

Centrum voor Wiskunde en Informatica
INS1 (databases and data mining)

Design of Peer-to-Peer Protocol
for AmbientDB

Brahmananda Sapkota

Thesis for a Master of Science Degree in Telematics

from the University of Twente,

Enschede, the Netherlands

Graduation Committee:

dr. P. A. Boncz

dr. ir. D. A. C. Quartel

ir. R. van de Meent

Enschede, the Netherlands

August, 2003

Acknowledgments

I am indebted to a number of people for their enormous support in the

completion of my master‟s thesis.

I am very grateful to Dr. Peter Boncz for supervising me during the

entire length of the project, and for providing an opportunity to carry

out this master‟s thesis at CWI. His support through review and

correction in the completion of this thesis report will be a guide to me

in constructing a scientific documentation in my future endeavors.

I would like to express my gratitude to the members of my graduation

committee, namely Dr. Ir. Dick Quartel, and Ir. Remco van de Meent

for their constructive feedback and continuous guidance not only in the

completion of this research, but also in helping me formulate a well

structured documentation of my research. A well appreciated thanks

for your time and energy in reviewing and correcting my report.

I would like to express my sincere gratitude to my parents, for

encouraging me towards the completion of my masters program, and

for guiding me in shaping the direction I chose in life. My brothers are

equally thankful for their suggestions and for carrying me through the

difficult times of filled with confusions and frustrations. I am also

thankful to my sisters for their continuous love and cares, making me

feel closer to home even when I am miles away.

I would like to thank Belinda Knol from UT for helping me with

administration, and to Matthijs Mourits from CWI for helping me with

software installations and fixing machine bugs.

Many thanks go to my friends: Hong (Jimmie) Chen, Katarzyna Wac,

Larassetyo Wibowo, G. Mamo Alemu, Maneesh Khattri, Sachendra

Shrestha, Rameshwor Shrestha, Gaurav Pradhan and Xiaobo He for

their invaluable encouragement and their support during the hard

times. Thank you all for being good friend.

Abstract

This thesis describes the result of a Masters of Science assignment at

Centrum voor Wiskunde en Informatica (CWI). This assignment has

been carried out at CWI located in Amsterdam in cooperation with the

Architecture of Distributed Systems group of the faculty of Electrical

Engineering, Mathematics and Computer Science (EEMCS) of the

University of Twente.

In this master thesis, a P2P protocol is designed for AmbientDB.

AmbientDB is an unified data management framework that aims to

provide query processing functionalities for ad-hoc network of

consumer electronic devices [22]. The ever increasingly „intelligent‟

devices can talk to each other when they are in each other‟s

neighborhood. The P2P network enabled by this project envisions a

networking protocol that extends the pure Gnutella protocol. The main

problem with the Gnutella protocol is scalability because of query

flooding. As each Gnutella query has to visit every node in the

network, the number of queries in the network increases with

increasing network size. Therefore, as the network size increases, the

query rate per node increases until it is limited by node resources,

usually network bandwidth. To avoid this problem Gnutella uses a

fixed TTL (Time To Live) and delimit the network search diameter.

This implies that the query answers located at nodes farther than TTL

hops can not be found, which leads to poor recall. In AmbientDB, we

want to provide better recall.

The main idea of the AmbientDB P2P networking protocol (Adb/NP),

designed in this research work, is to create a „good‟ overlay network of

participating nodes and minimize the average query response time. A

„good‟ overlay network created by this protocol somehow resembles

the underlying physical network and reduces possible bottlenecks.

Also, the protocol defines the roles of the participating nodes in the

network dynamically. The nodes with more resources allow the nodes

with fewer resources to transfer their data. The basic idea behind

transferring the data from lower resource nodes to the higher resource

nodes is to reduce the number of nodes that receive and process the

queries.

We evaluate our Adb/NP protocol by simulating it in the ns-2 network

simulator. We compare the performance of this protocol against that of

the pure Gnutella protocol.

Keywords: P2P systems, overlay network, super-node, simulation,

performance, query cost.

 6

Table of contents

Table of figures ... I

List of Abbreviations .. II

1. Introduction .. 1

1.1 P2P Systems ... 1

1.1.1 Types of P2P Systems .. 1

1.2 Motivation .. 2

1.3 Context ... 2

1.4 AmbientDB .. 3

1.4.1 AmbientDB Goals .. 3

1.4.2 AmbientDB Assumptions .. 3

1.4.3 AmbientDB Architecture ... 3

1.5 Objectives .. 4

1.6 Approach .. 5

2. Related Work ... 6

2.1 Overlay Network .. 6

2.2 Review of Existing P2P Architectures ... 6

2.2.1 Napster ... 7

2.2.2 Gnutella .. 7

2.2.3 KaZaA .. 8

2.2.4 FreeNet ... 9

2.2.5 CAN ... 10

2.2.6 Chord .. 11

2.2.7 OceanStore ... 12

2.2.8 Comparative Analysis of Existing P2P Architectures 13

2.3 P2P Databases .. 14

3. Problem Definition ... 16

3.1 Problem Statement ... 16

3.1.1 Goals .. 16

3.1.2 Assumptions ... 17

3.2 AmbientDB Network Structure ... 18

3.2.1 Node Structure ... 19

3.2.2 Query Processing ... 19

3.3 Formal Model ... 20

4. Protocol Design .. 22

4.1 Joining the AmbientDB Overlay ... 22

4.1.1 Super-node Selection ... 22

4.1.2 Nearest Neighbor Selection ... 23

4.2 AmbientDB Service ... 24

4.2.1 Service User ... 25

4.2.2 Service Definition .. 25

4.2.3 Usage Scenario ... 27

4.2.4 Service Behavior .. 28

4.3 AmbientDB P2P Protocol .. 30

 II

4.3.1 Low Level Service ... 30

4.4 Protocol Functions ... 31

4.4.1 Participation Administration .. 31

4.4.2 Query (Message) Exchange ... 31

4.5 Protocol Data Unit ... 32

4.5.1 PDU Types ... 32

4.5.2 Protocol Behavior .. 35

4.5.3 Error Situations .. 37

4.5.4 Complete Behavior .. 38

4.6 Addressing and Initialization ... 38

5. Simulation .. 40

5.1 Simulation Goals, Assumptions and Requirements 40

5.2 Simulation Environment .. 41

5.3 Simulation Strategy .. 41

5.3.1 Topology Creation ... 42

5.3.2 Node Initialization ... 42

5.3.3 Message Exchange ... 42

5.4 Simulation Setup .. 42

6. Evaluation .. 44

6.1 Cost Metrics ... 44

6.2 Benchmark Parameters .. 44

6.3 Simulation .. 45

6.3.1 Uniform data distribution ... 45

6.3.2 Increasing heterogeneity .. 47

7. Conclusion and Future Work ... 49

7.1 Conclusion ... 49

7.2 Future Work ... 49

8. References .. 50

9. Appendix I ... 52

10. Appendix II .. 59

10.1 Network Simulator-2 (ns-2) ... 59

10.1.1 Ns-2 Node .. 60

10.1.2 Ns-2 Link ... 61

10.1.3 Ns-2 Agent ... 62

10.1.4 Ns-2 Header ... 62

10.1.5 Otcl Library .. 62

10.2 Ns-2 extension for AmbientDB ... 62

10.2.1 C++ extension .. 62

10.2.2 Otcl extension: ns-lib.tcl .. 63

10.2.3 New Header Type .. 64

I

Table of figures

Figure 1: Example pure and hybrid P2P systems .. 2

Figure 2: AmbientDB Architecture ... 4

Figure 3: An example heterogeneous network of users .. 4

Figure 4: An example overlay network ... 6

Figure 5: Napster system ... 7

Figure 6: Gnutella System ... 8

Figure 7: KaZaA System ... 9

Figure 8: Freenet request sequence .. 10

Figure 9: CAN ID-Space (2-d) with 5 (left) and 7 nodes (right) 11

Figure 10: Chord circular ID space and routing .. 12

Figure 11: Query processing in OceanStore .. 13

Figure 12: AmbientDB Network Structure with two independent nodes 18

Figure 13: Query processing scenario .. 19

Figure 14: Neighbor circle ... 24

Figure 15: AmbientDB layered architecture. ... 24

Figure 16: AmbientDB P2P usage scenario ... 27

Figure 17: Instance of local behavior ... 29

Figure 18: Instance of remote behavior ... 29

Figure 19: Generic PDU type .. 32

Figure 20: Adb/NP protocol behavior .. 36

Figure 21: an example simulation environment ... 41

Figure 22: The AmbientDB simulation strategy .. 41

Figure 23A: A Adb/NP simulation setup ... 43

Figure 24B: the AmbientDB agent initialization ... 43

Figure 25: The ns-2 structure ... 59

Figure 26: An ns-2 class hierarchy .. 60

Figure 27: TclClass instantiation ... 60

Figure 28: ns-2 node structure ... 61

Figure 29: ns-2 link structure ... 61

Figure 30: AmbientDB agent inheritance structure ... 63

Figure 31: Node-agent relationship in ns-2 ... 63

II

List of Abbreviations

3G Third Generations

Adb/NP AmbientDB Networking Protocol

ADB AmbientDB

AmI Ambient Intelligence

CAN Content Addressable Network

CPU Central Processing Unit

CWI Centrum voor Wiskunde en Informatica

DBMS Database Management System

FTP File Transfer Protocol

ID Identity

IP Internet Protocol

P2P Peer-to-Peer

PC Personal Computer

PDA Personal Digital Assistance

PDU Protocol Data Unit

PE Protocol Entity

QP Query Processor

RDBMS Relational Database Management System

SAP Service Access Point

SDU Service Data Unit

SQL Structured query language

TCP Transmission Control Protocol

TSS Telematics Systems and Services

UDP User Datagram Protocol

VDLB Very Large Database

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

1

1. Introduction

This chapter describes P2P systems and their types, and represents the

motivation, objectives, and the structure of this thesis.

1.1 P2P Systems

The exact definition of a P2P System [1][20] is debatable. Some

describe it as an extension of traditional client/server systems and

some other describe it as a system without servers. A P2P System is a

network of nodes or peers where each node behaves both as a server

and a client. Gnutella uses the term servants, where nodes can be both

SERVers and clieNTS. Each node in the P2P systems can join and

leave the network at will.

All P2P systems, in principle, are based on three common

characteristics: resource sharing, decentralization, and self-

organization. The resources that can be shared among participating

nodes can be physical resources such as storage space, processor

cycles, and the network bandwidth or a logical resource such as the

knowledge about their neighbors. The decentralization characteristic

makes each participant autonomous in P2P system. This characteristic

makes a P2P system free of a single point of failure. As the nodes in

a P2P system are decentralized, they will self-organize themselves in

the network interacting with their reachable neighbors.

P2P systems gained a lot of attention both from the commercial and

academic fields, shortly after the introduction of the file sharing

system Napster and have already proved its potential in different

resource sharing areas:

 CPU: sharing the CPU resources between different

participants in the network. For example, SETI@HOME [28],

Entropia [7], United Devices [32], etc.

 File/Storage: sharing the storage between different

participants in the network. For example, Napster [17],

Gnutella [10], KaZaA [15], Freenet [9], etc.

1.1.1 Types of P2P Systems

Current P2P systems appear in different categories such as pure P2P

and hybrid P2P systems [2]. A P2P system where each node can

communicate with each other without the need of centralized server is

defined to be a pure P2P system. Nodes cooperate with each other to

find other nodes in the network. This type of system is fully

decentralized and each node in the network has an equal role.

Gnutella and Freenet are examples of pure P2P systems.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

2

A P2P system where a server is designated to keep track of other

participants is called a hybrid P2P system. In a hybrid P2P system,

one node discovers another node with the help of a server but the

communication between peers takes place independent of the server.

Figure 1 shows an example of a pure and a hybrid P2P system.

Figure 1: Example pure and hybrid P2P systems

A hybrid P2P system can be hierarchical or centralized. In a

centralized P2P system, there exists only one server, in principle, in

the network. In a hierarchical P2P system, nodes are organized in a

hierarchy of groups, where each group is coordinated by a local

server also called a group leader. In this system, communication

between groups takes place through group leaders. SETI@HOME is

an example of a centralized P2P System. The domain name system is

an example of a hierarchical system.

1.2 Motivation

The most popular end user P2P applications are Napster and KaZaA.

These P2P systems share a flat, unstructured data model (basically, a

list of files with some properties) on which they provide keyword-

based exact matching lookup services. These systems allow end users

to share their files with a relatively good response time for search.

All the existing P2P systems are targeted at providing a better way of

sharing a large number of files between end users. However, they are

not able to address data management problems such as managing

complexly structured data objects, content update, data semantics and

the relationships between data. Furthermore, because of data

management problems, P2P applications still lack scalability [14]. If

an aggregate query, for example, is asked, it must be forwarded to

every node in the network to get a better recall. Database

management systems on the other hand, provide functionalities like

query processing, query optimization, views, and integrity constraints

to consider the relationships between data. These functionalities can

be used to define, retrieve and process only the required set of data.

An integration of database management technology and P2P

technology would seem beneficial.

1.3 Context

This master‟s project is done in the context of the AmbientDB project

at CWI [21]. AmbientDB is a P2P database management system

(DBMS) targeted at addressing data management issues in an ad-hoc

Hybrid P2P System Pure P2P System

Legend

Server

Peer

Peer finding path

Peer communication

path

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

3

network of consumer electronic devices. The motivation behind

AmbientDB is to make it easier to create intelligent cooperative

applications, as envisioned in Ambient Intelligence (AmI) [24]. AmI

refers to the vision of pervasive and obtrusive intelligent applications

in our surrounding environment that support the activities and

interaction of (mobile) users.

Since the AmI vision demands services/applications to adapt to any

(mobile) device and any context (available content, time, place,

mood, etc.), it is difficult to hardcode all context information

management facilities in each application to allow intelligent

interaction between them. AmbientDB offers a single data

management facility in highly distributed, heterogeneous, and ad-hoc

organized ambient applications, such as context aware applications.

1.4 AmbientDB

AmbientDB aims to provide a unified data management framework

for ad-hoc network of consumer electronic devices, including query

processing functionalities [21]. For example, an intelligent assistant

application at a university that assists students according to their

needs based on their mood, situation, location, etc incorporating data

stored in their PDAs, Laptops, 3G phones, etc. The data management

issue in distributed, heterogeneous and ad-hoc organized devices

motivates the use of a P2P architecture in AmbientDB.

1.4.1 AmbientDB Goals

AmbientDB aims to provide full relational database functionality for

standalone operation in ad-hoc networks of consumer electronic

devices [21]. Devices may be mobile and disconnected for a long

period of time. When connected, these devices can communicate in

their neighborhood.

1.4.2 AmbientDB Assumptions

AmbientDB takes into account the following assumptions to delimit

the scope of the project [21]:

 devices are heterogeneous in their resources (network access,

storage, data)

 a large number of devices will cooperate with each other

 all devices cooperate under a common global schema, i.e.,

they use global relational tables to share data

 during the execution of a single query, the nodes involved in

answering it won‟t leave the network

1.4.3 AmbientDB Architecture

The AmbientDB allows „intelligent‟ devices to cooperate with each

other in a P2P fashion. The use of P2P architecture eliminates the

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

4

need of centralized administration and the cost associated with it.

Figure 2 shows the AmbientDB architecture.

Figure 2: AmbientDB Architecture

The heterogeneity among peer‟s resources motivates us to use an

application level networking protocol thereby forming an overlay

network of participating users. The use of an application level

protocol is flexible as it facilitates an application level routing.

Therefore, it makes an application level communication easier.

Figure 3 shows an example heterogeneous network of users.

Figure 3: An example of heterogeneous network of users

1.5 Objectives

The ad-hoc query processing facility aimed by AmbientDB requires

Gnutella-like query flooding because devices connect and disconnect

at will such that there is no (static) knowledge on where data items

are located. The query flooding mechanism broadcasts each query

message to all (reachable) nodes in the network. However, such query

flooding lacks scalability because each search query must be

broadcasted to all nodes. Therefore, as the network size increases the

rate of query arrival per node also increases. The increased query

arrival rate per node leads the system to saturation. This master‟s

project focuses on just one of the many challenges in constructing

AmbientDB, namely the creation of a „good‟ P2P logical overlay

networking layer to prevent such saturation.

In this project, an overlay network is created to reduce the average

query response time in AmbientDB network. Related with

AmbientDB concerns, two main research questions are formulated:

 How to create a „good‟ overlay network?, and

Query Processor

Local

DB

XML Schema

Integration

P2P

network

AmbientDB

RDBMS Other AmbientDB Instances

X.25/T1

DSL

100 Mbps

Ethernet

Internet

802.11b

GPRS

TelCo

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

5

 How to map the overlay network onto the underlying physical

network?

Secondly, though many P2P protocols including Gnutella create an

overlay network of participating nodes, they disregard the physical

network structure/resources. The possibility of creating an overlay

network that somehow maps onto the underlying physical network is

studied. This mapping will help in reducing the network traffic while

executing queries in the AmbientDB.

1.6 Approach

In this project the following approach is taken.

 Some existing P2P systems/protocols are reviewed to understand

the existing P2P architectures presented in chapter two of this

report. Through the review, the possibility of using the existing

P2P architecture in the context of AmbientDB is studied.

 The goal of the project is detailed in chapter three of this report.

The goal of the project is defined to limit the scope of this

research work.

 In chapter four of this report, the P2P architecture in AmbientDB

context is designed. This architecture creates a „good‟ overlay

network of participating nodes in the AmbientDB network. In

order to construct the overlay network of participating nodes in

AmbientDB we need a protocol. This overlay protocol will work

on top of exiting data transmission protocols and create an overlay

network.

 The network simulation tool ns-2 is extended for the AmbientDB

P2P protocol in chapter five of this report.

 The AmbientDB P2P protocol is simulated and evaluated with a

network simulator tool ns-2 in chapter six of this report. Through

the simulation, the effectiveness of the AmbientDB P2P protocol

is evaluated against that of the pure Gnutella protocol, in terms of

query response time.

 Finally, chapter seven concludes the work of this master‟s thesis

providing the simulation results and some future works.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

6

2. Related Work

This chapter describes the most influential work that has been done in

the P2P domain. The review has been done in four different problem

fields: Overlay Network, P2P systems, P2Peer file sharing

architectures, and P2P databases. Through review, we try to find how

existing P2P overlay networks work, what is their query response

time, and if they are heterogeneous and scalable.

2.1 Overlay Network

The overlay network consists of an abstract (sub) set of nodes from

the underlying network that play an active role in a particular

application domain. Figure 4 shows an example overlay network.

Figure 4: An example overlay network

The overlay network consists only of the active nodes. In the overlay

network the end-to-end path between active nodes can be different

than that in the underlying network. Therefore, one single link in the

overlay network can include multiple links in the underlying network.

In principle, the overlay network makes the application level routing

possible, irrespective of the underlying network. One of the

advantages of using an overlay network is that the users can be

mapped onto a topology that corresponds with their available

resources (e.g., data, network bandwidth, storage space). This can be

useful to allow a participating user to connect to a similar user that is

already a part of the network.

2.2 Review of Existing P2P Architectures

A review of some of the most influential P2P systems is presented

here. The existing P2P systems and protocols are reviewed to observe

how scalable they are, and how they can be used in the context of

AmbientDB. Their mechanisms to process and forward queries are

evaluated to find their average query response time.

Active nodes

Nodes

Legends

Underlying Network Overlay

Network

GPRS
802.11b

Internet

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

7

2.2.1 Napster

Napster [17] was one of the first file sharing P2P systems. It was

designed to share and swap MP3 files between users. Figure 5 depicts

the Napster system model. Napster used central servers to keep track

of shared files among the users as well as to create flat namespace of

its host addresses. The Napster server maintained the index of shared

files and the host information of the active peers in the network.

Napster did not replicate the data but used “keepalives” to test client

liveliness. The index was updated as the peer joined and left the

network. There could be several central servers connected to each

other, each of them forming a shared community. Search in Napster

was keyword based. Once a file has been found, the download took

place from the owner of the file, i.e., P2P downloading. The cost for a

node to join and search in Napster was O(1) and O(N) respectively.

Where, N is the total number of Napster servers. Thus Napster used a

centralized server, violating one of the characteristics of the P2P

architecture and thus was prone to central point of failure. When legal

action closed down its central servers, the Napster system thus

immediately vanished from the Internet.

Figure 5: Napster system

Advantages:

 Consumes less network resources

 Files can be found in lower cost

Disadvantages:

 Prone to central point of failure

 Expensive to scale the central server

2.2.2 Gnutella

Gnutella is another popular P2P system. Like Napster, it facilitates

locating and exchanging files between peers [29]. Unlike Napster,

Gnutella does not use any centralized servers and is fully

decentralized [10]. The peers are identified by their IP address and

therefore a new peer willing to participate must know at least one

S

P P

P

P

P

P

P

Q
R

D

Where,

S = Napster Server

P = Napster Peer

Q = Query Message

R = Query Response

D = Downloads

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

8

peer already in the Network. Each peer keeps a set of connections

with its neighbors thereby forming an overlay network [29]. Figure 6

shows an example of the Gnutella system. It uses PING and PONG

messages to discover other peers in the network. A joining node sends

a PING message to one of the known nodes in the network to

discover other nodes. It receives a PONG message in response to a

PING. The PONG message contains information about the node such

as IP address, port number and number of files shared. Gnutella

search is keyword based and the routing is flooding based. Some

Gnutella applications use TTL limited query flooding to reduce the

scalability problem. The cost for joining and searching in Gnutella is

O(1) and O(N) respectively, where N is the total number of

participating nodes. Though Gnutella is able to remove the problem

of central point of failure, it lacks the scalability characteristics

because of this query flooding. As the number of nodes increases, the

number of queries also increases in higher magnitude. It is possible in

Gnutella to have several disjoint Gnutella overlays.

Figure 6: Gnutella System

Advantages:

 Fully decentralized

 Increased system reliability

Disadvantages:

 Low scalability

 Consumes more network resources

 TTL limited query flooding decreases recall

2.2.3 KaZaA

KaZaA [15] is another kind of P2P network that falls in between

Napster and Gnutella which implements the FastTrack protocol [8].

FastTrack groups the nodes as SuperNodes or Nodes. Any node in

KaZaA network can become a SuperNode if they are computationally

powerful and have fastest internet connection. Figure 7 gives an

example of the KaZaA system. The SuperNodes communicate

amongst themselves handling search queries. Nodes connect to one of

their nearest SuperNodes. SuperNodes allow their neighbor to upload

a small list of files, handle their queries, thereby minimizing the

P

P

Where,

P = Gnutella Peer

Q = Query Message

R = Query Response

D = Downloads

P

P

P

P

P P

P

Q
R

D

Q

Q

Q
R

R

R

Q

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

9

query response time. Query routing in FastTrack is accomplished by

broadcasting among SuperNodes. Routing the query result follows

the Gnutella principle, i.e., the query results are routed back along the

query path. The download in FastTrack is P2P. KaZaA clients need to

know at least one super-node in the network. However, KaZaA

installation comes with a built in list of KaZaA super-nodes. The

details of KaZaA system and the FastTrack protocol are not publicly

available.

Figure 7: KaZaA System

Advantages:

 Efficient query response time

 Nodes self-organize in the network

 Load balancing

 Scalable

Disadvantages:

 It is not extensible as the protocol is not publicly available

2.2.4 FreeNet

FreeNet [9] is a distributed information storage and retrieval system

designed to provide privacy and availability of data. It uses a SHA-1

function to obtain a location independent key for each file in the

system. Each node provides a shared data store which can be used to

upload and download files. Also, each node maintains an individual

dynamic routing table that contains the addresses of other nodes and

the keys of the files they are sharing. With each request message a

hops-to-live limit is assigned to prevent infinite loops. Each node is

also assigned a pseudo-random identifier, to enable nodes to reject a

request that has been seen already. When a request is made for a key

k at node n, it looks at its local storage and if found it returns the

result back to the user. If the requested key is not found in the local

data storage, then the node looks into the routing table and finds the

nearest key and forwards the request to the corresponding node.

When there is no node to forward the request, the node returns the

S

P

Where,

S = SuperNode

P = Node

Q = Query Message

R = Query Response

D = Downloads

S

P

P

S

P P

P

Q
R

D

Q

R

Q

P P

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

10

backtracking failure message and so the request originator finds

another nearest key from the routing table and sends the request to the

corresponding node. Thus, the routing in FreeNet is depth first search

(DFS) with backtracking. FreeNet uses a lazy replication mechanism

[26]. This means that the request result takes the reverse path and

makes a replica in each node visited along the path from the request

source to the destination. Figure 8 depicts a typical sequence of

request message where node A is issuing a request for the data owned

by node D.

Figure 8: Freenet request sequence

Advantages:

 Provides data and user anonymity

 Neighbor knowledge is sufficient to find the other peer

Disadvantages:

 Due to compressed key, it might select a wrong destination

2.2.5 CAN

Content Addressable Network (CAN) is an indexing mechanism that

provides hash table functionality to locate the desired file [31]. It uses

a d-dimensional Cartesian coordinate space to make routing possible

in a dynamic P2P network. The d-dimensional Cartesian coordinate

space looks like the one shown in Figure 9. Each data record has its

unique Key which is mapped onto a point in d-dimensional Cartesian

coordinate space using a hash function. Each CAN node stores a

chunk of an entire hash table also known as zone and also maintains a

coordinate routing table that contains the IP address and coordinate

zones of its immediate neighbors. In d-dimensional coordinate space,

two nodes are immediate neighbors if their coordinate spans overlap

along d-1 dimensions and adjoin along one dimension. To find the

required key, the requests would be routed through the intermediate

nodes towards the node whose zone contains that key. Efficient

routing is a critical aspect of CAN. When a new node joins the CAN,

Where,

A … F is node ID

 Request

 Response

B

F

D

h

E

1

C

A

2

3

4

5

6

7

8

9

10

11

12

This request failed because
the node will refuse a Data

Request that is already seen

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

11

a node with largest volume gives half of its zone to a new node. The

node that shares its zone appends 0 to its original virtual ID and the

new node appends 1 to the virtual ID of original occupant to form its

own virtual ID. When a node departs, then it hands over its zone and

associated virtual routing table to one of its neighbor whose zone is

smaller. For a d-dimensional space, node insertion affects only O(d)

neighbors and the path length is O(dN
1/d

) for an overlay network with

N peers.

Figure 9: CAN ID-Space (2-d) with 5 (left) and 7 nodes (right)

Advantages:

 Scalable and robust

 Lower query cost

Disadvantages:

 Data must be placed by the system

2.2.6 Chord

Chord [11] is a distributed node lookup protocol which works in a

similar way as CAN, mapping keys to nodes that are responsible for

them. It uses hash mechanism like SHA-1 to map keys to nodes.

Instead of using a d-dimensional Cartesian coordinate space, Chord

routes the queries in a circular fashion through the nodes. Each node

is identified by an m-bit identifier and is responsible for storing the

key ID of their closest neighbor in the network. Each data is assigned

an m-bit ID obtained by hashing its key and is used to locate them. In

Chord, nodes are ordered in a circle according to their ID. The data

with ID k is stored in the closest node before k in the circular space.

Figure 10 illustrates the Chord circle. In order to find a node

efficiently, every node in the network maintain m-entry key routing

table also called a finger table. The routing table entries consist of a

node identifier and its network address. It contains the direct

successor as well as additional nodes that have an exponentially

increasing distance to it. Query routing sends queries just the node to

the closest finger smaller or equal than k. In an N node network each

node only has to have the knowledge of log N neighbors and resolves

0.0

A
(0-0.5, 0-0.5)

B
(0.5-1, 0-0.5)

C
(0-0.5, 0.5-1.0)

D E

1.0 0.0

1.0

(0.75-1.0, 0.5-1.0)

(0.5-0.75, 0.5-1.0)

Node E‟s Virtual

coordinate zone

1

2 6

3

4

5

(x, y)

Sample routing path from

node 1 to point (x, y)

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

12

all lookups, on average, with only log N messages to other nodes.

This shows that the communication cost of querying data

logarithmically scale with the number of nodes in the network. When

a node n fails, the query is forwarded to the successor of n. To

achieve fault tolerant storage, each node in Chord replicates the data

to its r nearest nodes. So if each node holds information of its r

successor nodes, failures can be detected and recovered in O(log N)

time.

Figure 10: Chord circular ID space and routing

Advantages:

 Logarithmic communication cost

 Scalable and fault tolerant

Disadvantages:

 Data placement must be dictated by system

2.2.7 OceanStore

OceanStore is a distributed storage architecture that provides

continuous access to information [13]. It is wide area network (WAN)

oriented. OceanStore set two main goals: to cope with an untrusted

infrastructure, meaning that the information should be freely

accessible irrespective of the strength of the infrastructure or system

crash. The second is to support nomadic data, meaning that the data

should be location independent. It uses the term persistent object to

refer to name of the data, replicas, access control list and data archival

fragments. Each persistent object is identified by a globally unique

identifier GUID. The OceanStore forms a highly connected “pools”

among which data is allowed to flow freely. “Pools” are the servers

for the clients connected to them. OceanStore replicates the data in

multiple pools. Each node in OceanStore is given an ID according to

the Plaxton scheme [13]. The objects are mapped to a single node

whose ID matches the object‟s GUID in the most significant bits.

Each node maintains a list of their neighbor‟s bloom filter and its own

bloom filter. It uses Attenuated Bloom filters for query routing. If the

bloom filter fails, then it uses the Plaxton routing algorithm. Figure

11 demonstrates the OceanStore Attenuated Bloom filter routing

•

•

•

1

2

3
4

5

6

7

0

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

13

mechanism. Routing in the OceanStore thus consumes O(N) time,

where N is the total number of pools.

Figure 11: Query processing in OceanStore

Advantages:

 Highly distributed storage

 Secure

Disadvantages:

 Bloom filters may lead to false positives

 No dynamicity of nodes, fixed set of “pools” in the system

2.2.8 Comparative Analysis of Existing P2P Architectures

All P2P systems discussed above are designed to facilitate sharing

and storing files in a P2P network. These systems, however, share a

flat, unstructured data model (basically, a list of files with some

properties) on which they have implemented exact matching

techniques, ignoring the problems associated with complexly

structured data objects, content update, data semantics and the

relationships between data. Beside these, they have several other

shortcomings in their architecture. For example, the Napster has a

central point of failure. Gnutella is not able to provide scalability to

large numbers of connected nodes. CAN, Chord and FreeNet use

Distributed Hash Tables (DHTs), to minimize the scalability problem

of the Gnutella system. However, the problem with DHT is that data

location is system dictated. The same sort of problem is apparent in

OceanStore. KaZaA, using its concept of SuperNodes, is able to

reduce the scalability problems of Gnutella. In KaZaA, peers can

choose a SuperNode to index their files, if they find themselves too

poor to process queries for other peers in the network. This system is,

therefore, similar to the AmbientDB vision. Unfortunately, KaZaA

has not unveiled its architecture making it difficult to analyze if it

could be used in AmbientDB.

The following table summarizes the features and the cost of the

systems discussed above.

n1 n2

n3

n4

10101 11100 00011

11010 11011

11100
11010

00011

X

(0, 1, 3)

11010 1

2

3

4a

4b

5

Query for X, whose document ID

hashes to bits 0, 1, and 3

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

14

Table 1: Features of the Systems
Features Napster Gnutella KaZaA FreeNet CAN Chord OceanStore

Decentralized No Yes Yes Yes Yes Yes Yes

Query Cost O(1) O(1) O(S) O(N) O(N1/d) O(log N) O(P)

Failure Cost - O(log N) - O(N) O(1) O(log N) -

Participation O(1) O(N) O(1) O(N) O(d) O(log N) O(1)

Load Balance - No Yes No Yes - Yes

Locality Aware Yes No No No No No Yes

System dictated

data placement

No No No Yes Yes Yes Yes

Where,

 N = Total number of nodes in the network

 S = Total number of SuperNodes in the network

 P = Total number of pools in the network

 d = The dimension of Cartesian Coordinate

In summary, existing P2P systems/protocols lack support for

databases. In existing P2P systems user‟s can not control the data

transfer. Though some of these systems are opting to provide better

file sharing service, they lack mapping between physical and overlay

network to reduce network traffic caused by query transfer.

2.3 P2P Databases

The P2P architecture has been gaining popularity for sharing

information in some specific domains between the active peers in the

network. As the peers in a P2P system can join and leave the system

at will, it is difficult to predict availability and data consistency. In

[30] Gribble et al, states the need of database management in P2P

systems, as the existing systems ignore the semantics of data and their

relationships. Database management is required to provide finer data

granularity and preserve the semantics of data and their relationships.

Two fundamental problems are visible in P2P database management

systems: answering queries from the whole network, and minimizing

the query response time.

In [1], Abhishek et. al proposed an architecture for P2P data sharing

system using database systems. Their architecture assumes that peers

can cache horizontal partitions of various relations and database

schema is global similar to that in AmbientDB. However, they allow

the „select‟ on a relation based on one attribute at a time. To find the

nodes with relevant data partitions, hashing would be used. For this

purpose, [1] in their architecture have used Chord. Each node,

therefore, stores partitions of similar type. To answer a query, a query

plan is used and all the selects are moved towards the leaves as much

as possible. Each leaf then evaluates the query, and returns the answer

for that particular select. The node/intermediate node issuing the

query can now compute the remaining query by Cartesian product of

all the results. This architecture is opting for schema integration, but

it does not address the problem of heterogeneity among the peer

resources.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

15

The above mentioned architectures and principles indicate that

integration of database technology and P2P systems may help in

addressing data management issues in networked applications.

However, a major problem is to find a suitable location and indexing

mechanisms. The data location is a crucial aspect as the P2P system

uses ad-hoc overlay topology and there is no mapping between data

location and overlay topology. This results in unstructured data

management [25]. Introducing the super node concept similar to that

of KaZaA might help to control the scalability problem of Gnutella.

Beside the scalability problem, most important is to make the system

able to handle structured data, preserving the relationships between

data and their semantics.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

16

3. Problem Definition

The review of existing P2P protocols and systems, in chapter two,

revealed that the existing P2P systems lack heterogeneity, scalability,

and user control. This chapter states the problem statement of the

AmbientDB P2P protocol and presents the AmbientDB network

structure.

3.1 Problem Statement

The ultimate goal of the AmbientDB project is to share and query

database relations with complex structure in an ad-hoc network of

consumer electronics. The devices that participate in the network are

heterogeneous in their resources (e.g., network bandwidth, network

latency, storage space and stored data). The lower resource devices

place their data at the devices with higher resources. These devices

which have higher resources will work on behalf of lower resource

devices. Every device in the network retains the control over data

placement. However, user dictated data placement can not use DHTs

as in existing P2P systems. To enable query processing facility in

AmbientDB we use query flooding as in Gnutella. As Gnutella

flooding inherently leads to scalability problem, a KaZaA-like

approach can be used to. Also, it is necessary to optimize the use of

the physical topology to reduce network traffic.

3.1.1 Goals

We define our goal for this project to create a „good‟ self-organized

overlay network topology. In this project, we define a good overlay

network as the overlay network that would have minimal query

response time given a set of assumptions such as the network size,

node resource distribution, data distribution and query distribution.

In order to create this optimal overlay network, every node that wants

to join the network would have to find a suitable place for it in the

AmbientDB P2P network. The type of available resources among the

participating nodes and their stored data determines this suitable

place. Nodes with lower resources will have to be able to transfer its

data to a node with higher resources. Also, the nodes will have to be

able to decide whether to delegate their query handling to other

nodes.

To support the goals of this project we define two sub-goals as

follows:

 Automatically assign roles to the participating nodes i.e., super-

node or independent node or normal node;

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

17

 Create an overlay topology that maps onto the underlying

physical topology to reduce network traffic caused by query

transfer.

3.1.2 Assumptions

It is difficult to evaluate the performance and scalability of P2P

systems because of the presence of several uncontrollable factors

such as data distribution, query frequencies, and network

heterogeneity. Also, the network traffic created by other networked

applications can affect P2P communication.

In order to be able to do some quantitative comparisons we made the

following assumptions.

Query Cost: the overall network cost dominates the query

processing cost. The average network cost, therefore, determines the

average query processing cost. While calculating network cost, we

ignore the network traffic caused by other networked applications.

Also, we ignore the super-node initialization cost. That is when a

normal node joins a super node, data transfer cost will be ignored.

Queries: AmbientDB queries can be arbitrarily complex. We

concentrate on aggregate queries in this project. Each query in

AmbientDB network is broadcasted to all super-nodes which will

send a response back for each query.

Message exchange: we use the TCP transfer protocol for exchanging

the messages between nodes. The UDP broadcast will be used in

limited segments of the P2P network in order to find an existing node

in the network. When transferring a large blob of data from a normal

node to a super-node, we use FTP protocol.

Failure resistance: we assume that nodes do not leave the network

as long as they have waiting queries to respond.

Network limitations: each node activity is independent of the

network bandwidth between two nodes in the sense that node

activities do not affect the data transfer.

Data and query distribution: we will experiment for the moment

with a uniform data and query distribution in the network.

We acknowledge that our assumptions are strong. However, they do

allow us to evaluate the P2P systems to some extent. This should be

taken as a first step towards investigation and evaluation of the P2P

systems. Further refinement of the evaluation taking into account

more factors that affect the performance of the P2P systems is

considered as future work and is out of the scope of this master‟s

thesis.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

18

3.2 AmbientDB Network Structure

The AmbientDB P2P logical overlay structure is a spanning tree,

where participating peers are grouped in clusters. Each cluster

consists of a leader that is responsible for handling queries on behalf

of others. The leader is selected dynamically based on its available

resources e.g., available storage, network bandwidth and network

latency. This means that the cluster leader is resource rich and can

hold the data of other nodes in the same cluster. Two clusters can

overlap if the leader of one cluster can hold the data of the leader of

another cluster. If the neighboring clusters are non-overlapping then

their leaders are independent to each other. The communication

between two clusters takes place through their leaders. Members of

one cluster communicate to each other through the leader of the same

cluster. The clustering structure can be seen as a recursive structure.

That is, a cluster leader can be a member of another cluster. Two

cluster leaders can have direct communication with each other only if

there is a direct (logical) connection between them. Figure 12 shows

a clustered structure of an AmbientDB P2P network.

Figure 12: AmbientDB Network Structure with two independent

nodes

As indicated in the figure, we allow hierarchical clustering connected

via their leaders. In this structure, we call a cluster leader a super-

node and the members the nodes of the AmbientDB network.

Therefore, as explained before a super-node can have another super-

node. However, independent super-nodes may exist if the cluster

leaders are independent to each other. The directed edge in the figure

indicates the direction of superiority between two nodes. This means

that a node at the tail of a directed edge transfer its data to other node

at the head of the edge. The independent nodes are „equal‟ in their

resources and therefore form a „cloud‟, called a super overlay. In a

super overlay, there are no directed edges as the nodes are

independent super-nodes and do not transfer data to other nodes. Like

in Gnutella, the super-overlay does not have a root. A node in the

super-overlay that receives a query is considered a root node of the

„cloud‟ for that moment.

Leafs of the tree consist of the nodes with poor resources. A node that

is using lower network bandwidth and has smaller storage space than

Nodes

Clusters

Independent
nodes

Super-node

Super-overlay

Super-overlay

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

19

their neighbors is defined as a poor resource node. The intermediate

nodes of the tree consist of the higher resource nodes (super-nodes or

independent nodes). If a node is not a poor resource node then it is

called a higher resource node. It is possible that two neighbor nodes

can have higher resources and become independent super-node of

each other. The Adb/NP protocol, therefore, dynamically assigns

roles to the participating nodes as good as possible.

3.2.1 Node Structure

Each intermediate node in the AmbientDB overlay tree may provide

storage space to its immediate children to store their data. These

intermediate nodes also maintain a dynamic neighbor table that

contains information about their immediate neighbors. For an

intermediate node, both its parent and children are immediate

neighbors. The neighbor table primarily consists of neighbor type,

neighbor status, neighbor‟s storage capacity, neighbor‟s stored data,

network latency, and network bandwidth. The neighbor status can be

a super-node, an independent node or a node.

3.2.2 Query Processing

In AmbientDB, we define a node that sends a query as a query

initiator and a node that receives a query as a query receiver. The

basic query processing scenario in AmbientDB is the following. If the

query initiator is not a super-node then it forwards the query to the

super-node in the same cluster. When the super node receives the

query, it floods the query over the super-overlay. When a query

receiver gets the answer from the super-overlay, the query initiator

can retrieve the query results from its super-node. The basic query

processing scenario is explained below with the help of Figure 13.

Figure 13: Query processing scenario

In the figure, node n11 is the query initiator. The query goes to the

super-node n8, being super node of n11. This query is flooded in the

super-overlay i.e., among n8, n0. This Gnutella-like flooding takes

place as follows.

SELECT C1, C2, C3, C4, C5 FROM T

WHERE C5>10

ORDERBY C1

C1 C2 C3 C4 C5
A … … … 09
B … … … 10
C … … … 11
D … … … 12

C1 C2 C3 C4 C5
A … … … 08
A … … … 09
B … … … 10
C … … … 11
D … … … 13
E … … … 19

C1 C2 C3 C4 C5
A … … … 07
A … … … 08
A … … … 09
B … … … 10
C … … … 11
D … … … 12
D … … … 13
E … … … 15
E … … … 19
F … … … 29

n0

n1

n2

n3

n5

n6

n7 n9

n10

n11

n8 n4

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

20

1 n8 receives the query from n11, executes the query locally and

forwards the query to its independent super-node n0 and waits for

the result from n0.

2 n0 executes the query locally and returns the result tuples to n8. As

n0 does not have any other (independent) super node, it may not

forward the query to any other node, such as n4.

3 Upon receiving the query results from n0, n8 merges this result

with its local results and sends the result tuples to n11.

4 n11 receives the result from n8.

3.3 Formal Model

AmbientDB P2P networking protocol creates an overlay structure of

participating nodes. We formally represent the AmbientDB P2P

network topology by a spanning tree whose nodes represent the

participating devices and the edges represent the logical connection

between participants.

AmbientDB nodes: an AmbientDB node is denoted as n(r, d), where

r represents the storage space and d represents the stored data in that

node.

AmbientDB edges: an AmbientDB edge is denoted as e(b, l), where

b represents the network bandwidth and l represents the network

latency between two nodes.

AmbientDB super-nodes: a node n1 is a super-node with respect to

a node n2, if and only if there is a directed edge e from node n2 to

node n1.

AmbientDB independent-nodes: two super-nodes n1 and n2 are

independent to each other if there is an undirected edge e connecting

n1 and n2.

AmbientDB overlay: formally we define the AmbientDB overlay as

a tree T (N, E), where N is the set of nodes in the network and E is

the set of edges between nodes u, v N.

AmbientDB super-overlay: formally we define the AmbientDB

super-overlay as a sub-tree TS (NS, ES) | TS T, NS N and ES E,

where NS is the set of independent nodes and ES is the set of edges

between independent nodes uS, vS NS. The AmbientDB super-

overlay is used to answer the queries.

AmbientDB query: an AmbientDB query is an aggregate query like:

 SELECT count(*), genre

 FROM songLog

 GROUP BY genre

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

21

AmbientDB query cost: an AmbientDB query cost is calculated as

the sum of the network cost:

 to transfer a query from a query initiator to the super-

overlay,

 (because of) query flooding in the super-overlay, and

 to transfer the result from super-overlay to the query cost.

Each node in the super-overlay can have more than one neighbor. The

neighbors of a node may not be in equal distance. Therefore, the

query response time for a node is the maximum of the response time

of its neighbors. This implies that the query response time in the

AmbientDB network can be calculated recursively. Formally, we

define the query response time as follows:

 C0(y) = 0

 Ci(y) = max {Ci-1 (x) + 2 Ly (x) | x Ny}

Where,

 Ny = {x | x is neighbor of y}

 Ly(x) = latency between y and x

The average query cost is calculated as:

n

i

iavg yC
n

C
0

1

Where,

n is the total number of queries.

AmbientDB neighbors: two nodes n1 and n2 (n1, n2 N) are

neighbors to each other if there is an edge e E between them.

AmbientDB neighborhood: the neighborhood of a node n1 in the

AmbientDB network is denoted by F(n1), where F(n1) = {n | (n1, n)

E }.

AmbientDB participating devices: the AmbientDB participating

devices falls in two categories dynamic devices and static devices

represented by M and I respectively (M N, I N | M I = N). We

define highly mobile and lower resource devices e.g., PDA, MP3

Player, and 3G Phone as dynamic devices. The static devices include

the devices that are not mobile but have higher resources, e.g., PC

and Laptop.

Each node in the AmbientDB P2P network is identified uniquely by

its IP-Address.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

22

4. Protocol Design

This chapter describes the strategies used to build the AmbientDB

overlay, and the architecture of the AmbientDB networking protocol.

4.1 Joining the AmbientDB Overlay

When joining the AmbientDB network, a node has to find a suitable

place to join the AmbientDB overlay thereby deciding whether it will

become a super-node of other nodes or even be part of the super-

overlay. In order to join the network a joining node must know at

least one node that has already joined the overlay. The join process is

the following.

Let the node that joins the network be n and n‟ is the node it knows

and is already a member of the AmbientDB overlay. The following

steps take place to find a suitable place for node n in the AmbientDB

overlay.

1. n contacts and asks n‟ for its membership in the overlay.

2. n‟ locates and returns the address of the super-node S belonging to

a cluster C using the principle described in the section 4.1.1.

3. if n sees S as its super node it joins the cluster C as a normal node

and transfers its data to S.

4. if n sees S as a normal node it joins with S and becomes the new

super-node of the cluster C and receives data from S. S now

becomes a normal node of the cluster C.

5. if n sees S neither as its super node nor as a normal node, n creates

a new cluster C‟, n being the only member and super node of that

cluster, and becoming an independent neighbor of S.

4.1.1 Super-node Selection

Finding a concrete algorithm for selecting a super-node is difficult

because of the presence of uncontrollable multi dimensional factors

such as data size, storage space, available network bandwidth, ad-hoc

participation of the nodes, etc. We use the following heuristic that

works similar to the depth-first search algorithm to select a super-node

in the network.

When a node receives a join request it does the following to select the

super-node:

1. Measures the candidate latency with the Ping-Pong message.

Candidate latency is the latency between n and n‟.

2. If the candidate latency is higher than the previous candidate

latency n’ returns null. The previous candidate latency for the

original join request is ∞.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

23

3. If the candidate latency is lower than the previous candidate

latency n‟ compares the new node with respect to their resources

and stored data.

4. If n‟ can become the super-node for n do 5 else do 7 to select even

a better candidate super-node from its neighbor table.

5. If the neighbor table T is not empty, select a set of candidate

super-nodes L|L = {x| x neighbor (T)} using the principle

described in section 4.1.2.

a. Select a subset of nodes L‟| L‟ {L-forwarding node} that

have higher network bandwidth. Initially, forwarding node =

{}.

b. If L‟ is not empty, select a subset of nodes L‟‟ | L‟‟ L‟ that

have storage to store the data from the joining node, else

return the current node as a candidate super-node.

c. If L‟‟ is not empty, select the lowest network latency node

n‟‟| n‟‟ L‟‟ else return the current node as a candidate

super-node.

d. Forward the join request to n‟‟ and wait for the address and

other information of S. forwarding node = forwarding node

{b}

e. If n‟‟ can not return the address of S that can be a super-node

for a new node, repeat c with next lowest latency node n‟‟,

else candidate super-node = candidate super-node {S}.

Initially, the set candidate super-node = {}.

6. If the neighbor table is empty or none of the neighbors can find

the super-node, return the current node as a candidate super-node.

7. If n‟ can not become the super-node for n, it does the following:

a. If n‟ is a normal node it delegates the request to its super-

node and waits for the address and other information of S.

b. If n‟ is the super-node of its cluster, repeat 5

8. If the candidate super-node = {}, n‟ returns the lowest latency

node as.

The pseudo-code of this algorithm is available in Appendix I.

4.1.2 Nearest Neighbor Selection

In AmbientDB, we use a heuristic that is similar to the principle used

in [6] to find the nearest neighbors of a node, as explained below.

Let the node that joins the network be p and q be the node it knows

and is already in the network. Let N be the total number of nodes in

the network. q selects another participant r from its neighbor table T,

r N, such that latency (p, r) latency (p, q). Let, l = latency (p, q)

and l‟ = latency (r, q). Where, the function latency (x, y) measures the

latency between two participants x and y.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

24

Figure 14: Neighbor circle

In

Figure 14, a joining node p contacts q that is already in the network.

After receiving the join request, q measures the latency l between p

and q, with Ping-Pong messages. It selects all the nodes from its

neighbor table that are in the neighborhood of p. We assume that all

the nodes within the latency distance l from p (lower inner circle in

the figure) are closer to p. If we draw a circle of radius l around q, the

nodes in region B can not be assumed nearer to p. To cover this left

out region, q assumes that all the nodes within 2l latency distance are

closer to p. This assumption, however, considers nodes that are far

from p (all the nodes from region A, in the figure above) as closer to

p. Therefore, this assumption alone can not guarantee that r, for

example, is the nearest neighbor of p. However, this assumption is

used to select some nodes from p‟s neighbor table. To come to

precision, our heuristic works as follows:

q sends l to its neighbor r, r N within distance l‟, such that l‟ < 2l. r

measures the real latency k between p and itself. If k < l, r executes

the requests otherwise it send a negative response to q. After

receiving all the responses from its neighbors, q can determine a node

is closer to p.

4.2 AmbientDB Service

The AmbientDB service is a P2P query processing service provided

by an AmbientDB service provider. Figure 15 shows the AmbientDB

layered architecture.

ADB QP PE ADB QP PE

ADB P2P PE ADB P2P PE

Lower Level Service

ADB P2P

Service

ASAP

LSAP

ASAP

LSAP

AmbientDB

Service

2l

l

p

q

l’

k

a b

r

A

B

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

25

Figure 15: AmbientDB layered architecture.

The definition and identification of the AmbientDB Service and its

users is outside the scope of this thesis. However, we assume that the

AmbientDB Query Processor (ADB–QP-PE) protocol entities make

use of AmbientDB P2P (ADB-P2P) service provider to communicate

with each other. The AmbientDB query processor protocol entities

(ADB-QP-PEs) interact with the AmbientDB P2P service provider

through an AmbientDB P2P service access point (ASAP). A service

access point is an interaction point that marks the boundary between a

service user and a service provider [5]. The AmbientDB P2P protocol

entities (ADB-P2P-PEs) make use of an underlying point-to-point

service to communicate with each other. Each ADB-P2P-PE

communicates with the underlying service provider through a lower

level service access point (LSAP).

4.2.1 Service User

The AmbientDB query processors are the users of the AmbientDB

P2P service provider. The query processors can be running in

different machines and are connected with each other through

different networks. The machine characteristics and network

characteristics together determine the role of query processors in an

AmbientDB query processing scenario. AmbientDB query processors

running in lower resource machines do not participate in the query

processing scenario. However, they can send queries to query

processors running in higher resource machines. The AmbientDB

query processors register themselves to the AmbientDB P2P service

provider and communicate with other AmbientDB query processors

in their neighborhood.

4.2.2 Service Definition

We define and concentrate on the AmbientDB P2P service. The

AmbientDB P2P service is the service provided by the AmbientDB

P2P service provider. The AmbientDB P2P service allows its users to

join the AmbientDB network, send and receive data to and from

another user, view the list of other users in their neighborhood, create

logical connections between them, exchange message in the scope of

these connections, and leave the network. We assume that a user

should join the network before (viewing and) exchanging messages

with other users in the network.

The AmbientDB service provider has to deal with two service

concerns that are addressed by two service elements: user

participation and message exchange. The user participating service

element handles join requests from the users and data transfer from

one user to another, if necessary, when a user leaves or joins the

network. To perform user participation, the AmbientDB service

provider has the following service primitives.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

26

joinReq: a user specifies the destination address and joins the

network.

joinConf: a user receives a join confirmation.

joinInd: a user receives a join indication.

transferReq: a user transfers its stored data to another user in the

network.

transferInd: a user receives data from another user in the network.

leave: a user leaves the network.

The message exchange service element handles the exchange of

messages between users. To perform message exchange, the

AmbientDB service provider has the following service primitives.

dataReq: a user sends a message to another user in the network.

dataInd: a user receives data request from another user in the

network.

dataResp: a user sends a response to the data received from

another user in the network.

dataConf: a user receives a response from another user in the

network.

The message exchange service element is used to send queries from

one user to another and to return answers to the received queries. A

user should provide the destination of the receiving user while

sending a message. The AmbientDB P2P service provider has the

following service elements to provide a neighbor list of a user:

nbrListReq: a user requests the list of its neighbors.

nbrListConf: a user gets the list of its neighbors.

Table 2 shows the service primitives and their parameters.

Service

Primitives

Parameters

joinReq destAddr, storageSpace, dataSize, bandwidth

joinConf status (super-node, node, independent-node)

joinInd status (super-node, node, independent-node)

transferReq data

transferInd data

nbrListReq -

nbrListConf neighbor list

dataReq destAddr, message id, data (typically a query)

dataIndd srcAddr, message id, data

dataResp destAddr, message id, response (typically a query-

result)

dataConf srcAddr, message id, response

Leave -

Table 2: AmbientDB P2P service primitives and their parameters

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

27

Users inform their machine characteristics at the time they perform a

joinReq service primitive. The information provided with a joinReq

service primitive is used to determine the user‟s location in the

overlay network.

A user can perform a join request at it‟s ASAP. The AmbientDB

service provider finds a suitable location in the overlay network,

creates a connection to an existing user, and confirms the connection.

After the join has been established, the requesting user either requests

a data transfer in case it is a normal node or receives a data transfer

indication in case it becomes a super-node. After transferring the data,

a user can perform a neighbors list request at it‟s ASAP and send (or

receive) queries (or query-results) to (or from) its neighbor(s) for a

number of times. After the join has been established, a user can leave

the overlay network at any time in case it is a normal node, otherwise

it can not leave the network unless there are pending requests.

4.2.3 Usage Scenario

Figure 16 illustrates the basic usage scenario of the AmbientDB P2P

service.

Figure 16: AmbientDB P2P usage scenario

A student S while doing her home work, during midnight, needs some

information about protocol architecture. She wants to refer to papers

about protocol architectures A, B, and Z written by three famous

researchers X, Y and Z either individually or together. She picks up

her PDA and announces to her network about her willingness to join

the network. A 3G phone used by one of her neighbors called N,

detects that S wants to join the network. This 3G phone is already in

the community and is connected with a Laptop used by his friend F.

As a 3G phone can not guarantee that it can provide services that S‟s

PDA might asks for, it forwards the request to F‟s Laptop. F‟s Laptop

finds that S‟s PDA has significantly lower processing power, storage

space and is very far from F. F‟s Laptop then forwards the request to

its friend P‟s PC which is located closer to S and has higher storage

spaces and network bandwidth. P‟s PC also detects that there is

S

N

F

P

C

1
1

1

1

Legend

Join Request

Join Response

Overlay connection

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

28

another Laptop C which is located even closer to S, but is not capable

to store S‟s data (if needed). P‟s PC then decides to grant S‟s PDA

permission to join the network through it and sends the join response

to S‟s PDA and adds S‟s PDA in its neighbor list. When S‟s PDA

gets permission to join the network, it knows the storage space and

bandwidth of P‟s PC are very good. Knowing this, S‟s PDA decides

to transfer its data to P‟s PC. P‟s PC is now super node for S‟s PDA.

By this time, S knows that she has access to the network and sends a

query to P via her PDA. After receiving a query from S‟s PDA, P‟s

PC looks into its database and stores the result temporarily. At the

same time, it passes the query to C and F‟s Laptop. P‟s PC, after

receiving the results from C and F‟s Laptop, merges them with its

local result and sends the overall result to S. Finally S will be able to

see the title of the papers available about protocol architectures A, B,

and C written by professors X, Y, and Z. S now has sufficient

information so she leaves the community. When she leave the

community, S‟s PDA informs P‟s PC that S is leaving. P‟s PC now

removes S‟s PDA from its neighbor list.

4.2.4 Service Behavior

The execution of service primitives at distinct SAPs determines the

behavior of the AmbientDB P2P service. The interaction between a

user and the AmbientDB service provider at a SAP may effect the

interaction between the AmbientDB service provider and other users

at other SAPs. The interaction between a user and the AmbientDB

service provider at a SAP is defined as the local interaction and the

interaction caused because of the local interaction between the

AmbientDB service provider and other users at other SAPs is defined

as the remote interaction. We define the service behavior

corresponding with the local interaction as the local service behavior

and that corresponding with the remote interaction as the remote

service behavior.

The local behavior at ASAP of the AmbientDB service in one

instance of communication has the following characteristics.

 a user is only allowed to perform a joinReq to the network.

 after performing a joinReq, a user receives a joinConf.

 after receiving join confirmation by performing a joinConf, a user

is only allowed to transfer or receive data by performing a

transferReq or transferInd respectively.

 after performing a transferReq or transferInd, a user may perform

a nbrListReq or receive a data request by performing a dataInd.

 after receiving a data request by performing a dataInd, a user

sends a response by performing a dataResp.

 after performing nbrListReq, a user receives a neighbor list by

performing a nbrListConf.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

29

 after performing a nbrListConf, a user may send a data (typically

a query) and receive a data (typically a query-response) by

performing a dataReq and dataInd respectively.

 after performing a dataReq, a user may receive a data response by

performing a dataConf.

 A user can leave the network by perform a leave at any time after

a performing a joinReq.

Figure 17 depicts an arbitrary instance of the local behavior of the

AmbientDB P2P service.

or,

Figure 17: Instance of local behavior

The remote behavior at ASAP of the AmbientDB P2P service in one

instance of communication has the following characteristics.

 each joinReq causes a joinInd to be issued to the destination user.

We assume that the destination user has already performed a

joinReq and has not performed a leave after that.

 each transferReq causes a transferInd to be issued to the

destination user before the sending user performs a leave.

 each dataReq causes a dataInd to be issued to the destination user

before the sending user performs a leave.

 each dataResp causes a dataConf to be issued to the destination

user before the sending user performs a leave.

Figure 18 depicts an instance of remote behavior of AmbientDB P2P

service.

A
S

A
P

jo
in

R
eq

jo
in

C
o

n
f

tr
an

sf
er

In
d

n
b

rL
is

tR
eq

d
at

aR
eq

le
av

e

d
at

aR
eq

n
b

rL
is

tR
es

p

d
at

aC
o

n
f

d
at

aI
n

d

d
at

aI
n

d

d
at

aR
es

p

d
at

aR
es

p

d
at

aC
o
n
f

d
at

aR
es

p

d
at

aI
n

d

ASAP1 ASAP2

joinReq

transferInd
transferReq

dataReq
dataInd

dataConf

dataResp

leave

joinInd

A
S

A
P

jo
in

R
eq

jo
in

C
o

n
f

tr
an

sf
er

R
eq

n
b

rL
is

tR
eq

d
at

aR
eq

le
av

e

d
at

aR
eq

n
b

rL
is

tR
es

p

d
at

aC
o

n
f

d
at

aI
n

d

d
at

aI
n

d

d
at

aR
es

p

d
at

aR
es

p

d
at

aC
o

n
f

d
at

aR
es

p

d
at

aI
n

d

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

30

Figure 18: Instance of remote behavior

4.3 AmbientDB P2P Protocol

The AmbientDB P2P protocol provides the AmbientDB P2P service

as defined before. The AmbientDB P2P protocol is responsible for

two main concerns: firstly the administration of the participants and

secondly the transfer of message between participants in the overlay

network. To manage these service concerns, two main service

elements and a lower level service is identified. These service

elements and lower level service together forms the AmbientDB P2P

protocol. The main service elements identified for this protocol are:

attachment control and message exchange. The attachment control

service element controls the new participation in the network. The

message exchange service element controls the exchange of messages

between the users.

4.3.1 Low Level Service

To make protocol entities able to communicate with each other, the

point-to-point data transfer service provided by separate layers (TCP,

UDP, FTP) on top of IP is identified as lower service. For the

exchange of a join request messages between AmbientDB P2P

protocol entities, the service provided by UDP is identified as a

suitable service. The service primitives and their parameters of this

lower level service is listed in Table 3:

Service Primitives Parameters

sendReq destination IP, SDU

recvReq source IP, SDU

Table 3: Service primitives of the lower level service, UDP

A user sends a message to another user by executing a sendReq

service primitive and a user receives the message by executing a

recvReq service primitive.

For the exchange of a data request (typically a query and query-

response), the service provided by UDP is identified as a suitable

service. The service primitives and their parameters of this lower

level service is listed in Table 4:

Service Primitives Parameters

connReq destination IP, connection id

connInd source IP, connection id

connResp destination IP, connection id

connConf source IP, connection id

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

31

dataReq destination IP, connection id, SDU

dataReq source IP, connection id, SDU

connRelease connection id

releaseConf -

Table 4: Service primitives of the lower level service, TCP

Similarly to exchange a transfer request (typically a data from a

normal node to a super-node), the service provided by FTP is

identified as a suitable service. The service primitives and their

parameters of this lower level service is listed in Table 5.

Service Primitives Parameters

ftpConnReq destination IP, connection id

ftpConnInd source IP, connection id

ftpConnResp destination IP, connection id

ftpConnConf source IP, connection id

ftpSendReq destination IP, connection id, SDU

ftpRecvReq source IP, connection id, SDU

ftpConnRelease connection id

ftpRealeaseConf -

Table 5: Service primitives of the lower level service, FTP

4.4 Protocol Functions

As the service provided by the lower level service, UDP, is

unreliable, to guarantee reliability, the AmbientDB P2P protocol can

use a positive acknowledgement together with a time out. When a

positive acknowledgement is not received within a time t+t for a

message sent, it can be sent again. This method is suitable to ensure

that a message indeed reaches the intended protocol entity. It is also

simple to implement and sufficient to ensure reliability.

4.4.1 Participation Administration

The participation administration function keeps track of new

participants in the network. When a join request is arrived, the

participation administration function pushes the request to the

joinRequest queue and sends a ping message to the requesting node.

When it receives the pong message in response to the ping message, it

removes the join request from the joinRequest queue, and evaluates

the capacity of the requesting node using the algorithm explained in

section 4.1. If the requesting node has lower resources than that of the

receiving node, the neighbor table is updated and a joinConf is sent to

the requesting node. Otherwise, the participation administration

forwards the requests to its neighbor that can allow the new node to

join the network. When a node receives the joinConf, it updates its

neighbor table.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

32

4.4.2 Query (Message) Exchange

The message exchange function handles the exchange of messages

between two nodes in the network. When a request message has

arrived it is pushed to the messageRequest queue and it is forwarded

to its (independent) super-node(s) and is also delivered to the user by

performing dataInd service primitive. When an answer to the request

message is arrived, the request message is removed from the

messageRequest queue and the answer is forwarded to the requesting

node.

4.5 Protocol Data Unit

The AmbientDB P2P protocol uses a generic format for the exchange

of protocol data units (PDUs). The generic PDU format consists of a

PDU type, a source address, a destination address, a time stamp, a set

of specific fields and a sequence number. The PDU type must be set

each time a PDU is sent.

0 1 5 9 13 2xn+13
Type Src Dest TimeStamp Specific Fields Seq. no

Figure 19: Generic PDU type

In this generic PDU format, PDU type represents the type of the

PDU. The PDU type can be a joinPDU, a confPDU, a transferPDU, a

leavePDU, a reqPDU, a pingPDU, a pongPDU, or an answerPDU. A

description of each PDU type is presented in this section. The source

and destination address designate the originator and the intended

consumer of this PDU, a requester time stamp is used to specify the

time when the PDU is sent from the sender to the receiver. If the time

difference between the generation and consumption of a PDU is not

important, we can ignore it. The sequence number is used to uniquely

identify the message sent to another protocol entity.

4.5.1 PDU Types

The AmbientDB P2P protocol entities use the following PDU types.

joinPDU: informs the receiving protocol entity that the sending

protocol entity wants to join the network. This PDU

consists of the available storage space, available

network bandwidth, size of data being shared, and the

device type of the sending protocol entity.

pingPDU: informs the receiving protocol entity that the sending

protocol entity wants to measure the latency. This PDU

consists of the time the PDU is sent.

pongPDU: informs the receiving protocol entity that the sending

protocol entity has received the pingPDU. This PDU

1 Octet 4 Octets 4 Octets 2 Octets 2xn Octets 2 Octets

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

33

consists of the time the pingPDU has originally been

sent.

confPDU: informs the receiving protocol entity that the sending

protocol entity granted permission to the receiving

protocol entity to join the network. This PDU consists

of the available storage space of the sending protocol

entity, latency between the sending and receiving

protocol entities, shared data size, and the status of the

sending protocol entity with respect to the receiving

protocol entity.

transferPDU: informs the receiving protocol entity that the sending

protocol entity wants to use its available storage space.

This PDU consists of the data to be transferred from the

sending user to the receiving user.

reqPDU: informs the receiving protocol entity that the sending

protocol entity request the answer to a query. This PDU

consists of a query message from sending user to the

receiving user.

answerPDU: answers a protocol entity that has sent a reqPDU. This

PDU consists of the answer message from sending user

to the receiving user.

leavePDU: informs the receiving protocol entity that the sending

protocol entity left the network.

These PDU types are encoded as follows:

joinPDU:

0 1 5 9 11 13 15 17 19
Type Src Dest BW Storage Data Size Device type Seq. no

confPDU:

0 1 5 9 11 13 15 17 19
Type Src Dest BW Storage Data Size Device type Seq. no

transferPDU:

0 1 5 9 2 x m+9
Type Src Dest Data Seq. no

reqPDU:

0 1 5 9 2x m+9
Type Src Dest Data Seq. no

2 Octets 0000 0001 4 Octets 4 Octets 2 Octets 2 Octets 2 Octets 2 Octets

2 Octets 0000 0010 4 Octets 4 Octets 2 Octets 2 Octets 2 Octets 2 Octets

0000 0011 4 Octets 4 Octets 2 Octets 2 x m Octets

0000 0110 4 Octets 4 Octets 2 Octets 2 x m Octets

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

34

respPDU:

0 1 5 2x m+9
Type Src Dest Data Seq. no

leavePDU:

0 1 5 9 11
Type Src Dest Seq. no

pingPDU:

0 1 5 9 11 13
Type Src Dest timeStamp Seq. no

pongPDU:

0 1 5 9 11 13
Type Src Dest timeStamp Seq. no

ftpConnPDU:

0 1 5 9 11 13
Type Src Dest DataSize Seq. no

ftpConfPDU:

0 1 5 9
Type Src Dest Seq. no

concPDU:

0 1 5 9
Type Src Dest Seq. no

confPDU:

0 1 5 9
Type Src Dest Seq. no

The PDU type is represented with binary encoding. For example, the

PDU type ping is represented by 00001001. The source and the

destination addresses are standard IP-addresses. The network

bandwidth, storage and data size are represented with binary encoding

0000 0111 4 Octets 4 Octets 2 Octets 2 x m Octets

0000 1001 4 Octets 4 Octets 2 Octets 2 Octets

0000 1010 4 Octets 4 Octets 2 Octets 2 Octets

0000 1000 4 Octets 4 Octets 2 Octets

0000 1011 4 Octets 4 Octets 2 Octets 2 Octets

2 Octets 4 Octets 4 Octets 0000 1101

2 Octets 4 Octets 4 Octets 0000 1111

2 Octets 4 Octets 4 Octets 0001 0000

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

35

of integer values. Similarly, the sequence number and timestamp are

encoded is also represented with binary encoding. The device type is

represented with binary equivalent of an integer value. For example,

static devices are represented by 0000 0000 0000 0001. Data

(typically a query and a query answer) are ASCII characters, right

aligned and with padding zeros. In all PDU encodings we prescribe

that most significant bits are placed in the beginning of each byte.

4.5.2 Protocol Behavior

Each protocol entity maintains a neighbor table, a rescue table and a

pointer to its super-node. All of these tables store a set of pairs. Each

pair consists of an IP address, bandwidth, latency, available storage

space and shared database size of a neighbor. When a user wants to

join the network, the AmbientDB P2P protocol exhibits the following

behavior:

 each protocol entity that performs a joinReq service primitive

sends a joinPDU to destination address established in the joinReq

primitive through a sendReq primitive provided by the lower level

service, UDP.

 each protocol entity that receives a joinPDU, updates its request

queue and sends a pingPDU to the source of this joinPDU.

 each protocol entity that receives a pingPDU sends a pongPDU to

the source of this pingPDU.

 each protocol entity that receives a pongPDU, extracts the

joinPDU received from the source of this pongPDU from its

request queue, updates the time stamp, and either forwards this

joinPDU to its neighbor or sends a confPDU to the source of this

joinPDU. The joinPDU is forwarded to its neighbor if the

neighbor has more resources.

 each protocol entity that receives a confPDU either transfers its

data to the sending protocol entity by executing a transferReq

primitive, or receives data from another protocol entity by

executing a transferInd primitive.

 each protocol entity that performs a transferReq primitive sends a

transferPDU to the destination address established in the joinConf

primitive through a sendReq primitive.

 each protocol entity that performs a dataReq service primitive

sends a reqPDU to the destination of message id established in the

dataReq primitive through a dataReq primitive provided by the

lower level service.

 each protocol entity that receives a transferPDU via a receiveReq

primitive, delivers data to its user through a transferInd primitive.

 each protocol entity that performs a dataResp primitive sends a

respPDU to the connectionId established in the dataResp

primitive.

 each protocol entity that performs a leave primitive sends a

leavePDU to all its neighbors.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

36

 each protocol entity that receive that executes a dataReq requests

a connection to the destination address established in the dataReq

primitive by executing the connReq service primitive provided by

the lower level service.

 each protocol entity that executes a tranferReq primitive requests

a ftp connection to the destination address established in the

transferReq primitive by executing the ftpConnReq service

provided by the lower level service.

Figure 20 shows these rules with an arbitrary instance of behavior.

Figure 20: Adb/NP protocol behavior

joinReq (b, d, s, D)

ASAP1 ASAP2 LSAP1 LSAP2

joinPDU
joinPDU

joinConf (b, d, s, P)

confPDU confPDU
joinInd (b, d, s, S)

transferReq (d, D) fptConnPDU
ftpConnPDU

transferInd (d)
nbrListReq

nbrListInd(l)

dataReq(D, d) connPDU
connPDU

answerPDU
answerPDU

dataConf(m, r)

leave leavePDU
leavePDU

pingPDU
pingPDU

pongPDU pongPDU

ftpReqPDU

ftpConfPDU

ftpReqPDU

ftpConfPDU

dataPDU dataPDU

confPDU confPDU

dataInd(D, d)

dataReq(D, d)
connPDU

answerPDU
answerPDU

dataConf(D, r)

dataPDU dataPDU

confPDU confPDU

dataInd(D, d)

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

37

 a node S at ASAP1 executes a joinReq to another node D with its

network bandwidth b, storage space s, and stored data d. A

joinPDU is generated and sent to ASAP2 via LSAP1. The

protocol entity at node D after receiving a joinPDU generates a

pingPDU and sends it back to ASAP1. The protocol entity at node

S after receiving the pingPDU responds back with a pongPDU.

When the protocol entity at node D receives the pongPDU, a

confPDU is generated and sent to the source of this pongPDU.

Also, the node D is notified about a new join by executing a

joinInd primitive. When the protocol entity at node S receives a

confPDU, it notifies the node S of the join by executing a

joinConf primitive.

 a node S at ASAP1 executes a transferReq to send data d to node

D. A transferPDU is generated and sent to ASAP2 via LSAP1.

The protocol entity at node D after receiving a transferPDU,

opens a FTP connection and delivers the data to node D through a

transferInd.

 a node at ASAP1 executes a nbrListReq primitive to receive a list

of its neighbors. A neighbor list, l, is generated and delivered to

the node S at ASAP1 by executing nbrListInd primitive.

 a node at ASAP1 executes a dataReq primitive to send data d to

its neighbor(s). A TCP connection is established (if it does not

exist) and a reqPDU is generated and sent over this TCP

connection. When a protocol entity at node D receives reqPDU, it

delivers the data d to the node D by executing a dataInd primitive.

 a node at ASAP2 executes a dataResp primitive to send the

response message r to another node at ASAP1. An answerPDU is

generated and sent to another node at ASAP1 over the TCP

connection established at dataInd. The protocol entity at node S

after receiving an answerPDU delivers the response message r to

node S through a dataConf.

 a node at ASAP1 executes a leave primitive. A leavePDU is

generated and sent to its neighbor D through LSAP1. When a

protocol entity at node D receives a leavePDU it removes S from

its neighbor list.

4.5.3 Error Situations

The situations illustrated in Figure 20 consider only normal behavior.

However, PDUs sent using the lower level service may get lost. The

consequences of losing a PDU are:

joinPDU: if a joinPDU is lost, the destination protocol entity does

not know that the source protocol entity has sent the

joinPDU. This implies that the join request sent by this

protocol entity will never reach the other. The

consequence is that the sending protocol entity will wait

forever for a confPDU.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

38

pingPDU: if a pingPDU is lost, the destination protocol entity does

not know that the source protocol entity has send the

pingPDU. This implies that the ping request sent by this

protocol entity will never reach the other. The

consequence is that the sending protocol entity will wait

forever for a pongPDU.

pongPDU: if a pongPDU is lost, the destination protocol entity

does not know the existence of pongPDU. The

consequence is that this protocol entity will wait forever

for a pongPDU.

confPDU: if a confPDU is lost, there is loss of synchronization

between two protocol entities. This implies that the

joining protocol entity does not receive the confPDU,

while the answering protocol entity has the joining

protocol entity in its neighbor table. The consequence is

that the joining protocol entity is not officially joined in

the network and can not send message to another

protocol entity. This means that a protocol entity may

receive a message from a protocol entity that does not

belong to its neighbor table.

leavePDU: if a leave PDU is lost, the destination protocol entity is

not informed that the leaving protocol entity has left the

network. This means that messages could be sent to

protocol entities that no longer participate in the

network.

The following protocol functions could be defined in order to recover

from the loss of PDUs.

 in order to recover from the loss of a PDU we can use the positive

acknowledgement. If a positive acknowledgement is not received

in time t+t, we could re-send the PDU. Still there is the

possibility that the acknowledgement will be lost. This means that

there is the possibility of receiving duplicate PDUs. When a

duplicate PDU is received, we can discard the duplicates and re-

send a positive acknowledgement. A duplicate PDU can be

identified using a sequence number.

 in order to recover from the loss of a leavePDU, we could re-send

pingPDUs to all the neighbors from time to time. If neither a

positive acknowledgement nor a pongPDU is received, a neighbor

can be removed from the neighbor list.

4.5.4 Complete Behavior

The complete behavior of an AmbientDB P2P protocol entity

includes some extra rules defined in section 4.5.3 together with the

behavior discussed in section 4.5.2.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

39

4.6 Addressing and Initialization

Each node in the AmbientDB P2P networking protocol is identified

by its IP address.

All protocol entities are allowed to function independently. This

means that a node may or may not want to join the network. If a node

does not join the network, then it is sufficient to initialize the protocol

entity with a shared database only. If the node wants to join the

network, then it must be initialized with the destination address and

the shared database. Node initialization without known destination is

required if there are no other nodes in the network. It seems that the

protocol entity does not need to function when the network is a single

node network. However, the initialization is important because other

nodes may want to join this node at a later time.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

40

5. Simulation

This chapter introduces the simulation goals and assumptions,

simulation setup and simulation environment. In this section, the

necessary extension of the ns-2 simulation tool for AmbientDB is also

described.

5.1 Simulation Goals, Assumptions and Requirements

To evaluate the complexity and efficiency of the AmbientDB P2P

networking protocol (Adb/NP) and compare it with pure Gnutella, we

adapted the ns-2 network simulator. ns-2 is an object oriented, event

driven network simulator suitable for physical network simulation.

The main goal of this simulation is to study and verify the

improvements offered by Adb/NP protocol over pure Gnutella. The

main improvements expected from the Adb/NP protocol are:

 lower average query response time under a given set of

assumptions such as network access, storage space, and stored

data, and

 better scalability, especially in heterogeneous physical networks.

To make it possible to simulate the Adb/NP protocol ns-2 needs to

provide support for the following:

 measurement of various time factors e.g. average query time.

 creation of hierarchical network topologies, both physical and

overlay.

 making routing decisions at each level of the hierarchy.

With the aforementioned goals, we take into account the following

assumptions to design the simulation environment:

 the ns-2 nodes connected with ns-2 IP links represent the physical

topology.

 the ns-2 agents attached to ns-2 nodes represent the AmbientDB

nodes.

 the ns-2 agents connected to each other represent the AmbientDB

overlay topology.

 link and node characteristics are read from a configuration file.

 the ns-2 topology file is generated automatically from outside the

ns-2 network simulator.

 not all nodes in the physical network participate in the

AmbientDB network.

 traffic generated by nodes that do not participate in the

AmbientDB network is ignored.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

41

5.2 Simulation Environment

The simulation consists of two different topologies: a physical

topology and an overlay topology. The physical topology uses the IP

routing mechanisms and other physical level operations. The overlay

topology is constructed over the physical topology and uses the

Adb/NP protocol. Figure 21 shows both topologies of our simulation.

In the figure, a thick line represents a connection between two overlay

nodes and a thin line represents the connection between two physical

nodes. In this diagram only three out of eleven physical nodes are

participating in the AmbientDB overlay network.

Figure 21: an example simulation environment

We generate the physical topology as a random mesh network

topology. This topology is re-used to create the AmbientDB P2P

overlay topologies. The AmbientDB P2P overlay topology consists

of a subset of randomly chosen nodes from the physical network. We

create different overlay topologies with varying number of nodes.

5.3 Simulation Strategy

To study the behavior of the Adb/NP protocol, the simulation is

carried out in three different steps: creating both the physical and

overlay topologies, initializing the AmbientDB nodes (i.e., network

participation), and exchanging messages. Figure 23 shows these

simulation steps.

Figure 22: The AmbientDB simulation strategy

Topology Creation

Agent Initialization

Neighbor Table

Initialization

Participation

Message Exchange

N
o

d
e

in
it

ia
li

za
ti

o
n

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

42

5.3.1 Topology Creation

We create a certain physical topology consisting of N nodes. We take

a sub-list of M < N nodes that want to participate in an AmbientDB

network and a node that is already a part of the AmbientDB overlay

network to create the overlay topology. This known node is used as

the node that receives the join request from all other joining nodes.

5.3.2 Node Initialization

In this step, we randomly initialize the AmbientDB node with the

parameters stored in a node configuration file. These nodes at they

join the network update their neighbor table that are empty initially.

5.3.3 Message Exchange

After all M < N nodes participate in the AmbientDB network, each

node sends a request message to their (independent) super-node

sequentially and receives a corresponding response. In this step, we

measure the average query cost. For the simulation purpose we use a

query that is as simple as possible, e.g., an aggregate query.

We perform a number of sets of simulation of the Adb/NP protocol.

For each set of the simulations the physical and overlay topologies

are fixed. However we change the node and link related parameters to

observe the behavior of the Adb/NP protocol with increasing

heterogeneity and shared data.

5.4 Simulation Setup

External to the ns-2 simulator, we use two simple programs written in

C++ to randomly generate physical and overlay topologies. Given a

network size N and node and link parameters, the topology generator

generates a physical network topology (PT) and stores it in a file. The

physical topology file together with overlay size O (| O | | N |) and a

known node n (n is supposed to be one of the node in overlay

network) is given as an input to the overlay topology generator. The

overlay topology generator randomly chooses |O| nodes from the

physical topology, generates an overlay network topology (OT) and

stores it in a file. This OT file is then used to specify the overlay

network for the purpose of simulation. The ns-2 takes the OT file as

an input, adds one node at a time to the overlay network and

initializes the AmbientDB agents. Figure 24 shows an initialization

process. When all the nodes are added to the overlay node, each node

sends a request to and receives the answer from its (independent)

super-node sequentially. The ns-2 then simulates the query-response

operation of the Adb/NP protocol and stores the result (Rs) in a file.

We use the Rs file to calculate the average query response time.

Figure 23 shows the different states in our simulation setup as

described above.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

43

Figure 23: A Adb/NP simulation setup

Neighbor

Table

Agent

Initializer Config File
1

Reads

1.. *

Initializes

1.. *

Exchange neighbor info
Updates

Figure 24: the AmbientDB agent initialization

Physical
Topology

(PT)
Generator

Overlay
Topology (OT)

Generator

No of nodes in
Physical Network

P

a
ra

m
e
te

rs

 PT

Known Node

No of nodes in
Logical Network LT

NS-2
 Rs

Results (Rs)

Add a node to logical
topology until the input
list is empty

n
o

d
e

li
n

k

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

44

6. Evaluation

This chapter describes the benchmark parameters used to compare and

evaluate the AmbientDB P2P networking protocol with respect to the

pure Gnutella protocol. In this section, the performance of the adb/NP

is evaluated using our benchmark parameters.

6.1 Cost Metrics

We define cost metrics in order to evaluate the effectiveness of the

AmbientDB P2P protocol. We look at cost metrics that directly affect

the performance of the AmbientDB P2P protocol.

As defined earlier in 3.3, the query cost is the minimum response time

and is calculated as a sum of the transfer and the processing costs.

However, the processing cost is dominated by the network cost as a

query forwarded to all nodes in the super overlay. Therefore, the

query response time is determined mainly by the network cost. The

network cost can be calculated in terms of available network latency

and bandwidth.

Latency: the network latency is the transmission delay between two

nodes.

Bandwidth: the available network bandwidth for each pair of nodes

is not symmetric. The incoming bandwidth can be different than the

outgoing bandwidth, but for simplicity we assume that it is

symmetric. According to our assumption in section 3.3, if a query can

be evaluated at a single node, the cost of a given query is not

influenced by the available bandwidth. If a query can not be evaluated

at a single node, the available bandwidth can influence the query cost

of a given query. This is because the available bandwidth can be

different between different pairs of nodes, and the query (query-

answer) that goes from one node to another can be bigger.

6.2 Benchmark Parameters

We define different benchmark parameters to evaluate the nodes

participating in the AmbientDB overlay network. The main

parameters we take into account include the node type, their

resources, and their participation. These parameters are used to define

a node evaluation benchmarking.

Node type: we want to maximize heterogeneity in the network. The

ever growing „intelligent‟ consumer electronic device can also

participate in the network. We distinguish the types of the nodes

participating in the network as either mobile or static. If the nodes are

consumer electronic devices (e.g., 3G phones, PDA, MP3 players,

etc) they are considered as mobile devices and other devices like PC,

Laptop are considered as static devices.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

45

Participation: devices can join and leave the network at will. This

ad-hoc participation makes a variable sized network.

Storage space: we want a query to visit a minimal number of nodes

to get the answer. If a node has higher available storage space it can

hold the data from other nodes that have lower storage space. The

available storage space of any node in the network is one of the

parameters to select the candidate super-node for a node that wants to

join the network.

Stored data: we want to minimize the query response time by

transferring data from lower resource nodes to higher resource nodes.

The stored data of a node is one of the parameters to determine if a

node can transfer its data to another node.

6.3 Simulation

We compare the performance of the Adb/NP networking protocol and

the pure Gnutella protocol through simulation. We run simulations to

evaluate different scenarios including home environments (10 nodes

physical network) and somewhat Internet like environments (100

nodes physical network). To analyze the performance of the Adb/NP

over the pure Gnutella, we performed the following experiments:

 with uniform data distribution over all the nodes.

 with increasing heterogeneity.

From these two different experiments we evaluated the effectiveness

of Adb/NP over Gnutella in terms of average query response time,

bandwidth consumption, scalability and heterogeneity.

6.3.1 Uniform data distribution

To evaluate the performance of Adb/NP, we created an overlay

network where data and queries are distributed uniformly over nodes.

We added the nodes in the AmbientDB network using two different

strategies:

 intelligent join without data transfer from normal nodes to their

super-nodes;

 intelligent join with data transfer from normal nodes to their

super-nodes.

Using these strategies, we observed the contribution of intelligent

join. During the experiment, the simulation ran for two nights, one for

each strategy. Through the experiment, we observed that the first

strategy maintained on average a three node super-overlay for home

environments and a 22 node super-overlay for internet environments.

In the home scenario, we used five dynamic nodes and five static

nodes. Though the number of nodes in a super-overlay is

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

46

unpredictable as it depends on the type and resources of the node,

with our configuration the result is satisfactory.

Experiments with intelligent join without data transfer

The average response time in an AmbientDB network is found

increasing with increasing number of nodes, as in pure Gnutella

network. However, because the nodes join the network through

another node that is in its neighbuorhood, the average query response

time is relatively smaller than that in pure Gnutella. Graph below

shows the query response time in an AmbientDB vs Gnutella home

network.

Similarly, the graph below shows the query response time in an

AmbientDB vs Gnutella Internet-like network.

Experiments with intelligent join and data transfer

The average query response time in an AmbientDB is found

significantly smaller than that in the pure Gnutella network. Graph

below shows the query response time in an AmbientDB vs Gnutella

home network.

416

1059

2138

3649

890

1850

3300

5200

0

1000

2000

3000

4000

5000

6000

3 5 7 9

nodes

a
v
g

 q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e

(i

n

m
s
)

2243

1034612172

21469

30682

39992

5828

14120

23484

44137

59138
66639

0

10000

20000

30000

40000

50000

60000

70000

10 20 40 60 80 90

nodes

A
v
g

 q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e

(i
n

 m
s
)

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

47

Similarly, the average query response time in an AmbientDB

Internet-like environment is also lower than that in the Gnutella

network. The graph below shows the query response time in an

AmbientDB vs Gnutella Interne–like network.

The big difference in query response time is because of the size of the

super-overlay. In a pure Gnutella network, each query is flooded over

the entire overlay network, where as in an AmbientDB network it is

flooded only over the super-overlay.

The response time, as stated above, is largely dominated by network

time. When a query is asked, only the network latency affects the

response time. But when the answer is sent, the size of the message

increases in each node it is visited. Therefore, the bandwidth also

influences the response time. The bandwidth consumed to execute

queries depends on the size of the message.

6.3.2 Increasing heterogeneity

The results of the experiments presented in the previous section are

based on the number of nodes and their available resources. While

performing the experiments, the number of nodes that participate in

the network is varied. Similarly, the type (mobile or static) of each

participating node and their resources are changed to ensure the

maximum heterogeneity of the nodes. The ratio of the mobile and

120 159 238 349
890

1850

3300

5200

0

1000

2000

3000

4000

5000

6000

3 5 7 9

nodes

a
v
g

 q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e

(i

n

m
s
) Ambient DB

Gnutella

22434346
917210469

13682
16912

5828

14120

23484

44137

59138

66639

0

10000

20000

30000

40000

50000

60000

70000

10 20 40 60 80 90

nodes

a
v
g

 q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e

 (

in

m
s
) AmbientDB

Gnutella

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

48

static nodes is increased gradually from 50% to 90%. The result

presented in the previous section presents the worst case average

response time of the AmbientDB network, with node configuration

defined by ourselves.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

49

7. Conclusion and Future Work

This chapter concludes the work done in this master thesis and states

the future work.

7.1 Conclusion

In this master thesis we designed and simulated an AmbientDB P2P

networking protocol. This protocol creates a „good‟ overlay network

of the AmbientDB nodes as good as possible. The nodes that have

more resources work for other nodes that have fewer resources. It

transfers the data from fewer resource nodes to the bigger resource

nodes, and reduces the number of nodes that process a query. While

participating in the network, nodes join through another node that is

in a closer latency distance, has larger network bandwidth, larger

storage and is „static‟. No mobile node can become a super-node for

any other new node no matter whether it is a mobile node or a static

node. The AmbientDB P2P protocol can be used with any ad-hoc

connected heterogeneous network of consumer electronic devices. It

supports the execution of a common global database in an ad-hoc

network of heterogeneous devices there by providing lower query

response time than the pure Gnutella protocol.

From the simulation result, it is seen that the AmbientDB network

does scale with the growing number of nodes (tested up to 100

nodes). It also informs that the query response time is indeed lower

than that of the pure Gnutella protocol. The simulation results are

indeed as per our expectations. However, the results are based on our

own node configurations. The average query response time is

influenced by the total number of nodes in the super-overlay. Smaller

the super-overlay size, smaller is the average query response time. In

our simulation results, the super-overlay size is seen smaller for our

node and link configuration.

7.2 Future Work

In this research work, we focused our attention only on the join

algorithms and left other parts for future work. The join algorithm,

however, takes IP-address as an unique identifier of each user. This

assumption does not work in case of shared IP-addresses. For the

complete evaluation of this protocol we need to look at failure

resilience. Also, we analyzed only the average query cost. For the

complete analysis, we need to analyze the join performance and its

efficiency. Our simulation result does not incorporate the effect of

other loads in the network. In the actual network, the IP traffic might

affect the performance of this protocol. The analysis of the protocol in

presence of IP traffic is also left for future work.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

50

8. References

[1] Abhishek Gupta, Divyakant Agrawal, and Amr EI Abbadi, Approximate Range

Selection Queries in Peer-to-Peer Systems, In Proceedings of the 2003 CIDR

Conference, California 2003

[2] Beverly Yang and Hector Garcia-Molina, Comparing Hybrid Peer-to-Peer

Systems, In the VLDB Journal, pages 561-570, September 2001

[3] Baverly Yang and Hector Garcia-Molina, Designing a Super-Peer Network, In

the Proceedings of the 19
th

 International Conference of Data Engineering

(ICDE), Banglore, India, March 2003

[4] C. Greg Plaxton, Rajmohan Rajaraman, Andrea W. Richa, Accessing Nearby

Copies of Replicated Objects in a Distributed Environment, In proceedings of

ACM Symposium on Parallel Algorithms and Architectures, 1997

[5] Chris A. Vissers, L. Ferreira Pires, Dick A.. C. Quartel, Marteen J. v. Sinderen,

The Architectural Design of Distributed Systems, Lecture Notes(265100),

University of Twente, Enschede, the Netherlands, March 2002

[6] Christopher Kommareddy, Narendar Shankar, Bobby Bhattacharjee, Finding

Close Friends on the Internet, In the Proceedings of ICNP, November 2001

[7] Entropia, http://www.entropia.com

[8] FastTrack – P2P Technology

[9] FreeNet, http://freenetproject.org

[10] Gnutelliums, http://gnutell.wego.com

[11] Ion Stocia, Robert Morris, David Karger, Frans Kaashoek, and Hari

Balakrishnan, Chord: A scalable Peer-to-Peer Lookup Service for Internet

Applications, In Proceedings of the 2001 ACM SIGCOMM Conference, pages

149-160, 2001

[12] Jens Mache, Melaine Gilbert, Jason Guchereau, Jeff Lesh, Felix Ramli and

Matthew Wilkinson, Request Algorithms in Freenet-style Peer-to-Peer Systems,

In the Proceedings of the Second International Conference on Peer-to-Peer

Computing (P2P‟02)

[13] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Partick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon,

Westly Weimer, Christopher Wells, and Ben Zhao, OceanStore: An

Architecture for Global-Scale Persistent Storage, In Proceeding of ACM

ASPLOS, ACM November 2000

[14] Jordan Ritter, Why Gnutella Can’t Scale. No, Really,

http://www.darkridge.com/~jpr5/doc/gnutella.html

[15] KaZaA, http://www.kazaa.com

[16] L. Ferreira Pires, Dick A. C. Quartel, Protocol Engineering, Lecture Notes

(214004), University of Twente, Enschede, the Netherlands, August 2001

[17] Napster, http://www.napster.com

[18] NS-2 manual, http://www.isi.edu/nsnam/ns/doc

[19] O‟Reilly P2P Directory, http://open2p.com/pub/q/p2p_category

[20] Peer-to-Peer Working Group, http://www.peer-to-peer.org

[21] Peter Boncz, Caspar Treijtel, AmbientDB: Relational Query Processing in a

P2P Network, Technical Report INS-R0305, CWI, Amsterdam, June 2003

[22] Peter Boncz and Caspar Treijtel, AmbientDB: Relational Query Processing over

P2P Network, In proceedings of the International Workshop on Databases,

http://www.entropia.com/
http://freenetproject.org/
http://gnutell.wego.com/
http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.kazaa.com/
http://www.napster.com/
http://www.isi.edu/nsnam/ns/doc
http://open2p.com/pub/q/p2p_category
http://www.peer-to-peer.org/

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

51

Information Systems and Peer-to-Peer Computing, Humboldt University, Berlin,

Germany, September 8, 2003

[23] Peter Triantafillou, Chrysanni Xiruhaki, Manolis Koubarakis, Kikolaos

Ntarmos, Towards High Performance Peer-to-Peer Content and Resource

Sharing Systems, In Proceedings of the 2003 CIDR Conference

[24] Promoting Ambient Intelligence, http://www.ambientintelligence.net

[25] Qin Lv, Sylvia Ratnasamy, and Scott Shanker, Can Heterogeneity Make

Gnutella Scalable? In Proceedings of the First International Workshop on Peer-

to-Peer Systems 2002

[26] Rivka Ladin, Barbara Liskov, Liuba Shira, and Sanjay Ghemewat, Providing

High Availability Using Lazy Replication, ACM Transaction on Computer

Systems, 10(4): 360-391, 1992

[27] S. A. Thomas, IPng and the TCP/IP protocols, John Wiley & Sons, Inc. USA,

1996

[28] SETI@HOME, http://www.setiathome.ssl.berkeley.edu

[29] Stafen Sariou, P Krishna Gummadi, and Steven D. Gribble, A Measurement

Study of Peer-to-Peer File Sharing Systems, In Proceedings of Multimedia

Computing and Networking 2002 (MMCN „02), San Jose, CA, USA, January

[30] Steven Gribble, Alon Halevy, Zachery Ives, Maya Rodrig, and Dan Suciu, What

Can Peer-to-Peer do for Databases, and Vice Versa? In Proceedings of the

Fourth International Workshop on the Web and Databases(WebDB 2001), Santa

Barbara, California, USA, May 2001

[31] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shanker, A Scalable Content Addressable Network, In Proceedings of SIGCOM

2001, San Diego, August 2001

[32] United Devices, http://www.ud.com

http://www.ambientintelligence.net/
http://www.setiathome.ssl.berkeley.edu/
http://www.ud.com/

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

52

9. Appendix I

1. AmbientDB P2P Network, Peer Comparing Algorithm

We assume that the participants in the AmbientDB P2P Network are very

heterogeneous in terms of their resources. We define the devices like 3G phone, PDA,

MP3 Players, etc as a mobile device and the devices like PC, Laptop, etc as a static

device. Let m and s denote the mobile node and the static node respectively. Also, we

assume that participants wish to share as much resources as possible along the path of

higher available network bandwidth and lower network latency. The network

bandwidth and the storage space play an important role to distinguish the strength of a

participant. We give the network bandwidth a higher priority and the storage space the

lowest, because the queries are flooded between the super-nodes. The mobile nodes

are highly dynamic and it is unlikely that they have large storage space therefore they

can not be super-node nodes. As there are two possible types for each device, we can

have four different combinations: mm, ms, sm, ss in the order of p and q, where p and

q are a new and an existing node respectively. If both of p and q are of type m, then

they can neither be a super-node nor a simple node of each other, so they remain

independent to each other.

f (p, q)

1. if p.t = m and q.t = m // if both p and q are mobile, no one
 // can be a super-node
2. return independent

3. end if

On the other hand if either p or q is m, it is sufficient for a node of type s to be a

super-node of another node of type m, if it can hold the data of another node of type

m. If that is not the case then they remain independent of each other.

4. if p.t = m and q.t = s // if p is mobile, check if q can
hold p’s data

5. if q.s ≥ p.d
6. return super-node
7. else

8. return independent // if q can not hold p’s data
 // then they become independent
9. end if // as a static node q can not

 // become a slave of a mobile
 // node p
10. end if

11. if q.t = m and p.t = s // if q is mobile, check if p can
 // hold q’s data
12. if p.s ≥ q.d
13. return slave
14. else
15. return independent // if p can not hold q’s data

 // then they become independent
16. end if // as a static node p can not be
 // slave of a mobile node q

17. end if

In case if both p and q are both of type s, then one can become the super-node of other

if it has higher or equal bandwidth of the other and it has sufficient space to

accommodate other‟s data. In other case, they also remain independent of each other.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

53

18. if q.t = s and p.t = s // if both p and q are static,
 // they are equally likely to

19. if q.b ≥ p.b and q.s ≥ p.d // become a super-node of
 // each other iff one has
 // higher or equal bandwidth

20. return super-node // and sufficient storage
 // space to hold other’s data
21. end if

22. if p.b < q.b and p.s < p.d
23. return slave
24. end if

25. return independent
26. end if

In peer evaluation algorithm explained above, other parameter‟s such as: memory size

and processor speed are not considered as overall query processing time will be

dominated by network infrastructure.

2. AmbientDB P2P Network, Join Algorithm

We assume that a new node p, by some means, knows at least one existing node q in

the AmbientDB P2P Network. Also, we assume that there exists a cost function fc, as

explained above. Given the parameters of two nodes p and q cost function fc returns

either slave, or independent or super-node representing p happens to be the super-

node of q, or p and q are similar, or q happens to be the super-node of p respectively.

Furthermore, we assume that every node in the AmbientDB P2P network has the

following state variables.

status {super-node, slave, independent, void}, initially void
N: neighbor list, (initially null for new participant), sorted in
ascending order on latency

N[i].status: status of i neighbor {slave, independent}; i ≥ 0
b: super-node, initially null
l: latency, initially zero

s: storage space
t: device type
c: bandwidth

d: data size
temp: temporary super-node, initially null

f: request, f {true, false} // if the request is new
k: temporary variable, initially null

o: originator, initially self

In this algorithm, we assume that it is the responsibility of the network to find a place

to join for a new participant. It is important to note that each participant in the

network can be a super-node, a slave or an independent super-node for a new

participant. When an existing node receives a join request from a new node, it

measures the latency between the new node and itself.

request_super-node (p, q)
1. if p.f

2. p.l = echo (p, q), p.f = false // get latency between p and q
3. else
4. k = echo (p, q)

5. end if
6. if k < p.l
7. p.l = k

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

54

After measuring the latency, it checks the aforementioned possibilities. When it finds

that it can be a super-node for the new participant, then we assume that there is still a

possibilities that its neighbors can still be a super-node for the new participant. The

node that receives the join request appends its address at the start of the originator‟s

originator variable and forwards the join request to its neighbors who it sees as a

candidate super-node for a new node and waits for the response. As soon as it gets the

response from the neighbor it checks, if the neighbor is willing to be a super-node for

the new node or not. If that is the case, it simply replies back the originator that the

super-node has been found. If the neighbor is not willing to be a super-node, then it

forwards the same message to another neighbor. This process continues until there are

still some other potential super-nodes for new participant in the receiver‟s neighbor

list.

8. switch f (p, q)
9. case: super-node // q is a super-node for p

10. if N is not null
11. for i:= 0 to |N|-1 // check if my neighbors can
 // become a super-node for p

12. if N[i].l ≤ 2*p.l and f (p, N[i]) == super-node
13. p.l = k
14. p.o = q concat p.o

15. temp = request_super-node(p, N[i])
16. if (temp.status = super-node)
17. break for

18. end if
19. end if
20 end for

21. else
22. temp = q

23. temp.status = super-node //q is a super-node of p

24. end if
25 if length (p.o = (p.o – q)) = 1
26. p.status = slave

27. q.s = q.s – p.d
28. N.addElement (p) // add p in neighbor list as slave
29 end if

30. return temp to p.o // return to sender

If the receiver finds that the responding node can not be a super-node but a slave node

for a new node, then still we assume that the super-node of receiver could also be

closer to the new node therefore, if it happens to be so, the receiver simply forwards

the join request to its super-node appending its address at the start of the originator‟s

originator variable. If the receiving node finds that its super-node is not near to the

requester, then it informs the requester that it can be a slave for the new node but the

new node can join to the receiver‟s super-node as well.

31. case: slave
32. if b is not null and b.l ≤ 2*p.l
33. p.l = k

34. p.o = q concat p.o
35. request_super-node(p, b)
36. exit

37. endif
38. if b is not null and b.l > 2*p.l
39. return b // p can join b

40. p.b = q // p becomes my super-node
41. inform b that p left
42. inform q that p is slave for q

43. send data to q

44. exit
45. end if

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

55

46. temp q

47. temp.status = slave

48. return temp
49. send data to q
50. exit

Similarly, if the receiver finds that they are independent super-nodes, then the receiver

may think that its super-node can be a super-node, so it forwards the request to the

super-node. If it thinks that its super-node is not near to the sender, then it simply send

the requester that they can remain independent super-node of each other.

51. case: independent
52. repeat steps 31 -34
53. temp = q

54. temp.status = independent

55. p.status = independent
56. N.addElement (p)

57. return temp
58. end if
59. exit

3. AmbientDB P2P Network, Peer Joining Alternate Algorithm I

In this alternative algorithm, we add an extra assumption than in the previous

algorithm. Each node also has a temporary potential super-node list. And it uses the

breadth first search (BFS) algorithm to find the potential super-nodes. In this

algorithm, instead of sending the response back to the intermediate node, each node

directly response to the originator node of the join request.

status {super-node, slave, independent, void}, initially void
N: neighbor list, (initially null for new participant), sorted in

ascending order on latency
N[i].status: status of i neighbor {slave, independent}; i ≥ 0
b: super-node, initially null

l: latency, initially zero
s: storage space
t: device type

c: bandwidth
d: data size
temp: temporary super-node, initially null

f: request, f {true, false} // if the request is new
k: temporary variable, initially null
N : temporary potential super-node list, initially null

As in the previous algorithm, when a node receives a join request it checks several

possibilities. If it finds that it can become a super-node for a new node then checks its

neighbors it they can become a super-node for a new node and creates a temporary list

of all of potential super-node for a new node. The receiving node then forwards this

join request to all nodes in the temporary list, also informs the new node that it can

also become a super-node. After receiving the response from all the potential super-

nodes, the new participant chooses the best one as its super-node and joins the

network. This process however creates a lot of network traffic but reduces the extra

burden of keeping pending message list at all receiving participants.

request_super-node (p, q)

1. if p.f == true

2. p.l = echo (p, q), p.f = false // get latency between p and q
3. else

4. k = echo (p, q)

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

56

5. end if

6. if k < p.l

7. p.l = k
8. switch f (p, q)
9. case: super-node // q is a super-node for p

10. if N is not null
11. for i:= 0 to |N|-1 // check if my neighbors can
 // become a super-node for p

12. if N[i].l ≤ 2*p.l and f (p, N[i]) == super-node
13. N [i] = N[i]
14 break for

15. end if
16. forward message to all in N
17. end if

18. temp = q
19. temp.status = super-node
20. return temp to p.o // return to sender

If the receiving node can only become a slave for a new node, we assume that it is

still possible that the super-node of the receiving node can become a super-node for

the new participant. To check this possibility, the receiving participant forwards this

join request to its super-node as a new message from the participant. Furthermore, if

the receiving node finds that the new node is nearer from it than its existing super-

node, then it simply changes its super-node and informs its existing super-node that it

changed the super-node.

21. case: slave
22. if b is not null and b.l ≤ 2*p.l
23. p.f = true

24. forward message to b

25. if b.l > k
26. inform b that q changed super-node

27. b = p
28. inform p that q is slave for p
29. send data to p

30. end if
31. end if
32. if b is not null and b.l > 2*p.l

33. inform p that b is super-node for p
34. inform p that q is slave for p
35. inform b that q changed the super-node

36. b = p
37. send data to p
38. exit

39. end if
40. temp q
41. temp.status = slave

42. return temp
43. send data to q
44. exit

Similarly, if the receiver can neither become a super-node nor a slave for a new node,

we assume that it is still possible that the super-node of the receiving node can

become a super-node for the new node. The receiving node checks if the super-node

can become a super-node of a new node and is in nearby location, then it forwards

this join message to its super-node. If the super-node is found far from the new node,

then the receiving node informs the new node that they can remain independent super-

node for each other. This means that they do not transfer data to each other.

45. case: independent

46. repeat steps 22 -31
47. temp = q

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

57

48. temp.status = independent

49. p.status = independent

50. N.addElement (p)
51. return temp
52. end if

53. exit

This algorithm requires an extra management from all the super-node nodes. When a

neighbor changes its super-node, then the previous super-node has to remove the

migrating neighbor from its neighbor list and the corresponding data from its

database. This requires an additional network overhead of data transfer. This involves

the freedom of selecting a super-node dynamically and the total network cost. That

might ultimately increase the query response time.

4. AmbientDB P2P Network, Peer Joining Alternate Algorithm II

As in the previous algorithms, the initial assumptions in this algorithm are same.

status {super-node, slave, independent, void}, initially void
N: neighbor list, (initially null for new participant), sorted in
ascending order on latency
N[i].status: status of i neighbor {slave, independent}; i ≥ 0
b: super-node, initially null
l: latency, initially zero
s: storage space

t: device type
c: bandwidth
d: data size

temp: temporary super-node, initially null

f: request, f {true, false} // if the request is new
k: temporary variable, initially null
N : temporary potential super-node list, initially null

In this algorithm, we assume it is the responsibility of the participating node p to find

and join at a suitable place in the network. To find a suitable place, a participating

node first makes a temporary connection with the known participant q. After making a

temporary connection with q, p requests for the list of all participants that are directly

connected with q including q. When p receives the list of all the participants

connected with q, it filters them according to their available resources. It then

measures the latency between those selected participants and itself and selects the best

one as its place to join the network.

With the aforementioned assumptions, following algorithm is used to find a so-called

super-node for a new participant p.

request_super-node (p, q)
while temp is null
1. join temporarily to q

2. N = ask q for its neighbor list including q
3. for i:= 0 to |N|-1 // check if neighbors can become a
 // super-node for p

4. if N[i].l ≤ 2*p.l and f (p, N[i]) != slave
5. N [i] = N[i]
6. N [i].l = echo (N [i])

7. end if
8. end for

9. if N is not null

8. for i:=0 to |N |-1

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

58

9. temp = N [i] such that latency is minimum

10. end for

11. join temp
12. transfer data to temp
13. end if

14. if N is null
15. q = super-node of q
repeat

This algorithm, though looks simple, requires more than two connections to join the

network. This multiple connections introduce high network traffic.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

59

10. Appendix II

10.1 Network Simulator-2 (ns-2)

The network simulator 2 (ns-2) is a discrete object oriented event

driven simulator [18] designed to simulate the network behaviors.

The ns-2 provides supports the simulation of TCP, routing, and

multicast protocols over wired and wireless networks. It also

supports the simulation of several ad hoc routing protocols and

propagation models except cellular phones, data diffusion and

satellite networks.

The ns-2 translates physical activities into events and time advances

as the events are processed. It allows creating nodes, building routes,

monitoring events, and generating traffic. Because of these features,

ns-2 has been chosen as a simulation platform to simulate the Adb/NP

protocol. ns-2 is written in C++ with an OTcl interpreter as a front

end. It supports a class hierarchy in C++ and a similar class hierarchy

within the Otcl interpreter. These two class hierarchies are closely

related to each other and can communicate with each other via Tclcl.

The ns-2 Tcl interpreter structure can be seen as follows:

ns-2

N
et

w
o
rk

C
o
m

p
o
n
en

ts

Event Scheduler

Tclcl

OTcl

Tcl 8.x

Figure 25: The ns-2 structure

The event scheduler schedules the queued events to be processed by

the simulator. Otcl is an object oriented support for tcl, and tclcl is

used to glue the tcl objects and C++ objects and vice versa. The

network components consist of the basic network components like

nodes, links, routers, etc.

All control operations including topology creation are implemented

mostly in Otcl and other core components are implemented in C++.

To simulate the Adb/NP protocol, we extend both the C++ and OTcl

classes, particularly ns-lib.tcl and agent classes.

Figure 26 shows an ns-2 class hierarchy.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

60

Figure 26: An ns-2 class hierarchy

The root of any simulation is TclObject. Users create simulator

objects through the interpreter. These objects are instantiated within

the interpreter, and are closely mirrored by a corresponding object in

the C++ class hierarchy. The C++ class hierarchy is automatically

instantiated through the methods defined in the class TclClass as in

the following figure:

Figure 27: TclClass instantiation

10.1.1 Ns-2 Node

The figure below shows the internal structure of a simple node in ns-

2. Each node consists of two classifiers: port and address classifiers.

These classifiers are used to do the routing in the network topology.

Besides routing, the classifiers can store the pointers to another

classifier, agent, link, etc. The address classifier routes the packet to

the right link or to the port classifier depending on the target address

contained in the received packet. The address consists of the node

number and the agent id also called as port number.

TclObject

NsObject

Connector Classifier

Queue Delay Agent Trace AddrClassifier

Drop Tail RED TCP ADB Enq Dnq Drop

Reno SACK

McastClassifier

TclObject

NsObject

Agent

ADBAgent

Agent

ADBAgent

static class ADBClass : public TclClass {

 public :

 ADBClass() : TclClass (“Agent/ADB”) {}

 TclObject* create (int, const char*const*) {

 return (new ADBAgent());

 }

}class_ADB;

C++

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

61

Figure 28: ns-2 node structure

10.1.2 Ns-2 Link

The ns-2 link represents the physical link of the physical network.

Figure below shows the internal structure of a simple point to point

link in ns-2. A simple link consists of a sequence of connecters. The

connectors are linked together via their target_ pointer. Connectors

generate data for one recipient, either the packet is delivered to the

next connector or it is dropped from the link. In both cases the

connector can produce new events and tell the scheduler to insert it in

the event queue.

Figure 29: ns-2 link structure

Where,

enqT_ = reference to the enqueue trace. All trace connectors aim

at producing one line of the output nam file.

queue_ = reference to the queue manager. It mainly forwards the

packets from the enqueue trace to the packet queue or

from the packet queue to the dequeue trace

drophead_ = reference to the packet queue. It mainly stores the

waiting packets and drops some packets when it is full

drpT_ = reference to the drop trace. It traces the packets that are

dropped

P
o

rt

C
la

ss
if

ie
r

A
d

d
re

ss

C
la

ss
if

ie
r

Agent

Agent

Agent

agents_

demux_

classifier_

Link

Link

Link

Node

entry

entry_

enqT_

enque_

deqT_

link_

ttl_

rcvT_

drophead_

drpT_

head_

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

62

deq_ = reference to the dequeue trace. It traces the packets that

are dequeued and will continue to the dalay connector.

 link_ = reference to link delay and bandwidth. Given a packet,

the delay connector schedule a new event which will

occur in ttl checker at current time + delay of the link

ttl_ = reference to ttl checker. Every packet has a time-to-live

variable. Every time the packet goes through a link it is

decreased. If it comes to be null, the packet is dropped.

rcvT_ = reference to receive trace. It traces the arrival of packets

in a node.

10.1.3 Ns-2 Agent

The ns-2 agent represents the end points where network-layer packets

are consumed or produced. The ns-2 agents contain methods to create

new packets, receive new packets and subclass specific time out

methods. These agents can be connected with nodes. Agents also

allow including extra information that is needed for any application

specific simulation.

10.1.4 Ns-2 Header

To exchange information between two communicating agents ns-2

Packets are used. ns-2 consists of header fields but no data. Thus, the

header field forms the main ingredient of ns-2 Packet. They are

abstract class and are defined for each new application according to

their requirements. Data needed to be exchanged between two

communicating entities are exchanged as header fields.

10.1.5 Otcl Library

The Otcl library contains all the methods required to configure nodes,

links, agents, etc to initialize the whole topology at ns initialization.

As the topology objects are C++ objects and are instantiated using the

create function of the TclClass class, the methods in Otcl library are

required to link C++ and Tcl hierarchies.

10.2 Ns-2 extension for AmbientDB

In order to simulate the Adb/NP protocol behavior, we extend the ns-

2 agents to ADBAgents to represent AmbientDB nodes. The

extension includes extra node parameters. These parameters include

bw_, hdd_, data_, and lat_ representing network bandwidth the node

is currently using, its available storage, stored data, and the network

latency between two nodes. Also we define our new header types so

as to transfer node specific parameters between communicating nodes

when necessary. Details about necessary extensions are explained in

the following sub sections.

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

63

10.2.1 C++ extension

ADB Agent is an extension of the agent class. It consists of the

additional node parameters, methods to receive and send the packets,

and the method to analyze the packet. Following picture depicts the

ADB Agent structure.

Agent

ADB Agent nbrtable

Figure 30: AmbientDB agent inheritance structure

The ADB Agent inherits the properties from Agent and nbrtable

classes. The nbrtable class provides methods to build and manipulate

a neighbor table. Beside this, the ADB Agent provides methods to

access the received packet header, its member variables, send and

receive the packets. The ADB Agents uses the neighbor table to keep

track of its neighbors in the Peer-to-Peer overlay topology. The

following picture depicts the internal structure of the ADB Agent:

Figure: AmbientDB agent example structure

In the ns-2 model of the Adb/NP protocol, agents are attached to

nodes and work whenever there is some information flow between

nodes. The picture below shows the relationships between nodes and

gents.

Agent

node

Agent

node

Figure 31: Node-agent relationship in ns-2

AmbientDB Agent

public:
 command () // this method is used as a hook to execute methods
 forward() // method to forward packet
 recv() // method to receive packet
protected:
 neighbor table* table_
 myId_, myBw_, myData_, myHdd_, myType_

Design of a P2P Protocol for AmbientDB

Department of EEMCS, University of Twente, the Netherlands

64

10.2.2 Otcl extension: ns-lib.tcl

The ns-lib.tcl contains all the methods required to configure nodes,

links, agents, etc. One extra method has been added in ns-lib.tcl to

configure the agents. This method could be invoked from nsObject.

10.2.3 New Header Type

The ns-2 Packets are combination of header fields but no data. It is

not possible to include data in ns-2 Packets. As we want to compare

different characteristic of the nodes, a new header type hdr_adb has

been defined to include the node specific parameters: network

bandwidth, storage space, stored data and device type.

