using the same implementation as with the selections.
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5.1.6 New requirements, features

Implementation raised the need for additional attributes for the I0’s. This has as a consequence, that on
creation of these objects, these parameters have to be set appropriately. The constructor of an object is
system-generated and cannot be edited. To set these technical attributes appropriate I see two alternatives:

1. allowing creation of objects in the interface using the constructor. After calling the constructor, one
has to call an init-function to set the attributes appropriately.

2. only allow the MBTable and batch to be created using the constructor. The rest of the objects should
be created as a result of a function-call.

Alternative two has my preference, as it is already the case in the interface. But I think it is sensible to
establish it as a need here.

Implementation also learned that administering the information for the Multi-query-optimization inside
the batch-object is not that handy. It is more useful, and object-oriented, to administer the elements which
construct the object within the object itself. Then the optimizer could scan the already created objects
searching for parts it can reuse in the construction of a new object.

Having this in mind, one could register computation of a restricted cube like

fem_age_rel := batch.addcube (age_rel, cnt, females);

Due to time limitations, this is not implemented. Moreover, a better solution for this will evolve from the
final version of dvml.

5.2 DVML v 1.1

Now we are at the stage to present the fully-functional version of dvmnl. Note that this version allows only
execution of the DD benchmark, nothing more.

This means:

® only the “count”-aggregate is supported

¢ only the intersect-operation is implemented

¢ only two-dimensional cubes can be computed
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begin

mb = MBTable('demo’,
badge = batch(1l);
cnt = aggregate(‘count’

if mb.logon(‘obsidian’,

customer_big2',0,0,0,1);

)i

12084) then

—— Kk Kk ok ok ok ok ok ok kK Batcho khkhkkkhhkkkhkkkhkkhi

age = mb.GetDV ('age_0');
gender = mb.GetDV ('gender_0"');
mb.build () ;

—— KAk Ak K RK KKK KX Batchl LR E S E RS EEEEEREEEES
age_rel := badge.addcube (age, rel, cnt);
gender_rel := badge.addcube (gender, rel, cnt);
badge.exec
age_rel.store(‘age_rel’);
town_rel.store(‘town_rel’);

—_—— K*hAkhkhkhk kKK Batchz RS E R SRR R EREEEEREE
females := gender.MBselect('=', 'f');
fem_age_rel = badge.addcube (age, rel, cnt, females);
fem_town_rel = badge.addcube (town, rel, cnt, females);
badge.exec
fem_age_rel.store(‘'fem_age_rel’);
fem_town_rel.store('fem_town_rel’);

—— e KA R A A A KK A K Batch3 Fhhkkkhhkhkhkhkhhkhhhhk
adam = town.MBselect('=', 'Amsterdam');
fem_ adam = females.MBintersect (adam);
fem_adam_age_rel = badge.addcube (age, rel, cnt, fem_adam);
badge.exec
fem_adam_age_rel.store (‘fem_adam_age_rel');

———— e KRRk kA KA KKK Batch4 khkhhhkhkkdkhkhkhkhhkdkkkx
young = age.MBselect('between', '20', '35');

young_fem_adam = young

married_fem_adam_age_rel
badge.addcube (spend

badge.exec
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young_fem_adam_rel.store(‘young_fem_adam rel’);

end 1f;
mb.logoff () ;
end;

/

5.2.1 Discussion

Let us check coverage of the functional requirements from the analysis

v

v

Creation of data vectors

Yes

Construction of data cubes

Yes

Computation of restricted data cubes
Yes

Specify the aggregate-function used for the cube
Yes

Store computed cubes
Yes

Observe the various aggregate-values of a data cube
It can be done, but the user has to go on manual by first storing the cube as an Oracle table,
And then use SQL to retrieve the subset of the cube it is interested in. E.g.

Select * from age_rel where rel = ‘vyes’

Thus, it is possible, but it is not in the interface.

We proceed, with the details to hide :

v

Aspects considering the MB engine and the Monet-server.

The awareness of remote interaction is reduced to logging on and off to a specific host/port,
and a ‘Build’-function, which builds the DVS all at once.

oids, voids, and enumeration (Monet specific !)

These technical issues are not present in the interface

The path from a just computed cube to the actual values with their aggregates

The user is not aware of getting back to values. It simply calls the ‘store’-function

I would like to present a data cube like a regular table.

Achieved.

optimal processing considerations

optimal processing is reduced to usage of the batch-object. I consider this minimal enough.
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gb.cache (10, age ‘between’, '32', ‘24')
gb.cache (10, zipcode ‘<’, ‘60007)

5.4 DVML version 1.2

Comments from the previous paragraph can be collected in a interface-proposal.

During design, I had growing difficulties with the batch-object. Creating the objects via the batch-object is
not very intuitive. Adding elements to it feels clumsy to me. Also when checking the NIAM one can see I
is not very integrated with the rest of the interface. Technical reasons proposed the solution with the batch
object and announcing computation or storage of a cube to the batch object. After all, Administration is
required to create an overview of which objects have to be created, in able to do optimizations. At the end
of this project, I see an implementation possibility of removing the batch-object as an explicit object, to
which a computation has to be announced, and still keep the possibility of doing the multi-query
optimizations. The implementation possibilities will be presented at the end of chapter 6, for now I only
present the look of this version, and will discuss its functionality.

begin

mb = MBooster (‘scott’, ‘customer’, 0, 0, 0, 0);
cnt := MB_aggr{‘count’, NULL);

avg := MB_aggr(‘avg'’, ‘age_0');

if mb.logon (obsidian, 12084) then

age/ = mb.GetDV(‘age_0');

gender = mb.GetDV(‘gender_0"');

town = mb.GetDV(’'town_0"');

martial = mb.GetDV(’'marital_0');

reliable = mb.GetDV(‘reliable_0');

mb.build ( );

age_rel := age.combine(reliable);

age_rel .aggregate (‘table’, ‘age_rel_counts’, cnt);

age_rel.aggregate(‘file’, /var/tmp/age_rel_avg.asc’, avg);

age_marital_rel ' := age_rel.refine (marital )
age_marital_rel.agregate(‘table’, ‘age_marital_rel_counts’, cnt):
mb.cache (10, reliable, ‘=, ‘y’)

mb.process ( );

-- when mining on-line: inspect the results, generate the next
lines of code

adam := town.MBSelect (‘amsterdam’);
married marital .MBSelect (‘married’):
married_adam adam. intersect (married);

1l

adam_married_age_rel := age_rel.restrict( married_adam );
adam_married_age_rel.aggregate

(‘table’, ‘adam_married_age_rel_counts’, cnt);
adam_married_age_rel.

aggregate(‘table’, ‘adam_married_age_rel_avg’, avg) ;
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adam_married_age_rel.aggregate
(‘table’, ‘adam_married_age_rel_counts’, cnt);
adam_married_age_rel.
aggregate(‘table’, ‘adam_married_age_rel_avg’', avg);

mb.cache (10, reliable, ‘=', ‘y’)

mb.process ( );

-- inspect the results
end if;
mb.logoff ( );
end;

5.4.1 Discussion

In my opinion, the overall look of the interface is more consistent. The object is told what to do, and the
rest is handled by the MBooster. Creating DVS, building and also processing them. The build-function is
maintained because it increases the size of the database. We can create our objects in any order the syntax
allows us, and in the quantity only limited by the size of our main memory! With an extra cache-option -
‘no cache’- even this restriction could disappear. After storage of a cube, it can be destroyed instantly.
Note that checking this option will disable reusability of cubes. We have the flexibility of reusing the same
grouping for different aggregates visible at the outside, which will inspire people to explore this feature: it
increases flexibility. Maybe this interface could even be connected with a (to develop) mining cartridge,
which can generate new DVML-statements after execution of each batch. Then caching could also be
regulated from there.

However, the latter subjects are out of the scope of my project. My project was defining and implementing
an interface, using Oracle8 objects, for bringing Monet-performance inside Oracle.

Milestone was running the DD Benchmark. It is achieved, including recommendations for a next version
of the interface.

Data Distilleries,
Company Confidential 36



6. Implementation

Here the implementation from DVML v1.1 will be described as this is the fully-functional version of
dvml. This chapter is best read, accompanied by the Mx-document supplied with this report. Mx is a code-
documentation-tool used at DD. It enables, by usage of tags, source-code and technical documentation to
placed in one file. This file can then be exported to e.g. HTML or Latex — format to be printed or browsed.
This chapter starts, with the data model, followed by a paragraph on mapping to Monet and integration
with the MB engine. Hereafter, the PL/SQL-part of the interface is discussed. We proceed with a
paragraph on the developed communication cartridge, which enables the communication with Monet and

the MB engine. We conclude this chapter with an implementation proposal for an ‘sellable’ version of
DVML.

6.1 Mapping & Interaction

As the Oracle internal storage of the DVS is quite complex (due to optimizations) I choose to separate the
‘interface’ data vector from the internal data vector. This means that the interface DV is a separate object
from the internal DV. This approach also enables me to work separately from Marco and implement
integration later. Definition of a solid mapping between I0’s and MO’s has priority one at this moment,
accompanied by a description of the interaction with the MB engine.

Cube-computation is achieved by sending MIL-code to the Monet server. To enable this, a communication
cartridge is developed. Because the MILstrings are composed inside Oracle, it is here where the names of
the used Monet-variables should be known. As the IO’s itself also need a unique identifier, I chose to use
this same identifier, a unique name, to be the mapping. As I keep inside each IO an administration of all
I0’s involved in its creation, composing the MILstrings now simplifies to pasting the names of the
involved 10’s into the MIL-syntax.

name
Monet
Oracle
name
Y
' Cube l
(o)
A
Sel
A
7 columnname Fieure:
name Mapping berween
Interface-objects &
Monet BATS

Now only remains the challenge of transporting data vectors to Monet, and transporting freshly computed
cubes back to Oracle to be inspected. Solution for this challenge came from the MB engine.
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During development, a monet-extensionmodule is developed containing the following functions :

logon ( ..parameters ..) : session
-~ logs on to the mining booster for the specified database & mining
table

fetchbats ( .. column-list ..) : BAT
-- creates and fetches all specified data vectors

put_bat_booster (..<ownername>, <tablename>, <src-BAT><involved BATS > .. )
-- src BAT is the cube

-~ involved BATS are the value-DVs the cube is grouped on

-~ the function-call results in an Oracle-table which lists all
discovered combinations, with their aggregate-values

Having this available, all communication reduces to sending the correct MILstrings at the right moment.

6.2 PL/SQL part

Starting with conclusions on possibilities of object oriented programming in Oracle8, an overall code-
setup overview will be presented. Hereafter for each object, the technical implementation possibilities and
choices will be discussed.

6.2.1 Objects in Oracle8

a) In Oracle8 you can create ‘objects’ containing attributes and member functions.

b) You can access this attributes and members by ‘dot’ notation.

¢) Creation of an object is achieved by calling a system-generated constructor-function, who simply
takes all attributes as a parameter. This constructor cannot be edited.

d) List attributes are possible through collection types. One can define a VARRAY of <object-type> or a
TABLE OF <object-type> as a separate type, and then declare an attribute of this type. Unfortunately,
these collections cannot be nested, which reduces their usability a *lot*

e) Storing objects is possible in so called object-tables

f) Keeping the objects up-to-date with the object-table is left to the programmer (UPDATE-statement)

g) Sharing objects (REF-type) means sharing the table entry of the object

h) Dereferencing REFS is embedded in SQL (VALUE, REF, and DEREF-operators), not by ‘dot’
notation

in this release,

e private members or attributes are not supported
¢ inheritance is not supported

Now, how to deal with this ‘object-relational’ approach:

Experimenting with point f) from above, it became clear to me that Oracle8 objects were an interface on
top of a regular RDBMS-approach. Sharing objects is not implemented by shared memory. Now I can see
3 possibilities of dealing with this:

1. Do not use REFS, or objects as attributes of an object, use unique identifiers instead.
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2. Use REFS. All of its syntactic ugliness of can be hidden behind the interface as long as every object
containing REF-attributes is created as a result of a functioncall. Take the select-statements as it is.

3. Do not use REFS, but use object-attributes instead. If the objects are kept small, the size of an object
with object-attributes will not increase too much. And one can use dot-notation.

Each of the above alternatives requires use of get/set-functions to access and change attributes that change
value during the lifetime of an object. These functions can then encapsulate the select and update-
statements. They all also have their individual advantages/disadvantages:

6.2.1.1 Alternative 1

Advantage:
I enables you to identify an attribute of an object without explicit (and implicit ) use of SQL.
When the object is needed, you can use SQL explicitly. This sounds good considering
performance.

Disadvantage :
It shuts you of from future improvements in the syntax. One should also rewrite the sourcecode if
objects suddenly are implemented using shared memory. However, I consider the latter unlikely.
(e.g. being able to use objects is an option when starting Oracle)

6.2.1.2 Alternative 2

Advantage:

One profits from future implementation improvements of the selects needed when dereferencing
the REFS.

Disadvantage:

- I see many, many select-statements passing by when derferencing REFS. It cannot perform.
However, I have not tested it exhaustive. Also the difficult creation of REFS obliges you to use
~functions.

6.2.1.3 Alternative 3

Advantage:

It produces good sourcecode. Using dot-notation. One should use as much functions as possible
(instead of storing data), there a function-definition is stored only once: with the object-
definition.

Disadvantage:
One cannot have mutual dependencies between objects.

I'do not discuss hybrid constructions of these three alternatives, but I want to point out that still many
administration in a * bit of an’ object-scheme has to be done in global accessible SQL-tables, as collections
cannot be nested. Hence, safe object-oriented programming is out of the question.

In my implementation, for safety reasons, I decided to use the object-features just to give the interface an
object-feel. Inside the interface, I decided to use PL/SQL where it is designed for, to manipulate SQL-
tables in a procedural approach. After
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<create selections> <create cube> <make cube persistent>

Example :
Let’s suppose :
- the cube (town, reliable, “count”, old_females) is added to the batch
- the grouped version of town is called dvl
- the selection ‘old’ is already present in Monet, and is called sell
- the new name of the cube is cube5

Then, the MILcode consists of the following parts :
<create selections>

-- sell(old people) is already present in Monet, thus not computed again
sel2 := gender_0.uselect(‘'f’); -creationstring of females
sell3 := sell.semijoin(sel2); -- creationstring of old females

<create the cube>

cubeb5 := dvl.subgroup(reliable_0, sel3);

-- this is the creationstring of cube5

-- dvl is the grouped DV from the column town_0

-- reliable_0 is the value DV from the column reliable_0

<make the cube persistent>

-- this is only done if mbtable.debug is set to one

cube5.rename (“cube5”) ; -- to materialize the mapping between the 10 and the BAT
cube5.persists (true);

6.3.5 MBTable

Central name-generation

The function new_name takes a prefix as an input-parameter, and returns this same prefix, with a number
attached to it. Allowed prefixes are ‘sel’, ‘cube’, and ‘dv’.

Depending on the prefix, the corresponding counter is incremented, and this update is of course prolonged
to the object-table.

Build

This procedure calls the multi-bat-creation function get_booster_bats from the Module Booster in Monet.
This function needs some identification parameters and all columnnames from which we want to create
data vectors. These columnnames are available from the DV-object. Result of the get_booster_bats
function is creation and transport of the specified data vectors, and a mapping-bat called ‘all_bats’. (When
transported to Monet, the data vectors still have names like tmp_142, tmp_135 etc. The mapping bat
contains the mapping between the tmp-names and the columnnames)

Thus, to materialize the intended mapping between Oracle- data vectors, and the Monet-bats, some action
is required. I want :

- the value-BAT to be renamed to <columnname>
- the value BAT to be grouped to a BAT named DVname
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To achieve this I collect the renamestring and the groupingstring from all created DVS, and sends them to

Monet just after the call to get_booster_bats. These grouping- and renamestrings are set in the function
GetDV().

GetDV

This function does a check if a data vector with the same columnname is already created in the interface
if not, it creates the data vector-object. As pointed out above, when transported to Monet, this DV needs to
renamed to a BAT named <columnname>and grouped to a BAT named <DVname> to ensure consistent
mapping between the IO and the Monet-objects. Seen from Oracle, we only know the name (“all_bats”) of
the mapping ~-BAT which contains the mapping between the columnname, and the BAT with the data. I,

of course want to rename and group the BATS by sending MILstrings. Monet is equipped for such a
problem. In the module BAT we encounter the perfect function for this:

find (BAT src, str name) : BAT

which searches in the head-column of the BAT src for the string name and returns the BAT from the tail-
column. Apparently is leaving mapping-BATS a standard mechanism from Monet. Knowing of the find-
function, the MILstring is easily composed to :

all_bats.find(“<columnname>") .rename (“<columnname>") ;

and after this, the groupingstring is even simpler

<DVname> := columnname.CTgroup{ );

After composing these MILstrings, the DV-object is created, and asked to insert itself into the data vector-
table. Hereafter, the IO is returned as a functionresult.
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6.4 the communication cartridge

All interaction with Monet and the MB engine is initiated by sending MILstrings to the Monet server. To
send MILstrings, I chose to develop a simple communication-object, containing one function :
sendcommand (<commandstring>)

Embedding this function is a separate communication-object enlarges of course its usability in the
interface. First I will describe implementation choices for the function sendcommand. Hereafter I
construct the object to be functional in the interface.

6.4.1 sendcommand

As pointed out in the analysis, the communication channel should be TCP/IP. Within TCP/IP there are
two choices.

1. Monet provides the extension-module tcpip. This module is intended for Monet-Servers to

communicate, and exchange data. sending MILstrings is possible, but syntactically different from
‘normal’ MlLcode

2. When a Monet-server is running, it listens on a standard port for clients to connect. For each client
connecting to this port a separate context is created, thus freeing it from all concurrency-problems.
The Mclient-interface is used by for the Mclient program to open a console-session on the Monet-
server. Mclient provides a more user-friendly interaction with facilities like command-history etc...
The protocol for a session like this is of course regular MIL followed by a newline-character.

The second choice is the most suitable for me to use.

After thorough investigation, the complete protocol for the Mclient interface turned out to be :

logon with <username>\n

send MIL-command(s) \n

read the response from the Monet —interpreter from the same channel ( terminated by \001 )
read the prompt Monet presents to the Mclient-program. ( terminated by 001’ )

B

Now we have established the communication channel, chose the most suitable interface, and figured out
the exact protocol, we can point out the necessary steps for sending one MILstring to Monet.

1. open the socket to the specified host and portnumber
2. write the command in the socket

3. read the response from the socket
4

5

read the prompt from the socket
1M

Ending up at point 5 we encounter a problem in the Monet-communication :once we have send a
command to Monet, we are through for this functioncall. What happens next? The connection with Monet
should remain open in order to preserver the current context.
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How does Oracle handle functioncalls to an external library exactly? Let us recall some information from
the context chapter.

When calling an external procedure, the listener activates a session-specific agent called extproc.. This
agent. loads the specified library from disk, and executes the function. After the function terminates,
extproc hands over the control back to Oracle. Extproc remains active throughout the Oracle session.
When the Oracle session terminates, extproc is killed

One could expect to find all variables unchanged when recalling the external function. In this case there
would be no problem and we could write the same socket again. Tests showed that indeed, the
extprocagent remained active after the PL/SQL program was finished. The Monet-connection also
remained open after execution of the PL/SQL program. Unfortunately, all variables were re-initialized
upon each functioncall. Apparently the library is refreshed, or re-initialized when called again.

The positive point is that the Monet-connection remains open after the external function terminates,
otherwise an old facility of Monet had to be re-installed which enables terminating, and re-entering a
Monet-session. For now, a sufficient solution is to transport the socketnumber back to Oracle, and with
the next functioncall pass it as a parameter. With the first command (mlogon) a zero could be passed.
This construction enables re-use of the socket.

6.4.2 Structuring the communication cartridge

After this technical issue, let us assemble the parts together to a usable communication cartridge.

An external function is never a member of an object. Oracle does not allow it. An external function is
installed under a user-id. The communication cartridge is user of this function. Its memberfunction
sendcommand calls the external function with the appropriate parameters. My idea is to store the socket
number, along with hostname and portnumber inside the communication object. Then when
sendcommand calls the external function, it could pass “self.hostname”, “self.portnumber”,
“self.socketnumber” as a parameter. The socketnumber, which is returned by the external function, could
then be updated in the communication-object to be re-used with the next functioncall.

In my opinion, the communication-object is now fully customizable on creation, and ready for usage in the

interface.

6.4.3 Integration in the interface

In the logon-function of MBTable, the communication-object is created. Hostname and portnumber can be
intuitive parameters for the logon function of MBTable. Now, initiating the contact with Monet is reduced
to calling ‘mbtable.logon(hostname, portnumber)’;

6.5 debugging facilities

The debugging facilities consist of :

» PL/SQL output, which gives information on the objects being created

> ASCH-output on std-out on the oracle-server, which gives information on the MIL-code being
executed, and the response of the Mserver to it.

»  All created objects can be saved to be inspected from the console
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All these three options are triggered by one attribute of MBTable. PL/SQL-output can be disabled
manually by putting a statement * DBMS_OUTPUT.DISABLE’ after the logon function.

Sending the MIL-code that saves the objects cannot be disabled manually, but it is not tightly integrated in
the code.

6.6 Implementation proposal DVML 1.2

In this chapter I will describe the implementation possibilities of DVML 1.2. T will take the
implementation of v1.1 as departure, describe how this can be improved, and fitted into the new look of
version 1.2.

Advantage of the current implementation is that every object in the interface knows how to create itself in
Monet. This makes the interface very flexible in the sense of ‘loose* order of creation, because every
object also knows weather it is available in Monet.

6.6.1 Process-function

Considering announcement of the cube for processing in the next batch, we have two options:

1. We could add for each object the knowledge if it has to be processed in the next batch, a
‘compute_on_next_call’-attribute. Then the process function needs a view on the object-table
with all cubes to compute.

2. Also we could maintain the current insert of an identifier in a separate table, and hide it behind the
interface.

Order of execution is not an issue. If one of the components of a cube is not yet created, the Booster just
takes the components creationstring and creates the object on-the-fly ! (and sets the presence-attribute to
one, to make sure the component is not created twice ) This can all be achieved using the same algorithm
currently implemented in the function ‘getcreationstrings’, located in the batch-object. The optimizer
could also set these creationstrings appropriate for the current batch- and cache population.

6.6.2 Cache-function

Choosing between the above two alternatives will also influence the implementation of the cache-function:
It needs, after execution of the batch, knowledge about which cubes to examine for aggregate-values. Then
it is able to leave the top N, and destroy the rest. This can be achieved with both alternatives of the
previous paragraph. Examining the cube-tables can be done with SQL. The aggregated cube-tables will in
general not be that large, but this depends on the data. Otherwise one should think of returning a sort of
ranking-score from Monet.

6.6.3 Aggregate-function

Being able to read from the cube which aggregate-function to use, and to which destination the aggregated
cube should be stored, obliges us to extend the cube with an extra attribute : the aggregate.

extra NIAM voor cube met aggregate-extensie (type, name)
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6.6.4 Optimizer

Considering the optimizer, I think the choice between REFS and names is won by the REFS . REFS can
be dereferenced from SQL. Hence, when scanning the objects for parts to reuse, we could use SQL. How
this performs, depends on the implementation of Oracle on this, but a BIG toolkit is available for tuning
this process. To implement the optimizer in PL, one needs unique variable names to map to in Monet.
E.g. suppose we need to create :

1. Cube(age, gender, zipcode, reliable) and
2. Cube (age, gender, zipcode, town)

And we have thrown away
3. Cube (age, gender, zipcode)
Which could reuse
4. Cube (age, gender), which is still available

It makes sense to first create 3 from 4 and then use 3 to create 1 and 2.

This could be hacked in the MILcode as well, but this would be less controllable than this solution.

One could even think of creating a shadow-administration, in the case the user only computes cubes not
that suitable for re-use (selected on many attributes)

Note that creationstring could be stored more efficient, by returning it as a function-result. This is because
function-definitions are stored only once, in the object-definition, and no with each object again, like
attributes. This string is not trivial in all cases, certainly not if the optimizer will be implemented as
setting these strings based on the current batch-and cache-population.
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7. Conclusions

Version 1.1 of dvml is implemented, which provided me with sufficient background to propose version
1.2, which absract further from the original MILcode. For my own feeling the demanded functionality is
present, and more. We can speak of cubes, the terminologie of the field, and this will lower the learning
curve users of this interfece have to go through. Also, the possibility of connecting to another data
cartridge, a mining cartridge, is mentioned, and, in my opinion, very implementable. This ensures tight
integration in the current software-architecture of the Data Surveyor suite, which is a good result. I am
sure this was the purpose of this cartridge, but discovering it myself at the end of the project was a big

pleasure for me. This was a hard project, the learning curve with DD is steep and long, but I finish it with
a feeling of satisfaction.
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8. Glossary

8.1 List of abbreviations:

DD
DDB
DS
CWI
RDBMS
OLTP
SQL
PL/SQL
OLAP
MB
BAT

MIL

D
DVML
DV
DVS
10

MO
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Data Distilleries

Drill Down Benchmark

Data Surveyor

Centrum voor Wiskunde en Informatica
Relational Database Management System
On Line Transaction Procesing
Structured Query Language
Procedural Structured Query Language
On Line Analytical Processing

Mining Booster

Binary Association Table

Monet Interaction Language

[Dentifier

Data Vector Manipulation Language
Data Vector

Multiple Data Vectors

Interface Object

Monet Object
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8.2 Used, not-trivial MIL-operators:
group {(bat(oid,any]) return bat{oid, oid]

» It creates for each different value in the tail-column a new group-id. This group-id is the oid of the
first occurrence of this value. Every next occurrence of this value is marked as member of this group

group (bat[oid,o0id], batloid,any]) return bat{ocid,oid]

» This is an overloaded version of the previous group-operator. Now it looks at all different
combinations of values in the first and second argument. New group-ids for the discovered
combinations are created.

join(bat{any::1,any::2), batlany::2,any::3]) return batlany::1,any::3]

» It takes two input-BATS, joins the head of the first with the tail of the second, and returns a BAT
with their joint elements (based on the any::2 - column).

semijoin (batlany::1,any::2], batlany::1,any]) return batlany::1,any::2]

» returns the original BAT, but only those elements with the same head as the second BAT: i.e.
selecting one BAT with another BAT.
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10.2 the DD benchmark search space

This search space definition considers batch 3-5 of the DD benchmark where the DS mining engine

applies the beam search-strategy. It shows all branches of the beamsearch(10,3). and which branches the

DS mining-engine decides to expand further, and which not.

S [2.1] gender=female

| I [3.1] age between 30 and 45

| | |

| [ T, [4.1] marital=married

| | |

| [ T (4.2] zipcode between 7000 and 9999
; FE—— [3.2] age between 45 and 55

! |

| H— {4.3] marital=married

| |

| . [4.4] zipcode between 7000 and 9999
E A [2.2] gender=male

| ]

| A [3.3] age between 55 and 80

I P [4.5] zipcode between 7000 and 9999
NS [2.3] age between 18 and 45

| e [3.4] town=Amsterdam

| I PR [4.6] zipcode between 1000 and 3000
| O [3.5] town=Rotterdam

| | R — [4.7] zipcode between 1000 and 3000
| S SR [3.6] town=Eindhoven

B [2.4] age between 45 and 55
e [2.5] age between 55 and 80

Arommmmem [2.6] marital=single

NS [2.7] marital=married

| P [3.7] age between 19 and 25

| FU— [3.8] age between 45 and 55

| E— [3.9] gender=female

| e [4.8] zipcode between 7000 and 9999
R m— [2.8] marital=divorced

oo [2.9] zipcode between 1000 and 3000

| T [3.10] town=Amsterdam

| P [4.9] age between 60 and 100
| R [4.10] age between 45 and 55

e [2.10] zipcode between 4000 and 7000

batch 0:

7 times SELECT..FROM.. WHERE..GROUPBY on 100% of customer
batch 1:

6 times SELECT..FROM..WHERE..GROUPBY (i.e. 7-1) on 100% of customer
batch 2:

50 times SELECT..FROM..WHERE..GROUPBY (i.e. (6-1)*10) on 30% of
customer
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batch 3:
40 times SELECT..FROM..WHERE..GROUPBY (i.e. (5-1)*10) on 15% of
customer

batch 4:
30 times SELECT..FROM..WHERE..GROUPBY (i.e. (4-1)*10) on 8% of customer
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10. Appendix

10.1 NIAM : sentences for the MB-interface

Name <N> is a datavector
columnname <CN>is a datavector

Datavector <DV> has a groupingstring <GS>

Datavector <DV> has renamestring <RS>

Datavector <DV> has debugstring <DS>

Datavector <DV> belongs to MBTable <MB>

Datavector <DV> communicates through Mconnection <MC>

Name <N> is a Selection

Selection <S> is available in Monet

Selection <S> has creationstring <CS>

Selection <S> has debugstring <DS>

Selection <S> belongs to MBTable <MB>

Selection <S> communicates through Mconnection <MC>

Selection <S> is a Value-selection
Selection <S> is a Composite-selection

Value-selection <S> is a selection on datavector <DV>
Value-selection <S> has selectionvalue <SV>
Value-selection <S> has second selectionvalue <SV>
Value-selection <S> has comparison-operator <CO>

Composite-selection <S> has as left Selection <S1>
Composite-selection <S> has as right Selection <S1>
Composite-selection <S> has concatenation operator <CO>
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Name <N> is a Cube

Cube <C> has source-datavector <DV>

Cube <C> is grouped on Datavector <DV>

Cube <C> is selected with Selection <S>

Cube <C> has MBaggregate <MBA>

Cube <C> is processed in Monet

Cube <C> has creationstring <CS>

Cube <C> has debugstring <DS>

Cube <C> belongs to MBTable <MB>

Cube <C> communicates through Mconnection <MC>

Functionname <F> with DV <D> is an MBaggreagate

ownername <N> with tablename <TN> is an MBTable

MBTable <MBT> has datavector <D>

MBTable <MBT> has selection <S>

MBTable <MBT> has cube <C>

MBTable <MBT> communicates throngh Mconnection <MC>

Number <N> is a BATCH
Batch <B> has to compute cube <C>

Batch <B> communicates through Mconnection <MC>

Hostname <N> with sockernumber <SN> is an Mconection
M connection <MC> uses socket with number <N>
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10.1.1 NIAM Scheme
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10.2 the DD benchmark search space

This search space definition considers batch 3-5 of the DD benchmark where the DS mining engine

applies the beam search-strategy. It shows all branches of the beamsearch(10,3), and which branches the
DS mining-engine decides to expand further, and which not.

EE— [2.1] gender=female

[ T, [3.1] age between 30 and 45

{ | !

| | R (4.1] marital=married

| I !

[ ; PR [4.2] zipcode between 7000 and 9999
g U — [3.2] age between 45 and 55

| |

| S — {4.3] marital=married

! I

| T — (4.4] zipcode between 7000 and 9999
[ — [2.2] gender=male

| I

| . [3.3] age between 55 and 80

| R [4.5] zipcode between 7000 and 9999
R [2.3] age between 18 and 45

| R {3.4] town=Amsterdam

1 I R [4.6] zipcode between 1000 and 3000
‘ E— {3.5] town=Rotterdam

i I o [4.7] zipcode between 1000 and 3000
I E— [3.6] town=Eindhoven

ommemen [2.4] age between 45 and 55
R S—— [2.5] age between 55 and 80

e [2.6] marital=single

- [2.7] marital=married

| P, {3.7] age between 19 and 25

1 S [3.8] age between 45 and 55

( P — [3.9] gender=female

| o [4.8] zipcode between 7000 and 9999
I [2.8] marital=divorced

e — [2.9] zipcode between 1000 and 3000

| RS— [3.10] town=Amsterdam

| e [4.9] age between 60 and 100
| N [4.10] age between 45 and 55

e [2.10] zipcode between 4000 and 7000

batch 0:

7 times SELECT..FROM..WHERE. . GROUPBY on 100% of customer
batch 1:

6 times SELECT..FROM.. WHERE..GROUPBY (i.e. 7-1) on 100% of customer
batch 2:

50 times SELECT..FROM..WHERE..GROUPBY (i.e. (6-1)*10) on 30% of
customer
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batch 3:
40 times SELECT..FROM..WHERE..GROUPBY (i.e. (5-1)*10) on 15% of
customer

batch 4:
30 times SELECT..FROM.. WHERE..GROUPBY (i.e. (4-1)*10) on 8% of customer
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