
Vrije Universiteit, Amsterdam

Faculty of Sciences,
Computer Science Department

Cristian Mihai Bârcă, student no. 2514228

Dynamic Resource Management in
Vectorwise on Hadoop

Master Thesis in Parallel and Distributed
Computer Systems

Supervisor / First reader:
Prof. Dr. Peter Boncz, Vrije Universiteit, Centrum Wiskunde & Informatica

Second reader:
Prof. Dr. Henri Bal, Vrije Universiteit

Amsterdam, August 2014

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Related Work . 2

1.2.1 Hadoop-enabled MPP Databases . 4
1.2.2 Resource Management in MPP Databases 7
1.2.3 Resource Management in Hadoop Map-Reduce 8
1.2.4 YARN Resource Manager (Hadoop NextGen) 9

1.3 Vectorwise . 11
1.3.1 Ingres-Vectorwise Architecture . 12
1.3.2 Distributed Vectorwise Architecture . 13
1.3.3 Hadoop-enabled Architecture . 16

1.4 Research Questions . 19
1.5 Goals . 20
1.6 Basic ideas . 20

2 Approach 21
2.1 HDFS Local Reads: DataTransferProtocol vs Direct I/O. 22
2.2 Towards Data Locality . 24
2.3 Dynamic Resource Management . 26
2.4 YARN Integration . 28
2.5 Experimentation Platform . 31

3 Instrumenting HDFS Block Replication 33
3.1 Preliminaries . 33
3.2 Custom HDFS Block Placement Implementation 35

3.2.1 Adding (New) Metadata to Database Locations 36
3.2.2 Extending the Default Policy . 36

4 Dynamic Resource Management 42
4.1 Worker-set Selection . 42
4.2 Responsibility Assignment . 47
4.3 Dynamic Resource Scheduling . 53

5 YARN integration 67
5.1 Overview: model resource requests as separate YARN applications 68
5.2 DbAgent–Vectorwise communication protocol:

update worker-set state, increase/decrease resources 72
5.3 Workload monitor & resource allocation . 73

6 Evaluation & Results 80
6.1 Evaluation Plan . 80
6.2 Results Discussion . 83

i

List of Figures

1.1 Hadoop transition from v1 to v2 . 10
1.2 The Ingres-Vectorwise (single-node) High-level Architecture 12
1.3 The Distributed Vectorwise High-level Architecture 14
1.4 The Vectorwise on Hadoop High-level Architecture (the session-master, or Vec-

torwise Master, is involved in query execution). 17

2.1 The Vectorwise on Hadoop dynamic resource management approach in 7 steps. . 22
2.2 Local reads through DataNode (DataTransferProtocol). 23
2.3 Direct local reads (Direct I/O - open(), read() operations). 23
2.4 A flow network example for the min-cost problem, edges are annotated with

(cost, flow / capacity). 27
2.5 The flow network (bipartite graph) model used to determine the responsibility

assignment. 28
2.6 Out-of-band approach for Vectorwise-YARN integration. 30

3.1 An example of two tables (R and S) loaded on 3 workers / 4 nodes, using 3-way
partitioning and replication degree of 2: after the initial-load (upper image) vs.
during a system failover (lower image). 34

3.2 Instrumenting the HDFS block replication, in three scenarios, to maintain block
(co-)locality to worker nodes. 35

3.3 Baseline (default policy) vs. collocation (custom policy) – HDFS I/O throughput
measured in 3 situations (1) healty state, (2) failure state (2 nodes down), (3)
recovered state. Queries 1, 4, 6, and 12 on partitioned tables, 32-partitioning, 8
workers / 10 Hadoop "Rocks" nodes, 32 mpl. 40

4.1 Starting the Vectorwise on Hadoop worker-set through VectorwiseLauncher and
DbAgent. All related concepts to this section are emphasized with a bold black
color. 43

4.2 The flow network (bipartite graph) model used to match partitions to worker
nodes. 46

4.3 Assigning responsibilities to worker nodes. All related concepts to this section
are emphasized with bold black and red/blue/green colors (for single (partition)
responsibilities). 48

4.4 The flow network (bipartite graph) model used to assign responsibilities to work-
ers nodes. 49

4.5 The flow network (bipartite graph) model used to calculate a part of the resource
footprint (what nodes and table partitions we use for a query, given the worker’s
available resource and data-locality). Note: fx is the unit with which we increase
the flow along the path at step x of the algorithm. 57

ii

LIST OF FIGURES iii

4.6 Selecting the (partition responsibilities and worker nodes involved in query ex-
ecution. Only the first two workers from left are chosen (bold-italic black) for
table scans; first one reads from two partitions (red and green), whereas the
second reads just from one (blue). The third worker is considered overloaded
and so, it is excluded from the I/O. Red/blue/green colors are used to express
multiple (partition) responsibilities. 58

5.1 Timeline of different query workloads. 69
5.2 Out-of-band approach for Vectorwise-YARN integration. An example using 2 x

Hadoop nodes that equally share 4 x YARN containers. 70
5.3 Timeline of different query workloads (one-time release). 71
5.4 Database session example with one active query: the communication protocol to

increase/decrease resources. 72
5.5 The workload monitor’s and resource allocation’s workflow for: a) successful

(resource) request and b) failed (resource) request (VW – Vectorwise, MR –
Map-Reduce) . 74

5.6 YARN’s allocation overhead: TPC-H scale factor 100, 32 partitions, 8 "Stones"
nodes, 128 mpl. 78

6.1 Running with (w/) and without (w/o) short-circuit when block colloc. is enabled.
TPC-H benchmark: 16-partitions for Order and Lineitem, 8 "Rocks" workers,
32 mpl. 83

6.2 Overall runtime performance: baseline vs. collocation versions, based on Table 6.3 84
6.3 Average throughput per query: baseline vs. collocation versions, related to Ta-

ble 6.3. 85
6.4 Overall runtime performance: baseline vs. collocation versions, based on Table 6.4 86
6.5 The worker nodes and (partition) responsibilities involved in query execution

during (a) and (b). We use red color to emphasize the latter, plus the amount
of threads per worker to satisfy the 32 mpl. Besides, we also show the state
before the failure. The local responsibilities are represented with black color and
the partial ones, from the two new nodes, with grey color. 87

6.6 Overall runtime performance: collocation vs. drm versions, based on Table 6.5. . 88
6.7 Overall runtime performance: Q1, Q4, Q6, Q9, Q12, Q13, Q19, and Q21, based

on Table 6.5 . 89
6.8 Average throughput per query: collocation vs. drm versions, related to Table 6.5. 90
6.9 The worker nodes, partition responsibilities and the number of threads per node

(out of max available) involved in query execution, for Table 6.6. We use red
color to highlight the latter information. The metadata for partition locations
(see Section 3.2) is shown on the left and the responsibility assignment on the
right. 92

6.10 The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.7’s half-set busy-
ness runs. We use red color to highlight the latter information. 93

6.11 The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.8’s half-set busy-
ness runs. We use red color to highlight the latter information. 94

6.12 The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.9’s half-set busy-
ness runs. right. We use red color to highlight the latter information. With
blue color we mark the remote responsibilities being assigned at runtime due to
overloaded workers. 96

6.13 Average CPU load (not. from [min to Max]) for drm, while running Q1 and Q13
side by side with 16, 32 and 64 Mappers and Reducers, on a full-set in left and
half-set in right. 96

LIST OF FIGURES iv

6.14 Average CPU load (not. from [min to Max]) for drmy, while running Q1 and
Q13 side by side with 16, 32 and 64 Mappers and Reducers, on a full-set in left
and half-set in right. 97

List of Tables

1.1 A short summary of the related research in Hadoop-enabled MPP databases
(including Vectorwise), comprising their architectural advantages and disadvan-
tages. Abbreviations: tuple-at-a-time (tat), just-in-time compilation (jit), vec-
torized (vz). 7

2.1 Comparison between local reads through DataNode, without short-circuit (w/o),
and direct local reads, with short-circuit (w/), using the TestDFS I/O benchmark
on 1 and 10 "Rocks" (Section 2.5) cluster nodes; the results are averaged over
two benchmark runs. 24

3.1 Baseline (default policy) vs. collocation (custom policy) – execution times in 3
situations (1) healty state, (2) failure state (2 nodes down), (3) recovered state.
Queries 1, 4, 6, and 12 on partitioned tables, 32-partitioning, 8 workers / 10
Hadoop "Rocks" nodes, 32 mpl. 39

3.2 Baseline (default policy) vs. collocation (custom policy) – execution times in 3
situations (1) healty state, (2) failure state (2 nodes down), (3) recovered state.
Queries 1, 4, 6 and 12 on partitioned tables, 16-partitioning, 8 workers / 10
Hadoop "Rocks" nodes, 32 mpl. 41

4.1 sin vs drm: TPC-H scale factor 100, with 12-partitioned tables and replication
degree 2, on a 4-node Vectorwise on Hadoop cluster (internal nodes, from which
3 nodes were selected as workers. The mpl is set to 24. 62

4.2 sin vs drm: Q6 cold-runs, TPC-H scale factor 100, with 12-partitioned tables
and replication degree 2, on a 4-node Vectorwise on Hadoop cluster (internal
nodes, from which 3 nodes were selected as workers. The mpl is set to 24. 65

6.1 Parameters configuration values . 81
6.2 Workload runtime and CPU avg./peak load for TeraSort benchmark runs on

different data-set sizes, number of Mappers/Reducers and node sets. 82
6.3 Query execution times: baseline (default policy) vs. collocation (custom policy)

versions, in 3 situations (1) healthy state, (2) failure state (2 nodes down), (3)
recovered state. TPC-H benchmark: 16-partitions for Order and Lineitem, 8
"Rocks" workers, 32 mpl (W/N = workers/hadoop-nodes). 84

6.4 Query execution times: baseline (default policy) vs. collocation (custom policy)
versions, in 3 situations (1) healthy state, (2) failure state (2 nodes down), (3)
recovered state. TPC-H benchmark: 32-partitions for Order and Lineitem, 8
"Rocks" workers, 32 mpl (W/N = workers/hadoop-nodes). 86

v

LIST OF TABLES vi

6.5 Query execution times during node failures: colloc. without dynamic resource
management (not. collocation) vs. colloc. with dynamic resource manage-
ment (not. drm). TPC-H benchmark: 16-partitions for Order and Lineitem,
8 "Rocks" workers, 32 mpl, 0.25 core over-allocation, RMax resp. degree 2.
Since RMax = 2 we can form two separate worker-subsets. In (a) we fail 1
worker from a subset and 1 from the other, in (b) we fail 2 workers from just
one of the subsets. 88

6.6 Query execution times without Hadoop busyness, no overlapping external work-
loads: testing Vectorwise without YARN integration (not. drm) vs. with YARN
integration (not. drmy). TPC-H benchmark: Q1 and Q13 hot-runs, 32-partitions
for Order and Lineitem, 8 "Stones" workers, 128 mpl, no core over-allocation,
RMax resp. degree 2. 92

6.7 Query execution times during overlapping external (Hadoop) workloads, 16 Map-
pers / 16 Reducers: testing Vectorwise without YARN integration (not. drm)
vs. with YARN integration (not. drmy). TPC-H benchmark: Q1 and Q13 hot-
runs, 32-partitions for Order and Lineitem, 8 "Stones" workers, 128 mpl, no core
over-allocation, RMax resp. degree 2. 93

6.8 Query execution times during overlapping external (Hadoop) workloads, 32 Map-
pers / 32 Reducers: testing Vectorwise without YARN integration (not. drm)
vs. with YARN integration (not. drmy). TPC-H benchmark: Q1 and Q13 hot-
runs, 32-partitions for Order and Lineitem, 8 "Stones" workers, 128 mpl, no core
over-allocation, RMax resp. degree 2. 94

6.9 Query execution times during overlapping external (Hadoop) workloads, 64 Map-
pers / 64 Reducers: testing Vectorwise without YARN integration (not. drm)
vs. with YARN integration (not. drmy). TPC-H benchmark: Q1 and Q13 hot-
runs, 32-partitions for Order and Lineitem, 8 "Stones" workers, 128 mpl, no core
over-allocation, RMax resp. degree 2. 95

Chapter 1

Introduction

1.1 Background and Motivation

In the recent past of Big Data Analytics many companies shifted from a "one size fits all"
software stack towards a data-pipeline composed of new generation technologies deployed on
commodity clusters, a collaborative approach where workloads were naturally served to the
platform that handles them best. Typically, there are two categories of big-data platforms
that could be used to build a data-pipeline for storing and processing huge amounts of data,
either structured or unstructured. The first category includes MPP1 analytical databases that
are designed to store huge amount of structured data across a cluster of servers and perform
fast parallel queries over it. Most of the MPP solutions follow a shared nothing architecture,
which means that every node will have a dedicated disk, memory, processor, and a high speed
network connection. As these databases are designed to hold structured data, there is a need
to extract the structure from raw data using an ETL2 tool. This is where Hadoop 3, the second
category, comes into help. Apache Hadoop is unquestionably the "de facto" platform for big-
data environments. It is a system for distributing computation among cluster nodes, which, at
its core, consists of HDFS 4 and the Map-Reduce framework 5. The latter is a computational
approach [1] that involves breaking large volumes of data down into smaller batches, and pro-
cessing them separately. A cluster of compute nodes, each one built on commodity hardware,
scan multiple batches and aggregate data. Then the nodes’ output is shuffled and merged into
the final result. We will invariably find Hadoop working as part of a system with an MPP
database, because big-data solutions do not fall entirely into either structured or unstructured
data categories. Therefore, when combined altogether, this kind of big-data pipeline becomes
essentially a connector-based system approach where Hadoop is used to extract structure from
data and then load it into the MPP database’s own custom format storage in order to enable
fast analytical query execution. In practice, this signifies having connectors in place to ship
data back and forth over network between the Hadoop and MPP database separate environ-
ments. But, given that both systems handle data at their best, there is a lot more to gain if
we perceive them as a single ecosystem. Nowadays, simply no one wishes to begin its big-data
journey with two logically separate systems. Connectors between Hadoop and MPP database
clusters are quickly going to disappear. Many organizations working on big-data already ought
to have an easy to manage data platform that can support complex analytical query workloads,
but also batch processing of unstructured data, free-text searches, graph analysis and whatever

1MPP: massively parallel processing
2ETL: extract transform load
3Apache Hadoop: hadoop.apache.org
4HDFS: Hadoop Distributed File System, hortonworks.com/hadoop/hdfs
5Map-Reduce: wiki.apache.org/hadoop/MapReduce

1

CHAPTER 1. INTRODUCTION 2

else may come up in the future. For that purpose, the industry is standardizing on Hadoop
as the unifying infrastructure, since MPP clusters are generally non-standardized systems and
difficult to configure and manage. There is a tremendous interest in leveraging the Hadoop
ecosystem instead, trying to make MPP solutions converge around its HDFS and YARN 1 [4]
infrastructure, and thus coexist with a Hadoop cluster. This shift to modern MPP databases on
top of Hadoop opens at least two new research directions: using HDFS for storage management
and YARN for resource management. The first one, brings MPP databases the support to run
query workloads directly on top of HDFS stored tables, using on-disk custom file formats. This
topic has been receiving a lot of attention lately, from projects such as Parquet [2] and ORC-
File [3]. On the other hand, the second direction is less explored (or not at all). Nevertheless,
it is as equally important as storage management and they both work in tandem if we think
about data-locality and failover aspects. Resource management, if tackled from the right angle,
can give us the advantage of sharing the same cluster resources between different application
platforms (e.g. Map-Reduce jobs and query workloads), and most importantly, it will comply
with Hadoop’s standards and its system administrators’ know-how.

Therefore, the main question we address in this thesis is: How can we efficiently share compute
resources within a Hadoop environment? More specifically, how can we share compute resources
between an MPP analytical database and other computing frameworks, like Map-Reduce, in
order to achieve good utilization within the same Hadoop cluster? Not for so long, Apache
started to address this question in their undergoing YARN [4] project (as part of Hadoop
NextGen), which enables resource management for heterogeneous parallel applications running
in a Hadoop cluster. In older Hadoop release versions, the scheduler was purely a Map-Reduce
job scheduler. If you wanted to run multiple parallel computation frameworks on the same
cluster, you would have to statically partition all the resources or hope that the same resources
given to a Map-Reduce job would not have also been allocated by another framework’s sched-
uler, causing Operating Systems to thrash. With YARN’s new design, the scheduler can now
handle compute resources for different applications (mixed-workloads) running on the same
cluster, which should allow for more multi-tenancy and a richer, more diverse Hadoop ecosys-
tem. Therefore, our research focus is to achieve dynamic resource management in Vectorwise
on Hadoop 2.

1.2 Related Work

To offer a better understanding of our research topic, we start this section with a short overview
of the few most important key features in large-scale data analytics system, as introduced in [5].
This is just an attempt to cover the design principles and core features of a database system from
a wide perspective, filling the gap between the more classical category and the new Hadoop-
enabled category (SQL-on-Hadoop). We then describe some of the technological innovations
in Hadoop-enabled MPP architectures that have each spawned a distinct (product) system for
data analytics. The last part of this section draws the attention towards resource management
in MPP databases and in a Hadoop environment. We focus on systems for large-scale data
analytics, namely, the field that is called Online Analytical Processing (OLAP) as opposed to
Online Transaction Processing (OLTP).

Data Model. A data model provides the definition and the logical structure of the data, and
determines in which manner it can be stored, organized, and manipulated by the system. The
most popular example of a data model supported by most parallel database systems is the
relational model (which uses a table-based format), with its row-based or the more advanced
columnar storage formats, whereas most systems in the Map-Reduce categories permit data to

1YARN: Yet Another Resource Negotiator
2Vectorwise on Hadoop (Prject Vortex) presentation: www.slideshare.net/Hadoop_Summit/actian-vector-

on-hadoop-first-industrialstrength-dbms-to-truly-leverage-hadoop

CHAPTER 1. INTRODUCTION 3

be handled in any arbitrary format, even flat files. A relational database consists of relations
(or, tables) that, in turn, consist of tuples. Every tuple in a table conforms to a schema which
is defined by a fixed set of attributes. The data model used by each system is closely related to
the query interface exposed by the system, which allows users to manage and manipulate the
stored data.

Storage Layer. At a high level, a storage layer is simply responsible for persisting the data as
well as providing methods for accessing and modifying the data. The design, implementation
and features provided by the storage layer used by each of the different system categories vary
greatly, especially as we start comparing systems across the different categories. For example,
classic parallel databases use integrated and specialized data stores that are tightly coupled with
their execution engines, whereas Map-Reduce systems typically use HDFS as an independent
distributed file-system for accessing data. Only recently, with the outcome of Hadoop-enabled
architectures, MPP database systems started to leverage HDFS as their native storage layer,
using columnar data formats [2, 3] that are specifically tailored for its I/O capabilities.

Query Optimization. In general, query optimization is the process a system uses to determine
the most efficient way to execute a given query by generating several alternative, yet equivalent,
execution plans. The techniques used for query optimization in the systems we consider are
very different in terms of: (i) the space of possible execution plans (e.g. relational operators
in databases versus configuration parameter settings in Map-Reduce systems), (ii) the type of
query optimization (e.g. cost-based versus rule-based), (iii) the type of cost modeling technique
(e.g. analytical models versus models learned using machine-learning techniques), and (iv) the
maturity of the optimization techniques (e.g. fully automated versus manual tuning).

Query Execution. When a database system receives a query for execution, it will mostly
convert it into a physical plan for accessing and processing the query’s input data. The execution
engine is the entity responsible for actually running a given execution plan in the system and
generating the query result. Most query interpreters follow the so-called Volcano iterator-
model [6], in which each operator implements an API that consists of open(), next() and close()
methods. In the original proposal, the next() call produces a tuple-at-a-time. The query
evaluation follows a pull model : the next() operator is applied recursively on the operator tree
from the root downwards, while the resulted tuples being pulled upwards.

However, it has been observed that the tuple-at-a-time model leads to interpretation overhead:
the situation that much more time is spent in evaluating the query plan than in actually
calculating the query result, affecting the recent innovations in modern CPUs [7]. MonetDB [8]
reduced this overhead by using bulk processing instead, making each operator fully process
its input and only then invoke the next execution stage. This idea has been further improved
in the X100 project [9] and later evolved into vectorized execution, a form of block-oriented
query processing [10] in which the next() method produces small (typically 100-10000) single-
dimensional arrays of tuples (called vectors), rather than a single tuple. This type of tuple
representation is easily accessible for modern CPUs and has the consequence that the percentage
of instructions spent in interpretation logic is reduced by a factor equal to the vector-size [11].
Another popular method used by today’s execution engines in order to eliminate the overhead
of interpretation is just-in-time query compilation. Upon receiving a query for the first time, the
query processor compiles (a part of) the query into a routine that gets subsequently executed.
Query compilation removes the interpretation overhead altogether. A compiled code can always
be made faster than an interpreted code and it is reusable for queries that are repeated with
different parameters.

In the MPP systems that we consider, the execution engine is also responsible for parallelizing
the computation across large-scale clusters of machines and setting up inter-machine commu-
nication to make efficient use of the network and disk bandwidth. The final execution plan is
composed of operators that support both intra-operator and inter-operator parallelism, as well
as mechanisms to transfer data from producer operators to consumer operators.

CHAPTER 1. INTRODUCTION 4

Scheduling. Given the distributed nature of most data analytics systems, scheduling the
query execution plan makes it an important part of the system. Systems must now take several
scheduling decisions, including scheduling where to run each computation, scheduling inter-node
data transfers, as well as scheduling rolling updates and maintenance tasks.

Resource Management. Resource management primarily refers to the efficient and effective
use of a cluster’s resources based on the resource requirements of the queries or applications
running in the system. In addition, many systems today offer elastic properties that allow users
to dynamically add or remove resources as needed according to workload requirements.

Scheduling and resource management are not only important, but also very challenging. Clus-
ters are exposed to a wide range of applications, that have highly diverse characteristics and
performance requirements. For example, Map-Reduce applications are usually characterized by
long running jobs. These jobs desire shorter turnaround time - time from submission to com-
pletions. Queries in database systems for analytical or transactional workloads, on the other
hand, are much shorter-lived and much more interactive. Further, these environments need to
support a large number of users simultaneously. As a result, the underlying system needs to
respond to these kind of workloads as soon as they arrive, even at the cost of stretching their
overall turnaround time slightly. Managing both types of workloads at the same time makes
it even more difficult for a cluster resource manager, especially when each workload belongs
to a different applications (e.g. running Map-Reduce jobs and OLAP queries). Scheduling
and resource management needs to take numerous system parameters, such as CPU speed,
memory size, I/O bandwidth, network bandwidth, context switch overhead, etc, into account.
These metrics are often inter-related and can affect the choice of an effective scheduling strat-
egy. Depending on the characteristics of the system (on-line vs off-line, closed vs open, etc)
and the nature of the jobs/queries (preemptive vs non-preemptive, service times with known
or unknown distribution, prioritized vs equal jobs, etc), several static and dynamic scheduling
algorithms have been proposed [12]. In parallel database systems, however, the consensus is
that dynamic load-balancing is mandatory for effective resource utilization [13, 14]. Various
algorithms have been proposed for these kind of systems depending on the different levels of
parallelism: inter-transaction, inter-query, inter-operator and intra-operator parallelism [15].

Failover. Machine failures are relatively common in large clusters. Hence, most systems have
built-in failover functionalities that would allow them to continue providing services, possibly
with performance degradation, in the face of unexpected events like hardware failures, software
bugs, and data corruption. Examples of typical failover features include restarting failed tasks
(or services) either due to application or hardware failures, recovering data due to machine
failure or corruption, and using speculative execution to avoid stragglers.

System Administration. System administration refers to all tasks where additional human
effort may be needed to keep the system running while the system serves the needs of multiple
users and applications. Common activities under system administration include performance
monitoring and tuning, diagnosing the cause of poor performance or failures, capacity planning,
and system recovery from temporary and permanent failures (e.g. failed disks).

1.2.1 Hadoop-enabled MPP Databases

In this section we discuss the research in the literature that constitutes the state of the art
in Hadoop-enabled MPP databases. A summary of the system’s architectural advantages and
disadvantages is given in Table 1.1.

Hive. One of the first initiatives (in 2008) to bring the familiar concepts of tables, columns,
partitions and a subset of SQL to the unstructured world of Hadoop is Hive [16], an open-source
data warehousing solution built entirely on top of Hadoop and HDFS. Hive supports queries
expressed in a SQL-like declarative language called HiveQL statements, which are compiled

CHAPTER 1. INTRODUCTION 5

and broken down into individual Map-Reduce jobs that are later executed with Hadoop. With
HiveQL users can also plug in custom Map-Reduce scripts into their queries. The language
includes a type system with support for tables containing primitive types and as well as more
complex collections like arrays, maps and structs. The latter ones can be nested arbitrarily
in order to construct more complex compositions. Hive also includes a system catalog called
Metastore that is stored on HDFS and contains table schemas and statistics, useful in data
exploration, query optimization and query compilation. The underlying IO libraries can be
extended to query data in custom formats, thus allowing users to implement their own types and
functions. Even so, the HDFS data files do not have a custom storage format, nor a row-based
or columnar-based, which makes the query execution very slow and inefficient. Moreover, Hive
does not support in-memory buffering/caching mechanisms. It is known to be a one-at-a-time
data analysis framework, where the data has to be read from disk and parsed again each time
a user performs a query; HDFS tuples cannot be passed as intermediate results. The per-query
Map-Reduce overhead prevents the ability of this technology to process queries interactively,
placing Hive in the "batch processing" category of computational frameworks. Yet, with the
delivery of the Stinger project 1 in June 2014, the last Hive release (Hive 0.13) got enhanced with
columnar storage, more intelligent data placement to improve scan performance, and vectorized
execution [17]. Besides, on the project’s roadmap one of the goals was also to integrate Hive
with Tez 2, a modern implementation of Map-Reduce that allows interactive queries (reducing
the processing overhead) and in-memory materialized results.

HadoopDB. HadoopDB [18] is another example of an open source Hadoop-enabled database
project, initiated at Yale in 2009, whose architecture is of a hybrid system. The basic idea
behind HadoopDB is to use Map-Reduce as the communication layer above multiple nodes
running single-node DBMS instances. Queries are expressed in SQL, translated into Map-
Reduce by extending the existing Hive components, and as much work as possible is pushed
into the underlying layer of database; the rest of the query is processed using the more generic
Map-Reduce framework. For a Map-Reduce job in order to communicate with the database
layer the authors implemented a custom database connector – an interface between independent
database instances and TaskTrackers, usually mapped 1-to-1 on any node in the cluster. So,
each Map-Reduce job supplies the connector with SQL query and connection parameters such
as: which JDBC driver to use, query fetch size and other query tuning parameters. The con-
nector connects to the database, executes the SQL query and returns results as key-value pairs.
Therefore, HadoopDB resembles a shared-nothing parallel database with Hadoop providing
services necessary for scalability. The creators of HadoopDB have since started a commercial
software company (Hadapt) to build a system that unites Hadoop/Map-Reduce and SQL, a
Postgres database is placed in nodes of a Hadoop cluster. Altogether, combining Map-Reduce
and Postgres has the following drawbacks. First, using Map-Reduce as the communications
layer adds a big overhead to query execution and makes it very slow. In [19], for the authors’
experimental setup, it takes an average of 35 seconds per query just to get it started. This is a
long-standing complaint about Map-Reduce: high-latency, batch-mode response is painful for
lots of applications that want to process and analyze data in critical time. Data communication
happens via HDFS: latency is introduced as extensive network I/O is involved in moving data
around, e.g. in the reduce phase. That aside, since there is a sort and shuffle phase after the
map phase all the outputs always have to be sorted and sent to the reducers. So, the execution
time depends on the slowest phase among all three map, reduce and shuffle phases. Second,
since Postgres needs to store data on local files we have to load all the data from HDFS to the
engine’s storage system before running any queries. This makes loading data a cumbersome
slow process, a complete pre-load and data organization leads to the worst initial response time
of about 800 seconds [19]. On the other hand Postgres was not built with replication in mind
(is not relying on HDFS for that purpose), which means HadoopDB cannot handle failovers
and so, the database’s availability has to suffer in case of failures.

1Stinger project: hortonworks.com/labs/stinger
2Tez: hortonworks.com/hadoop/tez

CHAPTER 1. INTRODUCTION 6

Hawq. A commercial product that recently entered the MPP Hadoop-like database market is
Hawq [20, 21], a mix between EMC’s Greenplum [22] MPP database and Hadoop v2, part of
a new EMC on Hadoop stack called the Pivotal Hadoop Distribution. In contrast with Hive,
Hawq tries to take all of the inherent scalability and replication benefits from HDFS; it does
not embrace a Map-Reduce execution style nor the Hive’s query engine, or other friendly query-
interfaces for Hadoop. The system allows to be queried with any standard SQL syntax or any
tool that speaks SQL, using a custom query engine based on Greenplum MPP engine (a mature
optimized version of Postgres engine). Also, Hawq’s approach is different from HadoopDB’s
invisible loading [19]. The invisible loading algorithm "invisibly" rearranges data from slow,
file-system style data layout to fast, relational data-layout. In Hawq, the same data is pulled
from HDFS into Greenplum’s execution engine every time, i.e. if data is stored as a flat file in
HDFS, then when the query is over, it will still be stored as a flat file in HDFS. However, the
announcement out of Hawq Pivotal HD is still a port of a decade-old technology (meaning the
Greenplum’s customized Postgres database) that is albeit rather slow for OLAP queries, has its
own, independent, non-integrated schema metadata layer which cannot share information with
the rest of the Hadoop platform (it exists only on the Master node, the workers are stateless),
and supports just limited update and delete operations (e.g. single row update/delete).

Impala. One of the main contributors of the Hadoop project, Cloudera, has been developing as
well a distributed parallel SQL query engine that blends into Hadoop’s stack, turning it into a
real-time fault-tolerant distributed query engine. The Impala [23] query engine can run directly
on top of HDFS, enabling users to issue low-latency SQL queries on data stored in HDFS using
custom formats, such as Parquet columnar storage format [2], or the HBase tabular overlay.
All these changes bring Impala closer to the Hadoop ecosystem. With Impala, Cloudera is
basically replacing parts of Hive’s and HBase’s components with custom built ones, while still
being compatible with Hive and HBase APIs. The result is that large-scale data processing (via
Map-Reduce) and interactive queries can be done on the same system using the same data and
metadata, removing the need to migrate data sets into specialized database storage systems
and/or proprietary formats simply to perform analytical queries. The underlying SQL engine in
Impala is not reliant on Map-Reduce as Hive is, but rather on a single-core (lack of parallelism)
distributed database stack that has a new query planifier, a new query coordinator, and a new
query execution engine. Furthermore, as an improvement to the last component (the query
execution engine), Impala uses just in time query compilation [24]. This significantly improves
the CPU efficiency, plus the overall query execution time, and outperforms the traditional
interpreted query processing with tuple-at-a-time execution [25]. However, since Imapala is
still at the first release versions, it does not have a query optimizer, nor a mature execution
engine yet. For instance, the QET 1 currently limits the execution level of subqueries, usually
fixed at 2 or 3 levels deep, and won’t generate plans that are arbitrarily deep. Also, adding
that Hadoop v2 was released in October 2013, it lacks of YARN integration.

Presto. Presto [26] is a distributed SQL query engine developed by Facebook and optimized for
ad-hoc analysis at interactive speed. The execution model of Presto is fundamentally different
from Hive [27], which translates queries into multiple stages of Map-Reduce tasks that execute
one after another and each one reads inputs from disk and writes intermediate output back to
it. In contrast, the Presto engine does not use Map-Reduce. It employs a custom query and
execution engine with operators designed to support SQL semantics. In addition to improved
scheduling, all processing is in memory and pipelined across the network between stages. This
avoids unnecessary I/O and associated latency overhead. The pipelined execution model runs
multiple stages at once, and streams data from one stage to the next as it becomes available.
This significantly reduces end-to-end latency for many types of queries. The Presto system is
implemented in Java and certain portions of the query plan are dynamically compiled down
to byte code which lets the JVM optimize and generate native machine code. Presto was
designed with a simple storage abstraction that makes it easy to provide SQL query capability

1QET: query execution tree

CHAPTER 1. INTRODUCTION 7

against sources from HDFS, HBase and others. Storage plugins (called connectors) only need
to provide interfaces for fetching metadata, getting data locations, and accessing the data itself.
However, this severely draws down the query processing time since the engine was not design
to read optimized custom storage format to avoid unnecessary transformation before executing
the physical query plan. Also, other restrictions at this stage are the size limitations on the
join tables and cardinality of unique keys/groups. The system also lacks the ability to write
output data back to tables (currently query results are streamed to the client).
Table 1.1: A short summary of the related research in Hadoop-enabled MPP databases (includ-
ing Vectorwise), comprising their architectural advantages and disadvantages. Abbreviations:
tuple-at-a-time (tat), just-in-time compilation (jit), vectorized (vz).

Approach Row/columnar for-
mat

HDFS/DBMS
storage

Fast/slow
execution

Mature
optimizer

Updates

Hive none (columnar in
0.13, ORCFile)

HDFS slow (tat)
(vz in 0.13)

no no

HadoopDB
(Hadapt)

row DBMS
(copy-out)

slow (tat) no (Post-
gres)

no

Hawq
(PivotalHD)

row HDFS slow (tat) yes (cus-
tomized
Postgres)

limited

Impala columnar (Par-
quet)

HDFS fast (jit) no no

Presto row HDFS slow (tat) no no
Vectorwise columnar (custom) HDFS fast (vz) yes yes

1.2.2 Resource Management in MPP Databases

Resource management in parallel database systems happens at two levels: at the level of individ-
ual nodes and at the level of the entire system. Most parallel database systems are implemented
by building on the software of a centralized database system at each node. Thus, many configu-
ration parameters can be set independently at each node, e.g. size of memory buffers, maximum
number of concurrent threads (or mpl 1), and the amount of memory. This feature allows the
database administrator to tune the performance of each individual node based on the differ-
ences in hardware capacities, database partition sizes, and workloads across the nodes in the
system. In literature, the resource management that happens at the level of the entire system
is divided into two main classes: external and internal. The general idea of external workload
management is to control the number of queries that can be run concurrently in the system,
admission control, so that every query gets some guaranteed fraction of the total resources
during execution [28, 29, 30]. On the other hand, internal workload management systems typi-
cally control the available resources, such as CPU or main memory, and assign them to queries.
A known technique is workload differentiation, the system tries to identify which queries are
short-running and which ones are long-running and allocates resources appropriately in order
to meet the respective requirements of these query classes [31, 32, 33].

Recent work in DBMS workload management has mainly focused around admission control.
Schroeder et al. [28, 29] propose an external queue management system that schedules queries
based on defined service-levels per query-class and a number of allowed queried in the database,
the so called multiprogramming level. Niu et al. [30] approach manages a mixed workload of
OLTP and OLAP queries by controlling the OLAP queries based on the response times of OLTP
queries. The work of Dayal, Kuno and Krompass et al. [31, 32, 33] focuses on the management
of analytical queries in the area of data warehouses. It can be considered as a mixture of

1mpl: maximum parallelism level

CHAPTER 1. INTRODUCTION 8

external and internal workload management. Besides admission control based on extensive
query run-time prediction, they additionally control the execution of queries and propose the
possibility to kill long running queries in case higher priority queries are present.

Another important dimension of resource management is how the system can scale up in order
to continue to meet performance requirements (quality of service) as the system load increases.
The load increase may be in terms of the size of input data stored in the system and processed
by queries, the number of concurrent queries that the system needs to run, the number of
concurrent users who access the system, or some combination of these factors. The objective
of shared-nothing parallel systems is to provide linear scalability. For example, if the input
data size increases by 2x, then a linearly-scalable system should be able to maintain the current
query performance by adding 2x more nodes. Partitioned parallel processing is the key enabler
of linear scalability in parallel database systems. One challenge here is that data may have to
be repartitioned in order to make the best use of resources when nodes are added to or removed
from the system.

1.2.3 Resource Management in Hadoop Map-Reduce

We now briefly review some of the related work about resource management in a Hadoop
(Map-Reduce) environment. There have been several efforts that investigate efficient resource
sharing while considering fairness constraints. For example, Facebook’s fairness scheduler [34]
aims to provide fast response time for small jobs and guaranteed service levels for production
jobs by maintaining job "pools" each of which is assigned a guaranteed minimum share and
by dividing excess capacity among all jobs or pools. Yahoo’s capacity scheduler [35] supports
multi-tenancy by assigning capacities to different job queues, so each job queue gets a fair share
of the cluster resources. Zaharia et al. [36] developed a scheduling algorithm called LATE that
performs effective speculative execution to reduce the job running time in Hadoop heteroge-
neous environments; it uses the estimated remaining execution time of tasks as the guideline
to select tasks to speculate and avoids assigning speculative tasks to slow nodes. However,
without a data-locality aware placement scheme, previously mentioned approaches have only
limited opportunities for optimizations during task placement. To improve data-locality, sev-
eral enhancements have been proposed. In an environment where most jobs are small, delay
scheduling [37] can improve data-locality by delaying the scheduling of tasks that cannot achieve
data-locality by a short period of time. This seems a simple technique to provide better lo-
cality, but it does not consider global scheduling, and so it loses the opportunity for achieving
better overall performance. Purlieus [38] tries to solve the fundamental problem of optimizing
data placement so as to obtain local execution of the jobs during scheduling, minimizing the
cross-rack traffic during both map and reduce phases. To do so, it categorizes Map-Reduce
jobs into three classes: map-input heavy, map-and-reduce-input heavy and reduce-input heavy,
and proposes data and virtual machine placement strategies accordingly to minimize the cost of
data shuffling between map tasks and reduce tasks. Similar in approach is CAM [39], a topology
aware resource manager for Map-Reduce applications in the cloud that also proposes a three
level approach to avoid placement anomalies due to inefficient resource allocation: placing data
within the cluster that run jobs that most commonly operate on the data, selecting the most
appropriate physical nodes to place the set of virtual machines assigned to a job and exposing,
otherwise hidden, compute, storage and network topologies to the Map-Reduce job scheduler.
CAM uses a minimum-cost flow network based algorithm that is able to reconcile resource al-
location with a variety of other constraints, such as storage utilization, changing CPU load and
network link capacities. Unlike Purlieus, CAM’s minimum-cost flow based approach is able to
considers both VM migration as well as delayed scheduling to arrive at a global optimal place-
ment. Quincy [40] is a Dryad resource scheduler for concurrent jobs that tackles the conflict
between data-locality and fairness by converting the scheduling problem to a graph that en-
codes both network structure and waiting tasks and solving it with a minimum-cost flow solver.

CHAPTER 1. INTRODUCTION 9

Though it uses similar graph techniques, it differs from CAM in terms of problem space and
associated flow network construction. Quincy balances between fairness and data-locality, while
CAM focuses on optimizing data/VM placement of Map-Reduce applications in the cloud. As
a result, the factors encoded in the flow graph (VM closeness, etc.) are quite different from
that of Quincy’s.

However, not all these ideas (described above) are suitable for a Hadoop-enabled MPP architec-
ture. At least three assumptions considered by some of the authors are not applicable to these
architectures: (1) workloads can be delayed, and so the waiting time can be taken into account
when scheduling and managing compute resources, (2) only Map-Reduce workloads run in a
Hadoop cluster (multi-tenancy is not considered), and (3) job profiling can be done beforehand
on a small subset of data in order to categorize the workload from the I/O-, CPU-, network-
perspective.

1.2.4 YARN Resource Manager (Hadoop NextGen)

In the previous Hadoop version (v1), figure 1.1a, each node in a cluster was statically assigned
a predefined number of map and reduce slots for running map and reduce tasks altogether [?],
meaning that the allocation of cluster resources to Map-Reduce jobs was done in the form of
these slots. This static allocation model had the obvious drawback of lowered cluster utilization,
since slot requirements vary during a Map-Reduce job life cycle. There is a high demand for
map slots when the job starts, whereas there is a similar demand for reduce slots towards the
end. However, the simplicity of this scheme facilitated the resource management performed
by the Job Tracker, in addition to the scheduling decisions. Hadoop Job Tracker had multiple
roles, such as managing the cluster resources as well as scheduling, monitoring, and managing
the life-cycle of Map-Reduce jobs. On the other hand, the Task Tracker had fewer and simpler
responsibilities, such as starting/tearing-down or pinging the job-application to check if it is
still alive. Hadoop NextGen (v2), figure 1.1b, also known as YARN [4], separates the above
functionalities into: a global Resource Manager (RM), responsible for allocating resources to
running applications, a per-application Application Master (AM) to manage the application’s
life-cycle, including its resource requests towards RM, and also a per-machine Node Manager
(NM) to handle the user processes and the available resources of that node. The AM is a
framework-specific library that negotiates resources from the RM and works with the NM(s) to
execute and monitor an application’s set of tasks. To build a custom YARN Application from
scratch a user needs to implement the API of the YARN Client Application. The transition from
Hadoop v1 to NextGen v2 is depicted in figure 1.1. Historically, Map-Reduce applications were
the only ones that could have been managed by Hadoop (v1) at that time, due to its limited
resource management capabilities. Today, due to YARN’s new design, Map-Reduce is just one of
Hadoop’s application frameworks. Hadoop NextGen permits building and deploying distributed
applications using other frameworks as well, see figure 1.1c. The resource allocation scheme in
YARN addresses the static allocation issues of the later Hadoop version by introducing the idea
of resource containers. A container represents a specification of a node compute resources (or
attributes), such as CPU, memory, and in future, disk and network bandwidth. In this model,
only a minimum and a maximum for each attribute are defined, and AMs can request different
container sizes at different times with attribute values as multiples of the minimum. Therefore,
YARN provides resource negotiation and management for the entire Hadoop cluster and all
the applications running on it. This leaves us the believe that, once integrated with YARN,
non-Hadoop distributed applications (e.g. Vectorwise query workloads) can run as first-class
citizens on Hadoop clusters by sharing resources side-to-side with Hadoop-native applications.

CHAPTER 1. INTRODUCTION 10

(a) Job submission in Hadoop v1

(b) Job submission in Hadoop v2

(c) Hadoop stack: v1 to v2

Figure 1.1: Hadoop transition from v1 to v2

CHAPTER 1. INTRODUCTION 11

1.3 Vectorwise

Vectorwise 1 is a state-of-the-art relational database management system that is primarily
designed for online analytical processing, business intelligence, data mining and decision support
systems. The typical workload of these applications consists of many complex (computationally
intensive) queries against large volumes of data that need to be answered in a timely fashion.
What makes the Vectorwise DBMS unique and successful is its vectorized, in-cache execution
model that exploits the potential performance of modern hardware (e.g. CPU cache, multi-core
parallelism, SIMD instructions, out-of-order execution) in conjunction with a scan-optimized
I/O buffer manager, fast transactional up dates and a compressed NSM/DSM storage model [7].

The Volcano Model. The query execution engine of Vectorwise is designed according to the
widely-used Volcano iterator model [6]. A query execution plan is represented as a tree of opera-
tors, hence often referred to as a query execution tree (QET). Operators are an implementation
of constructs responsible for performing a specific step of the overall required query processing.
All operators implement a common API, providing three methods: open(), next() and close().
Upon being called on some operator, these methods recursively call their corresponding meth-
ods on the QET’s children operators, starting from the root operator downwards. The open()
and close() are one-off complementary methods that perform initialization work and resource
release, respectively. Each next() call produces a new tuple (or a block of tuples, see Vector-
ized Query Execution below). Due to the recursive nature of the next() call, query execution
follows a pull model in which tuples traverse the operator tree from the leaf operators upwards,
at the root operator the final results being returned. The benefits of using such a model in-
clude flexibility and extensibility, as well as a demand-driven data flow that guarantees that
the whole query plan is executed within a single process and without unnecessary intermediate
materialized data.

Multi-core Parallelism. Vectorwise (single-node SMP version) is capable of multi-core paral-
lelism in two forms: inter-query parallelism and intra-query parallelism. The latter is achieved
thanks to a special operator of the Volcano model, called the Xchange operator (not. Xchg) [41].

Vectorized Query Execution. It has been observed that the traditional tuple-at-a-time
model leads to low instruction and data cache hit rates, wasted opportunities for compiler
optimizations, considerable overall interpretation overhead and, consequently, poor CPU uti-
lization. The column-at-a-time model, as implemented in MonetDB [8] successfully eliminates
interpretation overhead, but at the expense of increased complexity and limited scalability, due
to its full-column materialization policy.

The execution model of Vectorwise combines the best of these two features by adapting the
QET operators in order to process and return not one, but a fixed number of tuples (from
100 - 10000, default is 1024) whenever the next() method is called. This block of tuples is
referred to as a vector and the number of tuples is chosen such that the vector can fit in the
L1-cache memory of a processor. The processing of vectors is done by specialized functions
called primitives. This reduces the interpretation overhead of the Volcano model, because the
interpretation instructions are amortized across multiple tuples and the actual computations
are performed in tight loops, thus benefiting from the performance features of modern CPUs
(e.g. superscalar CPU architecture, instruction pipelining, SIMD instructions) [7], as well as
compiler optimizations (e.g. loop unrolling).

The rest of this section is organized as follows. We first give an overview of the Ingres-Vectorwise
design in Section 1.3.1. Next, in Section 1.3.2, we discuss the distributed Vectorwise MPP
database version. Last but not least, Section 1.3.3 presents the Hadoop-enabled (Vectorwise on
Hadoop) architecture.

1Vectorwise website: www.actian.com/products/vectorwise

CHAPTER 1. INTRODUCTION 12

1.3.1 Ingres-Vectorwise Architecture

Vectorwise is integrated within the Ingres 1 open-source DBMS. A high-level diagram of the
whole system’s architecture, showing the main architectural components, is depicted in Figure
1.2.

Ingres is responsible for the top layers of the database management system stack. The Ingres
server interacts with users running the Ingres client application and parses the SQL queries
they perform. Also, Ingres keeps track of the database schemas, metadata and statistics (e.g.
cardinality, distribution) and uses this information for computing and providing to Vectorwise
an optimal query execution plan. Vectorwise can be seen as the database system’s engine,
being responsible for the whole query-tree execution, buffer management and storage. Its main
components are described below.

Client Application

SQL Parser

Optimizer

Rewriter

Builder

Query Execution Engine

Buffer Manager

In
gr

es
Ve

ct
or

w
is

e

data request

physical operator tree

annotated plan (VW alg.)

query plan (VW alg.)

parsed tree

client query (SQL)

re
su

lts

data

I/O request data

Storage

resource management (VW alg.)

Figure 1.2: The Ingres-Vectorwise (single-node) High-level Architecture

Rewriter. The optimized query execution plans that Ingres passes to Vectorwise are expressed
as logical operator trees in a simple algebraic language, referred to as the Vectorwise Algebra.
The Rewriter performs specific semantic analysis on the received query plan, annotating it with
data types and other helpful metadata. It also performs certain optimization steps that were
not done by Ingres, such as introducing parallelism, rewriting conditions to use lazy evaluation
and early elimination of unused columns.

Builder. The annotated query plan is then passed to the Builder, which is responsible for
interpreting it and producing a tree of physical operators that implement the iterator function-
ality of the Volcano model. The latter (producing the physical tree) corresponds to calling the
open() method on all operators in a depth-first, post-order traversal of the query execution tree.
Also, this is when most of the memory allocation and initialization takes place.

Query Execution Engine. Once the builder phase is done and the physical operator tree
is constructed, executing the query then simply translates to repeatedly calling next() on the
root operator of the tree until no more tuples are returned. The paragraphs on the Volcano
Model and Vectorized Query Execution should have given a good description of the way the
Vectorwise query execution engine works.

1Ingres website: www.actian.com/pro ducts/ingres

CHAPTER 1. INTRODUCTION 13

Buffer Manager and Storage. The Buffer Manager and Storage layer is primarily responsible
for storing data on persistent media, accessing it and buffering it in memory. Additionally, it
also takes care of handling updates, managing transactions, performing crash recovery, logging,
locking and more.

Resource Manager. When a query is received in (the SMP single-node version of) Vectorwise,
an equal-share of resources is allocated (at the beginning) for it. This amount of resources,
namely the number of threads, is called the maximum parallelism level and it is calculated
as the maximum number of cores available (possibly multiplied by an over-allocation factor)
divided by the number of queries running in the system. Then, when transformations are
applied, the MPL is used as an upper bound to the number of parallel streams in generated
query plans. Finally, once the plan with the best cost is chosen, the state of the system is
updated.

The reason behind an equipartition strategy for resource management is that the queries pro-
cessed by the execution engine are all independent, their service time distribution is unknown
and differences in workloads may be significant. Moreover, queries have different degrees of re-
source utilization and of parallelism at different levels of the query plan. It has been proven that
it can be an efficient strategy for different class of workloads and service time distributions [42],
which is the typical case for Vectorwise queries.

The information about the number of queries running in the system and the number of cores
used by each query is stored in the Resource Manager’s state. Note that this information is a
mere approximation of the CPU utilization. Depending on the stage of execution and/or the
number and size of the Xchg operator’s buffers, a query can use less cores than the number
specified, but it can also use more cores for shorter periods of time.

1.3.2 Distributed Vectorwise Architecture

Most organizations demand from their OLAP capable DBMS systems a small response time to
queries on volumes of data that increases at a constant pace. In order to comply with these
requirements, the most successful commercial database service providers have developed MPP
database solutions meant to run on supercomputers or clusters.

The Vectorwise SMP product, though is successful in achieving high performance, low cost and
usability, its ability to handle large amounts of data is limited by the fact that it is designed to
work on a single machine. The research developed in the master-thesis project [43] shows how
this version can be enriched with distributed query processing capability, such that it can be
deployed on a computer cluster. To achieve this, both the query execution engine and the query
optimizer had to be extended with new functionality, while maintaining the original qualities.

Figure 1.3 presents the high-level architecture of the distributed Vectorwise MPP database as
it was designed and implemented by the authors of [43], currently Actian software engineers.
The architecture relies on a "Virtual" Shared Disk storage layer and follows a Master-Worker
pattern, in which the Master node is the single point of access for client applications. The
main advantage of a Master-Worker design is that it hides from clients the fact that the DBMS
they connect to actually runs on a computer cluster. The Shared Disk (SD) approach was
preferable, opposed to Shared Nothing (SN), for ensuring non-intrusiveness, ease of use and
maintainability. The main difference between both, SD vs SN, architectures is whether or not
explicit data partitioning is required. SD does not require it, as every node of the cluster has
full access to read and write against the entirety of the data. On the other hand, the latter
statement does not hold in the case of a SN architecture and additional effort is required for
designing a partitioning scheme that minimizes inter-node messaging, for splitting data among
the cluster nodes and for implementing a mechanism to route requests to the appropriate
database servers. For a more elaborated comparison we recommend reading the second chapter

CHAPTER 1. INTRODUCTION 14

of [43], the author’s chosen "Approach" for their research project. The general idea is that, with
good partitioning schemes, function- and data-shipping can be avoided for most query patterns,
leading to optimal results in terms of performance. The big challenge is, however, devising such
a good partitioning scheme and maintaining it automatically, without user intervention, by
regularly re-partitioning and re-balancing data across the cluster nodes. While this is indeed
one of the major goals in the quest towards the distributed MPP version of Vectorwise, it was
a too complex task to tackle in a master-thesis project.

Because of the design choice, it is hence inevitable that the Master node must become involved
in all queries issued to the system, in order to gather results and return them to clients, at
least. However, as can be seen in the architecture diagram, it has more than one task assigned,
making it the only node responsible for:

• parsing SQL queries and optimizing query plans

• keeping track of the system’s resource utilization, as it has knowledge of all queries that
are issued to the system

• taking care of scheduling / dispatching queries, based on the above information

• producing the final, annotated, parallel and possibly distributed query plans

• broadcasting them to all worker nodes that are involved

The Vectorwise MPP database is intended for highly complex queries across large volumes of
data. In this situation, the vast majority of the total query processing time is spent in the query
execution stage. Parallelizing the latter is enough for achieving good speedups and performing
the before-mentioned processing steps sequentially is acceptable. Moreover, depending on the
system load and scheduling policy, the Master may also get involved in query execution to a
larger extent than simply producing the distributed plan and gathering the query results.

Client Application

SQL Parser

Optimizer

Rewriter

Builder

Query Execution Engine

Buffer Manager

In
gr

es
Ve

ct
or

w
is

e

data request

physical operator tree

annotated plan (VW alg.)

query plan (VW alg.)

parsed tree

client query (SQL)

re
su

lts

data

Builder

Query Execution Engine

Buffer Manager
data request

physical operator tree

data

annotated

plan (VW alg.)

Storage ("Virtual" Shared Disk)

Vectorwise

I/O request dataI/O request data

Worker Node

data
exchange

M
as

te
r N

od
e

resource management (VW alg.)

Figure 1.3: The Distributed Vectorwise High-level Architecture

For a distributed Vectorwise MPP solution, the following modules of the single-node version
needed to be modified or extended:

Rewriter. A new logical operator (called Distributed Exchange) was introduced in query
plans, which completely encapsulates parallelism and distribution. The transformations of the

CHAPTER 1. INTRODUCTION 15

parallel rules and the operators’ costs were adapted too. The new distributed plan contains
both intra-operator and inter-operator parallelism, as well as mechanisms to transfer data from
producers to consumers. Also, in order for this module to be cluster-aware, the Rewriter
requests information about the current state of the cluster (e.g. the number of cores available
on each node, number of running threads, etc) from the Resource Manager.

Builder. Every node is able to build its corresponding parts of a query execution tree and
physically instantiate each new operators. Since a single node can run several parts of the
query, is required for the Builder to produce a forest of sub-trees, rather than a single rooted
tree.

Execution Engine. The Distributed Exchange operator was implemented in a way to allow
the Master and various Workers to efficiently cooperate (e.g. exchange data, synchronize) when
executing a given query. After the execution of a query is finished, this module will release
resources in a parallel fashion, similar to the idea employed in the (parallel) Builder, and then
inform the Resource Manager about that. For the network-communication layer it was decided
to rely on the MPI (Message Passing Interface) library, which is considered to be the "de-
facto" standard for communication among process that model a parallel program running on a
distributed memory system. No other changes were made at this layer.

Resource Manager. Besides the existent functionality of the the single-node Resource Man-
ager, two new policies for query scheduling were introduced for the distributed version of Vec-
torwise: the single-node and multiple-nodes distribution policies.

The single-node distribution policy (no-distribution) tries to keep the network traffic at a mini-
mum and, at the same time, process linearly more queries than the single-node DBMS version.
It does so by processing each query on a single node and then communicating the results through
the Master node, to the client. The idea behind this policy is to choose one single node that is
the least loaded one in the cluster, calculate the mpl relative to the node, apply the transfor-
mations to generate a parallel query plan that should run entirely on that machine and, finally,
add a DXchg(1:1) operator on top of it, if necessary. This operator sends the results to the
Master node so that can be sent to the client.

On the other hand, the multiple-nodes distribution policy aims to produce distributed query
plans that give a good throughput performance in a multi-user setting. It is an extension of the
policy used in the non-distributed DBMS: a single DXchg operator that works at the granularity
of threads. This policy unifies the resources available on the cluster and shares them equally
between concurrent queries. Then, the task is to find the smallest set of least loaded nodes that
can provide the required parallelism level. For every node in this set, the query is allocated
all the cores on that node, with possibly one exception (when the remaining parallelism level
required is in fact smaller than the number of cores on that node).

In order to determine the load of a particular node, a state of the system has to be maintained,
just like in the non-distributed version of the Vectorwise DBMS. As all of the queries are
executed through the Master node, it makes sense to keep this information up-to-date there.
To determine on which node to run a received query, the Master node assigns a load factor to
every node in the cluster:

Li = wt ∗ Ti + wq ∗Qi,

where:

• Ti is the thread load on node i. It is defined as the estimated total number of threads
running on i divided by the number of available cores on i.

• Qi is the query load on node i and it is defined as the number of running queries on i
divided by the total number of running queries in the system. This value and the thread
load are the only available information about the state of the system. Since the thread

CHAPTER 1. INTRODUCTION 16

load is only an approximation (no real usage, e.g. percentage information) of the current
utilization of a particular node, the query load becomes a complement of it and acts as a
tiebreaker in some cases (e.g. when the thread load is equal, the node with less queries
running is chosen).

• wt and wq are associated weights, with wt + wq = 1 (experimentally determined).

1.3.3 Hadoop-enabled Architecture

Vectorwise has been now extended to bring its data analytics performance to Hadoop. It has
a mature RDBMS engine that can perform SQL processing of data stored natively in HDFS, a
rich SQL language support, unique update capabilities, and an advanced query optimizer. The
Hadoop-enabled architecture aims to scale-out Vectorwise on top of Hadoop/HDFS in order to
provide a general-purpose, high-performance, Big Data Analytics product.

High-level overview

The core of the Hadoop-enabled version is the distributed Vectorwise MPP engine, which is
based on the research work from [43]. We briefly remind that the authors of [43] have designed
and implemented a solution for distributed (multi-core parallel) queries using a "Virtual" Shared
Disk approach. Although the file system the authors used (GlusterFS 1) did not performed as
expected, they were nevertheless able to prove their core concepts.

The HDFS layer is also perceived as a "Virtual" Shared Disk. However, each node in the
cluster has its own (physically separated) set of disks and that gives better I/O performance
for local- data accesses over remote- ones. Using partitioned tables with block location affinity
in HDFS we can achieve a more flexible shared-nothing and performant system. Therefore,
this makes our new (Vectorwise on Hadoop) approach a combination of a "Virtual" Shared disk
with partitioning and affinity. The Hadoop-enabled architecture, figure 1.4, still follows the
traditional Master-Worker pattern. Whenever the database restarts, a new session is initiated
and one of the X100 backend workers is elected as the session-master (or Vectorwise Master)
without any additional actions. This session is kept alive during the whole lifespan of the
Vectorwise database to let the Vectorwise Master fulfill its responsibilities, see Section 1.3.2.
Within a Hadoop cluster, the NameNode can serve as a node location for Ingres and the
Vectorwise Master, if not involved in query processing, and (just a designated subset of) the
DataNodes can serve, respectively, for the Vectorwise Workers. Otherwise, if the session-master
is involved in query execution, there would be no difference as such in the node locations because
every X100 processes must then have access to a local DataNode (for short-circuit local reads).
In the hindmost case, the NameNode will share the same location with on of the DataNodes,
as illustrated in Figure 1.4. We further refer to the designated subset of nodes starting the
(session of) X100 backend processes as the Vectorwise worker-set. Given that a large-scale
Hadoop cluster can have nodes with various hardware configurations, the worker-set concept is
introduced to help us on selecting (throughout a process that is described in Section 4.1) a set
of machines with identical capabilities and thus, achieve a better load-balancing. While it is
recommended to have Vectorwise X100 servers installed on many of the DataNodes as possible,
in order to chose at will on which nodes we should run the database, is not necessary that all
servers should be used at once. The choice of HDFS keeps the system simpler and, though in
principle each worker can see the entire system state because of its global (remote) access, it
enables us to fall back into single-writer algorithms for update operations. It also enables easy
implementation of failover functionalities, since in general, if performance is not considered for
remote data accesses, no data needs to be moved in case the worker-set changes.

1GlusterFS website: www.gluster.org

CHAPTER 1. INTRODUCTION 17

Figure 1.4: The Vectorwise on Hadoop High-level Architecture (the session-master, or Vector-
wise Master, is involved in query execution).

To offer a better understanding of what is special about Vectorwise on Hadoop, let us review
some of the new key concepts introduced in the Hadoop-enabled architecture:

Basic partitioned table support. One thing to take into account, in order to have scalability
on large joins, is that all-to-all communication between the Vectorwise worker nodes must be
avoided – even Infiniband networks will not support the speed of Vectorwise joins, and in
a typical Hadoop scenario we just have a 10Gb Ethernet network. Therefore, some kind of
partitioning or clustering is needed that allows to execute joins and aggregation locally on each
worker. The idea is to introduce table partitioning that splits a logical table into multiple
physical tables on HDFS using hash-partitioning on a column (or a set of columns). Every
partition has in principle one responsible worker, and that is the worker which stores (locally)
the first replica of that partition. Still, this mapping is not strict, if a node goes down we
can make another node responsible for its table partitions. We explain in Chapter 4 more
about the previous situation and how it can change if we take as well in account the secondary
partition replicas. Table partitioning is introduced during bulk-loading, where each worker gets
data determined by a partitioning key. Partitioning is physically implemented by adding union
tables to Vectorwise, which is a virtual table (view) made up by the union of physical table
partitions. Besides hash-partitioned (collocated) tables, Vectorwise on Hadoop supports global
(non-partitioned) tables as well. The latter of the two, are in-memory (all over the worker-set)
cached tables used in general for performing local shared-HashTable hash-joins.

HDFS Database Locations. To store data on HDFS we do need to define a directory struc-
ture, a hierarchy of locations to which we can store separately (and isolate) one database’s files

CHAPTER 1. INTRODUCTION 18

(logs, tables, metadata, profiles, etc.) from another. Each Vectorwise on Hadoop session starts
with a database location, an HDFS path where log files, global (non-partitioned) tables, catalog
metadata, etc. are stored (e.g. hdfs:///location/name). A database location generally points to
a list of table locations – of which only one is the default location and set to hdfs:///<database
location>/default, whereas the others are defined per table during schema creation. The list
of table locations is written in a metadata file and stored at the Vectorwise database location.
Beside all these, there is also a local (non-HDFS) work location that is used for disk– sorting
and spilling.

Columnar HDFS storage model. The parallel-rewriter has a rule that transforms a data-
loading query having a cluster-load (cluster VWLoad) operator into a distributed query plan,
where each node loads into a specified partition of the table. The data is distributed by hashing
on key columns. We assume that data is stored in HDFS in multiple files and each file contains
data for just a single column. For the cluster VWLoad queries, the rewriter associates files to
load operators in a round-robin fashion. However, files may have affinities to particular nodes
(and there should be a way of detecting these affinities using the HDFS library). Therefore, in
future stages, files will be assigned to operators with affinity. The VWLoad operator used to be
(in the single-node version) a utility component in the client-space, a command-line client used
to parse and send data through a TCP connection to the local X100 server. Nowadays, in the
distributed MPP version, these functionalities have been separated from the utility component
and redesigned into a query operator instead. For parsing and loading the data into HDFS, this
operator forks a helper (JVM) process that communicates through Unix pipes with the X100
(parent) backend process.

Supporting Updates in HDFS, via Positional Delta Trees (PDTs). Vectorwise im-
plements a fully ACID–compliant transactional database with multi-version read consistency.
Any new transaction will see all previously committed transactions, both small incremental
transactions and large bulk data loads. Changes are always written persistently to HDFS into
a write ahead transaction log (WAL) before a commit completes. This will always ensure full
transaction recoverability. Nonetheless, one of the biggest challenges with HDFS is that it is not
designed for incremental updates. HDFS files are append-only and so, in place updates are not
allowed. Vectorwise on Hadoop addresses this challenge with its high-performance in-memory
Positional Delta Trees [44] (PDTs), which are used to store small incremental changes (inserts
that are not appended), as well as updates and deletes. Conceptually, a PDT is an in-memory
structure that stores the position and the change (delta) at that position and permit queries
to efficiently merge the PDTs changes with the HDFS stored data. Because of the in-memory
nature of PDTs, small DML statements can be processed very efficiently. A background pro-
cess writes the in-memory changes to disk once a memory threshold is exceeded. Important to
mention is that only the session-master writes to the WAL (PDTs on-commit). The WAL file
is read-only for the Workers and read-write for the Master. At startup, each worker reads the
(global accessible) WAL, but skips the PDTs on the partitions it is not responsible for. If an
update is triggered, then the worker nodes will ship their local PDTs changes over the network
to the session-master, who finally writes all these changes to the WAL.

Query plan on logically partitioned tables. For the query-plan search strategy, the existent
approach uses the resource scheduler developed in the MSc thesis [43]. For each new query,
the algorithm provides us a list of pairs (nx, ty) denoting how many threads/cores (ty) are
allocated for its execution on node (nx). In order to restrict the search strategy from trying
all possible combinations of threads/node (which will lead to an exponential complexity), we
need to accept the following: (a) assuming that partitions will be created with almost equal
sizes, it only makes sense to try to assign an equal number of resources (in our case threads)
to each partition, (b) for every partition, there will be at least one thread assigned to it; if
this restriction is not set, there would be cases in which a thread will be assigned to scan
multiple partitions. The search starts with a feasible (initial) solution and tries all its multiples
(e.g. [(1, 3), (2, 5)] : [(1, 6), (2, 10)] : [(1, 9), (2, 15)] : etc . . .). It stops at the first combination

CHAPTER 1. INTRODUCTION 19

which needs more threads (on any machine) than allocated by the resource scheduler. The
implementation adds two new multiple-nodes distribution policies for queries: (1) equal-share
for non-partitioned – similar with the multiple-nodes distribution used in the Shared Disk
approach it selects the least loaded nodes and takes their amount of CPU resources until it
satisfies the mpl and (2) equal-share for partitioned tables – it assumes the default round-robin
partitioning and equally assigns threads to the operators until the mpl is achieved. However,
ideally would be to balance the assignment with respect to data-locality (i.e. local partitions)
and each node’s load factor (i.e. overloaded worker nodes).

Ingres client side mpi_fork and worker-set selection. In Vectorwise on Hadoop, the
Ingres client should query YARN Resource Manager and see which nodes are alive in the cluster.
Once we have selected the most resourceful N worker nodes from the entire Vectorwise cluster
(consisting of M nodes, M can be equal to N) and have reserved the initial amount of resources
(CPU and memory), we can then start the X100 worker-set using an mpi_fork command.
For the worker-set initialization process we assume (and is important) that the assignment of
partitions across the nodes, i.e. the exact node-locations of each partition, is already known. We
refer to this assignment in the next paragraphs as the responsibility assignment, or the node’s
responsibilities. Knowing the latter information, each of the X100 backend servers can replay
the LOG and skip PDTs, MinMax and Join -Indexes for all the partitions that do not correspond
to them (or, better said, that is not responsible of). Among all the worker nodes, only one is
chosen to be the Master. This node is the one to receive the sequential query (algebra) plan
and rewrite it into a distributed parallel one. The final (best-cost) plan initiates the distributed
execution on top of the Vectorwise worker-set. Also, as we mentioned above, the Master node
is the only one that can change/update the WAL file and handle non-partitioned tables. So
far, there is no automatic approach to select the nodes participating in the worker-set. To start
a Vectorwise on Hadoop cluster, human intervention is currently needed to explicitly specify
the worker nodes. Hence, due to the lack of this feature, the existent Vectorwise on Hadoop
architecture cannot handle transparent failovers and so, it cannot reassign the responsibilities
of the failed nodes to the remaining nodes in the worker-set. This process should be handled
transparently by querying the HDFS NameNode to find out where the partitions are located
and, using this information to determine the missing replicas, have them re-replicated to other
(new) nodes.

1.4 Research Questions

We now address the most important questions related to dynamic resource management in
Vectorwise on Hadoop MPP database:

• What metric sets (application, cluster, node -specific metrics) from YARN Resource Man-
ager can be used to manage a parallel database system, likewise Vectorwise on Hadoop?

• How can we get our metric sets and inform YARN about a specific resource allocation
(e.g. nodes’ locations, number of cores, amount of memory)?

• What is the granularity of resources that we can claim with YARN?

• How can we use data-locality to influence YARN’s resource allocation?

• What algorithms to compute node assignments are appropriate for us, in three situations:

1. to determine the initial Vectorwise worker-set?

2. to dynamically reassign responsibilities to worker-set at startup time (e.g. in case of
a node failure)?

3. to determine the optimal subset of workers to run a particular query?

CHAPTER 1. INTRODUCTION 20

• What are the challenges in dynamic resource management for Hadoop-enabled MPP
database technologies?

1.5 Goals

Through the planning and development stages of our project, we have been seeking to create a
prototype that:

• is in control of the HDFS replication layer and always keeps the data local to the worker
nodes, especially after node failures when missing replicas have to be re-replicated to other
(new) nodes

• transparently handles failovers by reassigning the responsibilities of the failed nodes to the
remaining nodes (or new ones) in the worker-set, such that the load is spread as evenly
as possible with respect to data-locality

• increases the performance during failovers, favoring local-reads over remote-reads

• achieves dynamic resource management, with focus on load-balancing and resource uti-
lization

• is integrated with YARN, aiming towards an elastic approach to increase/decrease the
resource requirements

1.6 Basic ideas

The outline below is meant to give the reader an idea of the directions according to which the
project/prototype was carried out:

• control data-locality by instrumenting the HDFS block placement policy

• implement an algorithm to decide node responsibilities at startup with respect to data-
locality and load-balancing factors

• similarly, decide the subset of nodes and the amount of resources we can use to run a
query; we refer to it as the resource footprint (or the resource requirements) of a Vectorwise
query

• use YARN to acquire/release resources within the Hadoop ecosystem

Implementation constraints

• requires easy and non-intrusive modifications to the current implementation

• requires no additional effort in order to configure and use it

• adds no overhead to the rewriter, builder and query execution

Chapter 2

Approach

This chapter presents a high-level overview of the main components and algorithms we imple-
mented in order to enable dynamic resource management in Vectorwise on Hadoop, and also
explains how various design choices were made in accordance with the research questions of this
project. The rationale behind the "Basic Ideas" presented in Section 1.6 should become clear
by the end of this chapter.

To begin with, for a cost-effective, scalable, yet efficient solution, we focused our attention to-
wards the open-source Apache Hadoop v2.2 (YARN) 1, which we have installed and configured
on two independent sets of cluster nodes with different hardware configuration, but all intercon-
nected by a low-latency, high bandwidth network fabric. Section 2.1 elaborates on the choice
for HDFS direct local reads (short-circuit reads). In Section 2.2 we argue that instrumenting
the block-placement policy in Hadoop is preferable to ensure data-locality, not only after data
bulk-loading, but also after data re-replication (i.e. HDFS recovery phase) due to node failures,
ease of use (i.e. no additional configurations) and maintainability (i.e. increasing/decreasing
the worker-set and automatically moving data during a file-system check). In Section 2.3 we
briefly describe the algorithms for dynamic resource management in Vectorwise on Hadoop. In
Section 2.4 we present the solution space behind a good integration of long-running application-
s/jobs with Yarn and the high-level overview of our chosen approach for Vectorwise, mentioning
the architectural components and their work-flow to acquire/release resources. Finally, more
details about our experimentation platform / cluster’s hardware specs are found in Section 2.5.

Below, in Figure 2.1, we illustrate our research approach (and the project’s contributions)
in 7 steps, more or less in the order of their development: (1) start Vectorwise database,
(2) select the worker-set and assign (partition) responsibilities, (3) generate metadata, (4)
store metadata file in HDFS, (5) instrument HDFS block replication, (6) get cluster resource
information and (7) acquire/release resources through YARN. These steps are going to be
introduced by the remaining of the section and their goal should be clear by the end of reading
it. Nevertheless, we do reserve a chapter for each of the most important topics: Chapter 3
for instrumenting HDFS block replication, Chapter 4 for dynamic resource management (i.e.
worker-set selection, responsibility assignment, computing the worker-set resource footprint)
and Chapter 5 for YARN integration. Last but not least, Chapter 6 highlights some of the
results we achieved during this research project.

1Hadoop v2.2 (YARN) release: hadoop.apache.org/docs/r2.2.0/

21

CHAPTER 2. APPROACH 22

Figure 2.1: The Vectorwise on Hadoop dynamic resource management approach in 7 steps.

2.1 HDFS Local Reads: DataTransferProtocol vs Direct
I/O.

One of the key assumption behind Hadoop is that moving computation is cheaper than moving
data. A Hadoop-like application will prefer moving the computation to the data whenever
possible, rather than the other way around. Thus, in general, HDFS should be able to handle
many local reads (i.e. for which the reader is on the same node as the data).

Local reads through DataNode - DataTransferProtocol

Initially, local reads in HDFS were handled the same way as remote reads. Any client, connected
to the DataNode via TCP socket, transferred data using the DataTransferProtocol. Therefore,
all reads were passed through the DataNode (Figure 2.2): a client asks the DataNode to read
a file, the DataNode reads that file off of the disk and then sends it to the client over a TCP
socket, whether or not the reader is collocated with the data it needs. This approach was
simple, but it had some downsides. For example, the DataNode had to keep an active thread
and a TCP socket for each client that was reading a block. Hence, it adds the overhead of
the TCP protocol in the kernel, as well as the overhead of DataTransferProtocol itself. The
so-called short-circuit reads (described next) bypass the DataNode and implicitly the overhead
of the protocol, allowing the client to read the file directly.

CHAPTER 2. APPROACH 23

Figure 2.2: Local reads through DataNode (DataTransferProtocol).

Figure 2.3: Direct local reads (Direct I/O - open(), read() operations).

Direct local reads – Direct I/O

The key idea behind short-circuit local reads (Figure 2.3) boils down to the following: if a
client runs on the same node with its data, there is no need to involve the DataNode in the
reading path. Rather, the client itself can simply read the data from the local disk using direct
I/O primitives, open() and read() operations. Obviously, this is only possible in cases where
the client is collocated with data. Short-circuit reads provide a substantial performance boost
to many applications and so we have enabled this option in all our performance tests. This
performance optimization made it into Hadoop v2.2 (YARN) as well 1. To configure short-
circuit local reads, you will need to enable libhadoop.so. Short-circuit reads make use of a
UNIX domain sockets. This is a special path in the filesystem that allows the client and the
DataNodes to communicate. You will need to set a path to this socket and the DataNode needs
to be able to create this path. On the other hand, it should not be possible for any user except
the HDFS user or root to create this path, for security concerns. For this reason, paths under
/var/run or /var/lib are often used.

A short comparison between the two of these read options, reads through DataNode and short-
circuit reads, is shown in Table 2.1. We can see from the results that, even though the map-
readers access only local data, with short-circuit reads (direct local reads) the I/O throughput
boosts in performance by 5-15% for both single file – single map-reader and also multiple files
– multiple map-readers tests.

1Short-circuit local reads configuration: hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-
hdfs/ShortCircuitLocalReads.html

CHAPTER 2. APPROACH 24

Table 2.1: Comparison between local reads through DataNode, without short-circuit (w/o),
and direct local reads, with short-circuit (w/), using the TestDFS I/O benchmark on 1 and 10
"Rocks" (Section 2.5) cluster nodes; the results are averaged over two benchmark runs.

TestDFSIO | Reads w/o w/o w/ w/
Number of files (1 per mapper): 1 10 1 10

Total MB processed: 10000 10000 10000 10000
Throughput MB/s: 94.75 57.88 98.78 64.75

Average IO rate MB/s 94.75 63.61 98.78 67.60
IO rate std deviation: 0.0132 19.6334 0.0182 15.3133
Test exec time (s): 135.294 51.403 126.225 41.605

2.2 Towards Data Locality

As mentioned in 1.3.3 each node loads data into specific partitions of the table, based on the
query plan (VWLoad operators) that is rewritten by the parallel-rewriter. Tuples are distributed
by hashing on key columns and stored in multiple HDFS files, where each file contains data
for just a single column of a partition – a Vectorwise (table) partition has as many HDFS
files as columns in the logical table and one single file may require more than an HDFS block
(default size is 128 MB) for storage. HDFS uses a simple policy to store replicas for a block.
If a process that is running on any of the HDFS cluster nodes opens a file for writing a block,
the first replica of that block is stored on the same machine which the client is running on
(we call it first-write data-locality). The second replica is placed on a randomly chosen rack
that is different from the rack on which the first replica was written. Then, the third replica is
stored on a randomly chosen machine from the same remote rack that was chosen in the first
step. This means that a block is present on two unique racks. One point to note is that there
is no relationship between replicas of different blocks of the same file as far as their location
is concerned. Each block is stored independently. On one hand, the algorithm is very simple
and yet good for availability and scalability. On the other hand, there are obvious cases where
collocating blocks of the same file on the same set of datanode(s) or rack(s) is beneficial for
performance reasons. For instance, from a Map-Reduce application construct, if many blocks of
the same file are found on the same datanode, a single mapper instance could process all these
blocks using the CombineFileInputFormat operator. Similarly, if a dataset contains many small
files that are collocated on the same datanode(s) or rack(s), one can use the same operator to
process all these file together by using fewer mapper instances. Moreover, if an application
always uses one dataset in combination with another dataset (e.g. think of join operations on
tables), then collocating these two datasets on the same set of datanodes is beneficial.

HDFS Block Placement Policy. In Vectorwise on Hadoop VWLoad queries, the rewriter
associates files to load operators in a round-robin fashion keeping the first-write data-locality in
place. However, at scan time, files may have different affinities to particular nodes (and there
should be a way of detecting these affinities using the HDFS library) due to a possible system
failover. Likewise, in case of a failover scenario (i.e. a node crashes) the default re-replication
policy is triggered and so the first-write data-locality will be lost. Hence, our approach towards
achieving full data-locality is to control the HDFS block replication by ourselves. To do so
we can use the HDFS-385 1 feature, which is already part of HDFS since its 0.21 release.
This improvement provides a way for the developer to write Java code, within the same HDFS
namespace, that can instrument the block placement policy and specify, directly for instance,
what target nodes should be used to store one file’s blocks and their replicas. The HDFS
API is currently incomplete and experimental in nature, but that is expected to change and
become stable in the near future. The default behavior of the block placement policy can be

1HDFS-385: issues.apache.org/jira/browse/HDFS-385

CHAPTER 2. APPROACH 25

modified by extending the BlockPlacementPolicy abstract class 1 and pointing the new class to
the dfs.block.replicator.classname property in the HDFS configuration file.

To sum up, we have enhanced the default HDFS replication and implemented a custom block
placement policy for Vectorwise partitioned tables. Our custom policy makes sure that all the
HDFS blocks of a Vectorwise table partition (implicitly all columns of that table) are collocated
on R target nodes (R equal to the replication factor) that we specify in the global location-
map file. This file is generated at startup by our Vectorwise-on-Hadoop DbAgent component
(or simply called the DbAgent, Section 2.3) and contains the R node locations for all table’s
partition. The end result is that multiple Vectorwise column format HDFS files are collocated on
the same set of nodes and that re-replication (the recovery phase) is now under the control of the
global location-map whenever some nodes might fail. Besides, we have also extended the HDFS
file-system-check primitives to ease-up the system administration routines, i.e. a sysadmin can
check if the node locations of Vectorwise HDFS blocks are consistent with the global location-
map and if not, those blocks will be automatically moved to their right destination. More
details about the implementation can be read in Chapter 3.

Comparison with other column based HDFS formats (Parquet and
ORCFile)

Parquet [2] vs ORCFile [3]. Parquet’s configurations [47] allows storing columns in different
HDFS block sizes (the RowGroup can be up to 1GB [48]), in which respect it is superior to
Stinger’s 2 (Apache Hive’s v0.12 release name) ORCFile. ORCFile uses a relatively small
RowGroup (called Stripes), such that even when a subset of columns is scanned, I/O must be
performed for the whole file. Hence, Parquet, with its maximum RowGroup of 1GB, can store
a RowGroup in 16 x 64MB HDFS blocks, such that there is still hope for certain queries, which
only select a few columns, to read less than all 16 blocks.

Parquet Schema. We note that Parquet has a ProtocolBuffer-like data format which allows
to store nested data-models, which would be similar to multiple tables with a JoinIndex in-
between (similar with TPC-H 3 Orders-Lineitem tables join in Vectorwise). Though this is
outside of our project scope, it would be an interesting challenge to re-interpret a Parquet file
into a relational schema. Note that, one Parquet file would potentially map to multiple tables
connected by a JoinIndex. Vectorwise would need C-code-extensions (in MScan operator) to
be able to read the Parquet format, aside of our custom columnar file format.

HDFS Block Locality. The current algorithm that analyzes block placement could be used
to start-up Vectorwise server nodes such that they become responsible mostly for local files (i.e
in case of re-replication locality is lost on the new nodes). The Map-Reduce based writer will
create some locality in Parquet files, in that the blocks belonging to the same RowGroup will
have been written by the same Reduce jobs, which means that the default HDFS policy will
place the first replica/copy on that same node together (i.e. first-write data-locality). However,
the other HDFS copies will randomly be scattered. As such, when nodes from the original
Map-Reduce-set that wrote a specific file fail, it will be impossible for them to regain full I/O
locality. In that sense, the failover behavior of native Vectorwise columnar files will be better
than Parquet.

For future work, experiments can be done by loading the Orders and Lineitem tables of TPC-H
into ORCFile and Parquet using Map-Reduce writers, showing that: (1) ORCFile cannot avoid
unnecessary I/O even when a subset of columns is scanned, (2) Parquet can do so, however
not at a very fine-grained level (it will still read unnecessary data), (3) Parquet data-locality is

1BlockPlacementPolicy abstract class: grepcode.com/file/repo1.maven.org/maven2/org.apache.hadoop/hadoop-
hdfs/0.22.0/org/apache/hadoop/hdfs/server/namenode/BlockPlacementPolicy.java

2Stinger initiative’s website: hortonworks.com/labs/stinger/
3TPC-H benchmark’s website: www.tpc.org/tpch/

CHAPTER 2. APPROACH 26

lost when some of the original writers are down, (4) ORCFile does not have this vulnerability
(because blocks are self-contained), but it is inferior on I/O and cannot collocate multiple
tables, whereas Parquet can do this because of its nested data model (Lineitem can be seen as
a multi-valued child structure of Orders, all stored in the same RowGroup).

2.3 Dynamic Resource Management

This section describes the steps towards enabling dynamic resource management in Vectorwise
on Hadoop (and the algorithms’ choice). The approach is threefold: (1) Determine the Vector-
wise worker-set, (2) Assign responsibilities to Vectorwise worker nodes and (3) Schedule cluster
resources for different query workloads at runtime, by computing the optimal resource footprint
(i.e. what particular nodes and the amount of resource, in terms of CPU and memory, to
use). We start by describing the algorithm that is behind all these steps, and then briefly talk
about how we made it suitable for each step in particular. For a more detailed description, we
recommend reading Chapter 4.

Min-cost flow problem

The min-cost flow problem [45] is a network model that holds a central position among network
optimization models, because it encompasses such a broad class of applications. Like the
maximum-flow problem, it considers the flow through a network with limited arc capacities.
Similar with the shortest-path problem, it considers a cost for the flow through an arc. And,
like the transportation or assignment problem, it can consider multiple sources (supply nodes)
and multiple destinations (demand nodes) for the flow, again with associated costs. In fact, all
these problems are special cases of the original min-cost flow problem. The single commodity
min-cost flow problem is one of the most fundamental models in flow network theory. This
model can be useful in various real world applications, which arises in transportation, logistics,
communication networks, resource planning, scheduling and many other domain areas. As
mentioned in Section 1.2, there are few research papers [39, 40] explaining how to apply this
algorithm, with variations in cost models, for resource management in Hadoop Map-Reduce.

Generalized statement. We are given a network - a directed graph, in which every edge
has a certain capacity u and a cost c associated with it, a starting vertex, the source (s in
Figure 2.4), and an ending vertex, the destination (t in the same figure). Also, we associate
another value f per edge, satisfying f ≤ c, such that, for every vertex other than the source
and the destination, the sum of the f values associated to the edges that enter the vertex, the
in-edges, must equal the sum of the f values associated to the edges that leave the vertex,
the out-edges). In literature, this kind of network is called a flow network (or transportation
network) and f represents the flow along the edge. The min-cost flow problem is to maximize
the total flow in the network, the flow leaving the source (s), and, at the same time, to find the
minimum cost path of sending it to the destination (t). In other words: to find the minimum
cost maximum flow from s to t.

Algorithm’s choice. We have decided to go for the successive shortest path [46] algorithm
to solve the min-cost flow problem. For the implementation we use Edmonds-Karp relabelling,
plus Dijkstra (with priority-queues) for the shortest path selection. The overall complexity is
O(min(E2 ∗ V ∗ logV,E ∗ logV ∗Flow)), where E is the number of edges and V the number of
vertices composing the network.

CHAPTER 2. APPROACH 27

Figure 2.4: A flow network example for the min-cost problem, edges are annotated with (cost,
flow / capacity).

Worker-set selection & responsibility assignment

Worker-set selection. The idea is to select the best N nodes out of M with respect to
their resource (e.g. CPU, memory, etc) capabilities and local data, Vectorwise column format
HDFS local files, if any. This process is handled transparently by one of our components, the
DbAgent : for the first part – getting the cluster’s capabilities – it asks YARN for the cluster
node reports and for the second part – finding HDFS data – it queries the HDFS Namenode
and finds out where the Vectorwise files are located, assuming that the data was loaded into
the system beforehand. Moreover, based on the data-locality information, we can determine
missing replicas (i.e. in case of node failures) and have them re-replicated to other (possibly new)
workers. The problem of (re)balancing table partitions to worker nodes, therefore creating the
global location-map, can be stated as a min-cost matching problem 1 on a bipartite graph with a
cost model to reflect the (Vectorwise files’) data-locality to worker nodes (Chapter 4). As a side
note, for the initial load we use a round-robin (horizontally) data partitioning scheme. However,
following the initial load, the global location-map will always be re-generated according to the
current locations of the Vectorwise HDFS files (including their replicas) at startup time.

Responsibility assignment. There are multiple ways to decide which worker nodes are
responsible for specific partitions, depending on the HDFS replication degree. One-to-one
assignment – maximum one node responsible per partition: To assign responsibilities to worker
nodes, we apply the min-cost flow algorithm on a custom bipartite graph, Figure 2.5. The graph
is structured in: (1) left-side : partitions and (2) right-side : workers. From our source (s) to
each partition, we connect edges with cost 0 and capacity RMax equal to 1 – Figure 2.5. Then,
we connect edges from partitions to workers using a cost model that is explained in Chapter 4
and capacity 1. Finally, we pair each worker to its destination node (t). We assign these edges
a cost 0 and a capacity equal to the partition-capacity of the worker we connect with (i.e.
how many partitions a node can handle, annotated with PCap in the figure). Many-to-one
assignment – two or more nodes responsible per partition: This approach is similar with the
previous one, except one thing: the capacity of an edge connecting s with a partition, RMax
from Figure 2.5, is set to the maximum number of nodes responsible per partition.

Dynamic resource scheduling

To schedule resources for queries that run on (shared-nothing) partitioned tables, we have
enhanced the existent Vectorwise resource scheduler with a min-cost flow algorithm. For this
matter of problem, the algorithm uses a more advanced cost model (Chapter 4), though it is
based on a similar bipartite graph like the one used to assign responsibilities. We briefly remind
that, in the existent approach, the algorithm provides us a list of pairs (nx, ty) denoting how

1Note that the min-cost matching is just a specialization of the min-cost flow problem

CHAPTER 2. APPROACH 28

Figure 2.5: The flow network (bipartite graph) model used to determine the responsibility
assignment.

many threads/cores (ty) are allocated for its execution on node (nx). The search starts with a
feasible (initial) solution and tries/verifies all its multiple (e.g. [(1, 3), (2, 5)] : [(1, 6), (2, 10)] :
[(1, 9), (2, 15)] : etc . . .). It stops at the first combination which uses more threads (on any
machine) than allocated by the resource scheduler. Moreover, the implementation adds two
new multiple-nodes distribution policies for queries: (1) equal-share for non-partitioned tables,
which similar with the multiple-nodes distribution used in the Shared Disk approach it selects
the least loaded nodes and takes their amount of CPU resources until it satisfies the MPL, and
(2) equal-share for partitioned tables that assumes the default round-robin partitioning and
equally assigns threads to the operators until the MPL is achieved. In the new approach, we
try to combine both (1) and (2) policies with a min-cost flow algorithm, so that we take in
account data-locality and load-balancing factors. One advantage is that we can make the most
of the local replicas. By increasing the responsibility per partition up to the HDFS replication
degree we can add, to some extent, flexibility in computing the optimal resource footprint for
a query. For instance, the algorithm can choose one half of the worker-set to run a query in
case the other half is facing some serious problems, e.g. no local-data due to node failures,
overloaded resources, stragglers etc. Of course, for this to happen, the HDFS replication degree
should be ≥ 2.

2.4 YARN Integration

Currently, YARN expects to manage the lifecycle of its native applications that are used to run
Hadoop jobs. Some frameworks/systems that could benefit from sharing resources with YARN
run their work within long-running processes owned by the framework/system itself. These type
of processes are not a good fit for the YARN containers. They need to run the work on behalf
of many users and that their resources may increase as well over time. Similarly, Vectorwise
workers (x100 backend servers) are long-running processes, which ideally are started once and
from that point queries run within their context using multiple threads in order to achieve
multi-core parallelism. As part of our thesis we also have been working on how to integrate
Vectorwise with YARN, and we think our ideas might be applicable to other MPP on Hadoop
databases.

CHAPTER 2. APPROACH 29

There are different ways of integrating long-living application processes within YARN. Using
service X as an example for the application and queries for the computational-unit, the different
approaches to integrate service X with YARN can be characterized as follows:

Isolation outside YARN. Carving out part of the cluster nodes for service X and part for
YARN (e.g. via Linux CGroups 1 / Linux Container Executor). This is better than just sharing
the same cluster and hoping for no resource contention. This approach is simple and effective,
for example, assigning 60% to service X and 40% to YARN. However, it lacks flexibility as load
conditions may change for both sides. Also, it is not possible to assign a common share to a
user or a queue across service X and YARN.

Model the service as a YARN application. Implementing service X as a YARN application
could be another solution. With this approach, the YARN’s scheduler is responsible for sharing
resources among different users and applications. Because service X is a pure YARN application,
resources utilization for this service and other YARN applications is dynamically based on the
load conditions. A drawback of this approach is that service X will be tightly bound to just
one of the scheduler’s queues. While it is possible to run multiple service X instances (multiple
YARN applications), one per queue, this may not be practical because the different service X
instances may have to coordinate among each other and may have to duplicate their resource
headroom utilization in advance. In addition, as stated in YARN-896 2, there is significant work
to be done to allow long live services running as YARN applications. Besides, for the moment, is
not even possible to increase or decrease resource utilization within YARN containers (YARN-
1197 3), being impossible "per se" to have some elasticity and to acquire/release resources for
service X when its workload increases/decreases.

Model queries as YARN applications. For this approach we consider that service X resides
outside YARN, having its own resources isolated from YARN, but each of its running queries
translates into individual YARN applications. Optimizations such as pooling and reusing YARN
application instances, and the containers within those applications, can help reducing latency
significantly. An important benefit of this approach is that the resources utilization and dis-
tribution is completely managed by YARN. However, this approach assumes that each query
submitted to service X is a set of independent processes from the service X’s query dispatcher,
but in our case all queries run within the Vectorwise worker-set’s processes. Hence, this ap-
proach is not an option that could work out and be easily implemented.

Model resource requests as YARN applications. This idea sounds similar with the
previous one, except that now we shift our focus towards requests per workload instead of per
query to decrease the application’s startup latency overhead (in number of requests) and that
service X is part of the integration too. Making service X use a set of unmanaged YARN
Application Master (more details in Chapter 5) sounds more likely to us. These applications
are in principle spawned by (1) an initial request for the minimum amount of resources – CPU
and memory – needed to bootstrap Vectorwise and be operable to users (e.g. at least 1 core
+ enough memory for query execution per node), and (2) extra resource requests to increase
the performance of different query workloads. In this case, service X manages its own processes
out-of-band from YARN and only uses the amount of resources allocated by the scheduler. On
the other hand, the distribution of resources is completely managed by YARN. If service X runs
queries over a set of processes, common resources (i.e. data-structures) can be easily shared
among different runs without duplication. A drawback of this approach is that service X must
manage on its own the enforcement of resource utilization per query. Our proposal for the
Vectorwise-YARN integration fits this approach. However, as YARN-1197 is being pushed for
the next release version, we are going to improve this approach in near future. Hence, instead of
creating one YARN application per resource request (per workload), we could multiplex all the
requests towards a single YARN application (or a pool of applications distributed over different

1Linux CGroups: www.kernel.org/doc/Documentation/cgroups/cgroups.txt
2YARN-896: issues.apache.org/jira/browse/YARN-896
3YARN-1197: issues.apache.org/jira/browse/YARN-1197

CHAPTER 2. APPROACH 30

scheduling queues) that dynamically increases/decreases the containers’ resource context. In
this way we can avoid the application startup overhead entirely, reducing the acquire/release
request latency even more (i.e. a YARN application can run in background and listen only for
new requests).

Figure 2.6: Out-of-band approach for Vectorwise-YARN integration.

Figure 5.2 depicts our approach for the Vectorwise-YARN integration. As a reminder, in this
approach we model every resource request (per workload) as a separate YARN application.
The integration starts with the Vectorwise worker-set initialization phase. During this phase
we allocate through YARN at least the minimum amount of resources for the database to be
operable, i.e. run distributed queries w/o any parallelism (e.g. 1 core + enough memory for
query execution per node). This phase is managed by the WorkersSetInit component (a custom
YARN Application Master). From that point on, any needs to increase the worker-set amount
of resources, i.e. extra CPU and memory to run a new workload, are translated into message-
requests and sent directly to the DbAgent component (a custom YARN Client Application).
Besides what is mentioned in Section 2.3, the DbAgent is also responsible for resource allocation
within YARN, i.e. to release or acquire new containers. What happens under the hood is that,
for each request, we spawn a new YARN Application Master (IncreaseResources component)
that negotiates with the ResourceManager the demand for extra containers: it reserves and
starts containers with specific resource requirements on a subset of (or all) worker nodes and
then it manages their lifecycle. Previously to any resource request, the Vectorwise Master
node asks the DbAgent for the cluster’s current resource state in order to compute the resource
footprint of the current query workload. More details about the Vectorwise-YARN integration
are presented in Chapter 5.

CHAPTER 2. APPROACH 31

2.5 Experimentation Platform

All our Linux based cluster nodes granted by Centrum Wiskunde & Informatica 1 (CWI) were
set up using the before-mentioned specifications (e.g. Hadoop v2.2, w/ short-circuit, 128MB
HDFS block size, replication degree equal to 3) and served as the experimentation platform
for our prototype during development. For functionality testing and debugging we used the
company’s internal cluster of 4 nodes, being easier for us to run corner case examples and inves-
tigate issues, if any. A brief description of the CWI’s cluster relevant hardware configuration is
given below.

CWI SciLens cluster

Hardware ("Rocks" nodes)

Nodes: 144 nodes (Shuttle boxes), granted up to 32 nodes

Sockets/CPUs: 1 x Intel Core i7-2600K processor (4 cores, 3.4 GHz, 8 MB cache) per node; 2 threads per
core with Hyper-Threading

Memory : 16 GB DDR3 per node

Storage: 1 x 2 TB HDD disks per node (/scratch 1.8 TB partition used for the HDFS data directory)

Disk I/O Throughput Tests (results averaged over 3 runs and rounded up)

dd if=/dev/zero of=out_file bs=1G count=1 oflag=direct : 131 MB/s

dd if=/dev/zero of=out_file bs=1G count=5 oflag=direct : 132 MB/s

Network : 40 Gbit/s InfiniBand interconnection, 1 Gb/s Ethernet

Hardware ("Stones" nodes)

Nodes: 16 nodes (hot-pluggable systems), granted up to 8 nodes

Sockets/CPUs: 2 x Intel Xeon E5-2650 v2 processors (8 cores, 2.6 GHz, 20 MB cache) per node; 2 threads
per core with Hyper-Threading

Memory : 256 GB DDR3 per node

Storage: 3 x 3 TB HDD disks per node w/ software-RAID0 (/scratch 5.4 TB partition used for
the HDFS data directory)

Disk I/O Throughput Tests (results averaged over 3 runs and rounded up)

dd if=/dev/zero of=out_file bs=1G count=1 oflag=direct : 473 MB/s

dd if=/dev/zero of=out_file bs=1G count=5 oflag=direct : 534 MB/s

Network : 40 Gbit/s InfiniBand interconnection, 1 Gb/s Ethernet

Actian internal cluster

Hardware

Nodes: 4 nodes (2 × 2 hot-pluggable nodes in a 2U form-factor)
1CWI SciLens cluster: www.monetdb.org/wiki/Main_Page

CHAPTER 2. APPROACH 32

Sockets/CPUs: 2 x Intel Xeon E5645 processors (6 cores, 2.4 GHz, 12 MB cache) per node; Hyper-
Threading disabled

Memory : 48 GB DDR3 per node

Storage: 1 x 2 TB HDD (used for the HDFS data directory) disks per node

Disk I/O Throughput Tests - for the HDD disk (results averaged over 3 runs and rounded
up)

dd if=/dev/zero of=out_file bs=1G count=1 oflag=direct : 126 MB/s

dd if=/dev/zero of=out_file bs=1G count=5 oflag=direct : 128 MB/s

Network : 40 Gbit/s InfiniBand interconnection, 1 Gb/s Ethernet

Chapter 3

Instrumenting HDFS Block
Replication

This chapter presents in detail the Custom Block Placement Policy for HDFS that we imple-
mented in order to control the block (re-)replication and to collocate table partitions to the
same group of DataNodes, therefore achieving data-locality to Vectorwise worker nodes during
failover situations (e.g. a node fails running our services and it is replaced by a new one).

3.1 Preliminaries

It is sometimes beneficial to have selective overlap among the workers on which the partitions
of two or more tables are stored. If the same hash function and number of partitions are
chosen for two (or more) tables, then there will be a one-to-one correspondence between the
partitions of both (or all) tables that will join with one another. If this is the case, then it is
possible to collocate the joining partitions of both (or all) tables. That is, any pair of joining
partitions will be stored on the same nodes participating in the workers-set. The advantage of
collocation is that tables can be joined without the need to move any data from one node to
another. However, collocation of joining tables can be nontrivial when there are complex join
relationships.

Let us consider an example of two tables R and S loaded on a Vectorwise cluster of 3 workers /
4 nodes, using a 3-way partitioning and replication degree of 2. Also, assume that both tables
are hash partitioned on the same attribute key and a partition fits in one single HDFS block.
An example of a default HDFS block placement, after R and S tables are loaded, is shown in
Figure 3.1 - upper image. In this context, consider the following example of a query that joins
tables R and S on attribute key :

1 Select *
2 From R, S
3 Where R.key = S.key

If we assume that nothing happens with the cluster/system (i.e. a node crashes), we can then
process parts of the join locally on each node. The default HDFS block replication guarantees
that it stores the first replica of a block on the node which initiates the write (first-write locality).
As for the second replica (or the others, if more) that is not the case. However, only for their
first replicas, R’s and S’s partitions are collocated on the same nodes and can be joined locally –
R1 can be joined locally with S1 on N1, R2 with S2 on N2 and, respectively, R3 with S3 on N3.
Unfortunately, this all changes when a node (or more) fails. All missing block replicas will be

33

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 34

discovered and re-replicated (recovery phase) randomly to other nodes within the whole HDFS
cluster, which can be even larger then the Vectorwise workers-set. If that is the case, we lose
our first-write locality and, implicitly, the collocation that is set by the initial bulk load. As a
result, this will make the collocation of joining tables less probable. Considering Figure 3.1 -
lower image, to join R3 with S3 on N4 (after re-replication) we would have to access S3 remotely
from N1/N2 during the query’s cold-run, or to move this join computation to N2.

Figure 3.1: An example of two tables (R and S) loaded on 3 workers / 4 nodes, using 3-way
partitioning and replication degree of 2: after the initial-load (upper image) vs. during a system
failover (lower image).

The previous situation becomes even worse if each partition has multiple blocks and/or its (ta-
ble) columns are stored in separate HDFS files, as it happens to Vectorwise on Hadoop because
of the custom columnar HDFS file format. One way to mitigate this problem and achieve full
data-locality, plus collocation of joining tables, is to properly instrument the HDFS replication
by implementing a custom block placement policy. If tables are partitioned using the same
partitioning-class and on the same attribute or set of attributes, then this policy must collocate
and replicate their partitions (their columns and so, implicitly, their HDFS files/blocks) on the
same subset of worker nodes, Section 3.2. A partitioning-class (or partitioning-scheme) is sim-
ply the degree of partitioning, i.e. a 3-way partitioning is a partitioning-class. Non-partitioned
tables have their partitioning-class too, 1-way partitioning (i.e. 1 single partition). To sum up,
one can think of this policy as replicating and collocating Vectorwise column-format HDFS files
instead of logical partitions.

A formal definition for the custom policy can be stated as: given T tables partitioned on the
same attribute(s), R (degree of replication), P (a partitioning-class) ⇒ ti(pj) ∈ Wj , where
i = 1, . . . , T , j = 1, . . . , P , W = the workers-set, Wj = a subset of our workers-set, |Wj | = R.
This definition applies to more than one partitioning-class. We note that two or more replicas
of the same HDFS block cannot be stored on the same node.

Going back to our previous example, now R’s and S’s partitions can be replicated and collocated
on the same subset of worker nodes: R1 with S1, R2 with S2 and R3 with S3, on {N1, N2},
{N2, N3} and, respectively, {N3, N1}. A general illustration of what can we achieve with a
3-way partitioning on 3 workers / 4 nodes is depicted in Figure 3.2.

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 35

Figure 3.2: Instrumenting the HDFS block replication, in three scenarios, to maintain block
(co-)locality to worker nodes.

3.2 Custom HDFS Block Placement Implementation

We have enhanced the default HDFS block replication and implemented a custom block place-
ment policy (only) for Vectorwise partitioned tables. Other HDFS (non-Vectorwise) files are
not considered by our replication policy, since we filter Vectorwise files by their naming pattern
<table-name>@<partition-ID>, where <partition-ID> is <partition-number>c<partitioning-
class>. The custom policy makes sure that the HDFS blocks of all files with the same partition-
id (implicitly all columns of a table) and their replicas are collocated on exact R target nodes
(R equal to the replication degree). We specify the exact R nodes in a global location-map.
This particular data structure is generated at startup by the DbAgent component and then
saved at the Vectorwise HDFS database location into a metadata file – called plocations. The
end result is that multiple Vectorwise column-format HDFS files are collocated on the same set
of nodes and that (re-)replication (the recovery phase) is now under the control of the global
location-map whenever nodes might fail.

An example of a plocations file (or global location map), in Json format, for 3 nodes, replication
degree 2, and 3 (1-, 3-, 6-) partitioning-classes is:

1 { // plocations metadata file in Json format: <partition-ID>:[<location>,...]
2 // we assign a list of locations (worker nodes) to every <partition-ID>
3 "0c1":["node1","node2"],"0c3":["node1","node2"],"1c3":["node2","node3"],
4 "2c3":["node3","node1"],"0c6":["node1","node2"],"1c6":["node2","node3"],
5 "2c6":["node3","node1"],"3c6":["node1","node2"],"4c6":["node2","node3"],
6 "5c6":["node3","node1"] }

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 36

3.2.1 Adding (New) Metadata to Database Locations

The plocations file is stored only once at the Vectorwise database location, since we can easily
share this path with our DbAgent at startup time. All metadata files that theDbAgent generates
are stored there. Moreover, whenever a (Vectorwise columnar-) file is being written to HDFS
block by block, the only information we are provided by the API is its full source path. So,
though we can extract and parse from a Vectorwise file’s path its exact table location, simply,
from the Block Placement Policy class, we cannot determine to which database location it
belongs to (not without extra communication with the Vectorwise Master node). This means
that the global location-map is not (directly) visible to other table locations, including the
default one. Nevertheless, this information is still needed to select the target (worker-) nodes
for block replication. It is clear by now that what we need is a way to refer to the database
location from any table location. An easy way to do so is to keep the default database location
(the HDFS path) into a metadata file, and, whenever a table location is created (including the
default one), have it stored directly within that path.

3.2.2 Extending the Default Policy

To implement our Vectorwise custom block placement policy, we used the HDFS-385 1 feature,
which is already part of HDFS since the 0.21 release. This improvement provides a way for
the developer to write Java code, within the same HDFS namespace, that can instrument the
block replication and specify, directly for instance, what target nodes should be used to store
one file’s blocks including their replicas. The default behavior of the block placement policy
can be modified by extending the BlockPlacementPolicy abstract class 2.

Another way is to overload some of the BlockPlacementPolicyDefault’s class 3 methods, like we
did in order to maintain/keep the default block replication for the rest of the (non-Vectorwise
custom format) HDFS files. More specifically, what we did was to overload the chooseTargetN-
odes(...) method and diverge the default work-flow for Vectorwise data. Whenever an HDFS
block of a Vectorwise column-file is being stored and the latter method is called, we use our own
choose target nodes method instead – named chooseVWTargetNodes(...) – to compute (and
return) the list of datanode descriptors for block replication.

Algorithm 3.3 contains the pseudo-code for chooseVWTargetNodes(...) method, referred pre-
viously. First, at lines 1 to 3 we read the (static) configuration values for global location-map
file’s name, table’s location metadata file’s name and the Vectorwise HDFS file pattern. In steps
6-8 we extract from the block’s source path its directory path, the name of the file which belongs
to, and the table’s partition-ID. Then, at line 9 we cache the global location-map for the current
database location. Line 12 determines the available (alive) target nodes for block replication
using the (in-memory cached) global location-map. The target nodes are mapped by the table’s
partition-ID. From 13 to 22 we check if there are stale entries in cache and, if any, we re-cache
all entries by reading again the global location-map metadata from its source file. Finally, lines
23 to 34 fills out the results list with target descriptors and returns the writer descriptor. It
converts the available target nodes (hostnames) into a datanode descriptors list. Then, it uses
this list to merge with results and to determine the writer descriptor.

Both algorithms, Algorithm 3.1 and Algorithm 3.2, come to help in Algorithm 3.3 when caching
is needed for the global location-map. By this, we omit multiple metadata file reads that can
degrade our performance. Reading once and then saving the metadata in (NameNode’s) mem-
ory makes it fast enough to retrieve the right target nodes during the HDFS block replication.

1HDFS-385: issues.apache.org/jira/browse/HDFS-385
2BlockPlacementPolicy abstract class: grepcode.com/file/repo1.maven.org/maven2/org.apache.hadoop/hadoop-

hdfs/0.22.0/org/apache/hadoop/hdfs/server/namenode/BlockPlacementPolicy.java
3BlockPlacementPolicyDefault class: grepcode.com/file/repo1.maven.org/maven2/org.apache.hadoop/hadoop-

hdfs/2.2.0/org/apache/hadoop/hdfs/server/blockmanagement/BlockPlacementPolicyDefault.java

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 37

However, when the cache contains stale entries (i.e. due to node failures), we do have to discard
the data by (re-)reading again the (possible new) file’s content.

Algorithm 3.1 Cache the table’s location metadata file:
cacheTableLocMetadata(tableLocation, tableLocFilename)

Input: tableLocation: the HDFS path towards the table location, tableLocFilename: the table’s
location metadata filename (default is .metadata)

1: if ¬dbLocationsMap.containsKey(tableLocation) then // synchronized section
2: tableLocMetadataPath← makePath(tableLocation, tableLocF ilename)
3: dbLocation← readDbLocMetadata(tableLocMetadataPath) // read HDFS path, one liner
4: if dbLocation = ∅ then // invalid path or the file is empty
5: throw error
6: end if
7: dbLocationsMap.putEntry(tableLocation, dbLocation)
8: end if

The first algorithm, Algorithm 3.1, uses a concurrent hash map to store table locations to
database location many-to-1 relations, where the database location (HDFS path) is read from the
table’s location metadata file. The second one, Algorithm 3.2, uses a concurrent hash map data
structure too, but to store 1:1 relations between a database location and its plocations metadata
file (the global location-map generated each time by the DbAgent during the Vectorwise cluster
startup).

Algorithm 3.2 Cache the global location-map file:
cachePLocations(tableLocation, tableLocFilename, pLocFilename)

Input: tableLocation: the path towards the HDFS table location, tableLocFilename: the table’s
location metadata filename (default is .metadata), pLocFilename: the global location-map
metadata filename (default is plocations), one per Vectorwise database location

1: cacheTableLocMetadata(tableLocation, tableLocF ilename) // we make sure to cache the table’s
location metadata beforehand

2: dbLocation← dbLocationsMap.getV alue(tableLocation)
3: if dbLocation does not exist anymore in HDFS then // stale entry
4: // remove the correspondent metadata entries from dbLocationsMap and pLocationsMap

5: dbLocationsMap.removeEntry(tableLocation)
6: pLocationsMap.removeEntry(dbLocation)
7: cacheTableLocMetadata(tableLocation, tableLocF ilename) // and re-cache
8: dbLocation← dbLocationsMap.getV alue(tableLocation)
9: end if

10: if ¬pLocationsMap.containsKey(dbLocation) then // synchronized section
11: pLocationsPath← makePath(dbLocation, pLocF ilename)
12: pLocations ← readPLocMetadata(pLocationsPath) // read the global location-map for the

current database session
13: if pLocations = ∅ then // invalid path or the file is empty
14: throw error
15: end if
16: pLocationsMap.putEntry(dbLocation, pLocations)
17: end if

Besides Algorithm 3.3, we have also extended/overloaded the HDFS file-system-check primitives
(not shown) to ease-up the system administration routines, i.e. a sysadmin can check if the
node locations of Vectorwise HDFS blocks are consistent with the global location-map and if
not, those blocks will be automatically moved to their right destination.

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 38

Algorithm 3.3 Choose the Vectorwise target (worker-) nodes for block replication:
chooseVWTargetNodes(blockSrcPath, numOfReplicas, writer, results)

Input: blockSrcPath: the full source path of the HDFS block being written, numOfReplicas:
number of replicas needed, writer: the datanode’s descriptor that initiates the write oper-
ation, results: the list of chosen target nodes (datanode descriptors) for block replication –
for a new block this list is empty, whereas for an old block with missing replicas it contains
the rest of the nodes (datanode descriptors) where that block is stored

Output: the datanode descriptor for the first-write locality and, indirectly, the target nodes
(the descriptors results list)

1: pLocF ilename← configPropertyGet(ploc_metadata_property)
2: tableLocF ilename← configPropertyGet(tableloc_metadata_property)
3: pattern← configPropertyGet(vwfile_pattern_property)
4: newBlock ← (results.size = 0) // true if is empty, false otherwise
5: totalReplicas← numOfReplicas+ results.size
6: srcDirname← extractDirname(blockSrcPath)
7: srcF ilename← extractF ilename(blockSrcPath)
8: pId← extractPartitonId(blockSrcPath, pattern)
9: cachePLocations(srcDirname, tableLocF ilename, pLocF ilename)

10: dbLocation← dbLocationsMap.get(srcDirname)
11: pLocations← pLocationsMap.get(dbLocation)
12: targetNodes← getAvailableTargetNodes(pLocations, pId)
13: if targetNodes.size < totalReplicas then // stale metadata
14: // remove the correspondent plocations entry from plocationsMap

15: pLocationsMap.removeEntry(dbLocation)
16: cachePLocations(srcDirname, tableLocF ilename, pLocF ilename) // and re-cache
17: pLocations← pLocationsMap.get(dbLocation)
18: targetNodes← getAvailableTargetNodes(pLocations, pId)
19: if targetNodes.size < totalReplicas then // still stale, DbAgent was not yet restarted
20: fill-out targetNodes with nodes from the remaining Vectorwise cluster (use the least-

loaded nodes)
21: end if
22: end if
23: targetDesc← toDataNodeDescriptors(targetNodes)
24: if newBlock = true then
25: if writer = null ∨ ¬targetDesc.contains(writer) then
26: writer ← targetDesc[0]
27: end if
28: results.add(writer) // the local descriptor has to be the first
29: merge results with targetDesc, maximum numOfReplicas
30: return writer
31: end if
32: // an old block
33: merge results with targetDesc, maximum numOfReplicas // fill-out missing replicas
34: return writer

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 39

Preliminary Results

In this part of the section we present some of the experiments we run against both HDFS
block replication policies discussed earlier, the default policy (not. default) and the custom one
(not. collocation), in order to determine which one is better for Vectorwise on Hadoop, during
and after node failures. Hence, we compare these policies in three situations: the cluster is in
(1) Healthy state, (2) Failed state and (3) Recovered state. In the third situation, when using
the custom policy, we recompute the global location-map by restarting the Vectorwise (new)
workers-set through our DbAgent component. For the experimental workload, we have selected
just 4 of the TPCH-H queries (1, 4, 6, and 12, all I/O bounded for cold-runs) together with 32-
and a 16- partitioning schemes (for Lineitem and Orders only) on scale-factor 100. We ran these
queries individually on 8 workers, out of 10 "Rocks" Hadoop nodes, with a 32 mpl. This means
that, during our experiments, 1 partition can be read by maximum 1 thread, respectively, 2
threads. Moreover, with the default policy, we remind that blocks are replicated among all
10 Hadoop nodes; the default block replication is not aware of our workers-set and collocation
requirements. To simulate the Failed state scenario we simply stopped (and decommissioned) 2
of our (workers-set’s) DataNodes, so that we could use the remaining 2 available Hadoop nodes
as their replacements / new workers. In addition, to ensure real cold-runs, we always free the
Vectorwise Buffer Pool and the Operating System’s cache before each query. We have disabled
any Hadoop caching mechanism too, to make sure we do not have another caching layer in
between Vectorwise and OS that could affect our results.

The end result is quite obvious: whereas the custom block replication overcomes (by a lot) the
default behavior after the re-replication process, because we have control over data (co)locality
to worker nodes, the default behavior performs better during node failures, since new worker
nodes (replacing the failed ones) may already have some local data that queries could read.
However, this advantage of the default behavior during failures is effectively lost if we limit the
number of Hadoop nodes to the workers-set size, i.e. number of workers equal with the total
number of nodes. New worker nodes, chosen to replace the failed ones, will no longer have local
data for sure. We show what happens in such case in Chapter 6. Nevertheless, it takes around
8-9 minutes to recover the 3rd (missing) replicas (in total there are approximately 26 GB of
data to re-replicate), time that can be easily amortized considering the side effect of controlling
data-locality, i.e. reading local data during cold-runs or when is not enough buffer pool to cache
all the tables.

Table 3.1: Baseline (default policy) vs. collocation (custom policy) – execution times in 3
situations (1) healty state, (2) failure state (2 nodes down), (3) recovered state. Queries 1, 4, 6,
and 12 on partitioned tables, 32-partitioning, 8 workers / 10 Hadoop "Rocks" nodes, 32 mpl.

Vers. baseline collocation
State Healthy Failure Recovered Healthy Failure Recovered
Q1 18.94 s 21.64 s 27.57 s 19.65 s 23.48 s 18.36 s
Q4 2.07 s 2.56 s 3.61 s 2.25 s 3.93 s 2.25 s
Q6 3.35 s 4.36 s 5.94 s 3.55 s 5.09 s 3.44 s
Q12 4.78 s 6.56 s 8.28 s 4.55 s 7.66 s 4.54 s
Total 29.14 s 35.12 s 45.40 s 30.00 s 40.16 s 28.59 s

What is important to see is that, both the individual query execution times, Table 3.1, and
the HDFS I/O throughput per query, Figure 3.3, do not change too much in the Recovered
state as compared to the Healthy state. By all means, the results are about the same (with
insignificant differences) in both states, which implies that we have achieved data (co)locality
in Vectorwise on Hadoop for the Recovered state. In Chapter 4 we further explain how we can
improve the performance of cold-runs during failovers, favoring local (disk) reads over remote

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 40

(network) access to the extent of maximum resources available. The same behavior repeats in
experiments with a lower partitioning scheme as well, from 32- to 16- partitioning, Table 3.2.

Healthy Failure Recovered

25

30

32.4

30.11

27.92

31.96

23.35

33.17

I/
O

T
hr
ou

gh
pu

t
(M

B
/s
)

baseline collocation

(a) Query-1 (cold-runs)

Healthy Failure Recovered

20

25
25.23

23.4

21.81

28.3

17.02

24.55

I/
O

T
hr
ou

gh
pu

t
(M

B
/s
)

baseline collocation

(b) Query-4 (cold-runs)

Healthy Failure Recovered

25

3029.59

27.4

21.31

30.33

22.3

30.02

I/
O

T
hr
ou

gh
pu

t
(M

B
/s
)

baseline collocation

(c) Query-6 (cold-runs)

Healthy Failure Recovered

25

30

31.18

27.21
26.48

30.9

21.3

32.35

I/
O

T
hr
ou

gh
pu

t
(M

B
/s
)

baseline collocation

(d) Query-12 (cold-runs)

Figure 3.3: Baseline (default policy) vs. collocation (custom policy) – HDFS I/O throughput
measured in 3 situations (1) healty state, (2) failure state (2 nodes down), (3) recovered state.
Queries 1, 4, 6, and 12 on partitioned tables, 32-partitioning, 8 workers / 10 Hadoop "Rocks"
nodes, 32 mpl.

On the other hand, it is curious that the performance of the baseline Vectorwise on Hadoop
version (with default block replication) degrades from Failure to Recovered state. Our exper-
imental results show that: (a) the query execution time during cold-runs increases, Table 3.1,
and (b) the HDFS I/O throughput per query gets even worse, Figure 3.3. This is somehow
counter-intuitive, as one would expect to get better I/O performance when data recovers (i.e.
the chances of having more local data increases). The 1st and 2nd replicas we believe are still
in place, if blocks were not moved around because of load-balancing issues. We checked our
experiments and no data seemed to be relocated unnecessarily. So, a possible cause of this
peculiar performance loss may be related to the recovery phase: the fact that new (3rd) repli-
cas are scattered randomly within the cluster could affect the I/O reading pattern, local-reads
vs. remote-reads, by making remote-read requests change their source of read. For instance,
a better look into the DataNode log files revealed ±30-40% fluctuations in the SHORT_CIR-
CUIT_READS request counts for the 2 new worker nodes and ±10-15%, respectively, for the

CHAPTER 3. INSTRUMENTING HDFS BLOCK REPLICATION 41

other nodes. The same behavior repeats with 16- partitioning, Table 3.2, but, interestingly
though, not if we restrain the number of Hadoop nodes to the workers-set size (as shown in
Chapter 6).

Table 3.2: Baseline (default policy) vs. collocation (custom policy) – execution times in 3
situations (1) healty state, (2) failure state (2 nodes down), (3) recovered state. Queries 1, 4, 6
and 12 on partitioned tables, 16-partitioning, 8 workers / 10 Hadoop "Rocks" nodes, 32 mpl.

Vers. baseline collocation
State Healthy Failure Recovered Healthy Failure Recovered
Q1 17.64 s 19.37 s 27.65 s 17.29 s 29.34 s 17.78 s
Q4 1.52 s 2.43 s 3.33 s 1.37 s 2.58 s 1.30 s
Q6 3.00 s 4.02 s 6.92 s 3.21 s 5.53 s 3.04 s
Q12 4.72 s 6.12 s 7.85 s 3.90 s 7.85 s 3.47 s
Total 26.88 s 31.94 s 45.75 s 25.77 s 45.30 s 25.59 s

Conclusion

We have presented in detail our Custom Block Placement Policy for HDFS, designed to control
the HDFS block (re-)replication and to collocate (Vectorwise) table partitions to the same
group of DataNodes (specified via plocations metadata file). The preliminary results from
Tables 3.1 and 3.2 prove that we can still achieve data-locality to Vectorwise worker nodes
during failover situations (e.g. a node fails running our services and it is replaced by a new
one). However, as Chapter 6 shows, there is yet some room left for improving the latter by
favoring local reads over remote (over-the-network) reads.

Chapter 4

Dynamic Resource Management

This chapter describes the steps towards enabling dynamic resource management in Vectorwise
on Hadoop. Our approach is threefold:

1. we first have to determine the Vectorwise worker-set (Section 4.1),

2. then assign (partition) responsibilities to these workers (Section 4.2)

3. and finally, schedule the cluster resources that a query can use at runtime by computing
an optimal resource footprint, what particular nodes and the amount of resources, such
as CPU and memory, to use (Section 4.3).

4.1 Worker-set Selection

Currently in Vectorwise on Hadoop, to start a database cluster session, human intervention is
needed to explicitly specify the list of worker nodes as an argument to the Vectorwise cluster
mpi_run command. An automatic approach for the worker-set selection is yet to be done. One
way of doing this automatically in Vectorwise on Hadoop is to enhance the Ingres client with the
ability to query YARN (Resource Manager) and discover which nodes are alive in the cluster,
plus what are their resource specifications. Once it determines the best N nodes from all M (≥
N) Vectorwise cluster nodes, with respect to their data-locality and resource capabilities, the
Ingres client can then start the X100 worker-set through the mpi_fork command. All that a
sysadmin has to do is to write down the list of Vectorwise (on Hadoop) cluster nodes, the M
hostnames that have the X100 server binaries already deployed, in the configuration file.

However, the Ingres client can be configured and used on any remote host-machine outside the
Hadoop cluster. That makes it difficult to manage a Vectorwise (X100) worker-set from the
frontend itself. We could probably use YARN’s and HDFS’s REST APIs to perform the three
steps enumerated in the beginning of this chapter, but for more complex management tasks,
for instance allocate or release cluster resources within YARN, scan HDFS for data, file system
check, etc., we must run within the Hadoop environment and implement its native Java APIs.
Due to this constraint, we have decoupled the Vectorwise start/stop database functionality from
Ingres, implemented with the mpi_fork command, and replaced it with a separate client-server
communication. Whereas the server is a new Java component that runs in the Hadoop environ-
ment (the DbAgent component) and takes care of the worker-set selection, starting/stopping
the X100 workers, responsibility assignment and Vectorwise-YARN integration for resource
management, the client (the VectorwiseLauncher component, written in Java too) runs on the
Ingres side and forwards the start/stop database commands as (TCP/IP) message requests to
the agent, along with the list of parameters needed to initialize the X100 backend processes.

42

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 43

Upon receiving a start request, the DbAgent determines the worker nodes and then spawns
their X100 processes using the same mpi_fork command. The VectorwiseLauncher connection
to DbAgent is kept alive during the entire database session and it can be stopped from both
sides, either (1) from the (DbAgent) server side, signifying that there was an issue with running
the cluster, or (2) from the (VectorwiseLauncher) client side if the user decides to do so. The
whole process of starting the worker-set through the DbAgent component is depicted in Fig-
ure 4.1. No changes were done to the (Ingres to X100 session-master) communication protocol
that provides Vectorwise with an optimal query execution plan and then returns back the final
result to the user.

Figure 4.1: Starting the Vectorwise on Hadoop worker-set through VectorwiseLauncher and
DbAgent. All related concepts to this section are emphasized with a bold black color.

The general idea for the worker-set selection is to first sort out all M Vectorwise (Hadoop)
cluster nodes in descending order by their local data size (i.e. existent Vectorwise columnar
HDFS local files) and resource (e.g. CPU, memory, etc) capabilities, then choose the top N (≤
M) nodes. This twofold process is handled transparently by the DbAgent, using the Hadoop
(YARN and HDFS) native Java APIs:

Get the HDFS block locations. To find out where (on which Hadoop nodes) the Vector-
wise data is located, the DbAgent component queries the HDFS Namenode for the location-
information of all files stored at any of the Vectorwise table locations (HDFS paths) and of
which names comply with the table-name@partition-ID pattern (see Section 3.2). The tables’
locations are read from the Vectorwise location-map metadata file, found at the database lo-
cation path. For each location-information entry we get the file’s size, the list of block IDs
composing the file, plus the node locations of all its R block copies, where R is the HDFS
replication degree. Assuming that our custom HDFS block replication is enabled and that Vec-
torwise data was bulk-loaded into the system beforehand, every block from the list must have
the same R node locations. This implies that we just need the first block from it in order to
determine the file’s R node locations, making the HDFS data scan faster.

Sort nodes by resource capabilities. In order to get the resource capabilities of Vectorwise
nodes, the DbAgent first asks YARN (Resource Manager) for the list of all cluster node reports.
A node report contains an updated summary of runtime information. It includes details such
as the ID of the node, HTTP tracking URL, rack name, used resources, total resources, and
the number of running containers on the node. An example of a Json-format response for node
reports, using an API call with a similar functionality (but from YARN’s REST API), is:

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 44

1 { // Cluster Nodes API
2 // JSON response from the HTTP Request:
3 // GET http://<Resource-Manager-http-address:port>/ws/v1/cluster/nodes
4 "nodes":{
5 "node":[
6 {
7 "rack":"default-rack",
8 "state":"NEW",
9 "id":"node2:1235",

10 "nodeHostName":"node2",
11 "nodeHTTPAddress":"node2:2",
12 "healthStatus":"Healthy",
13 "lastHealthUpdate":1324056895432,
14 "healthReport":"Healthy",
15 "numContainers":0,
16 "usedMemoryMB":0
17 "totalMemoryMB":8192,
18 "usedVirtualCores":0,
19 "totalVirtualCores":8
20 },
21 {
22 "rack":"default-rack",
23 "state":"RUNNING",
24 "id":"node1:1234",
25 "nodeHostName":"node1",
26 "nodeHTTPAddress":"node1:2",
27 "healthStatus":"Healthy",
28 "lastHealthUpdate":1324056895092,
29 "healthReport":"Healthy",
30 "numContainers":0,
31 "usedMemoryMB":4096,
32 "totalMemoryMB:8129,
33 "usedVirtualCores":4
34 "totalVirtualCores":8,
35 }
36]
37 }
38 }

From the entire list of Hadoop node reports we then filter out those that are not for Vectorwise
nodes (based on the list of nodes provided in the configuration file) and their state information
is not set to running. From the report itself we find the total/used amount of memory and
the total/used number of virtual-cores as the only information useful to us, from which we can
derive the current available memory and virtual-cores. Using these metrics we can build our
own internal node reports list and sort it in decreasing order (by "totals") to get the top most
resourceful Vectorwise cluster nodes. That aside, an important aspect which matters for the
worker-set selection and should be added to the sorting criterias, is the size of Vectorwise local
block data. Since our custom block replication policy tries to limit the replication domain just
to the worker-set, a node that has more local data than another will have bigger chances to hold
more table-partitions. To sum up, this approach would help us to determine the appropriate
Vectorwise worker-set which has all of our data and its worker nodes are among the cluster’s
best nodes.

Based on the data-locality information obtained during the HDFS file system scan, we can
determine the missing replicas (i.e. in case of node failures) from the system and start re-
replicating them to (possibly new) other workers. Also, we can automatically increase and
decrease the worker-set at startup time and re-arrange the Vectorwise partitions to a new
configuration of worker nodes. The problem of (re-)balancing data to worker nodes and creating
the global location-map can be formulated as a min-cost matching problem on a bipartite graph
where the cost model reflects the Vectorwise data-locality to worker nodes. For the initial
bulk-load we use a round-robin (horizontally) data partitioning scheme, Algorithm 4.1.

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 45

Algorithm 4.1 Initial round-robin replicas placement:
roundRobinPlacement(workerSet, pClass, R)

Input: workerSet: the list of worker nodes (after selecting the top N workers from the Vec-
torwise cluster nodes sorted in descending order by resource capabilities and data size),
pClass: partitioning-class (to generate the partition-IDs), R: HDFS replication factor

Output: the global location-map (control data-locality)
1: partitionIds← computePartitionIds(pClass) // generate partition IDs for the current pClass

2: workerSet.computePartitionCap(pClass,R) // given the worker-set compute resources
3: remainingReplicas← R, i← 0, currPCap← workerSet.getWorker(i).getPCap()
4: while remainingReplicas > 0 do
5: for all pId : partitionIds do
6: while workerSet.getWorker(i).hasLocalPartition(pId) ∨ currPCap[i] = 0 do
7: i← (i+ 1)%workerSet.size
8: end while
9: workerSet.getWorker(i).addLocalPartition(pId)

10: currPCap[i]← currPCap[i]− 1
11: i← (i+ 1)%workerSet.size
12: end for
13: remainingReplicas← remainingReplicas− 1
14: end while
15: return locationMap← buildLocationMap(workerSet) // we use the worker’s local partitions

An example of a round-robin placement for the initial bulk-load, generated by Algorithm 4.1,
using 1- (non-partitioned) and 12- (partitioned) for partitioning-classes (see Section 3.1), on 3
(identical) nodes with 2 replicas, is given below:

1 // Horizontal round-robin placement for table partitions and their replicas
2 // For a new partitioning-class (blue color) we restart from the first worker
3 worker1 <- 0c1, 0c12, 3c12, 6c12, 9c12, 2c12, 5c12, 8c12, 11c12,
4 worker2 <- 0c1, 1c12, 4c12, 7c12, 10c12, 0c12, 3c12, 6c12, 9c12,
5 worker3 <- ___, 2c12, 5c12, 8c12, 11c12, 1c12, 4c12, 7c12, 10c12

Algorithm 4.2 Matching partitions to worker nodes:
matchPartitionsToWorkers(pClasses, workerSet, hdfsPartitionsLoc, R)

Input: pClasses: the list of partitioning-classes, workerSet, hdfsPartitionsLoc: the result of
the HDFS scan for block locations, R

Output: the global location-map (controls data-locality)
1: if hdfsPartitionsLoc = ∅ then // empty cluster / nonexistent data
2: for all pClass : pClasses do
3: // the workers are still sorted by their resource capabilities
4: return pLocations← roundRobinP lacement(pClass, workerSet,R)
5: end for
6: else
7: pLocations← ∅
8: for all pClass : pClasses do
9: flowNet← buildF lowNet(costModel)

10: residualNet← minCostF low(flowNet, balanced← true)
11: pLocations.putAll(residualNet.getMatchings()) // all the edges with flow = 1 in the resid-

ual graph
12: end for
13: workerSet.updateLocalPartitions(pLocations) // update each worker’s local partitions based

on the pLocations mapping
14: return pLocations
15: end if

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 46

However, following the initial bulk-load, the global location-map (plocations metadata) will
always be re-generated according to the current location of the Vectorwise partitions (i.e. the
columnar HDFS files including their replicas) at startup time, Algorithm 4.2. Before digging
into this algorithm’s pseudo-code, we recommend reading the cost model description in the next
paragraphs.

When both (1) querying HDFS for Vectorwise block locations and (2) sorting Hadoop nodes
by resource capabilities steps are done, we can compute the cost model and generate the flow
network for the the matching algorithm, the annotated bipartite graph from Figure 4.2. Finding
an optimal matching in a bipartite-graph is a min-cost flow sub-problem which can be solved
with the Successive Shortest Path algorithm [49]. We explain the algorithm’s implementation
(and our own changes to it) in the last section of this chapter. As for the current and next
section we briefly explain the (bipartite graphs) cost models and the pseudo-code of the main
functions, more specifically Algorithm 4.2 and 4.3, from which the min-cost flow algorithm is
being called.

Figure 4.2: The flow network (bipartite graph) model used to match partitions to worker nodes.

Cost model. The bipartite-graph from Figure 4.2 is structured as follows: (1) left-side :
partition-IDs and (2) right-side : workers (the whole worker-set). What exactly is a partition-ID
we can remember from Section 3.2. From our source (s) to each partition-ID, we connect edges
with cost 0 and capacity equal to the HDFS replication degree (R). Then, from a partition-ID
to a worker we use the capacity 1 and cost 0 for local partitions, or cost 1 for non-local/remote
partitions. To determine whether a partition is physically stored or not on a particular cluster
node, we simply use the HDFS results from the previous file system scan. Finally, we link our
workers to their destination node (t). We assign these edges a cost 0 and a capacity equal to the
partition-capacity (PCap) of that worker node. The end result is a load-balanced mapping from
partitions to nodes; it actually represents the global location-map to which we referred many
times in previous paragraphs. Already mentioned, this mapping is used mostly during the (1)
custom HDFS block replication (Section 3.2) and (2) responsibility assignment (Section 4.2),
and it is materialized into the plocations metadata file that is found at the Vectorwise database
location path.

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 47

With each node’s PCap (partition-capacity) we can restrict the edge capacities in the cost model
with respect to heterogeneous cluster configurations, although all recent Hadoop implementa-
tions assume all nodes in the cluster to be homogeneous in nature. We know from [50] that
Hadoop is lacking performance in an environment with different hardware specs and therefore,
in practice, all cluster nodes should roughly have the same computing capacity. If not, this can
effect MPP database systems, which usually prefer an equipartition strategy to load-balance
data for effective resource utilization. The latter has bee proven to be an efficient strategy
in general [13, 14, 42]. Nevertheless, Vectorwise on Hadoop uses its own worker-set selection
strategy (see Section 1.3.3), in which Hadoop nodes with similar resource capabilities are chosen
to run the X100 backend processes.

The PCapi partition-capacity (or the maximum partition load) determines how many partitions
(plus R replicas) matching with any of the partition-IDs (left side) can be assigned to a worker
node (right side), considering the number of cores and amount of memory, while running (min-
cost flow) algorithm. It simply acts as an arc capacity in the bipartite-graph. On the one hand,
this is quite relevant for computing the cost model in order to (re-)balance the Vectorwise table
partitions (with partition-IDs in left-side) to the worker-set (on right side), but also for the
round-robin placement we perform before the initial data bulk-load. The worker’s partition-
capacity has the following formula:

PCapi = d(Ci ∗ PRatioi) ∗ Mi

MAvg e,
PRatioi =

PTot−PCapi−1

CTot−Ci−1
,

i = 1, . . . , N , PCap0 = 0 and C0 = 0

where:

• N is the worker-set size,

• Ci and Mi are the number of cores, respectively, the memory size of workeri,

• PRatio is the partitions-per-core ratio (computed iteratively),

PTot = P ∗R is the total number of partitions (including their R replicas),

CTot is the worker-set total number of cores (aggregated number),

• MAvg = MTot
N is the worker-set average amount of memory,

MTot is the the worker-set total amount of memory (aggregated number)

The reason why the above formula refers to one partitioning-class (see Section 3.2) is that we
compute the cost model and run the matching algorithm iteratively for each class. This gives
us a much better load-balancing per node since the matching (implicitly the min-cost flow)
algorithm, by itself, cannot distinguish between different partitioning-classes. Otherwise, we
might end up with all the partitions from the same partitioning-class stored on one single node.
Obviously, such a result is not load-balanced, i.e. different partitioning-classes implies different
partition sizes. We note the reader that we will continue referring to one partitioning-class in
the following paragraphs for simplicity reasons, though in our implementation all the algorithms
and cost models are applied individually to each of these classes.

4.2 Responsibility Assignment

There are multiple ways to assign partition responsibilities to worker nodes. We have intro-
duced the meaning of partition responsibilities and responsibility assignment in Section 1.3.3.
These concepts are emphasized in Figure 4.3. Depending on the HDFS replication degree, the
responsibility assignment can vary from one-to-one assignment with one node being respon-
sible per partition, to many-to-one assignments where two or more nodes may be responsible

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 48

for the same partition. As we pointed in Section 4.1, the location-map metadata returned by
the previous Algorithm 4.2 is one of the input data to find the responsibility assignment, as
will see in Algorithm 4.3. Even though both algorithms use the same approach (i.e. finding a
min-cost flow) to solve the matching problem in bipartite graphs, the difference is in the cost
model. What is important to know is that we have now extended the cost model to take in
account local partitions that were assigned last time already and so, they may have been cached
by the worker’s OS while doing I/O for Vectorwise queries.

Figure 4.3: Assigning responsibilities to worker nodes. All related concepts to this section are
emphasized with bold black and red/blue/green colors (for single (partition) responsibilities).

Cost model. To assign responsibilities to worker nodes we run the min-cost flow algorithm
for the bipartite graph that is illustrated in Figure 4.4. Likewise the previous bipartite graph,
this one is structured in (1) left-side : partition-IDs and (2) right-side : workers as well. From
the source (s) to each partition vertex, we connect edges with cost 0 and capacity equal to the
responsibility degree, annotated in the figure with RMax. For a one-to-one assignment, with
maximum one node being responsible per partition, RMax is set to 1. When two or more nodes
can be responsible for the same partition, i.e. many-to-one assignment, the RMax capacity is
set to the maximum number of responsibilities per partition. The latter value should be ≤ than
the HDFS replication degree to benefit from data-locality. Otherwise, we may have remote
responsibilities (i.e. need remote read access) assigned to workers. Next, the all-to-all edges
from partition nodes to worker nodes have capacity 1 and a range of costs that varies according
to the locality relationship between the two of them. We assign 0 ∼ local+ costs, to local
partitions that were used during the last responsibility assignment, if any, 1 ∼ local, to any other
local partitions different from the previous, and 2 ∼ remote partitions, to partitions that need
remote access for I/O. The reason why we favor ex-responsibilities of local partitions over any
other options, giving these edges the lowest cost in the model, is to minimize the responsibility
changes during a system failover and/or after a restart. The implication is that we could keep
the OS cache hot (with data cached from previous reads) and so, reduce the probability of
hitting the disk when the Vectorwise database restarts with an empty buffer pool. In the end,
we connect the worker nodes with their destination node (t). These edges have the cost equal
to 0 and the capacity equal to the partition-capacity (PCap) of the worker node we connect
with, except that PCap is now determined with respect to the RMax degree (replacing R in
the upper formula). The result is a load-balanced (data-locality aware) partition : [nodes, . . .]
mapping, where |[nodes, . . .]| = RMax,RMax ≤ R. The responsibility assignment is written
in Json format in a metadata file called passignment, which is stored at the database default

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 49

location. We use the passignment metadata for further tasks in our project, for instance to
compute the resource footprint (i.e the resource requirements in terms of CPU, partitions and
node locations) of a query at runtime.

Figure 4.4: The flow network (bipartite graph) model used to assign responsibilities to workers
nodes.

Algorithm 4.3 Decide the worker-set responsibilities:
assignResponsibilities(pClasses, pLocations, RMax)

Input: pClasses: the list of partitioning-classes, pLocations: the global location-map, RMax:
the responsibility degree per partition (should be ≤ than the HDFS replication degree)

Output: the responsibility assignment
1: respAssignment← readRespAssignment(database_location_path) // read the Json format

metadata fie located at the database location
2: if respAssignment 6= ∅ then
3: costModel.setPrevRespAssignment(repsAssignment)
4: end if
5: respAssignment← ∅
6: for all pClass : pClasses do
7: if pClass = 1 then // non-partitioned tables
8: continue // skip non-partitioned tables (being replicated on each worker node anyways)
9: end if

10: flowNet← buildF lowNet(costModel)
11: residualNet← minCostF low(flowNet, balanced← true)
12: respAssignment.putAll(residualNet.getMatchings()) // all the edges with flow = 1 in the

residual graph
13: end for
14: return pAssignment← respAssignment

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 50

Simulating node failures: data (re)replication & responsibility assign-
ment

For a better understanding of how the two previous algorithms (Algorithm 4.2 and Algo-
rithm 4.3) work in practice, in this paragraphs we are going to simulate a failover scenario
in a Vectorwise on Hadoop cluster of 4 nodes, of which 3 are chosen as workers, and explain
what happens at every step by using the DbAgent’s log file. The HDFS replication degree is set
to 2 and the block size is 128 MB. We use 1- and 12- partitioning-classes (1 GB per partition
roughly) and RMax = 1 (single responsibility degree). We note that this is just a basic example
meant only to support what comes in the following section, Section 4.3.

We start the Vectorwise worker-set through the VectorwiseLauncher component. The input
consists of 4 Hadoop nodes (from Actian’s cluster), the worker-set specs (e.g. number of workers,
responsibility degree and X100 initialization arguments) and the initial resource requirements,
such as the container’s (1 per node) amount of memory and number of cores.

1 {
2 "message_type":"WSET_INIT_REQ",
3 "init_args":[
4 "--cluster_nodes","NLAM-CLUSTER01","NLAM-CLUSTER02","NLAM-CLUSTER03","NLAM-

CLUSTER04",
5 "--num_workers", "3",
6 "--max_resp_degree", "1",
7 "--container_memory", "10240",
8 "--container_vcores", "8",
9 "--x100_prefix", "/.../x100/bin",

10 "--x100_args", "--dbfarm hdfs:///dblocation --dbname dbname --port 0 --config
/.../cl_vectorwise.conf"

11]
12 }

What we see below is the Vectorwise worker-set selection phase, where the DbAgent performs
the twofold approach described in Section 4.1:

1 dbagent: Scan HDFS file system for Vectorwise files...
2 dbagent: Location added to HDFS scan: hdfs:///dblocation/dbname/default
3 dbagent: Location added to HDFS scan: hdfs:///custom_table_location
4 dbagent: The pattern we are looking for: .+@[0-9]+c[1-9]+[0-9]*
5 dbagent: Number of Vectorwise files: 0
6 dbagent: Sort Vectorwise cluster nodes by resources...
7 dbagent: Extended cluster node report (sorted by resources):
8 dbagent: <hostname>: [local-partitions], block-counts, virtual-cores, memory-size,

session-master or not
9 dbagent: NLAM-CLUSTER02: [empty], blockCount=0, vCores=8, mem=32768, isMaster=1 //

the first to select because it is the session-master (see Section 1.3.3)
10 dbagent: NLAM-CLUSTER01: [empty], blockCount=0, vCores=8, mem=32768, isMaster=0
11 dbagent: NLAM-CLUSTER03: [empty], blockCount=0, vCores=8, mem=32768, isMaster=0
12 dbagent: NLAM-CLUSTER04: [empty], blockCount=0, vCores=8, mem=32768, isMaster=0
13 dbagent: Chosen worker-set: NLAM-CLUSTER02 NLAM-CLUSTER01 NLAM-CLUSTER03
14 dbagent: Initialize worker-set: mpi_fork
15 dbagent: Partition IDs: [0c1, 0c12, 1c12, 2c12, 3c12, 4c12, 5c12, 6c12, 7c12, 8c12, 9

c12, 10c12, 11c12] // see Section 3.2 for the IDs meaning

Two table locations, the default location (hdfs:///dblocation/dbname/default) and a custom
location (hdfs:///custom_table_location) defined during schema creation, are added for the
HDFS scan process. The regex file pattern we are looking for is .+@[0-9]+c[1-9]+[0-9]* and matches
any file whose name complies with the <table-name>@<partition-number>c<partitioning-
class> convention. After the worker-set is chosen, the mpi_fork command is used to initialize
the workers’ backend (X100) processes.

Given that we have not stored data in the system yet, the DbAgent performs a first hand replica
placement using the horizontal round-robin assignment scheme from Section 4.2, Algorithm 4.1:

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 51

1 dbagent: First hand replica placement (round-robin), HDFS replication degree = 2
2 dbagent: For pClass = 1 (non-partitioned)
3 dbagent: Node NLAM-CLUSTER02, max-partition-load is 1
4 dbagent: Node NLAM-CLUSTER01, max-partition-load is 1
5 dbagent: Node NLAM-CLUSTER03, max-partition-load is 0
6 dbagent: Assignment stats:
7 dbagent: <hostname>: [responsibilities][local-partitions]
8 dbagent: NLAM-CLUSTER02: [empty][0c1]
9 dbagent: NLAM-CLUSTER01: [empty][0c1]

10 dbagent: NLAM-CLUSTER03: [empty][___]
11 dbagent: For pClass = 12 (partitioned)
12 dbagent: Node NLAM-CLUSTER02, max-partition-load is 8
13 dbagent: Node NLAM-CLUSTER01, max-partition-load is 8
14 dbagent: Node NLAM-CLUSTER03, max-partition-load is 8
15 dbagent: Assignment stats:
16 dbagent: <hostname>: [responsibilities][local-partitions]
17 dbagent: NLAM-CLUSTER02: [empty][0c1, 0c12, 3c12, 6c12, 9c12, 2c12, 5c12, 8c12, 11

c12]
18 dbagent: NLAM-CLUSTER01: [empty][0c1, 1c12, 4c12, 7c12, 10c12, 0c12, 3c12, 6c12, 9

c12]
19 dbagent: NLAM-CLUSTER03: [empty][___, 2c12, 5c12, 8c12, 11c12, 1c12, 4c12, 7c12, 10

c12]
20 dbagent: (Re)Assigning responsibilities to worker nodes, RMax = 1
21 dbagent: For pClass = 12 (partitioned)
22 dbagent: [0c12, 1c12, 2c12, 3c12, 4c12, 5c12, 6c12, 7c12, 8c12, 9c12, 10c12, 11c12]
23 dbagent: Node NLAM-CLUSTER02, max-partition-load is 4
24 dbagent: Node NLAM-CLUSTER01, max-partition-load is 4
25 dbagent: Node NLAM-CLUSTER03, max-partition-load is 4
26 dbagent: Assignment done: flow = 12, cost = 12
27 dbagent: Assignment stats:
28 dbagent: <hostname>: [responsibilities][local-partitions]
29 dbagent: NLAM-CLUSTER02: [0c12, 3c12, 5c12, 9c12][0c1, 0c12, 3c12, 6c12, 9c12, 2

c12, 5c12, 8c12, 11c12]
30 dbagent: NLAM-CLUSTER01: [1c12, 4c12, 6c12, 7c12][0c1, 1c12, 4c12, 7c12, 10c12, 0

c12, 3c12, 6c12, 9c12]
31 dbagent: NLAM-CLUSTER03: [2c12, 8c12, 10c12, 11c12][___, 2c12, 5c12, 8c12, 11c12, 1

c12, 4c12, 7c12, 10c12]
32 dbagent: (Over)Writing the worker-set plocations metadata file
33 dbagent: (Over)Writing the worker-set passignment metadata file

We now fast-forward to a situation where we have bulk-loaded data in the Vectorwise database,
1 GB per partition (a non-partitioned table of 1 GB and a partitioned table of 12 GB). If nothing
went wrong (i.e. node failure) happens to the system and we restart the Vectorwise on Hadoop
database using the same request parameters, we notice that (1) HDFS finds the Vectorwise
files’ locations and that (2) we can automatically match the table partitions to the worker nodes
with respect to data-locality and load-balancing factors. Since these files are still located on
the same workers (nothing is changed compared to the initial round-robin assignment), all
12 partitions are distributed equally among our worker-set with cost 0. The same applies to
assigning responsibilities: DbAgent assigns 4 responsibilities per worker node with 0 costs, it
uses the last responsibility assignment (historical information) to adjust the cost model for the
local "OS cached" partitions, Section 4.2. We can see all these steps in the following section of
the log file:

1 dbagent: Scan HDFS file system for Vectorwise files...
2 dbagent: Location added to HDFS scan: hdfs:///dblocation/dbname/default [1-file]
3 dbagent: Location added to HDFS scan: hdfs:///custom_table_location [12-files]
4 dbagent: The pattern we are looking for: .+@[0-9]+c[1-9]+[0-9]*
5 dbagent: Number of Vectorwise files: 13
6 dbagent: Sort Vectorwise cluster nodes by resources...
7 dbagent: Extended cluster node report (sorted by resources):
8 dbagent: <hostname>: [local-partitions], block-counts, virtual-cores, memory-size,

session-master or not
9 dbagent: NLAM-CLUSTER02: [0c1, 0c12, 3c12, 6c12, 9c12, 2c12, 5c12, 8c12, 11c12],

blockCount=72, vCores=8, mem=32768, isMaster=1

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 52

10 dbagent: NLAM-CLUSTER01: [0c1, 1c12, 4c12, 7c12, 10c12, 0c12, 3c12, 6c12, 9c12],
blockCount=72, vCores=8, mem=32768, isMaster=0

11 dbagent: NLAM-CLUSTER03: [___, 2c12, 5c12, 8c12, 11c12, 1c12, 4c12, 7c12, 10c12],
blockCount=64, vCores=8, mem=32768, isMaster=0

12 dbagent: NLAM-CLUSTER04: [], blockCount=0, vCores=8, mem=32768, isMaster=0
13 dbagent: Chosen worker-set: NLAM-CLUSTER02 NLAM-CLUSTER01 NLAM-CLUSTER03
14 dbagent: Initialize worker-set: mpi_fork
15 dbagent: Partition IDs: [0c1, 0c12, 1c12, 2c12, 3c12, 4c12, 5c12, 6c12, 7c12, 8c12, 9

c12, 10c12, 11c12]
16 dbagent: (Re)Matching table partitions to worker nodes, HDFS replication degree = 2
17 dbagent: No missing replicas
18
19 dbagent: Assignment stats:
20 dbagent: <hostname>: [responsibilities][local-partitions]
21 dbagent: NLAM-CLUSTER02: [][0c1, 0c12, 3c12, 6c12, 9c12, 2c12, 5c12, 8c12, 11c12]
22 dbagent: NLAM-CLUSTER01: [][0c1, 1c12, 4c12, 7c12, 10c12, 0c12, 3c12, 6c12, 9c12]
23 dbagent: NLAM-CLUSTER03: [][___, 2c12, 5c12, 8c12, 11c12, 1c12, 4c12, 7c12, 10c12]
24 dbagent: (Re)Assigning responsibilities to worker nodes, RMax = 1
25 dbagent: For pClass = 12 (partitioned)
26 dbagent: [0c12, 1c12, 2c12, 3c12, 4c12, 5c12, 6c12, 7c12, 8c12, 9c12, 10c12, 11c12]
27 dbagent: Passignment metadata file exists: adjusts costs for ex-responsibilities
28 dbagent: Node NLAM-CLUSTER02, max-partition-load is 4
29 dbagent: Node NLAM-CLUSTER01, max-partition-load is 4
30 dbagent: Node NLAM-CLUSTER03, max-partition-load is 4
31 dbagent: Assignment done: flow = 12, cost = 0
32 dbagent: Assignment stats:
33 dbagent: <hostname>: [responsibilities][local-partitions]
34 dbagent: NLAM-CLUSTER02: [0c12, 3c12, 5c12, 9c12][0c1, 0c12, 3c12, 6c12, 9c12, 2

c12, 5c12, 8c12, 11c12] // ex-resp.
35 dbagent: NLAM-CLUSTER01: [1c12, 4c12, 6c12, 7c12][0c1, 1c12, 4c12, 7c12, 10c12, 0

c12, 3c12, 6c12, 9c12] // ex-resp.
36 dbagent: NLAM-CLUSTER03: [2c12, 8c12, 10c12, 11c12][___, 2c12, 5c12, 8c12, 11c12, 1

c12, 4c12, 7c12, 10c12] // ex-resp.
37 dbagent: (Over)Writing the worker-set plocations metadata file
38 dbagent: (Over)Writing the worker-set passignment metadata file

However, when a worker node fails (the third node), the DbAgent removes it from the Vectorwise
worker-set and selects a new Hadoop node as a replacement for the failed one. Missing replicas
are identified and so, the new node is used for re-replication. In our case, the cost model for
matching table partitions to worker nodes keeps the local partitions that were already stored
among the 1st and 2nd nodes intact and assigns (re-replicates) those that belonged to the 3rd
node to the 4th node instead (its partition capacity is 8). The cost that we get after performing
the min-cost flow is 8, equal to the number of partitions to be re-assigned and scheduled for
re-replication to node 4. Our 4th (new empty) node did not have any local data beforehand.
In the bipartite graph, all its in-edges from the table partitions were labeled with cost 1 ∼
remote access. Furthermore, the new node was not part of the last Vectorwise worker-set,
so it is assigned 4 responsibilities with cost 4 – basically the same responsibilities the 3rd
node previously had. But, since these responsibilities did not appear in the last responsibility
assignment, the costs were not adjusted to 0 ∼ local+. The following log section confirms what
we have just explained:

1 dbagent: Scan HDFS file system for Vectorwise files...
2 dbagent: Location added to HDFS scan: hdfs:///dblocation/dbname/default [1-file]
3 dbagent: Location added to HDFS scan: hdfs:///custom_table_location [12-files]
4 dbagent: The pattern we are looking for: .+@[0-9]+c[1-9]+[0-9]*
5 dbagent: Number of Vectorwise files: 13
6 dbagent: Sort Vectorwise cluster nodes by resources...
7 dbagent: Extended cluster node report (sorted by resources):
8 dbagent: <hostname>: [local-partitions], block-counts, virtual-cores, memory-size,

session-master or not
9 dbagent: NLAM-CLUSTER02: [0c1, 0c12, 3c12, 6c12, 9c12, 2c12, 5c12, 8c12, 11c12],

blockCount=72, vCores=8, mem=32768, isMaster=1
10 dbagent: NLAM-CLUSTER01: [0c1, 1c12, 4c12, 7c12, 10c12, 0c12, 3c12, 6c12, 9c12],

blockCount=72, vCores=8, mem=32768, isMaster=0

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 53

11 dbagent: NLAM-CLUSTER04: [], blockCount=0, vCores=8, mem=32768, isMaster=0
12 dbagent: Chosen worker-set: NLAM-CLUSTER02 NLAM-CLUSTER01 NLAM-CLUSTER04
13 dbagent: Initialize worker-set: mpi_fork
14 dbagent: Partition IDs: [0c1, 0c12, 1c12, 2c12, 3c12, 4c12, 5c12, 6c12, 7c12, 8c12, 9

c12, 10c12, 11c12]
15 dbagent: (Re)Matching table partitions to worker nodes, HDFS replication degree = 2
16 dbagent: Missing replicas from [2c12, 5c12, 8c12, 11c12, 1c12, 4c12, 7c12, 10c12]
17 dbagent: For pClass = 1 (non-partitioned)
18 dbagent: Node NLAM-CLUSTER02, max-partition-load is 1
19 dbagent: Node NLAM-CLUSTER01, max-partition-load is 1
20 dbagent: Node NLAM-CLUSTER04, max-partition-load is 0
21 dbagent: Assignment done: flow = 2, cost = 0
22 dbagent: Assignment stats:
23 dbagent: <hostname>: [responsibilities][local-partitions]
24 dbagent: NLAM-CLUSTER02: [][0c1] // local already
25 dbagent: NLAM-CLUSTER01: [][0c1] // local already
26 dbagent: NLAM-CLUSTER04: [][___]
27 dbagent: For pClass = 12 (partitioned)
28 dbagent: Node NLAM-CLUSTER02, max-partition-load is 8
29 dbagent: Node NLAM-CLUSTER01, max-partition-load is 8
30 dbagent: Node NLAM-CLUSTER04, max-partition-load is 8
31 dbagent: Assignment done: flow = 24, cost = 8
32 dbagent: Assignment stats:
33 dbagent: <hostname>: [responsibilities][local-partitions]
34 dbagent: NLAM-CLUSTER02: [][0c1, 0c12, 3c12, 6c12, 9c12, 2c12, 5c12, 8c12, 11c12] //

local already
35 dbagent: NLAM-CLUSTER01: [][0c1, 1c12, 4c12, 7c12, 10c12, 0c12, 3c12, 6c12, 9c12] //

local already
36 dbagent: NLAM-CLUSTER04: [][___, 2c12, 5c12, 8c12, 11c12, 1c12, 4c12, 7c12, 10c12] //

re-replicate
37 dbagent: (Re)Assigning responsibilities to worker nodes, RMax = 1
38 dbagent: For pClass = 12 (partitioned)
39 dbagent: [0c12, 1c12, 2c12, 3c12, 4c12, 5c12, 6c12, 7c12, 8c12, 9c12, 10c12, 11c12]
40 dbagent: Passignment metadata file exists: adjusts costs for ex-responsibilities
41 dbagent: Node NLAM-CLUSTER02, max-partition-load is 4
42 dbagent: Node NLAM-CLUSTER01, max-partition-load is 4
43 dbagent: Node NLAM-CLUSTER04, max-partition-load is 4
44 dbagent: Assignment done: flow = 12, cost = 4
45 dbagent: Assignment stats:
46 dbagent: <hostname>: [responsibilities][local-partitions]
47 dbagent: NLAM-CLUSTER02: [0c12, 3c12, 5c12, 9c12][0c1, 0c12, 3c12, 6c12, 9c12, 2

c12, 5c12, 8c12, 11c12] // ex-resp.
48 dbagent: NLAM-CLUSTER01: [1c12, 4c12, 6c12, 7c12][0c1, 1c12, 4c12, 7c12, 10c12, 0

c12, 3c12, 6c12, 9c12] // ex-resp.
49 dbagent: NLAM-CLUSTER04: [2c12, 8c12, 10c12, 11c12][___, 2c12, 5c12, 8c12, 11c12, 1

c12, 4c12, 7c12, 10c12] // new-resp.
50 dbagent: (Over)Writing the worker-set plocations metadata file
51 dbagent: (Over)Writing the worker-set passignment metadata file

4.3 Dynamic Resource Scheduling

A dynamic resource scheduling approach in Vectorwise on Hadoop implies that cluster compute
resources should be now scheduled dynamically according to:

• the worker-set resource availability,

• load-balancing constraints,

• and data-locality.

The goal of such an approach is to improve the Vectorwise on Hadoop system’s performance
in two situations: (a) during failovers and (b) when two or more internal (analytical queries)
and external (Map-Reduce jobs) concurrent workloads overlap on the same worker nodes. The

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 54

outcome of the resource scheduler is called a footprint and contains runtime information about
the worker nodes, the responsibilities (table partitions), and the number of threads per worker
that are involved in query execution. We refer to the query’s footprint in next paragraphs as
the resource footprint.

The problem to solve is not trivial at all. By all means, a good approach should (1) inform X100
about the resource availability (e.g. number of available cores, free amount of memory), (2)
achieve the maximum parallelism level (or mpl, i.e. the maximum number of threads to use for
that query’s execution) of a query by just using the workers’ available resources proportionally
to their partition locality, (3) determine, given the responsibility assignment, what are the
worker nodes and partitions to be involved in the computation, and, at the same time, (4)
improve data-locality. More details about (1), plus on how we use YARN to claim the resource
footprint, are presented in Chapter 5.

On the other hand, to tackle (2), (3), and (4), we have enhanced the existent Vectorwise
resource scheduler with a min-cost flow algorithm. Though the algorithm uses a slightly more
advanced cost model, Figure 4.5, the flow network (bipartite graph) is partitioned exactly as
before. In addition, we extend our two previous ideas, matching partition tables and assigning
responsibilities to worker nodes, and use the last algorithm’s (Algorithm 4.3) result as input
to our new problem. As will see, the min-cost flow algorithm’s implementation, the successive
shortest path [49], is the common nominator of this chapter.

Successive Shortest Path. The successive shortest path algorithm searches for the maximum
flow and optimizes the objective cost function simultaneously. It solves the so-called max-flow
min-cost problem by using the following idea. Suppose we have a flow network G and we have
to find an optimal flow across it. As we described in Section 2.3, the flow network is a directed
graph defined by a set V of vertexes (nodes) and set E of edges (arcs). For each edge we
associate a capacity uij , denotes the maximum amount of flow that can pass through the edge.
Each edge also has an associated cost cij that stands as the cost per unit flow. We associate
with each vertex a number bi. This values represent the supply or the demand of the vertex. If
bi > 0, node i is a supply node, else if bi < 0, node i is a demand node (its demand is equal to
−bi). We call vertex i a transportation node if bi is zero. We further transform the network by
adding two vertexes s and t (source and destination) and some edges as follows: for each node
i in V (the set of vertexes), we add a source arc (s, i) with capacity usi = bi and csi = 0. For
each node i in V with bi < 0, we add a sink edge (i, t) with capacity uit = −bi and cit = 0.
Then, instead of searching for the maximum flow as usual, we send flow from s to t along the
shortest path (with respect to arc costs). Next we update the residual network, find another
shortest path and augment the flow again, and so on. The algorithm terminates when the
residual network contains no path from s to t (the flow is maximal). A high-level pseudocode
to summarize the before-mentioned steps is as follows:

1 // Successive Shortest Path Algorithm
2 Transform network G by adding source (s) and destination (t)
3 Initial flow x is zero
4 while (G(x) contains a path from s to t) do
5 Find any shortest path P from s to t
6 Augment current flow x along P
7 Update G(x)

Since the flow is maximal, it corresponds to a feasible solution of the original min-cost flow
problem. Moreover, this solution will be optimal [49]. The successive shortest path algorithm
can be used when G contains no negative cost cycles. Otherwise, we cannot say exactly what
the shortest path means.

The successive shortest path pseudocode from above was molded to our purposes (for Fig-
ure 4.2, 4.4, 4.5 flow networks). The transformation from line 2 applies to a bipartite graph
G instead. In this case V = {P,W} is the set of vertexes, where P = {partitions, ...} is the

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 55

supply nodes set (|P | = pClass), W = {workers, ...} is the demand nodes set (|W | = N) and E
represents the set of edges from P to W . The bipartite graph has no transportation nodes and
s and t serve the same roles. From line 3 to 6 there are no modifications as such. Moreover, as
the cost model suggests, during the bipartite graph’s update (update G(x)) at line 7 the cost of
a (wi, t) sink edge, from a worker node (wi) to the destination node (t), is increased each time
we find the successive shortest path. Our own implementation is shown in Algorithm 4.4. At
line 3 we find the shortest path from the flowNet and from line 6 to 8 we augment the current
flow. From 12 to 21 we update the residual graph, total minimum cost, and total flow.

Algorithm 4.4 Solving the min-cost flow problem (successive shortest path algorithm):
minCostFlow(flowNet, balanced)

Input: flowNet: the flow network built using the cost model, balanced: whether or not to
increase the sink edges’ cost each time we find a min cost path from s to t (load-balanced
approach)

Output: the residual network (a min-cost load-balanced matching in bipartite graph)
1: C ← 0
2: F ← 0
3: while ∃path ← dijkstra(flowNet) do // repeatedly find the min cost path from s to t to which

we can increase their capacities with a unit of flow
4: // (1) get the bottleneck delta capacity: find the minimum residual capacity of the edges belonging to

the above path; the residual capacity of an edge e is capacity(e) - flow(e)
5: delta←∞, s← path.s, t← path.t
6: for v ← t, u← path.parent(v); v 6= s;u← path.parent(v ← u) do
7: delta←MIN(flowNet[u][v].cap− flowNet[u][v].f low, delta)
8: end for
9: nodeId← path.parent(t).id

10: threadCost← balanced ? wi

availableCores(nodeId) : 0
11: // (2) augment the flow network : again, following parent of t, add delta to flow(e) and subtract it from

flow(rev-e); the network capacities are not altered but the network costs of workers to t are updated at
each step with the threadCost value

12: for v ← t, u← path.parent(v); v 6= s;u← path.parent(v ← u) do
13: if v = t then
14: flowNet[u][v].cost← flowNet[u][v].cost+ threadCost
15: flowNet[v][u].cost← flowNet[v][u].cost− threadCost
16: end if
17: C ← C + delta ∗ flowNet[u][v].cost
18: flowNet[u][v].f low ← flowNet[u][v].f low + delta
19: flowNet[v][u].f low ← flowNet[v][u].f low − delta
20: end for
21: F ← F + delta
22: end while
23: return residualNet← flowNet

Cost model. The cost model, which decides what workers and table partitions to use for a
query workload, is now computed dynamically at query runtime not at (the DbAgent’s) startup
time, in contrast with the two previous models. All graph’s edges from source s to partition-
IDs have cost 0 and a capacity equal to RMax′ ≤ RMax, where RMax is the maximum
responsibility degree and Rmax′ is a fixed value that is used to restrict the latter responsibility
degree at query runtime. RMax is defined in DbAgent, whereas RMax′ is a X100 configuration
parameter. We argue that RMax′ should be set to 1, case in which the min-cost flow algorithm
(based on our cost model) returns a one-to-one (responsibility) assignment. The reason behind
this is discussed later. Continuing, from the partition-IDs to the workers, the edge capacities
are 1 and the costs are chosen from the {resp+, resp−, remote} range set:

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 56

• resp+ = LLi, the worker’s up-to-date load factor

– this capacity is attributed to (partition) responsibilities which are local to the
worker nodes

– the new LLi load factor is aware of both, the internal and external workloads (i.e.
the number of used cores)

– it is based on Section 1.3.2’s load factor early formula, except that Ti (the thread
load on worker i) is now redefined as internalThreadsi+externalThreadsi

Ci
, where Ci is the

total number of cores on worker i (i.e. the max cores capability)

– resp+ cost should be able to make a difference between the various load factors,
such that we favor the least loaded nodes for running the current Vectorwise query

• resp− = LLi + wi, the worker’s load factor plus a penalty

– this capacity is attributed to (partition) responsibilities which are not yet local to
the worker nodes (i.e. are still during re-replication), we refer to it with partial (partition)
responsibilities

– adding the wi thread weight (Section 1.3.2) to the upper formula creates a cost
gap between the local and partial (partition) responsibilities; we choose wi just to be
consistent with the surrounding developed code, as well this penalty can be set to any
different constant value

– the cost gap is reduced when almost all local (partition) responsibilities have been
assigned while running the min-cost flow algorithm, in which case some of the partial
(partition) responsibilities will start being assigned to the least loaded nodes

– to determine the partial (partition) responsibilities from the passignment metadata,
an up-to-date snapshot of the Vectorwise block locations is needed; more about this in
next Chapter 5

• remote = LLi + wi ∗ penalty, the worker’s load factor plus a magnified penalty

– this capacity is attributed to all the remaining partitions of which the worker nodes
are not responsible for

– a 1.25 value for the penalty is determined experimentally to take in account (as
its best) remote (partition) responsibilities; we multiply wi by this penalty in order to
reduce the likelihood of remote (partition) responsibilities being assigned (over local or
even partial ones) to worker nodes while running the min-cost flow algorithm

Finally, each edge from a worker to the destination vertex t has the capacity equal to the
worker’s partition capacity (PCap, see Section 4.1) and its cost is expressed as a TCost :
N → N function, TCost(fx) = fx ∗ threadCost – increases each time we select the shortest
path during the while-loop (step x) of Algorithm 4.4. Note that, we consider RMax ≤ R to
benefit from data-locality and to make sure that all of a worker’s (partition) responsibilities
are either local or, at most, partial responsibilities. Moreover, because we do not have any
memory requirements for queries as such, the worker’s partition capacity is simply figured as
PCapi = availableCoresi ∗ core_overalloc, i = 1, . . . , N , where availableCoresi information
is always up-to-date and core_overalloc is a system configuration parameter.

We shortly remind that in Vectorwsie distributed MPP version the resource scheduling algorithm
provides us a list of pairs (nx, ty) denoting how many threads/cores (ty) are allocated for its
execution on node (nx). The search starts with a feasible (initial) solution and tries/verifies
all its multiple (e.g. [(1, 3), (2, 5)] : [(1, 6), (2, 10)] : [(1, 9), (2, 15)] : etc . . .). It stops at the
first combination which uses more threads (on any machine) than allocated by the resource
scheduler. Moreover, from Section 1.3.3, we know that the algorithm uses two multiple-nodes

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 57

Figure 4.5: The flow network (bipartite graph) model used to calculate a part of the resource
footprint (what nodes and table partitions we use for a query, given the worker’s available
resource and data-locality). Note: fx is the unit with which we increase the flow along the
path at step x of the algorithm.

distribution policies for queries: (1) equal share for non-partitioned tables, which similar with
the multiple-nodes distribution used in the Shared Disk approach it selects the least loaded
nodes and takes their amount of CPU resources until it satisfies the mpl and (2) equal share for
partitioned tables that assumes the default round-robin partitioning and equally assigns threads
to the operators until the mpl is achieved.

The new dynamic approach tries to combine these policies within a min-cost flow algorithm. So,
ideally, we must find the smallest subset of workers that fulfills the maximum parallelism level
of a query with respect to the worker-set current data-locality and load-balancing constraints
imposed by the outside world (i.e. other workloads sharing the same Hadoop infrastructure).
In this form, the problem is similar to the weighted set covering problem [51, 52]. Given a set
of elements U = {1, 2, ...,m} (called the universe) and a S of n sets whose union equals the
universe, the set covering problem [51] is to identify the smallest subset of S whose union equals
the universe. For example, consider the universe U = {1, 2, 3, 4, 5, 6} and the set of sets S =
{{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}, {5, 6}}. Clearly the union of S is U . However, we can cover all of
the elements with one of the following, smaller number of sets solutions: {{1, 2, 3}, {3, 4}, {5, 6}},
{{1, 2, 3}, {2, 4}, {5, 6}}, or {{1, 2, 3}, {4, 5}, {5, 6}}. More formally, given the universe U and
a family S of subsets of U , a cover is a subfamily C ⊆ S of sets whose union is U . In the set
covering decision problem, the input is a pair (U, S) and an integer k; the question is whether
there is a set covering of size k or less. In the set covering optimization problem, the input is a
pair (U, S), and the task is to find a set covering that uses the fewest sets. The decision version
of the set covering problem is NP-complete [53], and the optimization version is NP-hard. If
additionally, you want to minimize the cost of the set cover (costs > 1), the problem becomes a
weighted set covering problem. The latter is by definition an optimization variant as well, which
makes it NP-hard to solve.

Moreover, the set covering problem can be reduced to bipartite graphs: an instance of the set
covering can be viewed as an arbitrary bipartite graph, with sets represented by vertices on

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 58

the left, the universe represented by vertices on the right, and edges representing the inclusion
of elements in sets. The task is then to find a minimum cardinality subset of left-vertices
which covers all of the right-vertices. In the hitting set problem citeset-covering-hitting-set, the
objective is to cover the left-vertices using a minimum subset of the right vertices. Converting
from one problem to the other is therefore achieved by interchanging the two sets of vertices. If
the graph’s edges has costs then it becomes the weighted hitting set problem. Though it sounds
similar to a min-cost flow problem, just applying the successive shortest path algorithm will not
result in finding the perfect (optimal cost minimal subset) solution. Only the representation of
the problem changes, but its complexity (NP-hard) remains the same. Any general polynomial-
time algorithm, such as the successive shortest path, that always outputs the optimal solution to
our optimization problem would imply that P=NP (which is quite improbable). Instead, what
we actually need is an approximation algorithm for the problem, or, more likely, an heuristic
algorithm.

One thing to do, is to take advantage of the HDFS local replicas. Increasing the RMax (the
maximum responsibility degree, see Section 4.2) value per partition, up to the HDFS replica-
tion degree, adds a certain elasticity in computing an optimal resource footprint for a query
workload. With it, we can vary the available resources from 1 thread per node to the maximum
threads possible per partition and, at the same time, choose what worker nodes to involve in the
computation. In this way, we can reduce the (resource) contention with other jobs sharing the
same cluster. For instance, the algorithm can choose just a few workers from the worker-set to
run a Vectorwise query. This may happen in case some workers are overloaded or facing other
problems, e.g. no local-data due to a failure. With RMax’ = 1 we can restrict the maximum
responsibility degree at runtime and instead compute multiple one-to-one assignment (optimal
cost) solutions (e.g. different workers, different partitions, etc.), of which just some will be
of minimum size as well. It all depends on the data-locality, load-factors, etc., for the flow-
algorithm to determine a starting feasible solution, a one-to-one assignment that allows us to
scale with the number of threads up to the maximum level of parallelism. The latter, as will
see in Chapter 5, leads to computing the resource footprint. Of course, for this to happen, the
HDFS replication degree should be ≥ 2 and so the RMax as well.

Figure 4.6: Selecting the (partition responsibilities and worker nodes involved in query execu-
tion. Only the first two workers from left are chosen (bold-italic black) for table scans; first
one reads from two partitions (red and green), whereas the second reads just from one (blue).
The third worker is considered overloaded and so, it is excluded from the I/O. Red/blue/green
colors are used to express multiple (partition) responsibilities.

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 59

Figure 4.6 depicts the concepts discussed in this section, exemplifying the latter case when an
overloaded worker node is excluded from scanning.

Last but not least, is to rely on the min-cost flow algorithm to compute an optimal cost solution
and, for the minimum size condition, to add some greedy heuristics in our implementation.
Therefore, we came up with a shrinking procedure: an approach to cut (one by one recursively)
the most overloaded worker nodes with the least available cores capacity, while running the
successive shortest path algorithm to (maintain and) verify that the cost is still optimal and,
more importantly, that the maximum level of parallelism can be achieved.

In Algorithm 4.5, we use both helper methods 4.6 and 4.7 (in this order) to build-up and return
the resource footprint (workerSubset, responsibilities, maximum threads per worker) tuple. The
latter is required to claim the compute resources from YARN and proceed to running the
Vectorwise query, Chapter 5.

Algorithm 4.5 Apply the shrinking procedure & balance the mpl :
footprint(workerSet, mpl, numQueries)

Input: workerSet: the Vectorwise worker-set, mpl: the maximum parallelism level, num-
Queries: the number of queries running in the system

Output: the resource footprint
1: costModel.setRMax′(1)
2: flowNet← buildF lowNet(costModel)
3: residualNet← minCostF low(flowNet, balanced← true)
4: optCost← cost(residualNet)
5: (maxLoad, leastCores) ← the max load and, on equality, with the least number of cores

from the workerSet
6: for all worker : workerSet do
7: if worker ' (maxLoad, leastCores) then
8: // apply shrinkworkerSet(...) recursively
9: result← shrinkworkerSet(workerSet,mpl, numQueries,

worker.getIndex(), optCost)
10: // choose the best worker-subset: with the maximum cores available
11: workerSubset← best(workerSet, result)
12: end if
13: end for
14: costModel.setworkerSet(workerSubset)
15: flowNet← buildF lowNet(costModel)
16: residualNet← minCostF low(flowNet, balanced← true)
17: pAssignment← residualNet.getMatchings()
18: maxThreadsPerWorker ← balanceMpl(workerSubset, pAssignment,mpl)
19: return footprint← (workerSubset, pAssignment,maxThreadsPerWorker)

Algorithm 4.6 presents the worker-set recursive shrinking process, which seeks to minimize the
optimal cost solution. When the minimum worker-subset is found and all the above conditions
are met, we can start setting the maximum parallelism level (mpl, or the maximum number
of threads allowed to use for a query run) for the current subset. What we mean by setting
the mpl, is to distribute (or balance) the number of threads (equal to mpl) over the worker-
set, proportionally to the worker’s local data and available CPU (#threads) resources. The
pseudocode for the latter is shown in Algorithm 4.7.

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 60

Algorithm 4.6 Shrinking procedure:
shrinkWorkerSet(workerSet, mpl, numQueries, remIndex, optCost)

Input: workerSet: the full worker-set (to start the shrinking with), mpl: the maximum par-
allelism level, numQueries: the number of queries running in the system, remIndex: the
worker’s node index to be removed from the worker-set, optCost: the optimal cost to achieve

Output: the minimum worker-subset that has all of our (query) data and tries to achieve the
maximum parallelism level, while maintaining the optimal cost

1: // remove the worker from the set
2: workerSubset← workerSet.removeWorker(remIndex)
3: totalAvailableCores ← totalAvailableCores(workerSubset) // total number of available cores

without the ’removed’ worker node
4: if totalAvailableCores ∗ core_overalloc < mpl then
5: return workerSet // nothing changes, since we cannot achieve the mpl
6: end if
7: costModel.setworkerSet(workerSubset)
8: flowNet← buildF lowNet(costModel)
9: residualNet← minCostF low(flowNet, balanced← (numQueries > 1))

10: newCost← residualNet.getF lowCost()
11: if newCost > optCost then
12: return workerSet // nothing changes, since we cannot maintain the optimal cost
13: end if
14: (maxLoad, leastCores) ← the max load and, on equality, with the least number of cores

from the workerSubset
15: for all worker : workerSubset do
16: if worker ' (maxLoad, leastCores) then
17: // apply shrinkworkerSet(...) recursively
18: result← shrinkworkerSet(workerSubset,mpl, numQueries,

worker.getIndex(), newCost)
19: // choose the best worker-subset: minimum size with maximum cores available
20: workerSubset← best(workerSubset, result)
21: end if
22: end for
23: return workerSubset

Algorithm 4.6’s pseudocode describes how to shrink the worker-set and so, to minimize the
optimal cost solution. At line 2 we remove the worker node whose index was chosen in a
previous iteration of this recursive algorithm. Afterwards, from lines 6 to 9 we recompute the
cost model and apply the min-cost flow algorithm to get the new cost. The two if-conditions
from lines 4 and 11 verify that the we can still (1) fulfill the mpl and (2) maintain the optimal
cost at the same time. From lines 15 to 22 we find the next worker to be removed (with max-
load and least available cores), apply again the shrinking function recursively, and select the
best worker-subset among all future solutions. Important to note is that, at line 9, we choose
to disable the balanced property of the min-cost flow algorithm (balanced ← false) when a
single query is active in the system. Otherwise, the algorithm will tend to use more nodes to
balance the flow and lower the costs, which contradicts with our goal to actually minimize the
worker-set size.

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 61

Algorithm 4.7 Balance the mpl (#threads) on top of the current workers-(sub)set (∼ propor-
tionally to the worker’s local data and available resources):
balanceMpl(workerSet, pAssignment, mpl)

Input: workerSet: the workers-(sub)set, pAssignment: the responsibility assignment with re-
spect to the new workers-(sub)set mpl: the maximum parallelism level

Output: array of maximum number of threads per worker node
1: // distribute the mpl bounded number of threads over the worker-set, proportionally to the worker’s local

data (i.e. remaining partitions) and available CPU (#cores) resources
2: remaining ← pAssignment.getPartitionsNum()
3: for all worker : workerSet ∧mpl > 0 do
4: current← pAssignment.getPartitionsFor(worker).size
5: if current = 0 then
6: cntZero← cntZero+ 1
7: continue
8: end if
9: ratio← mpl

remaining

10: threads← round(ratio ∗ current)
11: threads←MIN(threads, worker.getAvailableCores() ∗ core_overalloc)
12: worker.setThreads(threads)
13: remaining ← remaining − current
14: mpl← mpl − threads
15: end for
16: if cntZero = 0 ∨mpl = 0 then
17: return maxThreadsPerWorker ← threadsPerWorker(workerSet)
18: end if
19: // equally redistribute the remaining threads (mpl) to what is left from the workers-(sub)set, to those

worker nodes that were not assigned with any partitions; if there are no such workers left, then the mpl is
reduced to the cluster’s available CPU (#cores) capacity (with over-allocation)

20: equalShare← mpl/cntZero
21: plusOne← mpl%cntZero
22: i← 0
23: for all worker : workerSet ∧mpl > 0 do
24: current← pAssignment.getPartitionsFor(worker).size
25: if current > 0 then
26: continue
27: end if
28: threads = i < plusOne ? (equalShare+ 1) : equalShare
29: worker.setThreads(threads)
30: mpl← mpl − threads
31: i← i+ 1
32: end for
33: return maxThreadsPerWorker ← threadsPerWorker(workerSet)

The above algorithm, Algorithm 4.7, tries to balance the mpl on top of the current workers-
(sub)set and thus, to compute the maximum threads per worker for the query workload. From
lines 2 to 15 we try to distribute threads (bounded by mpl) to the worker nodes, proportionally
to their local data (i.e. remaining partitions) and available CPU (#cores) resources (including
an over-allocation). If we cannot succeed to elapse all threads and achieve the mpl with one
shot, starting line 20 to 32 we equally redistribute the remaining mpl to those workers that were
left unassigned (with responsibilities) after running the (balanced) min-cost flow algorithm.

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 62

Choosing RMax’ for the cost model

The decision of choosing RMax′ = 1 (to restrict the maximum responsibility degree at runtime)
and get a 1 responsibility assignment instead was driven because of the following experiment.
After implementing the shrinking (greedy heuristic) approach to minimize the optimal cost
solution, we simply compared the consequences of the two different responsibility assignments
that we can obtain with our cost model: one-to-one assignment ≡ RMax = RMax’ = 1 vs.
many-to-one assignment ≡ RMax = RMax’ = 2. We ran a TPC-H scale factor 100, with 12-
partitioned tables and replication degree 2, on a 4-node Vectorwise on Hadoop cluster (internal
nodes, see 2.5), from which 3 nodes were selected as workers. The mpl was set to 24, which
means that we had at most 8 threads per node, 2 per partition (each node had 4 partitions). In
next paragraphs we use sin abbreviation for the single responsibility assignment version and
drm for the multiple responsibility assignment version.

Table 4.1: sin vs drm: TPC-H scale factor 100, with 12-partitioned tables and replication
degree 2, on a 4-node Vectorwise on Hadoop cluster (internal nodes, from which 3 nodes were
selected as workers. The mpl is set to 24.

Vers. sin drm
Test-run hot cold hot cold

Q1 5.57 s 31.96 s 5.57 s 34.00 s
Q2 0.99 s 6.69 s 0.98 s 7.84 s
Q3 0.48 s 2.57 s 0.52 s 4.28 s
Q4 0.17 s 1.75 s 0.18 s 2.64 s
Q5 2.30 s 4.30 s 2.12 s 6.04 s
Q6 0.31 s 0.49 s (1.0x) 0.31 s 2.41 s (4.92x)
Q7 1.30 s 6.42 s 1.31 s 9.47 s
Q8 1.63 s 5.01 s 1.63 s 5.93 s
Q9 6.81 s 20.57 s 6.79 s 22.71 s
Q10 3.35 s 10.79 s 3.37 s 13.46 s
Q11 0.92 s 1.92 s 0.90 s 2.03 s
Q12 0.81 s 3.24 s 0.82 s 3.73 s
Q13 12.02 s 28.25 s 11.75 s 28.96 s
Q14 0.73 s 0.80 s 0.72 s 0.80 s
Q15 1.23 s 1.31 s 1.21 s 1.44 s
Q16 1.67 s 1.91 s 1.62 s 2.00 s
Q17 2.66 s 3.06 s 2.67 s 3.15 s
Q18 5.16 s 15.41 s 5.05 s 15.36 s
Q19 3.17 s 6.24 s 3.22 s 6.44 s
Q20 1.87 s 2.29 s 1.97 s 4.72 s
Q21 7.10 s 8.87 s 6.99 s 12.84 s
Q22 1.56 s 1.77 s 1.47 s 1.77 s
Total 61.81 s 165.62 s 61.17 s 192.02 s

Table 4.1 shows that the TPC-H cold-run for drm version is somehow slower by 1.15x (after 3
averaged runs) than the equivalent run for sin version (despite the fact that the setup is exactly
the same).

So, why the TPC-H cold-run is slower for the drm version? Only by investigating the X100
log section of Q6 from below, we see a difference in the way scan ranges are assigned to the
worker nodes. With mpl = 24 and 12 partitions, we get 2 (roughly) equal ranges per partition.
The sin version assigns the whole partition range to the same node because it is not aware of
other (partition) responsibilities in the system (RMax = RMax’ = 1). Since 2 threads are used

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 63

(at maximum) per partition, each range gets 1 thread assigned. So, in this case, it means that
the full partition range will be shared by 2 threads. On the other hand, the drm version assigns
the first range of a partition to one worker node and the second range of it to another (RMax =
RMax’ = 2), depending on who else is responsible for the same partition. Although this version
assigns 1 thread per (equal-split) range as well, the ranges are now scattered over the entire
worker-set. The consequence is that a full partition range may not be shared between 2 threads
on the same node. We have marked with *** (in the log section) the partition ranges which
involve lineitem@0 : with sin version we see both ranges [12648448, 17727488) and [17727488,
22806528) assigned to node 0 (2 threads, 1 worker node), whereas with drm we see the first
range [12648448, 17727488) assigned to node 0 and the second [17727488, 22806528) assigned
to node 1 instead (2 threads, 2 worker nodes).

1 // Log section from X100 workers: node 0, node 1, node 2
2 =====================================
3 (1) TPC-H Q6, sin version
4 Responsibility assignment (single responsibilities):
5 node 0: 0, 3, 6, 9
6 node 1: 1, 4, 7, 10
7 node 2: 2, 5, 8, 11
8 =====================================
9 Query scheduler: computing the min worker-subset and (partition) responsibilities to

involve in query execution (Algorithm 4.5)
10 Query scheduler results: chosen workers and responsibilities (based on the

passignment metadata)
11 <host>: <partition>, ...
12 node 0: 0, 3, 6, 9
13 node 1: 1, 4, 7, 10
14 node 2: 2, 5, 8, 11
15 Query scheduler results: distribute 24 (mpl) threads
16 <host>: <partition> [#threads], ...
17 node 0: 0 [2], 3 [2], 6 [2], 9 [2]
18 node 1: 1 [2], 4 [2], 7 [2], 10 [2]
19 node 2: 2 [2], 5 [2], 8 [2], 11 [2]
20 ===================================== Stats
21 REWRITER_XCHG:parallel_mode: available_cores 24, core_target 30, max_parallelism 24
22 REWRITER_XCHG:ccheduler: num_queries = 1, max_parallelism = 24, num_granted = 24
23 REWRITER_XCHG:xchg_rule: max_tds_per_node total = 24
24 REWRITER_XCHG:xchg_rule: max_tds_per_node = [8,8,8]
25 REWRITER_XCHG:xchg_rule: feasible_sol total = 24
26 REWRITER_XCHG:xchg_rule: feasible_sol = [8,8,8]
27 ===================================== Ranges on node 0
28 BUILDER:MScan(lineitem@0) on thread [0] has range : [12648448, 17727488) ***
29 BUILDER:send producer 0 allocated.
30 BUILDER:MScan(lineitem@0) on thread [1] has range : [17727488, 22806528) ***
31 BUILDER:send producer 1 allocated.
32 BUILDER:MScan(lineitem@3) on thread [2] has range : [12648448, 17727488)
33 BUILDER:send producer 2 allocated.
34 BUILDER:MScan(lineitem@3) on thread [3] has range : [17727488, 22806528)
35 BUILDER:send producer 3 allocated.
36 BUILDER:MScan(lineitem@6) on thread [4] has range : [12648448, 17727488)
37 BUILDER:send producer 4 allocated.
38 BUILDER:MScan(lineitem@6) on thread [5] has range : [17727488, 22806528)
39 BUILDER:send producer 5 allocated.
40 BUILDER:MScan(lineitem@9) on thread [6] has range : [12648448, 17727488)
41 BUILDER:send producer 6 allocated.
42 BUILDER:MScan(lineitem@9) on thread [7] has range : [17727488, 22806528)
43 BUILDER:send producer 7 allocated.
44 ===================================== ranges on node 1
45 BUILDER:MScan(lineitem@1) on thread [0] has range : [12648448, 17727488)
46 BUILDER:send producer 0 allocated.
47 BUILDER:MScan(lineitem@1) on thread [1] has range : [17727488, 22806528)
48 BUILDER:send producer 1 allocated.
49 BUILDER:MScan(lineitem@4) on thread [2] has range : [12648448, 17727488)
50 BUILDER:send producer 2 allocated.
51 BUILDER:MScan(lineitem@4) on thread [3] has range : [17727488, 22806528)

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 64

52 BUILDER:send producer 3 allocated.
53 BUILDER:MScan(lineitem@7) on thread [4] has range : [12648448, 17727488)
54 BUILDER:send producer 4 allocated.
55 BUILDER:MScan(lineitem@7) on thread [5] has range : [17727488, 22806528)
56 BUILDER:send producer 5 allocated.
57 BUILDER:MScan(lineitem@10) on thread [6] has range : [12648448, 17727488)
58 BUILDER:send producer 6 allocated.
59 BUILDER:MScan(lineitem@10) on thread [7] has range : [17727488, 22806528)
60 BUILDER:send producer 7 allocated.
61 ===================================== ranges on node 2
62 BUILDER:MScan(lineitem@2) on thread [0] has range : [12648448, 17727488)
63 vBUILDER:send producer 0 allocated.
64 BUILDER:MScan(lineitem@2) on thread [1] has range : [17727488, 22806528)
65 BUILDER:send producer 1 allocated.
66 BUILDER:MScan(lineitem@5) on thread [2] has range : [12648448, 17727488)
67 BUILDER:send producer 2 allocated.
68 BUILDER:MScan(lineitem@5) on thread [3] has range : [17727488, 22806528)
69 BUILDER:send producer 3 allocated.
70 BUILDER:MScan(lineitem@8) on thread [4] has range : [12648448, 17727488)
71 BUILDER:send producer 4 allocated.
72 BUILDER:MScan(lineitem@8) on thread [5] has range : [17727488, 22806528)
73 BUILDER:send producer 5 allocated.
74 BUILDER:MScan(lineitem@11) on thread [6] has range : [12648448, 17727488)
75 BUILDER:send producer 6 allocated.
76 BUILDER:MScan(lineitem@11) on thread [7] has range : [17727488, 22806528)
77 BUILDER:send producer 7 allocated.
78 =====================================
79 // (2) TPC-H Q6, drm version
80 Responsibility assignment (multiple responsibilities):
81 node 0: 0, 3, 6, 9, 2, 5, 8, 11
82 node 1: 1, 4, 7, 10, 0, 3, 6, 9
83 node 2: 2, 5, 8, 11, 1, 4, 7, 10
84 =====================================
85 Query scheduler: computing the min worker-subset and (partition) responsibilities to

involve in query execution (Algorithm 4.5)
86 Query scheduler results: chosen workers and responsibilities (based on the

passignment metadata)
87 <host>: <partition>, ...
88 node 0: 0, 3, 6, 9, 2, 5, 8, 11
89 node 1: 1, 4, 7, 10, 0, 3, 6, 9
90 node 2: 2, 5, 8, 11, 1, 4, 7, 10
91 Query scheduler results: distribute 24 (mpl) threads
92 <host>: <partition> [#threads], ...
93 node 0: 0 [1], 3 [1], 6 [1], 9 [1], 2 [1], 5 [1], 8 [1], 11 [1]
94 node 1: 1 [1], 4 [1], 7 [1], 10 [1], 0 [1], 3 [1], 6 [1], 9 [1]
95 node 2: 2 [1], 5 [1], 8 [1], 11 [1], 1 [1], 4 [1], 7 [1], 10 [1]
96 ===================================== stats
97 REWRITER_XCHG:parallel_mode: available_cores 24, core_target 30, max_parallelism 24
98 REWRITER_XCHG:scheduler: num_queries = 1, max_parallelism = 24, num_granted = 24
99 REWRITER_XCHG:xchg_rule: max_tds_per_node total = 24

100 REWRITER_XCHG:xchg_rule: max_tds_per_node = [8,8,8]
101 REWRITER_XCHG:xchg_rule: feasible_sol total = 24
102 REWRITER_XCHG:xchg_rule: feasible_sol = [8,8,8]
103 ===================================== ranges on node 0
104 BUILDER:MScan(lineitem@0) on thread [0] has range : [12648448, 17727488) ***
105 BUILDER:send producer 0 allocated.
106 BUILDER:MScan(lineitem@2) on thread [1] has range : [12648448, 17727488)
107 BUILDER:send producer 1 allocated.
108 BUILDER:MScan(lineitem@3) on thread [2] has range : [12648448, 17727488)
109 BUILDER:send producer 2 allocated.
110 BUILDER:MScan(lineitem@5) on thread [3] has range : [12648448, 17727488)
111 BUILDER:send producer 3 allocated.
112 BUILDER:MScan(lineitem@6) on thread [4] has range : [12648448, 17727488)
113 BUILDER:send producer 4 allocated.
114 BUILDER:MScan(lineitem@8) on thread [5] has range : [12648448, 17727488)
115 BUILDER:send producer 5 allocated.
116 BUILDER:MScan(lineitem@9) on thread [6] has range : [12648448, 17727488)

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 65

117 BUILDER:send producer 6 allocated.
118 BUILDER:MScan(lineitem@11) on thread [7] has range : [12648448, 17727488)
119 BUILDER:send producer 7 allocated.
120 ===================================== ranges on node 1
121 BUILDER:MScan(lineitem@0) on thread [0] has range : [17727488, 22806528) ***
122 BUILDER:send producer 0 allocated.
123 BUILDER:MScan(lineitem@1) on thread [1] has range : [12648448, 17727488)
124 BUILDER:send producer 1 allocated.
125 BUILDER:MScan(lineitem@3) on thread [2] has range : [17727488, 22806528)
126 BUILDER:send producer 2 allocated.
127 BUILDER:MScan(lineitem@4) on thread [3] has range : [12648448, 17727488)
128 BUILDER:send producer 3 allocated.
129 BUILDER:MScan(lineitem@6) on thread [4] has range : [17727488, 22806528)
130 BUILDER:send producer 4 allocated.
131 BUILDER:MScan(lineitem@7) on thread [5] has range : [12648448, 17727488)
132 BUILDER:send producer 5 allocated.
133 BUILDER:MScan(lineitem@9) on thread [6] has range : [17727488, 22806528)
134 BUILDER:send producer 6 allocated.
135 BUILDER:MScan(lineitem@10) on thread [7] has range : [12648448, 17727488)
136 BUILDER:send producer 7 allocated.
137 ===================================== ranges on node 2
138 BUILDER:MScan(lineitem@1) on thread [0] has range : [17727488, 22806528)
139 BUILDER:send producer 0 allocated.
140 BUILDER:MScan(lineitem@2) on thread [1] has range : [17727488, 22806528)
141 BUILDER:send producer 1 allocated.
142 BUILDER:MScan(lineitem@4) on thread [2] has range : [17727488, 22806528)
143 BUILDER:send producer 2 allocated.
144 BUILDER:MScan(lineitem@5) on thread [3] has range : [17727488, 22806528)
145 BUILDER:send producer 3 allocated.
146 BUILDER:MScan(lineitem@7) on thread [4] has range : [17727488, 22806528)
147 BUILDER:send producer 4 allocated.
148 BUILDER:MScan(lineitem@8) on thread [5] has range : [17727488, 22806528)
149 BUILDER:send producer 5 allocated.
150 BUILDER:MScan(lineitem@10) on thread [6] has range : [17727488, 22806528)
151 BUILDER:send producer 6 allocated.
152 BUILDER:MScan(lineitem@11) on thread [7] has range : [17727488, 22806528)
153 BUILDER:send producer 7 allocated.

For a better understanding, we ran alone Q6 and dived into its profiling files from all 3 worker
nodes. This particular query is I/O bounded (for cold-runs) and it showed in Table 4.1 the
worst performance degradation. As expected, the I/O was the one to be affected. The sin
version reads (on all 3 workers) 3 x 440 = 1320 blocks in total, whereas the drm version
3 x 456 = 1368 blocks – 48 more blocks in total, roughly 10% more. Given that the
boundary of a range split may fall down in the same block – and with drm we divide the
range scans across different workers – it means that a block might be read / fetched more than
once (depending on the responsibility degree). This also explains the 2x number, in total, of
HDFS_SHORT_CIRCUIT requests for the drm version, comparing with the sin version: we
need to open a file more times than usual, in order to (locally) fetch a particular block and read
its range of tuples (note: the file is replicated and so, we still have local reads).

Table 4.2: sin vs drm: Q6 cold-runs, TPC-H scale factor 100, with 12-partitioned tables and
replication degree 2, on a 4-node Vectorwise on Hadoop cluster (internal nodes, from which 3
nodes were selected as workers. The mpl is set to 24.

Vers. sin drm
Prefetch on off on off

Q6 5.02 s 7.58 s 5.84 s 7.65 s

Table 4.2 shows the runtimes for Q6 with and without io_prefetch. With io_prefetch enabled
the sin version may have already fetched the next blocks of a file (on the same node where

CHAPTER 4. DYNAMIC RESOURCE MANAGEMENT 66

the 2nd range is assigned too) by the time another request for the same block arrives. So to
speak, we can process the second block I/O request from the buffer-pool already. This does
not apply to the drm version. It is even worse, we may pre-fetch blocks that we may not even
use. We saw from our profile results, that there were just 6 to 30 blocks per single column scan
(i.e. per thread). If there are 2 threads reading adjacent ranges on the same node, they are
effectively reading from very close regions of the file and so, the locality of the file might play
a role there (i.e. read-ahead / caching / or simply that a spinning disk behaves better). With
io_prefetch disabled, the (total) I/O throughtput for Q6 is roughly the same (∼29.20 MB/s)
for both versions, but, obviously, when compared with io_prefetch enabled (∼46.32 MB/s) is
much lower. However, the buffer-manager’s syncmiss counters for block I/O still differ (by a
little) between the two versions. The drm version, as we already explained, might read some
blocks twice than needed. In conclusion, the dynamic resource management algorithm should
find a thread-balanced solution, if any, in order to benefit from I/O pre-fetching and caching.
As a result, putting together the insights we got from both sin and drm versions, we always
recommend for RMax’ to be set to 1. That makes RMax ≥ 1 and RMax′ = 1. The number
of threads per partitions (implicitly the mpl) should scale-up according to the responsibility
assignment that the min-cost flow algorithm returns with RMax′ set to 1 (Algorithm 4.5).

Conclusion

In this chapter we described the path towards achieving dynamic resource management in Vec-
torwise on Hadoop. Backed by a min-cost flow algorithm (Algorithm 4.4), and a shrinking
heuristic (Algorithm 4.6) to minimize the optimal cost solution, our (threefold) approach suc-
ceeds in the end to: (1) determine the Vectorwise worker-set, (2) then assign responsibilities to
Vectorwise worker nodes and finally, (3) schedule the cluster resources that a query can use at
runtime by computing an optimal resource footprint (i.e. what particular nodes and the amount
of resources, e.g. CPU and memory, to use). The outcome of this approach tries to improve
the Vectorwise on Hadoop performance during failover situations and also, when concurrent
Vectorwise (internal) and Hadoop (external) workloads overlap over the same worker nodes.
Further results are presented in Chapter 6.

Chapter 5

YARN integration

Today’s enterprises are looking to go beyond batch processing and integrate existing applications
with Hadoop to realize the benefits of real-time processing and interactive query capabilities.
As more organizations move from single-application Hadoop clusters to a versatile, integrated
Hadoop 2 data platform hosting multiple applications, YARN is positioned as the integration
point of today’s enterprise data layer. At the architectural center of Hadoop, YARN provides
access to the main resources of the platform. Hence, any MPP database system, whose archi-
tecture leverages the Hadoop capabilities and wishes to be a ’fair citizen’ of the ecosystem,
should integrate with YARN.

Let us consider the following scenario: suppose we want a set of processes to co-exist within
a Hadoop cluster. Furthermore, as requirement, these processes must run out-of-band from
YARN, which means that YARN is not allowed to control their life-cycle. These processes use,
dynamically, different amounts of CPU and memory based on their load (we do not consider
yet I/O or network bandwidth resource allocation since YARN does not support that). Their
CPU and memory requirements are managed independently from YARN. With other words,
depending on their load, they might require more CPU but not more memory, or vice-versa.
However, using YARN (Resource Manager) for scheduling out-of-band processes too, we should
be able to share and utilize appropriately (e.g. without contention) the compute resources of
an entire Hadoop cluster. Hence, we can let YARN be aware of all the allocated resources
within the cluster, whether they were needed for Hadoop jobs or some out-of-band workloads.
The out-of-band processes must run a YARN Application Master (see Section 1.2.4) in order
to interact with YARN and negotiate for compute resources. When the Application Master is
granted with all it required, we bump up their CPUs and/or memory utilization. Though this
action is "hidden" from YARN, we do make sure that our resource utilization is still within
the granted limits. Whenever these processes back off, their allocation should also be released
by YARN. Basically, we have to kill their Application Master(s). Using an approach like this,
Hadoop’s running jobs and other out-of-band processes can fairly share the entire cluster’s
compute resources. YARN would be the only one that does the resource bookkeeping. The
Application Master should run in unmanaged mode (on any of the Haoop nodes) in order to
zero out the necessity of allocating one container within YARN (in managed mode). To note,
the latter option needs the minimum resource allocation per container as predefined in the
configuration files. Once the Application Master runs, it will fork container processes at the
corresponding Node Managers to do nothing more than a basic sleep-forever.

67

CHAPTER 5. YARN INTEGRATION 68

5.1 Overview: model resource requests as separate YARN
applications

As we briefly explained in the beginning of this chapter, the approach to integrate Vectorwise
with YARN is to model resource requests as separate YARN (native) Applications. Implicitly,
based on Section 1.2.4, every resource request will fork its own YARN Application Master.
The idea is to focus towards allocating resources per workload instead of per query. It reduces
the number of resource requests (i.e. request latency) and also decreases the query’s runtime
overhead. Starting a YARN Application Master means to request and allocate some set of
resources, reserve specific containers, run the container processes, and monitor the application’s
status. Nonetheless, this usually comes with a big overhead: 5-7 seconds, depending on the
Resource Scheduler if it is busy or not. For instance, just to request and get some compute
resources within YARN (w/o the other steps) it takes approx. 80% of the overhead time.
And to do so per query, in which case we have to acquire before and release afterwards, is
too overwhelming. Instead, a per workload basis (coarse-grained) approach is more suitable
for a real-time integration. We see a Vectorwise workload as a group of queries with similar
maximum parallelism level and resource requirements that run on the same (sub)set of workers
for an unpredictable amount of time. From a workload management point of view, in time, these
workloads will inevitable change the resource utilization of the Vectorwise database within the
Hadoop cluster. Hence, it is important for us to detect such events in order to know when to
request extra resources from YARN and achieve elasticity within the Hadoop ecosystem. To do
so, we defined the notion of a system context. The system context refers to a moment in time
when a query starts running on partitioned/non-partitioned tables and/or at the same time with
other overlapping queries. Each time this context changes, e.g. one partitioned query starts
running concurrently with a non-partitioned query, the (Vectorwise) resource manager will
span a different resource footprint during the query rewriting phase. We recommend reviewing
Section 1.3.2 and 4.3 to remember how the previous steps work. If we can detect these changes
in time we could know whether or not to request extra resources. For the moment, it is
easier to think of it as a 2-dimensional matrix system − context := [partitionedQuery ∈
{true, false}][numQuery ∈ {1, . . . ,N}]← true, false from which we can remember if a context
change actually occurred; at X100 bootstrap we initialize the matrix with false and reset it to the
same value when every query workload has ended. A Vectorwise workload is created when the
first of its queries starts running in the system; a system context change is recorded and cluster
resources get requested from YARN. It is assumed that, within the same workload, the latency
between two consecutive queries is small. Therefore, we can imply that a Vectorwise workload
ends when its latest query finishes and the duration of the idle (workload) state passes over a
certain threshold (set by the user). If that happens, the approach takes a pessimistic decision
and ends the current workload by stopping its correspondent YARN Application Master. The
next query will start a new workload and try to reclaim its resource footprint, though it is
unfortunate when the query could have been related to the previous workload. However, queries
running in a different system context or with different resource requirements are treated as
separate workloads. If some workloads have to run concurrently, then the system will try to
allocate more resources to fulfill both’s footprint requirements (but all within the cluster’s
maximum capability). For implementation details we recommend reading Section 5.3.

Figure 5.1 illustrates an example of running multiple Vectorwise queries on 3 worker nodes
with 8 cores each [8, 8, 8], plus 0.25 maximum core over-allocation. We use various colors
(green, purple, red) to differentiate between different workloads. Important to notice are the
two scenarios explained above: (1) if the timeout exceeds, the next query starts a new workload
(green color) and (2) different overlapping queries need extra resources, within the maximum
capabilities (green to purple to red, but not purple to violet). The example starts with a query
workload (green color) that acquires [4, 4, 4] threads per node (mpl = 12). When it finished and
the idle_timeout have passed, we release those resources. Then, it happens that another query

CHAPTER 5. YARN INTEGRATION 69

(green color again), which could have been part of the previous workload, starts running in the
system and targets the same resource footprint (mpl = 12). Since it starts after the idle_-
timeout, it has to regain its amount of resources back from YARN. Next, we have a sequence of
three queries: the first two queries (purple color) that are from the same workload, both asking
for [2, 2, 2] threads per node (mpl = 6) and the third one (red color) that overlaps with all the
other queries/workloads aiming towards [4, 4, 4] threads per node (mpl = 12); for the third
query we need to use the 0.25 core over-allocation in order to achieve its mpl.

Figure 5.1: Timeline of different query workloads.

An overview of the approach is illustrated in Figure 5.2. Basically, the figure depicts a two-
phase workflow. The integration starts with the Vectorwise worker-set initialization phase (P1),
given that we previously decided the responsibility assignment. During this phase we allocate
through YARN the initial amount of resources for the database to be operable, e.g. run dis-
tributed queries w/o any parallelism, 1 core + enough memory for query execution and buffer
pool per worker. This phase is managed by the WorkerSetInit component (custom YARN
Application Master). From this point on starts the second phase (P2). Any request to in-
crease the worker-set amount of resources, i.e. extra CPU and memory to run a new workload,
is sent directly to the DbAgent component (custom YARN ClientApplication). Besides what
is described in the previous chapters, the DbAgent is also responsible for resource allocation
within YARN (i.e. to acquire or release new containers). For each request that it receives, it
spawns a new YARN Application Master (IncreaseResources component) that negotiates with
the ResourceManager the demand for extra containers: it reserves and starts containers with
specific resource requirements on a subset of (or all) worker nodes and then it manages their life-
cycle. Previously to any resource request, the Vectorwise Master node asks the DbAgent for the
current resource state of the cluster (e.g. available/used resources) in order to compute the re-
source footprint of a new query workload. Both, the update worker-set state and acquire/release
send-receive requests, are part of the DbAgent to Vectorwise Master communication protocol.
More details will be given in Section 5.2 and Section 5.3.

Under the hood, the DbAgent uses a set of YARN Application Masters that run as unmanaged
JVM processes, i.e. they run isolated from YARN and need no resource allocation in particular.
Each one negotiates specific resource requirements with the Resource Manager, reserves and
runs one container per worker node, and then loops around to manage their life cycle. We note
that, in our case, these containers do not run computational tasks as they should (e.g. as with
Map-Reduce framework). Instead, the "placeholder" processes running inside the containers are
just monitoring the co-located X100 servers, on the same worker nodes (e.g. poking the server
to see if it is still alive). These processes run a while-check-sleep primitive and thus, their CPU
and memory usage is negligible. The unmanaged YARN Application Master can be spawned by
either (1) an initial request to allocate the minimum amount of (CPU and memory) resources
needed to bootstrap Vectorwise and be operable to users (e.g. at least 1 core + enough memory
for query execution per node) or (2) new resource requests for different (maybe overlapping)
query workloads. Therefore, Vectorwise manages its own X100 back-end processes out-of-band
from YARN ; it uses YARN just for resource bookkeeping and for (Hadoop) cluster-awareness.

CHAPTER 5. YARN INTEGRATION 70

Figure 5.2: Out-of-band approach for Vectorwise-YARN integration. An example using 2 x
Hadoop nodes that equally share 4 x YARN containers.

The distribution of resources is completely managed by YARN and we just control the node
locations (i.e. worker nodes) where our resources should be allocated.

As stated in YARN-896 1, there is significant work ongoing to allow long-lived services run-
ning as YARN applications. For example, the API’s functionality to increase/decrease resource
utilization within YARN containers (YARN-1197 2) is not yet implemented. This makes it
impossible "per se" to gain full elasticity and to allocate/deallocate resources in a fine-grained
fashion for Vectorwise. Though the idea to model resource requests as separate YARN appli-
cations achieves elasticity to a certain extent for increasing the amount of resources, we are
limited when it comes to the opposite operation, decreasing resources. To explain why, let
us consider the following scenario: we assume to have the same 3 workers with 8 cores each,
but 2 queries running at the same time. If the first query needs all 24 available cores (mpl
= 24 gets all the 3 workers), the other would get only 10 cores; the second query’s mpl is
limited to 16 threads max+16∗0.25 over−allocation

2 queries = 10 threads. We reference Section 1.3.3 for the
two (before-mentioned) scheduling policies and recommend reviewing Section 5.1 to understand
what comes next. Assuming the two queries as being part of different workloads, e.g. first query
runs on partitioned data and the second not, the first workload would then allocate the amount
of resources it needs before it starts. On the other hand, the second workload does nothing
because the available cores are all claimed already. At this moment, just one YARN Application
Master (for the first workload) negotiates the resource footprint and manages the 3 placeholder
processes (one per node). When both queries are still active or the second one finishes faster,
that is fine. The problem appears if the first workload finishes earlier and we have to stop its
YARN Application Master to release the amount of allocated resources (i.e. all cores). More-
over, this means to leave the second query (using 10 cores) running, but "outside" YARN /

1YARN-896: issues.apache.org/jira/browse/YARN-896
2YARN-1197: issues.apache.org/jira/browse/YARN-1197

CHAPTER 5. YARN INTEGRATION 71

without resource-bookkeeping. Besides, we cannot just deallocate the difference of resources
between the first and second workload using the available API interface. With the existing
YARN version this functionality can be translated into (1) stopping the existent Application
Master (for the first query) and then (2) starting another one (for the second query), which
adds a significant overhead and is not a worthwhile solution to implement (from a product-wise
point of view). Therefore, our workaround is to release all requested resources at once, when
the latest workload ends (idle state duration > threshold) and there are no other queries still
active in the system. What is changed from Figure 5.1 is shown below, in Figure 5.3.

Figure 5.3: Timeline of different query workloads (one-time release).

However, as YARN-1197 is being pushed for the next release version of YARN, we are going to
revise this approach in the near future. For instance, instead of creating one YARN Application
Master per resource request (per workload), we could multiplex all the requests towards a single
YARN application (or a pool of applications distributed over different scheduling queues) that
dynamically increases/decreases its containers’ amount of resources. Thereby we can avoid the
application startup overhead entirely and reduce the request latency even more (i.e. a YARN
Application Master can run in background and listen only for new requests).

Another alternative is to use Apache’s Slider 1 platform, launched in beta-version around June
2014, which exposes a set of services that allow long-running applications, real-time and online
applications to easily integrate into YARN (and be YARN-Ready 2). Besides, it provides an
interface for real-time communication, especially for database systems running on Hadoop or
database-style workloads where a very high-speed transfer or data processing and response
times are required. It complements Apache Tez 3, which is quickly gaining adoption as the
batch and interactive engine of Hadoop. However, one thing to note, is that Slider, as well as
the YARN 2.2 release, do not support resource extension (i.e. increase or decrease primitives)
for containers yet. This means we would still need a work-around to achieve resource elasticity
for Vectorwise on Hadoop, to allocate or deallocate resources when is required so.

1Apache Slider: slider.incubator.apache.org
2YARN-Ready Program: hortonworks.com/press-releases/hortonworks-announces-yarn-ready-program
3Apache Tez: tez.apache.org

CHAPTER 5. YARN INTEGRATION 72

5.2 DbAgent–Vectorwise communication protocol:
update worker-set state, increase/decrease resources

The DbAgent–Vectorwise communication protocol uses 3 types of request/response messages
in order to: (1) update the worker-set (system’s resource) state, e.g. available cores/memory,
allocated cores/memory, etc. and (2) increase/decrease the worker-set current resources, which
are allocated through YARN. A simple example of a database session running one query is
depicted in Figure 5.4.

Figure 5.4: Database session example with one active query: the communication protocol to
increase/decrease resources.

Update the worker-set (system’s resource) state. The system’s resource state includes
the list of worker nodes, the locality_info of the existent Vectorwise data (i.e. local stored
partition tables to determine the partial replicas), and the cluster’s resource overview cores_-
{capability, allocated, available}, plus memory_{capability, allocated, available}. However, the
information that actually needs to be up-to-date for the resource footprint computation at query
runtime is the locality_info, {cores, memory}_allocated, and {cores, memory}_available. To
get these metrics and the data-locality information from YARN (through the DbAgent) we use
the following request/response Json format messages:

1 // Get the worker-set (resource) state:
2 // WSET_STATE_REQ <-> WSET_STATE_RESPONSE
3 Request: {
4 "message_type":"WSET_STATE_REQ"
5 }
6 Response: {
7 "message_type":"WSET_STATE_RESP",
8 "workers_set":["node01",...], // Hostnames
9 "cores_capability":[8,..], // Number of cores per worker

10 "memory_capability" [122880,...], // Amount in MB per worker
11 "cores_allocated":[1,...], // Number of cores per worker
12 "memory_allocated":[24576,...], // Amount in MB per worker
13 "cores_available":[15,...], // Number of cores per worker
14 "memory_available":[98304,...], // Amount in MB per worker

CHAPTER 5. YARN INTEGRATION 73

15 "locality_info":{
16 "partition-id":[local-nodes,...], // Workers location
17 ...
18 }
19 }

Increase/decrease the amount of resources. To increase the current amount of resources
we specify into a Json format message how many extra cores and memory we need per node,
depending on the resource footprint’s specification. To decrease them we just send a request
to the DbAgent at the end of the latest query workload (after the idle_timeout threshold) and
everything will go back to the initial resource state (i.e. as it was at startup).

1 // Increase worker-set resources:
2 // WSET_RESOURCES_INC_REQ <-> WSET_RESOURCES_INC_RESP
3 Request: {
4 "message_type":"WSET_RESOURCES_INC_REQ",
5 "cores_plus":[15,...], // Number of cores per worker
6 "memory_plus":[98304,...] // Amount in MB per worker
7 }
8 Response: {
9 "message_type":"WSET_RESOURCES_INC_RESP",

10 "response":"SUCCEEDED"|"FAILED"
11 }
12 // Decrease worker-set resources:
13 // WSET_RESOURCES_DECALL_REQ <-> WSET_RESOURCES_DECALL_RESP
14 Request: {
15 "message_type":"WSET_RESOURCES_DECALL_REQ",
16 }
17 Response: {
18 "message_type":"WSET_RESOURCES_DECALL_RESP",
19 "response":"SUCCEEDED"|"FAILED"
20 }

5.3 Workload monitor & resource allocation

For resource allocation within YARN we make use of the query’s resource footprint (work-
ersSubset, responsibilities, maximum threads per worker) tuple, which implicitly contains in-
formation on how many threads per worker node need to be claimed (in total) for a query
at runtime. Based on the communication protocol from Section 5.2, when we request ex-
tra resources (from the Resource Manager) for a workload the idea is to fill-out the cores_-
plus:[...] list from the message-body with the difference between the maximum threads per
worker (member of the footprint tuple) and the current state of the allocated resources:
footprint.maximumThreadsPerWorker−allocatedCores (1 thread : 1 core). In other words,
the resource footprint tells us how many cores/threads we need more when compared to the
current state of the system. Obviously, if the difference is negative then extra resources are
not available for the moment and we should not even try to send a request to increase those.
However, we record this "failure" in the system such that, after a system config failure_timeout,
another query from the same workload tries again to acquire from YARN what was previously
needed. The workload monitor’s and resource allocation’s workflow is illustrated in Figure 5.5.
The figure depicts two possible scenarios: (a) when the resource request was successfully , be-
ing able to acquire the resource footprint, and (b) if it failed because of an external (Hadoop)
workload overlapping on the same set of resources. For both, we show in particular (using
distinct colors) what is the YARN footprint at each step, for (a) on left and (b) on right.
Following the workflow’s state transitions (from left to right) the reader can notice that the first
4 steps (enter, attempt on (YARN) resources, compute the resource footprint and acquire exact
resources) are common to all query workloads. A "branch-out" may happen after a resource

CHAPTER 5. YARN INTEGRATION 74

request is sent to the DbAgent. Depending on the resource availability within the Hadoop clus-
ter, the request can either succeed, case in which we update (green color) the system state to
the current level of allocated resources, or fail because of a situation with no more available
resources (e.g. overlapping external workloads). For the latter we should rollback (red color) to
the previous system state (i.e. to what resources were available before the attempt) and record
this "failure" (light blue color). For (a) we release the workload’s extra resources when this
ends (and the idle_timeout is passed), whereas for (b) we do not have to release anything. Yet,
we do have to retry (light blue color) to obtain our resources after a certain time; typically this
"waiting" time is equal with the before mentioned failure_timeout.

Figure 5.5: The workload monitor’s and resource allocation’s workflow for: a) successful
(resource) request and b) failed (resource) request (VW – Vectorwise, MR – Map-Reduce)

Omitted from the resource footprint are the memory requirements, which are computed sep-
arately from the resource scheduler’s implementation. The standard way of specifying the
amount of memory for Vectorwise is by setting static values for the buffer pool and query ex-
ecution memories inside the configuration file. Since the buffer pool is relatively independent
from the query execution, there is no relation as such to allow us increasing its memory size
dynamically at query runtime. Therefore, this value is read from the configuration file and
set as a X100 initialization argument in the worker-set startup command; initial resources are
allocated from YARN before running the X100 (worker-set) backend processes. For query ex-
ecution we defined a linear function to increase the memory size at runtime; the total amount
to increase is proportionally to the footprint’s demand of core/thread resources and is limited
by the (maximum) available memory on each of the worker nodes.

The implementation of the resource allocation functionality follows the approach described in
Section 5.1, a per workload resource allocation with a one-time release, and uses the communi-
cation protocol from Section 5.2 to update/acquire/release resources. A high-level pseudocode of
the runtime resource allocation routine is presented in Algorithm 5.1. Algorithm 5.2 shows the
pseudocode implementation of the update/acquire/release primitives. In addition, the workload
monitor uses a thread to monitor the workload’s start/stop state changes and also to simulate
the system’s idle state, knowing when to release the extra amount of resources. The monitor-
ing thread is created during the system’s initialization phase, starts measuring the idle state
each time the latest query workload (i.e. numQueries=0) leaves Vectorwise and it stops when
the duration of the idle state passes a certain threshold (or idle timeout) configured by the
user. When this thread stops, a request to release all resources is sent to the DbAgent. The
psuedocode implementation of the workload monitor’s functions is given in Algorithm 5.3.

CHAPTER 5. YARN INTEGRATION 75

Algorithm 5.1 High-level pseudocode: workload-monitor & resource allocation

partitioned ∈ {true, false}
numQueries ∈ {1 . . .N}

1: (1) Query Enter
2: numQueries← numQueries+ 1
3: stopT imeoutThread()
4: . . .
5: (2) In Rewriter Phase: inside the parallel rule where the footprint

and the feasible solution are computed
6: attemptIncrease ← attemptIncreaseResources(partitioned, numQueries) // update the

system’s state with all the available resources from YARN
7: do
8: rollback ← false
9: // if attemptIncrease is true, it means that the system’s state is updated "temporarily" with the

resource information we get from YARN (e.g. allocated resources, available/extra resources, etc.)
10: footprint← footprint(...) // is the resource scheduler’s job to compute the current footprint

11: if attemptIncrease ∧ ¬acquireExtraResources(footprint, partitioned, numQueries)
12: rollback ← true
13: rollbackSystemState()
14: attemptIncrease← false
15: end if
16: while rollback
17: if attemptIncrease then
18: // make the attempt consistent with the sate of the system
19: updateSystemState(footprint)
20: else
21: // (1) the attempt failed, or (2) there were not enough available resource at the moment
22: checkSystemState(partitioned, numQueries, footprint) // check if the system is underprovi-

sioned
23: end if
24: . . .
25: (3) Query Exit
26: numQueries← numQueries− 1
27: if numQueries = 0 then
28: startT imeoutThread()
29: end if

The above high-level pseudocode, Algorithm 5.1, introduces the resource allocation at query
runtime and it complies with Figure 5.5, the logical workflow of the resource allocation and
workload monitor. When a query enters the system we increase the number of active queries
and stop the workload monitor from its sleeping-condition that simulates the idle state, lines 2
and 3. From line 6 to 24 is the runtime resource allocation routine: we make an attempt over all
YARN’s available resource and we try to acquire the current resource footprint’s requirements.
If the request failed we fall into a rollback procedure in which we change the system’s state
to the previous state and recompute the resource footprint ; mpl should be decreased if that
happens. However, during the checkSystemState(. . .) function at line 22 will make sure that,
after a certain failed_timeout time, a next query from the same workload is going to try again
and acquire what resources were needed initially. Last but not least, when a query exits the
system we decrease the number of active queries and if there are no others we can start the
workload monitor, lines 27 to 30.

CHAPTER 5. YARN INTEGRATION 76

Algorithm 5.2 High-level pseudocode for the attempt-increase, acquire, rollback, update and
check functions used in Algorithm 5.1
attemptIncreaseResources(partitioned,numQueries):
yarnAcquiredFailed[partitioned][numQueries]← timestamp, records the timestamp when
we failed to acquire extra resources
yarnRequestSent[partitioned][numQueries] ← {true, false}, records with {true, false} if
we have sent (or not) a resource request to the DbAgent

Input: partitioned: whether the current query runs on partitioned/non-partitioned tables,
numQueries: the number of running/active queries in the system

Output: true if is still possible to get extra resources, false otherwise
1: if ¬yarnRequestSent[partitioned][numQueries]∨(yarnAcquiredFailed[partitioned][numQueries]∧

failed_timeout ≤ (current_timestamp−yarnAcquiredFailed[partitioned][numQueries])))
then

2: state← yarnRequestWorkerSetState() // request for available/extra resources
3: attemptIncrease ← increaseStateTo(state) // "temporarily" increase all resources; we store

this amount (or excess) separately so that we can rollback to the previous state afterwards
4: return attemptIncrease
5: end if
6: return false

acquireExtraResources(footprint,partitioned,numQueries):
Input: partitioned, numQueries, footprint: the resource footprint structure (includes the max-

imum threads per node the current query needs to achieve its mpl)
Output: true if we could acquire extra resources, false otherwise
1: // try to allocate extra resources from YARN: send a request to the DbAgent and wait for response
2: yarnRequestSent[partitioned][numQueries]← true
3: if yarnAcquireExtraResources(footprint) then
4: yarnAcquireFailed[partitioned][numQueries]← 0 // reset timestamp
5: return true
6: end if
7: yarnAcquireFailed[partitioned][numQueries]← current_timestamp
8: return false

rollbackSystemState():
plusResources keeps the attempt we did to increase the amount of resources, so that we can
rollback (i.e. decrease the excess of resources from the current state) if needed

1: rollbackState(plusResources) // rollback to the previous state by decreasing the excess of resources
from the current state, state which was updated in advance during the attemptIncreaseTo(...) function

updateSystemState(footprint):
Input: footprint
1: // merge the resource footprint with the state before the attempt to increase resources, stateBefore ←

allocatedResources− plusResources

2: mergeStateWith(footprint, allocatedResources, plusResources) // basically we remove the ex-
cess and update the older state with the exact amount of resources needed by the footprint, amount that
we know it was successfully claimed from YARN

checkSystemState(partitioned, numQueries, footprint):
Input: partitioned, numQueries, footprint
1: // check if the CPU resources are underprovisioned
2: if underprovisionedSystem(footprint) then // this function looks at how many of the current

allocated cores are still available for internal query workloads and it compares that with the footprint’s
CPU resources per worker node; also we take in account the maximum capability of a worker node before
considering the system as being undeprovisioned

3: yarnAcquireFailed[partitioned][numQueries]← current_timestamp
4: end if

CHAPTER 5. YARN INTEGRATION 77

Algorithm 5.3 High-level pseudocode for the workload-monitor’s run, start, stop, and exit
functions used in Algorithm 5.1
the timeoutThread checks whether all Vectorwise workloads have finished, so that we know
when to release the amount of extra resources; it starts running when the database session
is initialized for the first time
timeoutThread.state ∈ {START, STOP,EXIT}, where START/STOP are related to the
workload’s IDLE/RUNNING states and EXIT is used when the system shuts down

runTimeoutThread():
1: acquireLock()
2: while ¬timeoutThread.state = EXIT do
3: waitOnCondition(timeoutThread.condition, getLock())
4: if ¬timeoutThread.state = EXIT then
5: now ← currenttimestamp
6: timedWaitOnCondition(timeoutThread.sleepCondition, getLock(), now +

idle_timeout) // simulate the idle-state: wait until the idle_timeout threshold is passed
7: end if
8: if timeoutThread.state = START then
9: // release all resources

10: reinitializeSystem() // rollback to the initial (resource) state of the system
11: yarnReleaseExtraResources() // send a WSET_RESOURCES_DECALL_REQ to the

DbAgent
12: end if
13: end while
14: releaseLock()

startTimeoutThread():
1: acquireLock()
2: timeoutThread.state← START
3: awake(timeoutThread.condition)
4: releaseLock()

stopTimeoutThread():
1: acquireLock()
2: timeoutThread.state← STOP
3: releaseLock()

exitTimeoutThread():
1: acquireLock()
2: timeoutThread.state← EXIT
3: awake(timeoutThread.condition)
4: awake(timeoutThread.sleepCondition)
5: releaseLock()

Algorithm 5.2 brings up the attempt-increase, acquire, rollback, update and check func-
tions, used at runtime by the X100 Master to allocate resources from YARN. The
attemptIncreaseResources(. . .) function temporarily updates the state of the system, lines 2
and 3, with all the available YARN resources (if any) as an optimistic approach to achieve
the query’s mpl. We note that some resource footprints may need less cores then all the
available. Another important function is acquireExtraResources(. . .) in which we try to claim
the extra cores we need (from YARN), compared to the current allocated cores per worker
nodes. This is done by sending an increase request to the DbAgent, lines 3 to 6. The
previous two functions use yarnRequestSent[..][..] and yarnAcquiredFailed[..][..] matrices to
verify (at attemptIncreaseResources : line : 1) and record (at acquireExtraResources :
lines : 2, 4, 7) if any requests for specific workloads were sent and, respectively, if they

CHAPTER 5. YARN INTEGRATION 78

failed due to resource unavailability (i.e. an external Hadoop workload got the available
resources in the meantime). In Algorithm 5.3 we depict the workload-monitor’s run, start,
stop and exit primitives. Important to emphasize is the runT imeoutThread(. . .) function,
called during the Master’s system initialization. This function simulates the workload’s idle-
ness when the thread is set on START state, lines 4 to 7, and releases the amount of
resources afterwards if this state has not been changed to STOP. The rest of the pseu-
docode is self-explanatory. Because of space limits, we leave the remaining utility func-
tions, such as the yarnRequestWorkerSetState(. . .), yarnAcquireExtraResources(. . .) and
yarnReleaseExtraResources() functions, which implement Section 5.2’s protocol in order
to update, request and release resources, or the increaseStateTo(. . .), mergeStateWith(. . .),
rollbackState(. . .), underprovisionedSystem(. . .) and reinitializeSystem() system’s helper
functions uncovered.

YARN resource allocation overhead

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
5.07

0.61

0.16

0.4
0.31

5 · 10−2
0.29

0.44

0.98

1.57

0.25
0.15

3.54

0.26
0.36

1.15

0.41

0.93

0.58
0.36

1.37

0.66

0.280.36
0.16

0.4
0.31

5 · 10−2
0.29

0.44

0.98

1.57

0.25
0.15

3.54

0.26
0.36

1.15

0.41

0.93

0.58
0.36

1.37

0.66

T
im

e
(s
)

base (YARN disabled) allocation overhead (YARN enabled)

Figure 5.6: YARN’s allocation overhead: TPC-H scale factor 100, 32 partitions, 8 "Stones"
nodes, 128 mpl.

To measure YARN’s resource allocation overhead, i.e. negotiating resources and reserving/run-
ning specific containers, in a mixed scenario of queries we have run a TPC-H scale factor 100
(Lineitems and Orders 32-partitioned) on a 8 "Stones" cluster (see 2.5), of which all of them
were selected for the worker-set. We have initialized Vectorwise with 1 Core + 24 GB per

CHAPTER 5. YARN INTEGRATION 79

worker and the mpl was set to 128, the maximum amount of cores in the cluster. No other
external (Hadoop Map-Reduce) jobs were running at the same time on the cluster; experiments
using Hadoop-busyness are shown in Chapter 6.

In our case, the first 2 queries from TPC-H can already be classified into 2 different workloads:
Query-1 reading Lineitem that is partitioned and Query-2 running on Part, Partsupp, Supplier,
Region, Nation non-partitioned tables. Hence, all the required resources are allocated at the
beginning of the benchmark’s run (during the first 2 queries’ run). Yet, the (resource allocation)
overhead is still not negligible. Results are shown in Figure 5.6.

As we can see from Figure 5.6, when Query-1 starts, there is an overhead of 4.79s between
the two of the runs that is used (in the YARN enabled version) to allocate 15 more cores and
the rest of the available memory per worker node. On the other hand, Query-2 requests only
a worker-set (resource info) update given that there are no resources left in the cluster. The
later adds an overhead of 0.25s at query runtime.

Conclusion

In conclusion, we have shown how one can achieve resource elasticity for Vectorwise on Hadoop,
alongside with the dynamic resource management described in the previous chapter, Chapter 4.
Our approach to allocate resources per workload, instead of per query, and deallocate at once
when no query has been active for an idle_timeout reduces the overall overhead of resource
management through YARN; the current’s YARN API release version adds a big overhead
when starting an Application Master to negotiate resources and manage containers, Figure 5.6.
However, as we explained in Section 5.1, we expect the previous issue to be fixed by the code
commit of YARN-1197 1 such that we could improve our approach and gain more elasticity in
the near future.

1YARN-1197: issues.apache.org/jira/browse/YARN-1197

Chapter 6

Evaluation & Results

6.1 Evaluation Plan

We have divided the evaluation of our research project in three separate phases, following the
order of which the project’s approach was presented with technical details throughout this thesis
(in Chapter 3, Chapter 4, and Chapter 5):

• P1: HDFS custom block-placement policy

– Testing the HDFS custom block replication, which replicates and collocates Vec-
torwise data, during a system fail-over (i.e. a node crash).

• P2: Dynamic resource scheduling algorithm

– Testing the min-cost flow (implicitly the cost-model) approach for reliability and
performance during node failovers.

** When a node fails the database session must be restarted and thus the buffer pool
will be empty. In this case, Vectorwise needs to access the HDFS layer in order to read
its data.

• P3: YARN integration

– Testing the min-cost flow (implicitly the cost-model) approach while running other
external (Hadoop Map-Reduce) jobs on the same cluster nodes (i.e. simulating Hadoop
busyness).

We expect from each evaluation phase to derive the following conclusions:

• P1: The runtime performance should not degrade after data recovery. At the end of the
HDFS data re-replication process, all missing replicas must be replicated and collocated
on the new worker nodes (or the remaining workers). The system’s I/O throughput in
this situation should be at least as it was during the cluster’s "healthy" state.

• P2: We achieve a better runtime performance (or at least the same as the baseline) by
favoring local reads vs remote (over TCP) reads.

• P3: We achieve a better runtime performance (and resource utilization) by steering the
Vectorwise query computation to the least loaded workers, with respect to their data-
locality. Before running a query workload, we should have allocated the workload’s re-
source footprint through YARN in order to reduce the resource contention.

80

CHAPTER 6. EVALUATION & RESULTS 81

Experimental Setup

All the experiments we present in this section were carried out on the available clusters of
computers that were described in Section 2.5. Table 6.1 shows the exact values we used for the
relevant configuration parameters of Vectorwise on Hadoop (X100 engine).

Parameters Description Value
vector_size Processing unit size: the (maximum) number of

tuples returned by an operator’s next() method.
1024

num_cores Number of available cores, depending on the cho-
sen cluster to test.

4 or 16

bufferpool_size The amount of memory the I/O buffers can use
to cache data from disk, depending on the chosen
cluster to test.

10GB or 48GB

num_recv_buf Number of buffers a DXchg Receiver uses to store
incoming messages.

2

num_send_buf Number of buffers per destination used by a DX-
chg Sender.

2

max_xchg_buf_size The maximum size of the Xchg buffers, also used
as the fixed size of DXchg buffers (MPI messages).

256KB

thread_weight The weight of the thread load (wt, see Sec-
tion 1.3.2)

0.3

enable_profiling Flag specifying whether detailed per-query profil-
ing information should be collected.

TRUE

Table 6.1: Parameters configuration values

Both P1 and P2 try to highlight the importance of data locality in a system that suffers from
a fail-over. Hence, we perform our tests on so-called "cold" I/O buffers (i.e. empty buffer pool,
or cache). At the beginning of each test we clear the OS File System’s cache and before each
query we use the X100’s clear_bm syscall to empty the I/O buffers.

On the other hand, P3’s goal is to emphasize the benefits of dynamic resource management
through YARN and is performed on "hot" I/O buffers. This means that MScan operators will
always read data from memory and there is no disk access whatsoever. As such, before running
any tests, we performed prior cold-runs (w/o calling the clear_bm syscall beforehand) to ensure
all the required data would be available in the I/O buffers. We allowed each of the worker nodes
used for testing to store up to its maximum buffer pool size of data. Since P3 requires more
computation power because of the concurrent (Vectorwise) internal and (Hadoop Map-Reduce)
external workloads, for this particular phase we used the more powerful "Stones" cluster nodes.

We note that only queries expressed in the Vectorwise algebra were used and, therefore, just
the X100 engine was put under stress. Nevertheless, since our solution does not modify the way
Ingres interacts with the Vectorwise (X100) Master, there should be no issues regarding how
Ingres parses the SQL statements and sends the optimized X100 query plans.

The TPC-H Benchmark

For assessing the performance of our solution, we used the same benchmark according to which
the non-distributed, commercial version of Vectorwise is usually evaluated internally, namely
the TPC-H benchmark 1, which simulates a real-world workload for large scale decision-support
applications that is designed to have broad industry-wide relevance. This benchmark is designed

1www.tpc.org/tpch

CHAPTER 6. EVALUATION & RESULTS 82

and maintained by the Transaction Processing Performance Council and comes with a data
generator and a suite of business oriented ad-hoc queries and concurrent data modifications.

The size of the data warehouse to be generated can be controlled by a parameter called Scale
Factor (SF). For our tests we used SF 100 and SF 300, which produce approximately 32GB and
96GB of compressed data respectively. Order and Linitem are the only partitioned tables, 16
or 32 partitions. We disabled the concurrent data modifications, as they are not yet supported
in our system, but executed all the 22 read-only SQL queries provided (for which the reader is
referred to the TPC-H website) for P1, P2 and just a subset of them, a workload composed of
Q1 and Q13, for P3. The two of the queries target opposite characteristics of the system, Q1
being I/O bounded for cold-runs and CPU bounded for hot-runs, whereas Q13 is both network
and CPU bounded in the latter case (because of the big Join/DXchgHashSplit between Orders
and Customer tables and the afterwards Aggregations).

Simulating Hadoop Busyness

For testing how the min-cost flow (implicitly the cost-model) approach behaves while running
external workloads that overlap with the Vectorwise worker-set, we used the TeraSort 1 standard
MapReduce sorting benchmark and ran different sort of jobs. TeraSort is a benchmark that
combines testing the HDFS and MapReduce layers of a Hadoop cluster. As such it is not
surprising that this benchmark suite is often used in practice 2, which has the added benefit
that it allows people – among other things – to compare the results of their own cluster with the
clusters of others. One can use the TeraSort benchmark, for instance, to iron out his Hadoop
configuration. Typical areas where it is helpful, is to determine whether the resource container
assignments are sound (as they depend on the variables such as the number of cores per node
and the available memory), whether other MapReduce-related parameters are set properly, or
whether the FairScheduler configuration someone came up with really behaves as expected.
For us, TeraSort simulates Hadoop busyness in the cluster. We use this benchmark especially
for its the Map phase, which takes about 40% of the runtime and generates (for bigger data
sets) a CPU avg. load of 80-90%. More details about our busyness workloads are given in
Table 6.2. To make it even more interesting, we have configured our jobs to run either on
the full worker-set (8 nodes, not. full-set) or on the half of it (4 nodes, not. half-set). This
makes the workload’s Map phase to be CPU and I/O intensive, respectively CPU and network
intensive (since Hadoop does not always match all Mappers with their right data-locality and
needs remote data access). Previously, we loaded our (5GB, 10GB and 100GB) data sets in
two directories, each one for its own full-set (loaded on 8 nodes) or half-set (loaded on 4 nodes)
run.

Table 6.2: Workload runtime and CPU avg./peak load for TeraSort benchmark runs on different
data-set sizes, number of Mappers/Reducers and node sets.

Busyness Full-set Half-set
Config. 596.8MB x 8w 1.2GB x 8w 11.6GB x 8w 1.2GB x 4w 2.4GB x 4w 23.3GB x 4w

16M/16R 35 s 56 s 461 s 108 s 207 s 1613 s
32M/32R 30 s 43 s 266 s 63 s 112 s 628 s
64M/64R 26 s 36 s 218 s 40 s 57 s 376 s
CPU load 40− 50% 60− 70% 70− 80% 30− 40% 50− 60% 70− 80%
CPU peak – – – – 80% 95%

1TeraSort package: hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-
summary.html

2TeraSort competition: sortbenchmark.org

CHAPTER 6. EVALUATION & RESULTS 83

6.2 Results Discussion

Instrumenting Block Replication

In Section 2.1 we have discussed the two of the HDFS local read options, through DataNode
(out-of-box DataTransferProtocol) and direct local reads (short-circuit config), showing the
results of a performance comparison using the Test-DFS I/O benchmark in Table 2.1. Given
that, it make sense to enable the short-circuit configuration during the cold-run tests and benefit
from "real" data locality. We prove the later by running now a TPC-H cold-run on 8 "Rocks"
workers with 32 mpl. As we can see from Figure 6.1, the overhead of sending data through
TCP sockets (though the data is stored locally) increases the individual query execution time
by 50% to 100% in some cases. The average I/O throughput per query drops down as well,
Figure 6.3 (w/ block collocation enabled), from 31.81 MB/s to 21.65 MB/s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

5

10

15

20

25

30

35

40

45

50

26.05

18.42

3.79
1.75

4.67
2.86

10.7710.8

47.73

35.48

10.61

4.2

18.7

1.62.23

7.77

19.6

23.84

19.82
17.74

12.51

5.05

17.62
15.8

1.941.05
2.09

0.12

3.623.56

25.14
27.12

8.57

1.54

13.57

0.660.9

6.31

1.53

9.02

3.29

10.02

3.43.01

T
im

e
(s
)

w/ short-circuit (Total: 159.88s)
w/o short-circuit (Total: 304.89s)

Figure 6.1: Running with (w/) and without (w/o) short-circuit when block colloc. is enabled.
TPC-H benchmark: 16-partitions for Order and Lineitem, 8 "Rocks" workers, 32 mpl.

Focusing on how we can instrument HDFS block replication, Chapter 3 describes our Custom
Block Placement Policy implementation for Vectorwise on Hadoop. At the end it also embodies
some preliminary results (Tables 3.1 and 3.2 and Figure 3.3) showing the benefits of this policy
while running just a sub-set of the TPC-H queries (1, 4, 6, and 12). Based on the preliminary
results, we concluded that our custom policy is better (by 1.58-1.78x) than the default HDFS
placement after re-replication, having control over data (co)locality to worker nodes, whereas
the default behavior performs better during node failures (1.14-1.41x), due to new worker
nodes (replacing the failed ones) having some of the local data that Vectorwise queries may
need. To strengthen this conclusion, we have extended the same test to all TPC-H queries.
New results are described in the remaining of this section. Some of the results consider the
case when the entire cluster’s size is restricted to the exact number of Vectorwise workers (not.
workers/hadoop-nodes(total-nodes) = 8/8(10)) to point out the consequences of limiting the
default replication just to the current worker-set.

CHAPTER 6. EVALUATION & RESULTS 84

Table 6.3: Query execution times: baseline (default policy) vs. collocation (custom policy)
versions, in 3 situations (1) healthy state, (2) failure state (2 nodes down), (3) recovered state.
TPC-H benchmark: 16-partitions for Order and Lineitem, 8 "Rocks" workers, 32 mpl (W/N =
workers/hadoop-nodes).

State Healthy Failure Recovered
Vers. baseline baseline collocation baseline baseline collocation baseline baseline collocation
W/N 8/10 8/8(10) 8/10 8/8 8/8(8) 8/8 8/8 8/8(8) 8/8
Q1 17.59 s 17.11 s 17.62 s 19.57 s 26.32 s 29.70 s 29.23 s 25.76 s 17.25 s
Q2 27.16 s 27.72 s 15.80 s 29.43 s 27.49 s 16.29 s 29.96 s 25.70 s 16.42 s
Q3 2.40 s 2.31 s 1.94 s 3.06 s 2.89 s 4.04 s 3.47 s 3.35 s 1.98 s
Q4 1.14 s 1.04 s 1.05 s 1.86 s 1.51 s 2.06 s 2.11 s 1.79 s 0.90 s
Q5 1.95 s 2.03 s 2.09 s 4.36 s 4.62 s 4.76 s 5.18 s 4.79 s 1.93 s
Q6 0.12 s 0.11 s 0.12 s 2.09 s 2.28 s 2.32 s 1.92 s 1.70 s 0.12 s
Q7 3.38 s 3.66 s 3.62 s 8.42 s 9.67 s 10.42 s 10.33 s 9.32 s 3.69 s
Q8 3.39 s 3.42 s 3.56 s 7.82 s 10.17 s 10.01 s 8.87 s 8.62 s 3.85 s
Q9 33.33 s 34.08 s 25.14 s 43.51 s 53.48 s 47.48 s 47.70 s 47.60 s 26.54 s
Q10 36.70 s 36.74 s 27.12 s 37.90 s 46.43 s 32.61 s 39.91 s 40.81 s 28.80 s
Q11 14.56 s 13.59 s 8.57 s 13.98 s 14.38 s 10.21 s 14.37 s 14.16 s 9.22 s
Q12 1.47 s 1.50 s 1.54 s 3.82 s 4.43 s 4.32 s 4.68 s 3.99 s 1.54 s
Q13 13.87 s 14.41 s 13.57 s 15.13 s 16.00 s 23.42 s 26.29 s 23.57 s 13.64 s
Q14 0.79 s 0.80 s 0.66 s 0.88 s 1.33 s 1.63 s 1.33 s 0.98 s 0.70 s
Q15 1.15 s 1.38 s 0.90 s 1.45 s 1.69 s 2.74 s 1.72 s 1.71 s 1.02 s
Q16 9.69 s 10.18 s 6.31 s 10.26 s 11.24 s 7.91 s 11.14 s 9.96 s 7.24 s
Q17 2.54 s 2.01 s 1.53 s 10.55 s 17.34 s 16.28 s 10.59 s 8.52 s 1.54 s
Q18 8.72 s 9.23 s 9.02 s 19.38 s 17.97 s 22.82 s 17.58 s 17.70 s 9.18 s
Q19 4.03 s 3.95 s 3.29 s 12.96 s 17.62 s 18.14 s 13.05 s 12.43 s 3.67 s
Q20 15.99 s 15.20 s 10.02 s 16.18 s 19.40 s 17.17 s 17.72 s 17.31 s 11.60 s
Q21 3.33 s 3.53 s 3.40 s 11.49 s 10.50 s 11.80 s 10.43 s 11.07 s 2.91 s
Q22 2.77 s 4.20 s 3.01 s 2.62 s 3.95 s 5.17 s 3.01 s 3.79 s 3.14 s
Total 206.07 s 208.2 s 159.88 s 276.72 s 320.62 s 301.30 s 310.59 s 294.63 s 166.68 s

(1.28x) (1.30x) (1.0x) (1.0x) (1.15x) (1.08x) (1.86x) (1.76x) (1.0x)

Healthy Failure Recovered

1

1.2

1.4

1.6

1.8

1.28

1

1.86

1.3

1.15

1.76

1
1.08

1

T
o
ta

l
ti
m

e
M

I
N

ti
m

e
sl
ow

er

baseline-8/10
baseline-8/8(10)
collocation-8/10

Figure 6.2: Overall runtime performance: baseline vs. collocation versions, based on Table 6.3

From Table 6.3’s new runtime results and Figure 6.3’s query I/O throughput measurements,
we can derive the same conclusion: our custom policy still outperforms the default
behavior of HDFS by 1.86x (better runtime performance) after data recovery. The major

CHAPTER 6. EVALUATION & RESULTS 85

difference in the current setup is that some queries may read non-partitioned tables (i.e. access
remote data for "cold-runs"). Non-partitioned tables are in principle buffer-cached all over
the worker-set, but we first need a prior "cold-run" for that to happen. This is similar with
a single-writer to multiple-readers behavior. During bulk-loading, non-partitioned tables are
written down on HDFS by a single worker (in general the session-master). Afterwards, during
a "cold-run", all the other workers will read and buffer-cache the existent non-partitioned tables
from wherever their HDFS blocks got replicated in the cluster. However, the default placement
scatters the remaining R-1 replicas all over the entire cluster, requiring a reader to open and
manage many short TCP connections for copying such data locally. If the HDFS block size is too
small or too few blocks are stored on the same node, the numerous I/O requests to DataNodes
will follow a random-access pattern with short sequential-reads 1. This results in a poor I/O
throughput performance, Figure 6.3, as HDFS performs better during sequential-reads of bigger
and contiguous blocks [54]. We can see when some queries read non-partitioned data by looking
at Table 6.3’s individual query times during the Healthy state and comparing everything with
the collocation version. The worse times are for baseline and baseline-restricted, Query-2 is a
good example. The implemented custom policy, in contrast with the default HDFS behavior,
stores the block replicas of non-partitioned tables onto the same R nodes, i.e. a reader will
maintain exactly 1 opened connection per file. Moreover, the before-mentioned advantage of
the default behavior during node failures is effectively lost if we restrict the number of Hadoop
nodes to the worker-set size, i.e. number of workers equal with the total number of nodes. We
see from Figure 6.3 that (for the baseline-restricted experiment) the average I/O throughput
per query drops from 30.94 MB/s to 23.20 MB/s during the two nodes failure and then
increases to 27.35 MB/s after recovery. New worker nodes, chosen to replace the two failed
ones, will no longer have local data and they must access remote data instead. That aside,
during HDFS recovery, missing data is replicated over the entire cluster and just some of it
will get stored on the two new nodes. Our custom block replication policy exhibits a similar
behavior. Nevertheless, the later policy controls the replication of missing data and makes sure
that new nodes (or the remaining ones) will gain full data (co)locality. This scenario really
emphasizes all the differences between the custom HDFS policy and the default out-of-box
placement during the three Health, Failure and Recovered system states. At the bottom side
of the table, in Figure 6.2, we compare the total runtime performance between the baseline,
baseline-restricted, and collocation versions.

Healthy Failure Recovered

22

24

26

28

30

32
30.63

27.73

22.51

30.94

23.2

27.35

31.81

25.64

32.62

21.65

A
ve
ra
ge

T
hr
ou

gh
pu

t
pe

r
Q
ue
ry

(M
B
/s
)

baseline-8/10
baseline-8/8(10)
collocation-8/10

collocation-8/10 (no-short.)

Figure 6.3: Average throughput per query: baseline vs. collocation versions, related to Table 6.3.

1Discussion: stackoverflow.com/questions/13993143/hdfs-performance-for-small-files

CHAPTER 6. EVALUATION & RESULTS 86

Table 6.4: Query execution times: baseline (default policy) vs. collocation (custom policy)
versions, in 3 situations (1) healthy state, (2) failure state (2 nodes down), (3) recovered state.
TPC-H benchmark: 32-partitions for Order and Lineitem, 8 "Rocks" workers, 32 mpl (W/N =
workers/hadoop-nodes).

State Healthy Failure Recovered
Vers. baseline collocation baseline collocation baseline collocation
W/N 8/10 8/10 8/8 8/8 8/8 8/8
Q1 19.13 s 19.91 s 20.88 s 22.86 s 25.78 s 18.66 s
Q2 32.84 s 18.27 s 32.13 s 22.91 s 28.80 s 18.48 s
Q3 3.01 s 2.74 s 3.47 s 4.05 s 4.13 s 2.91 s
Q4 1.84 s 1.70 s 2.21 s 3.30 s 2.71 s 1.63 s
Q5 1.94 s 1.77 s 4.04 s 4.61 s 3.94 s 1.82 s
Q6 0.12 s 0.13 s 2.07 s 2.50 s 1.37 s 0.12 s
Q7 3.62 s 3.79 s 7.34 s 9.45 s 7.79 s 3.33 s
Q8 3.97 s 3.63 s 8.14 s 10.25 s 9.60 s 3.42 s
Q9 37.34 s 27.80 s 50.28 s 44.57 s 46.97 s 27.54 s
Q10 40.98 s 30.73 s 31.57 s 39.58 s 30.24 s 32.32 s
Q11 13.82 s 9.58 s 15.42 s 12.14 s 13.40 s 10.53 s
Q12 1.94 s 1.92 s 3.64 s 4.52 s 4.03 s 1.82 s
Q13 14.09 s 14.18 s 14.80 s 18.35 s 23.21 s 13.72 s
Q14 1.01 s 0.74 s 1.24 s 1.63 s 1.29 s 0.72 s
Q15 2.56 s 1.05 s 1.54 s 1.86 s 1.96 s 1.22 s
Q16 11.20 s 7.18 s 11.68 s 9.36 s 10.11 s 8.29 s
Q17 2.81 s 1.48 s 12.72 s 14.21 s 11.20 s 1.54 s
Q18 10.02 s 9.38 s 16.92 s 20.64 s 20.08 s 8.69 s
Q19 4.40 s 3.81 s 14.25 s 16.42 s 13.99 s 3.77 s
Q20 18.01 s 12.30 s 20.58 s 17.80 s 18.77 s 13.55 s
Q21 3.55 s 3.48 s 10.41 s 12.17 s 11.35 s 3.74 s
Q22 5.02 s 4.43 s 4.11 s 3.93 s 4.06 s 3.64 s
Total 233.22 s 180 s 289.44 s 297.11 s 294.78 s 181.11 s

(1.29x) (1.0x) (1.0x) (1.02x) (1.62x) (1.0x)

Healthy Failure Recovered

1

1.2

1.4

1.6

1.29

1

1.62

1 1.02 1

T
o
ta

l
ti
m

e
M

I
N

ti
m

e
sl
ow

er

baseline
collocation

Figure 6.4: Overall runtime performance: baseline vs. collocation versions, based on Table 6.4

Though the previous tests were performed on a database schema with 16-partitioned tables,
the same behavior reproduces for 32-partitioning as well (Table 6.4 with Figure 6.4).

CHAPTER 6. EVALUATION & RESULTS 87

Dynamic Resource Management

Backed with results from the previous section, we prove that we do achieve data-locality to
Vectorwise worker nodes after re-replication. However, as Chapter 3 concludes at the end, there
is still some room left to improve the performance of Vectorwie during failovers by favoring local
reads over remote (over-the-network) reads. To understand how this is done, we recommend
(re)reading Chapter 4, which explains in the very detail (including all of our algorithms) how
dynamic resource management works in Vectorwise on Hadoop. Indeed, the outcome of this
approach should improve the performance of Vectorwise on Hadoop during fail-over situations
and also, when concurrent Vectorwise (internal) and Hadoop (external) workloads overlap over
the same worker nodes / cluster resources. For now we focus on the first direction and only
later (in next section) discuss the second. In the following paragraphs we present TPC-H test
results, with and without dynamic resource management enabled, during two typical failover
scenarios.

Table 6.5 shows TPC-H query execution times for Vectorwise on Hadoop during a 2-node
failover situation, with dynamic resource management (not. drm) and without; both have block
collocation enabled. We run one "cold" and then a "hot" test on 8 "Rocks" workers (simply
labeled from worker1 to worker8), using 32 mpl and a schema with Order and Lineitem in 16
partitions (from 0 to 15, we omit the c16 suffix from Section 3.2). The HDFS replication degree
(R) is left to default value 3. In total, 48 (3 x 16, including the replicas) partitions are placed
on 8 workers, each stores 6 (equal) partitions. Moreover, the responsibility degree (RMax), see
Section 4.2, is set to 2. Based on the same section’s insights, the later choice makes every worker
node being responsible of 4 partitions and each partition to have exactly 2 responsible workers.
Also, as mentioned in Section 4.3, this adds a certain elasticity in computing an optimal resource
footprint for a query workload. We can vary the available resources from 1 thread per node to
the maximum (available) threads and, at the same time, choose what worker nodes to involve
in the computation. To make sure we can do so, we use a maximum core over-allocation of 0.25
for more flexibility. With RMax = 2 and the default round robin placement in place, is possible
to form two separate worker-subsets: 1, 3, 5, 7 and 2, 4, 6, 8 that can get involve independently
in query execution (depending on their data-locality and load-factors). Therefore, we construct
two different failover scenarios for drm: in (a) we fail one worker from a subset (worker7) and
one from the other (worker8), whereas in (b) we fail two workers from just one of the subsets
(worker6 and worker8 from the second subset). In Figure 6.5 we show which worker nodes
and (partition) responsibilities were involved in query execution during (a) and (b) using
the 0.25 core over-allocation. Or, simply said, the resource footprint for Table 6.5. We remind
from Section 4.2 that the cost-model tries to change as little as possible the ex-responsibility
assignment once the DbAgent restarts the worker-set due to node failovers. We normalize our
(node) naming convention to make it easier to associate between a failed and a new worker.
New worker nodes (which replaced the failed ones) have the suffix n added to their label, e.g.
worker6 is replaced by worker6n.

Figure 6.5: The worker nodes and (partition) responsibilities involved in query execution during
(a) and (b). We use red color to emphasize the latter, plus the amount of threads per worker to
satisfy the 32 mpl. Besides, we also show the state before the failure. The local responsibilities
are represented with black color and the partial ones, from the two new nodes, with grey color.

CHAPTER 6. EVALUATION & RESULTS 88

Table 6.5: Query execution times during node failures: colloc. without dynamic resource
management (not. collocation) vs. colloc. with dynamic resource management (not. drm).
TPC-H benchmark: 16-partitions for Order and Lineitem, 8 "Rocks" workers, 32 mpl, 0.25
core over-allocation, RMax resp. degree 2. Since RMax = 2 we can form two separate worker-
subsets. In (a) we fail 1 worker from a subset and 1 from the other, in (b) we fail 2 workers
from just one of the subsets.

Test-run Hot Cold
Vers. collocation drm-a-0.25 drm-b-0.25 collocation drm-a-0.25 drm-b-0.25
Q1 0.70 s 1.32 s 1.31 s 29.70 s 27.37 s 27.50 s
Q2 0.26 s 0.26 s 0.26 s 16.29 s 21.20 s 20.03 s
Q3 0.16 s 0.17 s 0.18 s 4.04 s 2.72 s 2.95 s
Q4 0.04 s 0.06 s 0.06 s 2.06 s 1.42 s 1.59 s
Q5 0.27 s 0.39 s 0.40 s 4.76 s 3.54 s 3.55 s
Q6 0.04 s 0.07 s 0.07 s 2.32 s 1.69 s 1.15 s
Q7 0.29 s 0.43 s 0.44 s 10.42 s 8.22 s 7.48 s
Q8 0.40 s 0.54 s 0.55 s 10.01 s 7.49 s 5.98 s
Q9 1.77 s 2.87 s 2.96 s 47.48 s 40.70 s 32.02 s
Q10 1.83 s 2.06 s 2.05 s 32.61 s 34.63 s 28.86 s
Q11 0.22 s 0.22 s 0.22 s 10.21 s 11.60 s 9.91 s
Q12 0.15 s 0.24 s 0.26 s 4.32 s 2.47 s 2.57 s
Q13 3.50 s 4.87 s 5.04 s 23.42 s 21.19 s 21.44 s
Q14 0.26 s 0.29 s 0.29 s 1.63 s 1.33 s 1.04 s
Q15 0.34 s 0.40 s 0.42 s 2.74 s 1.28 s 1.89 s
Q16 0.45 s 0.47 s 0.45 s 7.91 s 8.67 s 6.92 s
Q17 0.52 s 0.83 s 0.84 s 16.28 s 11.51 s 4.77 s
Q18 1.17 s 1.62 s 1.62 s 22.82 s 14.43 s 14.44 s
Q19 0.58 s 0.95 s 1.03 s 18.14 s 15.17 s 7.93 s
Q20 0.47 s 0.43 s 0.44 s 17.17 s 16.80 s 12.06 s
Q21 1.50 s 2.31 s 2.33 s 11.80 s 8.68 s 7.24 s
Q22 0.43 s 0.49 s 0.48 s 5.17 s 3.70 s 2.95 s
Total 15.35 s 21.29 s 21.70 s 301.30 s 265.81 s 224.27 s

(1.0x) (1.38x) (1.41x) (1.34x) (1.18x) (1.0x)

Hot Cold

1

1.1

1.2

1.3

1.4

1

1.34

1.38

1.18

1.41

1

T
o
ta

l
ti
m

e
M

I
N

ti
m

e
sl
ow

er

collocation
drm-a-0.25
drm-b-0.25

Figure 6.6: Overall runtime performance: collocation vs. drm versions, based on Table 6.5.

CHAPTER 6. EVALUATION & RESULTS 89

Q1 Q4 Q6 Q12 Q9 Q13 Q19 Q21

0

10

20

30

40

50

29.7

2.06 2.32
4.32

47.48

23.42

18.14

11.8

27.37

1.42 1.69 2.47

40.7

21.19

15.17

8.68

27.5

1.59 1.15
2.57

32.02

21.44

7.93 7.24

T
ot
al

ti
m
e collocation

drm-a-0.25
drm-b-0.25

(a) Cold-runs: Q1, Q4, Q6, Q12 (I/O bounded) and Q9, Q13, Q19, Q21 (I/O bounded),
based on Table 6.5

Q1 Q4 Q6 Q12 Q9 Q13 Q19 Q21

0

1

2

3

4

5

0.7

4 · 10−2 4 · 10−2 0.15

1.77

3.5

0.58

1.5
1.32

6 · 10−2 7 · 10−2
0.24

2.87

4.87

0.95

2.31

1.31

6 · 10−2 7 · 10−2
0.26

2.96

5.04

1.03

2.33

T
ot
al

ti
m
e collocation

drm-a-0.25
drm-b-0.25

(b) Hot-runs: Q1, Q4, Q6, Q12 (now CPU bounded) and Q9, Q13, Q19, Q21 (now
CPU & network bounded), based on Table 6.5

Figure 6.7: Overall runtime performance: Q1, Q4, Q6, Q9, Q12, Q13, Q19, and Q21, based on
Table 6.5

CHAPTER 6. EVALUATION & RESULTS 90

2-Node Failure

26

27

28

29

25.64

27.84

29.12

A
ve
ra
ge

T
hr
ou

gh
pu

t
pe

r
Q
ue
ry

(M
B
/s
)

collocation
drm-a-0.25
drm-b-0.25

Figure 6.8: Average throughput per query: collocation vs. drm versions, related to Table 6.5.

Figure 6.5 clearly shows the difference between how the new resource scheduling algorithm
(Section 4.3) picks the right worker nodes, responsibilities and number of threads (per worker)
for query execution during (a) and (b). Although we try with our cost-model to only get local
reads for (a), yet we are still forced to involve worker7n and worker8n in I/O for the 6c16 and
14c16 partial (partition) responsibilities. It is important to observe that the two failed workers
were consecutive in the list of nodes used by the round-robin placement, plus the responsibility
assignment algorithm (see Chapter 4), which made them the single nodes responsible for 6c16
and 14c16. Failing two consecutive worker nodes (when replication degree R = 3) is proba-
bly the worst to happen. In contrast, case (b) is free of the previous (partial responsibility)
constraints. Worker6 and worker8 belong to the same Subset-2 and so, implicitly, they are no
longer consecutive in the input list. This means that the resource scheduling algorithm is not
forced to involve partial responsibilities from the two new nodes anymore. Instead, it can find
other workers (e.g. from Subset-1) that have those (partition) responsibilities already stored.
For instance, worker6n and worker8n have responsibilities in common with workers 1, 5 and
7, but the latter three have them locally. With core over-allocation = 0.25 in this case, the
resource scheduling algorithm finds a worker-subset composed only of workers 1, 2, 3, 4, 5, and
7, which has all our data and achieves the 32 mpl). It also distributes the mpl (32 threads)
proportionally with each of the local responsibilities involved in query execution, e.g. worker7
has to read table partitions from its all 4 local responsibilities using (the maximum number
of) 5 threads. The mpl distribution applies to (a) as well. We exclude 6n and 8n only from
the I/O operations by replacing them with "healthy" workers that have full data locality and
can support their burden. Note that we leave them 2 threads each for intermediary processing
(e.g. intermediary aggregations). Because of this reason, (b) outperforms (a) by 1.18x. We
see this from their runtime performance, Table 6.5, and average I/O throughput, in Figure 6.8.
Nonetheless, yet (a) and (b) are each one better than the plain collocation version (i.e. with-
out dynamic resource management), by 1.13x and, respectively, 1.34x. The latter difference
is depicted in Figure 6.6, compared with drm-b-0.25 version. Since both (a) and (b) outper-
form the plain collocation version on cold-runs during failures, it implies that overall (based on
Table 6.3) we improve upon the baseline version – with (a) by 1.04x and (b) by 1.23x. The
difference can be seen in their average I/O throughput too, Figure 6.3 and Figure 6.8. Hence,
we can say that we have achieved our goal to improve the performance of Vectorwise during
node failures by favoring local reads over remote (access) reads.

Obviously though, for hot-runs, where almost all TPC-H queries become CPU or network
bounded, the assignment from Figure 6.5 is no longer balanced. We took the time results of
queries Q1, Q4, Q6, Q9, Q12, Q13, Q19 and Q21 and compared them for cold- and hot- runs

CHAPTER 6. EVALUATION & RESULTS 91

separately, in Figure 6.7. During cold-runs (Figure 6.7a) all these queries are I/O bounded and
so, drm-b-0.25 performs the best. On the other hand, during hot-runs (Figure 6.7b) we exhibit
the opposite – Q1, Q4, Q6, and Q12 are now CPU bounded, whereas the remaining Q9, Q13,
Q19 and Q21 are network bounded. These 8 queries (and especially the latter 4) have the worse
degrading performance for the drm versions during the hot-run. For example, because of the
assignment from Figure 6.5, workers 4, 5, and 7 are now a bottleneck during query execution
in drm-b-0.25. This is a tradeoff that the before-mentioned approach has to deal with it during
the timespan of HDFS data recovery. We could diminish this imbalance effect by increasing the
core over-allocation (e.g. 0.5 over-allocation) and the degree of partitioning (e.g. 32 partitions),
it should provide the new resource scheduling algorithm more flexibility in balancing the mpl
over the chose worker-subset. Nevertheless, for the previous experiment, it takes around 8-9
minutes to recover the 3rd missing (approximately 26 GB of data) replicas. This time can be
easily amortized considering the side effect of controlling data-locality, i.e. reading local data
during cold-runs or when is not enough buffer pool to cache all the tables.

YARN Integration

As we mentioned earlier in this section, we are now going to present the performance results of
the Vectorwise on Hadoop database system when internal workloads overlap with concurrent
(Hadoop) external workloads over the same worker nodes / cluster resources. Hence, we fo-
cus on the improvements brought by the dynamic resource scheduling approach (implicitly the
min-cost flow algorithm, plus our cost model) and YARN integration for cluster awareness and
resource management, while simulating Hadoop busyness over the worker-set with the TeraSort
benchmark. To remember the essentials, we recommend looking into Section 4.3. Summarizing,
the approach dynamically schedules cluster compute resources according to the worker-set re-
source availability, load-balancing constraints, and data-locality. This should reduce the overall
resource contention that exhibits when two or more running systems, coexisting on the same
cluster, are not aware of each others workloads. As we pointed out at the end of Section 6.1,
we can configure our TeraSort (Hadoop) workloads to run with 16, 32, or 64 mappers and
reducers, either on the full worker-set, or on just on a half of it (both with their own input data
directory). Extra details (i.e. total runtime, CPU load) are given in Table 6.2.

In Tables 6.7, 6.8 and 6.9 we present the runtime results of executing a sequence of 11x TPC-H
Q1 and Q13 queries in Vectorwise on Hadoop, with and without YARN integration, side by
side with each of the 6 workload combinations (started first), but only for the 100GB data-
set because our purpose is to increase the Map phase duration and to prolong the resource
contention. We also ran the same experiment without any busyness, Table 6.2, to have a baseline
for comparison and also to highlight the resource allocation overhead that shows up at the
beginning of each test. The correspondent assignments of workers, (partition) responsibilities
and threads per node (out of max available for Vectorwise) involved in query execution during
the no-busyness, 16M/16R, 32M/32R, and 64M/64R half-set runs are depicted in Figure 6.9,
Figure 6.10, Figure 6.11, and respectively, Figure 6.12. Before each of the experiments we clear
the File System’s and buffers manager’s caches and execute a no-busyness cold-run, Figure 6.9
tells us what responsibilities are "hot" before the tests. By doing this we can measure the
performance degradation of drmy when its runtime assignment dynamically changes because of
the cluster’s busyness and thus, "cold" partitions are being read from the disk. In our tables
we show both the results when drmy’s buffers are "semi-hot" (not. drmy-) for the experiment
and "hot" (not. drmy+) as well. Note that from the drmy- time results we have excluded the
overhead of allocating resources.

In the end of this section we measure the average CPU load (not. from [min to Max]) of
the Vectorwise workers on which both internal and external workloads overlap during the Map
phase, Figure 6.13 and Figure 6.14; we can identify that by looking at the assignment figures
below the tables (i.e. if max available cores for Vectorwise < max worker capability, which is 16

CHAPTER 6. EVALUATION & RESULTS 92

cores, then it means other workloads are running on the same node). Something to note in our
experiments is that our system’s networking layers do not interleave, Hadoop uses Ethernet,
whereas Vectorwise uses the Infinband fabric.

Table 6.6: Query execution times without Hadoop busyness, no overlapping external workloads:
testing Vectorwise without YARN integration (not. drm) vs. with YARN integration (not.
drmy). TPC-H benchmark: Q1 and Q13 hot-runs, 32-partitions for Order and Lineitem, 8
"Stones" workers, 128 mpl, no core over-allocation, RMax resp. degree 2.

Busyness None
Vers. drm drmy- drmy+
Q1 0.74 s 5.69 s 0.73 s
Q13 7.47 s 7.26 s 6.96 s
Q1 0.71 s 0.71 s 0.70 s
Q13 6.92 s 7.21 s 6.85 s
Q1 0.70 s 0.67 s 0.73 s
Q13 6.43 s 7.16 s 6.72 s
Q1 0.71 s 0.72 s 0.68 s
Q13 7.41 s 7.19 s 6.91 s
Q1 0.72 s 0.72 s 0.73 s
Q13 6.60 s 6.56 s 6.69 s
Q1 0.70 s 0.66 s 0.67 s
Q13 7.45 s 7.10 s 6.82 s
Q1 0.71 s 0.68 s 0.72 s
Q13 6.59 s 6.93 s 7.04 s
Q1 0.70 s 0.71 s 0.71 s
Q13 6.69 s 6.75 s 6.99 s
Q1 0.70 s 0.69 s 0.72 s
Q13 6.64 s 7.05 s 6.72 s
Q1 0.70 s 0.71 s 0.69 s
Q13 6.45 s 7.11 s 6.74 s
Q1 0.71 s 0.71 s 0.70 s
Q13 6.40 s 6.83 s 6.64 s
Total 82.85 s 89.82 s 82.86 s

(1.0x) (1.08x) (1.0x)

Figure 6.9: The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.6. We use red color to highlight
the latter information. The metadata for partition locations (see Section 3.2) is shown on the
left and the responsibility assignment on the right.

CHAPTER 6. EVALUATION & RESULTS 93

Table 6.7: Query execution times during overlapping external (Hadoop) workloads, 16 Mappers
/ 16 Reducers: testing Vectorwise without YARN integration (not. drm) vs. with YARN
integration (not. drmy). TPC-H benchmark: Q1 and Q13 hot-runs, 32-partitions for Order
and Lineitem, 8 "Stones" workers, 128 mpl, no core over-allocation, RMax resp. degree 2.

Busyness Full-set Half-set
Vers. drm drmy- drmy+ drm drmy- drmy+
Q1 0.77 s 7.69 s 0.71 s 1.78 s 8.89 s 1.92 s
Q13 7.89 s 7.39 s 7.67 s 10.99 s 7.56 s 8.19 s
Q1 0.78 s 0.73 s 0.73 s 1.19 s 1.88 s 1.89 s
Q13 7.73 s 7.13 s 7.06 s 10.08 s 7.99 s 7.70 s
Q1 0.78 s 0.69 s 0.71 s 1.06 s 1.91 s 1.90 s
Q13 7.66 s 6.92 s 7.29 s 10.09 s 8.84 s 8.39 s
Q1 0.74 s 0.73 s 0.69 s 1.13 s 1.94 s 1.88 s
Q13 7.65 s 7.27 s 6.90 s 9.78 s 8.23 s 7.68 s
Q1 0.73 s 0.74 s 0.77 s 1.40 s 1.91 s 1.98 s
Q13 7.84 s 6.91 s 6.92 s 10.05 s 7.87 s 8.21 s
Q1 0.79 s 0.71 s 0.68 s 1.30 s 1.90 s 1.91 s
Q13 7.72 s 7.03 s 6.81 s 10.07 s 7.78 s 8.31 s
Q1 0.75 s 0.86 s 0.73 s 1.23 s 1.92 s 1.94 s
Q13 7.63 s 7.13 s 7.42 s 10.44 s 7.70 s 7.69 s
Q1 0.75 s 0.69 s 0.73 s 0.96 s 1.92 s 1.96 s
Q13 7.62 s 6.90 s 7.13 s 9.86 s 7.40 s 7.72 s
Q1 0.74 s 0.68 s 0.69 s 0.89 s 1.90 s 1.86 s
Q13 7.57 s 7.22 s 7.32 s 10.21 s 8.22 s 7.57 s
Q1 0.74 s 0.69 s 0.80 s 1.11 s 1.92 s 1.92 s
Q13 7.63 s 6.88 s 7.60 s 10.51 s 8.04 s 7.85 s
Q1 0.78 s 0.72 s 0.69 s 1.42 s 1.88 s 1.90 s
Q13 7.77 s 7.37 s 7.73 s 9.74 s 7.77 s 8.26 s
Total 93.06 s 93.08 s 87.78 s 125.29 s 115.37 s 108.63 s

(1.06x) (1.06x) (1.0x) (1.15x) (1.06x) (1.0x)

Figure 6.10: The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.7’s half-set busyness runs. We
use red color to highlight the latter information.

CHAPTER 6. EVALUATION & RESULTS 94

Table 6.8: Query execution times during overlapping external (Hadoop) workloads, 32 Mappers
/ 32 Reducers: testing Vectorwise without YARN integration (not. drm) vs. with YARN
integration (not. drmy). TPC-H benchmark: Q1 and Q13 hot-runs, 32-partitions for Order
and Lineitem, 8 "Stones" workers, 128 mpl, no core over-allocation, RMax resp. degree 2.

Busyness Full-set Half-set
Vers. drm drmy- drmy+ drm drmy- drmy+
Q1 0.96 s 7.20 s 1.05 s 1.76 s 18.47 s 1.94 s
Q13 8.75 s 7.80 s 7.40 s 9.91 s 15.13 s 7.82 s
Q1 0.89 s 0.99 s 1.09 s 1.89 s 1.90 s 1.88 s
Q13 8.37 s 7.82 s 7.88 s 8.84 s 7.91 s 7.62 s
Q1 0.83 s 0.99 s 1.00 s 1.28 s 1.96 s 1.97 s
Q13 8.00 s 8.00 s 7.83 s 8.56 s 8.11 s 7.55 s
Q1 0.84 s 1.03 s 1.00 s 0.80 s 1.88 s 1.93 s
Q13 8.30 s 8.05 s 7.92 s 8.33 s 8.53 s 7.53 s
Q1 0.87 s 1.02 s 1.03 s 1.05 s 1.91 s 1.92 s
Q13 8.33 s 7.95 s 7.84 s 8.55 s 8.94 s 7.48 s
Q1 0.88 s 1.01 s 1.01 s 0.79 s 1.92 s 1.90 s
Q13 8.18 s 8.01 s 7.86 s 8.86 s 8.50 s 7.96 s
Q1 0.88 s 1.01 s 1.04 s 0.73 s 1.91 s 1.80 s
Q13 8.15 s 7.93 s 7.70 s 8.05 s 7.99 s 7.10 s
Q1 0.87 s 1.02 s 1.00 s 0.93 s 1.94 s 1.88 s
Q13 8.16 s 7.63 s 7.67 s 8.04 s 6.74 s 6.82 s
Q1 0.89 s 1.03 s 1.04 s 0.77 s 1.86 s 1.88 s
Q13 8.10 s 7.77 s 7.64 s 8.16 s 7.20 s 6.78 s
Q1 0.90 s 1.02 s 1.09 s 0.81 s 1.95 s 1.90 s
Q13 8.10 s 7.58 s 7.81 s 8.06 s 6.50 s 7.01 s
Q1 0.81 s 1.01 s 1.03 s 0.88 s 1.87 s 1.89 s
Q13 8.10 s 7.32 s 7.53 s 8.41 s 6.67 s 6.76 s
Total 100.16 s 103.19 s 96.46 s 105.46 s 129.79 s 101.32 s

(1.03x) (1.06x) (1.0x) (1.04x) (1.28x) (1.0x)

Figure 6.11: The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.8’s half-set busyness runs. We
use red color to highlight the latter information.

CHAPTER 6. EVALUATION & RESULTS 95
T
ab

le
6.
9:

Q
ue
ry

ex
ec
ut
io
n
ti
m
es

du
ri
ng

ov
er
la
pp

in
g
ex
te
rn
al

(H
ad

oo
p)

w
or
kl
oa
ds
,
64

M
ap

pe
rs

/
64

R
ed
uc
er
s:

te
st
in
g
V
ec
to
rw

is
e
w
it
ho
ut

Y
A
R
N

in
te
gr
at
io
n
(n
ot
.
dr
m
)
vs
.
w
it
h
Y
A
R
N

in
te
gr
at
io
n
(n
ot
.
dr
m
y)
.
T
P
C
-H

be
nc
hm

ar
k:

Q
1
an

d
Q
13

ho
t-
ru
ns
,3

2-
pa

rt
it
io
ns

fo
r
O
rd
er

an
d
L
in
ei
te
m
,8

"S
to
ne
s"

w
or
ke
rs
,1

28
m
pl
,n

o
co
re

ov
er
-a
llo

ca
ti
on

,R
M
ax

re
sp
.
de
gr
ee

2.

B
us
yn

es
s

Fu
ll
-s
et

H
al
f-
se
t

V
er
s.

dr
m

dr
m
y-

dr
m
y+

dr
m

dr
m
y-

(#
1)

dr
m
y+

(#
1)

dr
m
y-

(#
2)

dr
m
y+

(#
2)

Q
1

1.
29

s
9.
03

s
2.
0
7
s

6.
9
2
s

4
6
.3
0
s

2
.4
8
s

4
4.
3
5
s

1
.9
4
s

Q
13

13
.2
6
s

9.
09

s
9.
5
2
s

6
3
.9
1
s

3
3
.8
1
s

1
4.
3
8
s

3
2.
9
4
s

1
1.
2
5
s

Q
1

1.
34

s
1.
93

s
1.
9
8
s

5.
5
9
s

1.
9
9
s

2
.0
8
s

1
.9
2
s

1
.9
9
s

Q
13

12
.3
7
s

9.
20

s
9.
5
3
s

2
1
.1
0
s

1
1
.4
5
s

1
4.
1
1
s

1
0.
0
2
s

1
1.
0
7
s

Q
1

1.
37

s
1.
89

s
2.
0
2
s

5.
8
4
s

1.
9
7
s

2
.1
2
s

1
.8
9
s

1
.9
3
s

Q
13

11
.5
8
s

8.
04

s
8.
6
2
s

1
1
.1
7
s

1
1
.4
9
s

1
6.
7
1
s

9
.9
8
s

1
0.
5
5
s

Q
1

1.
16

s
1.
91

s
1.
9
5
s

2.
8
3
s

1.
9
4
s

2
.8
8
s

1
.9
1
s

1
.9
9
s

Q
13

12
.0
8
s

7.
23

s
7.
8
7
s

8.
5
3
s

1
1
.3
1
s

1
0.
6
0
s

1
0.
1
2
s

1
0.
6
4
s

Q
1

1.
68

s
2.
00

s
1.
8
9
s

1.
0
3
s

1.
9
4
s

1
.9
2
s

1
.9
8
s

1
.9
7
s

Q
13

8.
25

s
5.
76

s
6.
6
9
s

8.
3
1
s

1
0
.2
8
s

1
0.
5
8
s

9
.9
7
s

1
0.
3
1
s

Q
1

0.
83

s
2.
07

s
2.
1
2
s

0.
8
9
s

1.
9
6
s

1
.9
5
s

1
.9
1
s

1
.9
3
s

Q
13

8.
31

s
5.
39

s
5.
2
3
s

8.
9
8
s

1
0
.3
4
s

9
.8
3
s

9
.9
5
s

1
0.
3
5
s

Q
1

0.
88

s
2.
04

s
2.
1
2
s

0.
8
0
s

1.
9
5
s

2
.0
0
s

1
.9
3
s

1
.9
4
s

Q
13

8.
54

s
5.
25

s
5.
3
1
s

8.
4
8
s

1
0
.1
8
s

1
0.
7
7
s

1
0.
0
9
s

1
0.
3
2
s

Q
1

0.
81

s
2.
08

s
2.
0
9
s

0.
8
7
s

1.
9
2
s

1
.9
6
s

1
.8
9
s

1
.9
4
s

Q
13

7.
99

s
6.
05

s
5.
5
8
s

8.
1
6
s

1
0
.7
1
s

1
0.
0
0
s

1
0.
2
5
s

1
0.
5
7
s

Q
1

0.
86

s
2.
07

s
2.
1
1
s

0.
8
7
s

1.
9
5
s

1
.9
5
s

1
.9
0
s

1
.9
5
s

Q
13

8.
56

s
5.
35

s
5.
3
8
s

8.
6
2
s

1
0
.9
2
s

1
0.
3
3
s

9
.9
6
s

1
0.
3
0
s

Q
1

1.
05

s
2.
04

s
1.
9
9
s

0.
8
5
s

1.
9
1
s

1
.9
4
s

1
.8
7
s

2
.0
6
s

Q
13

8.
49

s
6.
75

s
4.
7
3
s

8.
6
3
s

1
0
.2
8
s

1
0.
1
0
s

9
.9
4
s

1
0.
9
2
s

Q
1

0.
89

s
1.
93

s
2.
0
2
s

1.
0
5
s

1.
8
9
s

1
.9
4
s

1
.8
8
s

2
.0
0
s

Q
13

8.
29

s
6.
73

s
4.
6
7
s

8.
8
8
s

1
0
.7
6
s

1
1.
0
6
s

1
0.
0
6
s

1
0.
7
6
s

T
ot
al

11
9.
88

s
10
3
.8
3
s

95
.4
9
s

1
9
2
.3
1
s

2
0
7
.2
5
s

1
5
1
.6
9
s

1
9
6
.7
1
s

1
3
8
.6
8
s

Fu
ll
-s
et

(1
.2
5x

)
(1
.0
8x

)
(1
.0
x)

–
–

–
–

–
H
al
f-
se
t
(1
)

–
–

–
(1
.2
6x

)
(1
.3
6x

)
(1
.0
x)

–
–

H
al
f-
se
t
(2
)

–
–

–
(1
.3
8x

)
–

–
(1
.4
1x

)
(1
.0
x)

CHAPTER 6. EVALUATION & RESULTS 96

For run (1)

For run (2)

Figure 6.12: The worker nodes, partition responsibilities and the number of threads per node
(out of max available) involved in query execution, for Table 6.9’s half-set busyness runs.
right. We use red color to highlight the latter information. With blue color we mark the remote
responsibilities being assigned at runtime due to overloaded workers.

no-busy.16/16 32/32 64/64

60%

80%

100%

60

90 90
95

60 60

70

90

50 50

60

75

A
vg

C
P
U

lo
ad

[m M] peak

(a) Measuring CPU load during the full-set run,
overlapping workers/cores.

16/16 32/32 64/64

60%

80%

100% 95
90

100

80

70

95

70

60

80

A
vg

C
P
U

lo
ad

[m M] peak

(b) Measuring CPU load during the half-set run,
overlapping workers/cores.

Figure 6.13: Average CPU load (not. from [min to Max]) for drm, while running Q1 and Q13
side by side with 16, 32 and 64 Mappers and Reducers, on a full-set in left and half-set in
right.

CHAPTER 6. EVALUATION & RESULTS 97

no-busy.16/16 32/32 64/64

60%

80%

100%

60

70

80

90

60

70

80
85

50

60 60

70

A
vg

C
P
U

lo
ad

[m M] peak

(a) Measuring CPU load during the full-set run,
non-overlapping resources.

16/16 32/32 64/64

60%

80%

100%

80

70 7070 70

6060 60

50

A
vg

C
P
U

lo
ad

[m M] peak

(b) Measuring CPU load during the half-set
(#1) run, non-overlapping resources.

Figure 6.14: Average CPU load (not. from [min to Max]) for drmy, while running Q1 and Q13
side by side with 16, 32 and 64 Mappers and Reducers, on a full-set in left and half-set in
right.

For the result discussion, we start with our full-set runs. For these tests, drmy (with YARN
integration and, implicitly, with the new resource scheduling algorithm) uses the same assign-
ment as if the cluster had no busyness, that is the assignment from Figure 6.9. Our full-set
TeraSort jobs are using the full-set of workers in a balanced manner, i.e. 2, 4 and 8 M/R per
node, hence the runtime assignment (i.e. the resource footprint) has to be balanced as well.
The only thing that differs, compared with drm that had no YARN awareness, is the mpl that
we try to achieve when different workloads overlap on the same set of resources. Because drmy
is aware that our CPU available resources are much lower during each 16, 32 to 64 M/R test, it
decreases the mpl from 128 (w/o busyness) to 128 - 17 = 111, 128 - 33 = 95 and, respectively,
128 - 65 = 63 threads. In this situation, the algorithm acts more as a throttling mechanism.
As we can see from the 64M/64R drm tests, for the first 10 queries or so (exactly while the
Map phase of TeraSort happens) the performance degrades, i.e. spikes to 95% in the CPU load.
This does not happen to the drmy version for instance, or if it happens is affecting Vectorwise
less. It is important to mention that 1 core is used by the TeraSort (managed) Application
Master and this actually used to influence our experiments for the full-set runs, i.e. the core is
allocated and it appears so in YARN, but never used intensively as such. We had to literally
force our algorithms to ignore this glitch when deciding the resource footprint at runtime. Yet,
overall, we achieve better results compared with the drm version (w/o YARN integration).
Tables 6.7, 6.8 and 6.9 show better (individual and total) times for the 11x Q1,Q13 workload,
though we suffer a lot due to the allocation overhead as seen in the first query’s time result.
Also, few to non-existent CPU peaks are recorded during the full-set runs for drmy, Figure 6.14,
as compared to drm in Figure 6.13. Note that in all our drmy tests we do not have overlapping
resources (i.e. each workload, internal and external, uses its own reserved resources). The CPU
load measurements were done for those cores allocated exclusively to Vectorwise on the worker
nodes which also happened to run a small part of the external Hadoop workload. Hence, is
perfectly normal for the CPU load to be somewhat bigger compared to a normal (w/o any
busyness) run given that we read and process the same amount of data, but on less cores (and
implicitly with less parallelism).

For the half-set tests we are just going to focus on the 64M/64R runs, as the others (with
16M/16R and 32M/32R) exhibit the same behavior. We start by noticing the same contention
problem with the drm version, which also occurred in the full-set runs. During the first 80-90s
of our half-set runs (i.e. the first 8 queries or so) the external workload’s Map phase severely

CHAPTER 6. EVALUATION & RESULTS 98

effects the performance of the drm version. In Figure 6.13 we see peaks at max CPU load.
Moreover, the average minimum load per all cores (over the entire Map phase) is ≥ 80%. The
impact is bigger than previously occurred in the experiments since now, TeraSort workloads
ran at their full 64M/64R parallelism on just 4 of our workers. This means there were 16
Mappers/Reducers (= 16 cores) per worker participating in the resource contention; in our
settings, one out of 16 Mapper/Reducer uses a single core at 70-80% load (Table 6.2). On the
other hand, drmy is only a little affected by the overlapping workload (few peaks around 70%
load) and that is happening on 1 out of 4 workers, on which we do not omit to throttle our
parallelism and use just the amount of reserved resources – 8 threads for (#1) and 11 threads
for (#2) out of 11 max available for Vectorwise. However, the dynamic resource scheduling
algorithm determines a different assignment of workers, partition responsibilities, and threads
per node (out of max available) at runtime for all 16, 32 and 64 M/R busyness tests (i.e.
different resource footprints). Therefore, due to our experimental setup (see the beginning of
this section), the Buffer Manager must read some "cold" partitions from disk. That aside,
the algorithm involves remote responsibilities in query execution making the system use even
remote reads (over TCP) for a part of the "cold" data. Overall, this issue makes the first two
of our queries’ to run really slow, the allocation overhead counts too within the first query’s
time. Around 70GB of compressed data (Lineitem and Orders tables are 76GB in total) have
to be read until the buffer pool becomes hot again. We do not know any specifics, such as
I/O or CPU load, for other worker nodes than the ones which overlapped with the external
(Hadoop) workload, but looking at Table 6.9 and based on the previous two sections, we do not
expect the I/O throughput to exceed 21-22 MB/s. Extrapolating the problem of "cold" buffer
pools to a bigger set of queries (e.g. entire TPCH-H benchmark), this would make the resource
contention issue fade whenever we deal with a smaller overlapping workload. However, if we
look at the drm+ ("hot" buffers and w/o YARN overhead) runtimes during the Map phase (i.e.
first 8 queries or so) we could also conclude that for bigger workloads it actually makes sense
for each of the two systems to allocate enough resources within the ecosystem they both run.
As it seems so, this is a tradeoff between the HDFS I/O performance (for local/remote reads)
and resource contention. Unfortunately though, for the latter problem there is nothing more
someone can do than to avoid using the same resources. On the other hand, the earlier aspect
can be improved, alongside with our resource scheduling policies and cost models. Some of the
improvements are going to be discussed in our last chapter.

Conclusions

Contributions

In this Master’s thesis we undertook the challenge of creating the groundwork towards enabling
dynamic resource management in Vectorwise on Hadoop MPP database system. The milestones
we tried to reach were deciding on the high-level system architecture and creating a proof of
concept that demonstrates (1) improved data-locality, (2) better performance and reliability
during node failures, as well as (3) the ability to cope with overlapping external (Hadoop)
workloads, all due to our custom HDFS block replication policy, min-cost flow algorithms
(plus cost-models) for dynamic resource scheduling, and YARN-integration for cluster resource
management. Thereby, we consider that we achieved (to a certain extent) all our research goals
from Section 1.5.

Answers to Our Research Questions

Scheduling and resource management are not only important, but also very challenging. Clus-
ters are exposed to a wide range of applications, that have highly diverse characteristics and
performance requirements. For example, Map-Reduce applications are usually characterized by
long running jobs. These jobs desire shorter turnaround time - time from submission to com-
pletions. Queries in database systems for analytical or transactional workloads, on the other
hand, are much shorter-lived and much more interactive. Further, these environments need to
support a large number of users simultaneously. As a result, the underlying system needs to
respond to these kind of workloads as soon as they arrive, even at the cost of stretching their
overall turnaround time slightly. Managing both types of workloads at the same time makes
it even more difficult for a cluster resource manager, especially when each workload belongs to
a different applications (e.g. running Map-Reduce jobs and OLAP queries). Scheduling and
resource management needs to take numerous system parameters, such as CPU speed, memory
size, I/O bandwidth, network bandwidth, context switch overhead, etc, into account. These
metrics are often inter-related and can affect the choice of an effective scheduling strategy.

Coming back to our initial research questions, we argue that with an easy, non-intrusive design
and only by using the existing meanings, i.e. YARN and HDFS native APIs, X100’s existing
code base, etc., it is still possible to implement dynamic resource management into Vectorwise
on Hadoop. Besides the current API big issues regarding YARN’s container resource extension
and its inability as a service to monitor in real time an extensive set of metrics, other than
CPU and memory availability, perhaps our major limitation has to do with the latter problem
of effective scheduling. Though the min-cost flow approach has proven to be a viable option in
literature for resource management and scheduling purposes, the cost-models we use flattens
the relationship between the numerous system parameters, which means that we normalize
beforehand all our cost values to the same "nominator". This makes it even harder for us to
define relationships between different metrics or prioritize some of them more than the others.

99

CHAPTER 6. EVALUATION & RESULTS 100

Future Work

Apart from the enhancement opportunities we identified and implemented during this project,
we also envision and address the challenge of providing in the near future the following features
and improvements to our master’s thesis approach.

Perfecting the cost-models

Since both the worker-set selection (Section 4.1) and responsibility assignment (Section 4.2) are
performed only once at database startup and work with (more ore less) static system properties,
we cannot improve by a lot the cost-models for these algorithms. What we can rather do is to
account for a few more YARN metrics in our formulas, such as disk speed, network bandwidth,
etc., whenever they are made available in the API. However, besides the latter additions of new
metrics, for the dynamic resource scheduling (Section 4.3) algorithm we propose the following
improvements that could bring it to completion:

• When defining the penalty cost for partial responsibilities (i.e. not yet local partitions),
have instead a value that corresponds to how much from that partition was replicated
locally already; it could be a percentage value (e.g. 80% replicated) that is normalized
correspondingly to our cost-model (e.g. cost of 0.8). Overall this would make the cost-
model take smarter decisions.

• We could also take in account the historical information about what (partition) respon-
sibilities were involved during query execution and introduce another layer of costs, e.g.
hot responsibilities, as they become "hot" in the buffer. With this we can alter a bit our
cost-model and avoid hitting the disk to overcome Hadoop’s local I/O poor performance.
However, it would be hard to know when partitions are evicted from the buffer pool, such
that we change our costs from hot to local again. We do something similar for respon-
sibility assignment, where we account in the cost-model for ex-responsibilities (labeled
as local+, instead of local-) that could have been cached by the worker node’s OS File
System. But there, data caching is just a side-effect and no assumptions can be made in
that sense. The File System’s cache is not under our control, whereas the Buffer Manager
is.

• Last but not least, is to try to achieve some data-locality for remote responsibilities when
we must involve them in query execution. The idea is to differentiate the penalty costs
of remote responsibilities that match locally with some worker’s [RMax, . . . , R] interval
of remaining replicas from those who do not (R replication factor, RMax responsibility
degree). It will be transparent for the resource scheduling algorithm as remote responsi-
bilities will still be considered as such. Nevertheless, in this way we can extend our view
towards all R replicas without increasing the RMax degree and overloading the worker
nodes with an extra degree of responsibility.

Full resource elasticity within a Hadoop cluster

To achieve full resource elasticity within a Hadoop cluster we still need to revise our approach
for a neat YARN integration and to perfect the internal Vectorwise workload monitoring, along-
side with our resource management policies. We devise the work that has to be done in two
directions, each one with its own roadmap of alternative ideas for improvements:

CHAPTER 6. EVALUATION & RESULTS 101

YARN integration

As stated in YARN-896 1, there is significant work ongoing to allow long-lived services run-
ning as YARN applications. For example, the API’s functionality to increase/decrease resource
utilization within YARN containers (YARN-1197 2) is not yet implemented. This makes it
impossible "per se" to gain full elasticity and to allocate/deallocate resources in a fine-grained
fashion for Vectorwise. Though the idea to model resource requests as separate YARN ap-
plications (Section 5.1) achieves elasticity to a certain extent for increasing the amount of
resources, we saw that is limited when it comes to the opposite operation, decreasing resources.
We cannot just deallocate the difference of resources between different overlapping workloads
by just using the available API interface. With the existing YARN release this functionality
would be translated into (1) stopping the existent Application Master (for the first workload)
and then (2) starting another one (for the second workload), which adds a significant overhead
and is not a worthwhile solution to implement from a product-wise point of view. Therefore,
our workaround for the moment is to release all requested resources at once, when the latest
workload ends (idle state duration > threshold) and there are no other queries still active in
the system.

However, with YARN-1197 being pushed in a next release, we plan to revise our approach in the
future. For instance, instead of creating one YARN Application Master per resource request (per
workload), we could multiplex all the requests towards a single YARN Application Master (or a
pool of applications distributed over different scheduling queues) that is delegated to Vectorwise
and can dynamically increase/decrease the amount of resources for its own containers. Thereby
we can avoid the application startup overhead entirely and reduce the request latency even more
(i.e. a YARN Application Master can run in background and listen only for new requests).

A second idea could be to use Apache’s Slider 3 platform, launched in beta-version around
June 2014, which exposes a set of services that allow long-running applications, real-time and
online applications to easily integrate into YARN (and be YARN-Ready 4). Besides, it provides
an interface for real-time communication, especially for database systems running on Hadoop
or database-style workloads where a very high-speed transfer or data processing and response
times are required. It complements Apache Tez 5, which is quickly gaining adoption as the
batch and interactive engine of Hadoop. However, one thing to note, is that Slider, as well as
the YARN 2.2 release, do not support resource extension (i.e. increase or decrease primitives)
for containers yet. This means we would still need a work-around to achieve resource elasticity
for Vectorwise on Hadoop, to allocate or deallocate resources when is required so.

Another alternative is to use the so called Container Delegation 6, a very new capability that
is being added to YARN. Currently, the Standard Container Model looks as such: a YARN
application (via the Application Master) negotiates a container from the Resource Manager
and then launches the container by interacting with the Node Manager to utilize the allocated
resources (CPU, memory etc.) on the specific machine. Now, YARN-1488 7 is adding a new
model called the Delegated Container Model. It helps to understand the distinction between
a Service X that is already running in YARN containers or externally such as Vectorwise,
and an application that needs to utilize this service, for example a Vectorwise query. In the
Delegated Container Model, the query can negotiate containers from the Resource Manager (via
the Application Master) and, rather than launching them to utilize the new allocated resources,
it delegates all these resources to Service X instead, which then gets additional resources from

1YARN-896: issues.apache.org/jira/browse/YARN-896
2YARN-1197: issues.apache.org/jira/browse/YARN-1197
3Apache Slider: slider.incubator.apache.org
4YARN-Ready Program: hortonworks.com/press-releases/hortonworks-announces-yarn-ready-program
5Apache Tez: tez.apache.org
6Container Delegation: hortonworks.com/blog/evolving-apache-hadoop-yarn-provide-resource-workload-

management-services/
7YARN-1488: issues.apache.org/jira/browse/YARN-1488

CHAPTER 6. EVALUATION & RESULTS 102

its Node Manager(s) to be used on behalf of the query. This scheme contrasts with the Standard
Container Model, basically the only way of building a YARN application today, in which the
application would launch and manage the containers itself to use the allocated resources. From
an implementation perspective, the Node Manager(s), on delegation, will expand the target
containers of Service X, by modifying them to allow for more CPU, memory etc. When the
containers are no longer needed, Service X can release them back to YARN, so the resources
can now be used by other applications.

Workload monitor and resource management

An alternative approach to our workload monitor (Section 5.3), which should contribute to our
efforts on achieving full resource elasticity, is as follows. Through specific formulas, at regular
intervals we would measure the internal load of the system. An element to the computation
would be to establish whether queries get to a certain target of parallelism level – the current
maximum parallelism level, or as well a new environment variable such as target parallelism level
or minimum parallelism level. If queries on average get significantly less parallelism than desired
(by the target), then the system will be considered overloaded. If they get significantly more,
will be classified as underloaded. The workload monitor should respond to this information over
time (i.e. every few minutes), trying via YARN to gradually increase the amount of allocated
resources if the system is "overloaded", or yielding them otherwise (if "underloaded"). The
described alternative for the workload monitor is better mostly in the sense that resource
elasticity would be managed in the background and never influence the latency of an individual
resource request. This is a drawback of our current Master’s thesis approach that needs to be
fixed. Also, our current approach may not be better as such in identifying all the context (see
Section 5.1) changes that determine when to ask YARN for more resources.

Another feature that is not yet supported would be to modify our (custom) HDFS block replica-
tion for Vectorwise such that it tries to create R node sets S1, . . . , SR (R the replication degree,
e.g. 3) with every Si having each table partition exactly once. This would allow us to put to
sleep different node sets. Putting to sleep implies that we maintain the X100 backend processes
running on the worker nodes, but entirely avoid using these nodes for query execution, and as
such, deregister them from YARN. This means we can still run our database on the N

R workers
(N number of nodes) that are awake, and use one core on each as the minimal resource footprint.
Note that, assuming C cores per worker node, in the latter situation we are just using 1

C∗R
CPU resources. Nonetheless, we can scale all the way up to N ∗ C cores.

Acknowledgements

This thesis was made possible thanks to Actian Corporation, which hosted the project and
provided the necessary development environment (with extra support from Centrum Wiskunde
& Informatica), as part of a 8-months internship.

Second, I would like to thank my supervisor, Prof. Dr. Peter Boncz, for his high devotion for
the project, day-by-day guidance and productive discussion sessions. I am also thankful to my
second reader, Prof. Dr. Henri Bal, for contributing to the final shape of my thesis.

I worked in an open-minded and friendly environment, and I owe this great experience to the
entire Vectorwise team in Amsterdam, especially to (in the alphabetical order of their last
name) Andrei Costea, Adrian Ionescu, Bogdan Raducanu, and Michal Szafranski, who always
took the time to answer my questions and help me to fulfill the project.

Last but not least, I would like to thank my family and friends for their everlasting support.

Cristi

103

Bibliography

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
Proceedings of the OSDI, 2016.

[2] Parquet columnar storage for Hadoop. blog.cloudera.com/blog/2013/03/
introducing-parquet-columnar-storage-for-apache-hadoop

[3] ORC file format for Hadoop. hortonworks.com/blog/
orcfile-in-hdp-2-better-compression-better-performance

[4] V. Kumar Vavilapalli et al. Apache Hadoop YARN: Yet Another Resource Negotiator. In
Proceedings of the SoCC, 2013.

[5] S. Babu and H. Herodotou. Massively Parallel Databases and MapReduce Systems. Foun-
dations and Trends in Databases, Vol. 5, 2012

[6] G. Graefe. Volcano - an extensible and parallel query evaluation system. In Proceedings of
the IEEE Transactions on Knowledge and Data Engineer, 1994.

[7] M Zukowski. Balancing vectorized execution with bandwidth-optimized storage. PhD thesis,
Centrum Wiskunde en Informatica (CWI), 2009.

[8] P. Boncz and M. Kersten. MIL primitives for querying a fragmented world. In Proceedings
of the VLDB Journal, 1999.

[9] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution.
In Proceedings of CIDR, 2005.

[10] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhingran. Block Oriented Processing
of Relational Database Operations in Modern Computer Architectures. In Proceedings of
the IEEE ICDE, 2001.

[11] M. Zukowski, P. A. Boncz, N. J. Nes, and S. Heman. Monetdb/X100 - A DBMS In The
CPU Cache. IEEE Data Engineering Bulletin, 2005.

[12] Kenneth C. Sevcik. Application scheduling and processor allocation in multiprogrammed
parallel processing systems. In Performance Evaluation, 19:107 140, 1994.

[13] E. Rahm. Dynamic load balancing in parallel database systems. 1995.

[14] H. Märtens, E. Rahm, and T. Stöhr. Dynamic query scheduling in parallel data warehouses.
In Proceedings of the 8th International Euro-Par Conference on Parallel Processing, Euro-
Par, 2002.

[15] E. Rahm. Parallel query processing in shared disk database systems. 1993.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, and
R. Murthy. Hive - A Petabyte Scale Data Warehouse Using Hadoop. In Proceedings of the
IEEE ICDE, 2010.

104

blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for-apache-hadoop
blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for-apache-hadoop
hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance
hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance

BIBLIOGRAPHY 105

[17] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O’Malley, J. Pandey, Y.
Yuan, R. Lee, and X. Zhang. Major Technical Advancements in Apache Hive., In Proceed-
ings of the SIGMOD, 2014.

[18] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin. HadoopDB:
an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. In
Proceedings of the VLDB Endowment, 2009.

[19] A. Abouzied, D. Abadi, and A. Silberschatz. Invisible Loading: Access-Driven Data Trans-
fer from Raw Files into Database Systems. In Proceedings of the EDBT/ICDT, 2013.

[20] Hawq whitepaper. Pivotal HD: HAWQ. A true SQL engine for Hadoop.

[21] L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan, J. Cohen, C. Welton,
G, Sherry and M. Bhandarkar. HAWQ: A Massively Parallel Processing SQL Engine in
Hadoop. In Proceedings of the SIGMOD, 2014.

[22] EMC Greenplum presentation, F. Was. Beyond Conventional Data Warehousing. Green-
plum Inc.

[23] Impala distributed SQL query engine. blog.cloudera.com/blog/2012/10/
cloudera-impala-real-time-queries-in-apache-hadoop-for-real

[24] Inside Cloudera Impala: Runtime Code Generation. blog.cloudera.com/blog/2013/02/
inside-cloudera-impala-runtime-code-generation/

[25] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation in query execution.
In Proceedings of the DaMoN, 2011.

[26] Distributed SQL query engine for big data. prestodb.io

[27] M. Traverso. Presto: Interacting with petabytes of data at Facebook. www.facebook.
com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/
10151786197628920

[28] B. Schroeder and M. Harchol-Balter. Achieving class-based QOS for transactional work-
loads. In Proceedings of the IEEE ICDE, 2006.

[29] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and A. Wierman. How to deter-
mine a good multi-programming level for external scheduling. In Proceedings of the IEEE
ICDE, 2006.

[30] B. Niu, P. Martin, W. Powley, P. Bird, and R. Horman. Adapting mixed workloads to meet
SLOs in autonomic DBMSs. In Proceedings of the IEEE ICDE, 2007.

[31] U. Dayal, H. Kuno, J. L. Wiener, K. Wilkinson, A. Ganapathi, and S. Krompass.Managing
operational business intelligence workloads. In proceedings of the SIGOPS, 2009.

[32] S. Krompass, U. Dayal, H. A. Kuno, and A. Kemper. Dynamic Workload Management for
Very Large Data Warehouses: Juggling Feathers and Bowling Balls. In Proceedings of the
VLDB Endowment, 2007.

[33] S. Krompass, Harumi A. Kuno, Janet L. Wiener, Kevin Wilkinson, Umeshwar Dayal,
and Alfons Kemper. Managing Long-running Queries. In Proceedings of the International
Conference on Extending Database Technology, ACM, 2009.

[34] Hadoop’s Capacity Scheduler. hadoop.apache.org/core/docs/current/capacity_scheduler.
html

[35] M. Zaharia, The Hadoop Fair Scheduler. developer.yahoo.net/blogs/hadoop/FairSharePres.
ppt

blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real
blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real
blog.cloudera.com/blog/2013/02/inside-cloudera-impala-runtime-code-generation/
blog.cloudera.com/blog/2013/02/inside-cloudera-impala-runtime-code-generation/
prestodb.io
www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
hadoop.apache.org/core/docs/current/capacity_scheduler.html
hadoop.apache.org/core/docs/current/capacity_scheduler.html
developer.yahoo.net/blogs/hadoop/FairSharePres.ppt
developer.yahoo.net/blogs/hadoop/FairSharePres.ppt

BIBLIOGRAPHY 106

[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving MapReduce Per-
formance in Heterogeneous Environments. In Proceedings of the OSDI, 2008.

[37] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In
Proceedings of the EuroSys, 2010.

[38] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus: Locality-aware resource allocation
for MapReduce in a cloud. In Proceedings of the SC, 2011.

[39] M. Li, D. Subhraveti, Ali R. Butt, A. Khasymski, and P. Sarkar. CAM: a topology aware
minimum cost flow based resource manager for MapReduce applications in the cloud. In
Proceedings of the HPDC, 2012.

[40] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy:
fair scheduling for distributed computing clusters. In Proceedings of the SOSP, 2009.

[41] G. Graefe. Encapsulation of parallelism in the Volcano query processing system. In Pro-
ceedings of the SIGMOD, 1990.

[42] E. Parsons and K. C. Sevcik. Multiprocessor scheduling for high-variability service time
distributions. In Scheduling Strategies for Parallel Processing, Lecture Notes in Computer
Science, 1995.

[43] A. Costea, A. Ionescu, Query Optimization and Execution in Vectorwise MPP. MSc thesis,
Actian Corp., 2012.

[44] S. Heman, M. Zukowski, N. J. Nes, L. Sidirourgos, P. Boncz. Positional update handling
in column stores. In Proceedings of the SIGMOD, 2010.

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms.

[46] Introduction to Minimum Cost Flows, 15.082J, 6.855J and ESD.78J MIT Courses, October
26, 2010. ocw.mit.edu/courses

[47] Parquet presentation: Hadoop Summit 2013. www.slideshare.net/julienledem/
parquet-hadoop-summit-2013

[48] Parquet’s 1GB block size, insert [shuffle]. www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-Impala/ciiu_parquet.html

[49] Topcoder. Minimum Cost Flow, Part 2: Algorithms. community.topcoder.com/tc?module=
Static&d1=tutorials&d2=minimumCostFlow2

[50] B. Thirumala Rao, N. V. Sridevi, V. Krishna Reddy, L. S. S. Reddy. Performance Issues
of Heterogeneous Hadoop Clusters in Cloud Computing. In Global Journal of Computer
Science and Technology, May 2011.

[51] Set and Partitions: Covering, Hitting, and Splitting. www.nada.kth.se/~viggo/
wwwcompendium/node142.html

[52] Weighted set covering problem. en.wikipedia.org/wiki/Set_cover_problem

[53] Konstantinos Vasileiadis. A Proof that Hitting Set is NP-Complete. 2013.

[54] Tien Duc Dinh. Hadoop Performance Evaluation. Research report (practicum stage),
Ruprecht-Karls Universitat Heidelberg (Institute of Computer Science), 2009.

ocw.mit.edu/courses
www.slideshare.net/julienledem/parquet-hadoop-summit-2013
www.slideshare.net/julienledem/parquet-hadoop-summit-2013
www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/ciiu_parquet.html
www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/ciiu_parquet.html
community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
www.nada.kth.se/~viggo/wwwcompendium/node142.html
www.nada.kth.se/~viggo/wwwcompendium/node142.html
en.wikipedia.org/wiki/Set_cover_problem

	1 Introduction
	1.1 Background and Motivation
	1.2 Related Work
	1.2.1 Hadoop-enabled MPP Databases
	1.2.2 Resource Management in MPP Databases
	1.2.3 Resource Management in Hadoop Map-Reduce
	1.2.4 YARN Resource Manager (Hadoop NextGen)

	1.3 Vectorwise
	1.3.1 Ingres-Vectorwise Architecture
	1.3.2 Distributed Vectorwise Architecture
	1.3.3 Hadoop-enabled Architecture

	1.4 Research Questions
	1.5 Goals
	1.6 Basic ideas

	2 Approach
	2.1 HDFS Local Reads: DataTransferProtocol vs Direct I/O.
	2.2 Towards Data Locality
	2.3 Dynamic Resource Management
	2.4 YARN Integration
	2.5 Experimentation Platform

	3 Instrumenting HDFS Block Replication
	3.1 Preliminaries
	3.2 Custom HDFS Block Placement Implementation
	3.2.1 Adding (New) Metadata to Database Locations
	3.2.2 Extending the Default Policy

	4 Dynamic Resource Management
	4.1 Worker-set Selection
	4.2 Responsibility Assignment
	4.3 Dynamic Resource Scheduling

	5 YARN integration
	5.1 Overview: model resource requests as separate YARN applications
	5.2 DbAgent–Vectorwise communication protocol: update worker-set state, increase/decrease resources
	5.3 Workload monitor & resource allocation

	6 Evaluation & Results
	6.1 Evaluation Plan
	6.2 Results Discussion

